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Abstract
The higher Leray–Serre spectral sequence associated with a tower of fibrations repre-
sents a generalization of the classical Leray–Serre spectral sequence of a fibration. In
this work, we present algorithms to compute higher Leray–Serre spectral sequences
leveraging the effective homology technique, which allows to perform computations
involving chain complexes of infinite type associated with interesting objects in alge-
braic topology. In order to develop the programs, implemented as a new module for
the Computer Algebra system Kenzo, we translated the original construction of the
higher Leray–Serre spectral sequence in a simplicial framework and studied some of
its fundamental properties.
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1 Introduction

In algebraic topology and homological algebra, spectral sequences are constructions
arising in a quite natural way from a filtration of a chain complex, that is a collection
{FpC∗}p∈Z of nested chain subcomplexes indexed over the integers. In a recent work
[14], B.Matschke proposed a generalization of the notion of spectral sequence, formu-
lating a theory which allows to construct a generalized spectral sequence, or spectral
system, from filtrations indexed over any partially ordered set. This notion is refined in
[15] in the special case of spectral systems arising from chain complexes filtered over
the integers in several different ways, called higher spectral sequences. One of the
main motivations of Matschke was to describe a mathematical object general enough
to unify several spectral sequences which usually one would apply in succession. This
is the case of the higher Leray–Serre spectral sequence associated with a tower of
fibrations, one of the motivating examples of the work, which generalizes the classical
Leray–Serre spectral sequence [22] relating the homology of the base, fiber and total
space of a fibration.

Handling spectral systems and higher spectral sequences may be daunting, since
they look more technical than usual spectral sequences and they involve more compli-
cated bookkeeping and manipulation of the filtration. On the other hand, computing
them is highly desirable, as they are able to detect finer details then ordinary spectral
sequences. In particular, higher Leray–Serre spectral sequences containmore informa-
tion on the involved towers of fibrations than ordinary spectral sequences associated
with each fibration of the tower. The overarching purpose of the present work is to
allow the use of these finer details in practice, which is conditional on the possibility
of explicitly computing higher Leray–Serre spectral sequences.

Like ordinary spectral sequences, spectral systems and higher spectral sequences
are not algorithms, meaning that they cannot always be immediately computed from
a filtration of a chain complex. In particular, the notion of spectral system and higher
spectral sequence involves groups and differential maps which, despite being mathe-
maticallywell-defined, inmany situations cannot be computationally determined. This
is the case, for example, that occurs when the considered chain complex is of infi-
nite type, a quite common situation with chain complexes associated with interesting
objects, for instance in algebraic topology.

In this work, we present general algorithms to compute the higher Leray–Serre
spectral sequence associated with a tower of fibrations. Because of the mentioned
difficulties, in order to develop our algorithms and programswe use effective homology
[19,20], a technique devised to compute the homology of complicated spaces, which
allows to perform computations involving chain complexes of infinite type. A key
concept for the technique of effective homology is that of a reduction (Definition 13)
between two chain complexes, which is a special type of chain equivalence. In short,
if a chain complex is connected via a suitable sequence of reductions to a second one,
the latter can be used in computations, for instance to determine homology. Differently
from [19,20], we consider chain complexes endowed with generalized filtrations; by
studying the interaction of the filtrations and the reductions we describe how the
effective homology method can be applied to compute spectral systems and higher
spectral sequences. In a previous work [9] we presented general results and algorithms
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for successive reductions between filtered chain complexes, under the assumption that
both the reductions and the filtrations (on all the involved chain complexes) are known,
acknowledging that specific methods are required to compute many relevant spectral
systems. In this work, we introduce a specific method for higher Leray–Serre spectral
sequences, describing how the appropriate reductions and filtrations can be defined
directly from the tower of fibrations. In order to make them computationally treatable,
a main accomplishment of the present article is the introduction of a construction
of higher Leray–Serre spectral sequences in a simplicial framework, which is more
suitable for computational purposes than the original topological framework of [14].
The study of this simplicial version of higher Leray–Serre spectral sequences yields in
particular the guarantee of the correctness of our algorithms. The programs described
in this work have been implemented as a new module for the Computer Algebra
systemKenzo [4] and are available at https://github.com/ana-romero/Kenzo-external-
modules.

Let us outline the structure of the paper. In Sect. 2 we present some fundamental
notions and results that we use in the rest of the work. Section 3 contains a gen-
eral introduction to selected aspects of the theory of higher spectral sequences. In
Sect. 4 we describe our simplicial version of the higher Leray–Serre spectral sequence,
introducing definitions of generalized filtrations (Definitions 36 and 37; see also Def-
initions 42 and 57 in the following sections) of chain complexes associated with the
tower of fibrations, a fundamental step to explicitly compute higher Leray–Serre spec-
tral sequences. Sections 5 and 6 present the main ideas underlying our algorithms,
as well as the description of how the effective homology technique allows them to
deal with a wide range of situations that cannot be handled by standard algorithms.
The interaction between the generalized filtrations and the reductions of the effective
homology technique (detailed in Propositions 44, 46, 48, 50 and 59, 60, 61) yields our
first main result (Theorems 51 and 62), which provides a theoretical guarantee of the
correctness of our algorithms: from the 2-page on (Definition 31), the higher spectral
sequence computed using our algorithms based on the effective homology method
coincides with the higher Leray–Serre spectral sequence defined from the tower of
fibrations. Section 7 contains the proof, in the simplicial setting we adopt throughout
this work, of the second main result of this paper (Theorem 64), which identifies the
2-page of higher Leray–Serre spectral sequences. In Sect. 8 we provide examples and
computations which highlight some unique features of the programs we developed,
and we end the paper with a section of conclusions and ideas for further work.

2 Preliminaries

Wedevote this section to presenting preliminary notions and results that will be helpful
to understand the rest of the work. After introducing the notion of spectral system, we
recall some definitions on simplicial sets and principal fibrations, that we will need to
introduce our simplicial version of the higher Leray–Serre spectral sequence. Then,
we illustrate the effective homology technique and recall some results in homolog-
ical perturbation theory that we will need to use effective homology in our context.
We conclude the section presenting some algorithms to compute spectral systems in
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general situations, which will be useful to better understand the specific methods we
developed for the higher Leray–Serre spectral sequence.

Throughout this work, we denote the composition of two maps f : X → Y and
g : Y → Z by g f . If not specified otherwise, all the modules we consider are Z-
modules.

2.1 Spectral Systems

Spectral systems are a generalization of the classical notion of spectral sequence [17]
to the case of filtrations indexed over a poset.

Definition 1 A partially ordered set or poset (I ,≤) is a set I endowed with a partial
order ≤.

Definition 2 A chain complex C∗ is a sequence of pairs C∗ = (Cn, dn)n∈Z where Cn

are abelian groups and dn : Cn → Cn−1 (the differential maps) are group homomor-
phism of degree −1 such that dn−1dn = 0, for all n ∈ Z. The n-homology group of
the chain complex C∗ is defined as Hn(C∗) :=Ker dn/Im dn+1, for each n ∈ Z. We
denote H∗(C∗) := {Hn(C∗)}n∈Z the graded homology group of the chain complex C∗.

In what follows, we will usually drop the subscript in the notation of differential
maps. Homology groups can also be defined with coefficients in an arbitrary module
M rather than Z, in which case we use the notation Hn(C∗; M). For this definition
and the relation with ordinary (integer) homology see [13].

Definition 3 A filtration of a chain complex C∗ over a poset (I ,≤), briefly called an
I -filtration, is a collection of subcomplexes F = {FiC∗}i∈I such that FiC∗ ⊆ FjC∗
whenever i ≤ j in I . We call an I -filtered chain complex (C∗, F) a chain complex C∗
endowed with an I -filtration F = {FiC∗}i∈I .

We will often denote the chain subcomplexes FiC∗ simply by Fi , forgetting about
the grading of homology, when we are only interested in the filtration index i .

Now, we recall that for classical spectral sequences, which arise from a Z-filtration
{Fp}p∈Z, we have the formula (see [13]):

Er
p,q = Zr

p,q + Fp−1Cp+q

d(Zr−1
p+r−1,q−r+2) + Fp−1Cp+q

, (1)

where Zr
p,q := {a ∈ FpCp+q : d(a) ∈ Fp−rCp+q−1}. This expression can be rewrit-

ten in a form that highlights the interplay of the four filtration indices p − r , p − 1, p
and p + r − 1:

Er
p,q = Fp ∩ d−1(Fp−r )

d(Fp+r−1) + Fp−1
, (2)

where for simplicity we do not denote the grading of homology. To be precise, since
in (2) the denominator is not necessarily a subgroup of the numerator, the formula has
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to be interpreted keeping in mind that by convention the notation A/B for quotient
groups will mean A/(B ∩ A) ∼= (A + B)/B.

In [14], this formula was imitated and generalized to the case of I -filtrations as
follows.

Definition 4 Let (C∗, F) be an I -filtered chain complex. Given a 4-tuple of indices
z ≤ s ≤ p ≤ b in I we define

S[z, s, p, b] := Fp ∩ d−1(Fz)

d(Fb) + Fs
. (3)

As an example, in the particular cases z = s ≤ p = b we can observe that
S[s, s, p, p] is the relative homology of Fs ⊆ Fp, that is S[s, s, p, p] = H(Fp/Fs).

We call the collection {S[z, s, p, b]}z≤s≤p≤b the spectral system associated with
the I -filtration F = {Fi }i∈I of C∗, and we call each abelian group S[z, s, p, b] a term
of the spectral system. For the sake of clarity, reintroducing in the notation (3) the
total degree n gives

Sn[z, s, p, b] := FpCn ∩ d−1(FzCn−1)

d(FbCn+1) + FsCn
.

The notion of differential in classical spectral sequences, as well as the way of
obtaining terms of the page r + 1 by taking homology at page r , can be generalized
too. Given two 4-tuples of indices z1 ≤ s1 ≤ p1 ≤ b1 and z2 ≤ s2 ≤ p2 ≤ b2 in I , it
is easy to check that d induces a well-defined differential

d : S[z2, s2, p2, b2] → S[z1, s1, p1, b1]

whenever the additional inequalities z2 ≤ p1 and s2 ≤ b1 are satisfied. With a small
abuse of notation, we denote with d also the induced differentials. In the case of
z2 = p1 and s2 = b1, a direct computation shows that the kernel and cokernel of
d : S[z2, s2, p2, b2] → S[z1, s1, p1, b1] have the following nice expressions as terms
of the spectral system:

Ker d = S[s1, s2, p2, b2],
Coker d = S[z1, s1, p1, p2].

The following result from [14] describes how the homology of a sequence of such
differentials can be expressed.

Proposition 5 Consider three 4-tuples of indices in I satisfying the relations

z3 ≤ s3 ≤ p3 ≤ b3

= =

z2 ≤ s2 ≤ p2 ≤ b2

= =

z1 ≤ s1 ≤ p1 ≤ b1
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and the sequence of differentials between the corresponding terms:

S[z3, s3, p3, b3] d ′−→ S[z2, s2, p2, b2] d−→ S[z1, s1, p1, b1]. (4)

Then the homology at the middle term is given by

Ker d

Im d ′ = S[s1, s2, p2, p3].

Note that, as the differential d of C∗ is a graded map of degree −1, so are the
induced differentials between terms of the spectral system (with respect to the total
degree). Then, for example, making explicit the total degree in (4) one obtains

Sn+1[z3, s3, p3, b3] d ′−→ Sn[z2, s2, p2, b2] d−→ Sn−1[z1, s1, p1, b1],

whose homology at the middle term is Ker d/ Im d ′ = Sn[s1, s2, p2, p3].
The paper [14] introduces some examples of spectral systems (and higher spectral

sequences, see Sect. 3) associated with interesting objects in algebraic topology. For
example, as we will explain in Sect. 4, the higher Leray–Serre spectral sequence is
defined by means of a tower of fibrations, and generalizes the classical Leray–Serre
spectral sequence of a fibration.

However, the definitions in [14] are formal and the paper does not include a method
to compute the spectral systems.

2.2 Simplicial Sets and Fibrations

In this sectionwe introduce the definition of fibrations in a simplicial setting, following
[16].

Definition 6 LetD be a category. The category sD of simplicial objects inD is defined
as follows. An object K ∈ sD consists of

• for each integer n ≥ 0, an object Kn ∈ D;
• for every pair of integers (i, n) such that 0 ≤ i ≤ n, face and degeneracy maps

∂i : Kn → Kn−1 and si : Kn → Kn+1 (which are morphisms in the category D)
satisfying the simplicial identities:

∂i∂ j = ∂ j−1∂i if i < j

si s j = s j+1si if i ≤ j

if i < j

∂i s j =
⎧
⎨

⎩

s j−1∂i
Id
s j∂i−1

if i = j, j + 1

if i > j + 1

Let K and L be simplicial objects.A simplicialmap (or simplicialmorphism) f : K →
L consists of maps fn : Kn → Ln (which are morphisms in D) which commute with
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the face and degeneracy operators, that is fn−1∂i = ∂i fn and fn+1si = si fn for all
0 ≤ i ≤ n.

If the objects of D have elements, the elements of Kn are called the n-simplices of
K .

Definition 7 An n-simplex x ∈ Kn is degenerate if x = s j y for some y ∈ Kn−1
and some 0 ≤ j < n; otherwise x is called non-degenerate. An element x ∈ Kn

has degeneracy degree equal to p, denoted deg x = p, if x = sin−p · · · si1 y for some
non-degenerate y ∈ Kp.

A simplicial set is a simplicial object in the category of sets. In what follows, we
will use the notion of 1-reduced simplicial set, that is a simplicial set having a unique
0-simplex and no non-degenerate 1-simplex. A simplicial group G is a simplicial
object in the category of groups; in other words, it is a simplicial set where each Gn

is a group and the face and degeneracy operators are group morphisms.
A simplicial set K has a canonically associated chain complex C∗(K ) =

(Cn(K ), dn), where each chain group Cn(K ) is defined as the free Z-module gener-
ated by Kn , and the differential dn : Cn(K ) → Cn−1(K ) is defined as the alternating
sum of faces, dn := ∑n

i=0(−1)i∂i .

Definition 8 The Cartesian product X × Y of two simplicial sets X and Y is the
simplicial set whose set of n-simplices is (X × Y )n := Xn × Yn , with coordinate-wise
defined face and degeneracy maps: if (x, y) ∈ (X × Y )n , then

∂i (x, y) := (∂i x, ∂i y), 0 ≤ i ≤ n;
si (x, y) := (si x, si y), 0 ≤ i ≤ n.

Remark 9 From the definition of the degeneracy maps of a Cartesian product X × Y ,
it is clear that an element (x, y) ∈ (X × Y )n can be expressed as (x, y) =
sin−q · · · si1(x ′, y′) for some non-degenerate (x ′, y′) ∈ (X × Y )q , where sin−q , . . . , si1
are the common degenerations in the expressions of x and y with respect to non-
degenerate elements, as in Definition 7.

Definition 10 A twisting operator from a simplicial set B to a simplicial group G is a
map τ : B → G of degree−1, that is a collection of maps τ = {τn : Bn → Gn−1}n≥1,
satisfying the following identities, for any n ≥ 1 and for any b ∈ Bn :

∂i (τb) = τ(∂i b), 0 ≤ i < n − 1,

∂n−1(τb) = τ(∂nb)
−1 · τ(∂n−1b),

si (τb) = τ(si b), 0 ≤ i ≤ n − 1,

en = τ(snb),

where en is the identity element of Gn .

We defined twisting operators in a slightly different (yet equivalent) way from [16],
in order to agree with the definition implemented in the Kenzo system.
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Definition 11 Given a simplicial group G, a simplicial set B and a twisting operator
τ : B → G, the twisted (Cartesian) product E(τ ) :=G ×τ B is the simplicial set
whose set of n-simplices is E(τ )n = (G ×τ B)n :=Gn × Bn and whose face and
degeneracy maps are defined in the following way: if (g, b) ∈ (G ×τ B)n , then

∂i (g, b) := (∂i g, ∂i b), 0 ≤ i < n,

∂n(g, b) := (τ (b) · ∂ng, ∂nb);
si (g, b) := (si g, si b), 0 ≤ i ≤ n.

It can be easily shown that the identities defining a twisting operator τ are equivalent
to the simplicial identities of G ×τ B. Notice that Remark 9 applies also to twisted
products G ×τ B.

Definition 12 Given a simplicial groupG, a simplicial set B and a twisting operator τ :
B → G, we call (principal) fibration a sequence G ↪−→ E → B, where E := E(τ ) =
G×τ B and the maps are the inclusion as first factor G ↪−→ G×τ B and the projection
on the second factor G ×τ B → B. In a fibration, B is called the base, G is called the
fiber and E is called the total space.

2.3 Effective Homology

The effective homology method, introduced in [21] and explained in depth in [19]
and [20], is a technique which can be used to determine the homology of complicated
spaces, in particular spaces which are not of finite type. In a previous work [9], we
used this technique to develop algorithms and programs for computing some spectral
systems, as we will briefly illustrate in Sect. 2.5. We present now the main definitions
and ideas of this method.

Definition 13 A reduction ρ := (C∗ ⇒⇒D∗) between two chain complexes C∗ and D∗
is a triple ( f , g, h) where: (a) the components f and g are chain complex morphisms
f : C∗ → D∗ and g : D∗ → C∗; (b) the component h is a homotopy operator
h : C∗ → C∗+1 (a graded group homomorphism of degree +1); (c) the following
relations must be satisfied: (1) f g = idD∗ ; (2) g f +dC∗h+hdC∗ = idC∗ ; (3) f h = 0;
(4) hg = 0; (5) hh = 0.

The relations of Definition 13 express the fact that C∗ is the direct sum of D∗ and
a contractible (acyclic) complex. This decomposition is simply C∗ = Ker f ⊕ Im g,
with Im g ∼= D∗ and Hn(Ker f ) = 0, for all n. In particular, this implies that the
homology groups Hn(C∗) and Hn(D∗) are canonically isomorphic, for all n.

Given a chain complex C∗, the trivial reduction Id = ( f , g, h) : C∗ ⇒⇒C∗ is the
reduction with f = g = Id and h = 0. We now state two simple results (see [20,
Ch. 5]) describing the behavior of reductions with respect to composition and tensor
product.

Proposition 14 Let ρ = ( f , g, h) : C∗ ⇒⇒D∗ and ρ′ = ( f ′, g′, h′) : D∗ ⇒⇒ E∗ be two
reductions. Then a reduction ρ′′ = ( f ′′, g′′, h′′) : C∗ ⇒⇒ E∗ is given by:

f ′′ := f ′ f , g′′ := gg′, h′′ := h + gh′ f .
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Proposition 15 Let ρ = ( f , g, h) : C∗ ⇒⇒D∗ and ρ′ = ( f ′, g′, h′) : C ′∗ ⇒⇒D′∗ be two
reductions. Then a reduction ρ′′ := ρ ⊗ ρ′ = ( f ′′, g′′, h′′) : C∗ ⊗ C ′∗ ⇒⇒D∗ ⊗ D′∗ is
given by:

f ′′ := f ⊗ f ′, g′′ := g ⊗ g′, h′′ := h ⊗ IdC ′∗ +(g f ) ⊗ h′.

Definition 16 A (strong chain) equivalence ε := (C∗ ⇐⇐⇒⇒D∗) between two complexes
C∗ and D∗ is a triple (Ĉ∗, ρ, ρ′) where Ĉ∗ is a chain complex and ρ : Ĉ∗ ⇒⇒C∗ and
ρ′ : Ĉ∗ ⇒⇒D∗ are reductions: C∗ ⇐⇐ Ĉ∗ ⇒⇒D∗.

Definition 17 An effective chain complex C∗ is a free chain complex (that is, a chain
complex consisting of free Z-modules) where each groupCn is finitely generated, and
there is an algorithm that returns a Z-base βn for each input degree n (for details, see
[19]).

Intuitively, an effective chain complex C∗ is a chain complex whose homology
groups can be determined by means of standard algorithms for homology, based on
matrix diagonalization and on the computation of the Smith Normal Form (see [11]).

Definition 18 An object with effective homology is a triple (X , D∗, ε) where X is an
object (e.g., a simplicial set, a topological space) possessing a canonically associated
free chain complexC∗(X), D∗ is an effective chain complex and ε = (C∗(X)⇐⇐⇒⇒D∗)
is an equivalence between C∗(X) and D∗.

The notion of object with effective homology makes it possible to compute the
homology groups of “complicated” objects by using the associated effective com-
plexes to perform the computations, which can be easily carried out via standard
algorithms for homology. The method is based on the following idea: given some
objects X1, . . . , Xn , a constructor is an algorithm which produces a new object X (in
Sect. 2.4 we will detail the case of the total space of a fibration as an example of a
constructor). We assume that effective homology versions of the objects X1, . . . , Xn

are known, and we require that the constructor produces also an effective homology
version of the space X . In this way, the effective chain complex D∗ associated with X
can be used for the computations, and the relationship with the original chain complex
C∗(X) is kept thanks to the equivalence C∗(X)⇐⇐⇒⇒D∗.

The most significant achievement of the effective homology technique concerns
the possibility to compute the homology of chain complexes of infinite type, which
are not uncommon in algebraic topology and homological algebra, associated with
interesting objects. We say that a chain complex C∗ is of infinite type if at least one of
its chain groups Cn is not a finitely generated Z-module. For brevity, we say that an
object X is of infinite typewhen the associated chain complexC∗(X) is of infinite type.
In this case, since one cannot save a list of all generators and express the differential
maps as matrices, standard algorithms for homology are not directly applicable, and
the effective homology technique is the only known way to deal with these situations.

The effective homology method has been implemented in the system Kenzo [4],
a Common Lisp 16,000 lines program devoted to symbolic computation in algebraic
topology, which has made it possible to determine homology and homotopy groups of
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complicated spaces and has proved its utility successfully computing some previously
unknown results (for example, homology groups of iterated loop spaces of a loop
space modified by a cell attachment, components of complex Postnikov towers; see
[20] for details).

2.4 Homological Perturbation and the (Twisted) Eilenberg–Zilber Reduction

In the context of the present work, the homological perturbation results usually known
by the names of Trivial Perturbation Lemma (TPL) and Basic Perturbation Lemma
(BPL) turn out to be fundamental tools, since they describe how a perturbation (a
modification of the differential of a chain complex) transmits through a reduction.

Definition 19 Let C∗ = (Cn, dn)n∈Z be a chain complex. A perturbation δ of the
differential d is a family of morphisms δ = {δn : Cn → Cn−1}n∈Z such that the sum
d + δ is again a differential, that is (d + δ)2 = 0 holds (meaning (dn−1 + δn−1)(dn +
δn) = 0, for all n ∈ Z).

We call C ′∗ = (Cn, dn + δn)n∈Z the perturbed chain complex obtained from C∗ by
introducing the perturbation δ.

Theorem 20 (Trivial Perturbation Lemma) Let C∗ = (Cn, dCn )n∈Z and D∗ =
(Dn, dDn )n∈Z be two chain complexes, ρ = ( f , g, h) : C∗ ⇒⇒D∗ a reduction, and δD
a perturbation of the differential dD. Then a reduction ρ′ = ( f ′, g′, h′) : C ′∗ ⇒⇒D′∗
exists, where:

1. C ′∗ = (C∗, dC + gδD f ) is the perturbed chain complex obtained from C∗ by
introducing the perturbation gδD f ;

2. D′∗ = (D∗, dD + δD) is the perturbed chain complex obtained from D∗ by intro-
ducing the perturbation δD;

3. The maps of the new reduction ρ′ = ( f ′, g′, h′) are given by f ′ := f , g′ := g,
h′ := h.

Theorem 21 (Basic Perturbation Lemma, [2]) Let C∗ = (Cn, dCn )n∈Z and D∗ =
(Dn, dDn )n∈Z be two chain complexes, ρ = ( f , g, h) : C∗ ⇒⇒D∗ a reduction, and δC
a perturbation of the differential dC . Suppose that the composition hδC satisfies the
following nilpotency condition: for every x ∈ C∗ there exists a non-negative integer
m = m(x) ∈ N such that (hδC )m(x) = 0. Then a reduction ρ′ = ( f ′, g′, h′) :
C ′∗ ⇒⇒D′∗ exists, where:

1. C ′∗ = (C∗, dC+δC ) is the perturbed chain complex obtained fromC∗ by introducing
the perturbation δC;

2. D′∗ = (D∗, dD + δD) is the perturbed chain complex obtained from D∗ by intro-
ducing the perturbation δD := f δCϕg = f ψδCg;

3. the maps of the new reduction ρ′ = ( f ′, g′, h′) are given by

f ′ := f ψ, g′ := ϕg, h′ := ϕh = hψ,
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with the operators ϕ and ψ given by

ϕ :=
∞∑

i=0

(−1)i (hδC )i , ψ :=
∞∑

i=0

(−1)i (δCh)i ,

the convergence of these series being guaranteed by the nilpotency condition.

Let us devote the rest of this section to effective homology of the twisted product
of simplicial sets, which will be particularly relevant in what follows. In order to state
the definitions and the result correctly, we henceforth assume all the chain complexes
associated with simplicial sets to be normalized (see [16, Ch. 5]), which intuitively
means that only non-degenerate simplices are considered as generators of the chain
groups. More precisely, for a simplicial set X with the notation C∗(X) we actually
mean the quotient C∗(X)/CD∗ (X), where CD∗ (X) is the subcomplex of degenerate
elements. Let G → E → B be a fibration given by a twisting operator τ : B → G;
we want to consider a constructor which produces the total space of the fibration,
E = G ×τ B. Let us suppose that B is 1-reduced and that G and B are objects
with effective homology, that is, there exist two equivalences C∗(G)⇐⇐⇒⇒DG∗ and
C∗(B)⇐⇐⇒⇒DB∗, with DG∗ and DB∗ effective chain complexes. Then it is possible to
obtain the effective homology of the total space E . The starting point is the Eilenberg–
Zilber reduction,which describes the relation between the chain complex of aCartesian
product of simplicial sets C∗(G × B) and the tensor product C∗(G) ⊗ C∗(B).

Theorem 22 (Eilenberg–Zilber, [6]) For any simplicial sets G and B there exists a
reduction

ρ = ( f , g, h) : C∗(G × B)⇒⇒C∗(G) ⊗ C∗(B).

The maps f , g, h, which are called respectively the Alexander-Whitney, Eilenberg–
MacLane and Shih maps, are defined as follows:

f (xn, yn) :=
n∑

i=0

∂i+1 · · · ∂nxn ⊗ ∂0 · · · ∂i−1yn,

g(xp ⊗ yq) :=
∑

(α,β)∈{(p,q)-shuffles}
(−1)sg(α,β)(sβq · · · sβ1xp, sαp · · · sα1 yq),

h(xn, yn) :=
∑

0≤q≤n−1,
0≤p≤n−q−1,

(α,β)∈{(p+1,q)-shuffles}

(−1)n−p−q+sg(α,β)
(sβ∂n−q+1 · · · ∂nxn,
sα∂n−p−q · · · ∂n−q−1yn),

where a (p, q)-shuffle (α, β) = (α1, . . . , αp, β1, . . . , βq) is defined as a per-
mutation of the set {0, 1, . . . , p + q − 1} such that αi < αi+1 and β j <

β j+1, sg(α, β) := ∑p
i=1(αi − i − 1), sβ := sβq+n−p−q · · · sβ1+n−p−qsn−p−q−1 and

sα := sαp+1+n−p−q · · · sα1+n−p−q .
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Aswe are interested in studying the twisted productG×τ B rather than theCartesian
product G × B, we recall that the only difference between them concerns the face
operators (see Definition 11). Consequently, the chain complexes C∗(G × B) and
C∗(G ×τ B) have the same underlying graded group, but different differentials. The
differential of C∗(G ×τ B) can be seen as a perturbed version of the differential of
C∗(G × B), where the perturbation is given, for any (g, b) ∈ Gn × Bn , by

δ(g, b) := (−1)n [(τ (b) · ∂ng, ∂nb) − (∂ng, ∂nb)] . (5)

A major classical result, known as the twisted Eilenberg–Zilber theorem, is obtained
applying the Basic Perturbation Lemma to the Eilenberg–Zilber reduction ρ =
( f , g, h) : C∗(G × B)⇒⇒C∗(G) ⊗ C∗(B).

Theorem 23 (Twisted Eilenberg–Zilber, [1]) Let B be a simplicial set, G a simplicial
group and τ : B → G a twisting operator. Then there exists a reduction

ρ′ = ( f ′, g′, h′) : C∗(G ×τ B)⇒⇒C∗(G) ⊗t C∗(B),

where C∗(G)⊗t C∗(B) is the perturbed chain complex obtained from C∗(G)⊗C∗(B)

by introducing the perturbation “induced” (via the application of the Basic Pertur-
bation Lemma) by δ.

Now, from the effective homologies ofG and B, we can construct a new equivalence
from the tensor product C∗(G) ⊗ C∗(B) to DG∗ ⊗ DB∗ (see Proposition 15), and
using again the TPL and BPL (with the perturbation to be applied to the differential
of C∗(G) ⊗ C∗(B) to obtain the differential of C∗(G) ⊗t C∗(B)) we construct an
equivalence from C∗(G) ⊗t C∗(B) to a new twisted tensor product DG∗ ⊗t DB∗,
which is an effective chain complex (see [18,20] for details). Finally, the composition
of the two equivalences is the effective homology of E :=G ×τ B. In Sect. 5 we will
use and generalize this construction.

2.5 Programs to Compute Spectral Systems

In a previous work [9], we developed a set of programs for computing spectral systems
based on the effective homology technique and implemented in the Kenzo system. The
programs work in a similar way to the method that Kenzo uses to determine homology
groups of a given chain complex: if an I -filtered chain complex C∗ is of finite type,
its spectral system can be determined by means of diagonalization algorithms on
some matrices. Otherwise, the effective homology C∗ ⇐⇐ Ĉ∗ ⇒⇒D∗ of the initial chain
complex C∗ is used to determine the spectral system as follows.

Let C∗ ⇒⇒D∗ be a reduction. If the chain complexes C∗ and D∗ are endowed with
I -filtrations F and F ′, respectively, in [9] we proved that, under suitable assumptions
on the reduction ρ, (some terms of) the spectral systems of (C∗, F) and (D∗, F ′),
denoted with the letters S and S′, respectively, are isomorphic. This allows to compute
the spectral system of the chain complex C∗ by using, to perform the computations,
the chain complex D∗, which in our scenario is assumed to be of finite type. More
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concretely, the following results express the conditions that are necessary to ensure
that the spectral systems of the I -filtered chain complexes C∗ and D∗ are isomorphic.

Theorem 24 Let ρ = ( f , g, h) : C∗ ⇒⇒D∗ be a reduction between the I -filtered chain
complexes (C∗, F) and (D∗, F ′), and suppose that f and g are compatible with the
filtrations, that is, for all indices i ∈ I one has f (Fi ) ⊆ F ′

i and g(F ′
i ) ⊆ Fi . Then,

given a 4-tuple of indices z ≤ s ≤ p ≤ b in I , the map f induces an isomorphism
between the spectral system terms

f z,s,p,b : S[z, s, p, b] → S′[z, s, p, b]

whenever the homotopy h : C∗ → C∗+1 satisfies the conditions

h(Fz) ⊆ Fs and h(Fp) ⊆ Fb. (6)

Corollary 25 Let ρ = ( f , g, h) : C∗ ⇒⇒D∗ be a reduction between the I -filtered chain
complexes (C∗, F) and (D∗, F ′), and suppose that the maps f , g, h are compatible
with the filtrations. Then the map f induces isomorphisms

f z,s,p,b : S[z, s, p, b] → S′[z, s, p, b]

for any 4-tuple of indices z ≤ s ≤ p ≤ b in I .

Making use of these results, in [9] we developed the following algorithms, imple-
mented in the Kenzo system.

Algorithm 26 Computation of the terms of a spectral system.
Input:

• a chain complex C∗ = (Cn, dn) with effective homology C∗
ρ1⇐⇐ Ĉ∗

ρ2⇒⇒ D∗,
• I -filtrations for C∗, Ĉ∗ and D∗ such that all the maps of the reductions ρ1 and ρ2
are compatible with the filtrations,

• elements z ≤ s ≤ p ≤ b in I .

Output: a basis-divisors representation of the group S[z, s, p, b] of the spectral system
associated with the filtered chain complex C∗, that is to say, a list of combinations
(c1, . . . , ck+β)which generate the group, togetherwith the list of non-negative integers

(a1, . . . , ak, 0, β. . ., 0), where a1, . . . , ak are the torsion coefficients of S[z, s, p, b] and
β is its rank. The list of divisors can be seen as the list of the coefficients of the elements
that appear in the denominator with regard to the list of combinations that generate
the group.

Notice that we have stated this algorithm under the hypotheses of Corollary 25,
namely that all the maps of the reductions ρ1 and ρ2, including the homotopies h1 and
h2, are compatible with the filtrations. Algorithm 26 can be applied also if h1 and h2
are not compatible with the filtrations, but the correctness of the output is guaranteed
only for the terms S[z, s, p, b] satisfying the hypotheses of Theorem 24: hi (Fz) ⊆ Fs
and hi (Fp) ⊆ Fb for both homotopies (i = 1, 2). The same remark applies to the
following algorithm.
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Algorithm 27 Computation of the differentials of a spectral system.
Input:

• a chain complex C∗ = (Cn, dn) with effective homology C∗
ρ1⇐⇐ Ĉ∗

ρ2⇒⇒ D∗,
• I -filtrations for C∗, Ĉ∗ and D∗ such that all the maps of the reductions ρ1 and ρ2
are compatible with the filtrations,

• elements z1 ≤ s1 ≤ p1 ≤ b1 and z2 ≤ s2 ≤ p2 ≤ b2 in I such that z2 ≤ p1 and
s2 ≤ b1,

• a class a ∈ S[z2, s2, p2, b2], given by means of the coefficients (λ1, . . . , λt ) with
respect to the basis (c1, . . . , ct ) of the group S[z2, s2, p2, b2] determined by Algo-
rithm 26.

Output: the coefficients of the class d(a) ∈ S[z1, s1, p1, b1] with respect to the basis
(c′

1, . . . , c
′
t ′) computed by means of Algorithm 26.

To improve the efficiency of Algorithms 26 and 27, discrete vector fields [7] can
also be used (see [9] for details, where programs computing discrete vector fields
which are compatible with generalized filtrations on chain complexes are presented).

The implementation of these algorithms required the definition of a new class called
GENERALIZED-FILTERED-CHAIN-COMPLEX which inherits from the Kenzo
class CHAIN-COMPLEX and includes two new slots:1

(DEFCLASS GENERALIZED-FILTERED-CHAIN-COMPLEX (chain-complex)
((pos :type partially-ordered-set )
(gen-flin :type (function (generator)

list-of-filtration-indexes))))

The first slot, pos, is the poset over which the generalized filtration is defined. The
second slot, gen-flin, is a function which inputs a generator of the chain complex
and returns a list of elements of pos. This list represents the generalized filtration
index of the element, defined as follows.

Definition 28 Given a generator σ ∈ C∗, we define the generalized filtration index of
σ , denoted GenFlin(σ ), as the set of all indices i ∈ I such that σ ∈ Fi − ⋃

t<i Ft .

Given now p ∈ I , the group Fp corresponds to the free module generated by the
set of generators σ of C∗ such that there exists i ∈ GenFlin(σ ) with i ≤ p. This
implementation of generalized filtered chain complexes by means of the generalized
filtration index notion is also valid for chain complexes of infinite type. We refer the
reader to [9] for further details on these programs and some examples of computations.

3 Higher Spectral Sequences

In this section we study some ideas from [14, §3] which are relevant for our work. In
particular, we focus our attention on the two types of posets playing a prominent role
in the context of spectral systems, namely Z

m and the poset of its downsets D(Zm).
For spectral systems over D(Zm) we illustrate the notion of connection, that is a way

1 Several Lisp technical components have been omitted.
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to relate quotients defined from the filtered chain complexC∗ to the homology H∗(C∗)
through a series of homology computations, isomorphisms and groups extensions.

First of all, let us consider Zm as the poset (Zm,≤) with the coordinate-wise order
relation ≤, defined as follows: P = (p1, . . . , pm) ≤ Q = (q1, . . . , qm) if and only if
pi ≤ qi , for all 1 ≤ i ≤ m.

Definition 29 A downset of Zm is a subset p ⊆ Z
m such that if P ∈ p and Q ≤ P in

Z
m then Q ∈ p. We denote D(Zm) the collection of all downsets of Zm , which is a

poset with respect to the inclusion ⊆.

An example of a downset of Z2 is displayed in Fig. 1.
Both Z

m-filtrations and D(Zm)-filtrations arise in quite common situations. For
example, when a chain complex C∗ is Z-filtered in m different ways, a Zm-filtration
{FP }P∈Zm of C∗ can be easily defined (see [14] for details). Canonically associated
with a Z

m-filtration {FP }P∈Zm there is a D(Zm)-filtration {Fp}p∈D(Zm) defined by
setting, for each p ∈ D(Zm),

Fp :=
∑

P∈p

FP .

Spectral systems associated with D(Zm)-filtrations are the subject of the present
section. We call them higher spectral sequences, adopting the terminology introduced
in [15]. An example of a term of a higher spectral sequence is displayed graphically in
Fig. 2. Althoughwe have just illustrated a notable situation in which D(Zm)-filtrations
can be defined, the results we will state apply to any D(Zm)-filtration {Fp}p∈D(Zm),
with the additional hypothesis that it is distributive: Fp∩q = Fp ∩ Fq and Fp∪q =
Fp + Fq , for all p, q ∈ D(Zm). For instance, a D(Zm)-filtration is distributive if C∗
admits a decomposition

⊕
P∈Zm CP as graded abelian group and Fp := ⊕

P∈p CP

are chain subcomplexes, for all p ∈ D(Zm).

Fig. 1 The set of points of Z2 in
the colored region is an example
of a downset of Z2
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Fig. 2 Graphical representations of a term S[z, s, p, b] of a spectral system over D(Z2). On the left, the
four downsets z ≤ s ≤ p ≤ b in D(Z2) defining the term S[z, s, p, b] are colored in decreasing shades.
On the right, the same term is represented following a convention we will adopt in what follows: the set
difference s \ z is colored in light gray, p \ s in dark gray and b \ p in medium gray. All the figures of this
section are inspired by those of [14]

Definition 30 Given a distributive D(Zm)-filtration ofC∗, we call connection any pro-
cedure which, starting with the 1-page of the higher spectral sequence {S[z, s, p, b]}
over D(Zm), determines H∗(C∗) via a succession of homology computations, group
extensions and natural isomorphisms between terms. In this context, we call 1-
page of the higher spectral sequence {S[z, s, p, b]} the set of terms Sn[s, s, p, p] =
Hn(Fp/Fs) such that p covers s, that is s < p and there exists no x ∈ D(Zm) with
s < x < p. With a small abuse of terminology, we will call 1-page each subset of
{S[s, s, p, p] | s, p ∈ D(Zm), p covers s} which can be seen as the starting point of
a connection.

Notice that this agrees with the usual notion of 1-page {E1
p}p∈Z = {S[p − 1, p −

1, p, p]}p∈Z for classical spectral sequences seen as part of a spectral system over Z.
The essence of the study of connections for higher spectral sequences can be intu-

itively described as follows. First, one selects a suitable collection of downsets in
D(Zm) to employ as indices of terms of the higher spectral sequence, and uses Proposi-
tion 5 to describe how computing homology affects the “shape” of the downsets. Then,
applying a technical result [14, Lemma 3.8], one can identify 4-tuples of downsets
with different shapes which determine the naturally isomorphic terms of the higher
spectral sequence, a method which, if used properly, can allow to iterate the proce-
dure. The use of Proposition 5 limits our choice to 4-tuples of downsets satisfying its
hypotheses; for this reason, the downsets we consider are often simply obtained as
translations in Zm of a single downset.

Here we introduce the secondary connections presented in [14, §3.2], which play a
prominent role in the generalization of theLeray–Serre spectral sequence. Even though
a more general and flexible framework for this kind of connections was introduced by
Matschke in [15], for the purpose of this work we prefer the simpler and more explicit
description of [14], to which we address the interested reader also for details on other
kinds of connections. In Remarks 55 and 58 we will show that the simplicial version
of the higher Leray–Serre spectral sequence we introduce in this work carries over to
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Fig. 3 Example of the downsets T 1
P and T 2

P in Z2 for P = (3, 2)

the additional structure of [15], pointing out, however, that the secondary connections
of [14, § 3.2] are ideal from a computational point of view for the application of the
effective homology technique.

Having defined the 1-page of a higher spectral sequence over D(Zm), we want now
to introduce a notion of 2-page, which generalizes the usual one for classical spectral
sequences and will appear even more “natural” in light of the results we will present
later. Secondary connections represent a way to connect the 1-page to the 2-page
computing homology m times; the 2-page can be then connected to the homology
H∗(C∗) in different fashions, which we will not detail here.

For 1 ≤ k ≤ m define the automorphism ϕk : Z
m → Z

m as the map sending
X = (x1, . . . , xm) to

ϕk(X) :=
(

xk+1, xk+2, . . . , xm,

k∑

i=1

xi ,
k∑

i=2

xi , . . . , xk

)

.

Let ≤lex denote the lexicographic order on Z
m . For P ∈ Z

m and 1 ≤ k ≤ m define
the downset

T k
P := {

X ∈ Z
m | ϕk(X) ≤lex ϕk(P)

}
.

The downsets T 1
P and T 2

P of Z2 are displayed in Fig. 3.
Let ei = (0, . . . , 1, . . . , 0) be the element of Zm whose only non-null entry is a 1

at position i , for 1 ≤ i ≤ m. Given P = (p1, . . . , pm) ∈ Z
m and 1 ≤ k ≤ m define

the following downsets, where by convention e0 := 0 and e−1 := − em :

p(P; k) := T k
P

s(P; k) := p(P; k) \ {P} = T k
P+ek−1−ek

z(P; k) := p(P; k) − ek = T k
P−ek

b(P; k) := s(P; k) + ek = T k
P+ek−1

z∗(P; k) := z(P; k) \ {P − ek} = T k
P+ek−1−2ek

b∗(P; k) := b(P; k) ∪ {P + ek} = T k
P+ek .

(7)
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The 4-tuples of downsets z ≤ s ≤ p ≤ b and z∗ ≤ s ≤ p ≤ b∗ define, respectively,
the terms

S(P; k) := S[z(P; k), s(P; k), p(P; k), b(P; k)],
S∗(P; k) := S[z∗(P; k), s(P; k), p(P; k), b∗(P; k)]. (8)

In this context, we consider as 1-page of the higher spectral sequence the collection
of the terms Sn(P; 1) = Hn(Fp(P;1)/Fs(P;1)) = Hn(Fp(P;1)/Fp(P;1)\{P}), for all
P ∈ Z

m .

Definition 31 We call 2-page of a higher spectral sequence the collection of terms
S∗(P;m), for all P ∈ Z

m .

The following two lemmas describe a way to connect the terms S(P; 1) of the
1-page to the terms S∗(P;m) of the 2-page.

Lemma 32 ([14], Lemma 3.14)
There exist differentials in direction −ek ,

d : S(P; k) → S(P − ek; k),

induced by the differential maps of C∗, such that the homology at the middle term of

S(P + ek; k) d ′−→ S(P; k) d−→ S(P − ek; k)

is S∗(P; k).

Lemma 32 is an application of Proposition 5 (see Fig. 4) to our current situation:
a higher spectral sequence where some distinguished downset are defined by (7). The
following result identifies terms of the higher spectral sequence which are naturally
isomorphic:

Lemma 33 ([14], Lemma 3.15)For any 1 ≤ k ≤ m−1 there is a natural isomorphism

S∗(P; k) ∼= S(P; k + 1).

The core idea of secondary connections consists in using Lemmas 32 and 33 alter-
nately: starting from the 1-page {S(P; 1)} and taking homology in direction −e1 one
determines the terms S∗(P; 1) ∼= S(P; 2), then taking homology in direction−e2 one
determines the terms S∗(P; 2) ∼= S(P; 3); continuing alternating between homology
and natural isomorphisms one eventually determines the 2-page {S∗(P;m)}. As we
mentioned before, the 2-page can then be connected to the homology H∗(C∗) in dif-
ferent ways, for example using lexicographic connections (we refer to [14] for further
details).
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d′

d

S(P + e2; 2)

S(P ; 2)

S(P − e2; 2)

kerd
Imd′ = S∗(P ; 2)

Fig. 4 Representation of Lemma 32 form = k = 2. The differentials d and d ′ between terms of the 1-page
are in direction−e2 = −(0, 1), and the homology ker d/ Im d ′ is a term of the 2-page. The point P = (3, 2)
is highlighted in the picture

4 Higher Leray–Serre Spectral Sequences in a Simplicial Framework

The first motivating example of Matschke’s work [14] consists in higher spectral
sequences defined from towers of fibrations, that is, sequences of fibrations such that
the total space of each is the base of the previous one:

G0 E0

· · · · · ·

Gm−1 Em−1

B

(9)

In this situation, as the usual goal of computation is the homology H∗(E0) of
the total space of the upper fibration, one typically applies several times the Leray–
Serre spectral sequence [22], assuming that the homology of G0, . . . ,Gm−1 and B
is known. Leaving aside extension problems, one can think to determine H∗(Em−1)

from H∗(B) and H∗(Gm−1) via a first Leray–Serre spectral sequence, using then a
second Leray–Serre spectral sequence to try to determine H∗(Em−2) from H∗(Em−1)

and H∗(Gm−2), and so on. A suitable higher spectral sequence, defined over the poset
D(Zm), represents a unified framework “containing” all these spectral sequences and
offering a larger number of connections to the limit H∗(E0). Moreover, the 2-page
of the higher spectral sequence satisfies a formula which beautifully generalizes that
of Serre for a fibration G → E → B, whose 2-page can be expressed in terms of
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the homologies of the fiber G and the base B and converges to the homology of the
total space E . Let us state here the result in the topological framework, as presented
in [14, Theorem 5.1]; in Sect. 7 we will prove an analogous result in our simplicial
framework.

Theorem 34 Consider a tower of m fibrations of topological spaces, in the sense of
Serre. There exists an associated higher spectral sequence over D(Zm) with 2-page

S∗
n (P;m) ∼= Hpm (B; Hpm−1(Gm−1; . . . Hp1(G1; Hp0(G0)))),

with P := (p1, . . . , pm) ∈ Z
m and p0 := n − p1 − · · · − pm, which under suitable

hypotheses (see [14]) converges to H∗(E0).

As in the case of classical spectral sequences, this formula provides a description of
an initial page of the higher spectral sequence; however, other terms S[z, s, p, b] can
only be determined in some simple cases. A first issue is that the differentials between
terms of the 2-page, unlike the terms themselves, are not given explicitly. A second
problem to determine the higher spectral sequence computationally arises when the
involved chain complexes are not of finite type, as we have mentioned before, since
standard algorithms for homology are bound to work with finite bases and matrices.
However, the method we introduce in the present work is able to circumvent these
obstacles by constructing the tower of fibrations in a simplicial framework and then
using the effective homology of E0 (which can be built automatically by Kenzo when
G0, . . . ,Gm−1 and B are objects with effective homology) in order to determine the
higher spectral sequence of the tower of fibrations by means of a higher spectral
sequence associated with a chain complex of finite type.

In order to simplify the description of the results and make them more understand-
able, in Sects. 4 and 5 we consider the simple case of towers of two fibrations, as in
diagram (10). All the results we present carry over to the general case of m fibrations,
and in Sect. 6 we will provide a sketch of the proofs.

G E

M N

B

(10)

Let us suppose now that the two fibrations of diagram (10) correspond to twisted
Cartesian products, introduced in Definition 11. In other words, we assume that G
and M are simplicial groups, B is a simplicial set and N and E are defined as twisted
Cartesian products N := M ×τ1 B and E :=G ×τ0 N , with τ1 : B → M and τ0 :
N → G the corresponding twisting operators. We choose this type of fibrations
because they are the ones implemented in the Kenzo system and allow us to define
generalized filtrations suitable for computations in the correct way. Furthermore, we
assumeM and B to be 1-reduced (we explain the role of this hypothesis in Remark 45).
Let us also remark that the base B is not assumed to be a Kan complex. In contrast,
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the fibers G and M are modeled as simplicial groups, so their underlying simplicial
sets are in particular Kan complexes.

The construction of the higher Leray–Serre spectral sequence associated with (10)
requires the definition of a filtration over the poset D(Z2) of the chain complex asso-
ciated with E :=G ×τ0 N :=G ×τ0 (M ×τ1 B). The D(Z2)-filtration we consider
for the chain complex C∗(E) :=C∗(G ×τ0 (M ×τ1 B)) is defined by means of the
downsets p(P; 2) := T 2

P introduced in Sect. 3. In fact, we define a filtration of the
form {Fp(P;2)}P∈Z2 , whose definition can be extended to produce a D(Z2)-filtration.

Remark 35 In this section and in Sect. 5 we will use the following strategy to define
generalized filtrations on a chain complex C∗.

• At first we consider a grading over Z2 which allows us to define a collection
{CP }P∈Z2 of abelian groups. Each CP is generated by the elements of C∗ having
(filtration) bidegree P = (p1, p2) ∈ Z

2 according to the considered grading.
• In the cases we will consider, the simple definition Fp := ⊕

P∈p CP for p ∈
D(Z2) does not provide a valid filtration of chain complexes, because it does
not satisfy d(Fp) ⊆ Fp for all p ∈ D(Z2). For example, simple downsets like
s(P) := {Q ∈ Z

2 | Q ≤ P} may not fulfill d(Fs(P)) ⊆ Fs(P). We have therefore
to consider a different definition.

• We use the downsets of the form p(P; 2) := T 2
P , introduced in Sect. 3, to define

a filtration {Fp(P;2)}P∈Z2 , where Fp(P;2) := ⊕
X∈p(P;2) CX . We have to prove

that this provides a valid filtration of chain complexes, that is the condition
d(Fp(P;2)) ⊆ Fp(P;2) is satisfied for all p(P; 2). Also, we show that the use
of the downsets of the form p(P; 2) to define our filtrations is a “natural” choice.

• The definition of a filtration {Fp(P;2)}P∈Z2 can be extended to a filtration over
D(Z2) defining, for any p ∈ D(Z2),

F p := {σ ∈ C∗ | ∃P ∈ Z
2 such that σ ∈ Fp(P;2) and p(P; 2) ⊆ p}.

We introduce the extension of the filtrations {Fp(P;2)}P∈Z2 to D(Z2)-filtrations for the
sake of generality, but the dependence on the downsets of the form p(P; 2) appears
clear. In particular, aswementioned, F p is not equal to

⊕
X∈p CX in general. Fromnow

on in this work, we will define and consider filtrations of the form {Fp(P;2)}P∈Z2 , as
the extensions of all definitions and results to the case of generalized D(Z2)-filtrations
{F p} is straightforward.

Definition 36 Let E :=G ×τ0 (M ×τ1 B) as in diagram (10) and P ∈ Z
2. For

the downset p(P; 2) := T 2
P we define Fp(P;2) as the chain subcomplex of C∗(E)

generated by the elements σ := (g, (m, b)) in E :=G ×τ0 (M ×τ1 B) such that
(x1, x2) := (deg(m, b) − deg b, deg b) ∈ p(P; 2), where deg denotes the degeneracy
degree introduced in Definition 7 and Remark 9.

Notice that, as mentioned in Remark 35, in Definition 36 we introduce a grading
over Z2, given by (x1, x2) := (deg(m, b) − deg b, deg b), on the generators of C∗(E),
and we consider as generators of Fp(P;2) only those satisfying (x1, x2) ∈ p(P; 2).
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The reason why we decided to define a filtration on C∗(E) in this way, which may
not be intuitively clear, can be better understood considering the following pair of
reductions:

C∗(G ×τ0 (M ×τ1 B))

TEZ0

C∗(G) ⊗t0 C∗(M ×τ1 B)

Id⊗t0 TEZ1

C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B))

(11)

The first reduction TEZ0 is the twisted Eilenberg–Zilber reduction (Theorem 23)
of the fibration G → E → N ; a reduction from C∗(G ×τ0 (M ×τ1 B)) to
C∗(G) ⊗t0 C∗(M ×τ1 B) is obtained, where the symbol ⊗t0 represents a twisted
(perturbed) tensor product, induced by the twisting operator τ0. Then, we consider a
new reduction given by the tensor product of the trivial reduction Id of C∗(G) and
the twisted Eilenberg–Zilber reduction TEZ1 : C∗(M ×τ1 B)⇒⇒C∗(M) ⊗t1 C∗(B),
and using the Basic Perturbation Lemma (Theorem 21) (with the perturbation to be
applied to the differential of C∗(G) ⊗ C∗(M ×τ1 B) to obtain the differential of
C∗(G) ⊗t0 C∗(M ×τ1 B)) we construct a reduction from C∗(G) ⊗t0 C∗(M ×τ1 B) to
a new twisted tensor product C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)).

Let us remark that the bottom chain complexC∗(G)⊗t0 (C∗(M)⊗t1C∗(B)) in (11)
has the same underlying graded module as the (non-twisted) tensor product C∗(G) ⊗
(C∗(M) ⊗C∗(B)) but the differential map has been perturbed due to the applications
of the Basic Perturbation Lemma. The generators of degree n of the chain complex
C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)) are elements of the form σ := g ⊗ (m ⊗ b) such that
g ∈ Gp0 , m ∈ Mp1 and b ∈ Bp2 for some p0, p1, p2 ≥ 0 with p0 + p1 + p2 =
n. Then, it seems a natural choice to define a filtration on C∗(G) ⊗t0 (C∗(M) ⊗t1
C∗(B)) over D(Z2) by using the points P := (p1, p2) to define a grading over Z2 on
the generators. Keeping in mind Remark 35, let us denote by CP the submodule of
C∗(G)⊗t0 (C∗(M)⊗t1C∗(B)) generated by its generators σ of bidegree P = (p1, p2).
As we will detail below, the perturbed differential of C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B))

applied to a generator of bidegree P = (p1, p2) can increase the first or the second
coordinate of this grading. This means that we cannot simply define a filtration setting
Fp := ⊕

P∈p CP for all p ∈ D(Z2), because in general these submodules are not
chain complexes since they do not necessarily satisfy d(Fp) ⊆ Fp. As explained
in Remark 35, we solve this problem defining a filtration (of chain subcomplexes) of
C∗(G)⊗t0 (C∗(M)⊗t1 C∗(B)) by using again the downsets p(P; 2) := T 2

P introduced
in Sect. 3.

Definition 37 LetC∗ :=C∗(G)⊗t0 (C∗(M)⊗t1C∗(B))obtained as in diagram (11) and
let P ∈ Z

2. For the downset p(P; 2) := T 2
P we define Fp(P;2) as the chain subcomplex

of C∗ generated by the elements σ := g ⊗ (m ⊗ b) ∈ Cn such that g ∈ Gx0 ,m ∈ Mx1
and b ∈ Bx2 for some x0, x1, x2 ≥ 0 with x0 + x1 + x2 = n and (x1, x2) ∈ p(P; 2).
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In other words, we can state Definition 37 in the shorter form

Fp(P;2)Cn :=
⊕

i+ j+k=n,
( j,k)∈p(P;2)

Ci (G) ⊗t0 (C j (M) ⊗t1 Ck(B)).

The relation between the chain complexes C∗(E) :=C∗(G ×τ0 (M ×τ1 B)) and
C∗(G)⊗t0 (C∗(M)⊗t1 C∗(B)) by means of the reductions of (11) motivated our idea
to consider the filtration for C∗(E) introduced in Definition 36.

Before proving that the filtrations we defined are valid (that is, the submodules we
defined are indeed chain subcomplexes), it is convenient to state a fact that will be
often employed in the following proofs and arguments.

Remark 38 Suppose we have integers q ′ ≤ q and p′ ≤ p. It clearly follows that
(q ′ − p′) − (q − p) ≤ p − p′. If we define p1 := q − p, p2 := p, x1 := q ′ − p′ and
x2 := p′, we easily see that the previous inequalities are equivalent to

x1 + x2 ≤ p1 + p2,

x2 ≤ p2.

Our typical application of this fact will be to maps (between chain complexes)
reducing both coordinates of the grading we consider, corresponding here to p and q,
and it is useful if the parameters considered for filtering change to p1 and p2.

Proposition 39 Definition 36 yields a valid filtration of chain subcomplexes.

Proof Consider E :=G ×τ0 (M ×τ1 B) and the associated chain complex C∗(E) :=
C∗(G ×τ0 (M ×τ1 B)). We have to prove that the differential is compatible with the
defined filtration, that is d(Fp(P;2)) ⊆ Fp(P;2), for all P ∈ Z

2.
Recall that the differential map dn : Cn(E) → Cn−1(E) is defined as

dn = ∑n
i=0(−1)i∂i , where ∂i are the face operators of En (see Sect. 2.2). Let

σ := (g, (m, b)) ∈ En such that σ ∈ Fp(P;2), which by Definition 36 means
(deg(m, b) − deg b, deg b) ∈ p(P; 2). Let us denote p := deg b, q := deg(m, b),
and p1 := q − p, p2 := p. It follows from the definitions that, for every face oper-
ator ∂i , if we denote (g′, (m′, b′)) := ∂i (g, (m, b)) we have p′ := deg b′ ≤ p and
q ′ := deg(m′, b′) ≤ q. Using Remark 38, we see that x1 := q ′ − p′ and x2 := p′ must
satisfy x1 + x2 ≤ p1 + p2 and x2 ≤ p2. It can be easily shown that all the points
(x1, x2) with x1 + x2 ≤ p1 + p2 and x2 ≤ p2 belong to the downset p(P; 2) = T 2

P
(we graphically represented this fact in Fig. 5). For example, we can observe that the
points (x1, x2) satisfy

(x1, x2) = (p1, p2) + λ1v1 + λ2v2, for some λ1, λ2 ∈ Z≥0, (12)

with v1 := − e1 = (−1, 0) and v2 := e1 − e2 = (1,−1), and show that the translation
of p(P; 2) by v1 (resp. v2) is contained in p(P; 2). The case of v1 is trivial, since
p(P; 2) is a downset; in the case of v2 we have

p(P; 2) + v2 = p(P + v2; 2) = s(P; 2) = p(P; 2) \ {P}.
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Fig. 5 Graphical representation
of the proof of Proposition 39.
Here we focus on the point
P ∈ T 2

P . Starting from position
P , the differential of C∗(E) (see
proof) can only reach the
positions marked by the symbol
×. Recall that for a generator
(g, (m, b)) of
Cn(E) :=Cn(G×τ0 (M×τ1 B))

we have denoted p := deg b and
q := deg(m, b)

In conclusion, we have proven that ∂iσ ∈ Fp(P;2), for all 0 ≤ i ≤ n. ��
Before showing the validity of the filtration we defined on the chain complex

C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)), we state a useful result, proved in [20, § 8.3].

Proposition 40 Let X ,Y be simplicial sets and suppose we have a twisted Eilenberg–
Zilber reduction C∗(X ×τ Y )⇒⇒C∗(X) ⊗t C∗(Y ). Denote δ the perturbation of the
differential of C∗(X×τ Y ), defined as in Eq. (5), and denote δ′ the induced perturbation
of the differential of C∗(X) ⊗t C∗(Y ). Then:

(i) δ decreases (at least) by 1 the degeneracy degree of the second components
(corresponding to simplices of Y ), that is it sends a generator (x, y) ∈ Xn × Yn
with deg y = p to a linear combination of elements (xi , yi ), with deg yi ≤ p−1
for each i .

(ii) If we assume Y to be 1-reduced, δ′ decreases the dimension of the factor C∗(Y )

(at least) by 2, that is it sends Ci (X) ⊗C j (Y ) to
⊕

k≥2 Ci+k−1(X) ⊗C j−k(Y ).

Proposition 41 Definition 37 yields a valid filtration of chain subcomplexes.

Proof We have to prove that the differential d of the chain complex C∗(G) ⊗t0
(C∗(M) ⊗t1 C∗(B)) is compatible with the defined filtration, that is d(Fp(P;2)) ⊆
Fp(P;2), for all P ∈ Z

2.
We denote by p1 (dimension of the chain groups of C∗(M)) and p2 (dimension

of the chain groups of C∗(B)) the coordinates of the bidegree we used to define the
filtration in Definition 37, and use the notation D∗ :=C∗(M) ⊗t1 C∗(B).

We can express the differential d of C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)) as

d = d⊗ + d2 + d3 + · · · ,

where d⊗ denotes the differential of C∗(G)⊗D∗ and the sum d2 +d3 +· · · represent
its perturbation, with

dkp0, j : Cp0(G) ⊗ (C∗(M) ⊗ C∗(B)) j → Cp0+k−1(G) ⊗ (C∗(M) ⊗ C∗(B)) j−k

for all k ≥ 2, with j = p1 + p2. The fact that the perturbation concerns only indices
k ≥ 2 is a consequence of Proposition 40 (ii), together with the assumption that M and
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Fig. 6 Graphical representation
of the proof of Proposition 41.
Here we focus on the point
P ∈ T 2

P . Starting from position
P , the differential dD (see proof)
can only reach the positions
marked by ◦ (differential d̄⊗ of
C∗(M) ⊗ C∗(B)) and by ×
(perturbations d̄2, d̄3, . . .). As
an effect of the perturbations dk

of the differential d (see proof),
one possibly reaches the
positions marked by �

B are 1-reduced (in Sect. 5 we present a detailed argument). As it can be easily shown
using the definition of the downset p(P; 2) = T 2

P , for each point Q := (q1, q2) ∈
p(P; 2), all the points (x1, x2) such that x1 + x2 = q1 +q2 − k (for k ≥ 2) lie again in
p(P; 2). That is, the perturbed part d2 +d3 +· · · of d is compatible with the filtration
we defined.

We can then focus on d⊗ = dC(G) ⊗ IdD ± IdC(G) ⊗dD , where the differential dD
of C∗(M) ⊗t1 C∗(B) is given again by

dD = d
⊗ + d

2 + d
3 + · · · ;

d
⊗
is the differential of C∗(M) ⊗ C∗(B) and d

2 + d
3 + · · · is its perturbation, with

d
�

p1,p2 : Cp1(M) ⊗ Cp2(B) → Cp1+�−1(M) ⊗ Cp2−�.

Similarly to before, it is easy to show that, for each point Q := (q1, q2) ∈ p(P; 2), the
points (q1 − 1, q2), (q1, q2 − 1) and (q1 + � − 1, q2 − �), for each � ≥ 2, lie again in
p(P; 2). This completes the proof, whose idea is schematically represented in Fig. 6.

��

5 Effective Homology for Computing Higher Leray–Serre Spectral
Sequences

The filtrations introduced in Definitions 36 and 37 for the chain complexes C∗(G ×τ0

(M×τ1 B)) andC∗(G)⊗t0 (C∗(M)⊗t1C∗(B)) produce two higher spectral sequences
that can be directly computed using the programs presented in Sect. 2.5 when the chain
complexes are of finite type (which is true if and only if the three simplicial sets G,
M and B are of finite type). However, when any of the simplicial sets G, M and
B is not of finite type, the higher spectral sequences associated with the filtrations
of C∗(G ×τ0 (M ×τ1 B)) and C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)) cannot be directly
determined; in order to compute them, we have to resort to the effective homology
technique, introduced in Sect. 2.3. In this section we detail how effective homology
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can be used to determine the higher spectral sequences also in the infinite type case.
As in Sect. 4, for expository purposes we consider the case of towers of two fibrations;
all the results we present will be generalized for m fibrations in Sect. 6.

Suppose that the simplicial sets G, M and B in the tower of two fibrations (10)
have effective homology, that is to say, there exist equivalences

C∗(G)⇐⇐ ĈG∗ ⇒⇒DG∗,
C∗(M)⇐⇐ ĈM∗ ⇒⇒DM∗,
C∗(B)⇐⇐ Ĉ B∗ ⇒⇒DB∗,

(13)

where DG∗, DM∗ and DB∗ are effective chain complexes.
Taking into account the tensor product of reductions and applying the Trivial Pertur-

bation Lemma and the Basic Perturbation Lemma (Theorems 20 and 21, respectively),
one obtains an equivalence given by the two reductions

ρ′
1 : ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗)⇒⇒C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)),

ρ′
2 : ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗)⇒⇒DG∗ ⊗t0 (DM∗ ⊗t1 DB∗).

Combining it with (11) we obtain the following diagram of reductions connecting
the chain complex C∗(E) :=C∗(G ×τ0 (M ×τ1 B)) to the effective chain complex
DG∗ ⊗t0 (DM∗ ⊗t1 DB∗):

C∗(G ×τ0 (M ×τ1 B))

TEZ0

C∗(G) ⊗t0 C∗(M ×τ1 B)

Id⊗t0 TEZ1

ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗)
ρ′
1 ρ′

2

C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)) DG∗ ⊗t0 (DM∗ ⊗t1 DB∗).

(14)

The reductions of this diagram allow us to use the effective homology technique to
carry out computations on the filtered chain complex C∗(G ×τ0 (M ×τ1 B)) using the
effective chain complex DG∗ ⊗t0 (DM∗ ⊗t1 DB∗), on which an appropriate filtration
will be defined. We want to show that, from the 2-page of the secondary connection,
the effective homology method gives in fact correct results on the terms of the higher
spectral sequence defined on C∗(G ×τ0 (M ×τ1 B)). For this purpose, we start from
the top of the diagram and study the behavior of all the involved reductions. We will
also define filtrations {Fp(P;2)} on all the involved chain complexes, recalling that
Definitions 36 and 37 already provide us with filtrations of C∗(G ×τ0 (M ×τ1 B))

and C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)). Remember that, as stated in Sect. 2.4, we always
assume all the chain complexes associated with simplicial sets to be normalized. Let
us also recall that the simplicial sets M and B are assumed to be 1-reduced, which
clearly implies that also M ×τ1 B is 1-reduced.

Let us start from the first reduction of the diagram,

TEZ0 : C∗(G ×τ0 (M ×τ1 B))⇒⇒C∗(G) ⊗t0 C∗(M ×τ1 B),
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which is a twisted Eilenberg–Zilber reduction (see Theorem 23). We denote δ̃0 the
perturbation induced via the twisted Eilenberg–Zilber theorem, so that we can express
the differential of the chain complex C∗(G) ⊗t0 C∗(M ×τ1 B) as the differential of
C∗(G)⊗C∗(M ×τ1 B) plus the perturbation δ̃0. To study how it behaves with respect
to filtrations, we first need to make explicit the filtration we consider on C∗(G) ⊗t0
C∗(M ×τ1 B).

Definition 42 Consider the chain complex C∗(G) ⊗t0 C∗(M ×τ1 B) and denote its
generators by σ := g⊗ (m, b). Let P ∈ Z

2. For the downset p(P; 2) := T 2
P we define

Fp(P;2) as the chain subcomplex ofC∗(G)⊗t0C∗(M×τ1 B) generated by the elements
σ := g ⊗ (m, b) such that (x1, x2) := (deg(m, b) − deg b, deg b) ∈ p(P; 2).

Notice that, since we are considering normalized chain complexes, saying
deg(m, b) = q is equivalent to (m, b) ∈ Cq(M ×τ1 B).

Once again, as described inRemark 35, inDefinition 42we introduce a grading over
Z
2, given by (x1, x2) := (deg(m, b) − deg b, deg b), on the generators of C∗(G) ⊗t0

C∗(M×τ1 B), andwe consider as generators of Fp(P;2) only those satisfying (x1, x2) ∈
p(P; 2).

The corresponding definitions of the filtrations introduced in Definitions 36, 37
and 42 for towers of more than 2 fibrations are introduced in Definition 57.

Proposition 43 Definition 42 yields a valid filtration of chain subcomplexes.

Proof We have to prove that the differential of C∗(G)⊗t0 C∗(M ×τ1 B) is compatible
with the defined filtration. Let P ∈ Z

2 and consider the downset p(P; 2) := T 2
P .

Proceeding in a similar fashion to the proof of Proposition 39, we start by observing
that the differential of C∗(G) ⊗t0 C∗(M ×τ1 B) does not increase the degeneracy
degrees p := deg b and q := deg(m, b), as one can easily see considering the behavior
of the differential of C∗(G) ⊗ C∗(M ×τ1 B) and of the perturbation δ̃0, and recalling
Proposition 40.

Since the bidegree we are considering is defined by (q − p, p), by Remark 38 the
differential of C∗(G)⊗t0 C∗(M ×τ1 B) sends a generator of bidegree Q := (q1, q2) ∈
p(P; 2) to a linear combination of generators whose bidegrees (x1, x2) satisfy x1 +
x2 ≤ q1 + q2 and x2 ≤ q2. Since all these points (x1, x2) still belong to p(P; 2), we
have shown that the differential is compatible with the defined filtration. Notice that
Fig. 5, which is associated with Proposition 39, depicts also the situation of this proof.

��
We can now describe the behavior of the reduction TEZ0 with respect to the filtra-

tions we are considering.

Proposition 44 The reduction TEZ0 in (14) is compatible with the filtrations defined
on the chain complexes C∗(G ×τ0 (M ×τ1 B)) and C∗(G) ⊗t0 C∗(M ×τ1 B).

Proof All the maps of the reduction TEZ0 := ( fTEZ0 , gTEZ0 , hTEZ0), as it can be seen
from their explicit definition (see Theorems 22 and 23), do not increase the degeneracy
degrees p := deg b and q := deg(m, b). Therefore, since we use the bidegree given
by (q − p, p) to define the filtrations, we can again use Remark 38 and the argument
of the previous proof to conclude that fTEZ0 , gTEZ0 , hTEZ0 are compatible with the
considered filtrations. ��
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Let us now turn our attention to the reduction

Id⊗t0 TEZ1 : C∗(G) ⊗t0 C∗(M ×τ1 B)⇒⇒C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)).

The starting point of this reduction is the Eilenberg–Zilber reduction

TEZ1 : C∗(M ×τ1 B)⇒⇒C∗(M) ⊗t1 C∗(B).

Considering its tensor product with the trivial reduction of C∗(G) we obtain

Id⊗TEZ1 : C∗(G) ⊗ C∗(M ×τ1 B)⇒⇒C∗(G) ⊗ (C∗(M) ⊗t1 C∗(B)).

Then, we introduce the perturbation δ̃0, which added to the differential of C∗(G) ⊗
C∗(M ×τ1 B) gives the differential of C∗(G)⊗t0 C∗(M ×τ1 B), and apply the BPL to
obtain the reduction Id⊗t0 TEZ1. Let us denote δ̃′

0 the induced perturbation defining
the differential of C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)).

In order to apply the BPL, we have to make sure that the nilpotency condition
is satisfied, as stated in Theorem 21. In this case, it is sufficient to observe that the
composition hId⊗TEZ1 δ̃0 strictly decreases the degree q := deg(m, b), since hId⊗TEZ1

increases q by 1 (Proposition 15) and δ̃0 decreases q at least by 2 (Proposition 40 (ii)).

Remark 45 Let us clarify the role of the 1-reducedness assumption in (ii) of Proposition
40, which is used to prove the validity of some of the generalized filtrations of chain
complexeswe introduce (for example, we have used this assumption in Proposition 41)
and, even more importantly, as a sufficient condition for the nilpotency hypothesis of
theBPL, to ensure that some reductions can be correctly defined.We have just used this
argument for the reduction Id⊗t0 TEZ1 of (14), andwewill apply it again in this section
for the reduction ρ′

2. The 1-reducedness assumption can be relaxed by supposing that
an explicit algebraic proof of the simply connectedness of the space is available, which
guarantees that the thesis of Proposition 40 (ii) holds. In Remark 56we provide further
details. Note that, from a computational point of view, the 1-reducedness assumption
has clear advantages, since it can be easily verified.

We can now study the behavior of the reduction Id⊗t0 TEZ1 with respect to the
filtrations we defined onC∗(G)⊗t0 C∗(M ×τ1 B) andC∗(G)⊗t0 (C∗(M)⊗t1 C∗(B)).

Proposition 46 Consider the reduction Id⊗t0 TEZ1 in (14) and the filtrations defined
on the chain complexesC∗(G)⊗t0C∗(M×τ1B)andC∗(G)⊗t0(C∗(M)⊗t1C∗(B)). The
maps fId⊗t0 TEZ1 and gId⊗t0 TEZ1 of the reduction are compatible with the filtrations,

while hId⊗t0 TEZ1(Fp(P;2)) ⊆ Fp(P+(1,0);2), for each P ∈ Z
2.

Proof The proof mainly consists in understanding the behavior of the maps of the
reduction with respect to the gradings over Z2 we used to define the filtrations on
C∗(G)⊗t0 C∗(M×τ1 B) andC∗(G)⊗t0 (C∗(M)⊗t1 C∗(B)). Recall that, for the chain
complex C∗(G) ⊗t0 C∗(M ×τ1 B), we denote p := deg b and q := deg(m, b) for a
generator g ⊗ (m, b), and we use the bidegree (p1, p2) := (q − p, p) to define the
filtration; for the chain complex C∗(G) ⊗t0 C∗(M ×τ1 B), instead, we define directly

123



Foundations of Computational Mathematics (2021) 21:1023–1074 1051

Fig. 7 Graphical representation
of an argument of the proof of
Proposition 46. The homotopy
hId⊗t0 TEZ1 applied to a
generator having filtration
bidegree P ∈ Z

2 can only reach
the positions marked by the
symbol ×. In the figure we
shaded the set of these points

the components p1 (dimension of a chain in C∗(M)) and p2 (dimension of a chain
in C∗(B)) of the bidegree (p1, p2) defining the filtration, and then we denote p := p2
and q := p1 + p2 to correctly keep track of all the indices.

Let us consider at first the maps of the reduction Id⊗TEZ1. Using the definitions,
it is easy to observe that the maps fId⊗TEZ1 and gId⊗TEZ1 do not increase the indices
p and q, while the map hId⊗TEZ1 does not increase the index p and increases q (at
most) by 1. The operators

ϕId⊗TEZ1 =
∞∑

i=0

(−1)i (hId⊗TEZ1 δ̃0)
i ,

ψId⊗TEZ1 =
∞∑

i=0

(−1)i (δ̃0hId⊗TEZ1)
i ,

of the BPL (see statement of Theorem 21) do not increase p and q as well, hence we
can easily deduce the behavior of the maps of the reduction Id⊗t0 TEZ1: the maps
fId⊗t0 TEZ1 and gId⊗t0 TEZ1 do not increase p and q, while the map hId⊗t0 TEZ1 does
not increase the index p and increases q (at most) by 1. Remembering that we are
using the bidegree (p1, p2) := (q − p, p) to define the filtrations, we can immediately
conclude (recalling Remark 38) that fId⊗t0 TEZ1 and gId⊗t0 TEZ1 are compatible with
the filtrations. Since hId⊗t0 TEZ1 does not increase the index p2 but can increase p1+ p2
by 1,Remark 38 (with obviousmodifications) tells us that hId⊗t0 TEZ1 sends a generator
of filtration degrees (p1, p2) to a linear combination of generators whose filtration
degrees (x1, x2) must satisfy x1 + x2 ≤ p1 + p2 + 1 and x2 ≤ p2 (see Fig. 7). This
implies that the image via hId⊗t0 TEZ1 of the chain subcomplex of the filtration indexed

by the downset p(P; 2) = T 2
P is contained in the one indexed by p(P + (1, 0); 2) =

T 2
P+(1,0). ��

We now go on to study the last two reductions ρ′
1, ρ

′
2 of the diagram (14). First of

all, it is convenient to set the notation for the reductions (13) representing the effective
homology of G, M, B. Let us denote

ρ(0) := ( f (0), g(0), h(0)) : ĈG∗ ⇒⇒C∗(G),

ρ(1) := ( f (1), g(1), h(1)) : ĈM∗ ⇒⇒C∗(M),
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ρ(2) := ( f (2), g(2), h(2)) : Ĉ B∗ ⇒⇒C∗(B)

and

ρ̂(0) := ( f̂ (0), ĝ(0), ĥ(0)) : ĈG∗ ⇒⇒DG∗,
ρ̂(1) := ( f̂ (1), ĝ(1), ĥ(1)) : ĈM∗ ⇒⇒DM∗,
ρ̂(2) := ( f̂ (2), ĝ(2), ĥ(2)) : Ĉ B∗ ⇒⇒DB∗.

Let us focus at first on the reduction

ρ′
1 : ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗)⇒⇒C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)). (15)

In order to understand how its maps are defined, we consider how it is constructed.
We start from the reduction

r := ρ(1) ⊗ ρ(2) : ĈM∗ ⊗ Ĉ B∗ ⇒⇒C∗(M) ⊗ C∗(B)

and we perturb the differential of C∗(M) ⊗C∗(B) by introducing the perturbation δ1
induced by the Eilenberg–Zilber reduction TEZ1. By Proposition 40, we know that δ1
reduces at least by 2 the filtration degree p (dimension of the chain groups of C∗(B)).
Now, applying the TPL, we obtain a reduction

r1 : ĈM∗ ⊗t1 Ĉ B∗ ⇒⇒C∗(M) ⊗t1 C∗(B),

and Theorem 20 gives us an explicit expression for the induced perturbation δ̂1, from
which one can easily observe that also δ̂1 reduces at least by 2 the degree p (dimension
of the chain groups of Ĉ B∗).

Now we consider the reduction

ρ1 := ρ(0) ⊗ r1 : ĈG∗ ⊗ (ĈM∗ ⊗t1 Ĉ B∗)⇒⇒C∗(G) ⊗ (C∗(M) ⊗t1 C∗(B))

and we perturb the differential of C∗(G) ⊗ (C∗(M) ⊗t1 C∗(B)) by introducing the
perturbation δ̃′

0, that is the perturbation induced via the BPL (applied to construct
the reduction Id⊗t0 TEZ1) by the perturbation δ̃0 (see above). In other words, the
perturbation δ̃′

0 is defined as

δ̃′
0 := fId⊗TEZ1 δ̃0ϕId⊗TEZ1gId⊗TEZ1 , (16)

and added to the differential of C∗(G) ⊗ (C∗(M) ⊗t1 C∗(B)) gives the differential of
C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)). From the formula (16) we notice that δ̃′

0 decreases
at least by 2 the degree q (dimension of the chain groups of C∗(M) ⊗t1 C∗(B)), since
as mentioned before the maps fId⊗TEZ1 , gId⊗TEZ1 and ϕId⊗TEZ1 do not increase the
degree q. By applying the TPL we obtain the reduction ρ′

1 of (15). Let us denote
δ̂0 the perturbation induced by this application of the TPL, that is the perturbation
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which, added to the differential of ĈG∗ ⊗ (ĈM∗ ⊗t1 Ĉ B∗), yields the differential of
ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗). Again, using its explicit definition (see Theorem 20), one
can easily observe that δ̂0 reduces at least by 2 the filtration degree q (dimension of
the chain groups of ĈM∗ ⊗t1 Ĉ B∗).

We can now show that, if we filter the chain complex ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗)
mimicking the definition of the filtration of C∗(G)⊗t0 (C∗(M)⊗t1 C∗(B)), we obtain
a valid filtration of chain complexes.

Proposition 47 The filtration {Fp(P;2)} of the chain complex Ĉ∗ := ĈG∗⊗t0 (ĈM∗⊗t1

Ĉ B∗) defined as in Definition 37, that is

Fp(P;2)Ĉn :=
⊕

i+ j+k=n,
( j,k)∈p(P;2)

ĈGi ⊗t0 (ĈM j ⊗t1 Ĉ Bk),

is a valid filtration of chain subcomplexes.

Proof The chain complex ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗) is obtained from ĈG∗ ⊗ (ĈM∗ ⊗
Ĉ B∗) introducing two perturbations: the perturbation δ̂1, which added to the differ-
ential of ĈM∗ ⊗ Ĉ B∗ gives the differential of ĈM∗ ⊗t1 Ĉ B∗, and the perturbation
δ̂0, which added to the differential of ĈG∗ ⊗ (ĈM∗ ⊗t1 Ĉ B∗) gives the differential
of ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗). We have showed that δ̂1 decreases at least by 2 the
filtration degree p (dimension of Ĉ B∗) and δ̂0 decreases at least by 2 the filtration
degree q (dimension of ĈM∗ ⊗t1 Ĉ B∗). Since this is the same situation of the proof
of Proposition 41, that argument carries over. ��

The next result describes the behavior of the reduction ρ′
1 = ( fρ′

1
, gρ′

1
, hρ′

1
) of (14)

with respect to the defined filtrations.

Proposition 48 The maps fρ′
1
and gρ′

1
of the reduction ρ′

1 are compatible with the
defined filtrations. The homotopy hρ′

1
is such that

hρ′
1
(Fp(P;2)) ⊆ Fp(P+(0,1);2),

for all P ∈ Z
2.

Proof The maps fρ′
1
and gρ′

1
preserve both degrees p1 := q − p (dimension of the

chain groups of ĈM∗, resp. C∗(M)) and p2 := p (dimension of the chain groups of
Ĉ B∗, resp. C∗(B)), as one can easily observe from their explicit definition (obtained
by applying twice Proposition 15):

fρ′
1
:= f (0) ⊗ f (1) ⊗ f (2), gρ′

1
:= g(0) ⊗ g(1) ⊗ g(2).

The map

hρ′
1
:= h(0) ⊗ Id⊗ Id+(g(0) f (0)) ⊗ h(1) ⊗ Id+(g(0) f (0)) ⊗ (g(1) f (1)) ⊗ h(2)
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behaves differently: since the homotopies h(0), h(1), h(2) are graded maps of degree
+1, hρ′

1
sends a generator of ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗) of filtration bidegree (p1, p2)

to a linear combination of generators having filtration bidegrees (p1 + 1, p2) and
(p1, p2 + 1). We obtain the thesis by observing that the points of any (fixed) downset
p(P; 2) translated by (1, 0) or by (0, 1) are contained in the downset p(P+(0, 1); 2).
��

We can now focus on the last reduction of (14),

ρ′
2 : ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗)⇒⇒DG∗ ⊗t0 (DM∗ ⊗t1 DB∗). (17)

Once again, the best way to understand the behavior of its maps is to review how it is
constructed. We start from the reduction

r̂ := ρ̂(1) ⊗ ρ̂(2) : ĈM∗ ⊗ Ĉ B∗ ⇒⇒DM∗ ⊗ DB∗

and we perturb the differential of ĈM∗ ⊗ Ĉ B∗ by introducing the perturbation δ̂1 (see
above). Since δ̂1 reduces at least by 2 the filtration degree p (dimension of the chain
groups of Ĉ B∗), the composition hr̂ δ̂1 strictly reduces the degree p, ensuring that the
nilpotency condition of Theorem 21 is satisfied. We can thus apply the BPL, obtaining
a reduction

r̂1 : ĈM∗ ⊗t1 Ĉ B∗ ⇒⇒DM∗ ⊗t1 DB∗.

Let us denote δD1 the perturbation induced on DM∗ ⊗t1 DB∗ which, as it can be
deduced from its explicit definition (see again the statement of Theorem 21), reduces
at least by 2 the degree p (dimension of the chain groups of DB∗).

Now let us consider the reduction

ρ2 := ρ̂(0) ⊗ r̂1 : ĈG∗ ⊗ (ĈM∗ ⊗t1 Ĉ B∗)⇒⇒DG∗ ⊗ (DM∗ ⊗t1 DB∗)

and perturb the differential of ĈG∗ ⊗ (ĈM∗ ⊗t1 Ĉ B∗) by introducing the perturbation
δ̂0 defined above. Since δ̂0 decreases at least by 2 the filtration degree q (dimension of
the chain groups of ĈM∗ ⊗t1 Ĉ B∗), the composition hρ2 δ̂0 strictly reduces the degree
p, ensuring that the nilpotency condition of Theorem 21 is satisfied. We can therefore
apply the BPL, obtaining the reduction ρ′

2 of (17). Let us denote δD0 the perturbation
induced by δ̂0 on DG∗ ⊗ (DM∗ ⊗t1 DB∗), which again reduces at least by 2 the
filtration degree q (dimension of the chain groups of DM∗ ⊗t1 DB∗).

As we did before for the chain complex ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗), we can now
show that our usual definition of a filtration for twisted tensor products gives a valid
filtration of the chain complex DG∗ ⊗t0 (DM∗ ⊗t1 DB∗).
Proposition 49 The filtration {Fp(P;2)} of the chain complex D∗ := DG∗⊗t0 (DM∗⊗t1
DB∗) defined as in Definition 37, that is

Fp(P;2)Dn :=
⊕

i+ j+k=n,
( j,k)∈p(P;2)

DGi ⊗t0 (DMj ⊗t1 DBk),
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is a valid filtration of chain subcomplexes.

Proof Similar considerations to the proof of Proposition 47 hold. The chain complex
DG∗⊗t0 (DM∗⊗t1 DB∗) is obtained from DG∗⊗(DM∗⊗DB∗) introducing two per-
turbations: the perturbation δD1 , which added to the differential of DM∗ ⊗ DB∗ gives
the differential of DM∗⊗t1 DB∗, and the perturbation δD0 , which added to the differen-
tial of DG∗ ⊗ (DM∗ ⊗t1 DB∗) gives the differential of DG∗ ⊗t0 (DM∗ ⊗t1 DB∗). We
have showed that δD1 decreases at least by 2 the filtration degree p (dimension of DB∗)
and δD0 decreases at least by 2 the filtration degree q (dimension of DM∗ ⊗t1 DB∗).
Since this is the same situation of the proof of Proposition 41, that argument carries
over. ��

We can now study the behavior of the reduction ρ′
2 = ( fρ′

2
, gρ′

2
, hρ′

2
) with respect

to the defined filtrations. As we will see, the role played by the BPL in defining the
reduction ρ′

2 forces us to use slightly more subtle arguments than in Proposition 48.

Proposition 50 The maps fρ′
2
and gρ′

2
of the reduction ρ′

2 are compatible with the
defined filtrations. The homotopy hρ′

2
is such that

hρ′
2
(Fp(P;2)) ⊆ Fp(P+(0,1);2),

for all P ∈ Z
2.

Proof Recall that the maps fρ′
2
and gρ′

2
are defined as

fρ′
2
:= fρ2ψρ2 , gρ′

2
:= ϕρ2gρ2 ,

where

ϕρ2 :=
∞∑

i=0

(−1)i (hρ2 δ̂0)
i , ψρ2 :=

∞∑

i=0

(−1)i (δ̂0hρ2)
i . (18)

It is easy to see, as a direct consequence of their definitions, that the maps fρ2 and gρ2

do not change the filtration degree q (dimension of the chain groups of ĈM∗ ⊗t1 Ĉ B∗,
resp. DM∗ ⊗t1 DB∗) and do not increase the degree p (dimension of the chain groups
of Ĉ B∗, resp. DB∗). Regarding the operators ϕρ2 and ψρ2 , we can observe that they
do not increase the filtration degree q, but we cannot say that they also maintain or
decrease p. The reason for the last claim appears clear considering δ̂0 := gρ1 δ̃

′
0 fρ1 ,

where δ̃′
0 is defined explicitly in Eq. (16) and depends in turn on δ̃0, which can increase

p indefinitely. Nevertheless, we can distinguish the behavior of the summands with
i = 0 in Eq. (18) from the behavior of the summands with i > 0. The summands
with i = 0 in the equations defining ϕρ2 and ψρ2 are simply the identity of the
chain complex ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗), which clearly maintains both p and q fixed.
On the other hand, as we said, the summands with i > 0 may increase the degree
p = p2, but they strictly decrease the degree q = p1 + p2 since δ̂0 reduces q at least
by 2. As a result, the operators ϕρ2 and ψρ2 send a generator of filtration bidegree
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Fig. 8 Graphical representation
of an argument of the proof of
Proposition 50. The homotopy
hρ′

2
applied to a generator

having filtration bidegree
P ∈ Z

2 can reach the positions
marked by the symbol ×. In the
figure we shaded the set of these
points, corresponding to the
downset p(P + (0, 1); 2)

P

p1 = q − p

p2 = p

P := (p1, p2) to a linear combination of generators whose filtration bidegrees can
correspond “exactly” to each point of the downset p(P; 2) = T 2

P . This implies that
the maps fρ′

2
and gρ′

2
are compatible with the defined filtrations {Fp(P;2)} of the chain

complexes ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗) and DG∗ ⊗t0 (DM∗ ⊗t1 DB∗).
We now consider the map hρ′

2
:= ϕρ2hρ2 to prove the last part of the statement.

Since we just described the behavior of ϕρ2 with respect to the degrees p = p2 and
q = p1 + p2, we only need to focus on hρ2 , which can increase both p and q at most
by 1, as one can easily observe from the expression

hρ2 := ĥ(0) ⊗ IdĈM∗⊗t1 Ĉ B∗ +(ĝ(0) f̂ (0)) ⊗ hr̂1 .

Therefore, because of the overall effect ofϕρ2 and hρ2 , themap hρ′
2
sends a generator of

filtration bidegree P := (p1, p2) to a linear combination of generators whose filtration
bidegrees correspond to the points of the downset p(P; 2) translated by (0, 1), that is
the downset p(P + (0, 1); 2). We display this behavior in Fig. 8. This implies that,
considering the filtration {Fp(P;2)} of ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗), the map hρ′

2
is such

that

hρ′
2
(Fp(P;2)) ⊆ Fp(P+(0,1);2),

for all P ∈ Z
2. ��

We can now prove the result which justifies the use of our effective homology
methods to compute the higher Leray–Serre spectral sequence.

Theorem 51 From the 2-page of the secondary connection (see Sect. 3), the higher
Leray–Serre spectral sequence of the chain complex C∗(G×τ0 (M×τ1 B)) is naturally
isomorphic to the higher spectral sequence we defined via the diagram (14) on the
effective chain complex DG∗ ⊗t0 (DM∗ ⊗t1 DB∗).

Proof Consider the diagram (14) and the filtrations {Fp(P;2)} we defined on all its
chain complexes. We use the results of this section and Theorem 24 to show that
corresponding terms of the 2-pages of all the chain complexes involved in diagram (14)
are isomorphic.

We start from the reduction TEZ0, which by Proposition 44 is compatible with the
filtrations. Corollary 25 then tells us that the higher spectral sequences associated with
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the filtered chain complexes C∗(G ×τ0 (M ×τ1 B)) and C∗(G) ⊗t0 C∗(M ×τ1 B) are
isomorphic.

Consider now the reduction Id⊗t0 TEZ1, whose behavior is described in Proposi-
tion 46. Recall that the terms S∗(P; 2) of the 2-page of a higher spectral sequence are
of the form S[z, s, p, b] with

z := T 2
P+e1−2e2 , s := T 2

P+e1−e2 , p := T 2
P , b := T 2

P+e2 , (19)

where e1 = (1, 0) and e2 = (0, 1), see Eq. (7). In order to apply Theorem 24, we have
to remember the conditions (6) on the homotopy h of the reduction which guarantee
we have isomorphic terms:

h(Fz) ⊆ Fs and h(Fp) ⊆ Fb.

From (19) we see that for terms of the 2-page the downset s (resp. b) is a translation
by e2 = (0, 1) of the downset z (resp. p). We know from Proposition 46 that, for each
P ∈ Z

2,

hId⊗t0 TEZ1(Fp(P;2)) ⊆ Fp(P+(1,0);2) ⊆ Fp(P+(0,1);2), (20)

where the last inclusion is an immediate consequence of the “shape” of the downsets
we are considering. The homotopy hId⊗t0 TEZ1 satisfies therefore the conditions (6)
when z, s, p, b are as in (19), allowing us to conclude (by Theorem 24) that the 2-
pages of the higher spectral sequences associated with C∗(G) ⊗t0 C∗(M ×τ1 B) and
C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)) are isomorphic.

Thanks to Proposition 48 and Proposition 50 we can apply the argument we just
illustrated for Id⊗t0 TEZ1 to the reductions ρ′

1 and ρ′
2 and conclude that, from the

2-page, the higher spectral sequences associated with the chain complexes C∗(G)⊗t0

(C∗(M) ⊗t1 C∗(B)), ĈG∗ ⊗t0 (ĈM∗ ⊗t1 Ĉ B∗) and DG∗ ⊗t0 (DM∗ ⊗t1 DB∗) are
isomorphic.

Let us finish the proof by remarking that the isomorphism between the different
terms of the higher spectral sequences of both chain complexes C∗(G×τ0 (M ×τ1 B))

and DG∗ ⊗t0 (DM∗ ⊗t1 DB∗) is induced in a natural way by the composition of maps
f and g of reductions of diagram (14). ��
Remark 52 In the proof of Theorem 51 we use the fact (for example when we make
use of Proposition 48 and Proposition 50) that the homotopy h of a certain reduction
of the diagram (14) has a “convenient” behavior, sending a chain subcomplex of the
filtration indexed by a downset p(P; 2) to the chain subcomplex indexed by the same
downset translated by e2 = (0, 1). This ensures that the conditions (6) of Theorem 24
are satisfied for the terms S[z, s, p, b] of the 2-page, since we noticed from (19) that
the downset s (resp. b) is a translation by e2 = (0, 1) of the downset z (resp. p). In
Fig. 9 we give an intuitive representation of this property of the 2-page. Note that
for the pages “preceding” the 2-page in the secondary connection this is not true in
general, as one can observe in Fig. 10.
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Fig. 9 The three figures represent the term S∗(P; 2) of the 2-page of a higher spectral sequence over D(Z2),
with P = (3, 2). Left: representation of S∗(P; 2)with our usual conventions. Center: the downsets z (black
solid line) and s (dotted line) are highlighted. Right: the downsets p (solid) and b (dotted) are highlighted

Fig. 10 Representations of the term S(P; 2) of a higher spectral sequence over D(Z2), with P = (3, 2).
Left: S(P; 2) represented with our usual conventions. Center: we can notice that the downset z (black solid
line) shifted by (0, 1) is not contained in the downset s (dotted line). Right: the same situation holds for the
downsets p (solid) and b (dotted)

Remark 53 It is an easy consequence of the results we presented, relying on the con-
ditions (6) of Theorem 24, that our method based on effective homology allows to
compute also terms “following” the 2-page, since by this we mean terms S[z, s, p, b]
such that the differences s \ z and b \ p are larger than for terms of the 2-page (see
[14, § 3]).

The results presented in the current section allowed us to develop the following
algorithm, which we implemented in the Kenzo system.

Algorithm 54 Computation of the higher Leray–Serre spectral sequence.
Input:

• a tower of two fibrations G → E → N and M → N → B as in (10), defined by
twisting operators τ0 : N → G and τ1 : B → M, where M and B are 1-reduced.

• equivalences as in (13), where DG∗, DM∗ and DB∗ are effective chain complexes.

Output: all the groups and differential maps of the higher Leray–Serre spectral
sequence associated with the tower of fibrations, from the 2-page of the secondary
connection on.

Remark 55 As we mentioned in Sect. 3, secondary connections are only one of the
possible ways to connect the 1-page to H∗(E). The richer structure presented in [15],
consisting in more terms and differentials for higher spectral sequences, provides a
wide family of connections from the 1-page to H∗(E). We conclude this section with
a brief explanation of the following facts:

123



Foundations of Computational Mathematics (2021) 21:1023–1074 1059

(i) Our simplicial construction of the higher Leray–Serre spectral sequence extends
to the additional structure of [15] for all terms and differentials following the
2-page.

(ii) The technique of effective homology cannot be used to compute all terms and
differentials of [15]. The secondary connection we presented in Sect. 3, based on
downsets of the form T 2

P , appears to be ideal from this computational viewpoint.

Despite our effort to make this work self-contained, for the sake of brevity we have to
refer the reader to [15] for the notations and definitions we use in this remark.

To prove (i), recall that the simplicial version of the higher Leray–Serre spec-
tral sequence rests on Definition 36, which introduces a filtration {Fp(P;2)C∗(E)} by
assigning the bidegree X = (x1, x2) := (deg(m, b) − deg b, deg b) to the elements
(g, (m, b)) ∈ E :=G ×τ0 (M ×τ1 B) and setting Fp(P;2)C∗(E) := ⊕

X∈p(P;2) CX ,
where CX is generated by all elements of bidegree X . A term S(P;ω) of
[15] can be represented by downsets zω, sω, pω, bω ∈ D(Z2), meaning that
S(P;ω) ∼= S[zω, sω, pω, bω], see [15, Proof of Thm. 3.6]. We show now that
FpωC∗(E) := ⊕

X∈pω
CX defines a chain subcomplexes of C∗(E) (the case of

zω, sω, bω is completely analogous) for each term S(P;ω) following the 2-page,which
means ω = 12 ∗ τ with τ ∈ L∗

a ; together with the differentials naturally induced by
the differential of C∗(E), these terms constitute therefore a simplicial version of the
additional structure of the higher Leray–Serre spectral sequence. Assuming P = 0 to
simplify the notations, the downset pω is defined by pω := {X ∈ Z

2 | MωX ≤lex 0} (in
this context, it is not restrictive to assume the permutation σ involved in the definition
of pω in [15] to be the identity). From ω = 12 ∗ τ we obtain Mω = Mτ M12, where
Mω, Mτ , M12 ∈ Z

2×2
≥0 (all entries of the three matrices are non-negative integers).

Now look back at the proof of Proposition 39. The differential of C∗(E) sends an ele-
ment σ := (g, (m, b)) ∈ E of bidegree (p1, p2) to a linear combination of elements
of bidegree (x1, x2) such that x1 + x2 ≤ p1 + p2 and x2 ≤ p2, which means that (12)
holds: (x1, x2) = (p1, p2) + λ1v1 + λ2v2 for some λ1, λ2 ∈ Z≥0, with v1 := − e1
and v2 := e1 − e2. Therefore, we only need to prove that the translation of pω by vi
(i = 1, 2), given by pω + vi := {X ∈ Z

2 | MωX ≤lex Mωvi }, is still contained in pω.
As it can be easily shown (either directly or using the properties of Mω described in
[15]), M12vi ∈ Z

2≤0 for i = 1, 2. This implies that Mωvi ∈ Z
2≤0, and in particular

Mωvi ≤lex 0, so we have pω + vi ⊆ pω, for i = 1, 2.
To prove (ii), we provide a counterexample based on the fact that, in order to

use effective homology, one must be able to define filtrations (of chain subcom-
plexes) on all the chain complexes of (14). Here we focus on the chain complex
C∗(G)⊗t0 (C∗(M)⊗t1 C∗(B)), filtered using the bidegree (x1, x2) introduced in Def-
inition 37. Recall that the behavior of the differential ofC∗(G)⊗t0 (C∗(M)⊗t1C∗(B))

is summarized in Fig. 6. In Fig. 11 we show that for the word ω = 1212 the downset
pω is not closed with respect to the differential of C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)).
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Fig. 11 Representation of the term S(P;ω), as defined in [15], with P = (3, 2) and ω = 1212. Left: the
term is represented as S(P;ω) ∼= S[zω, sω, pω, bω], see Remark 55. The downset pω is highlighted with
a thicker line. Center: like in (i) of Remark 55, we focus on the downset pω and the point P . Starting from
position P , the differential ofC∗(E) can only reach the positions marked by× (compare with Fig. 5), which
still belong to pω . This holds starting from each point of pω . Right: as we claimed in (ii) of Remark 55,
starting from position Q = (6, 0) ∈ pω , the differential of C∗(G) ⊗t0 (C∗(M) ⊗t1 C∗(B)) can reach the
positions marked by× (compare with Fig. 6), some of which (for example (0, 4) and (−1, 5)) do not belong
to pω

6 Sketch of Results in the General Case ofm Fibrations

In this section we briefly explain the generalization of our results of Sects. 4 and 5
to the case of any finite number of fibrations. Let us consider again a diagram of m
fibrations where the total space of each fibration is the base of the previous one:

G0 E0

· · · · · ·

Gm−1 Em−1

B

(21)

Like in the case of two fibrations, let us suppose that all the fibrations correspond
to twisted Cartesian products, that is, G0, . . . ,Gm−1 are simplicial groups, B is a
simplicial set and each Ei is defined as a twisted Cartesian product Ei :=Gi ×τi Ei+1,
for all 0 ≤ i ≤ m − 1, with τi : Ei+1 → Gi and Em := B. We suppose also that the
simplicial sets G1, . . . ,Gm−1, B are 1-reduced and that G0,G1, . . . ,Gm−1, B have
effective homology, that is, there exist chain equivalences C∗(Gi )⇐⇐ ĈGi∗ ⇒⇒DGi∗
for 0 ≤ i ≤ m − 1 and C∗(B)⇐⇐ Ĉ B∗ ⇒⇒DB∗ where all the DGi∗ and DB∗ are
effective chain complexes. We remark that, as in the case of 2 fibrations, the base B
is not necessarily a Kan complex but the fibers Gi are modeled as simplicial groups,
so their underlying simplicial sets are Kan complexes.

The effective homology of the top total space

E0 :=G0 ×τ0 (G1 ×τ1 · · · ×τm−2 (Gm−1 ×τm−1 B))
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is given by a composition of reductions that generalizes diagram (14). To represent
them in a diagram, let us introduce the following notations:

C (0)∗ :=C∗(G0 ×τ0 (G1 ×τ1 · · · ×τm−2 (Gm−1 ×τm−1 B))),

C (1)∗ :=C∗(G0) ⊗t0 C∗(G1 ×τ1 · · · ×τm−2 (Gm−1 ×τm−1 B)),

C (2)∗ :=C∗(G0) ⊗t0 (C∗(G1) ⊗t1 C∗(G2 ×τ2 · · · ×τm−1 B)),

· · ·
C (m)∗ :=C∗(G0) ⊗t0 (· · · ⊗tm−2 (C∗(Gm−1) ⊗tm−1 C∗(B))),

Ĉ∗ := ĈG0∗ ⊗t0 (· · · ⊗tm−2 (ĈGm−1,∗ ⊗tm−1 Ĉ B∗)),
D∗ := DG0∗ ⊗t0 (· · · ⊗tm−2 (DGm−1,∗ ⊗tm−1 DB∗)).

Then, the effective homology of E0 is given by:

C (0)∗
TEZ0

C (1)∗
Id⊗t0 TEZ1

C (2)∗
Id⊗t0 (Id⊗t1 TEZ2)

· · ·
Id⊗t0 (Id⊗t1 ···⊗tm−2TEZm−1)

Ĉ∗
ρ′
1 ρ′

2

C (m)∗ D∗

(22)

The first reduction TEZ0 is simply the twisted Eilenberg–Zilber reduction (The-
orem 23) of the top fibration G0 → E0 → E1. The second one Id⊗t0 TEZ1 is
obtained by applying the Basic Perturbation Lemma (Theorem 21) to the tensor prod-
uct (Proposition 15) of the trivial reduction ofC∗(G0) and the twistedEilenberg–Zilber
reduction for the second fibration G1 → E1 → E2. In general, the reductions of the
type Id⊗t0 · · · ⊗ti−1 TEZi are defined by applying i times the BPL (with the pertur-
bations represented by t0, . . . , ti−1) to the tensor product of the trivial reduction of
C∗(G0)⊗· · ·⊗C∗(Gi−1) and the twisted Eilenberg–Zilber reduction of the fibration
Gi → Ei → Ei+1. Lastly, the reduction ρ′

1 (resp. ρ′
2) is obtained by applying m

times the TPL (resp. BPL) to the tensor product of the m + 1 reductions forming the
equivalences that define the effective homology of G0, . . . ,Gm−1, B.

Remark 56 As in the case of 2 fibrations (see Remark 45), the 1-reducedness assump-
tion on G1, . . . ,Gm−1, B guarantees that we can apply the BPL and construct all the
reductions in (22). After completing a first version of the present article, the authors
discovered that towers of fibrations are studied in a simplicial setting in [12]. The main
result of that work corresponds, in our situation, to saying that C (0)∗ and D∗ are chain
equivalent, which is evident from the series of reductions in (22). The result is proven
therein under weaker assumptions than in our situation, namely weaker conditions to
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ensure that the BPL can be applied repeatedly. We address the interested reader to the
cited work, stressing once again the advantages of the 1-reducedness assumption from
a computational perspective.

In order to compute the higher Leray–Serre spectral sequence associated with
E0 :=G0 ×τ0 (G1 ×τ1 . . . ×τm−2 (Gm−1 ×τm−1 B)) we need to define generalized
filtrations over the poset D(Zm) on all the chain complexes appearing in (22), and
we need to prove that all the reductions of that diagram have a “good” behavior
with respect to the defined filtrations. To this aim, we use a natural generalization of
Remark 35 consisting in defining a multidegree (over Zm) on the generators of each
chain complex C∗, which produces a collection of abelian groups {CP }P∈Zm . Then,
considering the downsets of the form p(P;m) := Tm

P , a filtration {Fp(P;m)}P∈Zm is
defined as Fp(P;m) := ⊕

X∈p(P;m) CX . After proving that a filtration introduced in this
way is compatible with the differential, that is, d(Fp(P;m)) ⊆ Fp(P;m), its definition
can be extended to a filtration over D(Zm) by setting, for any p ∈ D(Zm),

F p := {σ ∈ C∗ | ∃P ∈ Z
m such that σ ∈ Fp(P;m) and p(P;m) ⊆ p}.

Definition 57 Consider the chain complex C (i)∗ on the left in diagram (22), that is

C (i)∗ :=C∗(G0) ⊗t0 (C∗(G1) ⊗t1 · · · ⊗ti−1 C∗(Gi ×τi · · · ×τm−1 B)),

and let σ := g0 ⊗ (g1 ⊗ (. . . ⊗ (gi , (gi+1, . . . , (gm−1, b))))) be a generator of C
(i)∗ .

Denote x ′
m := deg(b); x ′

j := deg(g j , (g j+1, . . . , (gm−1, b))) for i ≤ j ≤ m − 1;
and x ′

j the integer such that g j ⊗ (g j+1 ⊗ (. . . , b)) is a chain of dimension x ′
j in

C∗(G j )⊗t j (· · ·×τm−1 B)) for 0 ≤ j ≤ i−1. Thenwe set xm := x ′
m and x j := x ′

j−x ′
j+1

for j ≤ m − 1, we define the multidegree of σ as X := Xσ := (x1, . . . , xm) and we
define Fp(P;m) as the free Z-module generated by the elements σ of C (i)∗ satisfying
Xσ ∈ p(P;m).

The cases i = 0 and i = m in Definition 57, clearly corresponding to the top and
bottom-left chain complexes of diagram (22), show that this definition represents a
generalization of Definitions 36 and 37, as well as of Definition 42. The proof that
this definition produces valid filtrations is not included here, as it is an immediate
generalization of the case of two fibrations we detailed in Sects. 4 and 5. Moreover,
the definition of the filtration for the particular bottom chain complex C∗(G0) ⊗t0
(· · · ⊗tm−2 (C∗(Gm−1) ⊗tm−1 C∗(B))) can be easily adapted to the chain complexes
ĈG0∗ ⊗t0 (· · · ⊗tm−1 Ĉ B∗) and DG0∗ ⊗t0 (· · · ⊗tm−1 DB∗).

Remark 58 As in the case of towers of 2 fibrations, the simplicial construction of
the higher Leray–Serre spectral sequence for m fibrations, based on the filtration we
defined on C (0)∗ = C∗(E0), extends to the additional structure introduced in [15] for
all terms and differentials following the 2-page. The argument of Remark 55 (i) can
be easily generalized.

We studied the behavior of the reductions appearing in diagram (22) with similar
arguments to the ones presented in Sect. 5. Once again, the proofs of the results about
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these reductions are an easy generalization of the case of two fibrations, only involving
more complicated bookkeeping to describe how the differentials and their perturba-
tions modify the different filtration multidegrees. For this reason, as mentioned, we
have chosen to detail the proofs only for towers of two fibrations, and to devote this
section to state the general results we obtained for towers of m fibrations.

We have proved that the reductions on the left in diagram (22) behave as follows.

Proposition 59 Let ρi := ( f i , gi , hi ) denote the i-th left reduction of diagram (22),
ρi : C (i)∗ ⇒⇒C (i+1)∗ . The maps f i , gi and hi behave as follows with respect to the
filtrations defined on the chain complexes C (i)∗ and C (i+1)∗ : the maps f i and gi are
compatible with the defined filtrations, while hi (Fp(P;m)) ⊆ Fp(P+ei ;m), for each
P ∈ Z

m (with the convention e0 := 0).

Regarding the reductions ρ′
1 and ρ′

2 in diagram (22), we have proved the following
results.

Proposition 60 Let ρ′
1 := ( f ′

1, g
′
1, h

′
1) be the reduction as in diagram (22),

ρ′
1 : Ĉ∗ := ĈG0∗ ⊗t0 (· · · ⊗tm−1 Ĉ B∗)⇒⇒C (m)∗ :=C∗(G0) ⊗t0 (· · · ⊗tm−1 C∗(B)).

The maps f ′
1, g

′
1 and h

′
1 behave as follows with respect to the filtrations defined on the

chain complexes Ĉ∗ and C (m)∗ : the maps f ′
1 and g′

1 are compatible with the defined
filtrations, while h′

1(Fp(P;m)) ⊆ Fp(P+em ;m), for each P ∈ Z
m.

Proposition 61 Let ρ′
2 := ( f ′

2, g
′
2, h

′
2) be the reduction as in diagram (22),

ρ′
2 : Ĉ∗ := ĈG0∗ ⊗t0 (· · · ⊗tm−1 Ĉ B∗)⇒⇒D∗ := DG0∗ ⊗t0 (· · · ⊗tm−1 DB∗).

The maps f ′
2, g

′
2 and h′

2 behave as follows with respect to the filtrations defined on

the chain complexes Ĉ∗ and D∗: the maps f ′
2 and g′

2 are compatible with the defined
filtrations, while h′

2(Fp(P;m)) ⊆ Fp(P+em ;m), for each P ∈ Z
m.

Now, recalling the definition of the downsets p(P; k) := T k
P introduced in Sect. 3,

it is easy to observe that

p(P + ei ;m) ⊆ p(P + ei+1;m) ⊆ p(P + em;m),

for all 1 ≤ i ≤ m − 1. Let us also recall that the terms S∗(P;m) of the 2-page of a
higher spectral sequence are of the form S[z, s, p, b], with

z := Tm
P+em−1−2em , s := Tm

P+em−1−em , p := Tm
P , b := Tm

P+em . (23)

Therefore, the conditions of Theorem 24 guaranteeing that the terms of two spectral
systems are isomorphic, that is h(Fz) ⊆ Fs and h(Fp) ⊆ Fb, are satisfied for all the
reductions of (22). In this way, we obtain the following general result which allows
one to correctly apply the effective homology method to compute higher Leray–Serre
spectral sequences of m fibrations.
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Theorem 62 From the 2-page of the secondary connection, the higher Leray–Serre
spectral sequence of the chain complexC∗(G0×τ0 (G1×τ1 · · ·×τm−2 (Gm−1×τm−1 B)))

is isomorphic to the higher spectral sequence we defined via the diagram (22) on the
effective chain complex DG0∗ ⊗t0 (DG1∗ ⊗t1 · · · ⊗tm−2 (DGm−1,∗ ⊗tm−1 DB∗)).

This leads to the following algorithm, which has been implemented in the Kenzo
system.

Algorithm 63 Computation of the higher Leray–Serre spectral sequence.
Input:

• A tower of m fibrations Gi → Ei → Ei+1 with 0 ≤ i ≤ m − 1 as in (21), defined
by twisting operators τi : Ei+1 → Gi , where G1, . . . ,Gm−1, B are 1-reduced.

• Chain equivalences C∗(Gi )⇐⇐ ĈGi∗ ⇒⇒DGi∗, for each 0 ≤ i ≤ m − 1, and
C∗(B)⇐⇐ Ĉ B∗ ⇒⇒DB∗, where the DGi∗ and DB∗ are effective chain complexes.

Output: all the groups and differential maps of the higher Leray–Serre spectral
sequence associated with the tower of fibrations, from the 2-page of the secondary
connection on.

7 Study of the 2-Page

We devote this section to the generalization of Serre’s formula for the 2-page of the
spectral sequence of a fibration to the context of higher spectral sequences associated
with towers of m fibrations. The formula is proved by Matschke [14, Theorem 5.1]
in a topological framework, as we have seen in the statement of Theorem 34. Here
we present a different proof in the simplicial framework we have adopted throughout
this paper. The theoretical results of this section provide a simplicial version of the
higher Leray–Serre spectral sequence, in a similar way to what happened with the
ordinary Leray–Serre spectral sequence, introduced by Jean Pierre Serre in 1951 [22]
and translated to a simplicial language only in 1962 by Shih Weishu [23].

The result we will prove is the following:

Theorem 64 Consider a tower of m fibrations in the simplicial framework we intro-
duced, as in (21), and suppose that the simplicial sets G1, . . . ,Gm−1, B are 1-reduced.
The terms of the 2-page of the associated higher spectral sequence are

S∗
n (P;m) ∼= Hpm (B; Hpm−1(Gm−1; . . . Hp1(G1; Hp0(G0)))), (24)

with P := (p1, . . . , pm) ∈ Z
m and p0 := n − p1 − · · · − pm, and the higher spectral

sequence converges to H∗(E0).

By virtue of the successive reductions of diagram (22) between the chain complexes
C∗(G0×τ0 (· · ·×τm−2 (Gm−1×m−1 B))) andC∗(G0)⊗t0 (· · ·⊗tm−2 (C∗(Gm−1)⊗tm−1

C∗(B))), we consider the latter for proving our results in this section. As a first step,
we show that the formula (24) holds for non-twisted tensor products C∗(G0) ⊗ · · · ⊗
C∗(Gm−1)⊗C∗(B). Then, we generalize the results to the case of (m+1)-fold twisted
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tensor products of the formC∗(G0)⊗t0 (· · ·⊗tm−2 (C∗(Gm−1)⊗tm−1C∗(B))), pointing
out at last why the reductions (22) guarantee that our results are valid also for the chain
complex C∗(G0 ×τ0 (· · · ×τm−2 Gm−1 ×m−1 B))).

Let us show that the expression (24) for the terms of the 2-page holds for non-twisted
tensor products. Recall that we are considering the filtration of Definition 57, but in
this case, instead of considering only the downsets p(P;m), we extend the definition
to all p(P; k), for 1 ≤ k ≤ m. This yields a valid filtration of C∗ :=C∗(G0) ⊗ · · · ⊗
C∗(Gm−1) ⊗ C∗(B), as one can easily check, since the tensor product is not twisted.
This filtration {Fp(P;k)} can be shortly defined as

Fp(P;k)Cn :=
⊕

i0+i1+...+im=n,
(i1,...,im )∈p(P;k)

Ci0(G0) ⊗ Ci1(G1) ⊗ · · · ⊗ Cim−1(Gm−1) ⊗ Cim (B),

(25)

and clearly we have, as usual, a higher spectral sequence associated with it. Even if
the next result is included in [8], we provide here a sketch of the proof for the sake of
completeness.

Proposition 65 Let C∗(G0) ⊗ · · · ⊗ C∗(Gm−1) ⊗ C∗(B) be a (non-twisted) tensor
product of chain complexes; consider the filtration {Fp(P;k)} introduced in (25) and
the associated higher spectral sequence. Then the terms of the 2-page can be expressed
as in (24).

Proof Consider the homology groups of the form Hn(Fp(P;1)/Fs(P;1)), introduced
in Sect. 3 as the terms Sn(P; 1) forming the 1-page of the higher spectral sequence,
where Fp(P;1)/Fs(P;1) denotes a subquotient of the chain complex C∗(G0) ⊗ · · · ⊗
C∗(Gm−1)⊗C∗(B). Recall from (7) that s(P; 1) := p(P; 1)\{P}. As the set difference
between the two posets p(P; 1) and s(P; 1) contains only P := (p1, . . . , pm) ∈ Z

m ,
the homology group Hn(Fp(P;1)/Fs(P;1)) is isomorphic to the n-homology of

C∗−p1−···−pm (G0) ⊗ Cp1(G1) ⊗ · · · ⊗ Cpm−1(Gm−1) ⊗ Cpm (B),

that is, by virtue of the Universal Coefficient Theorem (see for example [13, Theorem
11.1]),

Hp0(G0) ⊗ Cp1(G1) ⊗ · · · ⊗ Cpm−1(Gm−1) ⊗ Cpm (B), (26)

with p0 := n− p1−· · ·− pm . Recall now Lemma 32 and note that taking homology in
direction −ek corresponds to taking homology with respect to the differential dGk ⊗
Id⊗ · · ·⊗ Id. For example, the homology in direction−e1 of (26) is the p1-homology
of the chain complex

Hp0(G0) ⊗ C∗(G1) ⊗ Cp2(G2) ⊗ · · · ⊗ Cpm−1(Gm−1) ⊗ Cpm (B),

which is (applying again the Universal Coefficient Theorem)

Hp1(G1; Hp0(G0)) ⊗ Cp2(G2) ⊗ · · · ⊗ Cpm−1(Gm−1) ⊗ Cpm (B).
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It is now evident that iterating this argument m times one obtains the formula (24) for
the terms of the 2-page. ��

Now we want to illustrate how the previous result can be used to study the case of
twisted tensor products of chain complexes.

Proposition 66 Let (C∗, d) and (C∗, d ′) be two chain complexes having the same
underlying graded abelian group C∗, but different differentials d and d ′. Suppose
furthermore that {Fi }i∈I is an I -filtration (of chain complexes) for both (C∗, d) and
(C∗, d ′), and denote the associated spectral systems with the letters S and S′, respec-
tively. Let δ := d ′ − d. If, for a 4-tuple of indices z ≤ s ≤ p ≤ b in I , the conditions

δ(Fp) ⊆ Fz and δ(Fb) ⊆ Fs (27)

hold, then S[z, s, p, b] ∼= S′[z, s, p, b].
Proof It follows from the definition (3) of the terms of a spectral system as quotient
modules. ��

Notice that in the conditions (27) the involved indices are paired together in a
different way from (6) of Theorem 24.

The next result concerns filtrations of the form {Fp(P;m)} and terms of the type
S(P;m) and S∗(P;m), defined as in (8) of Sect. 3.

Corollary 67 In the situation of Proposition 66, suppose that the filtration of both
(C∗, d) and (C∗, d ′) is of the form {Fp(P;m)}P∈Zm . If δ := d ′ − d is such that

δ(Fp(P;m)) ⊆ Fp(P+em−1−2em ;m) (28)

for P := (p1, . . . , pm) ∈ Z
m, then we have isomorphisms S∗(P;m) ∼= S′∗(P;m) and

S(P;m) ∼= S′(P;m).

Proof The condition (28) ensures that the inclusions (27) are satisfied for the indices
of terms of the form S∗(P;m) and S(P;m), as one can easily see recalling (7) and
(8). ��

Now we only need to prove that the two differentials of the non-twisted tensor
product C∗(G0) ⊗ · · · ⊗ C∗(Gm−1) ⊗ C∗(B) and of the twisted tensor product
C∗(G0) ⊗t0 (· · · ⊗tm−2 (C∗(Gm−1) ⊗tm−1 C∗(B))) behave as stated in the hypoth-
esis of Corollary 67. Notice that now we are considering a filtration of the form
{Fp(P;m)}P∈Zm , since {Fp(P;k)}P∈Zm ,1≤k≤m (as defined before in this section) in gen-
eral is not a valid filtration for the twisted tensor product of chain complexes, as
emerges from the results of the previous sections and more intuitively from Fig. 6 (for
the case m = 2).

Proposition 68 Consider the chain complexes C∗(G0) ⊗ · · · ⊗ C∗(Gm−1) ⊗ C∗(B)

and C∗(G0) ⊗t0 (· · · ⊗tm−2 (C∗(Gm−1) ⊗tm−1 C∗(B))), with the filtration {Fp(P;m)}
defined before. Let δ := d ′ − d denote the difference between the two differentials
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(that is, the perturbation associated with the (m + 1)-fold twisted tensor product).
Then (28) holds, for all P := (p1, . . . , pm) ∈ Z

m; we have therefore isomorphisms
S∗(P;m) ∼= S′∗(P;m) and S(P;m) ∼= S′(P;m), for all P := (p1, . . . , pm) ∈ Z

m.

Proof The case for m = 2 has already been detailed in the proof of Proposition 41;
see also Fig. 6. In order to prove the general case, it is sufficient to iterate the argument
presented therein. ��
Remark 69 Proposition 68 says that also for the terms of the page {S(P;m)} imme-
diately preceding the 2-page {S∗(P;m)} in the secondary connection (see Sect. 3)
we have isomorphisms when comparing the higher spectral sequences associated
with the twisted and non-twisted tensor product of chain complexes. Nevertheless,
we saw in Sect. 6 that the vertical reductions of (22) are well-behaved (that is, they
give isomorphic terms) only from the 2-page on. Therefore, keeping in mind that the
higher spectral sequence we are considering is originally defined on the chain complex
C∗(G0 ×τ0 (· · · ×τm−2 (Gm−1 ×τm−1 B))), we cannot give an explicit formula for the
terms of the page {S(P;m)}, but only for the 2-page {S∗(P;m)}.

In summation, the results and considerations of the present section provide a proof
of Theorem 64, along with an explanation of the reason why the 2-page is the only
page of the secondary connection for which the presented arguments give an explicit
formula.

8 Examples and Computations

The algorithms presented in Sects. 5 and 6 have been implemented as a new module
for the Kenzo system to compute higher Leray–Serre spectral sequences associated
with towers of fibrations. The module enhances the previous module for computing
generalized spectral sequences developed in [9]. All the programs are available at
https://github.com/ana-romero/Kenzo-external-modules. In this section we present
two different examples of application of our programs.

8.1 Whitehead Tower of the Sphere S3

As a first example of application of our programs for computing higher Leray–Serre
spectral sequences of towers of fibrations, we consider the first stages of theWhitehead
tower [10,17,20] for determining the homotopy groups of the sphere S3, given by the
following tower of fibrations:

G := K (Z2, 3) E

M := K (Z, 2) N

B := S3
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Fig. 12 Pages {E2
p,q } of the Leray–Serre spectral sequences of the fibrations K (Z, 2) → N → S3 (left)

and K (Z2, 3) → E → N (right), represented up to total degree n = p + q = 7

The sphere S3 is represented inKenzo as a simplicial set of finite type, with only two
non-degenerate simplices: one simplex (the base point) in dimension 0 and another
simplex in dimension 3. In other words, the model chosen for the 3-sphere can be
seen as the quotient Δ3/∂Δ3. Let us observe that this model of S3 is not a Kan
complex. Eilenberg–MacLane spaces K (π, n)’s are represented in Kenzo by means
of the classifying space constructor (see [16] for details). In particular, if the group π

is not finite (for instance Z), then the set of m-simplices of K (π, n) for every m ≥ n
is infinite and hence K (π, n) is of infinite type. This model of Eilenberg–MacLane
spaces provides simplicial groups, which satisfy the Kan property.

The simplicial set N canbe seen then as a twistedCartesianproduct N := K (Z, 2)×τ1

S3 and the simplicial set E as E := K (Z2, 3)×τ0 N = K (Z2, 3)×τ0 (K (Z, 2)×τ1 S
3),

for twisting operators τ0, τ1 suitably defined [20]. One can separately consider the
ordinary Leray–Serre spectral sequences of the two fibrations (respectively converg-
ing to the homology of N and E), whose 2-pages {E2

p,q} are represented in Fig. 12.
The groups of the first (left) Leray–Serre spectral sequence are given by the formula
E2
p,q

∼= Hp(S3; Hq(K (Z, 2)); those of the second (right) spectral sequence satisfy
E2
p,q

∼= Hp(N ; Hq(K (Z2, 3)). For a description of the homology groups of K (Z2, 3),
see [5, §23] or [3, §C.2]. Let us observe that, in the second spectral sequence, for total
degree n = p + q = 5 we obtain in this case only one non-null group E2

0,5
∼= Z2,

which correspond to π5(S3) ∼= Z2.
These fibrations are built in Kenzo with the following statements.

> (progn
(setf B (sphere 3))
(setf k1 (chml-clss B 3))
(setf t1 (z-whitehead B k1))
(setf N (fibration-total t1))
(setf k0 (chml-clss N 4))
(setf t0 (z2-whitehead N k0))
(setf E (fibration-total t0)))
[K298 Simplicial-Set]
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The result is the simplicial set K298, corresponding to the total space E . The
simplicial set E is not of finite type, since one of the factors of the twisted Cartesian
product, namely K (Z, 2), is of infinite type. Therefore, as wementioned in Sect. 2.3, it
is not possible to apply standard algorithms based on matrix operations for computing
homology groups, so one cannot directly compute the associated higher Leray–Serre
spectral sequence. However, Kenzo automatically computes the effective homology
of the object, given by an equivalence which is stored in the slot efhm and can be
accessed as follows.

> (efhm E)
[K608 Homotopy-Equivalence K298 <= K598 => K594]

Now, in order to determine the associated higher Leray–Serre spectral sequence,
we filter the chain complex C∗(E) canonically associated with the space E by means
of the generalized filtration introduced in Definition 36.

>(setf Ef (change-chcm-to-gflcc E (dz2) crpr2-gflin ’crpr2-gflin))
[K611 Generalized-Filtered-Chain-Complex]

In a similar way, the effective chain complex must be filtered by means of the
generalized filtration introduced in Definition 37.

>(setf Ef (change-chcm-to-gflcc E (dz2) crpr2-gflin ’crpr2-gflin))
[K611 Generalized-Filtered-Chain-Complex]

By virtue of our results presented in Sects. 5 and 6, we know that all the correspond-
ing terms of the higher spectral sequences of both chain complexes are isomorphic
from the 2-page on. In this way, using our algorithmswe can determine the terms of the
higher Leray–Serre spectral sequence of the total space E (of infinite type) by comput-
ing the corresponding terms of the higher spectral sequence of the associated effective
chain complex. To this aim, we use the function gen-spsq-group (which receives
the filtered chain complex, four elements z ≤ s ≤ p ≤ b in the poset of indices and
the total degree n), and in particular the 2-page {S∗(P; 2)} can be determined in an
easy way by means of the function e2-gspsq-group (which inputs the filtered
chain complex, the point P = (p1, p2) ∈ Z

2 and the total degree n).
For instance, the groups of the 2-page which are non-null for total degree n = 5

are the following:

> (e2-gspsq-group E ’(0 0) 5)
Generalized spectral sequence S[((1 -2)),((1 -1)), ((0 0)),

((0 1) (1 0))]_{5}
Component Z/2Z
> (e2-gspsq-group E ’(2 0) 5)
Generalized spectral sequence S[((0 0) (1 -1) (3 -2)),((0 1)

(1 0) (3 -1)), ((0 1) (2 0)),((0 2) (2 1) (3 0))]_{5}
Component Z/2Z
> (e2-gspsq-group E ’(2 3) 5)
Generalized spectral sequence S[((0 3) (1 2) (3 1) (4 0)),((0 4) (1 3)

(3 2) (4 1)
(5 0)),((0 4) (2 3) (3 2) (4 1) (5 0)),((0 5) (2 4) (3 3)

(4 2) (5 1) (6 0))]_{5}
Component Z
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Notice that the downsets z, s, p, b indexing each term are stored as lists of points:
each list of points in Z

2 represents the smallest downset of D(Z2) containing those
points. Let us also observe that the obtained groups satisfy the formula S∗

n (P; 2) ∼=
Hp2(B; Hp1(M; Hn−p1−p2(G))) of Theorem 64.

Asmentioned in Sect. 3, the “ following” terms of the higher spectral sequence allow
to connect the 2-page of the higher Leray–Serre spectral sequence to the homology
H∗(E) in many possible ways; in particular we have provided functions computing
lexicographic connections, whose terms have indices z, s, p, b which can be defined
by giving a point P ∈ Z

2 and another parameter Q ∈ Z
2, called offset (see [14] for

details). The function lexcon-gspsq-group inputs the filtered chain complex,
the point P = (p1, p2) ∈ Z

2, the offset Q = (q1, q2) ∈ Z
2 and the total degree n.

> (lexcon-gspsq-group E ’(0 0) ’(1 1) 5)
Generalized spectral sequence S[((0 -3)),((1 -1)),((0 0)), ((1 2) (2 1)

(3 0))]_{5}
Component Z/2Z
> (lexcon-gspsq-group E ’(2 0) ’(1 1) 5)
Generalized spectral sequence S[((0 -2) (2 -3)),((0 1) (1 0) (3 -1)),

((0 1) (2 0)), ((0 4) (1 3) (3 2) (4 1) (5 0))]_{5}
NIL
> (lexcon-gspsq-group E ’(2 3) ’(1 1) 5)
Generalized spectral sequence S[((0 1) (2 0)),((0 4) (1 3) (3 2)

(4 1) (5 0)), ((0 4) (2 3) (3 2) (4 1) (5 0)),((0 7) (1 6) (3 5)
(4 4) (5 3) (6 2) (7 1) (8 0))]_{5}

NIL

Let us observe that, although we have seen before that in the 2-page of the higher
spectral sequence there are three non-null terms of total degree n = 5, in the next
page, computed with offset Q = (1, 1), only one of these groups survives, namely
S∗
5 (P; 2) ∼= H0(B; H0(M; H5(G))), corresponding to the point P = (0, 0).
We can also determine the “final” groups of the higher spectral sequence, which

intuitively are the ones that survive at the end of the lexicographic connection. In this
case, for total degree n = 5 we obtain exactly one non-null group, isomorphic to Z2,
which corresponds again to S∗

5 (P; 2) ∼= H0(B; H0(M; H5(G))) and reproduces the
well-known result π5(S3) ∼= Z2.

> (final-gspsq-group E 5)
Generalized spectral sequence S[((-1 -1)),((-1 -1)),((0 9) (1 8)

(2 7) (3 6) (5 5) (6 4) (7 3) (8 2) (9 1) (10 0)),((0 9) (1 8) (2 7)
(3 6) (5 5) (6 4) (7 3) (8 2) (9 1) (10 0))]_{5}

Component Z/2Z

The same programs can be applied to a larger number of fibrations. For instance, if
we consider the next fibration of the Whitehead tower, namely K (Z2, 4) → X → E ,
we can determine for example the term of the 2-page of the higher spectral sequence
corresponding to P = (0, 6, 0), which turns out to be Z. We omit the indices z, s, p, b
in the outputs.

> (e2-gspsq-group X ’(0 6 0) 6)
Generalized spectral sequence S[...]_{6}
Component Z
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However, the following term in the lexicographic connection with offset Q =
(1, 1, 1) is Z3; this represents a step of the convergence to the final group of the higher
spectral sequence, which corresponds to the well-known result π6(S3) ∼= Z12.

> (lexcon-gspsq-group X ’(0 6 0) ’(1 1 1) 6)
Generalized spectral sequence S[...]_{6}
Component Z/3Z
> (final-gspsq-group X 6)
Generalized spectral sequence S[...]_{6}
Component Z/12Z

As an indication of the efficiency of the algorithms, the last computation required
12 s on a normal laptop (Intel Core i5-8250U, 8Gb RAM). However, the algorithms
producing the effective homology of a tower of fibrations in Kenzo have exponential
complexity in the number of generators, so that the computation of the higher spectral
sequences and homotopy groups are limited to relatively low dimensions (for instance,
on the same laptop, Kenzo is able to determine the homotopy groups of S3 up to
dimension 7).

As a comparison with the computation of various subsequent spectral sequences,
let us remark that the computation of all terms of the 2-page of the higher spectral
sequence for degree n = 6 (84 groups) took 2 min and 14 s, while the computation of
the groups E2

p,q of the three Leray–Serre spectral sequences corresponding to the three
fibrations (21 groups) took only 6 seconds. This increase in computational cost for the
higher spectral sequence is due to the fact that computing the groups of Definition 4
is slower when the indices are elements in a poset like Zm or D(Zm), with m > 1.

8.2 Effective Example

Consider now a second example of tower of fibrations, given by the first stages of the
Whitehead tower of the Eilenberg-MacLane space K (Z2, 2):

G0 := K (Z2, 5) X5

G1 := K (Z2, 4) X4

G2 := K (Z2, 3) X3

B := K (Z2, 2)

In this case all the associated chain complexes are of finite type (effective), so that
we can determine the higher spectral sequence without using the effective homology
method. However, due to efficiency problems, it is better to use the effective homology
of the space X5 ∼= K (Z2, 5) ×τ0 (K (Z2, 4) ×τ1 (K (Z2, 3) ×τ2 K (Z2, 2))), which is
obtained via the composition of several reductions as in diagram (22).
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In accordance with Theorem 51, we have used our programs to verify (up to total
degree n = 3) that the terms of the 2-page {S∗

n (P; 3)} computed with the two methods
coincide. The only non-null terms we obtained (with both methods) are the following:

(0 0 0) Generalized spectral sequence S[NIL,NIL,((0 0 0)),((0 0 1)
(0 1 0)(1 0 0))]_{0}
Component Z

(0 0 2) Generalized spectral sequence S[((0 1 0) (1 0 0)),
((0 1 1) (0 2 0) (1 0 1) (1 1 0) (2 0 0)),((0 0 2) (0 1 1) (0 2 0)
(1 0 1) (1 1 0) (2 0 0)), ((0 0 3) (0 1 2) (0 2 1) (0 3 0) (1 0 2)
(1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0))]_{2}
Component Z/2Z

(0 3 0) Generalized spectral sequence S[((1 0 1) (1 1 0) (2 0 0)),
((1 0 2) (1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0)),((0 3 0) (1 0 2)
(1 1 1) (1 2 0) (2 0 1) (2 1 0) (3 0 0)),((0 3 1) (0 4 0) (1 0 3)
(1 1 2) (1 2 1) (1 3 0) (2 0 2) (2 1 1) (2 2 0) (3 0 1) (3 1 0)
(4 0 0))]_{3}
Component Z/2Z

where the triple of integers at the beginning of a line represents the point P =
(p1, p2, p3) ∈ Z

3 for which we are computing the term S∗
n (P; 3).

Using effective homology we were able to efficiently compute the remaining non-
null terms up to total degree n = 5 (we omit again the four indices z, s, p, b in the
outputs):

(0 0 4) Generalized spectral sequence S[...]_{4}
Component Z/4Z

(4 0 0) Generalized spectral sequence S[...]_{4}
Component Z/2Z

(0 0 0) Generalized spectral sequence S[...]_{5}
Component Z/2Z

(0 0 5) Generalized spectral sequence S[...]_{5}
Component Z/2Z

(0 3 2) Generalized spectral sequence S[...]_{5}
Component Z/2Z

(0 5 0) Generalized spectral sequence S[...]_{5}
Component Z/2Z

We can now show with an example that, for the terms of the pages preceding the
2-page, one does not necessarily obtain isomorphic results using the two methods.
For example, we found out that the term S3(P; 1) with P = (0, 0, 3) of the 1-page is
different if computed directly

> (e1-eff-gspsq-group X5 ’(0 0 3) 3)
Generalized spectral sequence S[...]_{3}
Component Z
Component Z
Component Z
Component Z
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Component Z
Component Z
Component Z
Component Z

or using effective homology

> (e1-eff-gspsq-group effX5 ’(0 0 3) 3)
Generalized spectral sequence S[...]_{3}
Component Z

9 Conclusions

In this work we introduced specific methods to compute the higher Leray–Serre spec-
tral sequence associated with a tower of fibrations. The programs we developed allow
to determine terms and differential maps of a higher Leray–Serre spectral sequence,
and have been released as a new module for the Computer Algebra system Kenzo. By
virtue of the effective homology technique, our programs are able to handle objects of
infinite type, and can therefore be employed in a wide variety of situations arising in
algebraic topology. A first fundamental step towards making the higher Leray–Serre
spectral sequence computable via algorithms was to rephrase its construction in a sim-
plicial framework; in this paper, we include some relevant theoretical results on this
simplicial version of the construction.

We are convinced that some of the methods we introduced in this work can be
adapted to compute other relevant spectral systems and higher spectral sequences
described in [14], such as the Adams–Novikov and Eilenberg–Moore spectral systems
or interesting instances of the higher Grothendieck spectral sequence, and we believe
this represents an interesting direction for future research.
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