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Coherent beam combination has emerged as a promising strategy for overcoming the power 
limitations of individual fibre lasers. This approach relies on maintaining precise phase difference 
between the constituent beamlets, which are typically established using phase retrieval algorithms. 
However, phase locking is often studied under the assumption that the power levels of the beamlets 
remain stable, an idealisation that does not hold always in practical applications. Over the operational 
lifetime of fibre lasers, power degradation inevitably occurs, introducing additional challenges to phase 
retrieval. To address this, we propose a deep learning algorithm for single-step simultaneous phase 
and amplitude identification, directly from a single camera observation of the intensity distribution 
of the combined beam. By leveraging its ability to detect and interpret subtle variations in intensity 
interference patterns, the deep learning approach can accurately disentangle phase and power 
contributions, even in the presence of significant power fluctuations. Using a spatial light modulator, 
we systematically investigate the impact of power-level fluctuations on phase retrieval within a 
simulated coherent beam combination system. Furthermore, we explore the scalability of this deep 
learning approach by evaluating its ability to achieve the required phase and amplitude precision as the 
number of beamlets increases.

Over the past few decades, substantial advancements have been made in power scaling of high-power fibre 
lasers (HPFLs)1–3, with stable operation at kilowatt-level average powers being demonstrated across a wide 
range of wavelengths in single-mode fibre systems. However, as power levels increase, several nonlinear effects, 
such as stimulated Raman scattering4, stimulated Brillouin scattering5, and optical Kerr effect6, become more 
pronounced, severely limiting further scaling. A common strategy to mitigate these, often intensity-dependent, 
nonlinearities is to increase the fibre core size, thereby reducing the intensity across the core area. Nonetheless, 
increasing core size introduces new challenges such that large-core fibres tend to support multiple modes, and 
thermo-optically induced effects, such as power coupling between modes (e.g., transverse mode instability7), 
make achieving stable single-mode operation highly challenging. To overcome these fundamental limitations, 
alternative approaches have been explored, as a promising solution to the power scaling challenges faced by 
HPFLs.

Coherent Beam Combination (CBC)8–11 aims to combine the amplified outputs of multiple HPFLs in phase, 
operating each below the pumping threshold that would otherwise induce optical nonlinearities and instability, 
to achieve a total power output beyond what is typically achievable in a single-mode HPFL. A key engineering 
challenge in CBC is maintaining mutual coherence between the fibre outputs, especially given the varying phase 
noise introduced by the parallel amplified stages. In addition to power scaling, CBC enables other advanced 
functionalities, such as non-mechanical beam steering12 and the generation of exotic beam profiles13. These 
capabilities require not only the suppression of phase noise but also precise and accurate control over the relative 
phases between the fibre outputs. Developing a reliable, high-performance, and cost-effective phase-locking 
system is therefore essential to the success of CBC.

A straightforward approach to infer relative phase information, denoted as φ , from intensity distribution 
observations, denoted as I , is to approximate the inverse mapping function from intensity observations to 
corresponding relative phase information (i.e., approximating f : I → φ ). Whilst the analytical expression 
that maps phase information to intensity distributions (i.e., φ �→ I) is well-documented in the literature14, the 
inverse mapping f : I → φ  typically requires numerical and/or iterative methods to solve. This necessity arises 
from the nature of the inverse problem inherent in intensity calculations due to their quadratic dependence on 
the optical field modulus, thus rendering analytical solutions generally infeasible. Previous endeavours have 
employed phase retrieval approaches that measure spatial interference or beating patterns15,16, which often 
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necessitates additional hardware such as reference beams or beam samplers. Other iterative phase retrieval 
approaches have also been explored, including the Gerchberg-Saxton algorithm, hybrid input-output (HIO)17, 
hill-climbing, stochastic parallel gradient descent (SPGD)18, and reinforcement learning19–22.

Recent studies demonstrate that this inverse mapping f : I → φ  can be effectively approximated using 
convolutional neural networks23,24 (hereafter the singular is referred to as NN), which enables single-step 
inference of relative phases from intensity distributions of a beamlet array, under the assumption that each 
comprising fibre is operating at a constant power level. From a practical perspective, however, laser output power 
can decrease over its operational lifetime. Photodarkening, for instance, can reduce output power by as much as 
20%25. Complete failure of one of the channels is also possible. In this work, we build out previous efforts in single-
step phase inference from far-field intensity distributions using NNs26. We extend this approach to also infer 
relative amplitude variations between the fibre outputs, further enhancing the capabilities of the CBC systems. 
Additionally, we explore phase inference under various possible power degradation levels, providing insights 
into the robustness of the NN approach in practical scenarios. Beyond expanding the inference capabilities of 
NNs, we address the critical question of how the number of training pairs required to achieve predetermined 
phase and amplitude precision scales with the number of beamlets. This scalability analysis provides valuable 
insights into the practicality of using the NN approach for CBC systems with a higher number of beamlets.

Methods
Experimental setup
A Gaussian-profiled, continuous-wave, linearly polarised, and intensity-stabilised beam from a Helium-Neon 
laser source (Thorlabs, HRS015B, 632.992 nm central wavelength, 1.2 mW output power) was expanded and 
collimated, before being directed onto a Liquid-Crystal-on-Silicon Spatial Light Modulator (Thorlabs EXULUS-
HD1/M, 1920 × 1080 pixel resolution, 6.5 μm pitch size, hereafter referred to as the SLM) at normal incidence 
via a non-polarising 50:50 cube beam splitter (Thorlabs CCM1-BS013/M). The beam was expanded to the 
maximum size permissible by the optical elements, and an iris was positioned before the SLM to ensure that 
only portion of the beam within a restricted aperture was transmitted. The iris truncated the Gaussian profile 
of the beam, allowing transmission of the central part and thereby transforming the profile of the beam from 
Gaussian to quasi-top-hat. The modulated beam, reflected from the SLM, was redirected by the same beam 
splitter towards a convex lens (focal length 40 cm) and subsequently passed through a cascade of two 50:50 beam 
splitters (Thorlabs CCM1-BS013/M). These split the focused light into three parts: the first beam, immediately 
after the initial beam splitter, was directed to a photodiode power sensor (Thorlabs S120C), whilst the second 
and third beams, split by the second beam splitter, were directed to two cameras (Basler a2A4504-18umBAS). 
Specifically, a camera (hereafter referred to as Camera A) was positioned approximately 10 cm before the focal 
plane, capturing the intensity distribution at that plane, whereas the other camera (hereafter referred to as 
Camera B) was positioned exactly at the focal plane to capture the far-field intensity distribution. A schematic of 
the experimental setup is shown in the Fig. 1a.

To simulate collimated outputs from a centrosymmetric, close-packed array of optical fibres, a pattern was 
displayed on the active area of the SLM, programmatically assigning both relative phase and amplitude to each 
simulated fibre output. The relative phase and amplitude were encoded for each simulated fibre output using two 
overlapping, circularly shaped grating patterns, as shown in Fig. 1b, with Fig. 1d illustrating their implementation 
on the SLM panel. Specifically, a blazed pattern in the horizontal direction, where the phase distribution modulates 
horizontally and cycles linearly from −π  to +π , encoded the phase information into higher-order diffraction 
outputs in the horizontal direction by setting the initial phase values. In this configuration, if two simulated 
fibres shared the same phase cycling periodicity, they would interfere in-phase at the far field if their initial 
phase values were identical, or out-of-phase if their initial phase values differed by π . The relative amplitude 
was encoded by a binary grating pattern in the vertical direction, where the phase distribution modulates in a 
periodic binary manner. This binary grating consisted of alternating series of “teeth”: one series with a uniform 
phase value of 0, and the other series using the phase values from the horizontal blazed grating. The ratio between 
these two types of teeth determined the relative intensities observed at higher-order diffraction outputs in the 
horizontal direction at the far field. That is, the binary grating created additional diffraction orders in the vertical 
direction for each horizontal diffraction order, redistributing the intensity vertically based on the periodicity 
of the binary grating. To confirm that the power modulation behaved as expected, the combined power was 
measured using a photodiode power sensor placed specifically in the diffraction order of main interest and 
plotted against the expected power. The resulting linear dependence, as shown in Fig. 1c, confirms the expected 
relationship between the applied and measured power. Both the initial phase value of the blazed grating and the 
periodicity of the binary grating can be independently adjusted for each simulated fibre, allowing independent 
control of their relative phases and intensities, thereby effectively controlling both the relative phases and relative 
amplitudes of the simulated fibres.

Data collection
In this work, the mapping f : I → (P, φ ) is approximated by a function approximator F  parameterised by 
θ  (i.e., NN), and is trained on a dataset comprising intensity observations I = {I0, I1, . . . } (i.e., each of shape 
n × n) and their corresponding relative amplitude levels P = {P0, P1, . . . } and phases φ = {φ 0, φ 1, . . . } 
(i.e., ground truth). The objective is to identify a set of parameters θ  that minimises an objective function 
J(F (I; θ ) , P, φ ), which quantifies the discrepancy between the predicted relative phases and amplitudes 
F (I; θ ) and their respective ground truth {P, φ }, commonly known as supervised learning. Notably, whilst 
this learning can be conceptually viewed as parameterising a mapping: f : Rn× n → C, for practical reasons 
we relax the mapping to : Rn× n → R2. The inclusion of amplitude information is critical because intensity 
distributions are influenced not only by phase differences but also by amplitude variations of the interfering 
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beamlets. It is generally known that in beam interference, relative phase differences alone result predominantly 
in interference “fringe” shifts, whilst relative amplitude variations alone result predominantly in “fringe” 
visibility changes. Whilst these dependencies are obvious in the two-beam case, in multibeam interference, i.e., 
the generalised sum of two-beam interference, they cannot be easily discerned. This underscores the importance 
of accounting for both amplitude and phase parameters in the mapping. Provided that the dataset (I, P, φ ) 

Fig. 1.  (a) Schematic of the experimental setup (b) Independent encoding of phase and amplitude information 
onto each composing beamlet, where phase modulation is applied by a blazed grating pattern and amplitude 
modulation is applied by a binary grating pattern. The combined phase and amplitude modulations are 
superimposed to form the pattern displayed on the SLM, as shown in (d) (c) Accuracy of power control for 
individual beamlet.
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is of sufficient quality and quantity, the function approximator F (I, θ ) typically generalises well, enabling it 
to approximate f  effectively. Nonetheless, this raises an important question: does this generalisation capacity 
extend robustly to cases involving power fluctuations, where varying amplitudes could potentially impact the 
performance of F ? Investigating this robustness is particularly relevant for multibeam interference scenarios.

To investigate the impact of power fluctuations on phase inference accuracy, training datasets were collected 
where both the relative phases and the power levels of composing beamlets were varying uniformly at random. 
Consequently, each training pair consisted of a camera observation of the intensity distribution (input to NN) 
and a corresponding ground truth that included two distinct physical quantities: phases (i.e., φ ) and power 
levels (denoted as P ), as shown in Fig. 2. By limiting the lower limit for power level variations, multiple training 
datasets were generated, enabling comparative ablation studies to assess the impact of power fluctuations on the 
phase information inferred from observations of focused beamlet array.

The training data were collected using a simulated 7-fibre hexagonal close-packed beamlet array with a 
geometric fill factor of approximately 74.9%. The phase values of the outer six beamlets were varied uniformly 
at random within the range between −π  and +π , with the phase of the beamlet at the centre fixed at 0π  
to serve as a reference beam. The relative phases of the surrounding beamlets were then inferred from their 
interference pattern at the far field after the lens (10 cm before the focal plane). The power levels of the individual 
outer beamlets varied uniformly at random within the range [ρ lower, 1], where ρ lower ∈ [0,1] is the lower 
boundary of the power variation range and the upper boundary was fixed at 1 (i.e., 100% of maximum power). 
This indicates that up to ( 1 − ρ lower) × 100% of maximum power of the horizontal high-order diffraction 
outputs was redistributed vertically due to the applied binary grating. The power level of the central beamlet 
was not fixed and was allowed to vary within the same range [ρ lower, 1] as the outer beamlets, whilst its phase 
remained fixed at 0π . A number of training datasets were collected by varying only the power range [ ρ lower , 
1] whilst the phase variation range was consistently set between [−π , π ] for all datasets.

Fig. 2.  The neural networks considered in this study were trained on datasets consisting of training pairs 
where the input was the intensity distributions measured 10 cm before the focal plane, and the output 
comprised the corresponding phase and power values for each beamlet. These intensity distributions were 
generated by randomly assigning phase values within the range [−π , π ] and power values within the range 
[ρ lower, 1] ( ρ lower ∈ [0, 1], where 1 stands for 100% power), sampled from uniform distributions to each 

beamlet. Here, ρ lower  represents the lower boundary of the power variation range, which was allowed to vary, 
whilst the upper boundary was fixed at 1. This enabled the assessment of the impact of power fluctuations on 
the phase extraction for CBC system.

 

Scientific Reports |        (2025) 15:11757 4| https://doi.org/10.1038/s41598-025-96385-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


After the pattern that encoded phase and power information to higher-order diffraction outputs was displayed 
on the active area of the SLM with the corresponding set of phases and power levels, the combined intensity 
distribution was observed and captured from Camera A and Camera B simultaneously. Throughout this work, 
the intensity distributions captured from Camera A (positioned 10 cm before the focal plane) were used as the 
input to NN for inferring relative phase information, whilst Camera B (positioned at the focal plane) was utilised 
to observe the far-field intensity distributions at focus. Each training data pair was generated by randomly 
assigning phase values and varying power levels to composing beamlets, then capturing the corresponding 
intensity distributions from both cameras. The training pair comprised an intensity distribution from Camera 
A and the corresponding 6 phase values for the outer 6 beamlets (excluding the fixed phase of the central fibre) 
and 7 power values for all the composing beamlets.

To demonstrate how phase and power alter the intensity distributions both in the far-field and 10 cm before 
the focus, Fig. 3a presents 9 examples of Camera B observations and 9 corresponding examples recorded by 
Camera A. In these examples, the horizontal rows show observations corresponding to fixed power values, 
where only the phase values assigned to each beamlet are varied. Each row represents a specific power profile, 
illustrating how the relative phase affects the overall shape of the combined beam whilst the power remains 
unchanged. Conversely, the vertical columns correspond to fixed phase values, where only the power values of 
the beamlets are varied. Changes in power along the columns further modify the combined beam shape, with 
the intensity distributions preserving the main features defined by the phase whilst altering the generalised 

Fig. 3.  (a) Examples of far-field intensity patterns recorded on Camera B and intensity patterns recorded 
10 cm before the focus on Camera A for different combinations of phase and power values. These patterns 
correspond to the same set of phases and powers but are recorded at different locations, resulting in a total 
of nine observations each for Camera A and Camera B. (b) Example of simultaneous NN predictions of the 
phases and powers of composing beamlets from a single Camera A observation. The results are displayed with 
the predicted values, ground truth values, and their differences arranged vertically, one under another, for clear 
comparison.
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“fringe” visibility in the interference patterns. Although both phase and power influence the combined intensity 
distribution, they do so in distinct ways, enabling the NN approach to extract both phase and power information 
from a single camera observation of the intensity distribution. Comparing patterns along rows and columns, it 
becomes obvious that phase-only variations have a more profound effect on interference than amplitude-only 
variations. This is more evident in the well-focused (camera B) patterns. It is important to note that whilst 
Camera A observations are recorded 10 cm before the focus to break Fourier symmetry and allow for phase 
extraction, the resulting interference patterns still combine contributions from all beamlets, meaning the 
individual beamlets are not directly visible. In a near-field setup, the power of each beamlet could have been 
measured directly with a single camera; however, in this case, the power is also inferred from the combined 
intensity distribution. This highlights the ability of the NN to accurately deduce both phase and power from 
interference patterns. Figure 3b demonstrates how the NN simultaneously predicts six phase and seven power 
values from a single Camera A observation. For clarity, the ground truth phase and power values are displayed 
alongside the differences between the predicted and ground truth values.

Neural network
The NN architecture was based on MobileNetV3-Small with a width multiplier of 1.0, chosen for its computational 
efficiency and low latency. Whilst other architectures, such as ResNet27, exist and may potentially offer similar or 
better prediction accuracy and precision, MobileNetV3 was preferred due to its ability to achieve latencies in the 
hundreds of hertz (417.88 ± 88.56 Hz for MobileNetV3-Small, measured on a Windows 10 system with an Intel i7-
7700 CPU @ 3.60 GHz, GPU Nvidia Quadro P6000), compared to the significantly lower speed of under 100 Hz 
(59.36 ± 13.53 Hz) for ResNet-18 (see Supplementary Material 3). However, since the MobileNetV3 architecture 
was originally designed for image classification task (i.e., mapping an input to a probability distribution of a 
given number of discrete classes), it cannot be directly used for inferring phase information from intensity 
distributions, which can be seen as a regression task (i.e., mapping an input to a continuous variable). Several 
necessary modifications were therefore made to its original design. Firstly, during data collection, the image 
from Camera A was cropped to 540 × 540 pixels to encompass the region containing the majority of non-zero 
pixel values of the interference pattern. This cropped image was subsequently down-sampled to 256 × 256 pixels 
using pixel area resampling. In the original design of MobileNetV3, the input image size was 224 × 224 pixels, 
however, for this work, it was adjusted to 256 × 256 pixels, which slightly increased the dimensions of the final 
feature maps from 7 × 7 to 8 × 8. Another key modification was made to the size of the output layer. The output 
was reduced from the original N × 1000 to N × 13 (i.e., 6 phase values and 7 power values). The final major 
change involved adjusting the loss function to account for the periodic nature of the phase. A trigonometric 
loss function was employed, taking the form: J(ϕ , φ ) = (cosϕ − cosφ )2 + (sinϕ − sinφ )2, where ϕ  
and φ  represent the predicted and ground truth phase values, respectively23,26. To include the prediction of 
varying power levels, an additional Mean Squared Error (MSE) term (ρ − P )2, where ρ  and P  are predicted 
and ground truth power values, respectively, was incorporated into the loss function. The final loss function 
consisted of two terms, namely, the trigonometric loss term, used for predicting relative phases, and the MSE 
loss, used for predicting powers. Due to the differences in numerical scales of these terms, there was a risk of 
disproportionate influence on the overall loss, potentially compromising the prediction accuracy for phases 
and powers. To address this, a weighting factor was applied to the MSE loss term, reducing its magnitude by 
two orders of magnitude. This weighting factor ensured that the numerical scale of the MSE loss term was 
comparable to that of the trigonometric loss term, enabling the NN to focus approximately equally on predicting 
both phases and powers. Throughout this work, the NNs that were trained under different power variation 
ranges are denoted as NN [ρ lower,1], where [ρ lower, 1] specifies the range of the power variations included in 
the training dataset for each respective NN.

For NNs presented later in this work (unless stated otherwise), datasets containing 50,000 training pairs were 
experimentally collected and split with a ratio of 90:10 for training and validation. The training set was used to 
optimise the parameters θ  in NNs (i.e., with backpropagation enabled), whilst the validation set was reserved 
for evaluating the performance of the NNs (i.e., with backpropagation disabled), providing an objective measure 
of the performance of NNs. All NNs were trained over 200 training epochs, iterating over the entire dataset 
during each epoch with the Adam optimiser (learning rate of 6e − 5). Upon completion of training, the final 
NN weights were saved for subsequent assessment.

Results
Neural network evaluation
In general, studies on phase inference in CBC research are conducted under the assumption that the power 
output of each comprising beamlet is stable. These studies, characterised by the absence of power fluctuations, 
represent an idealised case often explored in CBC research, where each channel maintains a stable power output 
over time. NNs that are trained on these fixed-power datasets often demonstrated accurate phase inference 
under these idealised conditions26. In practical applications, however, power degradation is commonly observed 
over the lifetime of a fibre amplifier. This raises two key questions. First, how would a NN trained under these 
idealised conditions perform over time as the fibres degrade and their power outputs fluctuate? Second, would 
incorporating power variations into the training dataset enhance the robustness and performance of the NN 
approach? To address these questions, we introduce an evaluation metric that incorporates datasets containing 
samples collected with varying power levels. Using this metric, we assess the performance of NNs that are trained 
using the datasets that are collected under different power variation conditions, on the same evaluation set. This 
approach allows us to simulate the potential decline in phase inference performance of NNs as the fibres age and 
their power outputs fluctuate, providing valuable insights into the robustness of the NN approach.
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The evaluation datasets, which feature variations in both phase and power levels, were collected separately 
from the training and validation datasets to ensure they contained data not seen by NNs during training. The 
only distinction among these datasets was the degree of power variation. This enabled the assessment of NNs 
performance both within and beyond their training power ranges, providing a basis for a direct comparison of 
phase and power inference performance between different NNs trained on different datasets with varying power 
conditions, testing their ability to generalise to previously unseen power fluctuations.

To streamline the evaluation process, the upper boundary of the power range in the evaluation dataset 
was fixed at 1.00, whilst the lower boundary was incrementally raised from ρ lower = 0.00 in steps of 0.05 
up to ρ lower = 1.00, resulting in 21 distinct datasets. In the dataset where the lower power boundary was 
ρ lower = 0.00, fibre power values varied uniformly at random within the range [0.00,1.00]; for the dataset 
with a lower boundary of ρ lower = 0.05, power values varied within the range [0.05, 1.00], and so forth, up 
to [1.00,1.00], which represents no power variation (i.e., fixed power levels). Each dataset comprised 250 data 
pairs, each containing a Camera A observation of the intensity distribution and the corresponding phase and 
power values. The camera images were sequentially used as the input to the NNs. During NN inference, each 
dataset was processed individually, with all 250 examples evaluated to compute the mean phase and power 
prediction error for that dataset. These mean errors were then plotted against the corresponding lower boundary 
value of the power range. For instance, the mean error for the [0.00,1.00] dataset was plotted at 0.00 on the 
x-axis, the mean error for the [0.05,1.00] dataset at 0.05, and so forth. By processing every dataset incrementally, 
starting from ρ lower = 0.05 and ending with the ρ lower = 1.00, the evaluation spans all possible cases—
from extreme power variations, including up to 100% fluctuations ( [0.00,1.00]), to the ideal case of no power 
variations (i.e., [1.00,1.00]). This approach provides a comprehensive understanding of how different NNs, 
trained on varying power ranges, perform under different power fluctuation conditions.

The first NN considered in this work, referred to as NN[1.0,1.0], was trained on a dataset with power levels fixed 
in the range [1.00,1.00] (i.e., fixed at 100%). In contrast, the second NN, referred to as NN[0.5,1.0], was trained 
on a dataset where power levels varied uniformly at random within the range [0.50,1.00]. Although this lower 
range limit may not agree with the typically observed power downgrade in HPFLs, it was chosen to evaluate 
the effect of including substantial power variations (up to 50%) in the training dataset on the ability of NN to 
generalise across different power distributions, particularly under conditions where output power fluctuates 
significantly.

Consequently, NN[1.0,1.0], trained on dataset with fixed power levels, encountered evaluation data pairs 
with varying power levels it had not previously seen (except for one evaluation dataset corresponding to the 
[1.00,1.00] power variation range). In contrast, NN[0.5,1.0], trained on dataset that included power variation 

in the range [0.50,1.00], encountered evaluation datasets sharing more similarities to its training data, having 
not seen power ranges where the lower boundary was between 0.00 and 0.45. The results of these evaluations 
are presented in Fig. 4, with insets comparing ground truth phase versus predicted phase for the power ranges 
[0.50,1.00] and [0.75,1.00] (corresponding to the 0.50 and 0.75 data points on the x-axis, respectively). In 

Fig. 4.  Prediction accuracies of the NNs evaluated on datasets with different power variation ranges. (a1) and 
(a2) show the prediction accuracies of NN[1.0,1.0] when evaluated on datasets with power ranges [0.5,1.0] and 
[0.75,1.0], respectively. (c1) and (c2) show the prediction accuracies of NN[0.5,1.0] when evaluated on datasets 
with power ranges [0.5,1.0] and [0.75,1.0], respectively. These evaluations correspond to the datapoints at 0.5 
and 0.75 on plot (b), which illustrates phase prediction error as a function of the lower power range boundary 
ρ lower  in the range [ ρ lower, 1].
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each inset, the x-axis represents the ground truth phase applied to the SLM, whilst the y-axis shows the NNs 
predictions. Ideally, predicted phase values would match the ground truth values exactly, resulting in a y = x 
line on a plot. Deviations from this line indicate discrepancies between the predicted phase values and the 
ground truth phase values, with a broader spread indicating reduced phase inference precision. The y = x line 
is included in each inset for visual clarity.

Each phase inset (Fig. 4a1–2,c1–2) contains 1,500 data pairs from an evaluation dataset involving 250 intensity 
distributions captured from Camera A, combining phase inference results for the 6 outer beamlets. The insets 
for NN[0.5,1.0] (Fig. 4c1,c2) show a consistent spread of phase values when tested on power ranges [0.50,1.00] 
and [0.75,1.00], with a mean phase prediction error of approximately 2π /60, as shown in Fig. 3b. In contrast, 
NN[1.0,1.0] exhibits a broader spread of predicted phase values (Fig. 4, a1, a2), with errors increasing from 4π /60 
at a lower boundary of 0.75 to approximately 8π /60 at 0.50. This difference can be largely attributed to the 
ability of NN to interpolate and extrapolate unseen data. NN[0.5,1.0], trained on a dataset with power variations 
spanning [0.50,1.00], interpolates unseen, leading to more consistent and accurate phase predictions. In 
contrast, NN[1.0,1.0], trained exclusively on fixed power levels [1.00,1.00], encounters unseen data with lower 
power levels that fall outside its training range. This forces NN[1.0,1.0] to perform extrapolation, predicting 
beyond the range of data it has been exposed to during training. Extrapolation is inherently more challenging 
than interpolation, often resulting in a broader spread of predicted values and higher phase prediction errors, as 
observed in Fig. 4(a1, a2). The increasing errors at lower power boundaries reflect the difficulty NN[1.0,1.0] faces 
when generalising to unseen power variations, highlighting the limitations of training on fixed power levels. 
Whilst NN[1.0,1.0] and NN[0.5,1.0] perform similarly in the absence of power variations at maximum power as 
shown in Fig. 4b, the precision of NN[1.0,1.0] degrades more quickly as power variation increases compared to that 
of NN[0.5,1.0]. Overall, NN[0.5,1.0] predictions were more precise than NN[1.0,1.0] across a broader range of power 
variations. This suggests that incorporating power variation into the training process enhances the robustness 
of the NN approach against power variations, rendering it more effective in realistic CBC systems where power 
degradation is often inevitable.

To further examine the impact of different power variation ranges included in the training on prediction 
accuracy, two additional NNs were trained on different power variation ranges. The first additional NN was 
trained on a dataset where power levels of all fibres varied uniformly at random within the range [0.80,1.00] 
(hereafter referred to as NN[0.8,1.0]). This power fluctuation range is practically relevant, as a 20% power 
degradation is often observed over the lifetime of fibres due to various effects such as fibre photodarkening and/
or pump failures. The second additional NN was trained on a dataset where power levels varied uniformly at 
random within the range [0.00,1.00] (hereafter referred to as NN[0.0,1.0]). This broader power range represents 
an extreme case, simulating scenarios where at least one of channels experiences complete power failure. As a 
result, we have the previously introduced NN[1.0,1.0] and NN[0.5,1.0], along with the newly introduced NN[0.8,1.0] 
and NN[0.0,1.0]. These two NNs NN[0.8,1.0] and NN[0.0,1.0], were tested on the same 21 datasets as NN[1.0,1.0] and 
NN[0.5,1.0].

Figure 5a shows the performance comparison of NN[1.0,1.0], NN[0.5,1.0], NN[0.8,1.0], and NN[0.0,1.0]. In the 
[1.00, 1.00] power range (i.e., power fixed at 100% with no power variation), mean phase prediction errors 

were 0.10, 0.12, 0.13, and 0.14 radians for NN[1.0,1.0], NN[0.5,1.0], NN[0.8,1.0], and NN[0.0,1.0], respectively. Evidently, 
NN[1.0,1.0] performed best in this range (i.e., [1.00,1.00]), which could be explained by the fact that its training 
dataset comprises solely of intensity distributions collected within this power level range. Conversely, NNs 
trained on varying power ranges ( [0.00,1.00], [0.50,1.00], [0.80,1.00]) exhibited slightly higher inference 
errors in the [1.00,1.00] test range. This outcome can be attributed to the fact that their training involved 
random and uniform variations in power levels, making it unlikely to encounter data points where all power 
levels are equal. As a result, these NNs were less exposed to high fringe visibility during training, which reduced 
their inference precision when evaluated in the fixed power range [1.00,1.00]. In the power range with the 
lowest lower bound (i.e., [0.00,1.00]), NN[0.0,1.0] demonstrated the highest precision, followed by NN[0.5,1.0], 
NN[0.8,1.0], and NN[1.0,1.0], with phase prediction errors of 0.18, 0.69, 1.04, and 1.17 radians, respectively. This 
indicates that NNs trained with broader power variations are more robust under fluctuating power conditions.

Interestingly, although all four NNs discussed here were trained on specific power variation ranges, their 
performance does not degrade abruptly beyond these ranges. Specifically, NN[1.0,1.0], trained on a dataset with 
no power variations, shows a similar phase prediction error when tested on the [1.00,1.00] power range as 
when tested on the [0.90,1.00] range, after which it begins to degrade rapidly. This suggests that NN[1.0,1.0] 
can maintain accurate phase inference even with a previously unencountered 10% power variation. Likewise, 
NN[0.8,1.0] and NN[0.5,1.0], trained on the [0.80,1.00] and [0.50,1.00] power ranges, maintain phase prediction 
accuracy up to [0.70,1.00] and [0.40,1.00], respectively, before their accuracy begins to decline, indicating a 
similar tolerance of approximately 10% beyond their trained range.

This pattern suggests that all NNs share a similar ability to extrapolate beyond their respective training ranges, 
with a tolerance of approximately 10% extension. However, the NNs trained on datasets with greater power 
variations ( [0.50,1.00] and [0.80,1.00]) demonstrated better overall performance under more challenging 
power fluctuation conditions. This observation indicates that incorporating broader power variations during 
training increases robustness to amplitude noise and enables better generalisation. By exposing the NN to a 
wider range of power distributions during training, the NN learns to handle the variability inherent in real-
world CBC systems more effectively. The exception to the previously considered NNs is NN[0.0,1.0], trained on 
the full power variation range. Unlike the other NNs, it only interpolates, as it has already seen the entire range 
during training. A slight decrease in precision is observed when tested on the [0.00,1.00] power fluctuation 
range. This is due to some fibres being effectively turned off, making phase prediction for those fibres akin to a 
random guess.
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The same analysis was conducted for power predictions of the NNs, using the same set of evaluation datasets 
as in the phase analysis, with the results shown in Fig. 5b. Whilst the general behaviour of the curve remained 
similar to the phase case, several distinct differences were observed. Firstly, the power prediction error of the 
NN[1.0,1.0] remains constant. This is because, although power information was included in the training dataset, 
it was fixed at the level of 1.00. As a result, the NN effectively learnt to predict a constant value of 1.00, with no 
gradient in the training data to correlate with varying power levels. Therefore, when tested on datasets with 
varying lower power limit, the power prediction error follows (1 − ρ lower)/2 , decreasing linearly as ρ lower  
approaches 1.00, with the error reaching 0 when ρ lower = 1.00. On the other hand, NN[0.8,1.0] and NN[0.5,1.0] 
demonstrated a greater ability to generalise power predictions (compared to their generalisation of phase), as 
evidenced by a slower decrease in accuracy and precision as the lower power limit decreases. In particular, 
when tested on the dataset with a power variation range of [0.00,1.00], the mean power prediction error was 
0.25 and 0.08 for NN[0.8,1.0] and NN[0.5,1.0], respectively. Finally, NN[0.0,1.0] demonstrated a nearly constant power 
prediction error across all power variation ranges, starting at 0.04 when tested on [1.00,1.00] and decreasing 
slightly to 0.03 when tested on [0.00,1.00]. This lack of increase in power prediction error, even under extreme 
power variations (i.e., with a lower power range limit of 0.00), contrasts with the phase prediction case for 
NN[0.0, 1.0]. This can be attributed to the fact that, for power, unlike phase, the absence of a signal still carries 

Fig. 5.  (a) Phase prediction error as a function of the lower power range limit ρ lower , evaluated on datasets 
with varying power ranges using NNs trained on different power variation ranges. The lower boundary ρ lower  
was incrementally increased from 0.0 to 1.0 in steps of 0.05. (b) Power prediction error as a function of the 
lower power range limit ρ lower , evaluated on the same datasets and under the same conditions as in (a).
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explicit information about the system state since it corresponds to a measurable intensity value. In contrast, 
phase cannot be determined in the absence of a signal, as it relies on the interference between multiple beamlets 
to extract information. Although the power of each beamlet can be measured precisely by tapping out a small 
amount and monitoring it individually with a photodiode detector, the analysis above demonstrates that this 
additional power monitoring can be effectively replaced by the NN, thereby simplifying the experimental setup 
and reducing hardware requirements.

Overall, these findings highlight the trade-off between training range and accuracy in phase and power 
inference. Whilst narrower power variation ranges yield slightly higher accuracy within their respective ranges, 
the improvement is not significantly greater and remains somewhat comparable to NNs trained on broader 
ranges. On the other hand, incorporating broader power variations improves robustness to amplitude noise 
and enhances the ability of NN to generalise across real-world power fluctuation scenarios. This demonstrates 
that a well-trained NN can accurately interpret subtle variations in intensity interference patterns and correctly 
associate them with either phase or amplitude changes. This balance is particularly critical for practical CBC 
systems, where unpredictable amplitude noise and power degradation cannot be dismissed over time.

Scalability of the CNN approach
Previous results demonstrate that the NN approach is able to accurately and precisely identify phases and powers 
in a single-step for a 7-beam, hexagonally closed-packed beamlet array from a single camera observation of 
its intensity distribution. However, investigating the performance and applicability of the NN approach as the 
number of beamlets in a CBC array increases remains an area of significant interest.

As the number of beamlets in a CBC system increases, the number of phase interactions between adjacent 
and non-adjacent beamlets grows, thereby amplifying the complexity of the resulting interference patterns. 
Consequently, the NN might need to process increasingly intricate interference patterns to accurately and 
precisely extract phase and amplitude information, which could necessitate larger datasets to maintain 
comparable performance. For a CBC system with N beamlets, there are N · (N − 1)/2 unique interactions 
between beamlets, suggesting that the number of training pairs could potentially increase at a rate comparable 
to the number of these interactions. This raises the possibility that the size of the required dataset could increase 
quadratically with the number of beamlets. From a practical perspective, quadratic scaling is undesirable, as 
it would render the approach less feasible for CBC systems with a larger number of composing beamlets. This 
raises an important question about whether the NN approach is applicable to a CBC array with a higher number 
of beamlets without compromising its ability to extract phases and powers efficiently. Therefore, it is essential 
to determine whether the dataset requirements scale up linearly, quadratically, or at an intermediate rate as the 
number of beamlets increases. To address this question, we first examine the phase prediction error achievable 
for a given number of training pairs for a given number of beamlets in CBC system. Then, we examine the 
number of training pairs required for a given CBC array to achieve a targeted level of phase prediction accuracy. 
This process is then repeated for power prediction error. Together, these analyses provide insight into the 
scalability of the NN approach and determine whether it remains practical for CBC problems as the number of 
beamlets increases.

To gain insight into the scalability of the NN approach for fibre arrays with a greater number of beamlets, 
training data were collected for fibre arrays consisting of 2, 3, 4, 5, 13, and 19 beamlets, in addition to the 
previously collected datasets for the 7-fibre system. The fibre arrays, shown as insets in Fig. 6a, were derived from 
the original hexagonal close-packed array initially used for the 7-fibre system, with beamlets omitted or added as 
needed to achieve the required number of composing beamlets. The radii of all the beamlets remained the same 
as those in the previously considered 7-fibre system, ensuring consistent physical parameters across all CBC 
arrays. During training data collection for all CBC arrays, the phase of all beamlets (except for the designated 
reference beamlet) varied in the range [−π , π ], while the power levels of all beamlets were set in the range 
[0.5,1.0]. These ranges are consistent with the dataset used for NN[0.5,1.0] training in the earlier analysis of the 

7-fibre system. The lower power limit of 0.5 was chosen here as a balance point between 0% and 100% power. The 
idealised dataset [1.0,1.0] used for the training of NN[1.0,1.0], required NN[1.0,1.0] to extrapolate across the entire 
range of power variations, whereas the dataset with extreme power variations (i.e., ranging from 0 to 1) used for 
NN[0.0,1.0] required it to perform interpolation only. Compared to the lower power limit of 0.8, 0.5 was preferred 
as a midpoint between these two extremes, offering a practical compromise that combines generalisability and 
robustness.

To assess the phase prediction error achievable with a given number of training pairs, a dataset of 50,000 pairs 
was collected for each CBC array. Consistent with the previous methodology, the dataset for each CBC array was 
split into 90% for training and 10% for validation, yielding 45,000 training pairs for NN training and 5,000 pairs 
for NN validation. The NN for each beamlet array was first trained using 45,000 training pairs. Its performance 
was evaluated after each epoch using the 5,000-pair validation set, and the mean prediction error from the final 
epoch was recorded as a measure of performance for the dataset. Subsequently, the size of the training dataset, 
starting with 45,000 pairs, was iteratively reduced by approximately half over multiple iterations by randomly 
selecting data pairs to retain. In the first iteration, it was reduced to 22,500 pairs. A new NN with randomly 
initialised weights was trained on this reduced dataset and evaluated using the same 5,000-pair validation set 
as before. After each epoch, the NN was validated on this validation set, and the mean prediction error was 
recorded after the final epoch. This halving process continued, progressively reducing the training set, creating a 
new data point at each iteration to illustrate the relationship between phase prediction error and the number of 
training pairs for a given CBC array.

As a result of this iterative reduction in dataset size, curves illustrating the phase prediction error as a function 
of the number of training pairs were obtained for CBC arrays with different numbers of beamlets. These curves 
exhibit a characteristic S-shaped trend, as shown in Fig. 6a, reflecting the performance of all NNs trained for CBC 

Scientific Reports |        (2025) 15:11757 10| https://doi.org/10.1038/s41598-025-96385-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


arrays, measured in terms of phase prediction error. When datasets with heavily reduced sizes were provided to 
the NNs as training materials, the prediction error remained relatively high, indicating an insufficient number 
of data for the NN to acquire a generalised ability to extract phase information from interference patterns 
between beamlets. As the number of training pairs increased, the error decreased significantly, marking a rapid 
improvement in the performance of the NNs during the learning stage. This stage corresponds to the NNs 
acquiring the ability to infer phase information that generalises well to unseen data. However, beyond a certain 
number of training pairs (e.g., 11,000 for the 7-fibre CBC array), the improvement in performance diminished, 
and the curves reached a plateau. This plateau suggests that the NN had effectively saturated its learning capacity 
for the given data, achieving near-optimal performance with limited additional improvement from further 

Fig. 6.  (a) Curves illustrating the average phase prediction error after the final epoch of NN[0.5,1.0] training, 
plotted as a function of the number of training pairs for different CBC arrays. Each curve corresponds to a 
specific number of fibres, (b) Minimum number of training pairs required to achieve phase precision within 
the range [0, π

20 ] as a function of the number of fibres. The dashed line represents a linear fit, whilst the dotted 
line corresponds to the k2 · N · (N − 1)/2 fit.
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increasing the size of the training dataset. The observed behaviour is consistent with the typical S-shaped curves 
in machine learning, where mean prediction error improves as a function of number of training pairs. These 
curves characterised by an initial stage where data scarcity limits performance, followed by a growth stage and 
eventual saturation as the NN approaches its learning capacity.

Figure 6a includes insets showing the individual average phase prediction errors for each beamlet in CBC 
arrays with 2, 3, 4, 5, 7, 13, and 19 fibres, when each corresponding NN was trained with 45k training pairs. 
These insets map beamlet positions and error magnitudes, revealing no strong positional bias (e.g., outer vs. 
central beamlets). This uniformity highlights the ability of the NN to generalise phase extraction across the array, 
despite increasing pattern complexity.

From Fig. 6a, it is evident that as the number of beamlets increases, the plateau in the S-shaped curve occurs 
at progressively higher numbers of training pairs. This indicates that, for CBC arrays with a higher number 
of beamlets, a greater number of training pairs is required for the NN to reach saturation in phase prediction 
accuracy and achieve near-optimal performance. This observation aligns with the previously discussion: 
introducing more beamlets increases the number of interference interactions between them, resulting in more 
intricate patterns that necessitate larger datasets for the NN to extract phases and powers with comparable 
precision and accuracy. The remaining question is to determine the rate at which the requisite number of 
training pairs for enabling a trained NN with satisfactory level of accuracy and precision in extraction phase and 
amplitude information grows as the number of beamlets increases.

To determine the rate at which the number of training pairs grows with the number of fibres, we analysed 
the minimum number of training pairs required to achieve a specific phase prediction error for each CBC array. 
A horizontal slice was taken across Fig. 6a at a phase prediction error range of [0.0, π /20]. This range was 
chosen because it ensures a good level of precision that the NN should aim to achieve. When the phases of 
all beamlets (except the central one) vary with a zero mean and a standard deviation of π /20, approximately 
99.0% of the expected power remains in the bucket within the central lobe for the considered CBC arrays. 
For each CBC array, the minimum number of training pairs required to reach this precision was identified 
and plotted against the corresponding number of fibres, as shown in Fig. 6b. The data points were then fitted 
with two functions: F1 (N) = k1N + c1 and F2 (N) = k2 · N · (N − 1)/2 + c2, where N  is the number 
of beamlets, k1, k2, and c1, c2 are fitting coefficients. The former function, F1 (N), represents a linear fit, 
with the first 6 data points used to determine the optimal fitting coefficients k1 and c1. Similarly, for the latter 
function, F2 (N), coefficients k2 and c2 were also determined using the first 6 data points. The fitted curve was 
then compared against the last data point to assess whether it lies below or above the fit, providing insight into 
whether the required number of data points, for the NN approach, grows linearly or quadratically for a higher 
number of beamlets in a CBC system. Figure 6b presents both the linear fits, as shown in the dashed line and 
the quadratically fits as shown in dotted line. The linear fits evidently more closely resemble the trajectory of 
the datapoints. Thus, indicating that a linear scaling of the required training pairs may suffice for achieving the 
desired phase precision. These results demonstrate that the NN approach could be applied to CBC systems with 
higher number of beamlets, without necessitating the collection of a prohibitive number of data pairs.

The analysis above was repeated for power predictions, as shown in Fig.  7a, b. Figure  7a includes insets 
displaying individual average power prediction errors per beamlet for CBC arrays with 2, 3, 4, 5, 7, 13, and 19 
beamlets, trained with 45k pairs each. These insets map beamlet positions and errors, showing no clear correlation 
with position (e.g., outer vs. central beamlets); intriguingly, outer beamlets generally exhibit lower errors, an 
observation warranting further investigation. Similar to the phase analysis, the results for power indicate that 
the data points align more closely with the linear fit, suggesting that the required number of training pairs for 
accurate power predictions also scales linearly with the number of fibres. However, the number of training pairs 
required to achieve precision within a 5% error (0.05 for power and 2π /40 for phase, equivalent to a 5% error) 
scales with a lower gradient for power than for phase.

We hypothesise that this near-linear scalability arises from recording intensity distributions in a plane away 
from the focal plane, where each beamlet partially overlaps primarily with its immediate neighbours. Such 
localised overlap reduces global interference complexity and allows NN to isolate each beamlet’s contribution 
(see Supplementary Material 5).

We acknowledge that the results presented in this manuscript are based on a simulated setup using a spatial 
light modulator, which approximates the ideal intensity distributions of a tiled-aperture CBC fibre system. 
However, real-world CBC systems are subject to additional error sources, such as thermal drift, mechanical 
vibrations, and installation errors (e.g., tip-tilt misalignments), which are not explicitly accounted for in our 
current setup. These factors may impact the practical adoption of our method. Nevertheless, we view our 
findings as an important first step toward realising a more effective fibre-based CBC implementations, which we 
aim to explore in future research.

Conclusions
In this work, we have demonstrated the capability of the NN approach to simultaneously infer both phase and 
power information from a single camera observation of the intensity distribution in a single step. By accurately 
interpreting subtle variations in intensity interference patterns, the NN can distinguish between phase and 
power contributions without requiring separate measurement systems (e.g., photodiode power sensors). This 
streamlined and efficient approach not only simplifies the measurement process but also enhances the precision 
of phase and power monitoring, making it highly suitable for practical applications in CBC systems.

We further investigated the robustness of phase inference under power degradation, a common phenomenon 
over the operational lifetime of fibre lasers. Our analysis highlighted the potential impact of inevitable power 
variations on phase prediction accuracy, providing insights into the long-term reliability of the NN-based system.

Scientific Reports |        (2025) 15:11757 12| https://doi.org/10.1038/s41598-025-96385-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Additionally, we explored the scalability of the NN approach by analysing its performance across CBC 
systems with varying numbers of beamlets. We showed that the NN requires a number of training pairs that 
scales linearly with the number of beamlets to achieve a predetermined level of phase and power prediction 
accuracy. This linear scaling suggests the practicality of the NN approach for larger CBC systems.

These findings collectively underscore the potential of the NN approach as a scalable, accurate, and efficient 
solution for phase and power inference in CBC systems, paving the way for its integration into high-power fibre 
laser systems with increased beamlet counts.

Data availability
The datasets generated and/or analysed during the current study are available in the DATASET repository, 
https://doi.org/10.5258/SOTON/D3389.

Fig. 7.  (a) Curves showing the average power prediction error after the final epoch of NN[0.5,1.0] training, 
plotted against the number of training pairs for different CBC arrays. Each curve represents a specific number 
of fibres., (b) Minimum number of training pairs needed to achieve power precision within the range [0, 0.05], 
shown as a function of the number of fibres. The dashed line indicates a linear fit to the data, while the dotted 
line corresponds to the k2 · N · (N − 1)/2 fit.
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