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Abstract
Computed Tomography (CT)has beenwidely adopted inmedicine and it is increasingly being used in
scientific and industrial applications. Parallelly, research in differentmathematical areas concerning
discrete inverse problems has led to the development of new sophisticated numerical solvers that can
be applied in the context of CT. The Tomographic IterativeGPU-based Reconstruction (TIGRE)
toolboxwas born almost a decade ago precisely in the gap betweenmathematics and high performance
computing for real CTdata, providing user-friendly open-source software tools for image
reconstruction. However, since its inception, the tools’ features and codebase have had over a twenty-
fold increase, and are now including greater geometric flexibility, a variety ofmodern algorithms for
image reconstruction, high-performance computing features and support for other CTmodalities,
like protonCT. The purpose of this work is two-fold: first, it provides a structured overview of the
current version of the TIGRE toolbox, providing appropriate descriptions and references, and serving
as a comprehensive and peer-reviewed guide for the user; second, it is an opportunity to illustrate the
performance of several of the available solvers showcasing real CT acquisitions, which are typically not
be openly available to algorithmdevelopers.

1. Introduction

Tomography, and particularly computed tomography (CT), is a non-destructive imaging technique that has
recently become essential for visualizing the internal structure of very different objects, gainingwidespread
popularity among engineers, biologists, geophysicists,material scientists, andmedical professionals. Since
tomographic imaging relies on indirectmeasurements, it requires using reconstruction algorithmswhich can
produce images with varying properties and qualities, see, e.g. [1, 2].
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Themathematicalmodel corresponding toCTproblems has twomain properties thatmake it challenging to
solve, so decades after the inception of tomography it still remains of high research interest. First, in the limited
measurements regime and in the presence of noise, the reconstructions are very sensitive to small perturbations
in themeasurements. This is called ill-posedness, see, e.g. [1, 3].Moreover, these are scenarios of capital interest,
i.e. when one reduces radiation doses inmedical CT, reduces scanning time in industrial CT, orwhen physical
limitations reduce the amount of availablemeasuring angles. Second,modern applications tend to require
bigger reconstructions due to an increase in resolution, in object size, or in the amount ofmeasurements [4].

There is a constant need for efficient algorithms that can support a trend towardsmore ill-posed and higher
dimensional CT problems, whilemaintaining image reconstruction quality. This can be achieved by leveraging
the noisymeasurements with prior information about the reconstruction.Many algorithms exists for this
purpose: ranging from analyticalmethods, algebraic row-actionmethods, variationalmodel-basedmethods or,
more recently,machine learning based reconstructionmethods.

However, algorithmdevelopers often lack the expertise or resources to create efficient, lab-ready software, so
users tend to optimize scanning procedures for proprietary software that typically uses direct reconstruction
algorithms (e.g.,filtered backprojection, FBP), requiring high-quality, high-dose, over-sampled data. As a result,
many practitioners still rely on direct classical solvers, despite evidence showing that iterative algorithms can
significantly improve reconstruction quality [5, 6].

The Tomographic Iterative GPU-based Reconstruction (TIGRE) toolbox [7] is an open source translational
research tool designed to serve both algorithmdevelopers (appliedmathematicians and computer scientist
without a software engineering background) and applied scientist workingwith real CTdata. In this spirit, the
TIGRE toolbox offers an easy to install platformwhere one can both reconstruct real data using advanced
algorithms (with only a very basic level ofmathematics and software knowledge) orwrite newmathematical
methods for reconstruction and test themonhigh quality realistic test problems (with little knowledge of data
managing pipelines orGPU-acceleration).Moreover, these new implemented and tested algorithms can be
afterwards appended to the TIGRE toolbox tomake them available to researchers wanting to try new algorithms
on their data. Since itsfirst release, the TIGRE toolbox has indeed become a community platform, used by
researchers and scientists across the field of tomography. Indeed, since its publication the codebase of the
toolbox has grown in over an order ofmagnitude, and, to the date, it has been cited in over 300 papers.

It is crucial to emphasize the significance of open source software (OSS)within academia. In order to create
reproducible and reliable research, there is a need for free and transparent unified frameworks that offer a space
for different research communities tomeet and promote knowledge-exchange. The TIGRE toolbox contributes
and enriches the increasingly wide ecosystemofOSS available for inverse problems in computed tomography,
which differ in their approach to software development and distribution to applied scientists. For general x-ray
tomography, otherGPU-basedOSS exist, such as thewidely usedASTRA toolbox [8] and other software that
uses it. This is for example the case of the PyTorch [9] compatible Tomosipo [10], or the CIL toolbox [11]which
also strongly focuses on theμCT community. The latter uses bothASTRA andTIGRE asGPUprojectors, yet
providing several user-friendly tools to easily craft new iterative algorithms suited to the relevant experiments.
On the other spectrumof target users, RTK [12] provides reconstruction code for data associated tomedical
scanners. Lastly, the TomoPy toolbox [13] provides similar tools to the rest of thementioned packages
(including ASTRAwrappers), but was initially designed for synchrotron x-ray tomography. Recently, LEAP [14]
was also released, with auto-differentiable operators. Software focused on other types of tomography is also
available. For example EIDORS [15] or pyEIT [16] for Electrical Impedance Tomography, STIR [17] for
emission tomography (such as Positron EmissionTomography and Single Particle EmissionComputed
Tomography), and SIRF [18] orCASToR [19] formulti-modal tomography. Finally, otherOSS that aremostly
used by the discrete inverse problems (mathematics) community can be used for tomographyODL [20],
AIRtools [21] and IRtools [22], among others. However, these packages sometimes lack the required efficiency
to support high dimensional realistic CT test problems. This is not an exhaustive list of the available software for
tomography reconstruction. Each piece of software has nuanced differences in use cases, programming
languages, licensing and support, which are out of the scope of this work to discuss.

This work focuses on the TIGRE toolboxmost current version 3.0, offering a structured overview of the
toolbox including appropriate descriptions and references, and highlighting some of themost important
features added since itsfirst release. Subsequently, this paper aims to serve as a comprehensive and peer-
reviewed guide for the user.Moreover, this work also aims to illustrate the performance of several of the solvers
that are available on the TIGRE toolbox on real CT acquisitions. It is alsoworth highlighting that TIGREhas
functioning demos for all available features, together with explanations of the algorithms. These can be found in
theDemos folder of the library, for each programming language.

The article is structured as follows. Section 2 briefly introduces themathematical background of iterative
reconstruction algorithms, focusing on the algorithms currently implemented in the TIGRE toolbox. In this
section, a structured description of the design of the TIGRE toolbox is also included, as well as highlights of the
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several new important features of the software such as novelties in the implementation, geometric flexibility and
multi-GPU support. Next, section 3 presents five different examples based on real datasets, alongside the code
needed to reproduce them. These correspond to a clinical scenario with patient data, a synchrotron parallel
beam tomographic reconstruction, aMonte Carlo simulation of a protonCTproblem, a neutron tomographic
acquisition and an industrialμCTdataset. Finally, some conclusions are given in section 4. A list of all the solvers
provided by the TIGRE toolbox in its current state can be found inAppendix A.

The article contains code snippets, arbitrarily chosen to be in Python orMATLAB in order to have running
examples in both languages. However, unless explicitly stated, the exact same code can be used in either language
by simply replacing the basic syntax of the calls, i.e. the function names and traces are shared between languages.

2.Methods

This section provides both a context for theTIGRE toolbox and a description of themost important features that
have been added since itwasfirst published, almost a decade since this article. First, a brief description of the
tomography reconstruction problem is given, alongwith a (non-exhaustive) reviewof iterative solvers. Afterwards,
a brief description of the software architecture is includedwith the relevant references. Last, this section describes
all the significant features that have been added to the toolbox, giving an in-depth description for those that have
not been published elsewhere. These are of very different nature andhave been added in the following order:

• newly implementedmathematical optimization algorithms,

• newPython codebase implementation,

• new features concerning the applicability of the codes to real data:

- increased geometric flexibility of the operators,

-multi-GPU features for high performance computing of large tomographs,

- automatic data loaders,

- pre-processing steps for protonCT;

• PyTorchwrapper implementation (given the growing interest of data-drivenmethods in reconstruction).

2.1. Tomographic reconstruction and iterative algorithms
TheCTmeasuring (or forward) process can bemodelledmathematically using theRadon transform, which is an
integral operator that considers line integrals over the domain. Themost common approach toCT
reconstructions is to consider the large scale linear systemof equations arising from the discretization of such
measuring process, which is of the form:

˜ ( )+ =Ax e b, 1

whereA is the (known) systemmatrix describing the forward operation; x is the (unknown) vector of image
values in lexicographical order; b is the (known) vector ofmeasured (noisy) linear attenuation values in
lexicographical order; and ẽ represent the noise affecting themeasurements (bothmeasurement noise and
model errors introduced by the linearization of the real forward operator). The least-squares solution to
equation (1) can be found using theMoore–Penrose pseudoinverse of the forward operator:

( )†=x A b, 2

however, this can be far from the true solution x due to noise amplification.
For CTproblems, approximations of the analytical solution to the original Radon transformproblem exist,

the discretization of which is also known as the Filtered Backprojection (FBP) in theCT community, or the
Feldkamp-Davis-Kress (FDK) algorithm forCone BeamCT (CBCT). Thesemethods produce useful
reconstructions when the problem is not very ill-posed and there is a low level of noise in themeasurements.
This is also themost commonly used approach in practice, generally defaulting the scanning settings to
maximize the quality of the results, assuming the FBP algorithm is used for the reconstruction, rather than
considering alternatives to obtainmeaningful CT reconstructions with lower dose or scanning time.

However, there are great advantages associated to reducing the x-ray dose and scanning times in terms of
cost and safety.Moreover, it is sometimes the case where the physical limitations of the problemonly allow a
limited sampling space (e.g. limited angle tomography). In all these scenarios, the corresponding problem in
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equation (1) is ill-posed, or, in other words, small perturbations on themeasurement data can cause large
perturbations in the reconstruction. Thismeans that, in the presence of noise, the approximate solution
obtained using equation (2)will be corrupted or even totally dominated by the noise amplification. To alleviate
this, one needs to resort to regularization. One of themost well known approaches to regularization is the use of
variationalmethods, which consist on solving theminimization problems of the form:

( ) ( ) ( )a+D Ax b R xmin , , 3
x

given a distance functionD( · , · ) and a regularization functionR( · ) that penalizes constraints in the solution and
can be related to the prior of the image if one sets the original problem (1) in the Bayesian framework [23]. Here,
the hyperparameterα controls the trade-off between the imagefitting themeasured data and the image fitting the
prior information. Usually, the choice of the distance functionD( · , · ) is informed by the assumptions on the
distribution of the unknownnoise. InCT applications, themost common choice for this is to use the 2-norm,
because themeasured noise is well approximated by aGaussian distribution after the standard log-transformof
the data [4, Chapter 2.3.2]. However, some approaches consider the noise associated to the photon counts in the
rawdata, which has a Poisson distribution, so a different distance functionD( · , · ), calledKullback–Leibler (KL)
divergence, needs to be considered instead.

Different algorithms for given combinations and choices ofD andRhave been provided over the years by the
optimization and linear algebra communities, with different behaviours and convergence properties that can
lead to superior image quality. Thesemethods, almost always iterative in nature, are covered by the generic term
iterative algorithms. For example, a commonmethod to solve any convex optimizationmethod is theGradient
Descend (GD)method. Given the distance function of the 2-norm and no regularization, one can obtain a
solution of equation (3) using the iterative update

( ) ( )l= + -- -x x A Ax b , 4k k T k1 1

where k is the iteration number andλ a step size, desirably inversely proportional to the normofA. Similarly, a
common algorithm to solve the same problem given theKL-divergence is theMaximumLikelihood Expectation
Maximization (MLEM) algorithm,with an update of the form

( )=
-

-
x

x

A
A

b

Ax1
, 5k

k
T

k

1

1

given 1 an all-ones vector.
There is an abundance of alternativemethods to solve CT reconstruction problems, some accepting variants

with explicit regularization and somewith implicit regularization properties instead. These have significant
differences in convergence behaviour and solution characteristics. TIGREprovides a platformwith a vast array
of themost common solvers, implemented in such away that they can be directly usedwith real datasets. In
particular, TIGRE has the following algorithms, categorized in different classes:

• Directmethods. Thesemethods implement an analytic expression of the pseudoinverse, as in equation (2), or
suitable approximations of it. Included are FBP and FDK[24], with various filter types and geometric
correctionmethods, such asWang [25] and Parker [26]weights for detector displacement and angular range
corrections, respectively.

• Kaczmarz-type algorithms. Thesemethods are generalizations ofGD: the approximate images are updated
similarly to (4) butwith a reweighing of the rows and columns to normalize for length. Theywere rediscovered
as theAlgebraic Reconstruction Technique (ART) [27] in 1970 for CTwith the inclusion of non-negativity
constraints. Differentmodifications include the Simultaneous version (SART) [28], theOrdered Subsets (OS)
version16 (OS-SART) [29] and the confusingly named Simultaneous Iterative Reconstruction algorithm
(SIRT) [1]. Themain difference between them is the update size.

• ProjectionOntoConvex Sets (POCS) algorithms. These algorithms allow solving two convex optimization
problems jointly, in the TIGRE implementation, these correspond specifically to the ones related to the data
constraints and the regularization. Given a 2-normdata constraint, and various flavours of Total Variation
(TV) regularization (promoting pairwise smooth images), several POCS-like algorithms are available. These
include thewell-knownAdaptive Steepest Descend version (ASD-POCS) [30] and the Projection-Controlled
Steepest Descent (PCSD) [31], which reduces the required parameter selection. Versions of these two
algorithms exists for the Adaptiveweighed TVnorm [32, 33]17, andOS versions exist for the first with both TV
normsA version that uses a Bregman outer iteration is also available, B-ASD-POCS-β [34].

16
See section 2.2.2

17
See section 2.2.3
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• Krylov Subspace algorithms. These aremethods that project the original optimization problem into small
relevant subspaces of increasing dimension, producing fast converging algorithmswith intrinsic regulariza-
tion properties. This can be used in combinationwith explicit 2-norm regularization. In the following, the
word ‘hybrid’ is used to denote explicit 2-norm regularization on the projected problem [35]. In TIGRE, the
following are implemented allowing, when possible, to compute the regularization parameter automatically:
Conjugate Gradient Least Squares (CGLS) [36], LSQR [37], hybrid LSQR [37], AB/BA-GeneralizedMinimal
Residualmethod (GMRES) [38], LSMR [39].Moreover, two differentmethods that allow for approximations
of the TV regularization are also implemented: using an Iterative ReweighedNorm (IRN) approach IRN-TV-
CGLS [40] (this is an inner-outer schemewhere quadratic approximations of the functional are solved using
CGLS) and a hybrid-flexible approach: (f)LSQR-TV [41] (which avoids inner-outer loops by using a single
flexible Krylov subspace).

• Statisticalminimization algorithms. Thesemethods are based on the understanding of the problem (3) as a
Bayesianminimization problem tiedwith theKL-divergence distance function.MLEMhas already been
introduced in equation (5), and itsOS-counterpart, widely used in emission tomography, OSEM[42], is also
available.

• Proximal algorithms.More recently, optimization algorithms that combine proximal operators have been
shown to be successful in image reconstruction. For the 2-norm andTVproximal operators, TIGREprovides
the Fast Iterative Shrinkage-Thresholding algorithm (FISTA) [43] and further improvements for faster speed
[44].Moreover, TIGRE also includes the SART-TV algorithm [45], whichwas not originally proposedwithin
this framework, but that can also be interpreted as a proximalmethod.

Some of the algorithmsmentioned abovewere already available in the original TIGRE release, butmany
have been added over the years into its current version.New introductions to TIGRE are described inmore
detail in the following sectionswherever appropriate, but the authors suggest reading the original articles for a
more in depth description. A summary of all the available algorithms (as of this date), can be found in
Appendix A, alongwith their corresponding citations, both in the original literature and in the corresponding
TIGRE-specific implementation papers.

2.2. Improvements on the iterative reconstruction tools in TIGRE
This section describes the enhancement of iterative reconstruction algorithms available in TIGRE since the first
release. This section is divided into three, describing first the addition of Krylov Subspace algorithms to TIGRE,
thenOrdered Subsets (OS) types of block-action algorithms, and finally a brief description of variousminor yet
useful features and regularization tools included since itsfirst release.

2.2.1. Krylov subspace algorithms
Krylov subspacemethods are a class of iterative solvers for linear equations of the form (1). Because they are
naturally regularizing, they are especially suited for inverse problems.Moreover, these are projectionmethods
which only requirematrix-vector products with the systemmatrix (and its adjoint), so they are very suited to
solve large-scale problems. The TIGRE toolbox features a collection of some of themost standardKrylov
Subspacemethods for non-squarematrices (CGLS, LSQR, LSMR), possibly in combinationwith Tikhonov
regularization, as well as recent developments including total variation (TV) regularization andmismatched
backprojectors. An in detail explanation of the algorithms aswell as its TIGRE implementation can be found
in [46].

2.2.2. Ordered subsets algorithms
Ordered Subsets (OS)methods are named after the fact that only a subset of the data is used to update the
solution of the tomographic reconstruction problem at each iteration. Particularly, at iteration k, the solution x k

is updated using a row-wise subsample of thematrixA, namelyAs, and therefore only the corresponding part of
themeasurements b, namely b s. These algorithms aremost commonly known as block-iterativemethods in the
mathematical community [47]. For example, similarly to equation (4), an approximate gradient step for the
2-normdistance for solving equation (3)withOSwould be

( ) ( )l= + -- -x x A A x b , 6k k
s
T

s
k

s
1 1

where s defines a row-wise block of thematrixAwhich changes at each iteration.
Compared to algorithms that use the entirematrix in their update step (e.g. SIRT), OS algorithms require

more (partial) updates to use all themeasured data.However, they arewell known for accelerating the rate of
convergence, in the sense thatmany fewer iterations (defined as the number of times that thewholematrixA is
seen) are required to produce a reconstruction of comparable quality. On the other extreme, algorithms that
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update the solution projection by projection display faster converge in terms of the number times that one needs
to access thewhole systemmatrix, but they are often very slow inwall-time due to the large computational cost
of having to update the solution a higher amount of times. Therefore, OS algorithms produce a reasonable
middle ground algorithmbetween fastmathematical convergence and fast runtime [48]. This is why their use in
CT is common, particularly inKaczmarz-likemethods (e.g., OS-SART [49]) and themost used algorithm in
emission tomography like PET and SPECT is of this family (namelyOS-EM [42]).Moreover, there aremany
algorithms that can be used in combinationwith anOS scheme. This is the case ofmethods designed for solving
problemswith explicit regularization that require update steps that are only related to the data-minimization
term,without any particular prescriptions on the formof this update. In the original version of TIGRE,OS-
SARTwas available. Since, ASD-POCS, AwASD-POCS, PCSD, AwPCSDandMLEMnowhave anOS
counterpart.

When invoking these algorithms, a parameter that regulates the size of each block (in number of projections
per block) can be selected by the user, as seen in Snippet 2.2.2 for ASD-POCS and its block-action counterpart.
Updating can be done sequentially, randomly or viamaximum information updates.

Code Snippet 1: OS-ASD-POCS algorithm in Python

1 import tigre. Algorithms as algs

2 n_iter=10

3 res_asd_pocs = algs.asd_pocs(projections, geo, angles, n_iter)
4res_os_asd_pocs = algs.os_asd_pocs(projections, geo, angles, n_iter, blocksize=20)

2.2.3. Algorithm features
New features that are useful formost algorithms have been introduced to TIGRE since its original release. Here is
a short summary:

• Residual computing. The residual normhistory ∥Axk− b∥, for each iteration number k, is an interesting value
to trackwhen comparing iterativemethods, as it directly describes howwell the current reconstruction of the
image fits the data. This computation per iteration is costly (it requires an extra forward projection) but
TIGREnow allows users to ask for this residual, if desired, for algorithmperformance comparison.Note that
Krylovmethods include away of estimating this quantity at no extra cost per iteration. Last, note that an exact
fit is not desired, as that would alsofit the noise present within the sinogram b.

• Ground truth comparison. The error normhistories ∥xgt− x k∥, given a known ground truth image xgt, are
also of capital interest when studying algorithmperformance. Note that, due to the ill-posedness of the
problem,metrics solely based on the residual normmight bemisleading. TIGREnow allows to input a ground
truth to be compared against the current iterate during reconstruction.

• Automatic regularization selection. Krylov subspace algorithms have a single regularization hyperparameter
when used in combinationwith variational regularization, i.e.α in equation (3), and there exist extensive
theory on how to chose this parameter optimally [35]. Some algorithms in TIGRE include therefore automatic
regularization parameter selection. If the noise-level value is either knownor can be estimated, it can be
inputted as a parameter of the algorithm to guide the choice of regularization parameter in the optimization
problem, using the so-calledDiscrepancy Principe (DP) [50]. Otherwise, theGeneralizedCross Validation
(GCV) [51] is used instead to update the regularization parameter at each iteration. Formore details on the
implementation see [46].

• Adaptive weighted total variation. Thewell knownTotal Variation (TV) regularization promotes piece-wise
constant reconstructions. However, this can sometimes have a significant effect in the shape of sharp edges,
often themost important part of CT image analysis. Adaptive weighted TV (AwTV) [32], introduces a penalty
termwi,j in order to only account for small variations in pixel values (mostly caused by noise), but not penalize
large ones (which aremore likely to represent real edges). Thus, the newTV termwith adaptive weights (for
the two-dimensional case) is:

( ) ( ) ( ) ( )å= - + -
=

-

- -w x x w x xxAwTV , 7
i j

n

j i j i j i i j i j
, 1

1

, , 1
2

, 1,
2

withweights defined as

( ) ( ) ( )= =d d
-

-
-

-- -

w e w e, , 8i

x x

j

x xi j i j i j i j, 1, 2 , , 1 2
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with a parameter δ, that produces exactly the TVnormwhen δ→∞. TheAwTVnorm can be nowusedwith
any POCS-type algorithm, and a gradient descendminimizer of the function is available for users.

• Data redundancyweighting on iterative algorithms. The data redundancyweighting applied in FDK for the
cases where the detector is offseted have been shown to improve reconstruction of SART and gradient
descend-like algorithms [52, 53]. All algorithms that accept this type of weighing nowhave it by default.

2.3. Python implementation
On its original release, TIGREwas only aMATLAB toolbox, which limited its definition as a free and open
source toolbox, asMATLAB is neither free nor open source itself. Now, all TIGRE’sMATLAB codebase has been
duplicated into the Python language, and can be found in the same repository at github.com/CERN/TIGRE/
tree/master/Python, including demos of all features. The structure and functionality of both implementations
is the same, however, few technical differences exist: such asmemory unrolling ordering formultidimensional
arrays, the use of Cython rather thanMATLABsMEX interface or the import hierarchy that does not exist in its
counterpart.

Moreover, there is a notable difference between theMATLAB and the Python releases which goes past the
technical aspects: the Python version uses anObject Oriented Programming (OOP) paradigmwith a systemof
classes and inheritance, where all algorithm are children of aIterativeReconAlg class that sets some
commonmethods and attributes and offers a framework for other algorithms to build upon. Examples of the
Python interface are given across this document.

2.4. Geometricflexibility
In its original form, TIGRE allowed formost standard circular CBCT geometries, such as detector shifts, or
reconstructions of images not centered in the axis of rotation.However, since thefirst publication [7], it has been
evident thatmore complex geometries are both required for several non-standard but common scans, such as
helical CT, tomosynthesis [54] or laminography [55], among others.Moreover, researchers onCTmethods are
showing an increased interest in exploringwith complex scanning paths and setups, and having the right
computational tools for both producing simulations and reconstructions can be of crucial importance. Thus,
TIGRE’s geometricflexibility has been updatedwith several important features:

• Detector in-place rotation. The detector is assumed to lie in the orthonormal plane to the source-to-detector
line. However, this is not necessarily true either by design or bymechanical inaccuracies. For example,
scanners settings like those used in laminography or tomosynthesis purposely havemeasurements where the
detector is not orthonormal to the source. This can be easily expressed (equivalently) by a rotation of the
detector instead of a circular CBCT trajectory.Moreover,many scanners havemechanical inaccuracies that
arise after use, and calibrationmethods exists to correct such changes algorithmically [56]. TIGREnow
accepts in-place (f, θ,ψ) rotation angles for the detector.

• Center of Rotation (CoR) correction. Inμ-CT scans, where the sample rotates, rather than themachine, it is
standard that the axis of rotation is slightly shifted away from the source-to-detector line.While this could be
describedwith a changing image combining a detector shift and a detector in-place rotation, it is significantly
easier to describe as a shift in the axis of rotation itself, as TIGRE allows now.

• Arbitrary axis of rotation. To fully describe any geometry, onewould also need to allow for any arbitrary axis
of rotation, not only a vertical one, as a standard circular CBCTmachine produces. This enables the use of
TIGREnot only on experimental lab setups, but also inmore standardC-armCBCTmachines. The
implementation allows now to include Euler ZYZ (z1, y1, z2) angles as gantry angle rotations. In the diagram
presented infigure 1, a positive angle of rotation corresponds to an anti-clockwise turn, as represented by the
arrow in the rotation angle symbols.

• Curved detectors.Whilemost CBCTdetectors are planar, 2DCTdetectors are often curved (with equidistant
source-detector distance in each pixel). Recently, some experimentation is being done on curvedCBCT
detectors. In that spirit, TIGREnow allows to consider curved detectors by applying a ‘flattening’
transformation.When projecting data from a curved detector onto a virtualflat detector, the pixel size of the
flat detector is determined by the radial projection of an arc segment from the curved detector. The values are
then interpolated to ensure that the pixels on the virtualflat detector are uniformly sampled. As a
consequence, due to the geometry of the projection, the virtualflat detector ends upwithmore pixels than the
curved detector because each pixel on theflat detector represents a smaller portion of the curved detector’s
surface.
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• Per-projection geometry. In order to allow a fully flexible geometry for any arbitrary CBCT scan that exists
and could be imagined, the defined geometry parameters should be able to vary for each projectionmeasured.
Thus, TIGREnow allows for all geometry defining parameters, except the image and detector size in both
voxels and real world units, to be defined individually for each projection. This allows for arbitrary scanning
geometries, as shown in [57].

All this considered, the geometric diagramof TIGRE shown in the original release (figure 1 in the original
article [7]), should be updated tofigure 1 presented here.

Figure 1 can be better understood if we provide a brief description of the default scanning geometry assumed
byTIGRE.Here, the scanner is assumed to rotate around afixed, static object. This volume is centered at the
Oxyz axis, which does not rotate with themachine, but the originO is allowed for offsets, so some other scanning
modes, such as the helical scanning can be realized. The detector is assumed to be centered in the source-origin
(S-O) line, at point D (with distanceDSO from the origin). An auxiliary axis exists for the detector, uv, with an
origin in the bottom left corner of the detector and always alignedwith the detector itself. The rest of the
parameters in the geometry definition of TIGRE,which allow formodifications of the default settings, are
described inAppendix B.

2.5.Multi-GPU support
Since CT reconstruction is a very computationally heavy task, it benefits from access to any computational
resources available.With the raise of multi-GPUmachines, now a staple computational resource inmost
CT laboratories and hospitals alike, TIGRE has been extended to support multiple-GPU computing [58].
This allows faster computations inmultiple GPUmachines and also enables larger-than-memory
computations.

The TIGRE implementation of this support is done via a novelmemorymanagement approach that
seamlessly distributes any computationally heavy operation (forward and backprojector, and regularization
optimizers) acrossmulti-GPUs (either user selected, or all available), in such away that the computation scales
linearly with the number ofGPUs. In addition to providing a faster execution time, the splitting algorithm that
TIGRE implements can be used to reconstruct images that are larger than theGPUmemory. This is, for
example, a very common scenario inμ-CT applications, where both the projection and the image sizes are often
bigger thanmost commonplaceGPUDRAMsizes. This allows, as long as theCPURAM is large enough, to
reconstruct large images on arbitrarily small GPUswith aminuscule extra computational footprint added. This
is achieved by optimized overlapping ofmemory copies and computational kernels in theGPUs, such that
memory is only copied in or out of theGPUwhile computing is performed, and the projectors almost never need
towait for amemory transfer tofinish.More information can be found in [58].Moreover, in the cases where the
CPURAM is still too small for the problems in hand, TIGRE also allows the use of swapmemory.However, this
will be slower for twomain reasons: the novelmemorymanagement system cannot be used in this case, and
swapmemory is slower thanRAM. Lastly, the TIGRE toolbox includes aGPU-management system that allows
the user to select whichGPUs theywant to use, either by name orGPU id. This is an essential tool for users
computing in heterogeneous platforms or shared resources. Code Snippet 2.5 showcases how this can be
selected, and passed into an algorithm.

Figure 1.Diagram of geometric parameters of TIGRE for a single x-ray projection.
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Code Snippet 2: Optional GPU selection in Python

1 from tigre.utilities import gpu

2 gpuids = gpu.getGpuIds(‘1GeForce RTX 2080 Ti’) # Will only select these GPUs

3

4 gpuids = gpu.GpuIds() # Get all GPUs

5 gpuids.devices = int32(2:3) # Only use IDs 2 and 3

6

7 import tigre. Algorithms as algs

8# Define projections, geo, angles, n_iter

9 res_cgls = algs.cgls(projections, geo, angles, n_iter,gpuids=gpuids)

It is worth noting that having thismulti-GPU features is crucial for theμ-CT community to gain access to
the iterative reconstruction field, allowing the testing of large acquisitionswithmodern reconstructionmethods
[59–61].

2.6.Data loaders
Akey and often non-trivial feature of a user-driven toolbox is the capability of loading datasets directly from the
output of the devices that acquired themeasurements. This is particularly true for CT, because a standard file
format for sinograms does not exist. On the contrary, each scannermanufacturer has a uniqueway of storing the
measurements and scanning parameters, often changing between different versions of software of the same
manufacturer. Correct data and system geometry loading is often key. In TIGRE, data loaders for 6 different
major CTmanufacturers are available, 2 from themedical community (Philips, Varian)18 and 4 from theμCT
community (Comet Yxlon,Nikon, Bruker, Diondo). Additionally, theData Exchange (DXChange) format [62],
proposed for synchrotron tomography sharing, is also supported. Among these, theVarian loader contains a
much higher set of functionalities for the preprocessing of the data, andTIGRE emulates theVarianCBCT
machines pipeline19. This is explained inmore detail in the article by Yi et al [63].

The data loaders are included in TIGRE such that loading any complex dataset can be called in a single line of
code containing image loading, geometry reading and any other preprocessing operations needed, such as
applying the Beer-law to the projection. The following snippet highlights how it is used:

Code Snippet 3: Data loading script in Python

1 import tigre.utilities.io as tigreio

2 projections, geometry, angles = tigreio.NikonDataLoader(‘/path/to/dataset’)

Fewother features are available, such as the ability to load partial datasets, or collections of datasets, when
available.

2.7. Proton computed tomography
Since the early 2000s, proton therapy centers have been playing an increasingly important role in cancer therapy.
This is because the unique properties of these particles allow treating deep-seated tumorswith high precision
(sharp dose-deposition). In order to fully exploit the potential of proton therapy, the planningCT could be
measuredwith protons aswell. This would allow bypassing the inaccuracies in treatment planning that arise
from the conversion ofHounsfield units (obtained from a standard planningCT) to relative stopping powers of
protons, and could effectively improve therapy [64].

The properties of an imaging setup for proton computed tomography (pCT), whichwasfirst described in
[65], differ from those of standardCT, and hence both themodelling and the subsequent reconstruction
algorithms need to bemodified accordingly. Themain difference is that proton paths throughmatter cannot be
accurately approximated by a straight line, due tomultiple Coulomb scattering, and therefore information
obtained fromparticle tracking has to be included in the reconstruction process. TIGRE includes a novel
preprocessing step to do this [66], which allows generating optimized (rebinned) radiographs from the pCT
measurements. Thismethod is based in [67], where amaximum-likelihood approach combinedwith a cubic
spline estimate for the proton pathwas used to obtain proton radiographswith high resolution. For improved

18
Philips andVarian data loaders are only available inMATLAB at the time ofwriting.

19
The authors do not have proprietary information onVarian software, the functions here are reverse engineered fromdomain knowledge,

not private information.
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pixel weighting in the radiographs, a cylindrical object hull can be used as input in the newly implemented
binning step in TIGRE.While the binning itself is implemented in CUDA, the user can call themethod, after
defining the geometry, by a one-lineMATLAB command:

Code Snippet 4: Binning of pCT data into optimized radiographs

1 geo =% De f ine geometry as usual

2 % New geone t ry parameters

3 geo .DSID = 300’ % Di s tanc e between sour c e and upstream de t e c t o r.

4 geo .DSD = 700’ % Di s tanc e between sour c e and downstream de t e c t o r.

5 geo . h u l l = [ 1 5 0’ 15 0; 0’ 4 0 ]’ % Convex hull

6

7 pRad = pCTCubicSpline mex ( data . posIn, data . posOut, data . di r In, . . .
8 data . dirOut, data .Wepl, eIn, geo )’

In the code snippet, pRad refers to one optimized proton radiograph: for a full pCT, this step has to be
repeated for each radiograph. The data input is a list of the proton positions and directions upstream and
downstream the patient, thewater-equivalent path lengthmeasured for each proton, the incident proton energy
and the pCT imaging geometry (which now also contains the locations of the particle tracking detectors and
optionally an object hull). A demofile has been added to TIGRE to facilitate easier usage. After all proton
radiographs have been preprocessed, any implemented reconstruction algorithm inTIGRE can be used
seamlessly without any further adaption for pCT. This code is only available inMATLAB at the time ofwriting.

2.8. PyTorch operatorwrappers
State-of-the-art CT reconstruction includes data-drivenmethods,many of which useCT operators (forward
and backprojection)within themodel, e.g. Learned Primal Dual [68]. As for the time ofwriting, Torch, and in
particular PyTorch [9], is themainmachine learning library used in academia and industry. TIGREnow
includes an optional PyTorch binding that allows TIGREprojectors to be included inside PyTorchmodels, and
be treated as a linear differentiable operator by the automatic differentiation engine. Code Snippet 2.8 shows
howTIGRE auto-differentiable operators can be created to usewithin PyTorch.

1 Code Snippet 5: Use of TIGRE’s PyTorch bindings

2

3 geo = tigre.geometry(mode="fan")
4 angles = np.linspace(0, np.pi, 200)
5 ax, atb = create_PyTorch_operator(geo, angles)
6# Now ax and atb can be used inside autograd-enabled pipelines

7 import torch

8 device = torch.device("cuda:1")
9 input_volume = torch.randn([2,geo.nVoxel[0], geo.nVoxel[1],geo.nVoxel[2]],
10 requires_grad=True).to(device)
11 sino_batch = ax(input_volume) # returns batched torch tensor

12 image_batch = atb(sino_batch)

While this allows for TIGRE to be usedwithin PyTorch, it is important tomention that the embedding of the
operators is not as sophisticated as it is with other tools, e.g. tomosipo [10]. Particularly, TIGRE’s approach
requires thememory to be transferred from aPyTorch tensor to aNumPy array, whichmoreGPU↔CPU
memory transfers are needed than in tomosipo.

3. Results

In order to showcase the usability of TIGRE in a variety of real datasets, we present several experiments alongside
the code needed to reproduce them. Thefirst example concerns a clinical scenariowith patient data. The second
example consists of a synchrotron parallel beam tomographic reconstruction. The third example corresponds to
aMonte Carlo simulation of a protonCTproblem (due to its early stages of development as a device). Next, a
neutronCT scan is showcased. Finally, the last example involves an industrialμCTdataset.

It is important to note that this documents is notmaking scientific statements aboutwhich reconstruction
techniques are best in any of the experiments presented here. This is because, often, the performance of CT
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imaging reconstructions is heavily dependent on secondary tasks, e.g. the best image for segmentation is not
necessarily the best image for diagnosis. Similarly, human eyes are biased towards natural looking images, rather
than themaps of scalar fields outputted inCT reconstructions.Moreover, experts fromdifferent fields have
sometimes trained their perception tofilter out noise, e.g. a radiologist knows how to identify the differences
between an artifact and a lesion inmedical CT. Therefore, the only claimwemake in this work is that
reconstructions obtained using different algorithms are different, and that theymay be of interest in different
scenarios. For this reason, there is a real value onmakingmore reconstruction algorithms easily available for
both clinician and algorithmdevelopers, as well as platforms to promote knowledge transfer between them.

It is alsoworth noting that all the experiments presented in this section have been run in a personal high-end
desktop (Ryzen 5, 32 GBRAM,RTX4070), and not in a largeworkstation, highlighting the power of TIGRE to
produce computationally fast results in day-to-day usemachines. Computational times for each of themethods
are reportedwhen introduced.

3.1.Medical dataset fromaVarianCBCTmachine
With thedata loading andpre-processing tools added toTIGRE for .ximfiles, particularly for theVarian range of
onboardCBCTmachines, iterative algorithms can easily be utilized in clinical images. This experiment showshow
to read and reconstruct such images, inparticular fromaVarian EdgeCBCT situated atBeijingCancerHospital.

Thefirst dataset is a head scanwith projections of size 1024× 768 takenon a limited arc rangeof 200o, uniformly
sampledwith 493projections,where the size of the reconstruction is 512× 512× 362 voxels. Theprojections are
loaded andpre-processedwith thedata loader, and then reconstructedusing three different algorithms: FDK (4.5 s),
OS-SARTwith 50 iterations (118 s), andOS-ASD-POCSwith 50 iterations (160 s). The latter includesTV
regularization to reduce the noise in the reconstruction. The script that produces the reconstructions canbe seen in
Snippet 3.1 and twodifferent slices of thehead at different craneo-caudal slice values canbe seen infigure 2. Each
reconstruction took less than 5minutes (few seconds for FDK) in a personal desktop setup. In the reconstruction,
one can see thatOS-SARTandOS-ASD-POCSproduce imageswith less pixel-level noise thanFDK,particularly
noticeable inOS-ASD-POCS, as it hasTV regularization,whichpromotesflatter images.

Code Snippet 6: MATLAB code to reconstruct Varian CBCT data 1 % Load TIGRE

2 InitTIGRE’

3 % Load

4 [projections, geo, angles] = VarianDataLoader ( ‘./path/to/Head/scan’);
5 % Reconstruct

6 recon_fdk = FDK(projections, geo, angles);
7 recon_os_sart = OS_SART(projections, geo, angles, 50);
8 recon_tv = OS_ASD_POCS(projections, geo, angles, 50);

3.2. Synchrotron dataset
Synchrotrons are large electron accelerators that have become an essential experimental facility for scientific
discovery because they produce high quality x-rays ofmonochromatic energy and lownoise statistics. This can
be used to obtain extremely high quality CT images, and it also allows for alsomore complex experiments, such
as x-ray crystallography, x-ray diffraction imaging and several differentmodalities. For this reason, they are
routinely used formaterial science, biology andmany other applications.

While synchrotron experiments oftenproduce veryhighquality data, and thus iterative reconstruction is often
unnecessary, this is not always the case. In this experiment, taken fromtheTomoBankdata repository [69], a single
noisy time-frame fromadynamic acquisition is reconstructed (tomoID=00031). Specific information about the
experiment canbe found in [70, 71]: in short, often scientistwant to perform in-situ experiments and image the
evolutionof certainprocesses. In these cases, the acquisition timehas tobe severely reducedwith respect to the
optimal timeonewouldneed to capture thedynamicsof the experiment. Thus, imagingdata is very lowdose and
therefore contains very high levels of noise,whichproduces severe artifacts in the commonlyusedFBP
reconstruction, as seen in the top-left offigure 3. In this experiment, the projections are of size 960×900 and sampled
over 900 angles, uniformly distributed around180o range. The reconstructed imageshave 960×960×900 voxels.

In this experiment, several algorithms are used to reconstruct the same data to showcase the different nature
of the resulting images. In Snippet 3.2we can see the code that produces the images infigure 3, where six
different reconstruction can be seen. The leftmost column shows FBPwith the standard ramp filter on top and
FBPwith a noise-rejectingHamming filter on the bottom. The second column shows two iterative
reconstruction algorithmswith no explicit regularization function, LSQRon the top and SIRT on the bottom.
The last column shows TV-regularized algorithms, namely FISTA andOS-ASD-POCS, with their higher noise-
rejection behavior.
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Code Snippet 7: MATLAB code to reconstruct synchrotron data 1% Load TIGRE

2 InitTIGRE ;

3 % Load

4 [projections, geo, angles] = DXChangeDataLoader("./data_file.h5");
5 % Reconstruct

6 recon_fbp = FBP(data, geo, angles);
7 recon_fbp_hamming = FBP(data, geo, angles,’filter’,’hamming’);
8 recon_lsqr = LSQR(data,geo,angles,20);
9 recon_sirt = SIRT(data,geo,angles,150);
10 recon_fista = FISTA(data,geo,angles,50,’tviter’,50);
11 recon_os_asd_pocs = OS_ASD_POCS(data,geo,angles,20,’blocksize’,80);

3.3. Proton computed tomography
Using the code demonstrated inCode Snippet 2.7, optimized proton radiographswere calculated in [66], using
as input parameters themeasuredwater-equivalent thickness, the initial proton energy, the upstream and
downstreampositions and directions for each proton and the pCT geometry. The pCT geometry closely follows
the standard geometry definition in TIGRE, however, the locations of upstream and downstreamdetectors (as
opposed to only one detector in conventional CT), as well as the convex hull (here implemented as a cylinder)
have to be declared.

For this example, Catphan phantomsmodules [72] (15 cmdiameter)were simulatedwith theMonte Carlo
toolkit Geant4 [73] and irradiatedwith 225 protons/mm2. The syntheticmeasurements were then combined
into optimized binned radiographs in TIGREwith the newpCT implementation, to create 90 radiographs (4
degree steps over a range of 360 degree) of the high resolution phantom (PMMAbodywith aluminium line pair
insets). The experiment data was obtained from the the ‘non-ideal’ parallel simulation case (realistic energy
resolution ofΔE/E= 1%, detector resolutions ofσs= 0.15mmand detector thicknesses of 300μm), that was
described in full detail in [66]. These optimized radiographs can be used as CT-like data in TIGRE andhence
inputted to the implemented algorithmswithout further adaptation.

Code Snippet 8: Reconstruction of optimized proton radiographs.

1 % Load opt imi z ed proton radiographs

2 recon_fdk = FDK(projections,geo,angles);
3 recon_tv = ASD_POCS(projections,geo,angles,20);
4 recon_osem = OSEM(projections,geo,angles,50);

Figure 2.Reconstruction from aVarian Edgemachine, 200o arc head scan at Beijing CancerHospital. Rows showdifferent slices of the
head, columns show the FDK,OS-SART (50 iterations) andOS-ASD-POCS (50 iterations) reconstructions, from left to right.
Visualization is linear attenuation coefficients in range [0-0.05].
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The resulting reconstructions are displayed infigure 4, for FBP (0.4 s), OSEMat 50 iterations (58 s) andASD-
POCS at 20 iterations (110 s).While the filtered-backprojection results in the noisiest image, OSEM results in a
smoother but blurrier image. In all cases, despite the very lownumber of projections used, the algorithms still
allow viewing details of the aluminium line pair insets of the phantom. The least amount of noise in the
reconstructionwas obtainedwith the ASD-POCS algorithm.

3.4. Neutron tomography dataset
Neutron imaging is a highly accurate non-invasivemethodwhich can be used to image objects containing light
elements encased inside a heaviermaterial [74]. This is because the properties of neutrons are complementary to
those of x-rays, i.e. the transmissivity of neutrons withmetallic elements is higherwhile their transmissivity with
light elements is lower.However, this imaging technique sometimes leads to very slowmeasuring times, often
making it impractical to obtain full anglemeasurements. Formore information, we refer the reader to
Appendix C.

The neutron image dataset in this experiment was obtained at the Thai Research Reactor-modification 1
(TRR-1/M1) located at the Thailand Institute ofNuclear Technology (TINT). In this facility, it generally takes at
least 14 hours to acquire the 501 projection images, covering 180 degrees in intervals of 0.36 degrees required to
obtain a crisp reconstruction using FBP. This long scanning time is currently limiting their potential
applications, so they are exploring the use of iterative algorithms to produce reconstructions of similar quality
with a limited number of projections.

For the presented experiment, the thermal-neutron flux at the imaging positionwas 2.5 Ã— 105 cm−2s−1.
Themain instruments of the neutron imaging system consist of a neutron-to-photon conversion platemade
from6LiF/ZnS, a 45-degreemirror, a sample rotation systemoperated by in-house developed software, a
Nikkon 50-mm/f1.2 lens, and a 2048× 2048-pixel CCD camera. The Field-of-View (FOV) is 20× 20 cm2 and
the L/Dratio is 78. In this experiment, four reconstruction algorithms (FDK (0.4 s), SARTwith 100 iterations
(440 s), SART-TVwith 100 iterations (794 s), and SIRTwith 100 iterations (66 s))were used to reconstruct the
same neutron tomography dataset with an extremely limited set of neutron projections. The sizes of the
projection data are 887× 887 pixels, taken on an arc range of 180o in 18o increments, leading to a total of 10
projection images per set (as opposed to the standard 0.9o increments, leading to a total of 201 projection images
per set). The size of the reconstructions is 512× 512× 720 voxels. Thefilter Shepp-loganwas used for the FDK
reconstruction. One hundred iterationswere executed for the SART, SART-TV, and SIRT algorithms. The codes
that produce the reconstructed images infigure 5 can be seen in Snippet 3.4.

Figure 3. Synchrotron dataset acquiredwith settings for a dynamic in-situ experiment. Reconstructions are, from left to right and top
to bottom: FBPwith linearfilter (17 s), LSQRwith 20 iterations (249 s), FISTAwith 80 iterations (1330 s), FBPwithHamming filter
(17 s), SIRTwith 150 iterations (1330 s) andOS-ASD-POCSwith 20 iterations (856 s).
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Code Snippet 9: MATLAB code to reconstruct neutron tomography data

1 % Load TIGRE

2 InitTIGRE ;

3 % Load data

4 [proj,geo,angles] = TINTDataLoader(data_folder) % This function is not in TIGRE

5 % Reconstruction

6 recon_fdk_shepp_logan = FBP(proj, geo, angles,‘filter’,‘shepp-logan’);
7 recon_sart = SART(proj,geo,angles,100); %SART f o r 100 iterations

8 recon_sirt = SIRT(proj,geo,angles,100); %SIRT for 100 iterations

9 recon_sart_tv = SART_TV(proj,geo,angles,100); %SART_TV for 100 iterations

A representation of the reconstructed images is shown infigure 5: the left-most column shows the SIRT
reconstruction; the second column shows the SART_TV algorithm, which is based on SARTwith additional TV
regularization; the third column shows the standard SART reconstruction; and the right-most column shows
the FDK reconstructionwith a Shepp-loganfilter. Since this experiment considered an extremely limited set of
data, the resulting images lack definition around the edges of the padlock components in all reconstructions.
However, it can be obviously seen that the results obtained using the FDK algorithm showmore severe artifacts.
If we compare the results obtained using the three iterative algorithms, we can observe in the top part of the
padlock on column three offigure 5 that the reconstruction given by SARTpreserves edges better than the other
algorithms.

3.5.DiondoμCTdataset
When radiation dose is not an issue,micrometre-range pixel resolutionμCT scanners are often used,
particularly increasingly being used in industry for non destructive testing. The high resolution, however, is
linked to long scanning times; andwhile this is acceptable for some applications, it is a hindrance if the
scanning is used for continuous inspection of samples. InμCT, when there is no limit to the scanning time
and if we have access to the object from all directions and if the object is approximately cylindrical with no

Figure 4.Reconstructions of simulated pCTprojections of theCatphan high resolution phantom [72]. From left to right: FBP, ASD-
POCS andOSEM.

Figure 5.Neutron tomography dataset of the padlock taken at Thailand Institute ofNuclear Technology (TINT). From left to right:
reconstructions using FDKwith Shepp-logan filter, SART, SART-TV and SIRT. All the iterative algorithmswere executed at 100
iterations.
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significant variations in x-ray path length through the object, the FDK algorithm produces very high quality
reconstructions: with enough radiation exposure, the signal to noise ratio of the data is sufficiently high to
minimally impact the reconstruction. This is not true when faster scans are needed, as either the projection
data has to be acquired faster, thus withmore noise, or less projection data are acquired. This example falls
into the latter category where, to speed-upmeasuring times, an Energizer AAAA battery ismeasured in only a
subset of 258 out of the 1258 projection angles prescribed in a conventional scanning regime. The scan was
acquired at the University of SouthamptonμVis lab, which is part of theNational x-ray Computed
Tomography (NXCT) facilities of theUK, on a diondo d5 using a 300 kVp x-ray transmission source, with a
detector size of 2000× 2000 (reduced by selecting the 800× 2000 pixel central region), in helical
trajectorymode.

A representation of the reconstructions obtained using FDK (21 s) and the FISTA algorithmwith TV
regularization run over 20 iterations (425 s) can be seen infigure 6, following the code in Snippet 3.5. The images
are 600× 600× 2000 voxels. The reconstruction obtained using FISTA seems to bemuch less noisy, albeit a bit
blurry in some areas. A better choice of hyperparametersmay be able to improve the reconstruction, however it
is also important to note that FDK is sometimes sufficiently performing, and thismay be one of such cases. It is
likely that FISTAwould be a better algorithm to use for segmentation, but if visual inspection is only needed,
FDKdoes a perfectly fine job. This is ultimately true for any reconstruction algorithm and application: image
quality is dependent onwhat the image is needed for, it is not itself a target.

Code Snippet 10: MATLAB code to reconstruct Diondo Helical data

1 % Load TIGRE

2 InitTIGRE ;

3 % Load

4 [projections, geo, angles] = DiondoDataLoader(‘./path/to/battery/scan’);
5 % Reconstruct

6 recon_fdk = FDK(projections,geo,angles);
7 recon_fista = FISTA(proj,geo,angles,20,‘hyper’,2e2,‘init’,‘FDK’,‘tviter’,50);

4.Discussion and conclusions

In this work, we present nearly a decade’s worth of scientific advancements in the field of CT reconstruction,
encapsulated in the open-source code contributions to the TIGRE toolbox. These contributions correspond to a
twenty-fold increase in the code-base of the toolbox, and have allowed an effective and practical transfer of

Figure 6. Scan of an Energizer AAAAbattery acquired in a diondo d5 scanner at theμVis lab at theUniversity of Southampton using a
helical acquisitionmode. Top shows FDKand bottomFISTAwithTV regularization (20 iterations).
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knowledge from themathematical fields of optimization and inverse problems into the experimentalists’world,
as the various examples in this article, and hundreds of users of TIGRE show.

One of themain goals of the TIGRE toolbox is to provide tested and robust implementations of iterative
algorithms that can be used on real data acquisitions in lab-environments.Moreover, whenever possible, the
released implementations have been standardized (in terms of parameters choices, etc) to ease comparison and
applicability. Currently, it already contains 23 standardized algorithms, and this number keeps increasing.

As highlighted in this article, stand-alone reconstruction algorithms are not sufficient for reconstructing real
data. On the one hand, effective CT reconstruction requires operators (forward and backward) that are not only
geometrically adaptable but also computationally efficient, and that can be incorporated easily in any structured
algorithm implementation. Since itsfirst release, TIGRE has kept on improving the computational speed and
flexibility of its operators, facilitating the seamless reconstruction of experimental data. On the other hand,
handling data from various scanners is a complex task involving thousands of lines of code, which is crucial both
to simplify the testing of different algorithms by practitioners, as it is to successfully evaluate the performance of
a new algorithm for different problems. To address this, TIGREnow includes data-loading support for seven
differentmanufacturers, all of themverified on real scanners.

While great efforts to simplify the use of iterative algorithms for non-experts has been done, the authors
acknowledge that it is sometimes complex to knowwhich algorithm to use under specific scanning conditions or
how tofine-tune them to the appropriate parameters. Suggestions and guidelines exist in the TIGRE repository,
but futureworkwill rely on improving automatic parameter selection and attempting to have amore systematic
way to help users select algorithms.

On the topic of algorithm selection, it is important tomention that definingwhatmakes an algorithm good
is not possible. It is not uncommon to promote algorithmperformance assuming that thefinal image quality
compared to a reference is themost important feature (even if themost commonly usedmetrics fail at this task
[75, 76]), however image quality itself is a relativemetric. For example, an image for diagnosis inmedical CTor
an image for radiation treatment would focus on different things, detectability in the first case, but quantitative
accuracy in the second. The best image reconstruction for each of these tasks is not the same. Similarly, aμCT
image formetrology ormaterial characterizationwould be evaluated very differently onwhat constitutes quality.
This is why it is so relevant thatmany iterative algorithms exist, andwhy it is important that these can be
readily used.

In this work, we alsowant to highlight the broad range of applicability of iterative algorithms, and of the
toolbox itself, with respect to different imaging types.We highlighted examples of all themain 3DCT
modalities, namely synchrotronCT,medical CBCT andμCT, and also neutronCT and proton-CT. The
(forward)mathematicalmodel behind the first four is based on the same operator, the Radon transform, but the
way the data is handled and loaded is very different, as well as the nuisances of each application.Moreover,
proton-CT, has also been adapted tofit seamlessly into the TIGRE framework. In this way, the experiments in
this paper aim to showcase howTIGRE can be easily used in very different kinds of tomographic problems.

TIGREhas grown significantly since its inception,mostly driven by user feedback and needs, and it is the
intention of the authors for thismomentum to continue. Its original publication shows a snapshot of what the
softwarewaswhen it was released, and herewe offer another snapshot almost a decade from then.Now, the
purpose of this work is to provide a structured overview of the current version of the toolbox, providing
appropriate descriptions and references; and to serve as a comprehensive and peer-reviewed guide for the users.
It is, however, not the intention of this paper to provide a complete version of the toolbox, whichwe hopemay
become incomplete very soonwith the addition of new capabilities.We thus urgemathematicians, CT
experimentalist and anyone in-between to join into the TIGRE software community and contribute, from code,
to issues, to feature requests at github.com/CERN/TIGRE/.
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AppendixA: Table of algorithms

TableA1.Herewe provide a list of all the algorithms provided in the
TIGRE toolbox (as ofNovember 2024), alongwith the appropriate
citations to the original papers, and the references that are specific to the
TIGRE toolbox. Note that [7] refers to the first publication of the toolbox.

Algorithmname Original TIGRE
description description

Directmethods

FBP and FDK [25], [26] [7]

Kaczmarz-type algorithms

Simultaneous ART (SART) [28] [7]
Ordered Subsets ART

(OS-SART)
[29] section 2.2.2, [7]

Simultaneous Iterative Recon-

struction algorithm (SIRT)
[1] [7]

ProjectionOntoConvex

Sets (POCS)
Adaptative Steepest Descend

version (ASD-POCS)
[30] [7], [33]

Projection-Controlled Stee-

pest Descent (PCSD)
[31] [33]

Adaptive weighedTVnorm [32, 33] section 2.2.3, [33]
OS versionwith bothTV

norms

section 2.2.2

Bregman outer iterations+
ASD-POCS (B-ASD-
POCS-β)

[34] [7]

Krylov Subspace algorithms

ConjugateGradient Least

Squares (CGLS)
[36] [7], [46]

LSQR [37] [46]
hybrid LSQR [37] [46]
AB/BA-GMRES [38] [46]
LSMR [39] [46]
IRN-TV-CGLS [40] [46]
hybrid-fLSQR-TV [41] [46]

Statisticalminimization

algorithms

OSEM [42] section 2.1

Proximal algorithms

Fast Iterative Shrinkage-

Thresholding algorithm

(FISTA)

[43] section 2.1

Fast variant of FISTA [44] section 2.1

SART-TV [45] [7]
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Appendix B:Geometric parameters in TIGRE

AppendixC:Neutron tomography

Neutron imaging is a highly accurate and reliable non-invasivemeasurementmethod that has been utilized for
various applications such as cultural heritage, thermal-hydraulics, nuclear engineering studies, and botanical
sciences [74]. The properties of neutrons are complementary to those of x-rays and gamma-rays i.e. the
transmissivity of neutronswithmetallic elements is higher while their transmissivity with light elements is lower.
Therefore, neutron imaging is excellent for inspecting specimens containing light elements inside the object to
be scanned, especially if they are covered or enveloped by heavy elements on the outside.

Despite the advantages of neutron tomography, thismodality has not yet beenwidely employed for routine
inspection in industrial applications. One of themain reasons for this is the requirement of having a high
neutron flux to produce high quality neutron tomography imaging, which has to be generated in a nuclear
reactor or in a spallation source and is therefore not always easily accessible.Moreover, some common
challenges can affect the power at which the reactors operate, as well as some potential benefits in terms of safety
andmoney saving, causing a lowneutron flux to arrive at the neutron imaging facility and resulting in very slow
measuring times. This is important as neutrons also lead to the objects being ‘activated’ i.e. they become
radioactive. In practice, the scanning time required for a full anglemeasurement can easily become impractical
and compromise the imaging ofmany dynamic processes. Iterative algorithms have been shown to produce
reconstructions with superior quality using a limited number of projections with respect to the commonly used
FBP algorithm. Therefore, it is a promising avenue to explore the use of thesemethods in this context, with the
aimof reducing the number of required projections and shorten acquisition times at neutron imaging facilities.

An example of neutron imaging facility is the Thai ResearchReactor-modification 1 (TRR-1/M1), located at
the Thailand Institute ofNuclear Technology (TINT). The TRR-1/M1 research reactor is an open pool type of
TRIGA-Mark III, whosemain purpose is public research and non-destructive investigation using radiography
and tomography techniques. This reactor has a limited resource of fuel rods, which employ old, discontinued
technology.Hence, the reactor has to operate at 1MWto save fuel. In this facility, the acquisition time required
to obtain a good-quality projection for one particular angle takes approximately 100 seconds. This long scanning
time is currently limiting their potential applications.

Table B1.Geometry parameters of TIGRE and description.

Geometric Parameter Description Reference

DSD Distance between the source (S) and the detector (D) —

DSO Distance between the source (S) and origin (O) —

sVoxel Size of the volume () in real world units —

nVoxel Number of voxels of the discretization of the  —

sVoxel Size of each voxel in the discretization of  —

offOrigin (

Vorig ) Shift of location of desired center of the volumew.r.t. the default Oxyz

COR Center of Rotation shift.Moves the rotation axis Oy

angles (z1, y1, z2) Euler ZYZ rotation angles Oxyz

sDetector Size of the detector () in real world units —

nDetector Number of pixel of the discretization of the —

sDetector Size of each pixel in the discretization of —

offDetector (

Vdet ) Shift of location of desired center of the detectorw.r.t. the default uv

rotDetector (f, θ,ψ) In place rotations of the detector D
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