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ABSTRACT: We present a novel approach for imaging diatoms
using lensless imaging and deep learning. We used a laser beam to
scatter off samples of diatomaceous earth (diatoms) and then
recorded and transformed the scattered light into microscopy
images of the diatoms. The predicted microscopy images gave an
average SSIM of 0.98 and an average RMSE of 3.26 as compared
to the experimental data. We also demonstrate the capability of
determining the velocity and angle of movement of the diatoms
from their scattering patterns as they were translated through the
laser beam. This work shows the potential for imaging and
identifying the movement of diatoms and other microsized
organisms in situ within the marine environment. Implementing
such a method for real-time image acquisition and analysis could
enhance environmental management, including improving the early detection of harmful algal blooms.
KEYWORDS: diatoms, lasers, deep learning, scattering, lensless sensing

1. INTRODUCTION
Diatoms are a major group of algae, specifically microalgae,
found in the oceans, waterways, and soils of the world.1,2 They
are foundational to marine food webs and are unicellular
organisms that form an integral part of the phytoplankton
community. Diatoms exist in a range of sizes from 5 μm to 5
mm and are characterized by their unique silica cell walls,
known as frustules, which exhibit complex patterns.3 These
microorganisms are incredibly diverse, with estimates suggest-
ing there are over 100,000 species globally.4

Diatoms play a crucial role in the environment as they form
the base of the aquatic food web by converting carbon dioxide
into organic carbon through photosynthesis, contributing to
∼20% of photosynthetically fixed CO2 on Earth.5 They are
responsible for producing ∼20% of the world’s oxygen and
have a rapid nutrient uptake,6 thus making them vital for both
marine ecosystems and the planet’s overall health. In addition,
certain types of algae can, under certain conditions, lead to
harmful algal blooms (HABs), which can have a negative
impact on marine aquaculture by generating toxins or very
high levels of deoxygenation, or even by damaging gills due to
high-density levels within the water.7−9

As such, the imaging and sensing of diatoms are critically
important for understanding and monitoring HABs and can
provide insights into environmental conditions, as their
presence and abundance can indicate water quality and
changes in ecological status.10 As diatoms are sensitive to
factors such as fluctuations in temperature, CO2 concentration,
and ocean acidification, they also serve as key indicators of the

impact of climate change on aquatic ecosystems.11 Monitoring
diatom populations is therefore essential for understanding and
managing aquatic ecosystems, particularly in the face of climate
change and pollution.
Diatoms' unique silica structures and sizes make them

excellent subjects to image for monitoring via lab-based
microscopy following sample collection12,13 or field-based
microscopy and flow cytometry.14,15 However, such methods
of diatom monitoring and imaging can be costly and bulky and,
as such, require expensive oceanographic missions that are
often small in number and infrequent, meaning that
monitoring can have low spatial and temporal resolution.
There is a clear need for low-cost and efficient sensors that can
facilitate the widespread and continuous monitoring of diatom
populations. Whilst methods to reduce the microscopy costs to
under $400 and enable citizen science have been explored,16,17

such technology is still too bulky and expensive for mass
deployment.
Digital holography18 is an imaging technique for recording

and reconstructing three-dimensional images by capturing the
interference pattern between an object beam and a reference
beam, using digital sensors such as CMOS cameras. This
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method enables high-resolution, detailed analysis of sub-
millimeter-sized particles and biological samples but requires
precise optical alignment.
Underwater digital holography of marine plankton has been

explored using a subsea digital holographic camera (eHolo-
Cam) for analyzing and identifying marine organisms and
particles.19 Digital holograms were recorded on an electronic
sensor and reconstructed numerically, offering advantages such
as three-dimensional spatial reconstruction and nonintrusive
sampling. The paper presents images from deployments in the
North Sea and the Faeroes Channel.
Similarly, Dyomin et al.20 highlighted the use of submersible

holographic cameras for in situ plankton studies for non-
invasive, real-time monitoring of plankton size, shape, and
behavior. The study emphasized the importance of Fourier
spectra in bioindication, showing how plankton behavior and
environmental changes can be detected early through
spectroscopic analysis, aiding in ecosystem health assessment
and early pollution detection.
Additionally, a submersible holography system for in situ

recordings of plankton distribution has been described by
Malkiel et al.21 By employing a ruby laser with an inline
recording configuration, the system captured high-resolution
images of plankton, revealing variations in plankton population
between different water layers, particle concentration maxima
near a pycnocline, and evidence of zooplankton migration.
In contrast to digital holography, lensless sensing reduces

the requirements of imaging optics,22 thus reducing both cost
and complexity, and also enables real-time processing and
robust performance even in noisy, low-contrast environments,
hence unlocking the potential for the development of portable
devices for widespread deployment. Lensless sensing computa-
tionally transforms the pattern of light that is scattered and
imaged from an object into an image of the object itself, in a
process commonly known as phase retrieval.23 However,
conventional phase retrieval algorithms can be slow as they are
iterative processes,24 and therefore, alternative single-step
methods need to be explored to unlock real-time lensless
imaging.
The emergence of deep learning neural networks has

revolutionized the field of image analysis, with convolutional
neural networks (CNNs) having the ability to rapidly identify
and label a large amount of data.25 CNNs have been used for

identification of plant species from leaf photographs,26 pollen
grains,27 and feature labeling in placenta scanning electron
microscopy (SEM) images.28 Specifically related to this work,
by automating the identification and classification of diatoms,
deep learning models can process vast data sets quickly and
accurately,29,30 which is essential for monitoring marine
ecosystems. One of the most impactful applications of deep
learning in this domain is the use of image-to-image
algorithms,31,32 such as conditional generative adversarial
networks (cGANs). These algorithms can transform images
from one domain to another, such as one modality to another,
enhancing the quality and resolution of objects33,34 and
enabling the detailed analysis of structures. Applications of this
approach also include holography,35,36 ptychography,37 and
transforming scattering patterns into images of pollen grains.38

Unlike pollen grains, the shape and size of diatoms can vary
strongly, and they can scatter light more strongly due to their
high-contrast periodic structures.39 Here, we use an image-to-
image neural network to transform scattering patterns of
samples of diatomaceous earth into microscopy images of
samples. We also use neural networks to identify the velocity
and angle with which they are translated, as this could enable
understanding and monitoring of the environment in which
they are detected. Importantly, as this neural network approach
is single-step, this approach could be implemented in real-time
and in situ. This lensless imaging technique allows for the
potential of smaller footprint, low-cost sensors to be developed
and distributed in the marine environment.

2. EXPERIMENTAL METHODS
2.1. Sample Preparation. Diatomaceous earth (written as

diatoms henceforth) was dispersed onto a 25 × 75 × 1 mm
thick soda-lime glass slide (Corning) using a laboratory-grade
cotton bud. The slide was tapped onto the surface of a worktop
so that any nonadhering diatoms were removed from the slide.
2.2. Experimental Setup. As demonstrated in the diagram

in Figure 1a, a laser diode with a 520 nm central wavelength
(green light) and a 4.5 mW output power with a collimated
output (Thorlabs, PL203) was focused onto the surface of the
diatom sample using a 20× objective (Olympus, LMPLFLN).
This objective also allowed simultaneous imaging of the
diatom sample via illumination using a 570 mW white-light
LED (Thorlabs, MWWHL4) and the use of a camera (Basler,

Figure 1. (a) Diagram of the experimental setup used to simultaneously image the diatoms and capture their scattering pattern from laser
illumination. Three neural networks employed in this work were (b) image generation, (c) speed classification, and (d) angular direction
classification.
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daA1920-160uc, 1920 × 1200 pixels, RGB, Camera A). The
illumination of the sample via the white-light LED was blocked
via a shutter (Thorlabs, SH1, shutter A) so that only forward
scattered green light from the diatoms was collected by a bare
board camera (Basler, daA1920-160uc, 1920 × 1200 pixels,
RGB, camera B) for collecting the scattering patterns, whilst
another shutter (Thorlabs, SH1, shutter B) enabled blocking of
the laser for collecting the microscopy images. The laser spot
size was 50 μm on the glass slide surface. The sample was
mounted on motorized stages (Zaber, X-LSM050A-E03, X-
LSM100A, X-VSR20A-E01) to allow for movement in the XYZ
direction, where Z is the laser axis, and XY is the plane parallel
to the surface of the sample.
2.3. Data Collection. Data were acquired using a Dell

Precision 7865 Windows 10 workstation consisting of an
Intel(R) Xeon(R) Gold 5222 CPU at 3.80 and 3.79 GHz (2
processors) that had three NVIDIA A4500 GPUs (20 GB
VRAM each). Python code running on the workstation was
used to automate the data collection via controlling the XYZ
stages and the shutters, and capturing the images from the
cameras. For each of the 149 diatoms imaged for the
microscopy neural network, the stages were translated in a
spiral pattern from the initial center so that 9 images at
different positions ±5 μm (in the XY plane) around the laser
focus were acquired to provide the neural network with more
information than would be achieved from just a single
scattering pattern to account for any inhomogeneity in the
laser spatial intensity profile at the focus. The diatom
microscope images were cropped to 256 × 256 pixels, whilst
the scattering pattern images were padded with zeros to form a
square image (for neural network training) and to keep the
high spatial frequency information at the edges of the images
and were then cropped and resized to 256 × 256 pixels before
being used for training the microscopy neural network. The
imaging camera (camera A) and scattering camera (camera B)
had integration times of 300 ms and 500 μs, respectively.
For both the velocity and angle data collection, an exposure

time of 100 ms for camera B was used to allow for enough
scattering data to be acquired, while the diatom was translated
through the beam. In this instance, to allow for a longer
integration time on the scattering camera, a neutral density
filter of 3 was used to avoid oversaturation of the images. The
images for both the varying velocity and the varying angle were
cropped into 1200 × 1200 pixel squares around the central
region and then resized to 512 × 512 pixels for training and
testing. Padding was not included in these images. To capture
data on the varying velocity of the diatoms, the diatoms were
translated through the focus by 50 μm in the X-direction.
Scattering patterns from 42 different diatoms translated at 10
different velocities (0.1 to 1 mm/s, in steps of 0.1 mm/s). In
addition, scattering patterns were recorded while translating
the diatoms at different angles from 0° to 345° in steps of 15°
at a velocity of 0.2 mm/s. Scattering patterns from 28 different
diatoms were captured (excluding 165° and 180°). Data for
165° and 180° (10× each) were left out of the training data to
test the capability of the neural network to predict angles not
present in training.
2.4. Neural Networks. The scattering patterns were paired

with the microscopy images for training a cGAN using an
architecture known as Pix2pix. The training was carried out
using the same workstation that was used to acquire the data. A
total of 1283 diatom images and scattering patterns were used
to train the neural network that had a 7-layer architecture (see,

for example, ref 40), a learning rate of 0.0002, and a drop-out
of 0.5. The neural network was trained for 100 epochs (8 h)
until the training loss errors reached a minimum. Once trained,
the neural network was applied to scattering patterns not used
in training, and the output (predicted images of diatoms) was
compared to the experimentally obtained diatom images.
For determining the speed of the diatoms as they were

translated through the laser focus, a regression CNN was used
that comprised 28 layers, consisting of 7 convolutional layers
(each followed by batch normalization and ReLU activation),
3 pooling layers, one drop-out layer, a fully connected layer,
and a regression output layer. The neural network was trained
on velocities of 0.1 to 1 mm/s in steps of 0.1 mm/s. An
85:15:5% training/validation/testing split of the data was used
for training the neural network, meaning 336 images were used
for training, 59 images for validation, and 25 images for testing.
The neural network was trained for 25 epochs (∼8 min),
which was the time in which the loss and RMSE (root-mean-
square error, i.e., the difference between the actual and
predicted values) had plateaued.
In addition, another regression neural network of the same

structure was used to determine the angle of direction at which
the diatoms were moving when translated for 25 μm from the
center of the laser beam focus at different angles. A split of the
data was used for training the neural network, meaning 525
images were used for training, 49 images for validation, and 43
images for testing. This time the neural network was trained
for 5 epochs, which took ∼3 min.

3. RESULTS AND DISCUSSION
Figure 2 shows the test data consisting of 6 different diatoms,
with column 1 showing the experimental scattering pattern,
column 2 showing the predicted diatom image, column 3
showing the experimental diatom image, and column 4
showing the difference in the images, such that lighter pixels
indicate regions of less difference.
The predicted images in Figure 2 were evaluated by using

the peak signal-to-noise ratio (PSNR), where a higher value
means a more accurate predicted image. We also used the
structural similarity index measure (SSIM), in which a value of
1 means the predicted and experimental images are the same, 0
indicates there is no similarity, and −1 indicates the pairs of
images are completely anticorrelated, the RMSE, where a
smaller value means greater similarity, and the perceptual
image quality evaluator (PIQE), which provides a metric based
on perceptual image quality (a smaller score indicates better
perceptual quality). These image metrics are displayed in
Table 1 and are calculated using the equations below.
The PSNR of all the predicted images was calculated as

follows:

i
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such that M and N represent the total number of rows and
columns of pixels in the images, respectively, and m and n
denote specific pixel positions within each row and column,
respectively. The term max(E,P) is the maximum intensity
value present in either the experimental image E or the
predicted image P.
The SSIM is a metric that measures the luminance, contrast,

and structural similarity. For each pair of experimental and
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predicted images, the SSIM was computed using the following
equation:

=
+ +

+ + + +
E P

C C

C C
SSIM( , )

(2 )(2 )

( )( )
E P EP

E P E P

1 2
2 2

1
2 2

2

where μP is the mean of P, μE is the mean of E, σP
2 is the

variance of P, σE
2 is the variance of E, and σEP is the covariance

of E and P. C1 = (0.01L)2 and C2 = (0.03L)2, respectively, and
L denotes the dynamic range of the pixel values in the images.
The RMSE is an error metric that quantifies the average

difference between predicted and actual image pixel values. To
calculate the RMSE, the squared differences between the
corresponding pixel intensity values in the predicted and

experimental images are averaged, and the square root of this
mean is taken. The RMSE is calculated using the formula:

=
=N

P ERMSE
1

( )
i

N

i i
1

2

where Ei is the experimental image pixel value, Pi is the
predicted image pixel value, and N is the number of pixels.
Finally, PIQE is an image quality assessment algorithm

designed to quantify perceptual quality without the need for a
reference image. It operates by dividing the input image into
nonoverlapping blocks and analyzing each block for
distortions. The algorithm estimates blockwise distortion and
measures the local variance of perceptibly distorted blocks to
compute the quality score. The final PIQE score ranges from 0
to 100, with lower scores indicating better perceptual quality.
The PIQE score is interpreted as follows: 0−20: excellent
quality, 21−35: good quality, 36−50: fair quality, 51−80: poor
quality, and 81−100: bad quality.41

As shown in Table 1, the SSIM values for all images are
approximately the same high value, either 0.98 or 0.99,
indicating good agreement with the experimental images. From
the values in the table, all images have similar metrics, with
Figure 2f being the most accurately predicted and Figure 2d
being the least accurate in terms of RMSE and PIQE. The
RMSE for all images is below 5, indicating that the average
error per pixel is only about 2% of the full intensity range. This
suggests that the predicted images are very close to the
experimental images, demonstrating high accuracy in the
reconstruction process. Indeed, from the figures, it is evident
that the predicted images are visually similar to the
experimental images. All images have a PIQE value that can
be considered to have fair quality. Further improvements to
the training data (i.e., more varied data) or an alternative
network architecture could lower these PIQE scores and
enhance the overall perceptual quality.
The ability to determine the velocity of diatoms using a

regression CNN is shown in Figure 3a, which displays the
experimental velocity compared to the predicted velocity. The
R-value of the plot is 0.5634, with the RMSE between the
predicted and experimental data being 0.189 mm/s. The graph
shows that higher experimental velocities are correlated with
higher predicted velocities.
In addition, Figure 3b demonstrates the capability of a

regression CNN to determine the angle of movement of a
diatom, displaying a plot of the experimental angle compared
with the predicted angle. The R-value of the plot is 0.7173,
with an RMSE for the combined data of 49.55°.
The capability of the neural network to produce images and

velocity and angle from the scattering patterns without prior
data means that such a neural network could be implemented
in real-time in situ, with only needing a laser, objective lens,
and camera B and without shutters and an imaging camera.
Such as setup could be further compacted with a simpler lens
and could be deployed in the marine environment using a
microcomputer, such as a Raspberry Pi,42 with appropriate
housing.
The technique demonstrated here allows a neural network to

generate the images of diatoms not previously included in the
training data set, enabling the potential detection of unknown
or rare species. However, to achieve reliable species-level
identification, it may be necessary to incorporate higher-
resolution data (e.g., SEM images43) and expand the training

Figure 2. Experimental diatom scattering patterns (column 1) and the
associated neural network predicted images (column 2). Also
included are the corresponding experimental images (column 3)
and the difference between the two images (column 4) (one minus
the other such that white pixels indicate less difference).

Table 1. PSNR, SSIM, RMSE, and PIQE for the Predicted
and Experimental Pollen Images Shown in Figure 2

image PSNR SSIM RMSE PIQE

a 40.60 0.98 2.38 45.89
b 37.25 0.98 3.50 48.85
c 36.75 0.98 3.71 46.95
d 35.75 0.98 4.16 47.62
e 37.15 0.98 3.54 46.53
f 40.89 0.99 2.30 45.75
average 38.07 0.98 3.26 46.93
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set to include broader morphological variations. Further to
this, by expanding the data set to include a broader range of
microorganisms, it could be possible to enhance the network’s
ability to generalize and reconstruct new or rare species
accurately.
Moreover, because cyanobacteria (typically 0.5−100 μm)44

and protozoa (typically 20−200 μm)45 share similar size
ranges with diatoms, our approach can be extended to image
these organisms as well. This could be useful in marine sensing
since Microcystis is a genus of cyanobacteria known to indicate
HABs,46 and protozoan pathogens like Cryptosporidium and
Giardia are critical indicators for water safety.47 Including these
in the training process would enable more diverse detection,
aiding water biologists in real-time field analysis.
Additionally, neural networks such as segmentation models

could be used alongside our imaging approach to distinguish
individual species within the aggregated species. Similar
segmentation strategies have recently been applied to detect
overlapping algae48 and pollen grains.49 By implementing a
segmentation network that can differentiate microorganisms
from each other, microplastics, or other debris, we can improve
the accuracy of biosurveillance and biodiversity assessments.
Ultimately, broadening our data set and refining our network
architectures will yield a more powerful, versatile tool for
marine environmental monitoring, water safety, and micro-
plastic detection in complex real-world settings.
In real-world environments, factors such as water turbidity,

particle interference, and variations in background light levels
could affect the accuracy of scattering-based imaging. There-
fore, various methods to ensure that neural networks can
accurately reconstruct images of diatoms should be explored.
For example, varying the background light in the training data
could help the neural network learn to reconstruct diatoms
correctly, regardless of light levels. Similarly, using different
optical filters or varying the turbidity or salinity of a volume of
water between the diatom and the sensor during training data
capture could improve the accuracy. Additionally, data
augmentation techniques50,51 could be employed to artificially
alter background lighting levels,52 modify the clarity of the

scattering pattern images,53 and introduce additional artificial
particulates or biofouling that may occlude the scattering
pattern from the sensor.54 Such methodologies would not only
enhance the robustness of the neural network but also reduce
the need for diverse training conditions, thereby increasing the
speed of data collection and training. Furthermore, implement-
ing real-time adaptive algorithms that adjust to changing
environmental conditions could further improve the reliability
of the system in field applications.

4. CONCLUSIONS
We have demonstrated the capability of using deep learning to
transform scattering patterns from laser-illuminated diatoms
into 20× microscope objective images of diatoms. We tested
the neural network on 50 different images, producing an
average PSNR, SSIM, RMSE, and PIQE value of 38.07, 0.98,
3.26, and 46.93, respectively, with diatoms in the predicted
images showing similarity in size and shape to their
corresponding experimentally obtained microscopy images.
We also showed the capability of neural networks to predict
the velocity and angle of diatoms from their scattering patterns
as they were translated through laser focus. This work shows
the potential for using lensless sensing for imaging diatoms in
the marine environment, which could allow the mass
deployment of sensors that enable real-time imaging and
thus monitoring of diatoms and their populations, potentially
aiding in understanding environmental tipping points and
harmful algae blooms. The technique demonstrated could also
be applied to microplastic monitoring in a marine environ-
ment.

■ ASSOCIATED CONTENT
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The data underlying this study are openly available in
University of Southampton Institutional Research Repository
at https://doi.org/10.5258/SOTON/D3420.

Figure 3. (a) Predicted diatom velocity compared with experimental velocity. (b) Predicted diatom angle compared with experimental angle when
moving at a velocity of 0.2 mm/s. Test data 1 is data from angles used during training of the neural network, while test data 2 is data from angles
not present in the training data.
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