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Abstract: We present a novel approach for imaging diatoms using lensless imaging and deep learning. We 

use a laser to scatter off samples of diatomaceous earth (diatoms) and then record and transform the 

scattered light into microscope images of the diatoms. The predicted microscope images gave an average 

SSIM of 0.98 and average RMSE of 3.26 as compared to the experimental data. We also demonstrate the 

capability of determining the velocity and angle of movement of the diatoms from their scattering patterns 

as they are translated through the laser beam. This work shows the potential for imaging and identifying 

the movement of diatoms, and other micro-sized organisms, in-situ within the marine environment. 

Implementing such a method for real-time image acquisition and analysis could enhance environmental 

management, including improving the early detection of harmful algal blooms. 
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Synopsis: Monitoring diatoms is important in understanding the health of the marine environment. This 

study documents using lensless sensing to image samples of diatoms and quantify their movement. 

1 Introduction 

Diatoms are a major group of algae, specifically microalgae, found in the oceans, waterways, and soils of 

the world 1,2. Diatoms are foundational to marine food webs, and are unicellular organisms that form an 

integral part of the phytoplankton community. Diatoms exist in a range of sizes from 5 µm to 5 mm, and 

are characterized by their unique silica cell walls, known as frustules, which exhibit complex patterns 3. 

These microorganisms are incredibly diverse, with estimates suggesting there are over 100,000 species 

globally 4. 

Diatoms play a crucial role in the environment as they form the base of the aquatic food web by converting 

carbon dioxide into organic carbon through photosynthesis, contributing to ~20% of photosynthetically 

fixed CO2 on Earth 5. They are responsible for producing approximately ~20% of the world’s oxygen, and 

have a rapid nutrient uptake 6, thus making them vital for both marine ecosystems and the planet’s overall 

health. In addition, certain types of algae can, under certain conditions, lead to harmful algal blooms 

(HABs), which can have a negative impact on the marine aquaculture by generating toxins or very high 

levels of deoxygenation, or even by damaging gills due to high density levels within the water 7–9. 

As such, the imaging and sensing of diatoms is critically important for understanding and monitoring HABs, 

and can provide insights into environmental conditions, as their presence and abundance can indicate 

water quality and changes in ecological status 10. As diatoms are sensitive to factors such as fluctuations 

in temperature, CO2 concentration, and ocean acidification, they also serve as key indicators of the impact 

on climate change on aquatic ecosystems 11. Monitoring diatom populations is therefore essential for 

understanding and managing aquatic ecosystems, particularly in the face of climate change and pollution.  

Diatom’s unique silica structures and size make them excellent subjects to image for monitoring via lab-

based microscopy following sample collection 12,13, or field-based microscopy and flowcytometry 14,15. 



However, such methods of diatom monitoring and imaging can be costly, bulky and as such require 

expensive oceanographic missions that are often small in number and infrequent, meaning that 

monitoring can have low spatial and temporal resolution. There is a clear need for low-cost and efficient 

sensors that can facilitate widespread and continuous monitoring of diatom populations. Whilst methods 

to reduce the microscopy costs to under $400 and enable citizen science have been explored 16,17, such 

technology is still too bulky and expensive for mass deployment. 

Digital holography 18 is an imaging technique for recording and reconstructing three-dimensional images 

by capturing the interference pattern between an object beam and a reference beam, using digital sensors 

such as CMOS cameras. This method enables high-resolution, detailed analysis of submillimetre-sized 

particles and biological samples but requires precise optical alignment. 

Underwater digital holography of marine plankton has been explored using a subsea digital holographic 

camera (eHoloCam) for analysing and identifying marine organisms and particles 19. Digital holograms 

were recorded on an electronic sensor and reconstructed numerically, offering advantages such as three-

dimensional spatial reconstruction and non-intrusive sampling. The paper presents images from 

deployments in the North Sea and Faeroes Channel. 

Similarly, Macneil et al. 20 highlighted the use of submersible holographic camera for in-situ plankton 

studies for non-invasive, real-time monitoring of plankton size, shape, and behaviour. The study 

emphasized the importance of Fourier spectra in bioindication, showing how plankton behaviour and 

environmental changes can be detected early through spectroscopic analysis, aiding in ecosystem health 

assessment and early pollution detection. 

Additionally, a submersible holography system for in-situ recordings of plankton distribution has been 

described by Malkiel 21. By employing a ruby laser with an in-line recording configuration, the system 

captured high-resolution images of plankton revealing variations in plankton population between different 

water layers, particle concentration maxima near a pycnocline, and evidence of zooplankton migration. 

In contrast to digital holography, lensless sensing reduces the requirements of imaging optics 22, thus 

reducing both cost and complexity, and also enables real-time processing and robust performance even in 

noisy, low-contrast environments, hence unlocking the potential for the development of a portable for 

widespread deployment. Lensless sensing uses a transformation of the pattern of light that is scattered 

from an object into an image of the object itself, in a process commonly known as phase retrieval 23. 

However, conventional phase retrieval algorithms can be slow as they are iterative processes 24 and 

therefore alternative single-step methods need to be explored to unlock real-time lensless imaging.  

The emergence of deep learning neural networks has revolutionised the field of image analysis, with 

convolutional neural networks (CNNs) having the ability to rapidly identify and label a large amount of 

data 25. CNNs have been used for identification of plant species from leaf photographs 26, pollen grains 27 

and feature labelling in placenta scanning electron microscope images 28. Specifically related to this work, 

by automating the identification and classification of diatoms, deep learning models can process vast 

datasets quickly and accurately12,13,29,30, which is essential for monitoring marine ecosystems. One of the 

most impactful applications of deep learning in this domain is the use of image-to-image algorithms 31,32, 

such as conditional generative adversarial networks (cGANs). These algorithms can transform images from 

one domain to another, such as one modality to another, enhancing the quality and resolution of objects 
33,34 and enabling the detailed analysis of structures. Applications of this approach also include holography 



35,36, ptychography 37, and transforming scattering patterns into images of pollen grains 38. Unlike pollen 

grains, the shape and size of diatoms can vary strongly, and they can scatter light more strongly due their 

high-contrast periodic structures 39. Here, we use image-to-image neural networks to transform scattering 

patterns of samples of diatomaceous earth into microscope images of samples. We also use neural 

networks to identify the velocity and angle with which they are translated, as this could enable 

understanding and monitoring of the environment in which they are detected. Importantly, as this neural 

network approach is single-step, this approach could be implemented in real-time in-situ. This lensless 

imaging technique allows for the potential of smaller footprint, low-cost sensors to be developed and 

distributed in the marine environment. 

2. Experimental methods 

Sample preparation 

Diatomaceous earth (written as diatoms henceforth) was dispersed onto a 25 mm × 75 mm × 1 mm thick 

soda-lime glass slide (Corning) using a laboratory grade cotton bud. The slide was tapped onto the surface 

of a worktop so that any non-adhering diatoms were removed from the slide.  

Experimental Setup 

As demonstrated in the diagram in Figure 1 a), a laser diode with 520 nm centre wavelength (green light) 

and 4.5 mW output power with a collimated output (Thorlabs, PL203) was focussed onto the surface of 

the diatom sample using a 20× objective (Olympus, LMPLFLN). This objective also allowed simultaneous 

imaging of the diatom sample, via illumination using a 570 mW white-light LED (Thorlabs, MWWHL4) and 

the use of a camera (Basler, daA1920-160uc, 1920 × 1200 pixels, RGB, Camera A). The illumination of the 

sample via the white-light LED was blocked via a shutter (Thorlabs, SH1, shutter A) so that only forward 

scattered green light from the diatoms was collected by a bare board camera (Basler, daA1920-160uc, 

1920 × 1200 pixels, RGB, Camera B) for collecting of the scattering patterns, while another shutter 

(Thorlabs, SH1, shutter B) enabled blocking of the laser for collecting of the microscope images. The laser 

spot size was 50 µm on the glass slide surface. The sample was mounted on motorised stages (Zaber, X-

LSM050A-E03, X-LSM100A, X-VSR20A-E01) to allow for movement in the XYZ direction, where Z is the laser 

axis, and XY is the plane parallel to the surface of the sample.  



  

Figure 1. a) Diagram of the experimental setup used to simultaneously image the diatoms and capture 

their scattering pattern from laser illumination. Three neural networks employed in this work were b) 

image generation, c) speed classification, and d) angular direction classification. 

Data collection 

Data were acquired using a Dell Precision 7865 Windows 10 workstation consisting of an Intel(R) Xeon(R) 

Gold 5222 CPU @ 3.80GHz 3.79 GHz (2 processors) that had three NVIDIA A4500 GPUs (20 GB VRAM 

each). Python code running on the workstation was used to automate the data collection via controlling 

the XYZ stages and the shutters, and capturing the images from the cameras. For each of the 149 diatoms 

imaged for the microscopy neural network, the stages were translated in a spiral pattern from the initial 

centre, so that 9 images at different positions ±5 µm (in the XY plane) around the laser focus were acquired 

to provide the neural network with more information than would be achieved from just a single scattering 

pattern, to account for any inhomogeneity in the laser spatial intensity profile at the focus. The diatom 

images and corresponding microscope images were padded with zeros to form a square image (for neural 

network training) and to keep the high spatial frequency information at the edges of the images, and were 

then cropped and resized to 256 × 256 pixels before being used for training the microscopy neural network. 

The imaging camera (camera A) and scattering camera (camera B) had integration times of 300 ms and 

500 µs respectively. 

For both the velocity and angle data collection, an exposure time of 100 ms for camera B was used to allow 

for enough scattering data to be acquired whilst the diatom was translated through the beam. In this 

instance, to allow for a longer integration time on the scattering camera, a neutral density filter of 3 was 

used to avoid oversaturation of the images. The images for both the varying velocity and the varying angle 

were cropped into 1200 × 1200-pixel squares around the central region and then resized to 512 × 512 

pixels for training and testing. Padding was not included in these images. For capturing data for varying 

the velocity of the diatoms, the diatoms were translated through the focus by 50 microns in X. Scattering 

patterns from 42 different diatoms, translated at 10 different velocities (0.1 to 1 mm/s, in steps of 0.1 

mm/s). In addition, scattering patterns were recorded whilst translating the diatoms at different angles 

from 0° to 345° in steps of 15°, at a velocity of 0.2 mm/s. Scattering patterns form 28 different diatoms 



were captured (excluding 165° and 180°). Data for 165° and 180° (10× each) were left out of the training 

data to evaluate the capability of the neural network to predict angles not present in training.  

Neural networks 

The scattering patterns were paired with the microscope images for training a cGAN using an architecture 

known as Pix2pix . The training was carried out using the same workstation that was used to acquire the 

data. A total of 1283 diatom images and scattering patterns were used to train the neural network that 

had a 7-layer architecture (see for example 40), and had a learning rate of 0.0002 and drop-out of 0.5. The 

neural network was trained for 100 epochs (8 hours) until the training loss errors reached a minimum. 

Once trained, the neural network was applied to scattering patterns not used in training, and the output 

(predicted images of diatoms), were compared to the experimentally obtained diatom images.  

For determining the speed of the diatoms as they were translated through the laser focus, a regression 

CNN was used that comprised of 28 layers, consisting of 7 convolutional layers (each followed by batch 

normalization and ReLU activation), 3 pooling layers, one dropout layer, a fully connected layer, and a 

regression output layer. The neural network was trained on velocities of 0.1 to 1 mm/s, in steps of 0.1 

mm/s. A 85:15:5% training/validation/testing split of the data was used for training the neural network, 

meaning 336 images were used for training, 59 images for validation, and 25 images for testing. The neural 

network was trained for 25 epochs (~8 mins), which was the time in which the loss and RMSE (root mean-

square error, i.e., the difference between the actual and predicted values) had plateaued.  

In addition, another regression neural network of the same structure was used to determine the angle of 

direction at which the diatoms were moving when translated for 25 µm from the centre of the laser beam 

focus at different angles. A split of the data was used for training the neural network, meaning 525 images 

were used for training, 49 images for validation, and 43 images for testing. This time the neural network 

was trained for 5 epochs, which took ~3 mins.  

3. Results and Discussion 

Figure 2 shows test data consisting of 6 different diatoms, with column 1 showing the experimental 

scattering pattern, column 2 showing the predicted diatom image, column 3 showing the experimental 

diatom image, and column 4 showing the difference in the images, such that lighter pixels indicate regions 

of less difference. 



 

Figure 2. Experimental diatom scattering patterns (column 1) and the associated neural network predicted 

images (column 2). Also included are the corresponding experimental images (column 3) and the 

difference between the two images (column 4) (one minus the other, such that white pixels indicate less 

difference). 

The predicted images in Figure 2 were evaluated using the Peak Signal-to-Noise Ratio (PSNR), where a 

higher value means a more accurate predicted image. We also used the Structural Similarity Index 

Measure (SSIM), in which a value of 1 means the predicted and experimental are the same, 0 indicates 

there is no similarity and -1 indicates the pairs of images are completely anti-correlated), the Root Mean 

Squared Error (RMSE), where a smaller value means greater the similarity, and the Perceptual Image 

Quality Evaluator (PIQE), which provides a metric based on perceptual image quality (a smaller score 

indicates better perceptual quality). These image metrics are displayed in Table 1, and are calculated using 

the equations below.  

 



The PSNR of all the predicted images was calculated via,  

𝑃𝑆𝑁𝑅 = 10 log10(
𝑚𝑎𝑥2(𝐸, 𝑃)

1
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such that M and N represent the total number of rows and columns of pixels in the images, respectively, 

and m and n denote specific pixel positions within each row and column, respectively. The term max(E,P) 

is maximum intensity value present in either the experimental image E or the predicted image P. 

The SSIM is a metric that measures the luminance, contrast, and structural similarity. For each pair of 

experimental and predicted images, the SSIM was computed using the following equation, 

𝑆𝑆𝐼𝑀(𝐸, 𝑃) =
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where μP is the mean of P, μE is the mean of E, σP
2 is the variance of P, σE

2 is the variance of E, σEP is the 

covariance of E and P. C1 = (0.01L)2 and C2 = (0.03L)2, and L denotes the dynamic range of the pixel values 

in the images. 

The RMSE is an error metric that quantifies the average difference between predicted and actual image 

pixel values. To calculate the RMSE, the squared differences between corresponding pixel intensity values 

in the predicted and experimental images are averaged, and the square root of this mean is taken. The 

RMSE is calculated using, 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑃𝑖 − 𝐸𝑖)

2

𝑁
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where Ei is the experimental image pixel value, Pi is the predicted image pixel value, and N is the number 

of pixels.  

Finally, the PIQE is an image quality assessment algorithm designed to quantify perceptual quality without 

the need for a reference image. It operates by dividing the input image into non-overlapping blocks and 

analysing each block for distortions. The algorithm estimates block-wise distortion and measures the local 

variance of perceptibly distorted blocks to compute the quality score. The final PIQE score ranges from 0 

to 100, with lower scores indicating better perceptual quality. The PIQE score is interpreted as follows: 0–

20: Excellent quality, 21–35: Good quality, 36–50: Fair quality, 51–80: Poor quality, and 81–100: Bad 

quality41.  

As shown in Table 1, the SSIM values for all images are approximately the same high value, either 0.98 or 

0.99, indicating good agreement with the experimental images. From the values in the table, all images 

have similar metrics, with Figure 2f being the most accurately predicted and Figure 2d being the least 

accurate in terms of RMSE and PIQE. The RMSE for all images is below 5, indicating that the average error 

per pixel is only about 2% of the full intensity range. This suggests that the predicted images are very close 

to the experimental images, demonstrating high accuracy in the reconstruction process. Indeed, from the 

figures it is evident that the predicted images are visually similar to the experimental images. All images 

have a PIQE value which can be considered to have fair quality. Further improvements to the training data 



(i.e., more varied data) or an alternative network architecture could lower these PIQE scores and enhance 

overall perceptual quality. 

 

Table 1 PSNR, SSIM, RMSE and PIQE for the predicted and experimental pollen images shown in Figure 2. 

Image PSNR SSIM RMSE PIQE 

a 40.60 0.98 2.38 45.89 

b 37.25 0.98 3.50 48.85 

c 36.75 0.98 3.71 46.95 

d 35.75 0.98 4.16 47.62 

e 37.15 0.98 3.54 46.53 

f 40.89 0.99 2.30 45.75 

Average 38.07 0.98 3.26 46.93 

 

The ability to determine the velocity of diatoms using a regression CNN is shown in Figure 3a, which 

displays the experimental velocity compared with the predicted velocity. The R-value of the plot is 0.5634, 

with the RMSE between the predicted and experimental data being 0.189 mm/s. The graph shows that 

higher experimental velocities are correlated with higher predicted velocity.  

In addition, Figure 3b, demonstrates the capability of a regression CNN to determine the angle of 

movement of a diatom, displaying a plot of the experimental angle compared with the predicted angle. 

The R-value of the plot is 0.7173, with the RMSE for the combined data of 49.55°.  

The capability of the neural network to produce images and, velocity and angle from the scattering 

patterns without prior data, means that such a neural network could be implemented in real-time in-situ, 

with only needing the laser, objective lens and camera B, and without shutters and imaging camera. Such 

as setup could be further compacted with a simpler lens, and could be deployed in the marine 

environment using a microcomputer such as a Raspberry Pi42, with appropriate housing.  



 

Figure 3. a) Predicted diatom velocity compared with experimental velocity. b) Predicted diatom angle 

compared with experimental angle when moving at a velocity of 0.2 mm/s. Test data 1 is data from angles 

used during training of the neural network, whilst test data 2 is data from angles not present in the training 

data. 

The technique demonstrated here allows a neural network to generate images of diatoms not previously 

included in the training dataset, enabling potential detection of unknown or rare species. However, to 

achieve reliable species-level identification, it may be necessary to incorporate higher-resolution data 

(e.g., scanning electron microscopy (SEM) images43) and expand the training set to include broader 

morphological variations. Further to this, by expanding the dataset to include a broader range of 

microorganisms, it could be possible to enhance the network’s ability to generalize and reconstruct new 

or rare species accurately. 

Moreover, because cyanobacteria (typically 0.5–100 µm)44 and protozoa (typically 20–200 µm)45 share 

similar size ranges with diatoms, our approach can be extended to image these organisms as well. This 

could be useful in marine sensing since Microcystis is a genus of cyanobacteria known to indicate harmful 

algal blooms46, and protozoan pathogens like Cryptosporidium and Giardia are a critical indicator for water 

safety47. Including these in the training process would enable more diverse detection, aiding water 

biologists in real-time field analysis. 

Additionally, neural networks such as segmentation models could be used alongside our imaging approach 

to distinguish individual species within aggregated species. Similar segmentation strategies have recently 

been applied to detect overlapping algae48 and pollen grains49. By implementing a segmentation network 

that can differentiate microorganisms from each other, microplastics or other debris, we can improve the 

accuracy of bio-surveillance and biodiversity assessments. Ultimately, broadening our dataset and refining 

our network architectures will yield a more powerful, versatile tool for marine environmental monitoring, 

water safety, and microplastic detection in complex real-world settings. 



In real-world environments, factors such as water turbidity, particle interference, and variations in 

background light levels could affect the accuracy of scattering-based imaging. Therefore, various methods 

to ensure that neural networks can accurately reconstruct images of diatoms should be explored. For 

example, varying the background light in the training data could help the neural network learn to 

reconstruct diatoms correctly regardless of light levels. Similarly, using different optical filters or varying 

the turbidity or salinity of a volume of water between the diatom and the sensor during training data 

capture could improve accuracy. Additionally, data augmentation techniques 50,51 could be employed to 

artificially alter background lighting levels 52, modify the clarity of the scattering pattern images 53, and 

introduce additional artificial particulates or biofouling that may occlude the scattering pattern from the 

sensor 54. Such methodologies would not only enhance the robustness of the neural network but also 

reduce the need for diverse training conditions, thereby increasing the speed of data collection and 

training. Furthermore, implementing real-time adaptive algorithms that adjust to changing environmental 

conditions could further improve the reliability of the system in field applications. 

4. Conclusions 

We have demonstrated the capability of using deep learning to transform scattering patterns from laser 

illuminated diatoms into 20× microscope objective images of diatoms. We tested the neural network on 

50 different images, producing an average PSNR, SSIM, RMSE and PIQE value of 38.07, 0.98, 3.26 and 

46.93, with diatoms in the predicted images showing similarity in size and shape to their corresponding 

experimentally obtained microscope images. We also showed the capability of neural networks to predict 

the velocity and angle of diatoms from their scattering patterns as they were translated through the laser 

focus. This work shows the potential for using lensless sensing for imaging diatoms in the marine 

environment, which could allow mass deployment of the sensors that enable real-time imaging and thus 

monitoring of diatoms, their populations and potentially aiding in understanding environmental tipping 

points and harmful algae blooms. The technique demonstrated could also be applied to microplastic 

monitoring in the marine environment.  
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