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Deep learning for simultaneous
phase and amplitude identification
In coherent beam combination
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Ben Mills

Coherent beam combination has emerged as a promising strategy for overcoming the power
limitations of individual fibre lasers. This approach relies on maintaining precise phase difference
between the constituent beamlets, which are typically established using phase retrieval algorithms.
However, phase locking is often studied under the assumption that the power levels of the beamlets
remain stable, an idealisation that does not hold always in practical applications. Over the operational
lifetime of fibre lasers, power degradation inevitably occurs, introducing additional challenges to phase
retrieval. To address this, we propose a deep learning algorithm for single-step simultaneous phase

and amplitude identification, directly from a single camera observation of the intensity distribution

of the combined beam. By leveraging its ability to detect and interpret subtle variations in intensity
interference patterns, the deep learning approach can accurately disentangle phase and power
contributions, even in the presence of significant power fluctuations. Using a spatial light modulator,
we systematically investigate the impact of power-level fluctuations on phase retrieval within a
simulated coherent beam combination system. Furthermore, we explore the scalability of this deep
learning approach by evaluating its ability to achieve the required phase and amplitude precision as the
number of beamlets increases.

Over the past few decades, substantial advancements have been made in power scaling of high-power fibre
lasers (HPFLs)!-%, with stable operation at kilowatt-level average powers being demonstrated across a wide
range of wavelengths in single-mode fibre systems. However, as power levels increase, several nonlinear effects,
such as stimulated Raman scattering?, stimulated Brillouin scattering’, and optical Kerr effect®, become more
pronounced, severely limiting further scaling. A common strategy to mitigate these, often intensity-dependent,
nonlinearities is to increase the fibre core size, thereby reducing the intensity across the core area. Nonetheless,
increasing core size introduces new challenges such that large-core fibres tend to support multiple modes, and
thermo-optically induced effects, such as power coupling between modes (e.g., transverse mode instability”),
make achieving stable single-mode operation highly challenging. To overcome these fundamental limitations,
alternative approaches have been explored, as a promising solution to the power scaling challenges faced by
HPFLs.

Coherent Beam Combination (CBC)3~!! aims to combine the amplified outputs of multiple HPFLs in phase,
operating each below the pumping threshold that would otherwise induce optical nonlinearities and instability,
to achieve a total power output beyond what is typically achievable in a single-mode HPFL. A key engineering
challenge in CBC is maintaining mutual coherence between the fibre outputs, especially given the varying phase
noise introduced by the parallel amplified stages. In addition to power scaling, CBC enables other advanced
functionalities, such as non-mechanical beam steering'? and the generation of exotic beam profiles'®. These
capabilities require not only the suppression of phase noise but also precise and accurate control over the relative
phases between the fibre outputs. Developing a reliable, high-performance, and cost-effective phase-locking
system is therefore essential to the success of CBC.

A straightforward approach to infer relative phase information, denoted as ¢, from intensity distribution
observations, denoted as I, is to approximate the inverse mapping function from intensity observations to
corresponding relative phase information (i.e., approximating f : I — ¢ ). Whilst the analytical expression
that maps phase information to intensity distributions (i.e., ¢ + I) is well-documented in the literature!?, the
inverse mapping f : I — ¢ typically requires numerical and/or iterative methods to solve. This necessity arises
from the nature of the inverse problem inherent in intensity calculations due to their quadratic dependence on
the optical field modulus, thus rendering analytical solutions generally infeasible. Previous endeavours have
employed phase retrieval approaches that measure spatial interference or beating patterns'>!®, which often
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necessitates additional hardware such as reference beams or beam samplers. Other iterative phase retrieval
approaches have also been explored, including the Gerchberg-Saxton algorithm, hybrid input-output (HIO)',
hill-climbing, stochastic parallel gradient descent (SPGD)'®, and reinforcement learning!®-2.

Recent studies demonstrate that this inverse mapping f : I — ¢ can be effectively approximated using
convolutional neural networks?»** (hereafter the singular is referred to as NN), which enables single-step
inference of relative phases from intensity distributions of a beamlet array, under the assumption that each
comprising fibre is operating at a constant power level. From a practical perspective, however, laser output power
can decrease over its operational lifetime. Photodarkening, for instance, can reduce output power by as much as
20%?°. Complete failure of one of the channels is also possible. In this work, we build out previous efforts in single-
step phase inference from far-field intensity distributions using NNs?°. We extend this approach to also infer
relative amplitude variations between the fibre outputs, further enhancing the capabilities of the CBC systems.
Additionally, we explore phase inference under various possible power degradation levels, providing insights
into the robustness of the NN approach in practical scenarios. Beyond expanding the inference capabilities of
NNs, we address the critical question of how the number of training pairs required to achieve predetermined
phase and amplitude precision scales with the number of beamlets. This scalability analysis provides valuable
insights into the practicality of using the NN approach for CBC systems with a higher number of beamlets.

Methods

Experimental setup

A Gaussian-profiled, continuous-wave, linearly polarised, and intensity-stabilised beam from a Helium-Neon
laser source (Thorlabs, HRS015B, 632.992 nm central wavelength, 1.2 mW output power) was expanded and
collimated, before being directed onto a Liquid-Crystal-on-Silicon Spatial Light Modulator (Thorlabs EXULUS-
HD1/M, 1920 x 1080 pixel resolution, 6.5 pm pitch size, hereafter referred to as the SLM) at normal incidence
via a non-polarising 50:50 cube beam splitter (Thorlabs CCM1-BS013/M). The beam was expanded to the
maximum size permissible by the optical elements, and an iris was positioned before the SLM to ensure that
only portion of the beam within a restricted aperture was transmitted. The iris truncated the Gaussian profile
of the beam, allowing transmission of the central part and thereby transforming the profile of the beam from
Gaussian to quasi-top-hat. The modulated beam, reflected from the SLM, was redirected by the same beam
splitter towards a convex lens (focal length 40 cm) and subsequently passed through a cascade of two 50:50 beam
splitters (Thorlabs CCM1-BS013/M). These split the focused light into three parts: the first beam, immediately
after the initial beam splitter, was directed to a photodiode power sensor (Thorlabs S120C), whilst the second
and third beams, split by the second beam splitter, were directed to two cameras (Basler a2A4504-18umBAS).
Specifically, a camera (hereafter referred to as Camera A) was positioned approximately 10 cm before the focal
plane, capturing the intensity distribution at that plane, whereas the other camera (hereafter referred to as
Camera B) was positioned exactly at the focal plane to capture the far-field intensity distribution. A schematic of
the experimental setup is shown in the Fig. 1a.

To simulate collimated outputs from a centrosymmetric, close-packed array of optical fibres, a pattern was
displayed on the active area of the SLM, programmatically assigning both relative phase and amplitude to each
simulated fibre output. The relative phase and amplitude were encoded for each simulated fibre output using two
overlapping, circularly shaped grating patterns, as shown in Fig. 1b, with Fig. 1d illustrating their implementation
on the SLM panel. Specifically, a blazed pattern in the horizontal direction, where the phase distribution modulates
horizontally and cycles linearly from —m to +m , encoded the phase information into higher-order diffraction
outputs in the horizontal direction by setting the initial phase values. In this configuration, if two simulated
fibres shared the same phase cycling periodicity, they would interfere in-phase at the far field if their initial
phase values were identical, or out-of-phase if their initial phase values differed by 7 . The relative amplitude
was encoded by a binary grating pattern in the vertical direction, where the phase distribution modulates in a
periodic binary manner. This binary grating consisted of alternating series of “teeth”: one series with a uniform
phase value of 0, and the other series using the phase values from the horizontal blazed grating. The ratio between
these two types of teeth determined the relative intensities observed at higher-order diffraction outputs in the
horizontal direction at the far field. That is, the binary grating created additional diffraction orders in the vertical
direction for each horizontal diffraction order, redistributing the intensity vertically based on the periodicity
of the binary grating. To confirm that the power modulation behaved as expected, the combined power was
measured using a photodiode power sensor placed specifically in the diffraction order of main interest and
plotted against the expected power. The resulting linear dependence, as shown in Fig. 1c, confirms the expected
relationship between the applied and measured power. Both the initial phase value of the blazed grating and the
periodicity of the binary grating can be independently adjusted for each simulated fibre, allowing independent
control of their relative phases and intensities, thereby effectively controlling both the relative phases and relative
amplitudes of the simulated fibres.

Data collection

In this work, the mapping f : I — (P, ) is approximated by a function approximator F' parameterised by
0 (i.e., NN), and is trained on a dataset comprising intensity observations I = {Io, I1, ... } (i.e., each of shape
n X n)and their corresponding relative amplitude levels P = {Py, P1,... } and phases ¢ = {¢,¢,-.- }
(i.e., ground truth). The objective is to identify a set of parameters 6 that minimises an objective function
J(F (I;0), P,¢), which quantifies the discrepancy between the predicted relative phases and amplitudes
F(I;0) and their respective ground truth {P, ¢ }, commonly known as supervised learning. Notably, whilst
this learning can be conceptually viewed as parameterising a mapping: f : R"* ™ — C, for practical reasons
we relax the mapping to : R"* ™ — R2. The inclusion of amplitude information is critical because intensity
distributions are influenced not only by phase differences but also by amplitude variations of the interfering
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Fig. 1. (a) Schematic of the experimental setup (b) Independent encoding of phase and amplitude information
onto each composing beamlet, where phase modulation is applied by a blazed grating pattern and amplitude
modulation is applied by a binary grating pattern. The combined phase and amplitude modulations are
superimposed to form the pattern displayed on the SLM, as shown in (d) (c) Accuracy of power control for
individual beamlet.

beamlets. It is generally known that in beam interference, relative phase differences alone result predominantly
in interference “fringe” shifts, whilst relative amplitude variations alone result predominantly in “fringe”
visibility changes. Whilst these dependencies are obvious in the two-beam case, in multibeam interference, i.e.,
the generalised sum of two-beam interference, they cannot be easily discerned. This underscores the importance
of accounting for both amplitude and phase parameters in the mapping. Provided that the dataset (I, P, ¢ )
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is of sufficient quality and quantity, the function approximator F'(I,6 ) typically generalises well, enabling it
to approximate f effectively. Nonetheless, this raises an important question: does this generalisation capacity
extend robustly to cases involving power fluctuations, where varying amplitudes could potentially impact the
performance of F? Investigating this robustness is particularly relevant for multibeam interference scenarios.

To investigate the impact of power fluctuations on phase inference accuracy, training datasets were collected
where both the relative phases and the power levels of composing beamlets were varying uniformly at random.
Consequently, each training pair consisted of a camera observation of the intensity distribution (input to NN)
and a corresponding ground truth that included two distinct physical quantities: phases (i.e., ¢ ) and power
levels (denoted as P), as shown in Fig. 2. By limiting the lower limit for power level variations, multiple training
datasets were generated, enabling comparative ablation studies to assess the impact of power fluctuations on the
phase information inferred from observations of focused beamlet array.

The training data were collected using a simulated 7-fibre hexagonal close-packed beamlet array with a
geometric fill factor of approximately 74.9%. The phase values of the outer six beamlets were varied uniformly
at random within the range between —7 and +m, with the phase of the beamlet at the centre fixed at O
to serve as a reference beam. The relative phases of the surrounding beamlets were then inferred from their
interference pattern at the far field after the lens (10 cm before the focal plane). The power levels of the individual
outer beamlets varied uniformly at random within the range [p ;,uer, 1], Where p e € [0,1] is the lower
boundary of the power variation range and the upper boundary was fixed at 1 (i.e., 100% of maximum power).
This indicates that up to (1 — p ;) X 100% of maximum power of the horizontal high-order diffraction
outputs was redistributed vertically due to the applied binary grating. The power level of the central beamlet
was not fixed and was allowed to vary within the same range [p ;,.cr 1] as the outer beamlets, whilst its phase
remained fixed at 07 . A number of training datasets were collected by varying only the power range [ p ;o.er>
1] whilst the phase variation range was consistently set between [—7 , 7 ] for all datasets.

-
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Fig. 2. The neural networks considered in this study were trained on datasets consisting of training pairs
where the input was the intensity distributions measured 10 cm before the focal plane, and the output
comprised the corresponding phase and power values for each beamlet. These intensity distributions were
generated by randomly assigning phase values within the range [— , 7 ] and power values within the range

[0 towers 1] (P jower € [0, 1], where 1 stands for 100% power), sampled from uniform distributions to each
beamlet. Here, p ..., represents the lower boundary of the power variation range, which was allowed to vary,
whilst the upper boundary was fixed at 1. This enabled the assessment of the impact of power fluctuations on
the phase extraction for CBC system.
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After the pattern that encoded phase and power information to higher-order diffraction outputs was displayed
on the active area of the SLM with the corresponding set of phases and power levels, the combined intensity
distribution was observed and captured from Camera A and Camera B simultaneously. Throughout this work,
the intensity distributions captured from Camera A (positioned 10 cm before the focal plane) were used as the
input to NN for inferring relative phase information, whilst Camera B (positioned at the focal plane) was utilised
to observe the far-field intensity distributions at focus. Each training data pair was generated by randomly
assigning phase values and varying power levels to composing beamlets, then capturing the corresponding
intensity distributions from both cameras. The training pair comprised an intensity distribution from Camera
A and the corresponding 6 phase values for the outer 6 beamlets (excluding the fixed phase of the central fibre)
and 7 power values for all the composing beamlets.

To demonstrate how phase and power alter the intensity distributions both in the far-field and 10 cm before
the focus, Fig. 3a presents 9 examples of Camera B observations and 9 corresponding examples recorded by
Camera A. In these examples, the horizontal rows show observations corresponding to fixed power values,
where only the phase values assigned to each beamlet are varied. Each row represents a specific power profile,
illustrating how the relative phase affects the overall shape of the combined beam whilst the power remains
unchanged. Conversely, the vertical columns correspond to fixed phase values, where only the power values of
the beamlets are varied. Changes in power along the columns further modify the combined beam shape, with
the intensity distributions preserving the main features defined by the phase whilst altering the generalised
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Fig. 3. (a) Examples of far-field intensity patterns recorded on Camera B and intensity patterns recorded

10 cm before the focus on Camera A for different combinations of phase and power values. These patterns
correspond to the same set of phases and powers but are recorded at different locations, resulting in a total

of nine observations each for Camera A and Camera B. (b) Example of simultaneous NN predictions of the
phases and powers of composing beamlets from a single Camera A observation. The results are displayed with
the predicted values, ground truth values, and their differences arranged vertically, one under another, for clear
comparison.
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“fringe” visibility in the interference patterns. Although both phase and power influence the combined intensity
distribution, they do so in distinct ways, enabling the NN approach to extract both phase and power information
from a single camera observation of the intensity distribution. Comparing patterns along rows and columns, it
becomes obvious that phase-only variations have a more profound effect on interference than amplitude-only
variations. This is more evident in the well-focused (camera B) patterns. It is important to note that whilst
Camera A observations are recorded 10 cm before the focus to break Fourier symmetry and allow for phase
extraction, the resulting interference patterns still combine contributions from all beamlets, meaning the
individual beamlets are not directly visible. In a near-field setup, the power of each beamlet could have been
measured directly with a single camera; however, in this case, the power is also inferred from the combined
intensity distribution. This highlights the ability of the NN to accurately deduce both phase and power from
interference patterns. Figure 3b demonstrates how the NN simultaneously predicts six phase and seven power
values from a single Camera A observation. For clarity, the ground truth phase and power values are displayed
alongside the differences between the predicted and ground truth values.

Neural network

The NN architecture was based on MobileNetV3-Small with a width multiplier of 1.0, chosen for its computational
efficiency and low latency. Whilst other architectures, such as ResNet?, exist and may potentially offer similar or
better prediction accuracy and precision, MobileNetV3 was preferred due to its ability to achieve latencies in the
hundreds of hertz (417.88 + 88.56 Hz for MobileNetV3-Small, measured on a Windows 10 system with an Intel i7-
7700 CPU @ 3.60 GHz, GPU Nvidia Quadro P6000), compared to the significantly lower speed of under 100 Hz
(59.36 £13.53 Hz) for ResNet-18 (see Supplementary Material 3). However, since the MobileNetV3 architecture
was originally designed for image classification task (i.e., mapping an input to a probability distribution of a
given number of discrete classes), it cannot be directly used for inferring phase information from intensity
distributions, which can be seen as a regression task (i.e., mapping an input to a continuous variable). Several
necessary modifications were therefore made to its original design. Firstly, during data collection, the image
from Camera A was cropped to 540 x 540 pixels to encompass the region containing the majority of non-zero
pixel values of the interference pattern. This cropped image was subsequently down-sampled to 256 x 256 pixels
using pixel area resampling. In the original design of MobileNetV3, the input image size was 224 x 224 pixels,
however, for this work, it was adjusted to 256 x 256 pixels, which slightly increased the dimensions of the final
feature maps from 7 x 7 to 8 x 8. Another key modification was made to the size of the output layer. The output
was reduced from the original N x 1000 to N x 13 (i.e., 6 phase values and 7 power values). The final major
change involved adjusting the loss function to account for the periodic nature of the phase. A trigonometric
loss function was employed, taking the form: J(¢, ¢ ) = (cosp — cosp ) + (sing — sing ), where ¢
and ¢ represent the predicted and ground truth phase values, respectively?»?%. To include the prediction of
varying power levels, an additional Mean Squared Error (MSE) term (p — P)?, where p and P are predicted
and ground truth power values, respectively, was incorporated into the loss function. The final loss function
consisted of two terms, namely, the trigonometric loss term, used for predicting relative phases, and the MSE
loss, used for predicting powers. Due to the differences in numerical scales of these terms, there was a risk of
disproportionate influence on the overall loss, potentially compromising the prediction accuracy for phases
and powers. To address this, a weighting factor was applied to the MSE loss term, reducing its magnitude by
two orders of magnitude. This weighting factor ensured that the numerical scale of the MSE loss term was
comparable to that of the trigonometric loss term, enabling the NN to focus approximately equally on predicting
both phases and powers. Throughout this work, the NNs that were trained under different power variation
ranges are denoted as N N'? tower:1] where [p,,..r, 1] specifies the range of the power variations included in
the training dataset for each respective NN.

For NN presented later in this work (unless stated otherwise), datasets containing 50,000 training pairs were
experimentally collected and split with a ratio of 90:10 for training and validation. The training set was used to
optimise the parameters 6 in NNs (i.e., with backpropagation enabled), whilst the validation set was reserved
for evaluating the performance of the NNs (i.e., with backpropagation disabled), providing an objective measure
of the performance of NNs. All NNs were trained over 200 training epochs, iterating over the entire dataset
during each epoch with the Adam optimiser (learning rate of 6e — 5). Upon completion of training, the final
NN weights were saved for subsequent assessment.

Results

Neural network evaluation

In general, studies on phase inference in CBC research are conducted under the assumption that the power
output of each comprising beamlet is stable. These studies, characterised by the absence of power fluctuations,
represent an idealised case often explored in CBC research, where each channel maintains a stable power output
over time. NNs that are trained on these fixed-power datasets often demonstrated accurate phase inference
under these idealised conditions?®. In practical applications, however, power degradation is commonly observed
over the lifetime of a fibre amplifier. This raises two key questions. First, how would a NN trained under these
idealised conditions perform over time as the fibres degrade and their power outputs fluctuate? Second, would
incorporating power variations into the training dataset enhance the robustness and performance of the NN
approach? To address these questions, we introduce an evaluation metric that incorporates datasets containing
samples collected with varying power levels. Using this metric, we assess the performance of NNs that are trained
using the datasets that are collected under different power variation conditions, on the same evaluation set. This
approach allows us to simulate the potential decline in phase inference performance of NNs as the fibres age and
their power outputs fluctuate, providing valuable insights into the robustness of the NN approach.
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The evaluation datasets, which feature variations in both phase and power levels, were collected separately
from the training and validation datasets to ensure they contained data not seen by NNs during training. The
only distinction among these datasets was the degree of power variation. This enabled the assessment of NNs
performance both within and beyond their training power ranges, providing a basis for a direct comparison of
phase and power inference performance between different NN trained on different datasets with varying power
conditions, testing their ability to generalise to previously unseen power fluctuations.

To streamline the evaluation process, the upper boundary of the power range in the evaluation dataset
was fixed at 1.00, whilst the lower boundary was incrementally raised from p .., = 0.00 in steps of 0.05
up t0 P ouer = 1.00, resulting in 21 distinct datasets. In the dataset where the lower power boundary was
£ 1ower = 0.00, fibre power values varied uniformly at random within the range [0.00,1.00]; for the dataset
with a lower boundary of p ., = 0.05, power values varied within the range [0.05, 1.00], and so forth, up
to [1.00,1.00], which represents no power variation (i.e., fixed power levels). Each dataset comprised 250 data
pairs, each containing a Camera A observation of the intensity distribution and the corresponding phase and
power values. The camera images were sequentially used as the input to the NNs. During NN inference, each
dataset was processed individually, with all 250 examples evaluated to compute the mean phase and power
prediction error for that dataset. These mean errors were then plotted against the corresponding lower boundary
value of the power range. For instance, the mean error for the [0.00,1.00] dataset was plotted at 0.00 on the
x-axis, the mean error for the [0.05,1.00] dataset at 0.05, and so forth. By processing every dataset incrementally,
starting from p;,,., = 0.05 and ending with the p ;... = 1.00, the evaluation spans all possible cases—
from extreme power variations, including up to 100% fluctuations ( [0.00,1.00]), to the ideal case of no power
variations (i.e., [1.00,1.00]). This approach provides a comprehensive understanding of how different NNs,
trained on varying power ranges, perform under different power fluctuation conditions.

The first NN considered in this work, referred to as NN!%191, was trained on a dataset with power levels fixed
in the range [1.00,1.00] (i.e., fixed at 100%). In contrast, the second NN, referred to as NNI[0-510] ' \as trained
on a dataset where power levels varied uniformly at random within the range [0.50,1.00]. Although this lower
range limit may not agree with the typically observed power downgrade in HPFLs, it was chosen to evaluate
the effect of including substantial power variations (up to 50%) in the training dataset on the ability of NN to
generalise across different power distributions, particularly under conditions where output power fluctuates
significantly.

Consequently, NNIIOLOI trained on dataset with fixed power levels, encountered evaluation data pairs
with varying power levels it had not previously seen (except for one evaluation dataset corresponding to the

[1.00,1.00] power variation range). In contrast, NN*>191 trained on dataset that included power variation
in the range [0.50,1.00], encountered evaluation datasets sharing more similarities to its training data, having
not seen power ranges where the lower boundary was between 0.00 and 0.45. The results of these evaluations
are presented in Fig. 4, with insets comparing ground truth phase versus predicted phase for the power ranges

[0.50,1.00] and [0.75,1.00] (corresponding to the 0.50 and 0.75 data points on the x-axis, respectively). In
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Fig. 4. Prediction accuracies of the NNs evaluated on datasets with different power variation ranges. (a,) and
(a,) show the prediction accuracies of NN!010 when evaluated on datasets with power ranges [0.5,1.0] and
[0.75,1.0], respectively. (c,) and (c,) show the prediction accuracies of NN®1% when evaluated on datasets
with power ranges [0.5,1.0] and [0.75,1.0], respectively. These evaluations correspond to the datapoints at 0.5
and 0.75 on plot (b), which illustrates phase prediction error as a function of the lower power range boundary

P lower in the range [p lower> 1]
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each inset, the x-axis represents the ground truth phase applied to the SLM, whilst the y-axis shows the NNs
predictions. Ideally, predicted phase values would match the ground truth values exactly, resulting ina y = x
line on a plot. Deviations from this line indicate discrepancies between the predicted phase values and the
ground truth phase values, with a broader spread indicating reduced phase inference precision. The y = « line
is included in each inset for visual clarity.

Each phase inset (Fig. 4a, ,,c, ,) contains 1,500 data pairs from an evaluation dataset involving 250 intensity
distributions captured from Camera A, combining phase inference results for the 6 outer beamlets. The insets
for NN[%>10 (Fig. 4c ,c,) show a consistent spread of phase values when tested on power ranges [0.50,1.00]
and [0.75,1.00], with a mean phase prediction error of approximately 27 /60, as shown in Fig. 3b. In contrast,
NN!10:10) exhibits a broader spread of predicted phase values (Fig. 4, a,, a,), with errors increasing from 47 /60
at a lower boundary of 0.75 to approximately 87 /60 at 0.50. This difference can be largely attributed to the
ability of NN to interpolate and extrapolate unseen data. NN®510], trained on a dataset with power variations
spanning [0.50,1.00], interpolates unseen, leading to more consistent and accurate phase predictions. In
contrast, NNI0101 trained exclusively on fixed power levels [1.00,1.00], encounters unseen data with lower
power levels that fall outside its training range. This forces NN to perform extrapolation, predicting
beyond the range of data it has been exposed to during training. Extrapolation is inherently more challenging
than interpolation, often resulting in a broader spread of predicted values and higher phase prediction errors, as
observed in Fig. 4(a,, a,). The increasing errors at lower power boundaries reflect the difficulty NN!110] faces
when generalising to unseen power variations, highlighting the limitations of training on fixed power levels.
Whilst NNI0101 and NNO5L0 perform similarly in the absence of power variations at maximum power as
shown in Fig. 4b, the precision of NN degrades more quickly as power variation increases compared to that
of NNI0510] Qverall, NNI*510 predictions were more precise than NN%1 across a broader range of power
variations. This suggests that incorporating power variation into the training process enhances the robustness
of the NN approach against power variations, rendering it more effective in realistic CBC systems where power
degradation is often inevitable.

To further examine the impact of different power variation ranges included in the training on prediction
accuracy, two additional NNs were trained on different power variation ranges. The first additional NN was
trained on a dataset where power levels of all fibres varied uniformly at random within the range [0.80,1.00]
(hereafter referred to as NN®810)) This power fluctuation range is practically relevant, as a 20% power
degradation is often observed over the lifetime of fibres due to various effects such as fibre photodarkening and/
or pump failures. The second additional NN was trained on a dataset where power levels varied uniformly at
random within the range [0.00,1.00] (hereafter referred to as NN®®191) This broader power range represents
an extreme case, simulating scenarios where at least one of channels experiences complete power failure. As a
result, we have the previously introduced NN[-0101 and NN[O-3101 along with the newly introduced NN[0-81.0]
and[NN[?'O’l'O]. These two NNs NN1©8101 and NN1O10] were tested on the same 21 datasets as NN[1191 and
NN 0.5,1.0 .

Figure 5a shows the performance comparison of NNI-0L0L NN©-5101 NNIO0810] and NNOOL, In the

[1.00, 1.00] power range (i.e., power fixed at 100% with no power variation), mean phase prediction errors
were 0.10, 0.12, 0.13, and 0.14 radians for NNU-L0L NNI0-510] NNI0819] and NNOO10], respectively. Evidently,
NNUIOL0 performed best in this range (i.e., [1.00,1.00]), which could be explained by the fact that its training
dataset comprises solely of intensity distributions collected within this power level range. Conversely, NNs
trained on varying power ranges ( [0.00,1.00], [0.50,1.00], [0.80,1.00]) exhibited slightly higher inference
errors in the [1.00,1.00] test range. This outcome can be attributed to the fact that their training involved
random and uniform variations in power levels, making it unlikely to encounter data points where all power
levels are equal. As a result, these NNs were less exposed to high fringe visibility during training, which reduced
their inference precision when evaluated in the fixed power range [1.00,1.00]. In the power range with the
lowest lower bound (i.e., [0.00,1.00]), NNI%101 demonstrated the highest precision, followed by NN[0->1.0]
NN and NNIOLO with phase prediction errors of 0.18, 0.69, 1.04, and 1.17 radians, respectively. This
indicates that NN trained with broader power variations are more robust under fluctuating power conditions.

Interestingly, although all four NNs discussed here were trained on specific power variation ranges, their
performance does not degrade abruptly beyond these ranges. Specifically, NNIL%10 trained on a dataset with
no power variations, shows a similar phase prediction error when tested on the [1.00,1.00] power range as
when tested on the [0.90,1.00] range, after which it begins to degrade rapidly. This suggests that NN1-0:10]
can maintain accurate phase inference even with a previously unencountered 10% power variation. Likewise,
NN and NNIO-310 trained on the [0.80,1.00] and [0.50,1.00] power ranges, maintain phase prediction
accuracy up to [0.70,1.00] and [0.40,1.00], respectively, before their accuracy begins to decline, indicating a
similar tolerance of approximately 10% beyond their trained range.

This pattern suggests that all NNs share a similar ability to extrapolate beyond their respective training ranges,
with a tolerance of approximately 10% extension. However, the NNs trained on datasets with greater power
variations ( [0.50,1.00] and [0.80,1.00]) demonstrated better overall performance under more challenging
power fluctuation conditions. This observation indicates that incorporating broader power variations during
training increases robustness to amplitude noise and enables better generalisation. By exposing the NN to a
wider range of power distributions during training, the NN learns to handle the variability inherent in real-
world CBC systems more effectively. The exception to the previously considered NNs is NN*®19 trained on
the full power variation range. Unlike the other NN, it only interpolates, as it has already seen the entire range
during training. A slight decrease in precision is observed when tested on the [0.00,1.00] power fluctuation
range. This is due to some fibres being effectively turned off, making phase prediction for those fibres akin to a
random guess.
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Fig. 5. (a) Phase prediction error as a function of the lower power range limit p ;,,,.,» evaluated on datasets
with varying power ranges using NNs trained on different power variation ranges. The lower boundary p ;,,e,
was incrementally increased from 0.0 to 1.0 in steps of 0.05. (b) Power prediction error as a function of the
lower power range limit p ;,,,.,» €valuated on the same datasets and under the same conditions as in (a).

The same analysis was conducted for power predictions of the NNs, using the same set of evaluation datasets
as in the phase analysis, with the results shown in Fig. 5b. Whilst the general behaviour of the curve remained
similar to the phase case, several distinct differences were observed. Firstly, the power prediction error of the
NNI0L0] remains constant. This is because, although power information was included in the training dataset,
it was fixed at the level of 1.00. As a result, the NN effectively learnt to predict a constant value of 1.00, with no
gradient in the training data to correlate with varying power levels. Therefore, when tested on datasets with
varying lower power limit, the power prediction error follows (1 — p ;,uer)/2 » decreasing linearly as p ;e\
approaches 1.00, with the error reaching 0 when p;,,,.,, = 1.00. On the other hand, NN0810] and NN[0->1.0]
demonstrated a greater ability to generalise power predictions (compared to their generalisation of phase), as
evidenced by a slower decrease in accuracy and precision as the lower power limit decreases. In particular,
when tested on the dataset with a power variation range of [0.00,1.00], the mean power prediction error was
0.25 and 0.08 for NN©8101 and NN[O-510] respectively. Finally, NN[*%10] demonstrated a nearly constant power
prediction error across all power variation ranges, starting at 0.04 when tested on [1.00,1.00] and decreasing
slightly to 0.03 when tested on [0.00,1.00]. This lack of increase in power prediction error, even under extreme
power variations (i.e., with a lower power range limit of 0.00), contrasts with the phase prediction case for
NN 101 This can be attributed to the fact that, for power, unlike phase, the absence of a signal still carries
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explicit information about the system state since it corresponds to a measurable intensity value. In contrast,
phase cannot be determined in the absence of a signal, as it relies on the interference between multiple beamlets
to extract information. Although the power of each beamlet can be measured precisely by tapping out a small
amount and monitoring it individually with a photodiode detector, the analysis above demonstrates that this
additional power monitoring can be effectively replaced by the NN, thereby simplifying the experimental setup
and reducing hardware requirements.

Overall, these findings highlight the trade-off between training range and accuracy in phase and power
inference. Whilst narrower power variation ranges yield slightly higher accuracy within their respective ranges,
the improvement is not significantly greater and remains somewhat comparable to NNs trained on broader
ranges. On the other hand, incorporating broader power variations improves robustness to amplitude noise
and enhances the ability of NN to generalise across real-world power fluctuation scenarios. This demonstrates
that a well-trained NN can accurately interpret subtle variations in intensity interference patterns and correctly
associate them with either phase or amplitude changes. This balance is particularly critical for practical CBC
systems, where unpredictable amplitude noise and power degradation cannot be dismissed over time.

Scalability of the CNN approach

Previous results demonstrate that the NN approach is able to accurately and precisely identify phases and powers
in a single-step for a 7-beam, hexagonally closed-packed beamlet array from a single camera observation of
its intensity distribution. However, investigating the performance and applicability of the NN approach as the
number of beamlets in a CBC array increases remains an area of significant interest.

As the number of beamlets in a CBC system increases, the number of phase interactions between adjacent
and non-adjacent beamlets grows, thereby amplifying the complexity of the resulting interference patterns.
Consequently, the NN might need to process increasingly intricate interference patterns to accurately and
precisely extract phase and amplitude information, which could necessitate larger datasets to maintain
comparable performance. For a CBC system with N beamlets, there are N - (N — 1)/2 unique interactions
between beamlets, suggesting that the number of training pairs could potentially increase at a rate comparable
to the number of these interactions. This raises the possibility that the size of the required dataset could increase
quadratically with the number of beamlets. From a practical perspective, quadratic scaling is undesirable, as
it would render the approach less feasible for CBC systems with a larger number of composing beamlets. This
raises an important question about whether the NN approach is applicable to a CBC array with a higher number
of beamlets without compromising its ability to extract phases and powers efficiently. Therefore, it is essential
to determine whether the dataset requirements scale up linearly, quadratically, or at an intermediate rate as the
number of beamlets increases. To address this question, we first examine the phase prediction error achievable
for a given number of training pairs for a given number of beamlets in CBC system. Then, we examine the
number of training pairs required for a given CBC array to achieve a targeted level of phase prediction accuracy.
This process is then repeated for power prediction error. Together, these analyses provide insight into the
scalability of the NN approach and determine whether it remains practical for CBC problems as the number of
beamlets increases.

To gain insight into the scalability of the NN approach for fibre arrays with a greater number of beamlets,
training data were collected for fibre arrays consisting of 2, 3, 4, 5, 13, and 19 beamlets, in addition to the
previously collected datasets for the 7-fibre system. The fibre arrays, shown as insets in Fig. 6a, were derived from
the original hexagonal close-packed array initially used for the 7-fibre system, with beamlets omitted or added as
needed to achieve the required number of composing beamlets. The radii of all the beamlets remained the same
as those in the previously considered 7-fibre system, ensuring consistent physical parameters across all CBC
arrays. During training data collection for all CBC arrays, the phase of all beamlets (except for the designated
reference beamlet) varied in the range [—7 ,7 |, while the power levels of all beamlets were set in the range

[0.5,1.0]. These ranges are consistent with the dataset used for NNI*310 training in the earlier analysis of the
7-fibre system. The lower power limit of 0.5 was chosen here as a balance point between 0% and 100% power. The
idealised dataset [1.0,1.0] used for the training of NN[1010] required NN191 to extrapolate across the entire
range of power variations, whereas the dataset with extreme power variations (i.e., ranging from 0 to 1) used for
NNI©010] required it to perform interpolation only. Compared to the lower power limit of 0.8, 0.5 was preferred
as a midpoint between these two extremes, offering a practical compromise that combines generalisability and
robustness.

To assess the phase prediction error achievable with a given number of training pairs, a dataset of 50,000 pairs
was collected for each CBC array. Consistent with the previous methodology, the dataset for each CBC array was
split into 90% for training and 10% for validation, yielding 45,000 training pairs for NN training and 5,000 pairs
for NN validation. The NN for each beamlet array was first trained using 45,000 training pairs. Its performance
was evaluated after each epoch using the 5,000-pair validation set, and the mean prediction error from the final
epoch was recorded as a measure of performance for the dataset. Subsequently, the size of the training dataset,
starting with 45,000 pairs, was iteratively reduced by approximately half over multiple iterations by randomly
selecting data pairs to retain. In the first iteration, it was reduced to 22,500 pairs. A new NN with randomly
initialised weights was trained on this reduced dataset and evaluated using the same 5,000-pair validation set
as before. After each epoch, the NN was validated on this validation set, and the mean prediction error was
recorded after the final epoch. This halving process continued, progressively reducing the training set, creating a
new data point at each iteration to illustrate the relationship between phase prediction error and the number of
training pairs for a given CBC array.

As aresult of this iterative reduction in dataset size, curves illustrating the phase prediction error as a function
of the number of training pairs were obtained for CBC arrays with different numbers of beamlets. These curves
exhibit a characteristic S-shaped trend, as shown in Fig. 6a, reflecting the performance of all NN trained for CBC
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arrays, measured in terms of phase prediction error. When datasets with heavily reduced sizes were provided to
the NN as training materials, the prediction error remained relatively high, indicating an insufficient number
of data for the NN to acquire a generalised ability to extract phase information from interference patterns
between beamlets. As the number of training pairs increased, the error decreased significantly, marking a rapid
improvement in the performance of the NNs during the learning stage. This stage corresponds to the NNs
acquiring the ability to infer phase information that generalises well to unseen data. However, beyond a certain
number of training pairs (e.g., 11,000 for the 7-fibre CBC array), the improvement in performance diminished,
and the curves reached a plateau. This plateau suggests that the NN had effectively saturated its learning capacity

for the given data, achieving near-optimal performance with limited additional improvement

from further
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increasing the size of the training dataset. The observed behaviour is consistent with the typical S-shaped curves
in machine learning, where mean prediction error improves as a function of number of training pairs. These
curves characterised by an initial stage where data scarcity limits performance, followed by a growth stage and
eventual saturation as the NN approaches its learning capacity.

Figure 6a includes insets showing the individual average phase prediction errors for each beamlet in CBC
arrays with 2, 3, 4, 5, 7, 13, and 19 fibres, when each corresponding NN was trained with 45k training pairs.
These insets map beamlet positions and error magnitudes, revealing no strong positional bias (e.g., outer vs.
central beamlets). This uniformity highlights the ability of the NN to generalise phase extraction across the array,
despite increasing pattern complexity.

From Fig. 6a, it is evident that as the number of beamlets increases, the plateau in the S-shaped curve occurs
at progressively higher numbers of training pairs. This indicates that, for CBC arrays with a higher number
of beamlets, a greater number of training pairs is required for the NN to reach saturation in phase prediction
accuracy and achieve near-optimal performance. This observation aligns with the previously discussion:
introducing more beamlets increases the number of interference interactions between them, resulting in more
intricate patterns that necessitate larger datasets for the NN to extract phases and powers with comparable
precision and accuracy. The remaining question is to determine the rate at which the requisite number of
training pairs for enabling a trained NN with satisfactory level of accuracy and precision in extraction phase and
amplitude information grows as the number of beamlets increases.

To determine the rate at which the number of training pairs grows with the number of fibres, we analysed
the minimum number of training pairs required to achieve a specific phase prediction error for each CBC array.
A horizontal slice was taken across Fig. 6a at a phase prediction error range of [0.0, 7 /20]. This range was
chosen because it ensures a good level of precision that the NN should aim to achieve. When the phases of
all beamlets (except the central one) vary with a zero mean and a standard deviation of 7 /20, approximately
99.0% of the expected power remains in the bucket within the central lobe for the considered CBC arrays.
For each CBC array, the minimum number of training pairs required to reach this precision was identified
and plotted against the corresponding number of fibres, as shown in Fig. 6b. The data points were then fitted
with two functions: F1 (N) = k1N +c1 and F» (N) =ka- N - (N —1)/2 + c2, where N is the number
of beamlets, k1, k2, and c1, ¢ are fitting coefficients. The former function, Fy (IV), represents a linear fit,
with the first 6 data points used to determine the optimal fitting coefficients k1 and c:. Similarly, for the latter
function, F (IV), coefficients k2 and c2 were also determined using the first 6 data points. The fitted curve was
then compared against the last data point to assess whether it lies below or above the fit, providing insight into
whether the required number of data points, for the NN approach, grows linearly or quadratically for a higher
number of beamlets in a CBC system. Figure 6b presents both the linear fits, as shown in the dashed line and
the quadratically fits as shown in dotted line. The linear fits evidently more closely resemble the trajectory of
the datapoints. Thus, indicating that a linear scaling of the required training pairs may suffice for achieving the
desired phase precision. These results demonstrate that the NN approach could be applied to CBC systems with
higher number of beamlets, without necessitating the collection of a prohibitive number of data pairs.

The analysis above was repeated for power predictions, as shown in Fig. 7a, b. Figure 7a includes insets
displaying individual average power prediction errors per beamlet for CBC arrays with 2, 3, 4, 5, 7, 13, and 19
beamlets, trained with 45k pairs each. These insets map beamlet positions and errors, showing no clear correlation
with position (e.g., outer vs. central beamlets); intriguingly, outer beamlets generally exhibit lower errors, an
observation warranting further investigation. Similar to the phase analysis, the results for power indicate that
the data points align more closely with the linear fit, suggesting that the required number of training pairs for
accurate power predictions also scales linearly with the number of fibres. However, the number of training pairs
required to achieve precision within a 5% error (0.05 for power and 27 /40 for phase, equivalent to a 5% error)
scales with a lower gradient for power than for phase.

We hypothesise that this near-linear scalability arises from recording intensity distributions in a plane away
from the focal plane, where each beamlet partially overlaps primarily with its immediate neighbours. Such
localised overlap reduces global interference complexity and allows NN to isolate each beamlet’s contribution
(see Supplementary Material 5).

We acknowledge that the results presented in this manuscript are based on a simulated setup using a spatial
light modulator, which approximates the ideal intensity distributions of a tiled-aperture CBC fibre system.
However, real-world CBC systems are subject to additional error sources, such as thermal drift, mechanical
vibrations, and installation errors (e.g., tip-tilt misalignments), which are not explicitly accounted for in our
current setup. These factors may impact the practical adoption of our method. Nevertheless, we view our
findings as an important first step toward realising a more effective fibre-based CBC implementations, which we
aim to explore in future research.

Conclusions
In this work, we have demonstrated the capability of the NN approach to simultaneously infer both phase and
power information from a single camera observation of the intensity distribution in a single step. By accurately
interpreting subtle variations in intensity interference patterns, the NN can distinguish between phase and
power contributions without requiring separate measurement systems (e.g., photodiode power sensors). This
streamlined and efficient approach not only simplifies the measurement process but also enhances the precision
of phase and power monitoring, making it highly suitable for practical applications in CBC systems.

We further investigated the robustness of phase inference under power degradation, a common phenomenon
over the operational lifetime of fibre lasers. Our analysis highlighted the potential impact of inevitable power
variations on phase prediction accuracy, providing insights into the long-term reliability of the NN-based system.
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Fig. 7. (a) Curves showing the average power prediction error after the final epoch of NN*510 training,
plotted against the number of training pairs for different CBC arrays. Each curve represents a specific number
of fibres., (b) Minimum number of training pairs needed to achieve power precision within the range [0, 0.05],
shown as a function of the number of fibres. The dashed line indicates a linear fit to the data, while the dotted
line corresponds to the k2 - N - (N — 1)/2 fit.

Additionally, we explored the scalability of the NN approach by analysing its performance across CBC
systems with varying numbers of beamlets. We showed that the NN requires a number of training pairs that
scales linearly with the number of beamlets to achieve a predetermined level of phase and power prediction
accuracy. This linear scaling suggests the practicality of the NN approach for larger CBC systems.

These findings collectively underscore the potential of the NN approach as a scalable, accurate, and efficient
solution for phase and power inference in CBC systems, paving the way for its integration into high-power fibre
laser systems with increased beamlet counts.

Data availability
The datasets generated and/or analysed during the current study are available in the DATASET repository,
https://doi.org/10.5258/SOTON/D3389.
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