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A B S T R A C T

Functionally graded materials can exhibit remarkable tolerance towards extreme hot or cold environments
and chemical surface degradation. This article exploits such properties of functionally graded materials to
propose a new class of transversely curved metamaterial architectures with high specific stiffness for operations
under extreme surrounding conditions. We envisage the next-generation concept design of hydrogen storage
tanks with functionally graded metamaterial core for aerospace and automotive applications. Based on such
innovative lattice metamaterial based design of hydrogen storage tanks it is possible to enhance the storage
capability in terms of internal pressure and resistance to external loads and impacts. Most importantly the
proposed concept would lead to a breakthrough in developing load-bearing energy storage devices. For the
metamaterial core, hexagonal bending-dominated unit cell architecture with transversely curved connecting
beam-like geometries would ensure the dual functionality of high specific stiffness and energy absorption
capability which are mutually exclusive in traditional lattice metamaterials. The functionally graded beams,
a periodic network of which constitutes the lattice, are modeled here using 3D degenerated shell elements in
a finite element framework. Geometric nonlinearity using Green–Lagrange strain tensor is considered for an
accurate analysis. The beam-level nonlinear deformation physics is integrated with the unit cell mechanics
following a semi-analytical framework to obtain the effective in-plane and out-of-plane elastic moduli of
the metamaterials. The numerical results show that the curved beam lattice metamaterials have significantly
enhanced in-plane elastic properties than straight lattices along with a reduced disparity among the in-plane
and out-of-plane elastic moduli.
1. Introduction

With the ever growing concern about environmental impacts and
climate issues, the urgent necessity to minimize carbon emissions is
realized across the countries. In such context of net-zero ambitions,
hydrogen as an alternate clean fuel has been attracting significant at-
tention from the aerospace and mechanical industries [1,2]. However,
the storage of hydrogen is a major challenge due to hydrogen em-
bitterment, followed by reduced ductility, fracture toughness, strength
and fatigue crack growth resistance in the container material. Further
hydrogen storage tanks need to sustain significant amount of internal
pressure along with external loads and impact, leading to the pos-
sibilities of catastrophic failure. Such concerns restrict the industrial
adoption and commercialization prospects of hydrogen energy severely.
The central theme of this paper is to propose a novel concept of hy-
drogen storage tanks with metamaterial core for significantly enhanced
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chemo-mechanical performance and storage capacity.
Hydrogen storage tanks are critical for advancing hydrogen as a

clean energy carrier, with research focusing on enhancing their safety,
efficiency, and capacity. Conventional storage technologies include
compressed hydrogen tanks, liquid hydrogen tanks, and solid-state
storage using metal hydrides. Compressed tanks store hydrogen under
high pressure (350–700 bar), but challenges like high energy require-
ments for compression and safety concerns persist [3]. Liquid hydrogen
storage offers higher volumetric efficiency but demands cryogenic tem-
peratures (20 K), leading to significant energy losses during cooling
and boil-off [4]. Solid-state storage materials, such as metal hydrides,
provide safer and more compact options but suffer from issues like
low hydrogen absorption/desorption kinetics and high weight [5]. This
article focuses on improving the storage capacity of hydrogen tanks in
terms of internal pressure along with safety issues concerning resistance
to external loading.
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Lattice metamaterials [6] are a type of artificially engineered mate-
ials that possess customized effective material properties suitable for
echnologically-demanding applications. These metamaterials derive
heir unique characteristics not only from their intrinsic material prop-
rties but also from the geometric arrangement of constituent unit cells.
s a result, it becomes possible to modify and fine-tune the material

properties of these metamaterials according to the requirements of vari-
ous applications, enabling the creation of innovative materials with dis-
tinct functionalities [7–12]. Due to their exceptional specific stiffness,
trength and energy absorption capability, lightweight metamaterials
ind extensive applications in various engineering fields [13–17]. In

recent years, engineers and material scientists have focused signifi-
cantly on the development of complex multi-functional metamaterial
architectures, primarily driven by the remarkable progress in the fields
f additive manufacturing and material fabrication techniques [18–

22]. The material properties of artificially engineered metamaterials
are noticeably different from the intrinsic properties of the constituent

aterials (i.e. material of the connecting beams) of the lattice structure.
In traditional design of metamaterials isotropic intrinsic materials are
sed that would not be suitable for catering extreme surrounding envi-
onments (very high or low temperature, adverse chemicals etc.) such
s marine and space. Further, traditional metamaterials with isotropic
ntrinsic materials cannot be used where the connecting beams may
ome in contact with liquids and gases that may chemically react with
he beam material, resulting in material property degradation. In this
rticle, we would propose a novel class of functionally graded lattices
here the outer surfaces of the constituting beams are made of inert

eramic materials, while the beam cross-section becomes metal-rich
near to the center (refer to Fig. 1(h)). This will allow lattices to be used
under extreme surrounding environments while maintaining adequate
mechanical properties.

A significant surge in the research investigations concerning me-
chanical metamaterials can be noticed over the last decade, primarily
driven by the growing need for multi-functional and extreme-property
materials that cannot be achieved through traditional naturally occur-
ring substances. An extensive literature review has shown that hon-
eycomb lattice metamaterials exhibit a superior strength–weight ratio
and possess exceptional capability in modulating multiple mechanical
properties. As a result, different bending and stretching dominated
honeycomb lattice metamaterials have gathered substantial attention
and interest for a range of structural demands such as specific stiff-
ness, strength and Poisson’s ratios [23–30]. The majority of these
tudies focus on analyzing the effective material properties by exam-

ining a single unit cell with appropriate boundary condition due to
the periodic nature of the lattice geometry [31]. Besides analyzing
effective elastic properties, considerable focus has been placed on
nvestigating the mechanical response of honeycomb structures under
arious conditions such as buckling, crushing, and impact [32–39].

The advances in additive manufacturing techniques have expanded
the scope of research in metamaterial design to encompass lattices
composed of multiple intrinsic materials [40–44]. Recent studies have
analytically examined the physics of irregularity and disorder in lat-
tices, noting that irregularities in lattice metamaterials can originate
from factors such as pre-stressing, microstructural flaws, and man-
ufacturing uncertainties [45–47]. The concept of anti-curvature and
ransversely-curved geometries have been proposed in the context of
i-level metamaterial design (involving coupled unit cell and beam-
evel architectures) for enhancing the effective elastic moduli [48–50]
nd failure strength [51]. The bi-level metamaterial design concepts

have recently been extended further to propose active and inflatable
lattices to achieve on-demand modulation of effective elastic moduli
and shape morphing [52–56]. Traditionally the connecting beam-like
lements in the above lattice metamaterials are made of isotropic ma-
erials, except for a recently proposed study on composite lattices [50].

Laminated composites, as conceived to be the architecture of the con-
stituting beams in the lattice, represent a distinct category of artificially
 c
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engineered materials that offer the advantage of tailoring material
properties through adjustments in ply orientation within the laminate
structure. These composites possess lightweight characteristics and ex-
hibit superior strength compared to isotropic materials [57]. Although
composite materials offer various benefits over metallic structures, they
are prone to issues such as delamination, matrix cracking, and matrix-
fiber debonding [58]. To address these challenges, functionally graded
materials (FGMs) have emerged as a viable solution. FGMs are a spe-
cialized type of composite material, typically composed of a mixture of
metal and ceramic in specific volume ratios. In particular, the material
properties of FGMs gradually vary throughout the thickness, ensuring
a smooth transition from one surface to the other [59,60]. Initially
developed for their remarkable thermal barrier properties, FGM beams,
lates and shell structures have proven to be an effective solution for a

range of adverse surrounding conditions [61–64]. Recently functionally
graded nonlinear lattices have been developed considering gradation
along the length of the cell walls, leading to a unique capability of
failure mode manipulation (brittle and ductile) along with stiffness
modulation [65]. In this work, we aim to introduce FGM beam-like
elements with thickness-wise gradation (refer to Fig. 1(f, h)) to form
the unit cells (refer to Fig. 1(d)) and the lattice metamaterials (refer
to Fig. 1(a)) with the ambition of using these advanced materials in
dverse surroundings such as extreme temperature or environments
rone to chemical material degradation.

From the concise literature review on lattice metamaterials pre-
ented above, it can be gathered than normally bending dominated
attice geometries such as hexagonal lattices can absorb high amount
f energy under impact, while they show relatively lower specific

stiffness compared to stretching dominated lattice geometries such
s rectangular or triangular lattices. In most of the mechanical and

aerospace applications, high specific stiffness is normally desirable
along with high specific energy absorption capability. We propose
o achieve such conventionally mutually exclusive dual functionality
ere by exploiting the deformation physics of unit cells which are
erived from the deformation of the constituting beam-like elements.
 transverse curvature (refer to Fig. 1(f)) would be introduced in the
onstituting beam elements to enhance the bending stiffness of these

members substantially, which will result in reduced deformation of the
nit cells under applied far-field stresses. This will lead to enhanced
pecific stiffness of the lattice metamaterials without any appreciable
ncrement of weight. For nonlinear finite element modeling of the
eam-like elements, accurate degenerated shell elements [66–75] will

be exploited (refer to Fig. 1(e)), and subsequently the beam-level
umerical results will be integrated with unit cell mechanics following

a nonlinear semi-analytical framework to obtain the effective elastic
roperties of the lattices.

Based on the literature review, it is evident that no previous stud-
es have focused on the development of metamaterials specifically

designed for extreme surrounding environments. Our research aims
to leverage the behavior of curved beams to achieve mutually ex-
clusive dual functionality of high specific stiffness and high energy
absorption capability in metamaterials, while making theme suitable
for adverse surroundings by introducing functionally graded materi-
als. The outer sides of the proposed constituting beams are rich in
ceramic to shield the structure from extreme surrounding environ-
mental effects, while the center part of the beam is rich in metal to
enhance strength and stiffness. We would develop an accurate semi-
analytical framework for investigating the nonlinear large-deformation
response and effective elastic moduli (all in-plane and out-of-plane
moduli, leading to characterization of the entire 3D constitutive matrix)
of the proposed functionally graded lattices considering non-auxetic
and auxetic unit cell geometries (refer to Fig. 1(a, b)). The primarily
focus will be placed on proposing a novel class of futuristic hydro-
en storage tanks with enhanced mechanical performance and storage
apacity, where the functionally graded metamaterials would be used
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Fig. 1. Functionally graded metamaterials for hydrogen storage. (a, b) Non-auxetic and auxetic lattice metamaterial architectures. (c) Typical hexagonal honeycomb unit
cell that constitutes a hexagonal lattice through tessellation. (d) Tri-member unit cell of the lattice metamaterial. Note that both the hexagonal and tri-member unit cells can be
tesslated to form a hexagonal lattice. (e) 8-noded degenerated shell element for analyzing the cell walls of the lattice. (f) Geometry of curved a beam that is used as lattice cell
walls. (g) Material property variation across the thickness for different power law indices. (h) Typical material distribution in a functionally graded beam across thickness. (i)
Hydrogen storage tank with functionally graded metamaterial core. Note that multiple layers of 2D lattices (or a single lattice with the out-of-plane depth the same as the length
of the tank) could be used along the cross-sectional plane of the tube. 3D lattices [76,77] could also be incorporated adopting the concept of functionally graded cell walls. The
lattice architectures could further be optimized based on application-specific mechanical loading conditions.
as a core, as depicted in 1(i). In the following sections, after pro-
viding a brief description of the concept design of metamaterial-core
hydrogen storage tank, we present the detailed mathematical formula-
tion for predicting the effective nonlinear elastic moduli of the lattice
metamaterials. Subsequent sections comprise of comprehensive numer-
ical results on the in-plane and out-of-plane elastic properties of the
proposed metamaterial, followed by concluding remarks.
3 
2. Metamaterial based design concepts for load-bearing hydrogen
storage tanks

Storage of hydrogen is a major challenge due to hydrogen embit-
terment, followed by reduced ductility, fracture toughness, strength
and fatigue crack growth resistance in the container material. Further
hydrogen storage tanks need to sustain significant amount of internal
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pressure along with external loads and impact, leading to the possibili-
ies of catastrophic failure. The central theme of this paper is to propose

a novel concept of hydrogen storage tanks with metamaterial core
(refer to Fig. 1(i)) for significantly enhanced chemo-mechanical per-
formance and storage capacity. The introduction of metamaterial core
in the storage tank will mechanically strengthen it for accommodating
more internal hydrogen pressure, leading to enhanced storage capacity.
urther the resistance to external loads and impact would be improved
y orders of magnitude compared to hollow circular cylindrical struc-
ures. By introducing bending dominated hexagonal architectures (refer
o Fig. 1(a, b, i(I))) as the metamaterial core with transversely curved
eam-like elements (refer to Fig. 1(f)), we ensure the dual functionality
f high impact energy absorption capability and high specific stiffness

and strength. In Fig. 2(h, i), a simple illustration is provided as to
ow the introduction of transverse curvature can increase the bending
tiffness of the cell walls significantly. A similar effect would be ex-
loited through the beam-like cell walls of the honeycombs. Further
he motion-induced dynamic instability in the liquid hydrogen fuel
ill be reduced significantly as the honeycomb lattice can act as an
ctive buffer. Most importantly, the proposed concept would lead to
 breakthrough in developing load-bearing energy storage devices for
utomotive and aerospace applications. The proposed design can be
ligned with the emerging futuristic concepts of fuel-filled structural
omponents such as fuel-filled load bearing aircraft wings. The 2D or
D lattice core architectures, as illustrated in Fig. 1(i)(I, II), can further
e optimized for an enhanced mechanical performance depending on
he shape of the tank and application-specific loading conditions.

Functionally graded materials can exhibit remarkable tolerance to-
wards extreme hot or cold environments and chemical surface degra-
dation. Thus we propose to introduce functionally graded materials in
the connecting beam-like elements of the lattice core as depicted in
Fig. 1(h). The outer sides of the proposed constituting beams are rich
n ceramic (inert to hydrogen [78]) to shield the structure from extreme

surrounding environmental effects, while the center part of the beam
is rich in metal to enhance strength and stiffness.

Research on functionally graded metamaterials, specifically engi-
eered to maximize nonlinear stiffness through the exploitation of
lementary out-of-plane curvature, offers profound benefits for sus-
ainability and environmental impact. Besides impacting the net-zero
mbitions based on hydrogen fuel, these advanced engineered materials
an revolutionize the aerospace industry by reducing the weight of

structural components while offering adequate mechanical properties.
Further the notion of load-bearing fuel storage components that can
be integrated to the structural shapes of aerospace and automobile
vehicles can lead to extremal fuel efficiency. This weight reduction
directly translates into lower fuel consumption and emissions, signif-
icantly mitigating the carbon footprint of aerospace operations. The
evelopment of such sustainable materials not only aligns with environ-

mental and economic goals, but also promotes responsible and efficient
use of resources, paving the way for greener technologies.

3. Computational modeling of nonlinear functionally graded
etamaterials

In this section, we provide the mathematical formulation for deter-
mining the effective elastic moduli of curved lattice metamaterials. For
onlinear finite element modeling of the functionally graded beam-like
lements, accurate degenerated shell elements will be exploited, and
ubsequently the beam-level numerical results will be integrated with
nit cell mechanics following a nonlinear semi-analytical framework to
btain the effective elastic properties of the lattices.
4 
3.1. Curved functionally graded beams

A 3D degenerated shell element model has been used here to model
he functionally graded beams. These elements are based on the three-
imensional continuum theory and exhibit similarities to 2-dimensional
erendipity elements, with the additional capability of incorporating
ariations in the thickness direction. The creation of these elements is
ased on the degenerated solid approach, which uses Reissner–Mindlin
ssumptions to incorporate shear deformation and rotary inertia effects.

As a result, the 3D field is simplified to a 2D field, described by
mid-surface nodal variables.

3.1.1. Material properties of functionally graded beams
The material properties of functionally graded (FG) beams are as-

sumed to vary along the thickness direction. In the present study, the
uter sides of the beam are made up of ceramics and the inner side

consists of metal (see Fig. 1(h)). The power law distribution is adopted
to calculate the equivalent material properties in the desired direction
as:
𝐸 =

(

𝐸𝑐 − 𝐸𝑚
)

𝑉𝑐 (𝑧) + 𝐸𝑚

𝜌 =
(

𝜌𝑐 − 𝜌𝑚
)

𝑉𝑐 (𝑧) + 𝜌𝑚
𝜈 =

(

𝜈𝑐 − 𝜈𝑚
)

𝑉𝑐 (𝑧) + 𝜈𝑚

(1)

where the subscript 𝑐 and 𝑚 represent ceramic and metallic con-
stituents, respectively. The volume fraction of ceramic depends on the
thickness coordinate and is expressed as:

𝑉𝑐 (𝑧) =
(

2𝑧+ℎ
2ℎ

)𝑝
0 ⩽ 𝑝 ⩽ ∞ (2)

Here, 𝑝 denotes the volume fraction index (also known as power law
index). For 𝑝 = 0, and 𝑝 = ∞, the FG beam behaves like pure ceramic
nd metal, respectively.

3.1.2. Modeling of curved FG beams
In the beam model, an 8-noded degenerated shell element is em-

ployed with a natural coordinate system (𝜉 , 𝜂 , 𝜁). This coordinate system
is defined by the element’s geometry rather than its orientation in the
global coordinate system. The natural elements are scaled so that the
sides of the parent elements are determined by 𝜉 = ±1, 𝜂 = ±1 and
𝜁 = ±1. The displacement field for a laminated FG beam is represented
as follows:
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}⎤

⎥

⎥

⎥

⎦

(3)

where 𝑁𝑖 is the shape function of an 8 noded serendipity element, 𝑡𝑖 is
the thickness of the plate at node 𝑖, 𝑣1𝑖 and 𝑣2𝑖 are unit vectors along
the 𝑥 and 𝑦 directions as
𝑣1𝑖 =

[

𝑙1𝑖 𝑚1𝑖 𝑛1𝑖
]𝑇

𝑣2𝑖 =
[

𝑙2𝑖 𝑚2𝑖 𝑛2𝑖
]𝑇 (4)

𝛼 and 𝛽 are rotation about 𝑥 and 𝑦-axis respectively as shown in
Fig. 1(e).

Since the elements might use a different coordinate system than
the global coordinates, it is necessary to convert global strain compo-
ents into local strain components. Considering geometric nonlinearity
hrough Green’s strain equation, the strain components in the local axis
an be expressed as:

𝜀′ = 𝜀′𝐿 + 𝜀′𝑁 𝐿 (5)

Here, 𝜀′𝐿 and 𝜀′𝑁 𝐿 are the linear and nonlinear strain components, re-
spectively. These components are calculated using following equations:
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𝜀′𝐿 =
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+
(

𝜕 𝑤′

𝜕 𝑥′ 𝜕 𝑤′

𝜕 𝑧′
)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

=

1
2

𝜕 𝑢′
𝜕 𝑥′ 0 0 1

2
𝜕 𝑣′
𝜕 𝑥′ 0 0 1

2
𝜕 𝑤′

𝜕 𝑥′ 0 0

0 1
2
𝜕 𝑢′
𝜕 𝑦′ 0 0 1

2
𝜕 𝑣′
𝜕 𝑦′ 0 0 1

2
𝜕 𝑤′

𝜕 𝑦′ 0

0 𝜕 𝑢′
𝜕 𝑥′ 0 0 𝜕 𝑣′

𝜕 𝑥′ 0 0 𝜕 𝑤′

𝜕 𝑥′ 0

0 0 𝜕 𝑢′
𝜕 𝑦′ 0 0 𝜕 𝑣′

𝜕 𝑦′ 0 0 𝜕 𝑤′

𝜕 𝑦′
0 0 𝜕 𝑢′

𝜕 𝑥′ 0 0 𝜕 𝑣′
𝜕 𝑥′ 0 0 𝜕 𝑤′

𝜕 𝑥′

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[𝑇2]

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝑢′
𝜕 𝑥′
𝜕 𝑢′
𝜕 𝑦′
𝜕 𝑢′
𝜕 𝑧′
𝜕 𝑣′
𝜕 𝑥′
𝜕 𝑣′
𝜕 𝑦′
𝜕 𝑣′
𝜕 𝑧′
𝜕 𝑤′

𝜕 𝑥′
𝜕 𝑤′

𝜕 𝑦′
𝜕 𝑤′

𝜕 𝑧′

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(7)

where 𝜕 𝑢′
𝜕 𝑥′ =

𝜕 𝑢′
𝜕 𝑥

𝜕 𝑥
𝜕 𝑥′ +

𝜕 𝑢′
𝜕 𝑦

𝜕 𝑦
𝜕 𝑥′ +

𝜕 𝑢′
𝜕 𝑧

𝜕 𝑧
𝜕 𝑥′ and 𝜕 𝑢′

𝜕 𝑥 = 𝜕 𝑢
𝜕 𝑥

𝜕 𝑢′
𝜕 𝑢 +

𝜕 𝑣
𝜕 𝑥

𝜕 𝑢′
𝜕 𝑣 +

𝜕 𝑤
𝜕 𝑥

𝜕 𝑢′
𝜕 𝑤 . Here

𝜕 𝑥
𝜕 𝑥′ ,

𝜕 𝑦
𝜕 𝑥′ ,

𝜕 𝑧
𝜕 𝑥′ ,

𝜕 𝑥
𝜕 𝑦′ ,

𝜕 𝑦
𝜕 𝑦′ ,…. and 𝜕 𝑢′

𝜕 𝑢 ,
𝜕 𝑢′
𝜕 𝑣 ,

𝜕 𝑢′
𝜕 𝑤 , 𝜕 𝑣′𝜕 𝑢 ,

𝜕 𝑣′
𝜕 𝑣 ,…. are the direction

cosines (𝑙𝑥, 𝑙𝑦, 𝑙𝑧, 𝑚𝑥, 𝑚𝑦...) between global and local coordinate system
which is calculated using the Jacobian matrix of the element.
(

𝑛𝑥, 𝑛𝑦, 𝑛𝑧
)

=
(

𝑑 𝑥
𝑑 𝜉 ,

𝑑 𝑦
𝑑 𝜉 ,

𝑑 𝑧
𝑑 𝜉
)

×
(

𝑑 𝑥
𝑑 𝜂 ,

𝑑 𝑦
𝑑 𝜂 ,

𝑑 𝑧
𝑑 𝜂
)

(

𝑙𝑥, 𝑙𝑦, 𝑙𝑧
)

=
(

𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧
)

|

|

|

(

𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧
)

|

|

|

(

𝑚𝑥, 𝑚𝑦, 𝑚𝑧
)

=
(

𝑛𝑥, 𝑛𝑦, 𝑛𝑧
)

×
(

𝑙𝑥, 𝑙𝑦, 𝑙𝑧
)

(8)

Converting local strains to global strains, we get
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝜕 𝑢′
𝜕 𝑥′
𝜕 𝑢′
𝜕 𝑦′
𝜕 𝑢′
𝜕 𝑧′
𝜕 𝑣′
𝜕 𝑥′
𝜕 𝑣′
𝜕 𝑦′
𝜕 𝑣′
𝜕 𝑧′
𝜕 𝑤′

𝜕 𝑥′
𝜕 𝑤′

𝜕 𝑦′
𝜕 𝑤′

′

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑙𝑥𝑙𝑥 𝑙𝑥𝑚𝑥 𝑙𝑥𝑛𝑥 𝑚𝑥𝑙𝑥 𝑚𝑥𝑚𝑥 𝑚𝑥𝑛𝑥 𝑛𝑥𝑙𝑥 𝑛𝑥𝑚𝑥 𝑛𝑥𝑛𝑥
𝑙𝑥𝑙𝑦 𝑙𝑥𝑚𝑦 𝑙𝑥𝑛𝑦 𝑚𝑥𝑙𝑦 𝑚𝑥𝑚𝑦 𝑚𝑥𝑛𝑦 𝑛𝑥𝑙𝑦 𝑛𝑥𝑚𝑦 𝑛𝑥𝑛𝑦
𝑙𝑥𝑙𝑧 𝑙𝑥𝑚𝑧 𝑙𝑥𝑛𝑧 𝑚𝑥𝑙𝑧 𝑚𝑥𝑚𝑧 𝑚𝑥𝑛𝑧 𝑛𝑥𝑙𝑧 𝑛𝑥𝑚𝑧 𝑛𝑥𝑛𝑧
𝑙𝑦𝑙𝑥 𝑙𝑦𝑚𝑥 𝑙𝑦𝑛𝑥 𝑚𝑦𝑙𝑥 𝑚𝑦𝑚𝑥 𝑚𝑦𝑛𝑥 𝑛𝑦𝑙𝑥 𝑛𝑦𝑚𝑥 𝑛𝑦𝑛𝑥
𝑙𝑦𝑙𝑦 𝑙𝑦𝑚𝑦 𝑙𝑦𝑛𝑦 𝑚𝑦𝑙𝑦 𝑚𝑦𝑚𝑦 𝑚𝑦𝑛𝑦 𝑛𝑦𝑙𝑦 𝑛𝑦𝑚𝑦 𝑛𝑦𝑛𝑦
𝑙𝑦𝑙𝑧 𝑙𝑦𝑚𝑧 𝑙𝑦𝑛𝑧 𝑚𝑦𝑙𝑧 𝑚𝑦𝑚𝑧 𝑚𝑦𝑛𝑧 𝑛𝑦𝑙𝑧 𝑛𝑦𝑚𝑧 𝑛𝑦𝑛𝑧
𝑙𝑧𝑙𝑥 𝑙𝑧𝑚𝑥 𝑙𝑧𝑛𝑥 𝑚𝑧𝑙𝑥 𝑚𝑧𝑚𝑥 𝑚𝑧𝑛𝑥 𝑛𝑧𝑙𝑥 𝑛𝑧𝑚𝑥 𝑛𝑧𝑛𝑥
𝑙𝑧𝑙𝑦 𝑙𝑧𝑚𝑦 𝑙𝑧𝑛𝑦 𝑚𝑧𝑙𝑦 𝑚𝑧𝑚𝑦 𝑚𝑧𝑛𝑦 𝑛𝑧𝑙𝑦 𝑛𝑧𝑚𝑦 𝑛𝑧𝑛𝑦
𝑙𝑧𝑙𝑧 𝑙𝑧𝑚𝑧 𝑙𝑧𝑛𝑧 𝑚𝑧𝑙𝑧 𝑚𝑧𝑚𝑧 𝑚𝑧𝑛𝑧 𝑛𝑧𝑙𝑧 𝑛𝑧𝑚𝑧 𝑛𝑧𝑛𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

×

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝜕 𝑢
𝜕 𝑥
𝜕 𝑢
𝜕 𝑦
𝜕 𝑢
𝜕 𝑧
𝜕 𝑣
𝜕 𝑥
𝜕 𝑣
𝜕 𝑦
𝜕 𝑣
𝜕 𝑧
𝜕 𝑤
𝜕 𝑥
𝜕 𝑤
𝜕 𝑦
𝜕 𝑤

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

(9)
⎩ 𝜕 𝑧 ⎭ [𝑇 ] ⎩ 𝜕 𝑧 ⎭

5 
The global strains can be written as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝑢
𝜕 𝑥
𝜕 𝑢
𝜕 𝑦
𝜕 𝑢
𝜕 𝑧
𝜕 𝑣
𝜕 𝑥
𝜕 𝑣
𝜕 𝑦
𝜕 𝑣
𝜕 𝑧
𝜕 𝑤
𝜕 𝑥
𝜕 𝑤
𝜕 𝑦
𝜕 𝑤
𝜕 𝑧

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 𝜉
𝜕 𝑥

𝜕 𝜂
𝜕 𝑥

𝜕 𝜁
𝜕 𝑥 0 0 0 0 0 0

𝜕 𝜉
𝜕 𝑦

𝜕 𝜂
𝜕 𝑦

𝜕 𝜁
𝜕 𝑦 0 0 0 0 0 0

𝜕 𝜉
𝜕 𝑧

𝜕 𝜂
𝜕 𝑧

𝜕 𝜁
𝜕 𝑧 0 0 0 0 0 0

0 0 0 𝜕 𝜉
𝜕 𝑥

𝜕 𝜂
𝜕 𝑥

𝜕 𝜁
𝜕 𝑥 0 0 0

0 0 0 𝜕 𝜉
𝜕 𝑦

𝜕 𝜂
𝜕 𝑦

𝜕 𝜁
𝜕 𝑦 0 0 0

0 0 0 𝜕 𝜉
𝜕 𝑧

𝜕 𝜂
𝜕 𝑧

𝜕 𝜁
𝜕 𝑧 0 0 0

0 0 0 0 0 0 𝜕 𝜉
𝜕 𝑥

𝜕 𝜂
𝜕 𝑥

𝜕 𝜁
𝜕 𝑥

0 0 0 0 0 0 𝜕 𝜉
𝜕 𝑦

𝜕 𝜂
𝜕 𝑦

𝜕 𝜁
𝜕 𝑦

0 0 0 0 0 0 𝜕 𝜉
𝜕 𝑧

𝜕 𝜂
𝜕 𝑧

𝜕 𝜁
𝜕 𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[𝐽 𝑎𝑐]

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝑢
𝜕 𝜉
𝜕 𝑢
𝜕 𝜂
𝜕 𝑢
𝜕 𝜁
𝜕 𝑣
𝜕 𝜉
𝜕 𝑣
𝜕 𝜂
𝜕 𝑣
𝜕 𝜁
𝜕 𝑤
𝜕 𝜉
𝜕 𝑤
𝜕 𝜂
𝜕 𝑤
𝜕 𝜁

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(10)

where,
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕 𝑢
𝜕 𝜉
𝜕 𝑢
𝜕 𝜂
𝜕 𝑢
𝜕 𝜁
𝜕 𝑣
𝜕 𝜉
𝜕 𝑣
𝜕 𝜂
𝜕 𝑣
𝜕 𝜁
𝜕 𝑤
𝜕 𝜉
𝜕 𝑤
𝜕 𝜂
𝜕 𝑤
𝜕 𝜁

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=
8
∑

𝑖=1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕 𝑁𝑖
𝜕 𝜉 0 0 − 𝜕 𝑁𝑖

𝜕 𝜉
𝜁 𝑡𝑖𝑙2𝑖
2

𝜕 𝑁𝑖
𝜕 𝜉

𝜁 𝑡𝑖𝑙1𝑖
2

𝜕 𝑁𝑖
𝜕 𝜂 0 0 − 𝜕 𝑁𝑖

𝜕 𝜂
𝜁 𝑡𝑖𝑙2𝑖
2

𝜕 𝑁𝑖
𝜕 𝜂

𝜁 𝑡𝑖𝑙1𝑖
2

0 0 0 −𝑁𝑖𝑡𝑖𝑙2𝑖
2

𝑁𝑖𝑡𝑖𝑙1𝑖
2

0 𝜕 𝑁𝑖
𝜕 𝜉 0 − 𝜕 𝑁𝑖

𝜕 𝜉
𝜁 𝑡𝑖𝑚2𝑖

2
𝜕 𝑁𝑖
𝜕 𝜉

𝜁 𝑡𝑖𝑚1𝑖
2

0 𝜕 𝑁𝑖
𝜕 𝜂 0 − 𝜕 𝑁𝑖

𝜕 𝜂
𝜁 𝑡𝑖𝑚2𝑖

2
𝜕 𝑁𝑖
𝜕 𝜂

𝜁 𝑡𝑖𝑚1𝑖
2

0 0 0 −𝑁𝑖𝑡𝑖𝑚2𝑖
2

𝑁𝑖𝑡𝑖𝑚1𝑖
2

0 0 𝜕 𝑁𝑖
𝜕 𝜉 − 𝜕 𝑁𝑖

𝜕 𝜉
𝜁 𝑡𝑖𝑛2𝑖
2

𝜕 𝑁𝑖
𝜕 𝜉

𝜁 𝑡𝑖𝑛1𝑖
2

0 0 𝜕 𝑁𝑖
𝜕 𝜂 − 𝜕 𝑁𝑖

𝜕 𝜂
𝜁 𝑡𝑖𝑛2𝑖
2

𝜕 𝑁𝑖
𝜕 𝜂

𝜁 𝑡𝑖𝑛1𝑖
2

0 0 0 −𝑁𝑖𝑡𝑖𝑛2𝑖
2

𝑁𝑖𝑡𝑖𝑛1𝑖
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[𝜕 𝑁]

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑖
𝑣𝑖
𝑤𝑖

𝛼𝑖
𝛽𝑖

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(11)

Strain–displacement matrix [𝐵] can be defined using Eqs. (5), (6),
7), (9), (10), (11) as following:

[𝐵] =
[

𝐵𝐿
]

+
[

𝐵𝑁 𝐿
]

=
[

𝑇1
]

[𝑇 ] [𝐽 𝑎𝑐] [𝜕 𝑁] +
[

𝑇2
]

[𝑇 ] [𝐽 𝑎𝑐] [𝜕 𝑁] (12)

Stress–strain relationship matrix [𝐷] is taken as:

[𝐷] = 𝐸
(

1 − 𝜐2
)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 𝜐 0 0 0

𝜐 1 0 0 0

0 0 (1−𝜐)
2 0 0

0 0 0 𝐾𝑠(1−𝜐)
2 0

0 0 0 0 𝐾𝑠(1−𝜐)
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

Here, 𝐸, 𝜈, and 𝐾𝑠 are effective modulus of elasticity, effective Pois-
son’s ratio, and the shear correction factor for the functionally graded
material. The stiffness matrix [𝐾] is expressed as:

[𝐾] = ∫ ∫ ∫ [𝐵]𝑇 [𝐷] [𝐵] |𝐽 | 𝑑 𝜉 𝑑 𝜂 𝑑 𝜁 (14)

After having the stiffness matrix, the conventional finite element op-
erations can be followed to evaluate the deflection of the curved
unctionally graded beams under appropriate loading and boundary
onditions to analyze the lattice further.

3.2. Effective nonlinear elastic properties of functionally graded lattices

The general formulation for determining the in-plane and out-of-
plane effective material properties of a functionally graded lattice,
taking into account both transverse and axial displacements, is pre-
ented here. Since we are considering geometrical nonlinearity of the
eam while calculating the effective lattice-level material properties,
he analysis will be carried out using incremental geometry updation

until the deflection results converge. As the solution process is iterative,
several geometric properties of the unit cell will be updated in every
iteration. Keeping this in mind, the presented state in the formulation
from now on is depicted for 𝑖th iteration.
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Fig. 2. Unit cell based mechanics of transversely curved functionally graded lattices. (a) In-plane longitudinal compressive loading on the lattice cell to determine effective
𝐸1 of the lattice. (b) Deformed slanted beam for calculating 𝐸1, considering both transverse and axial deflection. (c) In-plane transverse compressive loading on the lattice cell to
determine effective 𝐸2 of the lattice. (d) Deformed lattice cell for calculating 𝐸2, considering both transverse and axial deflection. (e) In-plane shear loading on the lattice cell to
determine effective 𝐺12 of the lattice. (f) Deformed lattice cell under the horizontal component of 𝜏12 for calculating 𝐺12 of the lattice. (g) Deformed lattice cell under the vertical
component of 𝜏12 for calculating 𝐺12 of the lattice. (h, i) Demonstration of transverse curvature induced enhancement in bending stiffness considering a typical experiment with
a sheet of paper. We exploit such physical understanding to increase the in-plane stiffness of hexagonal lattices where the beam-like constituting elements are architected in the
out-of-plane direction with transverse curvature.
3.2.1. 𝐸1 of curved FG lattices
To determine the in-plane longitudinal modulus 𝐸1 of the function-

ally graded lattice metamaterial, an in-plane far-field longitudinal stress
(𝜎1) is applied to the honeycomb. This stress induces both transverse
and axial displacements (𝛿𝑖 and 𝛿𝑖𝑎) in the slant beams, as illustrated
in Fig. 2(b). The slant beam is assumed to be fixed at one end and
rotationally restrained at the other end. This boundary condition is es-
sential for accurately calculating the axial and transverse displacements
ensuring unit cell periodicity. The stress and strain can subsequently be
determined using the following equations:

𝜎𝑖1 =
𝑃 𝑖

(

ℎ𝑖 + 𝑙𝑖 sin 𝜃𝑖
)

𝑊
(15)
6 
𝑒𝑖1 =
𝛿𝑖 sin 𝜃𝑖 + 𝛿𝑖𝑎 cos 𝜃

𝑖

𝑙 cos 𝜃𝑖
(16)

The expression of 𝑃 𝑖 is indicated in Fig. 2. The 𝐸1 of the FG lattice
metamaterial is determined using the following equation:

𝐸1 =
𝜎𝑖1
𝑒𝑖1

(17)

Here 𝜎𝑖1 and 𝑒𝑖1 are the stress and strain, obtained at the final iteration
when the results converge, respectively.

To calculate 𝐸1 by considering only transverse deflection, one can
disregard the axial deflection and use the above equations without any
modifications. The difference between the 𝐸 values obtained from
1
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considering only transverse displacement versus both transverse and
axial displacements is minimal, as the axial displacement is signifi-
cantly smaller than the transverse displacement. However, the relative
influence of the axial deformation component will depend on the cell
angle.

3.2.2. 𝐸2 of curved FG lattices
To determine the in-plane transverse Young’s modulus 𝐸2 of the

lattice, in-plane far-field transverse stresses are applied to the lattice,
and the total in-plane transverse displacement is measured. This process
nvolves calculating the transverse and axial displacements (𝛿𝑖 and 𝛿𝑙 𝑖𝑎 )
f the functionally graded slanted beam and the axial displacement
𝛿ℎ𝑖𝑎 ) of the vertical beam within the honeycomb cell, as depicted in

Fig. 2(d).
To obtain the total transverse displacement of the lattice cell under

in-plane transverse stress, the slanted beam is subjected to an inclined
oad (𝑃 𝑖∕2), and its deflections are assessed. As illustrated in Fig. 2(b),
he slanted beam is assumed to be fixed at one end and rotationally

restrained at the other end for ensuring unit cell periodicity. For cal-
culating the axial displacement in the vertical beam of the honeycomb
cell, a separate analysis is conducted by applying an axial load (𝑃 𝑖) to
the vertical beam, which is assumed to be fixed at one end and free at
he other end for the axial deflection calculation. The stress and strain

in the lattice along in-plane transverse direction are then computed
using the following equations:

𝜎𝑖2 =
𝑃 𝑖

𝑊
(

𝑙𝑖 cos 𝜃𝑖
) (18)

𝑒𝑖2 =
𝛿𝑖 cos 𝜃𝑖 + 𝛿𝑙 𝑖𝑎 sin 𝜃𝑖 + 𝛿ℎ𝑖𝑎

ℎ𝑖 + 𝑙𝑖 sin 𝜃𝑖
(19)

The expression of 𝑃 𝑖 is indicated in Fig. 2. The effective Young’s
modulus 𝐸2 of FG lattice metamaterial is calculated using equation:

𝐸2 =
𝜎𝑖2
𝑒𝑖2

(20)

Here 𝜎𝑖2 and 𝑒𝑖2 are the stress and strain values, obtained at the final
iteration when the results converge, respectively.

To calculate 𝐸2 by considering only transverse deflection, one can
disregard the axial deflection of the slanted and vertical beams, and
se the above equations as they are. The difference between the 𝐸2
alues obtained from considering only transverse displacement versus
oth transverse and axial displacements is minimal, since the axial
isplacement is significantly smaller than the transverse displacement.
owever, the relative influence of the axial deformation component
ill depend on the cell angle.

3.2.3. 𝐸3 of curved FG lattices
To determine the out-of-plane transverse Young’s modulus 𝐸3 of the

FG lattice metamaterial, an out-of-plane transverse stress is applied to
he Y-shaped unit cell. In this case, a uniform pressure 𝑝𝑖 is exerted on
he top face of the cell, while the bottom face is assumed to be fixed
refer to Fig. 3(a, b)). The deflection (𝛿𝑖𝑧) resulting from the applied
ressure is calculated to assess the response of the lattice cell. This
eflection is then used to find the stress and strain using the following
quations:

𝜎𝑖3 =
𝑝𝑖
(

ℎ𝑖 + 2𝑙𝑖) 𝑡
(

ℎ𝑖 + 𝑙𝑖 sin 𝜃𝑖
) (

2𝑙𝑖 cos 𝜃𝑖
) (21)

𝑒𝑖3 =
𝛿𝑖𝑧
𝑊

(22)

The expression of 𝑝 is indicated in Fig. 3. 𝐸3 of FG lattice metamaterial
is calculated using equation:

𝐸3 =
𝜎𝑖3 (23)

𝑒𝑖3

o

7 
Here 𝜎𝑖3 and 𝑒𝑖3 are the stress and strain values, obtained at the final
iteration when the results converge, respectively. It may be noted that
the value of 𝐸3 reduces in lattices with transversely curved cell walls
compared to conventional straight cell walls due to the involvement of
bending component. This results in a reduction in disparity between the
in-plane and out-of-plane Young’s moduli in hexagonal lattices where
the in-plane mechanics is dominated by bending deformation of the cell
walls.

Note that the out-of-plane specific elastic moduli of straight-wall
hexagonal metamaterials are orders of magnitude higher than their
n-plane elastic moduli, thus making them weak in in-plane loading

conditions. The proposed curved cell wall metamaterials can lead to
a large gain in in-plane effective moduli by marginal compromise in
the out-of-plane moduli. Such designs make the metamaterial suitable
for applications under multi-modal loading conditions.

3.2.4. 𝐺12 of curved FG lattices
To calculate the in-plane shear modulus 𝐺12 of the lattice meta-

material, an in-plane far-field shear stress 𝜏𝑖12 is applied to the lattice,
esulting in two force components, 𝐹 𝑖 and 𝑆 𝑖. The effects of these
orce components need to be evaluated separately, as illustrated in

Fig. 2(f) and (g). Note that we consider half length of the vertical
ell wall to exploit the fact that bending moment at the middle of the
ell wall becomes zero under both-end rotationally restrained boundary

condition (this is enforced to maintain unit cell level periodicity) and
the half beam can effectively be treated as a cantilever beam.

First, we consider the effect of the horizontal coupled force compo-
nents of the in-plane shear stress, as shown in Fig. 2(f). In this case, the
unction undergoes a rotation of angle 𝜙 in addition to the transverse
eflection of the vertical member of the lattice cell. To determine the
otational angle 𝜙𝑖, a force of magnitude (𝐹 𝑖∕2) is applied to the slanted
eam of the lattice cell, which is fixed at one end and rotationally
estrained at the other (not that such boundary conditions ensure
eriodicity of the unit cells). The rotation angle 𝜙𝑖 is calculated based
n dividing the transverse deflection of the slanted beam by the length
f the slanted beam.

The horizontal displacement of the lattice cell, denoted as 𝑢𝑖𝑠, is the
sum of the displacement of the vertical beam due to the horizontal
force (𝐹 𝑖) and the displacement resulting from the rotation of the
vertical beam. The horizontal displacement 𝑢𝑖𝑠 can be calculated using
the following equation:

𝑢𝑖𝑠 =
1
2
𝜙𝑖ℎ𝑖 + 𝛿ℎ𝑖 (24)

where 𝛿ℎ𝑖 represents the transverse displacement of the vertical beam
due to the horizontal force 𝐹 𝑖. The strain resulting from the horizontal
omponent of the in-plane shear stress 𝜏𝑖12 is determined using the
ollowing equation:

𝛾 𝑖ℎ =
2𝑢𝑖𝑠

(

ℎ𝑖 + 𝑙𝑖 sin 𝜃𝑖
) (25)

Now the strain due to vertical coupled force components of the
n-plane shear stress 𝜏 𝑖12 needs to be calculated. Due to the vertical
oupled forces, the slanted beams of lattice cell will experience vertical
eflection 𝑢𝑖𝑠𝑠. The deflection can be calculated using equation:

𝑢𝑠𝑠 =
𝛿𝑖

cos 𝜃𝑖
(26)

Here, 𝛿𝑖 is the transverse deflection of slanted beam due to inclined load
𝑆. The strain due to vertical component of the in-plane shear stress 𝜏12
is determined from the equation:

𝛾 𝑖𝑙 =
2𝑢𝑖𝑠𝑠

𝑙 cos 𝜃𝑖
(27)

It is worth noting that the slant members will not experience any
ending under the application of 𝑆 and rotationally restrained ends
f the slant beams, while the deformation will solely be due to axial
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Fig. 3. Out-of-plane unit cell mechanics of hexagonal lattices. (a) Out-of-plane compressive loading on the lattice cell to determine effective 𝐸3. (b) Deformed lattice cell
under 𝜎3 for calculating 𝐸3 of the lattice. (c) Out-of-plane shear stresses at the lattice level. (d) Out-of-plane shear stresses at the unit cell level. (e) Calculation of effective
shear modulus of curved beams. Note that the direction of curvature in the cell walls does not influence the effective elastic properties under the imposed rotationally-restrained
boundary condition. Thus, the beams may have curvature in any direction without affecting the relative joint deformations and the effective elastic moduli.
effects as indicated in Fig. 2(g).
The total shear strain is calculated using equation:

𝛾 𝑖12 = 𝛾 𝑖𝑙 + 𝛾 𝑖ℎ (28)

The equation for calculating in-plane shear modulus (𝐺12) is given as:

𝐺12 =
𝜏 𝑖12
𝛾 𝑖12

(29)

Here 𝜏𝑖12 and 𝛾 𝑖12 are the effective stress and strain, obtained at the final
iteration when the results converge, respectively.

It can be noted that the above formulation accounts for both bend-
ing and axial deflections of the beams. To calculate 𝐺12 by considering
only transverse deflection, one can disregard the axial deflection of the
slanted and vertical beams, and use the above equations as they are.

3.2.5. 𝐺23 of curved FG lattice
To calculate the out-of-plane shear moduli 𝐺23 and 𝐺13, we need the

effective in-plane shear modulus 𝐺12 of the curved beam. This effective
𝐺12 will differ from the intrinsic shear modulus of the FG material due
to the beam’s curvature. Note that 𝐺12 has no relation with the in-plane
effective shear modulus of the lattice, 𝐺12. To determine the effective
in-plane shear modulus 𝐺12 of the curved beam, a curved shell-like
structure with its bottom side fixed, as shown in Fig. 3(e), is considered.
A point load 𝑃 𝑖 is applied on the top of the beam, parallel to the fixed
side. The effective shear modulus of the curved beam is then calculated
using the following equation:

𝐺12 =
𝑃 𝑖𝑊
𝛿𝑖𝑠𝑙𝑖𝑡

(30)

Here, 𝑃 𝑖, 𝑊 , 𝛿𝑖𝑠, 𝑙𝑖, and 𝑡 are applied load, width of beam, shear deflec-
tion, length of beam, and thickness of beam as shown in Fig. 3(e).

The out-of-plane shear moduli of the lattice are challenging to cal-
culate due to the non-uniform deformation of each cell walls. However,
the upper and lower limits of the shear moduli can be determined using
the minimum potential energy and minimum complementary energy
theorems, respectively. To find 𝐺23 of the lattice, the lattice is subjected
to an out-of-plane stress 𝜏23, as illustrated in Fig. 3(c, d) (the stresses 𝜏23
and the corresponding strain 𝛾23 should be considered). The cell beams
a, b, and c will experience shear strains due to the shear stress 𝜏 .
23

8 
These strains can be expressed in terms of the cell strain 𝛾23 as follows:
𝛾𝑎 = 𝛾23
𝛾𝑏 = 𝛾23 sin 𝜃

𝛾𝑐 = 𝛾23 sin 𝜃

(31)

The minimum potential energy theorem can be expressed as an inequal-
ity form
1
2
𝐺23𝛾

2
23𝑉 ≤ 1

2
∑

𝑖

(

𝐺12𝛾
2
𝑖 𝑉𝑖

)

(32)

Here, 𝑉 is the volume of lattice cell, 𝐺12 is the effective shear modulus
of curved beam (as discussed in the preceding paragraph), 𝛾𝑖 is the
strain of beam 𝑖, and 𝑉𝑖 is the volume of beam 𝑖. The volume of lattice
cell can be calculated as:

𝑉 = 2𝑊 𝑙 cos 𝜃 (ℎ + 2𝑙 sin 𝜃) (33)

The volume of cured beam of length 𝑙, width 𝑊 , radius of curvature
𝑅, and thickness 𝑡 can be calculated from equation:

𝑉𝑏 = 2𝑅sin−1
(𝑊
2𝑅

)

𝑙 𝑡 (34)

Substituting Eqs. (33) and (34) in Eq. (32) results in equation:

𝐺23 ≤
1
2
𝐺12

⎛

⎜

⎜

⎜

⎝

ℎ
𝑙 + 2sin2𝜃

(

ℎ
𝑙 + sin 𝜃

)

cos 𝜃

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

2𝑅sin−1
(

𝑊
2𝑅

)

𝑡

𝑊 𝑙

⎞

⎟

⎟

⎟

⎠

(35)

The upper limit of 𝐺23 can be determined from minimum comple-
mentary energy equation which is given as:

1
2
𝜏223
𝐺23

𝑉 ≤ 1
2
∑

𝑖

(

𝜏2𝑖
𝐺12

𝑉𝑖

)

(36)

where, 𝜏23 is the shear stress at the cell level and 𝜏𝑖 is the shear stress at
beam 𝑖. The shear stress at beams b and c will be same due to symmetry.
Also taking equilibrium at node in the direction 𝑋3 will result in:

𝜏𝑎 = 𝜏𝑏 + 𝜏𝑐 = 2𝜏𝑏 (37)

The shear stresses at the beam level can be related to the shear stress
at the cell level by equating total shear force acting on the cell with the
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total shear force acting on the beam. The equilibrium equation will be:

2𝜏23𝑙 (ℎ + 𝑙 sin 𝜃) cos 𝜃 = 2𝜏𝑏𝑡𝑙 sin 𝜃 + 𝜏𝑎𝑡ℎ (38)

or

𝜏𝑏 = 𝜏23 cos 𝜃
𝑙
𝑡

(39)

Combining Eqs. (36), (39), and (33) gives:

𝐺23 ≥ 𝐺12

⎛

⎜

⎜

⎜

⎝

ℎ
𝑙 + sin 𝜃

(

2ℎ
𝑙 + 1

)

cos 𝜃

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

2𝑅sin−1
(

𝑊
2𝑅

)

𝑡

𝑊 𝑙

⎞

⎟

⎟

⎟

⎠

(40)

It should be noted that Eqs. (40) and (35) are not same hence the upper
and lower limit of 𝐺23 will be different in general. The upper and lower
limit of 𝐺23 may coincide for some special cases such as for 𝑙 = ℎ. In
the result section, the lower limit of 𝐺23 is presented.

As a special case, it is interesting to note that Eqs. (35) and (40)
educe to 𝐺23 for lattice with straight beams presented by Gibson and
shby [31] as 𝑅 approaches infinity, i.e.

𝑙 𝑖𝑚
→∞

2𝑅sin−1
(𝑊
2𝑅

)

= 𝑊 (41)

that will transform Eq. (35) and (40) into

𝐺23 ≤
1
2
𝐺12

⎛

⎜

⎜

⎜

⎝

ℎ
𝑙 + 2sin2𝜃

(

ℎ
𝑙 + sin 𝜃

)

cos 𝜃

⎞

⎟

⎟

⎟

⎠

( 𝑡
𝑙

)

(42)

𝐺23 ≥ 𝐺12

⎛

⎜

⎜

⎜

⎝

ℎ
𝑙 + sin𝜃

(

2ℎ
𝑙 + 1

)

cos 𝜃

⎞

⎟

⎟

⎟

⎠

( 𝑡
𝑙

)

(43)

The above discussion present an exact analytical validation of the limits
of 𝐺23.

3.2.6. 𝐺13 of curved FG lattice
The equations for out of plane shear modulus 𝐺13 will be derived

n the same manner as it is done for 𝐺23 (refer to Fig. 3(c, d), where
he stresses 𝜏13 and the corresponding strain 𝛾13 should be considered).

The Lower limit of 𝐺13 will be derived from minimum potential energy
theorem:
1
2
𝐺13𝛾

2
13𝑉 ≤ 1

2
∑

𝑖

(

𝐺12𝛾
2
𝑖 𝑉𝑖

)

(44)

Here, 𝑉 is the volume of lattice cell, 𝐺12 is the effective shear modulus
of curved beam, and 𝛾𝑖 is the strain of beam 𝑖 which can be represented
in terms of cell strain 𝛾13 as follows:
𝛾𝑎 = 0
𝑏 = 𝛾13 cos 𝜃

𝑐 = 𝛾13 cos 𝜃

(45)

Substituting (45) and (33) into (44), we get:

𝐺13 ≤ 𝐺12

(

cos 𝜃
ℎ
𝑙 + sin 𝜃

)⎛

⎜

⎜

⎜

⎝

2𝑅sin−1
(

𝑊
2𝑅

)

𝑡

𝑊 𝑙

⎞

⎟

⎟

⎟

⎠

(46)

The upper limit of 𝐺13 can be determined from minimum complemen-
tary energy equation which is given as:

1
2
𝜏213
𝐺13

𝑉 ≤ 1
2
∑

𝑖

(

𝜏2𝑖
𝐺12

𝑉𝑖

)

(47)

where, 𝜏13 is the shear stress at the cell level and 𝜏𝑖 is the shear stress
at beam 𝑖. The shear stress at beam a will be zero as shear force is
applied perpendicular to beam a, resulting in pure bending of beam a.
The shear stress at beams b and c will be same due to symmetry and
an be related to the shear stress at the cell level by equating total shear
orce acting on the cell with the total shear force acting on the beam.

The equilibrium equation will be:
2𝜏13𝑙 (ℎ + 𝑙 sin 𝜃) cos 𝜃 = 2𝜏𝑏𝑡𝑙 cos 𝜃 (48)
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Combining Eqs. (47), (48), and (47) gives:

𝐺13 ≤ 𝐺12

(

cos 𝜃
ℎ
𝑙 + sin 𝜃

)⎛

⎜

⎜

⎜

⎝

2𝑅sin−1
(

𝑊
2𝑅

)

𝑡

𝑊 𝑙

⎞

⎟

⎟

⎟

⎠

(49)

We observe that Eqs. (46) and (49) are identical and thus give exact
result of 𝐺13 as

𝐺13 = 𝐺12

(

cos 𝜃
ℎ
𝑙 + sin 𝜃

)⎛

⎜

⎜

⎜

⎝

2𝑅sin−1
(

𝑊
2𝑅

)

𝑡

𝑊 𝑙

⎞

⎟

⎟

⎟

⎠

(50)

Eq. (50) can be used for straight beams by using very high value of
𝑅. As 𝑅 approaches infinity, as a special case of conventional straight
cell walls, based on Eq. (41), the Eq. (50) reduces to

𝐺13 ≤ 𝐺12

(

cos 𝜃
ℎ
𝑙 + sin 𝜃

)

( 𝑡
𝑙

)

(51)

The above equation exactly matches with the formulation of Gibson
and Ashby [31], and thus, provides an exact analytical validation for
𝐺13.

3.2.7. Poisson’s ratios of curved FG lattices
The in-plane Poisson’s ratio 𝜈12 is calculated using equation:

𝜈12 =
−𝑒21
𝑒11

(52)

where 𝑒11 and 𝑒21 are longitudinal strain and transverse strain respec-
ively due to load applied in longitudinal direction.

The in-plane Poisson ratio 𝜈21 is calculated using equation:

𝜈21 =
−𝑒12
𝑒22

(53)

where 𝑒22 and 𝑒12 are transverse strain and longitudinal strain re-
pectively due to load applied in the transverse direction. Note that
he strain components 𝑒11, 𝑒21, 𝑒22 and 𝑒12 can be evaluated from the
espective deformation components, as depicted in Fig. 2(a–d).

It should also be noted that the out of plane Poisson’s ratios 𝜈23 and
𝜈13 are negligible and can be considered zero (similar to conventional
straight cell walls). However, 𝜈32 and 𝜈31 for the current curved beam-
like cell walls would be slightly less than the Poisson’s ratio of intrinsic
materials, depending on the degree of curvature. Specifically, the factor
of reduction 𝑓𝑟 can be quantified as 𝑓𝑟 =

𝑒𝑐 𝑧
𝑒𝑠𝑧

, where 𝑒𝑐 𝑧 and 𝑒𝑠𝑧 are
the strain in direction 3 under an applied far-field stress in the same
direction for a curved cell wall and straight cell wall respectively. Note
that 𝜈32 and 𝜈31 become equal to the Poisson’s ratio of intrinsic materials
in case of conventional straight beam-like cell walls.

3.2.8. Density of curved FG lattice
The density of lattice metamaterials is calculated using the density

of functionally graded material and the volume of unit cell of the meta-
aterial. The equation for finding the density of lattice metamaterial

s given as:

𝜌 = 𝑀
𝑉

(54)

where, 𝑀 is the mass of lattice cell and 𝑉 is the volume of lattice cell
calculated from Eq. (33). The mass of lattice cell can be calculated from
equation:

𝑀 = 𝜌𝑠 (2𝑙 + ℎ)𝐴 (55)

Here, 𝜌𝑠 is the density of functionally graded material and 𝐴 is the area
of cross section of curved beam. This area will increase with decrease
in the radius of curvature. Using Eqs. (33), (55), and (54), we get:

𝜌 =
𝐴 (ℎ + 2𝑙) 𝜌𝑠

𝑊 (ℎ + 𝑙 sin 𝜃) 2𝑙 cos 𝜃
(56)
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Table 1
Maximum transverse displacement (mm) of a cantilever beam considering different mesh sizes for convergence study.
𝑅𝑥∕𝑊 8 × 3 8 × 4 8 × 5 10 × 4 10 × 5 10 × 6 12 × 5 12 × 6 15 × 5 15 × 6

0.51 0.479 0.527 0.576 0.640 0.681 0.702 0.763 0.7665 0.782 0.782
1 3.255 3.426 3.569 3.837 3.976 4.058 4.227 4.2266 4.269 4.269
2 69.77 71.20 72.28 74.13 76.43 77.59 79.18 79.18 79.18 79.18
o
i
o

v
w

f

v
C

4. Results and discussion

This section presents numerical results for characterizing the ef-
fective nonlinear elastic moduli of curved functionally graded lattice
metamaterials. We have investigated the impact of beam-level curva-
ture variation along with unit cell geometric parameters and gradation
properties. First we will validate the computational model with ex-
isting literature considering beam-level deformation (accounting for
(a) isotropic and functionally graded beams, (b) curved and straight
cross-sectional geometries, and (c) linear and nonlinear deformation)
and unit cell level homogenized properties (linear and nonlinear), and
subsequently, new results will be presented. We have preferred to use
esults available in the open literature here as they provide confidence
rom third-party cross-validation.

4.1. Convergence study and validation

A convergence study is conducted to determine suitable element size
or the subsequent numerical investigation. In this study, an isotropic
urved cantilever beam with dimensions of 50 mm length, 10 mm

width, and 2 mm thickness is considered. The material properties of the
beam are specified as Young’s modulus (𝐸) of 200 GPa and Poisson’s
ratio (𝜈) of 0.3. The beam is subjected to a point load of 1000 N at
the free end. The results presented in Table 1 demonstrate that a mesh
ize of 15 × 5 achieves convergence for all investigated curvatures. To
nsure accuracy and consistency across our simulations, we will adopt
his element size (15 × 5) for all subsequent analyses.

For validation of straight isotropic beams, we have considered
beams with dimensions of 400 mm × 25 mm × 0.4 mm, referencing
the work of Belendez et al. [79]. These beams are assigned isotropic
material properties of Young’s modulus (𝐸) = 200 GPa and Poisson’s
ratio (𝜈) = 0.3. One end of the beam is fixed, while the other end
is free and subjected to a perpendicular point load. To account for
eometrical nonlinearity, multiple load cases are simulated to record
isplacements. The resulting data exhibit close agreement with the

experimental findings of Belendez et al. [79], as shown in Fig. 4(a).
Both the linear and nonlinear models of functionally graded straight

beams have been rigorously validated using results from Kang and
i [80]. Kang and Li presented non-dimensionalized displacement data

across various non-dimensional loading conditions for multiple volume
fractions. Our formulation has been found to be in excellent agreement
with their results, as illustrated in Fig. 4(b).

Furthermore, we have undertaken the validation of linear model
for functionally graded curved beams, corroborating our findings with
those of Hyunh et al. [81]. Hyunh et al. presented non-dimensionalized

aximum displacement data for multiple volume fractions and var-
ious curvature values. Our formulation consistently exhibits strong
agreement with their findings, as indicated in Fig. 4(c).

Finally, the nonlinear model for functionally graded curved beams
has been validated using data from Anirudh et al. [82]. Anirudh et al.
provided non-dimensionalized maximum displacement data under mul-
tiple non-dimensional loading conditions for various curvature values.

ur formulation demonstrates robust alignment with their results, as
depicted in Fig. 4(d).

To validate the computational model at the lattice level, we have
ocused on linear isotropic straight beams as this is sufficient to estab-
ish the accuracy of unit cell mechanics based on an accurate beam
eformation model. The material properties used in this study are
hose of an isotropic material, with Young’s modulus (𝐸) = 210 GPa
10 
Table 2
Linear in-plane elastic modulus 𝐸1 (MPa) of functionally graded curved lattice meta-
materials.

Volume fraction Cell angle 𝑅𝑋∕𝑊

0.55 0.8 1 2

0

−45 5.0385 1.9280 1.3142 0.6269
45 2.3594 0.9111 0.6226 0.2983
−30 10.5107 4.0432 2.7600 1.3202
30 6.0984 2.3821 1.6332 0.7870

1

−45 4.5441 1.7452 1.1948 0.5809
45 2.3594 0.9111 0.6226 0.2983
−30 9.4792 3.6598 2.5092 1.2233
30 5.5002 2.1563 1.4848 0.7292

5

−45 3.6549 1.4112 0.9722 0.4853
45 1.7116 0.6669 0.4606 0.2309
−30 7.6240 2.9593 2.0418 1.0219
30 4.4239 1.7435 1.2081 0.6091

and Poisson’s ratio (𝜈) = 0.3. The honeycomb cell’s slanted beams
have the following dimensions: length (𝑙) of 20 mm, width of 2 mm,
and thickness of 0.5 mm . The study encompasses an array of cell
angles, ranging from −45◦ to 45◦, and considers two distinct ℎ∕𝑙 ratios.
To assess the accuracy and reliability of the current computational
model, we have compared our results against both Gibson and Ashby’s
formulation [31] and those of Tiwari et al. [50]. The comparison
reveals a high degree of agreement among all sets of results, as shown
in Figs. 5 and 6. It is important to note that for an ℎ∕𝑙 ratio of 1, we
nly presented results for cell angles ranging from −30◦ to 45◦ since it
s physically impossible to construct an auxetic lattice with a cell angle
f −45◦ for an ℎ∕𝑙 ratio of 1.

The validation process extended beyond the linear lattice level. To
alidate the nonlinear lattice model, we have compared our results
ith those obtained by Ghuku and Mukhopadhyay [49]. The nonlinear

validation considers a vertical beam with a length (ℎ) of 3.67 mm,
thickness of 0.01835 mm, and ℎ∕𝑙 ratio of 2. We have compared the
non-dimensional in-plane Young’s modulus calculated under various
stresses with their findings. The obtained results are in good agreement
with those of Ghuku and Mukhopadhyay [49] as shown in Fig. 7.

4.2. Computational results on effective elastic moduli

This section presents a computational study to investigate the in-
luence of transverse beam curvature on the nonlinear in-plane and

out-of-plane effective material properties of non-auxetic and auxetic
functionally graded lattice metamaterials. We examine the effects of
arious influencing parameters, including: (a) Radius of curvature, (b)
ell angle, (c) Volume fraction index of the functionally graded beams,

and (d) Applied stresses. By systematically varying these parameters,
we aim to gain a comprehensive understanding of how curvature
affects the mechanical response of these novel functionally graded
metamaterials.

4.2.1. Linear characterization of effective elastic moduli
We investigate the effect of beam curvature on functionally graded

lattice metamaterials in the small-deformation linear regime, as shown
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Fig. 4. Validation of isotropic and functionally graded beams for both curved and straight crosssections under varying loads. (a) Straight isotropic cantilever beams with
multiple loads (validated with Belendez et al. [79]) (b) Straight functionally graded cantilever beams for both linear and nonlinear results (validated with Kang and Li. [80]) (c)
Curved functionally graded linear cantilever beams with various curvatures (validated with Hyunh et al. [81]) (d) Nonlinear curved functionally graded cantilever beams with
various curvatures (validated with Anirudh et al. [82]).
Table 3
Linear in-plane elastic modulus 𝐸2 (MPa) of functionally graded curved lattice meta-
materials.

Volume fraction Cell angle 𝑅𝑋∕𝑊

0.55 0.8 1 2

0

−45 16.5003 6.3861 4.3654 2.0901
45 33.8893 13.2317 9.0675 4.3597
−30 10.5616 4.0608 2.7709 1.3231
30 17.4047 6.7267 4.5967 2.2003

1

−45 14.8767 5.7797 3.9683 1.9365
45 30.5556 11.9753 8.2426 4.0394
−30 9.5235 3.6755 2.5190 1.2259
30 15.6942 6.0884 4.1788 2.0387

5

−45 11.9603 4.6726 3.2285 1.6173
45 24.5663 9.6812 6.7059 3.3736
−30 7.6577 2.9717 2.0495 1.0239
30 12.6198 4.9225 3.4000 1.7028

in Tables 2–9. The material properties for the metal component are:
Young’s modulus (𝐸) = 210 GPa, density (𝜌) = 8166 kg/m3, and
Poisson’s ratio (𝜈) = 0.3. The ceramic component has the following
properties: 𝐸 = 380 GPa, 𝜌 = 3960 kg/m3, and 𝜈 = 0.3. For the honey-
comb cell, the slanted beam length (𝑙) is 18.35 mm, the vertical beam
11 
Table 4
Linear out of plane elastic modulus 𝐸3 (MPa) of functionally graded curved lattice
metamaterials.

Volume fraction Cell angle 𝑅𝑋∕𝑊

0.55 0.8 1 2

0

−45 95.025 347.383 603.938 2309.510
45 45.383 165.908 288.436 1103.004
−30 66.876 244.478 425.034 1625.363
30 40.126 146.688 255.023 975.224

1

−45 89.113 326.468 566.912 2143.827
45 42.560 155.918 270.753 1023.875
−30 62.714 229.755 398.971 1508.744
30 37.629 137.853 239.383 905.247

5

−45 75.605 277.641 481.244 1790.852
45 36.109 132.599 229.838 855.297
−30 53.208 195.393 338.681 1260.333
30 31.925 117.236 203.209 756.200

length (ℎ) is 36.7 mm, the beam width is 2 mm and the thickness is
0.1835 mm. The parametric study of the nonlinear functionally graded
lattice metamaterial considers four cell angles (−45◦, −30◦, 30◦, 45◦)
and four radius of curvatures along the transverse direction (𝑅𝑥∕𝑊
= 0.55, 0.8, 1, 2). Tables 2, 3, and 5 present the in-plane material
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Fig. 5. Validation considering in-plane effective material properties of straight isotropic lattice metamaterials. (a) Effective 𝐸1 of straight isotropic lattice metamaterials
considering ℎ∕𝑙 ratio as 1 and different cell angles (b) Effective 𝐸1 of straight isotropic lattice metamaterials considering ℎ∕𝑙 ratio as 2 and different cell angles (c) Effective 𝐸2
f straight isotropic lattice metamaterials considering ℎ∕𝑙 ratio as 1 and different cell angles (d) Effective 𝐸2 of straight isotropic lattice metamaterials considering ℎ∕𝑙 ratio as 2

and different cell angles (e) Effective 𝐺12 of straight isotropic lattice metamaterials considering ℎ∕𝑙 ratio as 1 and different cell angles (f) Effective 𝐺12 of straight isotropic lattice
metamaterials considering ℎ∕𝑙 ratio as 2 and different cell angles.
properties of the curved lattice metamaterial in the linear regime. The
effective elastic moduli are observed to increase with decreasing radius
of curvature. This phenomenon can be attributed to the reduced beam
12 
deflection caused by the introduction of curvature in the beam’s cross-
section compared to a straight beam. The curvature effectively stiffens
the beam, leading to a higher resistance to bending. This effect is more
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Fig. 6. Validation of effective out-of-plane material properties considering straight isotropic lattice metamaterials. (a) Effective 𝐸3 of straight isotropic lattice metamaterials
onsidering ℎ∕𝑙 ratio as 1 and different cell angles (b) Effective 𝐸3 of straight isotropic lattice metamaterials considering ℎ∕𝑙 ratio as 2 and different cell angles (c) Effective 𝐺23
f straight isotropic lattice metamaterials considering ℎ∕𝑙 ratio as 1 and different cell angles (d) Effective 𝐺23 of straight isotropic lattice metamaterials considering ℎ∕𝑙 ratio as 2

and different cell angles (e) Effective 𝐺13 of straight isotropic lattice metamaterials considering ℎ∕𝑙 ratio as 1 and different cell angles (f) Effective 𝐺13 of straight isotropic lattice
metamaterials considering ℎ∕𝑙 ratio as 2 and different cell angles.
pronounced for beams with a smaller radius of curvature (i.e., more
curved beams). As the mathematical formulations demonstrate, effec-
ive in-plane material properties are inversely proportional to the beam
eflections in the considered bending dominated honeycomb lattices.
13 
Therefore, by strategically incorporating curvature into the beam cross-
sections, we can tailor the effective in-plane material properties of the
lattice metamaterial to achieve desired level of high specific stiffness.
It is important to note that the relationship between the change in
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Fig. 7. Validation of nonlinear in-plane effective material properties of straight isotropic lattice metamaterials. (a) Non-dimensional longitudinal elastic modulus 𝐸1 of
straight isotropic hexagonal lattice metamaterials under different stresses. (b) Non-dimensional transverse elastic modulus 𝐸2 of straight isotropic hexagonal lattice metamaterials
for different stresses. (c) Non-dimensional longitudinal elastic modulus 𝐸1 of straight isotropic auxetic lattice metamaterials under different stresses. (d) Non-dimensional transverse
elastic modulus 𝐸2 of straight isotropic hexagonal lattice metamaterials for different stresses.
Table 5
Linear in-plane shear modulus 𝐺12 (MPa) of functionally graded curved lattice meta-
materials.

Volume fraction Cell angle 𝑅𝑋∕𝑊

0.55 0.8 1 2

0

−45 6.35945 0.64989 0.35816 0.13142
45 0.72988 0.24365 0.15947 0.07161
−30 1.67351 0.36603 0.21907 0.08775
30 0.88736 0.27135 0.17370 0.07561

1

−45 5.30167 0.57599 0.32101 0.12121
45 0.65535 0.21971 0.14454 0.06628
−30 1.47579 0.32717 0.19734 0.08105
30 0.79460 0.24425 0.15723 0.06994

5

−45 3.86129 0.45304 0.25639 0.10064
45 0.52389 0.17676 0.11714 0.05528
−30 1.15171 0.26018 0.15864 0.06741
30 0.63289 0.19604 0.12720 0.05830

radius of curvature and the resulting change in material properties is
not linear. The most significant increases in in-plane properties occur at
lower radius of curvature values. Since this study focuses on beams with
low curvature, the results presented here exclude data for beams with
a high radius of curvature. However, the trend extends to these high
curvature values; the material properties gradually converge towards
those of a straight beam as the radius of curvature approaches infinity.
14 
Table 6
Linear out-of-plane shear modulus 𝐺23 (MPa) of functionally graded curved lattice
metamaterials.

Volume fraction Cell angle 𝑅𝑋∕𝑊

0.55 0.8 1 2

0

−45 923.43 1528.93 1817.17 2435.76
45 441.02 730.20 867.87 1163.30
−30 397.95 652.46 769.90 1012.25
30 238.77 391.47 461.94 607.35

1

−45 837.51 1381.16 1636.60 2175.71
45 399.99 659.63 781.63 1039.10
−30 491.17 810.01 959.81 1275.99
30 294.70 486.00 575.89 765.59

5

−45 678.56 1112.52 1312.77 1726.02
45 324.07 531.33 626.97 824.33
−30 541.56 896.67 1065.71 1428.50
30 324.94 538.00 639.43 857.10

The cell angle exhibits a noticeable influence on the various in-plane
effective material properties. For Young’s modulus in the direction 1,
the lattice with a cell angle of −30◦ demonstrates the highest value, fol-
lowed by the lattice with a 30◦ angle. Conversely, the lattice with a 45◦

cell angle exhibits the lowest. This trend is reversed when considering
Young’s modulus in direction 2 and the in-plane shear modulus. Here,
the lattice with a 45◦ cell angle shows the highest values, followed by
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Fig. 8. Non-linear effective Young’s modulus (𝐸1) of transversely curved functionally graded metamaterials. (a) 𝐸1 of curved isotropic lattice metamaterials for cell angle
−30◦ (Auxetic configuration). (b) 𝐸1 of curved isotropic lattice metamaterials for cell angle 30◦ (Non-auxetic configuration). (c) 𝐸1 of curved functionally graded lattice metamaterials
with volume fraction index 1 and cell angle −30◦ (Auxetic configuration). (d) 𝐸1 of curved functionally graded lattice metamaterials with volume fraction index 1 and cell angle
30◦ (Non-auxetic configuration). (e) 𝐸1 of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle −30◦ (Auxetic configuration). (f) 𝐸1 of
curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle 30◦ (Non-auxetic configuration). The color gradation represents transverse curvature
here.
the 30◦ angle. The lattice with a −30◦ cell angle exhibits the lowest
transverse Young’s modulus and in-plane shear modulus. Interestingly,
this behavior is consistent for both ℎ∕𝑙 ratios (1 and 2).

The out-of-plane material properties exhibit an opposite trend com-
pared to their in-plane counterparts. This is because they are primarily
governed by out-of-plane deflections, which increase with the introduc-
tion of curvature in the beams. Consequently, the out-of-plane prop-
erties of the lattice metamaterials decrease. Notably, the out-of-plane
properties of lattices with conventional straight beams are significantly
higher than their in-plane properties. Such disparity is reduced with the
introduction of curvature. This ability to tailor both sets of properties
(in-plane and out-of-plane) unlocks the full potential of lattice meta-
materials for applications where both in-plane and out-of-plane me-
chanical responses are crucial. The out-of-plane material properties are
presented in Tables 4, 6, and 7. In contrast to the observed variations
15 
in the in-plane properties, the influence of the cell angle on the out-
of-plane properties is consistent. Here, auxetic lattices exhibit signifi-
cantly higher out-of-plane material properties compared to non-auxetic
lattices. Furthermore, we observe a trend where lower cell angles
correspond to higher out-of-plane moduli. This trend can be attributed
to the dependence of out-of-plane properties on cell volume. Lower cell
angles result in denser lattices, which translates to lower overall cell
volume. Denser packing leads to increased out-of-plane stiffness.

The volume fraction index exhibits a well-defined impact on the
material properties of the functionally graded (FG) metamaterial. As
the volume fraction index increases, all effective material properties
decrease. This behavior can be explained by considering the change
in the composition of the material within the FG beam. With a higher
volume fraction index, the beam’s behavior becomes more akin to that
of the metal component due to its increased volume fraction within the
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Fig. 9. Non-linear effective Young’s modulus (𝐸2) of transversely curved functionally graded metamaterials. (a) 𝐸2 of curved isotropic lattice metamaterials for cell angle
−30◦ (Auxetic configuration). (b) 𝐸2 of curved isotropic lattice metamaterials for cell angle 30◦ (Non-auxetic configuration). (c) 𝐸2 of curved functionally graded lattice metamaterials
with volume fraction index 1 and cell angle −30◦ (Auxetic configuration). (d) 𝐸2 of curved functionally graded lattice metamaterials with volume fraction index 1 and cell angle
30◦ (Non-auxetic configuration). (e) 𝐸2 of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle −30◦ (Auxetic configuration). (f) 𝐸2 of
curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle 30◦ (Non-auxetic configuration). The color gradation represents transverse curvature
here.
composite. Since the metal component generally has a lower stiffness
compared to the ceramic component, the overall stiffness of the FG
beam decreases. Interestingly, neither the volume fraction index nor the
radius of curvature of the beam significantly affect the in-plane Poisson
ratios (𝜈12 and 𝜈12) of FG metamaterial.

4.2.2. Nonlinear characterization of effective elastic moduli
We now investigate the material properties of functionally graded

(FG) metamaterials under various loading conditions incorporating
geometric nonlinearity. The material properties for the metal and ce-
ramic components remain the same as in the previous section. For
the honeycomb cell, the slanted beam length (𝑙) is 18.35 mm, the
vertical beam length (ℎ) is 36.7 mm, the beam width is 2 mm and
the thickness is 0.1835 mm. The parametric study of the nonlin-
ear functionally graded lattice metamaterial considers two cell angles
16 
(−30◦ and 30◦), four radius of curvatures along the transverse direc-
tion (𝑅𝑥∕𝑊 = 0.55, 0.8, 1, 2), and eleven stress values (0.001, 0.1,
2, 4, 6, 8, 10, 12, 14, 20, 25 kN/m2). By incorporating geometric
nonlinearity, this study aims to capture the behavior of the metamate-
rial under more realistic loading conditions, where large deformations
may occur. The results presented for this study are in terms of non-
dimensional material properties. These are calculated as the ratio of
the nonlinear property to the corresponding linear property of the ma-
terial (𝐸∗

1 , 𝐸∗
2 , 𝐸∗

3 , 𝐺∗
12, 𝐺∗

13, 𝐺∗
23, 𝜈12, 𝜈21). The linear small-deformation

properties of the lattice material are provided in Tables 2 to 9.
Our analysis reveals contrasting behavior in in-plane Young’s mod-

ulus (𝐸1) for non-auxetic and auxetic metamaterials under increasing
load (see Fig. 8). For non-auxetic metamaterials, 𝐸1 exhibits a positive
correlation with load, indicating a stiffening effect. Conversely, auxetic
metamaterials display a decrease in 𝐸1 with increasing load, suggesting
a softening response. Interestingly, the radius of curvature in the beams
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Fig. 10. Non-linear effective Young’s modulus (𝐸3) of transversely curved functionally graded metamaterials. (a) 𝐸3 of curved isotropic lattice metamaterials for cell
angle −30◦ (Auxetic configuration). (b) 𝐸3 of curved isotropic lattice metamaterials for cell angle 30◦ (Non-auxetic configuration). (c) 𝐸3 of curved functionally graded lattice
metamaterials with volume fraction index 1 and cell angle −30◦ (Auxetic configuration). (d) 𝐸3 of curved functionally graded lattice metamaterials with volume fraction index 1
and cell angle 30◦ (Non-auxetic configuration). (e) 𝐸3 of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle −30◦ (Auxetic configuration).
(f) 𝐸3 of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle 30◦ (Non-auxetic configuration). The color gradation represents transverse
curvature here.
plays a crucial role. Higher curvature beams exhibit a more pronounced
deviation in 𝐸1 under load, with non-auxetic structures stiffening even
further and auxetic structures softening more significantly compared
to their lower curvature counterparts. The influence of the volume
fraction index on 𝐸1 remains consistent with the observations of the
linear analysis.

The behavior of the other in-plane Young’s modulus, 𝐸2, under
increasing load presents a fascinating contrast to 𝐸1 as shown in Fig. 9.
Here, we observe the opposite trends compared to those seen for 𝐸1.
Hexagonal metamaterials exhibit a softening effect, with 𝐸2 decreasing
as load increases. This indicates a decrease in resistance to deformation
in direction 2 under load. Conversely, auxetic metamaterials display
a stiffening response, with 𝐸2 increasing as the load intensifies. This
suggests that auxetic structures become more resistant to deformation
17 
in direction 2 under load. It is important to note that the influence of
the volume fraction index on both 𝐸1 and 𝐸2 remains consistent with
the observations from the linear analysis.

The out-of-plane Young’s modulus, 𝐸3, exhibits trends similar to in-
plane 𝐸1 under increasing load, but with less pronounced effects as
seen in Fig. 10. Non-auxetic metamaterials show a stiffening response,
with 𝐸3 increasing slightly as the load intensifies. In contrast, auxetic
metamaterials show a softening response, with 𝐸3 decreasing slightly
with increasing load. However, the magnitude of these changes in 𝐸3 is
significantly lower compared to the observed variations in 𝐸1. Interest-
ingly, the radius of curvature in the beams has minimal influence on the
variation of 𝐸3 under increasing load. This differs from the behavior of
𝐸1, where curvature played a more significant role. The influence of the
volume fraction index on 𝐸 remains consistent with the observations
3
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Fig. 11. Non-linear effective shear modulus (𝐺12) of transversely curved functionally graded metamaterials. (a) (𝐺12) of curved isotropic lattice metamaterials for cell
angle −30◦ (Auxetic configuration). (b) (𝐺12) of curved isotropic lattice metamaterials for cell angle 30◦ (Non-auxetic configuration). (c) (𝐺12) of curved functionally graded
lattice metamaterials with volume fraction index 1 and cell angle −30◦ (Auxetic configuration). (d) (𝐺12) of curved functionally graded lattice metamaterials with volume fraction
index 1 and cell angle 30◦ (Non-auxetic configuration). (e) (𝐺12) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle −30◦ (Auxetic
configuration). (f) (𝐺12) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle 30◦ (Non-auxetic configuration). The color gradation
represents transverse curvature here.
from the linear analysis.
The in-plane shear modulus, 𝐺12, exhibits contrasting responses

for non-auxetic and auxetic metamaterials under increasing load (see
Fig. 11). Non-auxetic structures display a softening effect, with 𝐺12
decreasing as the load intensifies. This indicates a reduced resistance
to shear deformation in the 1–2 plane under load. In contrast, auxetic
metamaterials exhibit a pronounced stiffening response, with 𝐺12 in-
creasing as the load intensifies. This suggests that auxetic structures
become significantly more resistant to shear deformation under load,
amplifying the trend observed for 𝐸2. The influence of the radius of
curvature on the change in the properties of the material becomes more
complex with increasing load. The relationship between load and 𝐺
12

18 
transitions from linear to a more pronounced nonlinear behavior. For
non-auxetic metamaterials, this change takes the form of a parabolic
curve, while for auxetic metamaterials, it becomes exponential. This
highlights the significant role of curvature in tailoring the response of
the material under complex loading conditions.

The out-of-plane shear moduli, 𝐺23 and 𝐺13, exhibit a distinct
trend compared to all other properties of the material observed under
increasing load, as seen in Figs. 12 and 13. Unlike the properties dis-
cussed previously, both non-auxetic and auxetic metamaterials show a
decrease in 𝐺13 and 𝐺13 with increasing load. This suggests a weakening
effect in resisting out-of-plane shear deformations. Furthermore, the
magnitude of this decrease is significantly lower than that observed in
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Fig. 12. Non-linear effective shear modulus (𝐺23) of transversely curved functionally graded metamaterials. (a) (𝐺23) of curved isotropic lattice metamaterials for cell
angle −30◦ (Auxetic configuration). (b) (𝐺23) of curved isotropic lattice metamaterials for cell angle 30◦ (Non-auxetic configuration). (c) (𝐺23) of curved functionally graded
lattice metamaterials with volume fraction index 1 and cell angle −30◦ (Auxetic configuration). (d) (𝐺23) of curved functionally graded lattice metamaterials with volume fraction
index 1 and cell angle 30◦ (Non-auxetic configuration). (e) (𝐺23) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle −30◦ (Auxetic
configuration). (f) (𝐺23) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle 30◦ (Non-auxetic configuration). The color gradation
represents transverse curvature here.
other material properties. In fact, for higher radius of curvatures, the
change in 𝐺13 and 𝐺13 becomes even less pronounced.

The Poisson ratio, 𝜈12, exhibits a fascinating response under increas-
ing load, displaying an increase for non-auxetic and auxetic metama-
terials, as shown in Fig. 14. This behavior suggests a coupling effect
where deformation in direction 1 leads to a lateral contraction in
direction 2, and this effect intensifies with increasing load. Interest-
ingly, the relationship between the load and 𝜈12 becomes progressively
nonlinear. This transition takes the form of a parabolic curve for both
material types, but with a slightly more pronounced effect observed
for auxetic metamaterials compared to non-auxetic ones. This finding
highlights the complex interplay between material properties under
geometric nonlinearity, where the response of auxetic architectures
19 
deviates qualitatively from the non-auxetic ones.

Similar to the trends of in-plane Young’s modulus (𝐸1), Poisson’s
ratio 𝜈21 exhibits contrasting responses for non-auxetic and auxetic
metamaterials under increasing load, as presented in Fig. 15. Non-
auxetic structures display a positive correlation with load, indicating
that 𝜈21 increases as the load intensifies. In contrast, auxetic metama-
terials exhibit a decrease in 𝜈21 with increasing load. This suggests
opposing effects on the coupling between deformations in directions
1 and 2 under load for these two classes of metamaterial architecture.
Furthermore, the radius of curvature plays an important role. Higher
curvature beams experience a more pronounced deviation in 𝜈21 under
load. This deviation becomes progressively nonlinear as the curvature
increases, highlighting a complex interplay between material properties
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Fig. 13. Non-linear effective shear modulus (𝐺13) of transversely curved functionally graded metamaterials. (a) (𝐺13) of curved isotropic lattice metamaterials for cell
angle −30◦ (Auxetic configuration). (b) (𝐺13) of curved isotropic lattice metamaterials for cell angle 30◦ (Non-auxetic configuration). (c) (𝐺13) of curved functionally graded
lattice metamaterials with volume fraction index 1 and cell angle −30◦ (Auxetic configuration). (d) (𝐺13) of curved functionally graded lattice metamaterials with volume fraction
index 1 and cell angle 30◦ (Non-auxetic configuration). (e) (𝐺13) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle −30◦ (Auxetic
configuration). (f) (𝐺13) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle 30◦ (Non-auxetic configuration). The color gradation
represents transverse curvature here.
and geometry under large deformation. The influence of curvature
becomes even more prominent for 𝜈21 compared to 𝐸1, suggesting a
more nuanced relationship.

Fig. 16 presents the change in density of lattice metamaterials for
various curvatures of beam, cell angle, and power law indices, as
considered in this paper. It is observed that the density increases as
the curvature of beam decreases. However, the increase in in-plane
modulus due to curvature is much higher than the increase in the
density; thus significantly improving the specific modulus of the lattice
structures. It should also be noted that the density of the lattice meta-
materials does not change significantly due to the effect of geometric
nonlinearity.
20 
In the proposed functionally graded metamaterials the outer sides
of the constituting beams are rich in ceramic to shield the struc-
ture from extreme surrounding environmental effects, while the center
part of the beam is rich in metal to enhance mechanical proper-
ties. Through this functionally graded architecture the onset of failure
strength can be significantly increased as the high strength ceramic
materials (note that failure strength of ceramic materials are normally
much higher than metals [83]) are placed at the outer surfaces where
the state of stress becomes most critical in bending dominated lattices.
Due to these clear advantages, ceramic–metal–ceramic based func-
tionally graded material is considered here, leading to multiple func-
tionalities and behavioral versatility in terms of an adequate balance



P. Tiwari et al. Thin-Walled Structures 210 (2025) 112901 
Fig. 14. Non-linear effective Poisson’s ratio (𝜈12) of transversely curved functionally graded metamaterials. (a) (𝜈12) of curved isotropic lattice metamaterials for cell angle
−30◦ (Auxetic configuration). (b) (𝜈12) of curved isotropic lattice metamaterials for cell angle 30◦ (Non-auxetic configuration). (c) (𝜈12) of curved functionally graded lattice
metamaterials with volume fraction index 1 and cell angle −30◦ (Auxetic configuration). (d) (𝜈12) of curved functionally graded lattice metamaterials with volume fraction index 1
and cell angle 30◦ (Non-auxetic configuration). (e) (𝜈12) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle −30◦ (Auxetic configuration).
(f) (𝜈12) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle 30◦ (Non-auxetic configuration). The color gradation represents transverse
curvature here.
of ductility, stiffness, strength and resistance to adverse surrounding
conditions.

The current paper focuses mainly on establishing the idea of func-
tionally graded (across the thickness of cell walls) metamaterials and
their stiffness (based on effective elastic properties). However, some of
the other critical properties of such metamaterials are effective strength
and energy absorption properties. Critical effective strength, defined by
the onset of failure, can be effectively measured by analyzing the beams
based on appropriate failure criteria (considering both material failure
and buckling) under the same periodic boundary and loading condi-
tions explained in this paper. The energy absorption capability can be
measured considering the area under the resultant force–displacement
constitutive curve based on the identified point of onset of failure.
21 
5. Conclusions and perspective

This article presents a semi-analytical computational model to pre-
dict the in-plane and out-of-plane nonlinear effective elastic properties
of a new class of functionally graded lattice metamaterial with curved
cell wall geometry. For nonlinear finite element modeling of the beam-
like cell walls, accurate degenerated shell elements are exploited, and
subsequently the beam-level numerical results are integrated with unit
cell mechanics following a nonlinear semi-analytical framework to
obtain the effective elastic properties of the lattices. We envisage that
the proposed functionally graded metamaterials can play a crucial
role in developing futuristic hydrogen storage systems due to their
remarkable tolerance towards extreme hot or cold environments and
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Fig. 15. Non-linear effective Poisson’s ratio (𝜈21) of transversely curved functionally graded metamaterials. (a) (𝜈21) of curved isotropic lattice metamaterials for cell angle
−30◦ (Auxetic configuration). (b) (𝜈21) of curved isotropic lattice metamaterials for cell angle 30◦ (Non-auxetic configuration). (c) (𝜈21) of curved functionally graded lattice
metamaterials with volume fraction index 1 and cell angle −30◦ (Auxetic configuration). (d) (𝜈21) of curved functionally graded lattice metamaterials with volume fraction index 1
and cell angle 30◦ (Non-auxetic configuration). (e) (𝜈21) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle −30◦ (Auxetic configuration).
(f) (𝜈21) of curved functionally graded lattice metamaterials with volume fraction index 5 and cell angle 30◦ (Non-auxetic configuration). The color gradation represents transverse
curvature here.
chemical surface degradation under extreme surrounding conditions.
We have proposed the next-generation concept design of hydrogen

storage tanks with functionally graded metamaterial core for aerospace
and automotive applications. The outer sides of the proposed con-
stituting beams are rich in ceramic to shield the structure from ex-
treme surrounding environmental effects, while the center part of the
beam is rich in metal to enhance strength and stiffness. Based on
such innovative lattice metamaterial based design of hydrogen stor-
age tanks it is possible to enhance the storage capability in terms
of internal pressure and resistance to external loads and impacts.
Most importantly the proposed concept would lead to a breakthrough
in developing load-bearing energy storage devices. For the proposed
metamaterial core, the hexagonal bending-dominated unit cell architec-
ture with transversely curved connecting beam-like geometries would
ensure the dual functionality of high specific stiffness and energy
absorption capability which are mutually exclusive in traditional lattice
22 
metamaterials.
We show that introduction of transverse curvature significantly

increases the specific stiffness of the lattice metamaterials without
any appreciable increase in weight. Under higher far-field stresses, the
numerical results reveal a contrasting nonlinear behavior of softening
and hardening depending on the unit cell architecture. This effect is
further amplified in the presence of curvature, with higher curvatures
leading to a more pronounced stiffening or softening. Interestingly, the
influence of curvature is less significant for out-of-plane properties,
where the effective material properties exhibit minimal changes with
load. Note that the hardening behavior of metamaterials will provide
extra strength and stiffness, whereas the softening of metamaterials will
provide improved impact resistance and energy absorption capabilities.
The research also explores how Poisson’s ratios, which quantify the
coupling between deformations in different directions, respond to load.
Here, we reveal a fascinating interplay between Poisson’s ratios in
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Fig. 16. Density of curved functionally graded metamaterials. (a) Density of curved functionally graded lattice metamaterials considering cell angle −45◦ (Auxetic configuration)
and 45◦ (Non-auxetic configuration) for various power law indices (𝑝 = 0, 1, 5). (b) Density of curved functionally graded lattice metamaterial considering cell angle −30◦ (Auxetic
configuration) and 30◦ (Non-auxetic configuration) for various power law indices (𝑝 = 0, 1, 5).
Table 7
Linear out-of-plane shear modulus 𝐺13 (MPa) of functionally graded curved lattice
metamaterials.

Volume fraction Cell angle 𝑅𝑋∕𝑊

0.55 0.8 1 2

0

−45 307.809 509.642 605.724 811.922
45 147.007 243.401 289.289 387.767
−30 324.937 538.000 639.429 857.099
30 194.962 322.800 383.657 514.260

1

−45 279.170 460.387 545.534 725.237
45 133.329 219.877 260.543 346.368
−30 294.704 486.004 575.889 765.591
30 176.822 291.603 345.533 459.355

5

−45 226.186 370.840 437.592 575.339
45 108.025 177.110 208.990 274.778
−30 238.772 391.474 461.940 607.353
30 143.263 234.885 277.164 364.412

Table 8
Linear in-plane Poisson’s ratio 𝜈12 of functionally graded curved lattice metamaterials.

Volume fraction Cell angle 𝑅𝑋∕𝑊

0.55 0.8 1 2

0

−45 −0.54692 −0.54692 −0.54692 −0.54692
45 0.26120 0.26120 0.26120 0.26120
−30 −0.97936 −0.98888 −0.99148 −0.99592
30 0.57769 0.58712 0.58997 0.59511

1

−45 −0.54692 −0.54692 −0.54692 −0.54692
45 0.26120 0.26120 0.26120 0.26120
−30 −0.97935 −0.98886 −0.99147 −0.99592
30 0.57766 0.58709 0.58995 0.59510

5

−45 −0.54692 −0.54692 −0.54692 −0.54692
45 0.26120 0.26120 0.26120 0.26120
−30 −0.97934 −0.98884 −0.99145 −0.99591
30 0.57763 0.58704 0.58991 0.59508

the large-deformation regime, transverse curvature and applied far-
field stresses. It is noted that the onset of failure strength can be
significantly increased due to the adoption of functionally graded cell
wall architecture where the high strength ceramic materials are placed
at the critical outer surfaces.

In summary, this paper offers valuable insights on tailoring the
mechanical properties of functionally graded lattice metamaterials by
strategically manipulating the beam-level and unit cell level geometric
23 
Table 9
Linear in-plane Poisson’s ratio 𝜈21 of functionally graded curved lattice metamaterials.

Volume fraction Cell angle 𝑅𝑋∕𝑊

0.55 0.8 1 2

0

−45 −1.7911 −1.8115 −1.8168 −1.8233
45 3.7517 3.7934 3.8042 3.8178
−30 −1.0062 −1.0047 −1.0041 −1.0021
30 1.7062 1.6923 1.6875 1.6771

1

−45 −1.7905 −1.8112 −1.8165 −1.8232
45 3.7506 3.7928 3.8037 3.8174
−30 −1.0060 −1.0046 −1.0040 −1.0021
30 1.7059 1.6922 1.6874 1.6770

5

−45 −1.7897 −1.8108 −1.8162 −1.8229
45 3.7489 3.7920 3.8031 3.8168
−30 −1.0057 −1.0045 −1.0039 −1.0020
30 1.7055 1.6920 1.6873 1.6769

and gradation features for applications in extreme surrounding en-
vironments. These new class of metamaterials with incredibly stiff,
strong, yet lightweight characteristics, capable of withstanding ex-
treme surrounding environment, will open new avenues for pushing
the traditional boundaries in a range of engineering applications, from
automobiles and buildings to aircraft and space applications. Though
we focus here primarily on hydrogen storage tanks, the proposed
concept can be extended to developing metamaterials for other crit-
ical engineering scenarios such as rocket fuel tanks, external rocket
components, heat shields for spacecraft, protective suits for firefighters,
lightweight yet robust armor and equipment for volcanic exploration.
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