Diatom lensless imaging using laser scattering and deep learning
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Abstract: We present a novel approach for imaging diatoms using lensless imaging and deep learning. We
use a laser to scatter off samples of diatomaceous earth (diatoms) and then record and transform the
scattered light into microscope images of the diatoms. The predicted microscope images gave an average
SSIM of 0.98 and average RMSE of 3.26 as compared to the experimental data. We also demonstrate the
capability of determining the velocity and angle of movement of the diatoms from their scattering patterns
as they are translated through the laser beam. This work shows the potential for imaging and identifying
the movement of diatoms, and other micro-sized organisms, in-situ within the marine environment.
Implementing such a method for real-time image acquisition and analysis could enhance environmental
management, including improving the early detection of harmful algal blooms.
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Synopsis: Monitoring diatoms is important in understanding the health of the marine environment. This
study documents using lensless sensing to image samples of diatoms and quantify their movement.

1 Introduction

Diatoms are a major group of algae, specifically microalgae, found in the oceans, waterways, and soils of
the world 2. Diatoms are foundational to marine food webs, and are unicellular organisms that form an
integral part of the phytoplankton community. Diatoms exist in a range of sizes from 5 um to 5 mm, and
are characterized by their unique silica cell walls, known as frustules, which exhibit complex patterns 3.
These microorganisms are incredibly diverse, with estimates suggesting there are over 100,000 species
globally 4.

Diatoms play a crucial role in the environment as they form the base of the aquatic food web by converting
carbon dioxide into organic carbon through photosynthesis, contributing to ~20% of photosynthetically
fixed CO; on Earth °. They are responsible for producing approximately ~20% of the world’s oxygen, and
have a rapid nutrient uptake ¢, thus making them vital for both marine ecosystems and the planet’s overall
health. In addition, certain types of algae can, under certain conditions, lead to harmful algal blooms
(HABs), which can have a negative impact on the marine aquaculture by generating toxins or very high
levels of deoxygenation, or even by damaging gills due to high density levels within the water 7.

As such, the imaging and sensing of diatoms is critically important for understanding and monitoring HABs,
and can provide insights into environmental conditions, as their presence and abundance can indicate
water quality and changes in ecological status 1°. As diatoms are sensitive to factors such as fluctuations
in temperature, CO, concentration, and ocean acidification, they also serve as key indicators of the impact
on climate change on aquatic ecosystems . Monitoring diatom populations is therefore essential for
understanding and managing aquatic ecosystems, particularly in the face of climate change and pollution.

Diatom’s unique silica structures and size make them excellent subjects to image for monitoring via lab-
based microscopy following sample collection *13, or field-based microscopy and flowcytometry 415,



However, such methods of diatom monitoring and imaging can be costly, bulky and as such require
expensive oceanographic missions that are often small in number and infrequent, meaning that
monitoring can have low spatial and temporal resolution. There is a clear need for low-cost and efficient
sensors that can facilitate widespread and continuous monitoring of diatom populations. Whilst methods
to reduce the microscopy costs to under $400 and enable citizen science have been explored %7, such
technology is still too bulky and expensive for mass deployment.

Digital holography 8 is an imaging technique for recording and reconstructing three-dimensional images
by capturing the interference pattern between an object beam and a reference beam, using digital sensors
such as CMOS cameras. This method enables high-resolution, detailed analysis of submillimetre-sized
particles and biological samples but requires precise optical alignment.

Underwater digital holography of marine plankton has been explored using a subsea digital holographic
camera (eHoloCam) for analysing and identifying marine organisms and particles '°. Digital holograms
were recorded on an electronic sensor and reconstructed numerically, offering advantages such as three-
dimensional spatial reconstruction and non-intrusive sampling. The paper presents images from
deployments in the North Sea and Faeroes Channel.

Similarly, Macneil et al. % highlighted the use of submersible holographic camera for in-situ plankton
studies for non-invasive, real-time monitoring of plankton size, shape, and behaviour. The study
emphasized the importance of Fourier spectra in bioindication, showing how plankton behaviour and
environmental changes can be detected early through spectroscopic analysis, aiding in ecosystem health
assessment and early pollution detection.

Additionally, a submersible holography system for in-situ recordings of plankton distribution has been
described by Malkiel 2*. By employing a ruby laser with an in-line recording configuration, the system
captured high-resolution images of plankton revealing variations in plankton population between different
water layers, particle concentration maxima near a pycnocline, and evidence of zooplankton migration.

In contrast to digital holography, lensless sensing reduces the requirements of imaging optics ??, thus
reducing both cost and complexity, and also enables real-time processing and robust performance even in
noisy, low-contrast environments, hence unlocking the potential for the development of a portable for
widespread deployment. Lensless sensing uses a transformation of the pattern of light that is scattered
from an object into an image of the object itself, in a process commonly known as phase retrieval 23,
However, conventional phase retrieval algorithms can be slow as they are iterative processes 2* and
therefore alternative single-step methods need to be explored to unlock real-time lensless imaging.

The emergence of deep learning neural networks has revolutionised the field of image analysis, with
convolutional neural networks (CNNs) having the ability to rapidly identify and label a large amount of
data 2°. CNNs have been used for identification of plant species from leaf photographs 2, pollen grains ¥’
and feature labelling in placenta scanning electron microscope images 2. Specifically related to this work,
by automating the identification and classification of diatoms, deep learning models can process vast
datasets quickly and accurately'?>'*2%3% which is essential for monitoring marine ecosystems. One of the
most impactful applications of deep learning in this domain is the use of image-to-image algorithms 332,
such as conditional generative adversarial networks (cGANs). These algorithms can transform images from
one domain to another, such as one modality to another, enhancing the quality and resolution of objects
3334 and enabling the detailed analysis of structures. Applications of this approach also include holography



3536 ptychography ¥, and transforming scattering patterns into images of pollen grains 4. Unlike pollen

grains, the shape and size of diatoms can vary strongly, and they can scatter light more strongly due their
high-contrast periodic structures 3°. Here, we use image-to-image neural networks to transform scattering
patterns of samples of diatomaceous earth into microscope images of samples. We also use neural
networks to identify the velocity and angle with which they are translated, as this could enable
understanding and monitoring of the environment in which they are detected. Importantly, as this neural
network approach is single-step, this approach could be implemented in real-time in-situ. This lensless
imaging technique allows for the potential of smaller footprint, low-cost sensors to be developed and
distributed in the marine environment.

2. Experimental methods
Sample preparation

Diatomaceous earth (written as diatoms henceforth) was dispersed onto a 25 mm x 75 mm x 1 mm thick
soda-lime glass slide (Corning) using a laboratory grade cotton bud. The slide was tapped onto the surface
of a worktop so that any non-adhering diatoms were removed from the slide.

Experimental Setup

As demonstrated in the diagram in Figure 1 a), a laser diode with 520 nm centre wavelength (green light)
and 4.5 mW output power with a collimated output (Thorlabs, PL203) was focussed onto the surface of
the diatom sample using a 20x objective (Olympus, LMPLFLN). This objective also allowed simultaneous
imaging of the diatom sample, via illumination using a 570 mW white-light LED (Thorlabs, MWWHL4) and
the use of a camera (Basler, daA1920-160uc, 1920 x 1200 pixels, RGB, Camera A). The illumination of the
sample via the white-light LED was blocked via a shutter (Thorlabs, SH1, shutter A) so that only forward
scattered green light from the diatoms was collected by a bare board camera (Basler, daA1920-160uc,
1920 x 1200 pixels, RGB, Camera B) for collecting of the scattering patterns, while another shutter
(Thorlabs, SH1, shutter B) enabled blocking of the laser for collecting of the microscope images. The laser
spot size was 50 um on the glass slide surface. The sample was mounted on motorised stages (Zaber, X-
LSMO50A-E03, X-LSM100A, X-VSR20A-E01) to allow for movement in the XYZ direction, where Z is the laser
axis, and XY is the plane parallel to the surface of the sample.
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Figure 1. a) Diagram of the experimental setup used to simultaneously image the diatoms and capture
their scattering pattern from laser illumination. Three neural networks employed in this work were b)
image generation, c) speed classification, and d) angular direction classification.

Data collection

Data were acquired using a Dell Precision 7865 Windows 10 workstation consisting of an Intel(R) Xeon(R)
Gold 5222 CPU @ 3.80GHz 3.79 GHz (2 processors) that had three NVIDIA A4500 GPUs (20 GB VRAM
each). Python code running on the workstation was used to automate the data collection via controlling
the XYZ stages and the shutters, and capturing the images from the cameras. For each of the 149 diatoms
imaged for the microscopy neural network, the stages were translated in a spiral pattern from the initial
centre, so that 9 images at different positions £5 um (in the XY plane) around the laser focus were acquired
to provide the neural network with more information than would be achieved from just a single scattering
pattern, to account for any inhomogeneity in the laser spatial intensity profile at the focus. The diatom
images and corresponding microscope images were padded with zeros to form a square image (for neural
network training) and to keep the high spatial frequency information at the edges of the images, and were
then cropped and resized to 256 x 256 pixels before being used for training the microscopy neural network.
The imaging camera (camera A) and scattering camera (camera B) had integration times of 300 ms and
500 ps respectively.

For both the velocity and angle data collection, an exposure time of 100 ms for camera B was used to allow
for enough scattering data to be acquired whilst the diatom was translated through the beam. In this
instance, to allow for a longer integration time on the scattering camera, a neutral density filter of 3 was
used to avoid oversaturation of the images. The images for both the varying velocity and the varying angle
were cropped into 1200 x 1200-pixel squares around the central region and then resized to 512 x 512
pixels for training and testing. Padding was not included in these images. For capturing data for varying
the velocity of the diatoms, the diatoms were translated through the focus by 50 microns in X. Scattering
patterns from 42 different diatoms, translated at 10 different velocities (0.1 to 1 mm/s, in steps of 0.1
mm/s). In addition, scattering patterns were recorded whilst translating the diatoms at different angles
from 0° to 345° in steps of 15°, at a velocity of 0.2 mm/s. Scattering patterns form 28 different diatoms



were captured (excluding 165° and 180°). Data for 165° and 180° (10x each) were left out of the training
data to evaluate the capability of the neural network to predict angles not present in training.

Neural networks

The scattering patterns were paired with the microscope images for training a cGAN using an architecture
known as Pix2pix . The training was carried out using the same workstation that was used to acquire the
data. A total of 1283 diatom images and scattering patterns were used to train the neural network that
had a 7-layer architecture (see for example %°), and had a learning rate of 0.0002 and drop-out of 0.5. The
neural network was trained for 100 epochs (8 hours) until the training loss errors reached a minimum.
Once trained, the neural network was applied to scattering patterns not used in training, and the output
(predicted images of diatoms), were compared to the experimentally obtained diatom images.

For determining the speed of the diatoms as they were translated through the laser focus, a regression
CNN was used that comprised of 28 layers, consisting of 7 convolutional layers (each followed by batch
normalization and RelU activation), 3 pooling layers, one dropout layer, a fully connected layer, and a
regression output layer. The neural network was trained on velocities of 0.1 to 1 mm/s, in steps of 0.1
mm/s. A 85:15:5% training/validation/testing split of the data was used for training the neural network,
meaning 336 images were used for training, 59 images for validation, and 25 images for testing. The neural
network was trained for 25 epochs (~8 mins), which was the time in which the loss and RMSE (root mean-
square error, i.e., the difference between the actual and predicted values) had plateaued.

In addition, another regression neural network of the same structure was used to determine the angle of
direction at which the diatoms were moving when translated for 25 um from the centre of the laser beam
focus at different angles. A split of the data was used for training the neural network, meaning 525 images
were used for training, 49 images for validation, and 43 images for testing. This time the neural network
was trained for 5 epochs, which took ~3 mins.

3. Results and Discussion

Figure 2 shows test data consisting of 6 different diatoms, with column 1 showing the experimental
scattering pattern, column 2 showing the predicted diatom image, column 3 showing the experimental
diatom image, and column 4 showing the difference in the images, such that lighter pixels indicate regions
of less difference.
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Figure 2. Experimental diatom scattering patterns (column 1) and the associated neural network predicted
images (column 2). Also included are the corresponding experimental images (column 3) and the
difference between the two images (column 4) (one minus the other, such that white pixels indicate less
difference).

The predicted images in Figure 2 were evaluated using the Peak Signal-to-Noise Ratio (PSNR), where a
higher value means a more accurate predicted image. We also used the Structural Similarity Index
Measure (SSIM), in which a value of 1 means the predicted and experimental are the same, 0 indicates
there is no similarity and -1 indicates the pairs of images are completely anti-correlated), the Root Mean
Squared Error (RMSE), where a smaller value means greater the similarity, and the Perceptual Image
Quality Evaluator (PIQE), which provides a metric based on perceptual image quality (a smaller score
indicates better perceptual quality). These image metrics are displayed in Table 1, and are calculated using
the equations below.



The PSNR of all the predicted images was calculated via,

max?(E, P)

PSNR = 10logy | —

N 77 2mn(E(m,n) — P(m,n))?
such that M and N represent the total number of rows and columns of pixels in the images, respectively,
and m and n denote specific pixel positions within each row and column, respectively. The term max(E,P)
is maximum intensity value present in either the experimental image E or the predicted image P.

The SSIM is a metric that measures the luminance, contrast, and structural similarity. For each pair of
experimental and predicted images, the SSIM was computed using the following equation,

Cugup + C)(2ogp + C3)
(ug + up + C)(0fF + a5 + C3)

SSIM(E, P) =

where pp is the mean of P, ¢ is the mean of E, 0% is the variance of P, 0% is the variance of E, oep is the
covariance of £ and P. C; = (0.01L)? and C; = (0.03L)?, and L denotes the dynamic range of the pixel values
in the images.

The RMSE is an error metric that quantifies the average difference between predicted and actual image
pixel values. To calculate the RMSE, the squared differences between corresponding pixel intensity values
in the predicted and experimental images are averaged, and the square root of this mean is taken. The
RMSE is calculated using,

where E; is the experimental image pixel value, P; is the predicted image pixel value, and N is the number
of pixels.

Finally, the PIQE is an image quality assessment algorithm designed to quantify perceptual quality without
the need for a reference image. It operates by dividing the input image into non-overlapping blocks and
analysing each block for distortions. The algorithm estimates block-wise distortion and measures the local
variance of perceptibly distorted blocks to compute the quality score. The final PIQE score ranges from 0
to 100, with lower scores indicating better perceptual quality. The PIQE score is interpreted as follows: 0—
20: Excellent quality, 21-35: Good quality, 36-50: Fair quality, 51-80: Poor quality, and 81-100: Bad
quality®!.

As shown in Table 1, the SSIM values for all images are approximately the same high value, either 0.98 or
0.99, indicating good agreement with the experimental images. From the values in the table, all images
have similar metrics, with Figure 2f being the most accurately predicted and Figure 2d being the least
accurate in terms of RMSE and PIQE. The RMSE for all images is below 5, indicating that the average error
per pixel is only about 2% of the full intensity range. This suggests that the predicted images are very close
to the experimental images, demonstrating high accuracy in the reconstruction process. Indeed, from the
figures it is evident that the predicted images are visually similar to the experimental images. All images
have a PIQE value which can be considered to have fair quality. Further improvements to the training data



(i.e., more varied data) or an alternative network architecture could lower these PIQE scores and enhance
overall perceptual quality.

Table 1 PSNR, SSIM, RMSE and PIQE for the predicted and experimental pollen images shown in Figure 2.

Image PSNR SSIM RMSE PIQE
a 40.60 0.98 2.38 45.89
b 37.25 0.98 3.50 48.85
o 36.75 0.98 3.71 46.95
d 35.75 0.98 4.16 47.62
e 37.15 0.98 3.54 46.53
f 40.89 0.99 2.30 45.75
Average 38.07 0.98 3.26 46.93

The ability to determine the velocity of diatoms using a regression CNN is shown in Figure 3a, which
displays the experimental velocity compared with the predicted velocity. The R-value of the plot is 0.5634,
with the RMSE between the predicted and experimental data being 0.189 mm/s. The graph shows that
higher experimental velocities are correlated with higher predicted velocity.

In addition, Figure 3b, demonstrates the capability of a regression CNN to determine the angle of
movement of a diatom, displaying a plot of the experimental angle compared with the predicted angle.
The R-value of the plot is 0.7173, with the RMSE for the combined data of 49.55°.

The capability of the neural network to produce images and, velocity and angle from the scattering
patterns without prior data, means that such a neural network could be implemented in real-time in-situ,
with only needing the laser, objective lens and camera B, and without shutters and imaging camera. Such
as setup could be further compacted with a simpler lens, and could be deployed in the marine
environment using a microcomputer such as a Raspberry Pi*?, with appropriate housing.
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Figure 3. a) Predicted diatom velocity compared with experimental velocity. b) Predicted diatom angle
compared with experimental angle when moving at a velocity of 0.2 mm/s. Test data 1 is data from angles
used during training of the neural network, whilst test data 2 is data from angles not present in the training
data.

The technique demonstrated here allows a neural network to generate images of diatoms not previously
included in the training dataset, enabling potential detection of unknown or rare species. However, to
achieve reliable species-level identification, it may be necessary to incorporate higher-resolution data
(e.g., scanning electron microscopy (SEM) images*®) and expand the training set to include broader
morphological variations. Further to this, by expanding the dataset to include a broader range of
microorganisms, it could be possible to enhance the network’s ability to generalize and reconstruct new
or rare species accurately.

Moreover, because cyanobacteria (typically 0.5-100 um)** and protozoa (typically 20200 um)* share
similar size ranges with diatoms, our approach can be extended to image these organisms as well. This
could be useful in marine sensing since Microcystis is a genus of cyanobacteria known to indicate harmful
algal blooms*®, and protozoan pathogens like Cryptosporidium and Giardia are a critical indicator for water
safety?’. Including these in the training process would enable more diverse detection, aiding water
biologists in real-time field analysis.

Additionally, neural networks such as segmentation models could be used alongside our imaging approach
to distinguish individual species within aggregated species. Similar segmentation strategies have recently
been applied to detect overlapping algae*® and pollen grains*. By implementing a segmentation network
that can differentiate microorganisms from each other, microplastics or other debris, we can improve the
accuracy of bio-surveillance and biodiversity assessments. Ultimately, broadening our dataset and refining
our network architectures will yield a more powerful, versatile tool for marine environmental monitoring,
water safety, and microplastic detection in complex real-world settings.



In real-world environments, factors such as water turbidity, particle interference, and variations in
background light levels could affect the accuracy of scattering-based imaging. Therefore, various methods
to ensure that neural networks can accurately reconstruct images of diatoms should be explored. For
example, varying the background light in the training data could help the neural network learn to
reconstruct diatoms correctly regardless of light levels. Similarly, using different optical filters or varying
the turbidity or salinity of a volume of water between the diatom and the sensor during training data
capture could improve accuracy. Additionally, data augmentation techniques >°5! could be employed to
artificially alter background lighting levels 2, modify the clarity of the scattering pattern images °3, and
introduce additional artificial particulates or biofouling that may occlude the scattering pattern from the
sensor >*. Such methodologies would not only enhance the robustness of the neural network but also
reduce the need for diverse training conditions, thereby increasing the speed of data collection and
training. Furthermore, implementing real-time adaptive algorithms that adjust to changing environmental
conditions could further improve the reliability of the system in field applications.

4. Conclusions

We have demonstrated the capability of using deep learning to transform scattering patterns from laser
illuminated diatoms into 20x microscope objective images of diatoms. We tested the neural network on
50 different images, producing an average PSNR, SSIM, RMSE and PIQE value of 38.07, 0.98, 3.26 and
46.93, with diatoms in the predicted images showing similarity in size and shape to their corresponding
experimentally obtained microscope images. We also showed the capability of neural networks to predict
the velocity and angle of diatoms from their scattering patterns as they were translated through the laser
focus. This work shows the potential for using lensless sensing for imaging diatoms in the marine
environment, which could allow mass deployment of the sensors that enable real-time imaging and thus
monitoring of diatoms, their populations and potentially aiding in understanding environmental tipping
points and harmful algae blooms. The technique demonstrated could also be applied to microplastic
monitoring in the marine environment.
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