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Abstract

Mechanical metamaterials which are often conceptualized as a periodic network of beams have been
receiving signi�cant attention over the last decade, wherein the major focus remains con�ned to the
design of micro-structural con�gurations to achieve application-speci�c multi-functional characteristics
in a passive framework. It is often not possible to actively modulate the metamaterial properties post-
manufacturing, critically limiting the applications for a range of advanced intelligent structural systems.
To achieve physical properties beyond conventional saturation limits attainable only through unit cell
architectures, we propose to shift the design paradigm towards more innovative bi-level modulation
concepts involving the coupled design space of unit cell geometries, architected beam-like members and
their stimuli-responsive deformation physics. On the premise of revolutionary advancements in addi-
tive manufacturing technologies, we introduce hard magnetic soft (HMS) material architectures in the
beam networks following physics-informed insights of the stress resultants. Through this framework, it
is possible to achieve real-time on-demand control and modulation of fundamental mechanical proper-
ties like elastic moduli and Poisson's ratios based on a contactless far-�eld stimuli source. A generic
semi-analytical computational framework involving the large-deformation geometric non-linearity and
material non-linearity under magneto-mechanical coupling is developed for the e�ective elastic prop-
erties of HMS material based bi-level architected lattices under normal or shear modes of mechanical
far-�eld stresses, wherein we demonstrate that the constitutive behavior can be programmed actively
in an extreme-wide band based on applied magnetic �eld. Under certain combinations of the exter-
nally applied mechanical stress and magnetic �eld depending on the residual magnetic �ux density, it
is possible to achieve negative sti�ness and negative Poisson's ratio with di�erent degrees of auxecity,
even for the non-auxetic unit cell con�gurations. The results further reveal that a single metamaterial
could behave like extremely sti� metals to very soft polymers through contactless on-demand modu-
lation, leading to a wide range of applicability in statics, stability, dynamics and control of advanced
mechanical, aerospace, robotics and biomedical systems at di�erent length scales.

Keywords: Programmable metamaterials; Hard magnetic soft beam; Stimuli-responsive mechanics;
Geometric and material nonlinearity; On-demand contactless sti�ness; Active mechanical
metamaterials

1. Introduction

Introduction to mechanical metamaterials and a brief literature review. Mechanical metamaterials

are an advanced broad class of engineered materials with architected microstructures having designed

geometrical arrangements, leading to unprecedented physical and mechanical properties that are derived
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primarily based on their unique internal structures and geometry along with the intrinsic materials from

which they are made. Metamaterials are often conceptualized as a periodic network of beam-like (or

plate and shell-like) members at a relatively lower length scale to obtain e�ective properties at higher

length scales, and �nd critical applications in a vast spectrum of structural and mechanical applications

ranging from nano and micro to macro scale systems [1, 2, 3, 4]. A typical bottom-up homogenization

framework ranging from an equivalent continuum (with e�ective properties) at macro-level to honey-

comb microstructures at a lower length scale is shown in Figure 1(a). E�ective mechanical properties

of such periodic beam networks not only depend on the beam-level geometry and intrinsic material

characteristics but also are governed by the con�guration of the network, i.e. unit cell geometry [5, 6].

Compared to the conventional naturally available materials, the lattice metamaterials have low den-

sity and they provide tunable enhanced multi-functional properties based on the application-speci�c

demands [7, 8, 9, 10]. Due to the advantages over the natural materials, the lattice materials have

drawn signi�cant attention of the material scientists and engineers for the last few decades [11, 12, 13].

Revolutionary advancements in the manufacturing technologies especially in the �eld of additive man-

ufacturing elevated such interest by providing the freedom to the designers in manufacturing complex

con�gurations [14, 15, 16].

The major focus of the research on mechanical metamaterials has been the development of several

analytical, computational and experimental frameworks for estimation of the e�ective responses of

periodic beam networks under static loading [17, 18, 19], dynamic and wave propagation [20, 21],

buckling [22, 23, 24, 25], crushing [26], low-velocity impact [27] etc. Another aspect of the research area

has been the modulation of e�ective properties by designing the network con�gurations in terms of lattice

geometric parameters, like, cell angle, thickness to span ratio of the cell walls along with the aspect ratio,

etc. [28, 29, 30]. Auxetic con�gurations among the architected materials have drawn special attention

due to providing negative Poisson's ratio [31, 32, 33], and a range of associated mechanical advantages

including impact and indentation resistance, shape modulation, higher sti�ness and improved dynamic

properties. In addition to the hexagonal honeycomb and re-entrant auxetic con�gurations, several

other forms of lattices, like, rhombic, rectangular brick, triangular, rectangular, square, etc., have found

critical engineering applications due to their special bending or stretching dominated characteristics [34].

Manufacturing the designed complex con�gurations has become feasible using additive manufacturing,

followed by experimental investigations [35, 36, 37, 38] both for validating the computational frameworks

and subsequent industry-scale production.

Due to the extensive investigations on the design of network con�gurations for modulation of the

e�ective properties of lattice materials, the research area has become saturated in the past decade.
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Figure 1: Bi-level architected lattice metamaterials with periodic network of soft beams having embedded
hard magnetic particles. (a) A typical homogenization framework for conventional lattice metamaterials ranging
from equivalent continuum at macro-level to honeycomb microstructures at the lower length scales. (b) Schematic
representation of hexagonal HMS beam network with the representative unit cell to analyse multi-physical mechanics
under combined external mechanical and magnetic loads. (c-f) De�nition of local Cartesian coordinate systems (x, y)
and representation of residual magnetic �ux density Br

0 in the unit cell of hexagonal HMS beam network to be subjected
to: (c, d) magnetic �eld along direction-2 in combination with normal stress along direction-1 (σ1) or direction-2 (σ2), (e,
f) magnetic �eld along direction-2 in combination with in-plane shear stress (τ). (g) Di�erent other forms of periodic HMS
beam networks ((I - III) derivatives of hexagonal lattices, (IV) triangular lattice, (V) rectangular lattice) to be analysed
within the proposed multi-physical mechanics-based framework. (h) Large deformation multi-physical mechanics of HMS
beams representing the generalized member of periodic HMS beam networks under combined mechanical and magnetic
loading. (i) Deformation components of a generalized HMS beam element to derive large deformation kinematics.
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Hence, the research area has been shifting towards more innovative designs of geometry and intrinsic

material characteristics at the elementary beam-level. One such aspect is to exploit the non-linear

characteristics of the elementary beam members undergoing large deformation. For modulation of the

e�ective properties of lattice metamaterials as a function of the non-linearity, several geometrically non-

linear frameworks have been developed in the last few years [39, 40, 41]. Another innovative concept

at the elementary beam-level to enhance the e�ective mechanical properties is providing anti-curvature

to the cell walls subjected to a particular mode of applied mechanical loading [42, 43, 44]. Signi�cant

enhancements in lattice sti�ness or �exibility and elastic failure strength can be achieved due to the

introduction of anti-curvature to the cell walls [42, 43, 44]. With the revolutionary advancements in the

�eld of additive manufacturing, recently lattices made of multiple intrinsic materials have been proposed

which possess unprecedented mechanical properties, attainable based on an expanded design space

[45, 46, 47, 48]. In such literature, the major focus remains con�ned to the design of micro-structural

con�gurations to achieve application-speci�c multi-functional characteristics in a passive framework. It

is not possible to actively modulate the metamaterial properties post-manufacturing, critically limiting

the applications for a range of advanced intelligent structural systems. To achieve physical properties

beyond conventional saturation limits attainable only through unit cell architectures, we propose to shift

the design paradigm towards more innovative bi-level modulation concepts involving the coupled design

space of unit cell geometries, architected beam-like members and their stimuli-responsive deformation

physics. We would introduce hard magnetic soft (HMS) material [49] architectures in the beam networks

following physics-informed insights of the stress resultants. The novel HMS lattice or beam network

is very light in weight but it would be able to demonstrate a wide range of sti�ness (including sign

reversal) depending on applied magnetic �ux. The foundation of the HMS material along with the

relevant reported work in the literature on HMS beam deformations are described very brie�y in the

following paragraph.

Soft materials are a class of newly developed materials that have found immense technological appli-

cations in a diverse �eld, especially in biomedicine [50, 51], soft robotic [52, 53], and �exible electronic

devices [54, 55]. Controllable properties of soft active materials under external stimuli, like, light [56],

heat [57], electric [58], magnetic �eld [59] etc., open a new avenue to design application-speci�c devices.

Recent advancements in 3D and 4D technologies make the innovative designs feasible and motivated the

research community [60, 61, 62]. One interesting class among such soft active materials which promises

signi�cant potential in critical engineering applications is the hard magnetic soft material (HMS ma-

terial) [49]. HMS material is manufactured by embedding hard magnetic particles into soft material

matrix. This newly developed active material (HMS material) shows a magnetically hard and mechani-
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cally soft property [63]. As the beam is a very fundamental element in designing any structural device,

investigations on the response of beam made of HMS material under magnetic actuation have drawn

the attention of the research community. The complications coming from geometric non-linearity due

to large deformation and material non-linearity under magneto-mechanical coupling make the analysis

of HMS beam structures challenging [64, 65]. In the past few years, several analytical and numerical

models have been proposed by the researchers to capture the non-liner response of HMS beams under

external magnetic stimulation [66, 67, 68]. Besides the theoretical works, some experimental investiga-

tions on HMS beam responses are also reported in the literature [66, 69]. To use the devices made of

HMS beams in soft robotic and electronic applications, the deformed shapes of the HMS beam are of

interest and need to be controlled. By properly designing the residual magnetic �ux density in the HMS

beam to be subjected to a particular external magnetic �eld, we can design the deformed shapes [70].

As most of the structures in the biological world consist of the feature of functionally graded property,

to meet the complex demand of potential applications of HMS beam structures, recently functionally

graded HMS materials are being designed and manufactured [71, 72].

Rationale behind the proposed magneto-active metamaterials. The above-presented literature review

reveals that despite being a topic of interest, the theoretical investigations on HMS beam structures

focus on structural characteristics under magnetic actuation only. Investigations on the multi-physical

mechanics of HMS beam structures under combined mechanical load and magnetic actuation are not

addressed in the literature su�ciently. Moreover, most of the reported theoretical investigations are

numerical in the framework of commercial packages which lack physical insights into the problems.

Some analytical models are also reported in the literature but they are limited to simple beam problems

in terms of loading conditions, geometry, and boundary conditions. In this paper, we consider the

complicated multi-physical mechanics of periodic HMS beam networks subjected to large deformation

under combined mechanical and magnetic loads. One major objective is to develop a physically insightful

semi-analytical framework to estimate the non-linear e�ective elastic moduli of the HMS beam networks

under the combined fair-�eld mechanical stress and magnetic �eld. By properly designing the residual

magnetic �ux density in the HMS beam elements under an optimal combination of mechanical stress

and magnetic �eld along with exploiting the geometric and material non-linearities, modulation of the

e�ective elastic moduli through the developed semi-analytical framework would be attempted in the

present work.

With the progress in manufacturing capabilities [73], active lattice metamaterials [2, 74] have started

receiving signi�cant attention from the scienti�c community. In the context of active elastic property

and sti�ness modulation in lattice metamaterials with distributed actuation throughout the connecting
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beam spans, the pioneering works with detailed computational framework development can be traced in

the area of piezoelectric lattices [75, 76]. The major lacuna in piezoelectric lattices is the absence of con-

tactless modulation and involvement of wire networks for supplying voltage to each constituting beams.

Later, lattices with magnetostrictive layers (with distributed actuation throughout the connecting beam

spans) were proposed for contactless on-demand elasticity programming [77]. All these metamaterials

were developed in the regime of small deformation linear analysis framework. Some of the early research

on active control of sti�ness using magnetic control can be traced back to exploitation of discrete mag-

nets attached to the connecting beam members of the lattice unit cells [78]. Unlike most of the active

lattice metamaterials, Gabriel and Teng [79] presented discrete magneto-active lattices where magnetic

particles are embedded in the joints rather than the beam-like connecting elements, wherein the active

joint movement is exploited for property modulation in the proposed design. Jackson et al. [80] pro-

posed 4D �eld responsive lattice metamaterials with connecting polymer tube-like elements �lled with

magnetorheological �uid suspensions. In general, magneto-active metamaterials have been attracting

signi�cant attention recently covering di�erent spectrum of physical designs including elastic, impact,

vibration, wave propagation and acoustics for on-demand control [81, 82, 83, 84, 85]. Lately, HMS

material based hexagonal lattices with distributed uniform actuation along the beam-like constitut-

ing members have been investigated for active contactless property modulation considering geometric

nonlinearity [86]. In this semi-analytical framework of the earlier work, only hexagonal lattices and

their derivatives such as rhombic, rectangular brick and auxetic con�gurations can be analyzed. In the

present work we extend the computational framework to analyze other bending and stretching domi-

nated lattices such as triangular and rectangular con�gurations. Further, for enhancing the e�ciency

of magnetic actuation, we would introduce non-uniform residual magnetic �ux to exploit the concepts

of anti-curvature [42] in metamaterials design.

Description of the bi-level architected lattices with non-uniform magnetic �ux density. A typical

hexagonal network of HMS beams is shown schematically in Figure 1(b). Within the framework of unit

cell approach, an appropriate unit cell consisting of three HMS beam members OA, OB, and OC is

chosen as shown in Figure 1(b) to analyse multi-physical lattice mechanics under combined mechanical

and magnetic load. In the �gure, an enlarged view of embedded hard magnetic particles is shown

for clear understanding. From the understanding of boundary conditions for the honeycomb lattices

made of conventional elastic materials [5], de�nitions of local Cartesian coordinate frames (x, y) for

the inclined member OA and vertical member OC of the unit cell to be subjected to the magnetic

�eld along direction-2 (Ba) in combination with normal mechanical stress along direction-1 (σ1) or

direction-2 (σ2) are shown in Figure 1(c). Similarly, de�nitions of local Cartesian coordinate frames (x,
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y) for the inclined and vertical members of the unit cell to be subjected to the magnetic �eld along

direction-2 (Ba) in combination with in-plane shear stress (τ) are shown in Figure 1(e). The direction

and magnitude of residual magnetic �ux density Br
0 in the HMS beam member are controlled by the

orientation and density of the hard magnetic particles embedded in the soft material. Mathematically,

the direction and magnitude of Br
0 are de�ned by a coe�cient S. If the residual magnetic �ux density

Br
0 is uniform along the beam axis and directed along the x axis of the local Cartesian frame (x, y), the

value of S is unity, i.e., S = 1. If the direction of uniform Br
0 is opposite to x axis, then S = −1. For

generalized distribution of Br
0, the coe�cient S(x) is a function of beam length along the x axis of the

local Cartesian frame (x, y). For the unit cells to be subjected to the magnetic �eld along direction-2 in

combination with either normal mode or shear mode of mechanical stress, generalized representations

of the residual magnetic �ux density Br
0 in the HMS beam members are shown in Figure 1(d) and (f)

corresponding to the local frames (x, y) as de�ned in Figure 1(c) and (e) respectively. Note that in

Figure 1(f), the direction of residual magnetic �ux density Br
0 is opposite for the inclined members OA

and OB. This opposite distribution makes the inclined members behave structurally symmetric when

subjected to in-plane shear stress τ in combination with external magnetic �eld Ba. This phenomenon

will be described in more detail later through schematic diagrams in connection with the mathematical

formulation of shear modulus.

As discussed in the preceding paragraphs, we propose a novel class of metamaterials as a network of

beams made of soft material with embedded hard magnetic particles which enables real-time on-demand

control and modulation of non-linear elastic properties based on a contactless far-�eld stimuli source.

The metamaterial involves a dual design space at the lower length scale (referred to as micro-scale

in the subject domain of metamaterials) as follows. (1) Architecturing of the hard magnetic particle

distribution within the HMS beam elements tailors their multi-physical large deformation mechanics

at the lower length scale (2) Architecturing of the network's periodic geometric con�gurations (cell

angle, vertical to inclined cell wall length ratio, thickness to inclined cell wall length ratio) further

tailors the unit cells' large deformation mechanics. Such bi-level architectures and designs at the lower

length scale (referred to as micro-scale) govern the homogenized elastic properties of the proposed HMS

metamaterials at the higher length scale (referred to as macro-scale) of the entire lattice dimension.

Hence, the developed computational framework reported in the present article is basically a multi-scale

framework starting from the magnetic particle architected HMS beams and periodic geometry of unit cell

con�gurations at the micro-scale yielding to tailored homogenized non-linear elastic properties of HMS

beam network at the macro-scale. Note that the computational framework for obtaining the e�ective

nonlinear elastic properties of the lattice would essentially involve analyzing appropriate unit cells with
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periodic boundary conditions. The foundational concept of the multi-scale modeling of conventional

lattice metamaterials (involving unit cells that consist of homogeneous passive beams) is demonstrated

through Figure 1(a), and subsequently, the concept of the proposed bi-level architected novel class of

HMS metamaterials (involving unit cells that consist of architected magneto-active beams) is introduced

through Figure 1(b , g).

Scope of the present study. To estimate the non-linear e�ective elastic moduli of the periodic HMS

beam network, a generalized multi-physical mechanics problem of HMS beam subjected to combined

mechanical and magnetic loads would be de�ned within the framework of the unit cell approach. The

HMS beam problem involves complex e�ects coming from geometric non-linearity due to large deforma-

tion and material non-linearity due to magneto-elastic coupling. A physically insightful semi-analytical

framework would be developed here through the variational principle-based energy method within the

non-linear kinematic setting of the Euler-Bernoulli beam theory using the material constitutive law

according to the Yeoh hyperelastic model. Based on the beam-level deformation results, e�ective elastic

moduli of the periodic HMS beam networks (i.e lattices) would be computed by accounting the unit

cell geometry and periodic boundary conditions. The semi-analytical beam model will be validated by

comparing the non-linear deformed con�gurations under separate mechanical load and magnetic actua-

tion with the available literature [65, 70]. After the validation study, a few critical beam-level numerical

results will be presented �rst under combined mechanical and magnetic loading for HMS beams with

symmetric and asymmetric residual magnetic �ux density. Through the numerical results, the e�ect of

asymmetry in residual magnetic �ux density in de�ning a generalized HMS beam problem of the HMS

beam network along with the e�ect of centreline extensibility in analysing large deformation character-

istics of HMS beam will be investigated. A validation study of the semi-analytical framework at the

periodic beam network-level will also be carried out by comparing the non-linear e�ective elastic mod-

uli with the available results in the literature for honeycomb lattices under di�erent modes of far-�eld

mechanical loads [39, 42]. Following the validated semi-analytical framework, the e�ects of magnetic

�eld in combination with the di�erent modes of far-�eld mechanical stress �eld on the non-linear e�ec-

tive elastic moduli of periodic HMS beam network with uniform residual magnetic �ux density will be

studied. Based on the kinematic and kinetic conditions of the beam elements of the hexagonal HMS

beam network, two physics-informed designs of residual magnetic �ux density will further be proposed

which would signi�cantly in�uence the non-linear e�ective elastic moduli. Through the numerical re-

sults, we will show that the proposed lightweight HMS beam networks or lattices possess broadband

modulation capability of the non-linear speci�c sti�ness ranging from very high sti�ness like hard metal

to very low sti�ness even lower than soft polymers depending on the residual magnetic �ux density and
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the compound e�ect of the externally applied mechanical load and the magnetic �eld. Under certain

combinations of the mechanical and magnetic �elds, it will be shown that the HMS lattices show neg-

ative sti�ness as well. The generality of the developed multi-physical mechanics-based semi-analytical

framework will be demonstrated by analysing non-linear elastic moduli of �ve other forms of HMS beam

networks, namely, auxetic, rectangular brick, rhombic, triangular, and rectangular networks as shown

in Figure 1(g). Note that under the in�uence of combined far-�eld mechanical stresses and magnetic

�eld, the unit cell mechanics of di�erent considered lattice con�gurations becomes signi�cantly involved

that has not been investigated in the literature so far.

After presenting a brief review of literature on mechanical metamaterials and the rationale behind

proposing the present novel class of lattices in this introductory section (section 1), the mathematical

framework for the estimation of non-linear e�ective elastic moduli of periodic HMS beam networks under

di�erent modes of far-�eld mechanical stress in combination with magnetic �eld will be presented in

section 2. Thereafter, section 3 will present the beam-level and periodic beam network-level results along

with the validation studies. Applicability of the proposed physically insightful framework of the periodic

HMS beam network to di�erent forms of lattices will be demonstrated through numerical results. The

conclusions will be drawn in sections 4 and 5 along with the prospective future scopes of the proposed

novel class of HMS lattices.

2. Computational framework for stimuli-responsive lattices

A HMS beam multi-physical mechanics based (refer to Figure 1(h, i)) semi-analytical framework

is developed in this section to estimate the non-linear e�ective elastic moduli of periodic HMS beam

networks subjected to magnetic �eld Ba along direction-2 either in combination with remote normal

stress along direction-1 (σ1), direction-2 (σ2) or remote in-plane shear stress τ . The combined loading

conditions of mechanical normal stress (σ1 or σ2) and magnetic �eld (Ba) for the unit cell of hexagonal

HMS beam network (refer to Figure 1(d)) are shown in Figure 2(a) and (d) respectively. Whereas,

the loading condition of mechanical in-plane shear stress (τ) in combination with the applied magnetic

�eld (Ba) for the corresponding HMS unit cell (refer to Figure 1(f)) is shown in Figure 3(a). Under

the combined loading condition as shown in Figure 2(a), we obtain the longitudinal e�ective Young's

modulus E1 and Poisson's ratio ν12 of the hexagonal HMS beam network. For the combined loading

condition as shown in Figure 2(d), we obtain the transverse e�ective Young's modulus E2 and Poisson's

ratio ν21. Whereas, under the combined loading condition of the shear mode of mechanical load and

the magnetic �eld as shown in Figure 3(a), we can estimate the e�ective shear modulus G12 of the

hexagonal HMS beam network. Similar loading conditions are presented for other forms of lattices in
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Figure 4 and 5. Here it should be noted that though the multi-physical mechanics of the HMS unit

cells is presented in Figures 2 - 5 for the compressive mode of normal stress and anti-clockwise mode

of shear stress respectively in combination with the generalized residual magnetic �ux density having

coe�cient S(x), the developed formulation is generalized and valid for the combination of any mode

of the normal (compressive or tensile) and shear (anti-clockwise or clockwise) mechanical stress with a

generalized magnetic �eld.

Under the applied combined mechanical stress and magnetic �eld, developed forces and large defor-

mation kinematics of the HMS beam elements of the unit cell are analysed �rst. Based on the kinetic and

kinematic descriptions, a large deformation problem of the HMS beam representing a general beam-like

element of the periodic network is de�ned, wherein the boundary and loading conditions are applied

based on unit cell periodicity and applied external mechanical stress and magnetic �ux, respectively.

Non-linear multi-physical mechanics of the de�ned generalized large deformation HMS beam problem

under combined mechanical and magnetic load is analysed subsequently through the variational energy

principle-based semi-analytical framework (with appropriate beam-level boundary condition to ensure

periodicity of the unit cells). Using the beam-level deformation results within the unit-cell framework,

the e�ective elastic moduli (E1, ν12, E2, ν21, and G12) of a periodic HMS beam network are computed.

Thus, following a multi-scale framework, the homogenized nonlinear elastic properties of the proposed

metamaterials at the higher length scale (referred to as macro-scale) are estimated in terms of the

beam-level large deformation measures coupled with unit cell geometry under combined mechanical and

magnetic loads at the lower length scale (referred to as micro-scale). In this context, it can be noted

that the proposed computational framework is scale-independent in principle; the only condition is to

maintain a substantial di�erence between the unit cell dimensions and the dimension of the overall lat-

tice that leads to the computation of homogenized e�ective properties. In the forthcoming subsections,

followed by establishing a generic beam-level computational framework, we will �rst develop a semi-

analytical formulation for the e�ective elastic moduli of hexagonal lattices, and subsequently di�erent

other lattice geometries will be considered.

2.1. Generalized beam-level problem de�nition

The load-deformation characteristics of any member of the HMS beam network under any combina-

tion of the fair-�eld normal or shear mode of mechanical stress and magnetic �eld as presented through

Figures 2 - 5 are de�ned as a generalized geometrically non-linear HMS beam deformation problem.

Such a generalized large deformation HMS beam problem can be de�ned either as a full-beam problem

or as a half-beam problem under the speci�c boundary condition to ensure unit cell level periodicity (all

the beams under consideration here need to have both the edges rotationally restained). Both the type
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of geometrically non-linear HMS beam deformation problem is presented schematically in a generalized

way in Figure 1(h, i) and described in the following two subsections.

2.1.1. Full-beam problem

When the full length of the inclined or vertical members of a periodic HMS beam network (refer to

Figures 2 - 5) is considered for the de�nition of the generalized beam problem, the problem is called the

full-beam problem. For example, the length L of the generalized HMS beam as shown in Figure 1(h),

is either equal to l for the inclined member or equal to h for the vertical member of a hexagonal HMS

beam network. For the full-length HMS beam, one end is �xed with the other end being rationally

restrained but free to translation and subjected to concentrated force F in combination with magnetic

�eld Ba with inclination angles β and α respectively as shown in Figure 1(h).

For the full-length HMS beam, rotation of centreline φ is zero at both the ends (x = 0 and x = L)

(refer to Figure 1(h, i)). As the HMS beam is subjected to axial load also due to the combined e�ect

of the mechanical and magnetic �eld, the beam centreline has non-zero axial strain ε at both the ends

(x = 0 and x = L). The kinematic boundary conditions of the HMS full-beam problem are summarized

below.
φ = 0 at x = 0 and x = L (1a)

ε ̸= 0 at x = 0 and x = L (1b)

With the proper de�nition of the load magnitudes (F and Ba) and their inclination angles (β and α)

as presented later in the manuscript (for example, Equations (23)-(36) for the hexagonal lattices) along

with the respective length (for example, L = l or L = h for hexagonal lattices) and boundary conditions

(Equation (1)), we can simulate deformation characteristics of each member of the HMS beam networks.

For an ordinary beam of length Lo with the prescribed boundary conditions undergoing small de-

formation under mechanical load only, the transverse tip-de�ection δy under transverse load Fy and the

axial tip-de�ection δx under axial load Fx are obtained analytically [5] as δy =
FyL

3
o

12EsI
and δx =

FxLo

EsA
.

In these equations, Es denotes Young's modulus of the elastic beam material, and I and A are the rota-

tional inertia and area of the beam cross-section. Note that the above-presented analytical solutions are

not concerned with the present large deformation HMS beam problem. These analytical solutions are

only used for analogy demonstration of boundary condition modelling of the full-beam problem using

cantilevered half-beam problem as presented in the following subsection.

2.1.2. Half-beam problem

The full-beam made of ordinary elastic material undergoing small deformation under mechanical

load only as presented in the preceding subsection, can be modelled as two half-beams with cantilever

boundary conditions exploiting the physical insight that bending moment becomes zero for the full
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beam at the midpoint here. The transverse and axial de�ections of the tip of the cantilevered half-beam

of length Lo/2 are analytically [5] given by δy =
FyL

3
o

24EsI
and δx =

FxLo

2EsA
. These analytical de�ections

obtained from the half-beam model of the ordinary beam are exactly half of the corresponding de�ection

results as presented in section (2.1.1). Hence, doubling the de�ection results coming from the half-beam

model gives the same results as the full-beam model for an ordinary beam. A similar observation also

becomes apparent for axial deformation.

Following the observations on boundary conditions, the considered large deformation HMS full-beam

problem under combined mechanical and magnetic load is modelled here as HMS half-beam problem. For

example, in the HMS half-beam problem concerning hexagonal lattices, length L of the generalized HMS

beam as shown in Figure 1(h) will be either l/2 for the inclined member or h/2 for the vertical member

of the HMS beam network. Note that consideration of the half beam will lead to more computational

e�ciency compared to considering a full-length beam in the nonlinear multiplysical analysis. Boundary

conditions of the generalized half-beam problem are summarized below.

φ = 0 at x = 0 and
dφ

dx
= 0 at x = L (2a)

ε ̸= 0 at x = 0 and x = L (2b)

Note that the modelling of HMS full-beam as HMS half-beam is only possible if the residual magnetic

�ux density Br
0 is symmetric about the mid-point of the full-length beam. The statement will be proved

in section 3 through numerical results from the full-beam and half-beam models with both symmetric

and asymmetric residual magnetic �ux density.

Large deformation analysis of the generalized HMS beam (refer to Figure 1(h, i)) with the above-

prescribed boundary conditions (Equations (1) and (2)) under combined mechanical and magnetic load

is not readily available in the literature. A semi-analytical beam model is developed here to analyse

such multi-physical mechanics problem as presented in the next subsection (subsection 2.2).

2.2. Large deformation analysis of generalized HMS beam problem

Large deformation characteristics of the generalized HMS beam with residual magnetic �ux density

Br
0 concerning the initial con�guration subjected to combined mechanical load F and magnetic �eld

Ba as shown in Figure 1(h, i) is analysed. Governing equation of the geometric non-linear problem

is derived in a semi-analytical framework using the variational principle-based minimization of total

potential energy method. In the derivation of the governing equation, we consider the centreline exten-

sion of the beam in addition to the bending mode of deformation within the geometrically non-linear

kinematic setting of the Euler-Bernoulli beam theory. Derivation of the governing equation through

such a generalized extensible model is presented �rst in the following subsection. To investigate the
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e�ect of axial rigidity of the hyperelastic HMS beam, a special form of the governing equation neglecting

centreline extension is presented in the following subsection. The �nal algebraic form of the governing

equation of the HMS beam problem derived either through the extensible model or through the inexten-

sible model involves non-linearity due to the coupling of di�erent deformation degrees of freedom. To

solve the coupled non-linear equation, we develop an iterative computational framework as presented

subsequently in this subsection.

2.2.1. Extensible model

2.2.1.1. Kinematics. To account for geometrically exact non-linearity, the beam deformation is de-

scribed in terms of the rotation φ and strain ε of the beam centreline instead of the in-plane and

transverse displacement �elds u and v respectively. From the geometry of deformation as presented

in Figure 1(i), the displacement �elds u and v are expressed in terms of the centreline rotation φ and

centreline strain ε of the HMS beam as given below.

du

dx
= (1 + ε) cosφ− 1 (3a)

dv

dx
= (1 + ε) sinφ (3b)

As the left end of the beam is considered �xed (refer to Figure 1(h)), the displacement �elds u and v

are zero at x = 0. With the kinematic conditions, relations of the displacement �elds u and v with the

independent variables φ and ε are obtained by integrating Equation (3) as given below.

u =

∫ x

0

{
(1 + ε) cosφ− 1

}
dx (4a)

v =

∫ x

0

(1 + ε) sinφ dx (4b)

2.2.1.2. Material model. The material of the HMS beam under study is considered a soft material with

Young's modulus Es. The hyperelastic characteristics of the HMS beam material are modelled by the

strain energy density function Φ which is de�ned below according to the Yeoh hyperelastic model [65].

Φ =
3∑

i=1

Ci0

{
(1 + ε)2 +

2

1 + ε
− 3

}i

(5)

The corresponding nominal stress, de�ned as σN =
dΦ

dε
, is obtained based on the Yeoh hyperelastic

model [65] using Equation (5) as given below.

σN = 2

[
C10 + 2C20

{
(1 + ε)2 +

2

1 + ε
− 3

}
+ 3C30

{
(1 + ε)2 +

2

1 + ε
− 3

}2
]{

(1 + ε)− 1

(1 + ε)2

}
(6)
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Through Taylor expansion of Equation (6) keeping the linear term, Young's modulus of the hyperelastic

beam material is obtained as

Es = 6C10 (7)

2.2.1.3. Governing equation. Governing equation for the large deformation characteristics of the HMS

beam under combined mechanical and magnetic load is derived through variational principle based

minimization of total potential energy, as de�ned mathematically by

δ (UE + UM + V ) = 0 (8)

In the above equation, UE, UM , and V are the elastic strain energy of the HMS beam, magnetic potential

energy of the HMS beam, and potential energy of the external mechanical load. The elastic strain energy

of the HMS beam UE consists of membrane and bending strain energies which in total is given by

UE = A

∫ L

0

Φ dx+
EsI

2

∫ L

0

(
dφ

dx

)2

dx (9)

Magnetic potential energy UM of the HMS beam due to the interaction of the externally applied magnetic

�eld Ba with the residual magnetic �ux density Br
0 (refer to Figure 1(h)) is given by [70]

UM = − A

µ0

∫ L

0

S |Br
0| |Ba| (1 + ε) cos (φ− α) dx (10)

In the above equation, µ0 denotes permeability of vacuum. On the other hand, potential energy of

the externally applied mechanical load F is de�ned as V = −Fxu|x=L − Fyv|x=L, where Fx and Fy

are the components of force F in the x and y directions, given by Fx = F cos β and Fy = F sin β

respectively (refer to Figure 1(h)). Using Equation (4), the potential energy V is expressed in terms of

the independent variables φ and ε as given below.

V = −Fx

∫ L

0

{
(1 + ε) cosφ− 1

}
dx− Fy

∫ L

0

(1 + ε) sinφ dx (11)

Before going to further derivation of the governing equation through the energy principle, the physical

coordinate system (x, y) is transformed into the computational frame (ξ, η) and some other non-

dimensional geometric and material parameters are introduced as de�ned below.

ξ =
x

L
, η =

y

L
, Π0 =

AL2

I
, σ̄N =

σN
Es

, B =
|Br

0| |Ba|Π0

Esµ0

, C =
FL2

EsI
, F̄x = C cos β, F̄y = C sin β (12)

Putting the energy expressions presented in Equations (9)-(11) with respect to the normalized coor-

dinate frame (ξ, η) in terms of the normalized parameters (Equation (12)) into the energy principle
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(Equation (8)), the governing equation is obtained in variational form as presented below.

δ

[
Π0

∫ 1

0

Φ dξ +
1

2

∫ 1

0

(
dφ

dξ

)2

dξ −B

∫ 1

0

S(1 + ε) cos (φ− α) dξ

− C cos β

∫ 1

0

{
(1 + ε) cosφ− 1

}
dξ − C sin β

∫ 1

0

(1 + ε) sinφ dξ

]
= 0

(13)

In the normalized frame (ξ, η), the unknown deformation �elds φ and ε are approximated as

φ =
nb∑
i=1

c1iωi (14a)

ε =
ns∑
i=1

c2iψi (14b)

where, c1i and c2i are the unknown coe�cients to be computed, and ωi and ψi are the sets of nb and ns

number of coordinate functions chosen satisfying the kinematic boundary conditions. For the full-beam

problem, the function sets are chosen by satisfying the boundary condition of Equation (1) as

ωi = sin (iπξ) (15a)

ψi = cos {(i− 1)πξ} (15b)

Whereas, for the HMS half-beam problem, the function sets as chosen through Equation (2) are

ωi = sin

(
2i− 1

2
πξ

)
(16a)

ψi = cos {(i− 1)πξ} (16b)

Now substituting the approximated deformation �elds as presented in Equation (14) into the gov-

erning equation (Equation (13)) and carrying out the variational operation, we derive the �nal algebraic

form of the governing equation as presented below.[
K
]{
c
}
=
{
f
}

(17)

In the above equation,
[
K
]
,
{
c
}
, and

{
f
}
denote sti�ness matrix, set of unknown coe�cients

{
c1i c2i

}T
,

and load vector for the large deformation of HMS beam problem respectively. The detailed expressions

of the sti�ness matrix
[
K
]
and load vector

{
f
}
are given below.

[
K11

]
=

nb∑
j=1

nb∑
i=1

∫ 1

0

ω′
iω

′
j dξ
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[
K12

]
=

nb∑
j=1

ns∑
i=1

∫ 1

0

[
BS sin

(
nb∑
k=1

c1kωk − α

)
+ C cos β sin

(
nb∑
k=1

c1kωk

)

− C sin β cos

(
nb∑
k=1

c1kωk

)]
ψiωj dξ

[
K21

]
= [0]

[
K22

]
= Π0

ns∑
j=1

ns∑
i=1

∫ 1

0

σ̄Ncψiψj dξ

{
f1
}
=

nb∑
j=1

∫ 1

0

[
−BS sin

(
nb∑
k=1

c1kωk − α

)
− C cos β sin

(
nb∑
k=1

c1kωk

)
+ C sin β cos

(
nb∑
k=1

c1kωk

)]
ωj dξ

{
f2
}
=

ns∑
j=1

∫ 1

0

[
BS cos

(
nb∑
k=1

c1kωk − α

)
+ C cos β cos

(
nb∑
k=1

c1kωk

)
+ C sin β sin

(
nb∑
k=1

c1kωk

)

−Π0σ̄Nc

{
1− 1

(1 +
∑ns

k=1 c2kψk)
2

}]
ψj dξ

where,

σ̄Nc =
2

Es

[
C10 + 2C20

{(
1 +

ns∑
k=1

c2kψk

)2

+
2

1 +
∑ns

k=1 c2kψk

− 3

}
+ 3C30

{(
1 +

ns∑
k=1

c2kψk

)2

+
2

1 +
∑ns

k=1 c2kψk

− 3

}2]

2.2.2. Inextensible model

The governing equation (Equation (17)) presented in the previous subsection is derived considering

both the centreline rotation φ and centreline extension ε of the HMS beam. If we neglect the terms

corresponding to the centreline strain ε from the elements of Equation (17), we readily get the governing

equation of the HMS beam deformation problem within the framework of the inextensible model. The

elements of the sti�ness matrix
[
K
]
and the load vector

{
f
}
for the inextensible model are presented

below. [
K
]
=

nb∑
j=1

nb∑
i=1

∫ 1

0

ω′
iω

′
j dξ

{
f
}
=

nb∑
j=1

∫ 1

0

[
−BS sin

(
nb∑
k=1

c1kωk − α

)
− C cos β sin

(
nb∑
k=1

c1kωk

)
+ C sin β cos

(
nb∑
k=1

c1kωk

)]
ωj dξ

Note that the Inextensible model is computationally less intensive, but it also becomes less accurate for

large deformation problems.
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2.2.3. Iterative solution scheme

The elements of sti�ness matrix
[
K
]
and load vector

{
f
}
of the governing equation (Equation (17)),

either derived through the extensible model or through the inextensible model, involve unknown coef-

�cients
{
c
}
. However, the degree of such non-linearity is di�erent for the extensible and inextensible

models. Due to the involved non-linearity, the governing equation can not be solved directly. Hence, an

iterative computational scheme [87, 88] is developed to tackle the non-linearity involved in the governing

equation.

Under an incremental step of non-dimensional mechanical load C with the inclination angle β, the

non-dimensional magnetic load B is applied incrementally by a ratio r which is termed as magnetic load

ratio and de�ned by

r =
B

C
(18)

Hence, the inputs of the beam model are the magnitude of the non-dimensional mechanical load C with

its inclination angle β and the magnetic load ratio r along with the coe�cient of the residual magnetic

�ux density S(ξ) and the inclination angle of the external magnetic �eld α.

At the incremental step of the non-dimensional mechanical load C and magnetic load B = rC, the

iterative solution process to �nd the set of unknown coe�cients
{
c
}
starts with assumed set of the

coe�cients denoted as
{
c
}i−1

, where the superscript i denotes the iteration number. With the assumed

set of the unknown coe�cients
{
c
}i−1

, elements of the sti�ness matrix
[
K
]i
and load vector

{
f
}i

at the

current iteration step i are computed. With the known
[
K
]i
and

{
f
}i
, the set of unknown coe�cients{

c
}i

are computed through the matrix inversion of the governing equation (Equation (17)) as{
c
}i

=
[[
K
]−1
]i {

f
}i

(19)

The set of coe�cients
{
c
}i

computed through the above equation, is compared with its old values{
c
}i−1

as µ =
{
c
}i − {c}i−1

. Until the error µ becomes less than its prede�ned limit, the set of

unknown coe�cient
{
c
}i+1

is updated through the successive relaxation scheme presented below and

the next iteration (i+ 1) begins. {
c
}i+1

= λ
{
c
}i

+ (1− λ)
{
c
}i−1

(20)

In the above equation, λ denotes the relaxation parameter for the successive relaxation scheme which

lies between 0 to 1. The iterative scheme to compute the large deformation characteristics of the HMS

beam under combined mechanical load and magnetic �eld is presented in Algorithm 1.

Once the set of unknown coe�cients
{
c
}
for the current combined load step C and B is obtained

through the iterative computational scheme, the centreline rotation φ and the centreline strain ε become
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Algorithm 1: Beam-level computational algorithm to obtain large deformation characteristics of HMS beam under
combined mechanical load and magnetic �eld.

De�ne geometry: De�ne non-dimensional geometric speci�cation of the HMS beam Π0.

De�ne material property: De�ne the material constitutive parameters C10, C20, and C30 in the
framework of Yeoh hyperelastic model.

De�ne numerical parameters: De�ne the numerical values of the computational parameters λ,
µ, nb, and ns.

Generate: Generate the set of coordinate functions ωi and ψi through satisfaction of the boundary
conditions of the HMS beam problem under consideration.

Input load: Input the magnitude of the non-dimensional mechanical load C and magnetic load B
in terms of the magnetic load ratio r as B = rC, along with their orientation angles β and α.

Iterate: The iterative computational scheme to obtain the set of unknown coe�cients
{
c
}
from the

non-linear governing equation
[
K
]{
c
}
=
{
f
}
involves the following steps:

� Initialize the set of unknown coe�cients denoted as
{
c
}i−1

.

� Compute the sti�ness matrix
[
K
]i
involving the set of unknown coe�cients

{
c
}i−1

.

� Compute the load vector
{
f
}i

involving the set of unknown coe�cients
{
c
}i−1

under the current
step of combined mechanical and magnetic loads.

� Compute the set of unknown coe�cients as
{
c
}i

=
[[
K
]−1
]i {

f
}i
.

� Compare the computed set
{
c
}i

with its old values
{
c
}i−1

de�ned as µ =
{
c
}i − {c}i−1

.

� Until the error µ becomes less than its prede�ned limit, the set of coe�cients is updated by{
c
}i+1

= λ
{
c
}i

+ (1− λ)
{
c
}i−1

and go for the next iteration i+ 1.

Note output: Once the set of unknown coe�cients
{
c
}
is obtained trough the iterative computa-

tional scheme, the centreline rotation φ and the centreline strain ε become known which in turn give
the non-dimensional de�ection pro�le (ξ, η) and the tip-de�ections δ̄x and δ̄y.

known from Equation (14) for the extensible model. Whereas, for the inextensible model, only the

centreline rotation φ is obtained. With the known deformation components (φ and ε), the de�ection

pro�le (x, y) of the HMS beam is obtained which in turn provides axial de�ection δx and transverse

de�ection δy of the tip of the beam. The expressions of the axial and transverse tip-de�ections (δx and

δy) in the normalized form as obtained from Equation (4) are given below for the extensible model.

δ̄x =
δx
L

=

∫ 1

0

{
(1 + ε) cosφ− 1

}
dξ (21a)

δ̄y =
δy
L

=

∫ 1

0

(1 + ε) sinφ dξ (21b)
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For the inextensible model, the normalized tip-de�ections (δ̄x and δ̄y) are obtained from the above

equation by neglecting the ε terms as

δ̄x =
δx
L

=

∫ 1

0

(cosφ− 1) dξ (22a)

δ̄y =
δy
L

=

∫ 1

0

sinφ dξ (22b)

Using the beam-level tip-de�ections, we compute unit cell level strains under a given far-�eld me-

chanical stress and magnetic �eld, as discussed in the following subsections considering di�erent lattice

geometries.

2.3. E�ective elastic moduli of hexagonal HMS beam networks

2.3.1. Beam-level forces and deformation kinematics

As described in Figure 1, the chosen unit cell in hexagonal lattices consists of three HMS beams

having residual magnetic �ux density Br
0 concerning the initial con�guration. The beam-level forces de-

veloped under the two di�erent combinations of normal stress and magnetic �elds as shown in Figure 2(a)

and (d), and under the combination of shear stress with the magnetic �eld as shown in Figure 3(a),

along with the large deformation kinematics of the HMS beam elements are described in the following

three subsections.

2.3.1.1. Mechanical normal stress along direction-1 and magnetic �eld along direction-2. Under the

combined mechanical stress σ1 and magnetic �eld Ba as shown in Figure 2(a), the inclined HMS beams

(OA and OB) undergo combined transverse and axial deformations with �xed end O and the other end A

and B being rotationally restrained but free to translation. Whereas the vertical member OC undergoes

axial deformation only with �xed end C. Due to symmetry, we concentrate on one inclined member (OA)

only along with the vertical member OC. The large deformation kinematics of the inclined member OA

and the vertical member OC are shown concerning the local Cartesian frames (x, y) in Figure 2(b) and

(c) respectively. The kinematic boundary conditions of the beam members are conceptualized from the

classical deformation analysis of conventional honeycomb lattices under mechanical stress only [5]. Note

that due to deformations of the HMS members as shown in Figure 2(b) and (c), the residual magnetic

�ux density changes from Br
0 to B

r.

As shown in Figure 2(b), the inclined HMS beam OA is subjected to tip concentrated force Fi

developed due to the applied stress �eld σ1. Expression of Fi in terms of σ1 is given by

Fi = σ1b(h+ l sin θ) (23)
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Figure 2: Multi-physical mechanics of periodic hexagonal HMS beam networks under combined mechanical
normal stress and magnetic �eld. (a) Combined loading mode of the unit cell of hexagonal HMS beam network
subjected to normal stress along direction-1 (σ1) and magnetic �eld along direction-2 (Ba). (b, c) Beam-level forces
and large deformation kinematics of the inclined and vertical members of the unit cell under the combined normal stress
σ1 and magnetic �eld Ba. Note that under the combined loading condition (a-c), we focus on the longitudinal e�ective
Young's modulus E1 and Poisson's ratio ν12 of the HMS beam network. (d) Combined loading mode of the unit cell
of hexagonal HMS beam network subjected to mechanical normal stress along direction-2 (σ2) and magnetic �eld along
direction-2 (Ba). (e, f) Beam-level forces and large deformation kinematics of the inclined and vertical members of the
unit cell under the combined normal stress σ2 and magnetic �eld Ba. Note that under the combined loading condition
(d-f), we focus on the transverse Young's modulus E2 and Poisson's ratio ν21 of the HMS beam network. (g) Local
coordinate systems (x, y) for the inclined and vertical members and their orientations with the global frame (1, 2).
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The above-presented force Fi is inclined by the angle βi concerning the local Cartesian frame (x, y)

as shown in Figure 2(b). Whereas, the inclination angle of the magnetic �eld Ba concerning the local

frame (x, y) is denoted by αi. The inclination angles are expressed in terms of the inclination angle θ

of the inclined member of the beam network as

βi = π − θ (24a)

αi =
3π

2
− θ (24b)

As shown in Figure 2(c), the vertical HMS beam OC is not subjected to any mechanical load but

subjected to magnetic �eld Ba only with inclination angle αv. For the vertical HMS beam OC, the

kinetic equations similar to Equations (23) and (24) are presented below respectively.

Fv = 0 (25)

αv = π (26)

2.3.1.2. Mechanical normal stress along direction-2 and magnetic �eld along direction-2. When the unit

cell is subjected to far-�eld mechanical stress along direction-2 (i.e. σ2) along with the magnetic �eld Ba

as shown in Figure 2(d), the kinematic boundary conditions of the HMS members remain the same as

in the case of combined loading σ1 and B
a considered in the previous subsection. The large deformation

patterns of the inclined member OA and the vertical member OC concerning the local Cartesian frames

(x, y) are shown in Figure 2(e) and (f) respectively. The tip concentrated force Fi developed in the

inclined member due to the mechanical stress �eld σ2 is expressed in terms of σ2 as

Fi = σ2bl cos θ (27)

The inclination angles of the mechanical load Fi and the magnetic �eld Ba concerning the local frame

(x, y) are expressed in terms of the inclination angle θ as (refer to Figure 2(e))

βi = αi =
3π

2
− θ (28)

The vertical HMS beam OC is subjected to mechanical concentrated force Fv in addition to the uniform

magnetic �eld Ba as shown in Figure 2(f). Expression of the force Fv in terms of the remote stress σ2

is given by

Fv = 2σ2bl cos θ (29)

The inclination angles of the mechanical force Fv and the magnetic �eld Ba concerning the local frame

(x, y) are given by

βv = αv = π (30)
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Figure 3: Multi-physical mechanics of periodic hexagonal HMS beam networks under combined mechanical
shear stress and magnetic �eld. (a) Combined loading mode of the unit cell of hexagonal HMS beam network
subjected to shear stress in 1-2 plane (τ) and magnetic �eld along direction-2 (Ba). (b) Free body diagrams of the
inclined and vertical members of the unit cell under the combined in-plane shear stress τ and magnetic �eld Ba. (c-e)
Beam-level forces and large deformation kinematics of the inclined and vertical members of the unit cell. Note that under
this combined loading condition, we focus on the in-plane shear modulus G12 of the HMS beam network.

2.3.1.3. Mechanical shear stress in 1-2 plane and magnetic �eld along direction-2. Under the combined

shear stress τ and the magnetic �eld Ba as shown in Figure 3(a), the developed forces and end moments

at the HMS beam members are shown through free body diagrams in Figure 3(b). The forces F1 and

22



F2 developed due to the far-�eld mechanical shear stress τ are expressed as

F1 = 2τbl cos θ (31a)

F2 = τb(h+ l sin θ) (31b)

From the moment balance condition concerning point O (refer to Figure 3(b)), the induced moment

M in the inclined members are found to be M = F1h/4. Using Equation (31a), the end moment M is

expressed in terms of the remote stress τ as given below.

M =
1

2
τblh cos θ (32)

Under the mechanical forces and end moments in combination with the magnetic �eld, all the HMS

beam members (OA, OB, and OC) undergo combined axial and transverse deformations with �xed end

O and the other ends (A, B, and C) being rotationally restrained but free to translation. The large

deformation patterns of the inclined (OA and OB) and vertical (OC) members of the HMS unit cell

concerning the corresponding local Cartesian frames (x, y) are shown in Figure 3(c), 3(d), and 3(e)

respectively. Though the deformed geometries of the inclined members OA and OB look asymmetric,

they behave structurally (i.e. visually asymmetric, but structurally symmetric) the same under the

combined mechanical and magnetic �eld due to the opposite direction of the residual magnetic �ux

density Br
0 in them. Hence, we consider the mechanics of one inclined member (OA) along with the

vertical member OC. In this context, it may be further emphasized that the direction of residual �ux

densities Br
0 is architected di�erently under normal and shear far-�eld stresses (refer to Figures 2(a, d)

and 3(a)) to maintain structural symmetry in the deformation behavior. Here if we keep the distribution

of residual �ux densities Br
0 same for both the far-�eld normal and shear stresses, the analysis will

involve structural asymmetry in any one of cases of far-�eld stress, leading to more involved unit cell

level derivation to distribute unbalanced stress resultants at joint O. In the current paper, we have

focused on demonstrating the concepts of active elasticity modulation rather than increasing unit cell

level structural complexity.

The beam-level transverse force Fyi for the inclined member OA as shown in Figure 3(c), is the

equivalent force of the end moment M derived following the typical rotationally restrained boundary

condition of the member OA as given by Fyi = −2M/l. Whereas, the axial force Fxi
is obtained from

the components of F1 and F2 along OA as given by Fxi
= −(F1/2) cos θ−F2 sin θ. Using Equations (31)
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and (32), the beam-level forces are expressed in terms of the applied remote shear stress τ as

Fxi
= −τbl

{
cos2 θ +

(
h

l
+ sin θ

)
sin θ

}
(33a)

Fyi = −τbh cos θ (33b)

The inclination angle αi of the externally applied magnetic �eld Ba (refer to Figure 3(c)) is given in

terms of the inclination angle θ as

αi =
3π

2
− θ (34)

As shown in Figure 3(e), the vertical HMS beam member OC is subjected to transverse force Fyv which

is given by Fyv = F1. Hence, the expression of the transverse force Fyv in terms of the remote stress τ

is obvious from Equation (31a) as

Fyv = 2τbl cos θ (35)

In addition to the above presented mechanical force, the vertical HMS beam member OC is subjected

to the vertical magnetic �eld Ba, inclination angle of which concerning the local Cartesian frame (x, y)

is obvious from Figure 3(e) as given below.

αv = 0 (36)

2.3.2. E�ective elastic moduli

The beam model presented in the previous subsection gives non-dimensional deformation charac-

teristics (δ̄x and δ̄y) of HMS beam with non-dimensional geometric speci�cation Π0 for the inputs of

normalized mechanical load C and magnetic load B in terms of magnetic load ratio r as B = rC

along with their orientation angles β and α respectively. To use the beam model for the estimation

of elastic moduli of hexagonal HMS beam networks following a unit cell approach (refer to Figures 2

and 3), the geometric speci�cations and loading terms of the HMS beam network need to be de�ned in

non-dimensional forms. The non-dimensional geometric speci�cations of the inclined (Π0i) and vertical

(Π0v) members of the HMS beam network are de�ned following Equation (12) as

Π0i =
12(
t

l

)2 (37a)

Π0v =

12

(
h

l

)2

(
t

l

)2 (37b)

Under any mode of the applied far-�eld mechanical stress (σ1 or σ2 or τ), non-dimensional mechanical

force for the inclined (Ci) and vertical (Cv) members of the HMS beam network can be obtained following
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Equation (12) from the beam-level forces (Fi and Fv) presented in subsection 2.3.1. Such expressions

of the non-dimensional mechanical loads Ci and Cv in terms of the applied stress (σ1 or σ2 or τ) are

presented in the subsequent subsections for the three di�erent combinations of mechanical and magnetic

loads. Under the de�ned non-dimensional mechanical load Ci for a particular combination of mechanical

and magnetic loads, the non-dimensional magnetic load Bi of the inclined member is de�ned in terms

of the magnetic load ratio ri as

ri =
Bi

Ci

(38)

With the known non-dimensional magnetic load Bi from the above equation, the non-dimensional

magnetic load Bv of the vertical member becomes known once we know the relationship between Bi and

Bv. To derive such a relationship between Bi and Bv, let us observe their de�nitions from Equation (12)

as given below.

Bi =
|Br

0| |Ba|Π0i

Esµ0

(39a)

Bv =
|Br

0| |Ba|Π0v

Esµ0

(39b)

Using Equation (37), the relationship between Bi and Bv is obtained from the above equation which

gives the non-dimensional magnetic load Bv in terms of Bi as presented below.

Bv =

(
h

l

)2

Bi (40)

Now, with the de�ned non-dimensional geometric and load parameters, the non-dimensional tip-

de�ections δ̄x and δ̄y of the members of the hexagonal HMS beam network are obtained from the

generalized beam model which in turn give the non-linear e�ective elastic moduli following the framework

of the unit cell approach. Derivations of the e�ective elastic moduli for the three di�erent combinations

of mechanical and magnetic loads are presented in the following three subsections. In addition, non-

dimensional forms of the e�ective elastic moduli are de�ned subsequently.

2.3.2.1. Computation of E1 and ν12 under combined load σ1 and Ba. Under the combined loading

of mechanical far-�eld normal stress σ1 and magnetic �eld Ba as shown in Figure 2(a-c), the non-

dimensional mechanical loads Ci and Cv are derived using Equations (23), (25) and (12) as given by

Ci =

12

(
h

l
+ sin θ

)
Es

(
t

l

)3 σ1 (41a)

Cv = 0 (41b)
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With the above-presented non-dimensional mechanical loads Ci and Cv under normal stress σ1, the

non-dimensional magnetic loads Bi and Bv are de�ned in terms of the magnetic load ratio ri using

Equations (38) and (40). With the de�ned mechanical and magnetic loads along with their orientation

angles (Equations (24) and (26)), the non-dimensional tip-de�ections of the inclined member (δ̄xi
and

δ̄yi) and the vertical member (δ̄xv) of the unit cell of hexagonal HMS beam network (refer to Figure 2(b)

and (c)) are obtained with respect to the local Cartesian frames (x, y) based on the generalized beam

model presented in subsection 2.2. Through the coordinate transformation between the local frames (x,

y) and the global frame (1, 2) as shown in Figure 2(g), the resultant de�ection along direction-1 (δ1)

and direction-2 (δ2) are obtained as

δ1 = l
(
−δ̄xi

cos θ + δ̄yi sin θ
)

(42)

δ2 = −l
(
δ̄xi

sin θ + δ̄yi cos θ
)
− hδ̄xv (43)

The normal strain developed along direction-1 under the combined loading σ1 and Ba is obtained by

ϵ1 = δ1/l cos θ, using Equation (42) which becomes

ϵ1 =
−δ̄xi

cos θ + δ̄yi sin θ

cos θ
(44)

Similarly, the normal strain along direction-2 is obtained by ϵ2 = δ2/(h + l sin θ), using Equation (43)

which becomes

ϵ2 =
−δ̄xi

sin θ − δ̄yi cos θ −
h

l
δ̄xv

h

l
+ sin θ

(45)

The longitudinal e�ective Young's modulus of the hexagonal HMS beam network is obtained from

its fundamental de�nition E1 = σ1/ϵ1 using Equation (44) as

E1 =
σ1 cos θ

−δ̄xi
cos θ + δ̄yi sin θ

(46)

The e�ective Poisson's ratio ν12 of the HMS beam network under the combined loading σ1 and Ba is

obtained by the de�nition ν12 = −ϵ2/ϵ1, using Equations (44) and (45) which becomes

ν12 =

(
δ̄xi

sin θ + δ̄yi cos θ +
h

l
δ̄xv

)
cos θ(

h

l
+ sin θ

)(
−δ̄xi

cos θ + δ̄yi sin θ
) (47)

The solution steps involved in the computation of the non-linear e�ective elastic moduli E1 and ν12 of

the hexagonal HMS beam network using the beam model are presented in Algorithm 2. Note that the

solution algorithm is generic and is applicable to the computations of e�ective elastic moduli under all

the three combined loading conditions of the magnetic �eld and di�erent far-�eld mechanical stresses.
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Algorithm 2: Beam network-level computational algorithm to obtain non-linear e�ective elastic moduli of periodic HMS
beam networks under combined mechanical stress and magnetic �eld.

De�ne geometry: De�ne non-dimensional geometric parameters of the HMS beam network (such
as t/l, h/l, and θ for hexagonal lattices). With the de�ned lattice parameters, compute the geometric
speci�cations of the constituting inclined and vertical HMS beams Π0i and Π0v .

De�ne mechanical load: Under a particular mode of applied mechanical stress (σ1 or σ2 or τ),
de�ne the non-dimensional mechanical force for the inclined and vertical HMS beams Ci and Cv

along with their inclination angles βi and βv.

De�ne magnetic load: De�ne the magnetic load ratio ri for the inclined HMS beam. Compute the
non-dimensional magnetic load of the inclined member in terms of ri and Ci as Bi = riCi. Compute
magnetic load of the vertical member as Bv = (h/l)2Bi along with the inclination angles αi and αv.

Compute beam de�ections: Under the combined mechanical and magnetic loads, compute non-
dimensional tip-de�ections of the inclined and vertical HMS beams δ̄xi

, δ̄yi , δ̄xv , and δ̄yv through
solution Algorithm 1.

Compute e�ective elastic moduli: In terms of the tip-de�ections δ̄xi
, δ̄yi , δ̄xv and δ̄yv , compute

the e�ective elastic moduli (E1, ν12, E2, ν21, and G12) of the periodic HMS beam network under the
corresponding mode of mechanical stress in combination with the magnetic �eld.

2.3.2.2. Computation of E2 and ν21 under combined load σ2 and B
a. Under the applied normal far-�led

stress along direction-2 (σ2) in combination with the magnetic �eld Ba as shown in Figure 2(d)-(f),

the non-dimensional mechanical force for the inclined (Ci) and vertical (Cv) members of the HMS unit

cell are obtained in terms of σ2 using Equations (27) and (29) through the normalization scheme of

Equation (12) as

Ci =
12 cos θ

Es

(
t

l

)3 σ2 (48a)

Cv =

24

(
h

l

)2

cos θ

Es

(
t

l

)3 σ2 (48b)

The non-dimensional magnetic loads Bi and Bv are de�ned in terms of the magnetic load ratio ri

and the mechanical load Ci using Equations (38) and (40). The inclination angles of the mechanical

and magnetic loads (βi, αi, βv, and αv) are given in Equations (28) and (30). With the de�ned input

parameters, the tip-de�ections of the HMS beam members δ̄xi
, δ̄yi , and δ̄xv are computed through the

generalized beam model. As the coordinate systems for the current load combination of σ2 and B
a is

the same with the load combination of σ1 and B
a (refer to Figure 2), the expressions of the de�ections

δ1 and δ2, and the normal strains ϵ1 and ϵ2 are the same as presented in Equations (42)-(45). Hence,

the equations are not repeated here to maintain brevity of the paper.
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The transverse e�ective Young's modulus E2 of the hexagonal HMS beam network is de�ned as

E2 = σ2/ϵ2. Using Equation (45), the �nal expression of the Young's modulus E2 is obtained in terms

of the beam-level de�ections as

E2 =

σ2

(
h

l
+ sin θ

)
−δ̄xi

sin θ − δ̄yi cos θ −
h

l
δ̄xv

(49)

Using the strain expressions presented in Equations (44) and (45), the e�ective Poisson's ratio of the

hexagonal HMS beam network is obtained through its fundamental de�nition ν21 = −ϵ1/ϵ2 as

ν21 =

(
h

l
+ sin θ

)(
−δ̄xi

cos θ + δ̄yi sin θ
)

(
δ̄xi

sin θ + δ̄yi cos θ +
h

l
δ̄xv

)
cos θ

(50)

2.3.2.3. Computation of G12 under combined load τ and Ba. Under the combined loading condition of

the shear mode of mechanical stress (τ) and magnetic �eld Ba along direction-2 as shown in Figure 3,

components of the non-dimensional mechanical force Ci for the inclined member of the HMS unit cell

are obtained using Equations (33) and (12) as given below.

F̄xi
= Ci cos βi = −

12

{
cos2 θ +

(
h

l
+ sin θ

)
sin θ

}
Es

(
t

l

)3 τ (51a)

F̄yi = Ci sin βi = −
12

(
h

l

)
cos θ

Es

(
t

l

)3 τ (51b)

From the above set of equations, the non-dimensional mechanical force Ci along with its orientation

angle βi can be obtained. In terms of the mechanical load Ci and the required magnetic load ratio ri,

the non-dimensional magnetic loads Bi and Bv are de�ned using Equations (38) and (40) having the

orientation angles αi and αv as de�ned in Equations (34) and (36). On the other hand, non-dimensional

form of the transverse mechanical force Fyv having orientation angle βv = π/2 (refer to Figure 3) is

derived from Equation (35) and (12) as

F̄yv = Cv =

24

(
h

l

)2

cos θ

Es

(
t

l

)3 τ (52)
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Under the prescribed combined mechanical and magnetic loading, rotation Ω of the inclined member of

the HMS unit cell (refer to Figure 3(c)) is obtained from the generalized beam model as

Ω = −δ̄yi (53)

Total horizontal shear de�ection at point C (δ1C ) comprises of the de�ection of the vertical member

OC (δyv) and the de�ection component due to the rotation Ω (refer to Figure 3(c) and (e)) de�ned as

δ1C = hΩ + hδ̄yv . Using Equation (53), the shear de�ection δ1C is obtained as

δ1C = h
(
−δ̄yi + δ̄yv

)
(54)

The horizontal and vertical components of the axial de�ection δxi
at point A of the inclined member

(refer to Figure 3(c)) are obtained through a coordinate transformation as given by

δ1A = −lδ̄xi
cos θ (55a)

δ2A = −lδ̄xi
sin θ (55b)

Due to the de�ections as presented in Equations (54) and (55), the total shear strain developed in the

HMS unit cell under the combined loading of τ and Ba is given by

γ12 =
δ1C + δ1A
h+ l sin θ

+
δ2A
l cos θ

=

h

l

(
−δ̄yi + δ̄yv

)
− δ̄xi

cos θ

h

l
+ sin θ

− δ̄xi
sin θ

cos θ
(56)

The e�ective shear modulus G12 of the hexagonal HMS beam network under the combined loading

τ and Ba is de�ned in terms of the developed shear strain as G12 = τ/γ12. Using the expression of the

shear strain as presented in Equation (56), we get the �nal form of G12 as shown below.

G12 =

τ

(
h

l
+ sin θ

)
cos θ

h

l

(
−δ̄yi + δ̄yv

)
cos θ − δ̄xi

cos2 θ − δ̄xi

(
h

l
+ sin θ

)
sin θ

(57)

From the expressions of e�ective elastic moduli presented in Equations (46), (47), (49), (50) and (57)

(and subsequently considering the dependencies of the tip de�ections), we notice nonlinear dependency of

the moduli on applied magnetic �eld and far-�eld stress, along with unit cell geometry, intrinsic material

properties and residual magnetic �ux architecture. Such complex interplay of the in�uencing parameters

in an expanded design space provides a unique scope of designing novel metamaterial functionalities

with unprecedented mechanical behavior.

2.3.2.4. Non-dimensional elastic moduli. To observe the e�ect of non-linearity along with the incremen-

tal e�ect of the magnetic �eld with the applied mechanical load on the hexagonal HMS beam network

explicitly, we present the e�ective elastic moduli in speci�c forms. Among the �ve elastic moduli, the
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Poisson's ratios ν12 and ν21 are already in non-dimensional forms. Hence, they are presented in their

original forms. Whereas, the other three e�ective elastic moduli of the HMS beam network (E1, E2,

and G12) are expressed in non-dimensional forms as given below.

Ē1 =
E1

Esρ3
, Ē2 =

E2

Esρ3
, Ḡ12 =

G12

Esρ3
(58)

Where, ρ is the relative density of the hexagonal HMS beam network de�ned as the ratio of the volume

of the total intrinsic HMS material and the volume of the equivalent plate-like object that the hexagonal

HMS beam network acquires [5]. Expression of the relative density ρ is given by

ρ =

(
h

l
+ 2

)
t

l

2

(
h

l
+ sin θ

)
cos θ

(59)

2.3.2.5. Note on di�erent lattice architectures. For the hexagonal network of HMS beams, a detailed

derivation of the non-linear e�ective elastic moduli within the multi-physical mechanics-based semi-

analytical framework is presented in this subsection. To demonstrate the generality of the physically

insightful framework, non-linear e�ective elastic properties of �ve other HMS beam networks, namely,

auxetic, rectangular brick, rhombic, triangular, and rectangular con�gurations are also analysed within

the broad framework (refer to Figure 1(g)). Among the considered �ve other forms of HMS beam

networks, the e�ective elastic moduli of the auxetic, rectangular brick, and rhombic con�gurations

are readily obtained from the framework for hexagonal HMS beam network by properly selecting the

geometric parameters h/l and θ (note: for auxetic con�guration θ is negative, for rectangular brick con-

�guration θ is zero, for rhombic con�guration h/l is zero). However, for the triangular and rectangular

HMS beam networks, the appropriate unit cells need to be chosen and analyzed separately. The detailed

derivations of the non-linear elastic moduli for the triangular and rectangular HMS beam networks are

presented in the following subsections. Note that under the in�uence of combined far-�eld mechanical

stresses and magnetic �eld, the unit cell mechanics of di�erent lattice con�gurations becomes signi�-

cantly involved (due to combined bending and stretching dominance in a multi-physical environment)

that has not been investigated in the literature.

2.4. E�ective elastic moduli of triangular HMS beam networks

The non-linear e�ective elastic moduli E1, ν12, E2, ν21, and G12 of a triangular network of HMS

beams, as shown in Figure 1(g)IV, under di�erent modes of far-�eld mechanical stress (σ1, σ2, and τ)

in combination with the magnetic �eld Ba are derived in this subsection. The unit cell of the triangular

HMS beam network is an equilateral triangle with side l having residual magnetic �ux density Br
0. The

combined loading conditions for the triangular HMS unit cell under the longitudinal and transverse
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normal stresses σ1 and σ2 in combination with the magnetic �eld Ba along direction-2 are shown in

Figure 4(a) and (b) respectively. Whereas, the combined loading condition under the in-plane shear

stress τ and the magnetic �eld Ba for the triangular HMS unit cell is shown in Figure 4(d). Note in

Figure 4(d) that the direction of residual magnetic �ux density Br
0 for the inclined members OB and AB

is opposite (unlike the unit cells considered under far-�eld normal stresses). This opposite distribution

of Br
0 makes the members OB and AB structurally symmetric under the in-plane shear stress τ in

combination with external magnetic �eld Ba. This phenomenon is already described in detail for the

hexagonal HMS beam network and is not repeated here to maintain brevity.

Under only far-�eld mechanical stress (σ1, σ2, and τ) in absence of magnetic �eldBa, the cell members

undergo stretch-dominated deformations [5]. Hence, the e�ective elastic moduli of the triangular lattice

con�gurations under mechanical load only are governed by the axial deformations of the members [34].

The analytical formulae for the e�ective elastic moduli of triangular lattices (with cell wall thickness t)

under mechanical load only within small deformation regime are given by [5, 34]

E1

Es

=
E2

Es

=
2√
3

t

l
(60a)

ν12 = ν21 =
1

3
(60b)

G12

Es

=

√
3

4

t

l
(60c)

In this subsection, the conventional unit cell-based approach for triangular lattices [5, 34] is extended

to a magneto-active multi-physical mechanics-based semi-analytical framework following the formulation

for hexagonal HMS beam network presented in the preceding subsection, leading to the evaluation of

non-linear e�ective elastic moduli of the triangular HMS beam network under combined mechanical

and magnetic loads. Large deformation kinematics of the triangular HMS unit cell and the beam-level

forces developed under di�erent combinations of mechanical stress and magnetic �eld are described �rst

in the following subsection. With the identi�ed kinematic and kinetic conditions, the beam-level non-

linear multi-physical mechanics problems are solved through the semi-analytical HMS beam model as

presented in subsection 2.1 and subsection 2.2. Using the beam-level deformation results, computations

of the non-linear e�ective elastic moduli of the triangular HMS beam network under the combined

mechanical stress and magnetic �eld are presented subsequently.

2.4.1. Beam-level forces and deformation kinematics

Under the combined mechanical and magnetic loads as presented in Figure 4(a), (b), and (d), the

HMS beam members undergo bending in combination with axial deformation. Kinematics and kinetics
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Figure 4: Multi-physical mechanics of periodic triangular HMS beam network under combined mechanical
stress and magnetic �eld. (a) Combined loading mode of the triangular HMS unit cell under normal stress along
direction-1 (σ1) and magnetic �eld along direction-2 (Ba). (b) Combined loading mode of the triangular HMS unit cell
under normal stress along direction-2 (σ2) and magnetic �eld along direction-2 (Ba). (c) Deformed con�guration of the
triangular HMS unit cell under combined normal stress σ1 or σ2 and magnetic �eld Ba. (d) Combined loading mode of
the triangular HMS unit cell under shear stress in plane 1-2 (τ) and magnetic �eld along direction-2 (Ba). (e) Deformed
con�guration of the triangular HMS unit cell under combined shear stress τ and magnetic �eld Ba. (f) Generalized forces
and large deformation kinematics of inclined and horizontal members under any of the three combined loading conditions.
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of the beam members under the magnetic �eld Ba in combination with the three di�erent modes of the

mechanical stress σ1, σ2, and τ are presented in the following three subsections.

2.4.1.1. Mechanical normal stress along direction-1 and magnetic �eld along direction-2. Under the

combined loading of far-�eld normal stress σ1 and magnetic �eld Ba as shown in Figure 4(a), all the

three members (OA, OB, and AB) of the triangular HMS unit cell undergo combined bending-stretching

deformation with one end �xed, while the other ends being restrained to rotation and transverse dis-

placement but free to axial translation. The deformed con�guration of the triangular HMS unit cell

under the combined loading of σ1 and Ba is shown in Figure 4(c). The generalized �gure also repre-

sents the deformed con�guration under the combined loading of σ2 and B
a. Note in the �gure that the

changes in the span of the HMS beam members are shown in a generalized manner without taking into

consideration of the proper algebraic signs. Those senses of the axial deformations will be implicitly

taken care of by the generic beam model under the proper description of the sense of the beam-level

forces under a particular combined loading condition.

Due to the symmetry of the deformation under the combined loading of σ1 and B
a, we concentrate

on one inclined member OB in addition to the horizontal member OA. To use the developed framework

of hexagonal HMS beam network as presented in the preceding subsection readily for the present multi-

physical mechanics of triangular HMS beam network, we consider half of the members OA and OB of

length l/2 which have similar boundary conditions as those of the members of the hexagonal network,

i.e., one end �xed with the other end being rotationally restrained but free to translation (refer to section

2.1.1). Point O is considered the �xed point and origin of local Cartesian frames (x, y) for half of the

inclined and horizontal members. Large deformation kinematics along with the developed forces in half

of the inclined and horizontal HMS members under the combined loading of σ1 and Ba are shown in

Figure 4(f). Note that the kinematic and kinetic descriptions of the HMS half beams in Figure 4(f) are a

generalized representation under any of the three combined loading conditions presented in Figure 4(a),

(b), and (d).

Under the remote mechanical stress σ1, the tip-concentrated force Fh developed in the horizontal

member as shown in Figure 4(f) is given by

Fh =

√
3

2
σ1bl (61)

Inclination angles βh and αh of the above-presented mechanical force Fh and the vertical magnetic �eld
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Ba for the horizontal HMS member (refer to Figure 4(f)) are given by

βh = π (62a)

αh =
π

2
(62b)

For the inclined HMS member as shown in Figure 4(f), the developed force Fi and the inclination angle

αi of the magnetic �eld Ba are given by

Fi = 0 (63)

αi =
π

6
(64)

2.4.1.2. Normal stress along direction-2 and magnetic �eld along direction-2. Under the remote nor-

mal stress σ2 in combination with the external magnetic �eld Ba as shown in Figure 4(b), the large

deformation kinematics of the triangular HMS unit cell and the kinetics of the HMS beam members are

already described through Figure 4(c) and (f). The concentrated force Fh developed in the horizontal

HMS beam due to the remote stress σ2 is given by

Fh =
1

2
√
3
σ2bl (65)

As observed in Figure 4(f), the inclination angles βh and αh are given by

βh = 0 (66a)

αh =
π

2
(66b)

The concentrated force Fi developed in the inclined member is expressed in terms of the remote normal

stress σ2 (refer to Figure 4(f)) as

Fi =
1√
3
σ2bl (67)

The inclination angles βi and αi of the mechanical and magnetic loads for the inclined member as shown

in Figure 4(f) are presented below.

βi = π (68a)

αi =
π

6
(68b)

2.4.1.3. Far-�eld shear stress in 1-2 plane and magnetic �eld along direction-2. When the triangular

HMS beam network is subjected to in-plane shear stress τ combined with the external magnetic �eld

Ba as shown in Figure 4(d), all the three members (OA, OB, and AB) of the triangular HMS unit cell

are subjected to the same boundary conditions as those under the combined normal stress (σ1 or σ2)

and the magnetic �eld (Ba) (refer to Figure 4(c)). However, under the combined load of τ and Ba,
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the two inclined members OB and AB undergo the opposite modes of axial deformation (compression

and tension), and hence the triangular HMS unit cell becomes asymmetric as shown in Figure 4(e).

The opposite distribution of the residual magnetic �ux density Br
0 in the inclined members OB and AB

makes the structural behaviour under the mechanical and magnetic �eld in phase with each other (i.e.

structurally symmetric, as discussed in the derivation of hexagonal lattices). Within the unit cell-based

approach to compute the e�ective shear modulus, we concentrate only on one inclined member OB in

addition to the horizontal member OA. The large deformation kinematics and force kinetics of half of

the inclined and horizontal HMS beams are presented through the generalized schematic in Figure 4(f).

Under the remote shear stress τ , the concentrated axial force Fh developed in the horizontal member

along with the inclination angle αh of the magnetic �eld (refer to Figure 4(f)) are expressed as

Fh = 0 (69)

αh =
π

2
(70)

The concentrated force Fi developed in the inclined HMS member as shown in Figure 4(f) is expressed

in terms of the remote shear stress τ as

Fi = τbl (71)

The inclination angles βi and αi of the mechanical force Fi and the magnetic �eld Ba for the inclined

HMS beam (refer to Figure 4(f)) are given below.

βi = π (72a)

αi =
π

6
(72b)

2.4.2. E�ective elastic moduli

To estimate the non-linear e�ective elastic moduli of the triangular HMS beam network, geometri-

cally non-linear axial tip-de�ections δxh
and δxi

of the horizontal and inclined HMS beams under the

concentrated force Fh and Fi combined with the magnetic �eld Ba as described through Figure 4(f) in

the previous subsection are computed based on the generalized HMS beam model. In the framework of

the generalized HMS beam model, the geometries of the horizontal and inclined HMS half beams shown

in Figure 4(f) are normalized as

Π0h = Π0i =
3(
t

l

)2 (73)

The non-dimensional forms of the beam-level forces in the framework of the generalized HMS beam

model are presented in the respective subsection estimating the elastic moduli of the triangular HMS
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beam network under a particular combined loading case. Expression of the relative density and non-

dimensional forms of the e�ective elastic moduli are presented subsequently.

2.4.2.1. Computation of E1 and ν12 under combined load σ1 and Ba. Under the combined loading of

normal stress σ1 and magnetic �eld Ba (refer to Figure 4(a) and (f)), the non-dimensional mechanical

forces Ch and Ci for the horizontal and inclined members are derived from Equations (61) and (63)

following the normalization scheme discussed earlier as

Ch =
3
√
3

2Es

(
t

l

)3 σ1 (74a)

Ci = 0 (74b)

With the non-dimensional mechanical forces Ch and Ci, the non-dimensional magnetic loads Bh and

Bi for the horizontal and inclined HMS beams are de�ned in terms of the magnetic load ratio rh as

Bh = Bi = rhCh (75)

Under the non-dimensional mechanical and magnetic loads with the inclination angles presented in

Equations (62) and (64), the non-linear non-dimensional tip-de�ections δ̄xh
and δ̄xi

of the horizontal

and inclined HMS beams are computed. The normal strain in direction-1 (ϵ1) is obtained in terms of

the beam-level defection δ̄xh
through a suitable coordinate transformation as given by

ϵ1 = δ̄xh
(76)

The normal strain in direction-2 (ϵ2) is derived from the deformed geometry of the triangular HMS unit

cell as presented in Figure 4(c). By using the Pythagorean theorem on the triangle, we get

(h+ δ2)
2 +

(
l + δ1
2

)2

= (l + δi)
2 (77)

Noting the geometric relation of the undeformed triangular unit cell as h2 + (l/2)2 = l2 (refer to

Figure 4(a)) and neglecting the higher order terms, the above equation gives

√
3 δ2 = −1

2
δ1 + 2 δi (78)

From the above relation, the strain ϵ2 is obtained in terms of the beam-level displacements as

ϵ2 = −1

3
δ̄xh

+
4

3
δ̄xi

(79)

With the known normal strains ϵ1 and ϵ2 as presented in Equations (76) and (79), the non-linear e�ective

elastic moduli E1 and ν12 are obtained as

E1 =
σ1
δ̄xh

(80)
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ν12 =
1

3
− 4

3

δ̄xi

δ̄xh

(81)

2.4.2.2. Computation of E2 and ν21 under combined load σ2 and B
a. Under the normal stress σ2 com-

bined with Ba as shown in Figure 4(b) and (f), the non-dimensional forces Ch and Ci for the horizontal

and inclined beams are obtained from Equations (65) and (67) as

Ch =

√
3

2Es

(
t

l

)3 σ2 (82a)

Ci =

√
3

Es

(
t

l

)3 σ2 (82b)

In combination with the above-presented non-dimensional mechanical forces Ch and Ci, the HMS

beams are subjected to the non-dimensional magnetic loads Bh and Bi which are de�ned in terms of

the magnetic load ratio ri by

Bh = Bi = riCi (83)

The inclination angles of the mechanical and magnetic loads are already presented in Equations (66)

and (68). Following the same procedure as in the previous combined loading case in the preceding

subsection, the non-linear non-dimensional tip-de�ections δ̄xh
and δ̄xi

are obtained which give the normal

strains ϵ1 and ϵ2 having the same mathematical expressions as presented in Equations (76) and (79).

Using the strain expressions, the non-linear e�ective Young's modulus E2 and the Poisson's ratio ν21 of

the triangular HMS beam network are derived as

E2 =
3σ2

−δ̄xh
+ 4 δ̄xi

(84)

ν21 =
3 δ̄xh

δ̄xh
− 4 δ̄xi

(85)

2.4.2.3. Computation of G12 under combined load τ and Ba. Under the combined in-plane shear stress

τ and magnetic �eld Ba as presented in Figure 4(d) and (f), the non-dimensional mechanical forces Ch

and Ci for the horizontal and inclined HMS beam members as derived from Equations (69) and (71)

are given by

Ch = 0 (86a)

Ci =
3

Es

(
t

l

)3 τ (86b)
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The non-dimensional magnetic loads Bh and Bi of the horizontal and inclined HMS beam members are

de�ned similarly as those for the other two combined loading cases as

Bh = Bi = riCi (87)

Under the non-dimensional mechanical and magnetic forces with the inclination angles of Equa-

tions (70) and (72), the non-linear non-dimensional defections δ̄xh
and δ̄xi

are computed through the

generalized HMS beam model. To derive the in-plane shear strain γ12 under the combined loading of τ

and Ba, we concentrate on the deformed triangular HMS unit cell as presented in Figure 4(e). By using

the Pythagorean theorem on the deformed triangle, we get the following geometric relation

h2 +

(
l

2
+
δ1
2
+ δxB

)2

= (l + δi)
2 (88)

Noting the geometric relation of the undeformed triangular unit cell as h2 + (l/2)2 = l2 (refer to

Figure 4(d)) and carrying out some mathematical manipulations by neglecting the higher order terms,

the horizontal displacement δxB
of point B is obtained as

δxB
= 2 δi −

δ1
2

(89)

Due to the the horizontal displacement δxB
, the shear strain γ12 developed in the triangular unit cell is

given by γ12 = δxB
/h. Using the geometric relation from Equation (89), the shear strain γ12 is expressed

in terms of the beam-level displacements δ̄xh
and δ̄xi

as

γ12 =
4√
3
δ̄xi

− 1√
3
δ̄xh

(90)

Once the shear strain γ12 is known as presented above, the non-linear e�ective shear modulus G12 of

the triangular HMS beam network is obtained through its fundamental de�nition G12 = τ/γ12 as

G12 =

√
3 τ

4 δ̄xi
− δ̄xh

(91)

2.4.2.4. Non-dimensional elastic moduli. As Poisson's ratios ν12 and ν21 are already non-dimensional,

they are presented in their original forms. The other three e�ective elastic moduli E1, E2, and G12 of

the triangular HMS beam network are presented in non-dimensional forms following the normalization

scheme as

Ē1 =
E1

Esρ3
, Ē2 =

E2

Esρ3
, Ḡ12 =

G12

Esρ3
(92)

Here the relative density ρ of the triangular HMS beam network obtained following the same de�nition

as the hexagonal beam network is given by

ρ = 2
√
3
t

l
(93)
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2.5. E�ective elastic moduli of rectangular HMS beam networks

To estimate the non-linear e�ective elastic moduli E1, ν12, E2, ν21, and G12 of periodic rectangular

network of HMS beams, as shown in Figure 1(g)V, the unit cell consisting of horizontal HMS beam of

length l and vertical HMS beam of length h with residual magnetic �ux density Br
0 is chosen. The three

di�erent combined mechanical and magnetic loading conditions for the rectangular HMS unit cell are

shown in Figure 5(a), (b), and (d) respectively.

Under the normal modes of mechanical stress σ1 or σ2 in absence of magnetic �eld Ba, the cell

members of the rectangular lattice undergo stretch-dominated deformations [5]. Whereas, under the

shear mode of mechanical stress τ in absence of magnetic �eld Ba, the cell members are subjected

to bending-dominated deformations [34]. The analytical formulae for the e�ective elastic moduli of

rectangular lattice under mechanical load only within small deformation regime are given by [5, 34]

E1

Es

=

(
t

l

)
(
h

l

) (94a)

E2

Es

=
t

l
(94b)

ν12 = ν21 = 0 (94c)

G12

Es

=

(
t

l

)3

h

l

(
1 +

h

l

) (94d)

In this subsection, the conventional unit cell-based approach for rectangular lattices [5, 34] is ex-

tended to a magneto-active multi-physical mechanics-based semi-analytical framework following the

formulation for hexagonal HMS beam network presented in the preceding subsection, leading to the

evaluation of non-linear e�ective elastic moduli of the rectangular HMS beam network under combined

mechanical and magnetic loads. Large deformation kinematics of the rectangular HMS unit cell and

the beam-level forces developed under di�erent combinations of mechanical stress and magnetic �eld

are described �rst in the following subsection. With the identi�ed kinematic and kinetic conditions, the

beam-level non-linear multi-physical mechanics problems are solved through the semi-analytical HMS

beam model as presented in subsection 2.1 and subsection 2.2. Using the beam-level deformation results,

computations of the non-linear e�ective elastic moduli of the rectangular HMS beam network under the

combined mechanical stress and magnetic �eld are presented subsequently.
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Figure 5: Multi-physical mechanics of periodic rectangular HMS beam network under combined mechan-
ical stress and magnetic �eld. (a) Combined loading mode of the rectangular HMS unit cell under normal stress
along direction-1 (σ1) and magnetic �eld along direction-2 (Ba). (b) Combined loading mode of the rectangular HMS
unit cell under normal stress along direction-2 (σ2) and magnetic �eld along direction-2 (Ba). (c) Generalized forces and
large deformation kinematics of the vertical and horizontal members under combined normal stress σ1 or σ2 and magnetic
�eld Ba. (d) Combined loading mode of the rectangular HMS unit cell under shear stress in plane 1-2 (τ) and magnetic
�eld along direction-2 (Ba). (e) Forces and large deformation kinematics of the horizontal and vertical members under
combined shear stress τ and magnetic �eld Ba.

2.5.1. Beam-level forces and deformation kinematics

Under the three combined mechanical and magnetic loading conditions as presented in Figure 5(a),

(b), and (d), the HMS beam members undergo large deformation, the kinematics and kinetics of which
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are described in the following three subsections.

2.5.1.1. Far-�eld normal stress along direction-1 and magnetic �eld along direction-2. Under the com-

bined loading case of normal stress σ1 and magnetic �eld Ba as shown in Figure 5(a), the horizontal and

vertical HMS beam members OA and OB of the rectangular HMS unit cell undergo combined bending-

stretching deformation with �xed end O and the other ends A and B being restrained to rotation and

transverse displacement but free to axial translation. The other pairs of horizontal and vertical HMS

beams BC and CA are not considered in the analysis due to the structural symmetry of the unit cell.

Following the same procedure as in the case of the triangular HMS beam network (refer to the preceding

subsection), half of the members OA and OB of length l/2 and h/2 respectively are considered for the

present multi-physical mechanics. The half beams are subjected to the boundary conditions of one �xed

end with the other end being rotationally restrained but free to translation.

Large deformation kinematics and the force kinetics of the vertical and horizontal HMS half beams

under the combined loading of σ1 and B
a are presented in Figure 5(c) concerning the local Cartesian

frames (x, y) �tted at the �xed point O. Note that the kinematic and kinetic descriptions of the HMS

half beams in Figure 5(c) are a generalized representation under the normal modes of mechanical stress

σ1 or σ2 combined with the magnetic �eld Ba as presented in Figure 5(a) and (b).

The concentrated mechanical force Fh developed in the horizontal HMS beam under the remote

normal stress σ1 as shown in Figure 5(c) is given by

Fh = σ1bh (95)

Inclination angles βh and αh of the mechanical force Fh and the magnetic �eld Ba respectively for the

horizontal HMS member as shown in Figure 5(c) are given by

βh = π (96a)

αh =
π

2
(96b)

The vertical HMS beam (refer to Figure 5(c)) is only subjected to the magnetic �eld Ba without any

mechanical force Fv under the present combined loading case. Hence, the kinetics of the vertical HMS

beam is represented as

Fv = 0 (97)

αv = 0 (98)

2.5.1.2. Far-�eld normal stress along direction-2 and magnetic �eld along direction-2. The large defor-

mation kinematics and kinetics of the members of the rectangular HMS unit cell under the combined
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loading of σ2 and B
a are already described through the generalized schematic diagrams in Figure 5(c).

Under the present combined loading case, the horizontal HMS beams are not subjected to any mechan-

ical force Fh. However, the horizontal members are subjected to Ba with the inclination angle αh. The

kinetic relations for the horizontal HMS beam member are summarized as

Fh = 0 (99)

αh =
π

2
(100)

The concentrated force Fv developed in the vertical member (refer to Figure 5(c)) is given by

Fv = σ2bl (101)

The inclination angles βv and αv of the mechanical and magnetic loads respectively for the vertical

member as presented in Figure 5(c) are given by

βv = π (102a)

αv = 0 (102b)

2.5.1.3. Shear stress in 1-2 plane and magnetic �eld along direction-2. Under the combined loading

of in-plane shear stress τ and magnetic �eld Ba as shown in Figure 5(d), the horizontal and vertical

members OA and OB of the rectangular HMS unit cell undergo bending-dominated large deformation

with �xed end O and the other ends A and B being rotationally restrained but free to translation.

Within the present multi-physical mechanics-based framework, the large deformation kinematics and

kinetics of the horizontal and vertical HMS full beam members OA and OB are analysed as presented

in Figure 5(e).

The tip-concentrated transverse force Fh developed in the horizontal HMS beam under the remote

shear stress τ is expressed as

Fh = τbh (103)

The inclination angles βh and αh of the mechanical and magnetic loads for the horizontal HMS beam

as shown in Figure 5(e) are given by

βh =
3π

2
(104a)

αh =
π

2
(104b)

The concentrated force Fv developed in the vertical HMS beam member under the remote shear stress
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τ (refer to Figure 5(e)) is expressed by

Fv = τbl (105)

The inclination angles βv and αv of the mechanical force Fv and the magnetic �eld Ba for the vertical

HMS beam as shown in Figure 5(e) are summarized as

βv =
π

2
(106a)

αv = 0 (106b)

2.5.2. E�ective elastic moduli

To estimate the non-linear e�ective elastic moduli E1, ν12, E2, and ν21 of the rectangular HMS

beam network under the normal modes of mechanical stress σ1 or σ2 in combination with the magnetic

�eld Ba, geometrically non-linear axial tip-de�ections δxh
and δxv of the horizontal and vertical HMS

half beams under the concentrated force Fh and Fv combined with the magnetic �eld Ba as described

through Figure 5(c) in the previous subsection are computed through the generalized HMS beam model.

Whereas, for the estimation of the non-linear e�ective shear modulus G12 under in-plane shear stress τ

and the magnetic �eld Ba, geometrically non-linear transverse de�ections δyh and δyv of the horizontal

and vertical HMS full beams as shown in Figure 5(e) are computed.

In the framework of the generalized HMS beam model, the geometries of the horizontal and vertical

HMS half beams considered for combined loading case under normal stress σ1 or σ2 and magnetic �eld

Ba as shown in Figure 5(c) are normalized as

Π0h =
3(
t

l

)2 (107a)

Π0v =

3

(
h

l

)2

(
t

l

)2 (107b)

Whereas, the non-dimensional geometries of the HMS full beams considered for the combined loading
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case under shear stress τ and magnetic �eld Ba as shown in Figure 5(e) are given by

Π0h =
12(
t

l

)2 (108a)

Π0v =

12

(
h

l

)2

(
t

l

)2 (108b)

2.5.2.1. Computation of E1 and ν12 under combined load σ1 and B
a. The non-dimensional mechanical

forces Ch and Cv for the horizontal and vertical HMS beams under the combined loading of normal

stress σ1 and magnetic �eld Ba as shown in Figure 5(a) and (c) are obtained from Equations (95) and

(97) as

Ch =

3

(
h

l

)
Es

(
t

l

)3 σ1 (109a)

Cv = 0 (109b)

Magnitudes of the non-dimensional magnetic loads Bh and Bv for the horizontal and vertical HMS

beam members of the rectangular HMS unit cell are de�ned in terms of the magnetic load ratio rh and

the non-dimensional mechanical force Ch as

Bh = rhCh (110a)

Bv =

(
h

l

)2

rhCh (110b)

Under the prescribed non-dimensional mechanical and magnetic loads with the inclination angles as

presented in Equations (96) and (98), the non-linear axial de�ections are computed in non-dimensional

forms δ̄xh
and δ̄xv . In terms of the beam-level de�ections, the normal strains in direction-1 (ϵ1) and

direction-2 (ϵ2) are de�ned by

ϵ1 = δ̄xh
(111)

ϵ2 = δ̄xv (112)

With the above-presented strains ϵ1 and ϵ2, the non-linear e�ective Young's modulus E1 and Poisson's
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ratio ν12 of the rectangular HMS beam network are obtained readily as

E1 =
σ1
δ̄xh

(113)

ν12 = − δ̄xv

δ̄xh

(114)

2.5.2.2. Computation of E2 and ν21 under combined load σ2 and B
a. When the rectangular HMS beam

network is subjected to combined loading under the normal stress σ2 and the magnetic �eld Ba as

shown in Figure 5(b), the concentrated forces in the horizontal and vertical HMS beams are expressed

in non-dimensional forms using Equations (99) and (101) as

Ch = 0 (115a)

Cv =

3

(
h

l

)2

Es

(
t

l

)3 σ2 (115b)

Magnitudes of the non-dimensional magnetic loads Bh and Bv are de�ned in terms of load ratio rv

and non-dimensional load Cv in a similar way as in the case of the other previously discussed combined

loading mode as

Bh =
rvCv(
h

l

)2 (116a)

Bv = rvCv (116b)

Under the above-presented mechanical and magnetic loads with the inclination angles presented in

Equations (100) and (102), the non-linear beam-level de�ections δ̄xh
and δ̄xv are computed which in turn

give the normal strains ϵ1 and ϵ2 through Equations (111) and (112). Using the strain expressions, the

non-linear e�ective elastic moduli E2 and ν21 of the rectangular HMS beam network under the combined

loading of σ2 and B
a are obtained as

E2 =
σ2
δ̄xv

(117)

ν21 = − δ̄xh

δ̄xv

(118)

2.5.2.3. Computation of G12 under combined load τ and Ba. Under the combined loading of τ and Ba

as shown in Figure 5(d) and (e), the non-dimensional forces Ch and Cv for the horizontal and vertical
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beams are derived from Equations (103) and (105) as

Ch =

12

(
h

l

)
Es

(
t

l

)3 τ (119a)

Cv =

12

(
h

l

)2

Es

(
t

l

)3 τ (119b)

The non-dimensional magnetic loads Bh and Bv for the horizontal and vertical HMS beam members

are de�ned as

Bh = rhCh (120a)

Bv =

(
h

l

)2

rhCh (120b)

Under the above-presented non-dimensional mechanical and magnetic loads with the inclination

angles presented in Equations (104) and (106), non-linear transverse defections of the beam tips are

computed in non-dimensional forms as denoted by δ̄yh and δ̄yv in Figure 5(e). In terms of the transverse

tip-de�ections, rotations of the horizontal and vertical HMS beams are obtained as

Ωh = −δ̄yh (121a)

Ωv = δ̄yv (121b)

Due to the above-presented rotations Ωh and Ωv of the horizontal and vertical HMS beam members

respectively, the total shear strain γ12 developed in the rectangular unit cell is given by

γ12 = −δ̄yh + δ̄yv (122)

The non-linear e�ective shear modulus G12 of the rectangular HMS beam network is obtained subse-

quently through the fundamental de�nition G12 = τ/γ12 using Equation (122) as

G12 =
τ

−δ̄yh + δ̄yv
(123)

2.5.2.4. Non-dimensional elastic moduli. As Poisson's ratios ν12 and ν21 are already non-dimensional,

they are presented in their original forms. Following a similar representation framework as the other

periodic network con�gurations, the e�ective elastic moduli E1, E2, and G12 of the rectangular HMS

beam network are normalized as

Ē1 =
E1

Esρ3
, Ē2 =

E2

Esρ3
, Ḡ12 =

G12

Esρ3
(124)
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Here the relative density ρ of the rectangular HMS beam network is derived as

ρ =
t

l

(
1 +

h

l

)
h

l

(125)

Having established the semi-analytical large-deformation computational frameworks for di�erent

magneto-active periodic beam networks, we present numerical results in the following section to demon-

strate active broadband elasticity programming as a function of the externally applied magnetic �eld

and bi-level (unit cell geometry and beam-level spatially-varying residual magnetic �ux direction) meta-

material architectures.

3. Results and discussion

The generalized HMS beam model is the backbone of the present semi-analytical framework to

estimate the non-linear e�ective elastic moduli of hexagonal HMS beam networks under combined me-

chanical and magnetic loads. Hence, before going to investigate the e�ective elastic moduli of HMS beam

networks, the HMS beam model is validated �rst, as presented in the �rst subsection here. Thereafter,

critical numerical beam-level results are furnished with symmetric and asymmetric residual magnetic

�ux density under di�erent combinations of mechanical and magnetic loads. Note that modulation

capability of the shapes of such architected beams will constitute the foundation for bi-level design

of lattices, as discussed later in this section. Applicability of the full-beam and half-beam model for

symmetric and asymmetric residual magnetic �ux density of HMS beam is also investigated along with

the in�uence of centreline extensibility on the load-deformation characteristics of HMS beam.

Following the beam-level results, the geometrically non-linear semi-analytical framework estimating

the e�ective elastic moduli of the HMS beam networks is validated, as presented in the third subsection.

Validations of the present framework at the beam-level as well as at the beam network-level would

provide adequate con�dence in the proposed computational models. Subsequently, the e�ect of magnetic

�eld in combination with the di�erent modes of mechanical load on the non-linear e�ective elastic

moduli of hexagonal HMS beam network with uniform residual magnetic �ux density is investigated, as

presented in the fourth subsection. Based on the kinematic and kinetic conditions of the beam elements

of the hexagonal HMS beam network, two intuitive designs of residual magnetic �ux density S(ξ)

(beam-level architecture) are proposed in the �fth subsection which would signi�cantly in�uence the

e�ective elastic moduli of the HMS beam network under combined mechanical and magnetic loads. In

the following subsection, we demonstrate the applicability of the concept of active broad-band elasticity

modulation for di�erent other forms of lattice geometries, as presented in Figure 1(g).

47



For all the computations at beam-level and beam network-level, the material constitutive parameters

in the framework of the Yeoh hyperelastic model are considered as C10 = 0.2712, C20 = 0.0305, and

C30 = −0.004 [89]. The numerical value of the computational parameter λ and the limit of µ are

considered as 0.9 and 0.05% respectively. The number of functions for the centreline rotation φ and

centreline strain ε are selected as nb = ns = 5, based on a convergence study.

3.1. Beam-level validation

Though large deformation analysis of HMS beam structures has become a topic of interest for the

last few years, the studies focus on structural characteristics separately under mechanical load only

and magnetic actuation only. Hence, comparable results for our multi-physical mechanics-based beam

model for coupled mechanical and magnetic loading conditions are not readily available in the literature.

Thus, the current geometrically non-linear HMS beam model is �rst validated under mechanical load

only by comparing it with the results presented by Chen and Wang [65]. Whereas, for the loading case

of magnetic actuation only, we validate our model with the paper by Chen et al. [70]. The validation

studies for both the mechanical and magnetic loading cases are performed for the non-dimensional

geometric speci�cation of the HMS beam Π0 = 10000.

The validation study of the generalized HMS beam model under mechanical load only is carried

out for the cantilever boundary conditions subjected to tip-concentrated non-dimensional load C with

inclination angle β as considered in the paper [65]. The non-dimensional deformed con�gurations (ξ, η)

of the cantilever beam under di�erent values of C for inclination angle β of π/4, π/2, 3π/4, and 9π/10

as obtained from the present model are shown through solid lines in Figure S1(a)-(d) respectively.

Whereas, the corresponding deformation results reported in the literature [65] are also plotted through

dotted points in Figure S1. As obvious from Figure S1, an excellent agreement between the present semi-

analytical HMS beam model and the model presented in literature [65] is found for all the considered load

magnitudes C and the orientation angles β. Hence, the comparison studies in Figure S1 clearly show the

capability of the present HMS beam model in predicting highly non-linear deformation characteristics

of the soft beam under mechanical load only.

The validation study of the present non-linear beam model under magnetic load only is carried out

for four di�erent deformed shapes obtained under di�erent designs of residual magnetic �ux density

S(ξ) of the HMS beam subjected to multiple boundary conditions as considered in literature [70]. The

�rst considered case among them is the m-shape deformed con�guration which is obtained for the design

of S(ξ) as given below with the free-free boundary conditions (θ′(0) = 0 and θ′(1) = 0) and inclination
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angle α = π/2 [70].

S =

1, 0 ≤ ξ ≤ 0.25 or 0.5 ≤ ξ ≤ 0.75

−1, 0.25 < ξ < 0.5 or 0.75 < ξ ≤ 1.0

With the above-presented residual magnetic �ux density S(ξ), the prescribed boundary conditions and

inclination angle, the m-shape deformed con�gurations of HMS beam under non-dimensional magnetic

actuations B = 30, B = 100, and B = 300 are obtained from the present non-linear model as shown

through solid lines in Figure S2(a)-(c) respectively. The corresponding deformed shapes as reported in

literature [70] are also shown in the plots through dotted points.

The second shape we concentrate on is the s-shape con�guration which is obtained under the same

boundary conditions and inclination angle α as in the case of m-shape con�gurations but with the

following design of S(ξ) [70]

S =


1, 0 ≤ ξ <

1

3
or

2

3
≤ ξ ≤ 1

−1,
1

3
≤ ξ <

2

3

The comparison plots between the present model and the results reported in literature [70] for the s-

shape con�gurations under the non-dimensional magnetic actuation B of 30, 100, and 300 are presented

in Figure S2(d)-(f) respectively.

The third type of deformed shape considered for the validation study of the HMS beam model under

magnetic actuation only is the n-shape con�guration. The n-shape con�guration is achieved for the

same boundary conditions and inclination angle α as those of the m-shape and s-shape con�gurations

but with the coe�cient of residual magnetic �ux density [70]

S =

1, 0 ≤ ξ < 0.5

−1, 0.5 ≤ ξ ≤ 1

Comparisons of n-shape deformed con�gurations from the present semi-analytical model with the results

reported in literature [70] are shown in Figure S2(g)-(i) for the magnetic actuation B = 30, B = 60,

and B = 100 respectively.

The fourth type of the deformed shape of the HMS beam under magnetic actuation we consider is

the Ω-shape con�guration. The con�guration is achieved for the same design of S(ξ) as that for the

n-shape con�gurations but under the boundary conditions of θ(0) = 0 and θ(1) = 0 with the inclination

angle of the magnetic �eld α = π [70]. The Ω-shape deformed con�gurations of HMS beam under

magnetic actuation B of 60, 100, and 200 are compared with the present non-linear model and the

reported results in literature [70] as presented in Figure S2(j)-(l) respectively.
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The excellent matching of the deformation results obtained from the present semi-analytical model

and literature [70], as shown in Figure S2, validates our non-linear model in predicting complex con�g-

urations of HMS beam with designed spatially-varying residual magnetic �ux densities under di�erent

magnetic actuation.

3.2. Beam-level numerical results under coupled mechanical and magnetic loads

Once the developed geometrically non-linear HMS beam model is validated for separate loading

conditions of mechanical load only and magnetic load only, as presented in the previous subsection,

benchmark numerical results under coupled mechanical and magnetic loading conditions are presented

here. Note that the such coupled e�ect of magneto-mechanical loading has not been investigated in the

literature through the development of a comprehensive computational framework for HMS beams.

An HMS beam representing the generalized element (full or half length) of the HMS beam network

having length L with non-dimensional geometric speci�cation Π0 = 10000 is considered here. Non-

linear deformation characteristics of the HMS beam are simulated through the full-beam and half-beam

models within the extensible and inextensible versions of the present semi-analytical framework. The

typical boundary conditions (as considered here) of the HMS beam as a full-beam problem and as a

half-beam problem have been already described in detail in subsection 2.1.

The considered HMS full-beam is �xed at one end with the other end being rotationally restrained

but free to translation and subjected to non-dimensional mechanical force C = 10 applied incrementally

in 50 steps. At each incremental step of C, �ve non-dimensional magnetic loads B = rC are applied by

�ve magnetic load ratio r of 0.8, 1.6, 2.4, 3.2, and 4 for two di�erent cases of uniform residual magnetic

�ux density with S = 1 and S = −1. For the considered HMS full-beam problem, four di�erent

inclination angles of the mechanical and magnetic loads are considered as α = β = π/2, α = β = π/3,

α = β = π/4, and α = β = π/6. The non-dimensional deformed con�gurations (ξ, η) of the HMS

beam with residual magnetic �ux density S = 1 and S = −1 under the mechanical load C = 10 in

combination with di�erent magnetic load ratios r are presented in Figure 6(a)-(d) for the considered four

sets of inclination angles respectively. The solid lines in the plots represent the results obtained from the

extensible model. Whereas, the results obtained from the inextensible version of the non-linear model

are plotted through dotted points in the �gure. To observe the e�ect of magnetic load in combination

with the mechanical loading on the non-linear deformation characteristics of the HMS beam with S = 1

and S = −1, variations of the non-dimensional tip-de�ection δ̄y with the non-dimensional mechanical

load C for the considered di�erent magnetic load ratio r are shown in Figure S3(a)-(d) corresponding

to four sets of inclination angles.
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Figure 6: Deformed shapes of HMS full-beam con�gurations with symmetric uniform residual magnetic
�ux density about the mid-point under combined mechanical and magnetic load. Non-dimensional deformed
con�gurations (ξ, η) of HMS full beams with the coe�cient of residual magnetic �ux density S = 1 and S = −1 under
non-dimensional mechanical force C = 10 in combination with di�erent magnitudes of non-dimensional magnetic load
B = rC in terms of the magnetic load ratio r with the inclination angles of the mechanical and magnetic loads of (a)
α = β = π/2, (b) α = β = π/3, (c) α = β = π/4, and (d) α = β = π/6.
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Figures 6 and S3 clearly show that for the residual magnetic �ux density with the coe�cient S = 1,

de�ection under combined mechanical load C and magnetic �eld B for all the considered inclination

angles β and α increases with magnetic load ratio r compared to the de�ection under mechanical load

only (r = 0). Whereas, for the residual magnetic �ux density having coe�cient S = −1, the de�ection

decreases with r for the same combination of mechanical and magnetic loads. Hence, it is clear from

the results that we can modulate sti�ness characteristics of HMS beam as per our requirements by

applying a magnetic �eld in combination with mechanical load through proper design of the residual

magnetic �ux density S(ξ) of the HMS beam. Such e�ects are exploited in the current design of lattice

metamaterials for broadband elasticity programming.

Now the HMS full-beam of length L is modelled as two HMS half-beams with length L/2 subjected

to cantilever boundary conditions. To apply the same dimensional force F as that of the full-beam, the

maximum value of the non-dimensional force C for the half-beam is taken as 2.5. At each incremental

step of mechanical force C, the same �ve magnetic load ratios r as those for the full-beam problem

are considered as 0.8, 1.6, 2.4, 3.2, and 4. The deformed con�gurations of the HMS half-beam in the

non-dimensional plane (ξ, η) under the maximum step of the mechanical load C = 2.5 in combination

with the considered di�erent magnetic loads are shown in Figure S4(a)-(d). Whereas, the non-linear

variations of the non-dimensional tip-de�ection δ̄y with the non-dimensional mechanical load C for the

considered di�erent magnetic load ratio r are presented in Figure S5(a)-(d).

It is evident from Figures 6-S5 that the e�ects of the magnetic �eld in combination with the mechan-

ical load on the deformation characteristics of the HMS half-beam are the same as the HMS full-beam.

The overall de�ections of the HMS half-beam are exactly half of the de�ections for the HMS full-beam

under the same condition of combined mechanical and magnetic loads. Hence, it is proved that an HMS

full-beam with one �xed end and the other end being rotationally restrained but free to translation can

be modelled as an HMS half-beam with cantilever boundary conditions when the HMS beam has sym-

metric residual magnetic �ux density about the mid-point. However, for asymmetric residual magnetic

�ux density, the applicability of such a modelling concept is investigated in the following paragraphs.

Two di�erent asymmetric distributions of residual magnetic �ux density about the mid-point are

considered for HMS full-beam by the following S(ξ).

S =

1, 0 ≤ ξ < 0.5

−1, 0.5 ≤ ξ ≤ 1
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S =

−1, 0 ≤ ξ < 0.5

1, 0.5 ≤ ξ ≤ 1

With the above-presented designs of S(ξ) for the same geometric and loading parameters as those for the

HMS full-beam with symmetric uniform residual magnetic �ux density, load-deformation characteristics

of HMS full-beam are computed. Deformed con�gurations of the HMS full-beam having asymmetric

magnetic �ux density are presented in Figure 7. The �gure depicts some non-conventional typical

complex shapes of HMS beam achieved for the considered designs of S(ξ). Though the curvatures of

the deformed con�gurations are di�erent for the two considered distributions of residual magnetic �ux

density, the endpoints undergo the same de�ections. Variations of such common tip-de�ection δ̄y with

the mechanical load C for the considered di�erent magnetic load ratios r are shown in Figure S6. The

�gure clearly shows that for the considered two designs of S(ξ), the de�ections got reduced compared

to the loading condition of mechanical load only (r = 0).

The HMS full-beam with the considered two asymmetric distributions of residual magnetic �ux

density is tried to be modelled now as two HMS half-length beams either with S = 1 or with S = −1.

Load-deformation characteristics of such HMS half-length beams are already presented in Figures S4 and

S5. Comparisons of the de�ection results for the HMS full-beam with asymmetric residual magnetic �ux

density as presented in Figures 7 and S6 with those for the HMS half-beam as presented in Figures S4

and S5 depicts that the de�ections through the half-beam model are not half of the de�ections obtained

through the full-beam model. However, for symmetric residual magnetic �ux density, we got exactly the

half de�ections from the half-beam model compared to the full-beam model under the same condition

of combined mechanical and magnetic loading as described through comparisons between Figures 6-S5.

Hence, it is concluded from the comparison studies that modelling of HMS full-beam with one �xed

end and the other end being rotationally restrained but free to translation as two half-length cantilever

beams is only possible when the residual magnetic �ux density is symmetric about the mid-point of

the HMS full-beam. As we focus on both symmetric and asymmetric designs of S(ξ) for modulation of

e�ective elastic moduli of HMS beam networks, the two beam models are applied carefully for analyzing

nonlinear hexagonal lattices in the following subsections.

Comparisons of the de�ection results between the extensible and inextensible versions of the present

semi-analytical HMS beam model as presented in Figures 6-S6 clearly show that the e�ect of centreline

extension is not signi�cant for the considered HMS beam under combined mechanical and magnetic

loads. For achieving higher level of accuracy, we will consider the generalized extensible model in the
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Figure 7: Deformed shapes of HMS full-beam con�gurations with asymmetric residual magnetic �ux
density about the mid-point under combined mechanical and magnetic load. Non-dimensional deformed
con�gurations (ξ, η) of HMS full-beam with asymmetric residual magnetic �ux density under non-dimensional mechanical
force C = 10 in combination with di�erent magnitudes of non-dimensional magnetic load B = rC in terms of the magnetic
load ratio r with the inclination angles of the mechanical and magnetic loads as (a) α = β = π/2, (b) α = β = π/3, (c)
α = β = π/4, and (d) α = β = π/6.
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further computations of e�ective elastic moduli of the HMS beam networks.

3.3. Periodic beam network-level validation

As the hexagonal lattice consisting of HMS beam members subjected to combined mechanical and

magnetic loads is not investigated in the literature, directly comparable results for the presently devel-

oped semi-analytical framework are not readily available for reference and validation. Hence, the current

semi-analytical framework estimating non-linear e�ective elastic moduli of hexagonal HMS beam net-

work under combined mechanical and magnetic loads is validated for the special case of zero magnetic

�eld (ri = 0) subjected to di�erent modes of mechanical stress only (σ1 or σ2 or τ). Validations for

the non-linear e�ective elastic moduli E1 and ν12 under normal mechanical stress σ1 and for the elastic

moduli E2 and ν21 under normal mechanical stress σ2 are carried out by comparing with the results

presented by Ghuku and Mukhopadhyay [42]. Whereas, for the non-linear e�ective shear modulus G12

under the shear mode of mechanical stress τ , the semi-analytical framework is validated by comparing

with the paper by Fu et al. [39].

The validation study for non-linear elastic moduli (E1, ν12, E2, and ν21) of the hexagonal HMS beam

network under the normal modes of mechanical stress only (σ1 and σ2) [42] is carried out for the lattice

con�guration with the geometric speci�cations h/l = 2, t/l = 0.01, and θ = π/6. Young's modulus

of the intrinsic material is taken as Es = 200 GPa in the reference literature [42]. Whereas, for the

present semi-analytical model, the material constitutive parameters are considered as C10 = 0.2712,

C20 = 0.0305, and C30 = −0.004 within the framework of the Yeoh hyperelastic model [89]. In the

reference literature [42], the non-linear results are presented as the variations of the non-dimensional

elastic moduli Ē1, ν12, Ē2, and ν21 with the dimensional input normal stress σ1 and σ2. As the elastic

moduli are presented in non-dimensional forms, they are independent of the intrinsic material property

Es. However, the dimensional form of the input normal stress σ1 and σ2 makes the results dependent on

the intrinsic material property Es. Hence, to make the input normal stress independent of the material

property Es, the stresses σ1 and σ2 are also expressed in non-dimensional forms following Equation (58)

as σ̄1 = σ1/Esρ
3 and σ̄2 = σ2/Esρ

3. Variations of the non-dimensional e�ective Young's modulus Ē1

and the Poisson's ratio ν12 of the considered hexagonal lattice con�guration with the non-dimensional

compressive and tensile modes of normal stress σ̄1 are compared considering the present model, the

results reported in the paper [42], and the linear small-deformation analytical model [5] as presented

in Figure S7(a) and (b). The similar comparison plots for the the non-dimensional e�ective Young's

modulus Ē2 and the Poisson's ratio ν21 under the non-dimensional compressive and tensile modes of

normal stress σ̄2 are presented in Figure S7(c) and (d).
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The comparison plots in Figure S7 depict that the non-dimensional e�ective elastic moduli Ē1, ν12,

Ē2, and ν21 of the hexagonal HMS beam network under normal modes of mechanical stress σ̄1 and σ̄2 as

estimated by the present model match exactly with the non-linear model in literature [42] at lower input

stress level. However, the di�erences between them increase with the input stress level. The geometric

exactness in non-linear kinematics and the hyperelastic material model of the present framework is

the possible cause of this di�erence with the model reported in [42]. However, the di�erences in the

elastic moduli at the higher stress levels are not very signi�cant. Moreover, the increasing or decreasing

trends of the elastic moduli with the input stress magnitudes agree well between the present model

and the non-linear model reported in literature [42]. As also observed from Figure S7 that within the

small deformation regime, the non-linear elastic moduli match exactly with the conventional analytical

solutions [5]. Di�erences between the elastic moduli estimated by the present framework and the linear

solutions [5] increase with input stress magnitude due to the non-linearity in the system which is not

considered in the conventional linear analytical solutions [5].

The validation study of the present non-linear framework for the e�ective shear modulus G12 of

hexagonal HMS beam network under shear mode of mechanical stress τ is carried out for the auxetic

con�guration with θ = −π/6 in terms of shear strain γ12 versus non-dimensional shear stress τ/Es curve

and shear strain γ12 versus non-dimensional shear modulus G12/Es curve following similar representation

scheme of the reference literature [39]. The shear strain γ12 versus shear stress τ/Es curves for the auxetic

lattice con�guration with h/l = 2 and t/l = 0.1 as obtained from the present model, the model reported

by Fu et al. [39], and the analytical model [5] are compared in Figure S8(a). Whereas, the similar

comparison of stress-strain curves under the shear mode of mechanical stress for the auxetic lattice

con�guration with h/l = 2 and t/l = 0.12 is shown in Figure S8(b). On the other hand, variations of

the non-dimensional e�ective shear modulus G12/Es with the shear strain γ12 are compared considering

the present model, the model reported by Fu et al. [39], and the analytical model [5] in Figure S8(c)

and (d) for two lattice con�gurations with h/l = 1.5, t/l = 0.1 and h/l = 2, t/l = 0.1 respectively.

The comparison plots in Figure S8(a) and (b) show that the stress-strain curves (γ12 versus τ/Es) of

the HMS beam network under the shear mode of mechanical stress τ as estimated by the present semi-

analytical framework match exactly with the analytical solutions [5] within the small deformation regime.

The non-linear stress-strain curves estimated by the present framework also match with the non-linear

model [39] at the lower shear strain levels within the non-linear zone. However, with the increase in the

shear strain γ12, the di�erences between the non-linear stress-strain curves increase. Similar observations

are found from the comparison plots of variations of the non-dimensional e�ective shear modulus G12/Es

of the HMS beam network with the shear strain γ12 in Figure S8(c) and (d). The di�erences between the
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present framework and the non-linear model reported in [39] arise due to the fundamental di�erences

in their respective formulations. The present framework is developed in the geometrically exact non-

linear kinematic setting considering combined bending and axial deformations with the hyperelastic

constitutive material model. Whereas, the model reported in the reference literature [39] is developed

within the geometric non-linear kinematic setting excluding the axial deformation considering linear

elastic constitutive material characteristics. Though the non-linear shear sti�ness of the HMS beam

network as predicted by the present framework has some di�erence at the higher strain levels, the

trends are the same with the non-linear model reported in literature [39]. Within the framework of the

existing fundamental di�erences in the formulations (where the present model is more accurate), the

validation study of the present model with the non-linear model from literature [39] for the e�ective

shear sti�ness of the HMS beam networks can be considered quite satisfactory.

In this subsection, we have primarily concentrated on the hexagonal lattices with non-auxetic and

auxetic geometries for lattice-level validation, depending on the availability of reference literature. While

rectangular brick, re-entrant auxetic and rhombic geometries are direct derivatives of hexagonal lattices

(thus no need for additional validation), the triangular and rectangular lattice con�gurations are further

validated later in their respective subsections.

3.4. Hexagonal periodic HMS beam networks under uniform residual magnetic �ux density

E�ect of the magnetic �eld Ba along direction-2 in combination with a particular mode of mechanical

stress (σ1 or σ2 or τ) on the non-linear e�ective elastic moduli of the hexagonal HMS beam network

having uniform residual magnetic �ux density S = 1 and S = −1 is investigated in this subsection.

As mentioned earlier, under the combined loading of normal stress σ1 and magnetic �eld Ba, we will

focus on the longitudinal non-dimensional Young's modulus Ē1 and Poisson's ratio ν12. Under the

combined loading of σ2 and B
a, we will focus on the transverse non-dimensional Young's modulus Ē2

and Poisson's ratio ν21. Whereas, under the combined loading of shear stress τ and magnetic �eld

Ba, we will investigate the e�ective non-dimensional shear modulus Ḡ12. For a particular mechanical

loading mode in combination with the magnetic �eld, the hexagonal HMS beam network is subjected

to mechanical stress incrementally in 50 steps. At each step of mechanical loading, the incremental

magnetic load is applied to the hexagonal HMS beam network in terms of the magnetic load ratio ri

through 100 steps.

Variations of the non-dimensional e�ective Young's modulus Ē1 of the hexagonal HMS beam network

having the uniform residual magnetic �ux density S = 1 as a function of the magnetic load ratio ri

at di�erent stress levels under the compressive mechanical stress σ1 in combination with the magnetic

�eld Ba are shown in Figure 8(a). Under the same combined loading conditions for the hexagonal HMS
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Figure 8: E�ective Young's modulus of hexagonal HMS beam networks having uniform residual magnetic
�ux density under combined mechanical normal stress along direction-1 and magnetic �eld along direction-
2. Variations of the non-dimensional e�ective Young's modulus Ē1 of the hexagonal HMS beam network having uniform
residual magnetic �ux density (a, c) S = 1 and (b, d) S = −1 as function of the magnetic load ratio ri at di�erent
mechanical stress levels σ1 under the (a, b) compressive and (c, d) tensile modes of the mechanical stress σ1 in combination
with the magnetic �eld Ba along direction-2.

beam network having the negative uniform residual magnetic �ux density S = −1, variations of the

Young's modulus Ē1 with the magnetic load ratio ri are shown in Figure 8(b). Whereas, under the

tensile mode of the mechanical normal stress σ1 in combination with the magnetic �eld Ba, the similar

58



plots of the non-dimensional Young's modulus of the hexagonal HMS beam network with S = 1 and

S = −1 are shown in Figure 8(c) and (d) respectively. Variations of the e�ective Poisson's ratio ν12

of the hexagonal HMS beam network having the uniform residual magnetic �ux density S = 1 and

S = −1 as a function of the magnetic load ratio ri for the same combined loading conditions as of

Figure 8(a)-(d) are presented in Figure 9(a)-(d).

E�ects of the magnetic �eld along with the residual magnetization pattern in combination with

di�erent modes of far-�eld mechanical loading on the non-linear variations of the elastic moduli as

function of the input stress magnitude are investigated here. As observed in Figure 8(a), (c), (d), and

Figure 9(a), (c), (d), singularity points for the e�ective Young's modulus Ē1 and Poisson's ratio ν12 arise

at some magnetic load ratios ri for the hexagonal HMS beam network with S = 1 under both tension

and compression and for the hexagonal HMS beam network with S = −1 under tensile mode only. The

beam-level de�ections under the magnetic load Ba corresponding to singular magnetic load ratios ri

balance the de�ections under the corresponding far-�eld mechanical stress levels σ1. Hence, at those

magnetic load ratios ri, the e�ective Young's modulus Ē1 and Poisson's ratio ν12 of the hexagonal HMS

beam network become unde�ned due to no e�ective lattice-level strain. However, such singularity points

for the e�ective Young's modulus Ē1 and Poisson's ratio ν12 do not arise for the hexagonal HMS beam

network with S = −1 under the compressive mode of the mechanical stress σ1 in combination with the

magnetic �eld Ba as observed in Figure 8(b) and Figure 9(b). As also observed from Figure 8 that under

certain combinations of the mechanical and magnetic loading, negative sti�ness of the hexagonal HMS

beam network can be achieved. To observe the e�ect of the magnetic load in terms of the magnetic load

ratio ri on the e�ective sti�ness of the hexagonal HMS beam network, variations of the non-dimensional

Young's modulus Ē1 with the input stress σ1 for equally spaced magnetic load ratios ri are further

presented in Figure S9(a)-(d). For the same magnetic load ratios ri, variations of the Poisson's ratio

ν12 with the input stress σ1 are presented in Figure S10(a)-(d). The variations of the elastic moduli

with the input stress magnitude is coming from the geometric non-linearity due to large deformation

and material non-linearity under magneto-mechanical coupling.

As observed from Figure S9(a), the e�ective non-dimensional Young's modulus Ē1 of the hexagonal

HMS beam network with S = 1 decreases with the input stress magnitude under the compressive

mechanical stress σ1 in combination with the magnetic load having the magnetic load ratio 0 ≤ ri ≤ 0.4.

Under the same loading condition for the magnetic load ratio 0.6 ≤ ri ≤ 0.7, negative sti�ness of the

HMS beam network is observed. The negative sti�ness initially increases with the stress magnitude σ1

and then starts decreasing at the higher stress levels. However, both the positive and negative non-

dimensional Young's modulus increases with the magnetic load ratio ri. Maximum 225.5% enhancement
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Figure 9: E�ective Poisson's ratio of hexagonal HMS beam networks having uniform residual magnetic �ux
density under combined mechanical normal stress along direction-1 and magnetic �eld along direction-2.
Variations of the e�ective Poisson's ratio ν12 of the hexagonal HMS beam network having uniform residual magnetic �ux
density (a, c) S = 1 and (b, d) S = −1 as function of the magnetic load ratio ri at di�erent mechanical stress levels
σ1 under the (a, b) compressive and (c, d) tensile modes of the mechanical stress σ1 in combination with the magnetic
�eld Ba along direction-2.

in the positive Young's modulus Ē1 is observed from Figure S9(a) compared to the only mechanical

loading condition (ri = 0). Whereas, the maximum enhancement in the negative Young's modulus Ē1

is achieved as 74.2% for ri = 0.7 compared to ri = 0.6. Under the compressive stress σ1 in combination
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with the magnetic load having 0 ≤ ri ≤ 3 for the hexagonal HMS beam network with S = −1 as

observed from Figure S9(b), Ē1 decreases with the input stress magnitude σ1 for lower ri. However,

for higher ri, Ē1 initially decreases and then increases with σ1. The overall non-dimensional Young's

modulus Ē1 decreases with the the magnetic load ratio ri. A maximum 84% reduction in Ē1 is observed

in Figure S9(b) for ri = 3 compared to ri = 0.

As evident from Figure S9(c), for the hexagonal HMS beam network with S = 1 under the tensile

mode of mechanical normal stress σ1 in combination with the magnetic load having 0 ≤ ri ≤ 1.5, the

non-dimensional Young's modulus Ē1 increases with the stress amplitude. The overall Ē1 decreases

with the magnetic load ratio ri at the lower stress zone, however, at the higher input stress level σ1, it

has some mixed trend with ri. Maximum enhancement and reduction in the non-dimensional Young's

modulus Ē1 compared to the only mechanical loading condition (ri = 0) are obtained as 44.1% and

72.1% respectively. Under the combined tensile stress σ1 and magnetic �eld with 0 ≤ ri ≤ 0.4 for

the HMS beam network with the negative residual magnetic �ux density S = −1, the positive non-

dimensional Young's modulus Ē1 increases with the stress amplitude as observed from Figure S9(d).

For the magnetic load ratio 1 ≤ ri ≤ 2, the non-dimensional Young's modulus Ē1 is negative which

decreases with σ1. However, both the positive and negative Young's modulus Ē1 increases with ri. As

obtained from Figure S9(d), the maximum enhancements in the positive and negative Ē1 are found to

be 189.1% and 67.6% respectively.

As observed from Figure S10(a), for the hexagonal HMS beam network with S = 1 under the

combined compressive stress σ1 and magnetic load, the e�ective Poisson's ratio ν12 decreases with σ1

for 0 ≤ ri ≤ 0.4 and increases with σ1 for 0.6 ≤ ri ≤ 0.7. However, for both the ranges of ri, the overall

Poisson's ratio ν12 has an increasing trend with the magnetic load ratio ri. The maximum enhancements

in ν12 for the two ranges of ri are found to be 29.8% and 232.8% respectively. Under the same combined

loading conditions for the HMS beam network with S = −1 as presented in Figure S10(b), the e�ective

Poisson's ratio ν12 has decreasing trends with both σ1 and ri. A maximum 29.8% reduction in ν12 is

observed compared to the only mechanical loading condition ri = 0. As evident from Figure S10(c),

the e�ective Poisson's ratio ν12 of the HMS beam network with S = 1 increases with both input tensile

stress magnitude σ1 and the magnetic load ratio ri. The maximum enhancement in ν12 compared to

the loading condition of ri = 0 is found to be 449.2%. Under the combined loading of tensile σ1 and ri

within the range 0 ≤ ri ≤ 0.4, ν12 of the HMS beam network with S = −1 increases with σ1 as observed

from Figure S10(d). For the range 1 ≤ ri ≤ 2, ν12 decreases with σ1. For both the ranges of ri, the

overall e�ective Poisson's ratio ν12 has decreasing trends with ri. The maximum reductions in ν12 for

the considered two ranges of ri are obtained from Figure S10(d) as 20.6% and 21.9% respectively.
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Figure 10: E�ective Young's modulus of hexagonal HMS beam networks having uniform residual magnetic
�ux density under combined mechanical normal stress along direction-2 and magnetic �eld along direction-
2. Variations of the non-dimensional e�ective Young's modulus Ē2 of the hexagonal HMS beam network having the
uniform residual magnetic �ux density (a, c) S = 1 and (b, d) S = −1 as function of the magnetic load ratio ri at
di�erent mechanical stress levels σ2 under the (a, b) compressive and (c, d) tensile modes of the mechanical stress σ2 in
combination with the magnetic �eld Ba along direction-2.

Under the compressive and tensile normal stress along direction-2 (σ2) in combination with the mag-

netic �eld along direction-2 (Ba), e�ects of the magnetic load ratio ri and input stress magnitude σ2

on the non-dimensional elastic moduli Ē2 and ν21 of the hexagonal HMS beam network with uniform
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Figure 11: E�ective Poisson's ratio of hexagonal HMS beam networks having uniform residual magnetic
�ux density under combined mechanical normal stress along direction-2 and magnetic �eld along direction-
2. Variations of the e�ective Poisson's ratio ν21 of the hexagonal HMS beam network having the uniform residual magnetic
�ux density (a, c) S = 1 and (b, d) S = −1 as function of the magnetic load ratio ri at di�erent mechanical stress levels
σ2 under the (a, b) compressive and (c, d) tensile modes of the mechanical stress σ2 in combination with the magnetic
�eld Ba along direction-2.

residual magnetic �ux density S = 1 and S = −1 are shown in Figures 10-S12 following the repre-

sentation scheme for the combined loading σ1 and B
a (refer to Figures 8-S10). Figure 10(b), (c), and

Figure 11(b), (c) depict that for the hexagonal HMS beam network with S = −1 under compression

and the hexagonal HMS beam network with S = 1 under tension, singularity points on the e�ective Ē2
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and ν21 arise at some magnetic load ratios ri. However, for the other two con�gurations as presented in

Figure 10(a), (d), and Figure 11(a), (d), such phenomena are not observed.

Figure 12: E�ective shear modulus of hexagonal HMS beam networks having uniform residual magnetic
�ux density under combined mechanical shear stress in plane 1-2 and magnetic �eld along direction-2.
Variations of the non-dimensional e�ective shear modulus Ḡ12 of the hexagonal HMS beam network having the uniform
residual magnetic �ux density (a, c) S = 1 and (b, d) S = −1 as function of the magnetic load ratio ri at di�erent
mechanical stress levels τ under the (a, b) anti-clockwise and (c, d) clockwise modes of the mechanical stress τ in
combination with the magnetic �eld Ba along direction-2.

As observed from Figure S11(a), the non-dimensional e�ective Young's modulus Ē2 of the hexagonal

HMS beam network with S = 1 decrease with compressive stress magnitude σ2 for lower values of ri.
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However, for higher values of ri, Ē2 initially decreases and then increases with σ2. The overall sti�ness

decreases with ri and maximum 83.9% reduction in Ē2 is observed. Under the same compressive mode

of mechanical loading, the positive and negative Ē2 of the hexagonal HMS beam network with S = −1

for the ranges of the magnetic load ratio 0 ≤ ri ≤ 0.7 and 1.5 ≤ ri ≤ 2.5 respectively decreases with

stress magnitude σ2 and increases with ri as observed in Figure S11(b). The maximum enhancements

in the positive and negative Ē2 due to the magnetic �eld are achieved as 233.7% and 66.6% respectively.

As observed from Figure S11(c) and (d), under the tensile mode of the normal stress σ2, the e�ective

Young's modulus Ē2 increase with σ2 for both the hexagonal HMS beam networks with S = 1 and

S = −1. However, for the HMS beam network with S = 1, the positive and negative non-dimensional Ē2

increases with ri in the considered ranges 0 ≤ ri ≤ 0.7 and 1.5 ≤ ri ≤ 2.5 respectively. Maximum 232.6%

and 66.8% enhancements in the positive and negative Ē2 are achieved as obtained from Figure S11(c).

Whereas, for the HMS beam network with the negative residual magnetic �ux density S = −1, opposite

e�ect of ri is observed in Figure S11(d) with the 83.1% maximum reduction with respect to the only

mechanical loading condition, ri = 0.

As evident from Figure S12(a), the e�ective Poisson's ratio ν21 of the hexagonal HMS beam network

with S = 1 decreases with both the compressive stress σ2 and magnetic load ratio ri. A maximum

129.4% reduction in ν21 is observed for ri = 5 compared to ri = 0. For the HMS beam network with

S = −1 under tensile mode of normal stress as presented in Figure S12(d), completely opposite e�ects

of σ2 and ri are observed with the maximum 55% enhancement. As obvious from Figure S12(b), for

the HMS beam network with S = −1 under compressive stress σ2 in combination with the magnetic

load 0 ≤ ri ≤ 0.7, the e�ective Poisson's ratio ν21 decreases with stress magnitude. For the magnetic

load range 1.5 ≤ ri ≤ 2.5, an opposite e�ect of the non-linearity is observed. However, for both

the considered magnetic load ranges, ν21 increases with ri having the maximum 35.1% and 21.9%

enhancements respectively. Completely opposite e�ects of σ2 and ri are observed in Figure S12(c) for

the HMS beam network with S = 1 under tensile stress σ2. The corresponding reductions in the e�ective

ν21 due to the application of magnetic �eld are found to be 15.1% and 39% respectively.

Under the anti-clockwise and clockwise modes of the shear stress τ in combination with the mag-

netic �eld Ba along direction-2, combined e�ects of the magnetic load ratio ri and the input stress

magnitude τ on the non-dimensional shear modulus Ḡ12 of the hexagonal HMS beam network with

uniform residual magnetic �ux density S = 1 and S = −1 are shown in Figures 12 and S13 following

similar representation scheme for the combined loading condition of normal stress and magnetic �eld.

As obvious from Figure 12(b) and (c), for the HMS beam network with S = −1 under anti-clockwise

shear stress and the HMS beam network with S = 1 under clockwise shear stress, singularity points
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arise at some ri values. For these combined loading cases, negative shear modulus is observed under

certain combinations of τ and ri. Whereas, for the other two combined loading conditions as presented

in Figure 12(a) and (d), such singularity points of the shear modulus do not arise.

As obvious from Figure S13(a) and (d), for the hexagonal HMS beam network with S = 1 under

anti-clockwise shear stress and the hexagonal HMS beam network with S = −1 under clockwise shear

stress, the e�ective non-dimensional shear modulus Ḡ12 increases with stress magnitude τ for the lower

values of ri. Whereas, for the higher magnetic loading ri, mixed increasing-decreasing e�ects of the

stress magnitude are observed. However, for both the con�gurations, ri has the same decreasing e�ects

with the corresponding 41.8% and 68.4% maximum reductions in Ḡ12. For the HMS beam network

with the negative magnetization S = −1 under the anti-clockwise mode of shear stress τ as presented

in Figure S13(b), some irregular e�ects of the stress magnitude τ and the magnetic load ratio ri are

observed on the non-dimensional positive Ḡ12 for 0 ≤ ri ≤ 3 and the mixed negative-positive Ḡ12 for

5 ≤ ri ≤ 6. The maximum enhancement and reduction in the positive Ḡ12 are found to be 339.6% and

56.8% respectively. Whereas, the maximum enhancement in the negative Ḡ12 is observed as 47.3%. For

the HMS beam network with S = 1 under the clockwise shear stress τ as presented in Figure S13(c), the

positive non-dimensional shear modulus Ḡ12 for 0 ≤ ri ≤ 1.5 increases with the input stress amplitude.

However, for the magnetic load range 5 ≤ ri ≤ 6, the negative Ḡ12 initially increases with τ but at the

higher stress level becomes almost independent of τ . Both the positive and negative Ḡ12 of the HMS

beam network increase with ri resulting in maximum 463.4% and 43.2% enhancements respectively. It

is interesting no note from the trends presented for the elastic moduli, the value of applied magnetic

�eld can be actively modulated (and optimized) based on the applied external mechanical stresses to

achieve a target level of certain elastic modulus and sti�ness.

3.5. Periodic HMS beam network with optimally-architected residual magnetic �ux density

As described in the mathematical formulation in subsection 2.3.1, the beam elements of the hexagonal

HMS beam network are subjected to �nite moments at the ends with zero moment at the mid-point due

to the typical rotationally boundary conditions. Based on the kinetic conditions, two sets of intuitive

designs of the residual magnetic �ux density (S(ξ)) are proposed having maximum hard particle density

at the endpoints with zero at the mid-point of the HMS beam elements. In the �rst set of design, we

consider either S = 1 or S = −1 at both the ends ξ = 0, 1 with S = 0 at the mid-point ξ = 0.5. The

variation of S(ξ) along the normalized coordinate ξ is de�ned by the following equation with the degree
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of non-linearity n.

S(ξ) =

±(1− 2ξ)n, 0 ≤ ξ < 0.5

±(−1 + 2ξ)n, 0.5 ≤ ξ ≤ 1

For the second set of design, S(ξ) is varying either from S = −1 to S = 1 or from S = 1 to S = −1

Figure 13: Physics-informed intuitive designs of spatially-varying residual magnetic �ux density in the
HMS beam elements of the hexagonal HMS beam network. Distribution of the coe�cient of residual magnetic
�ux density S(ξ) along the normalized coordinate ξ with the degree of non-linearity n = 0, 0.1, 0.25, 0.5, 1, and 3 for: (a,
b) the �rst set of design of S(ξ) having (a) positive and (b) negative distribution, and (c, d) the second set of design of
S(ξ) varying (c) from S = −1 to S = 1 and (d) from S = 1 to S = −1.
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between the ends ξ = 0, 1 with S = 0 at the mid-point ξ = 0.5. The variation of S(ξ) along the

normalized coordinate ξ for the second set of design of S(ξ) is expressed mathematically below with the

degree of non-linearity n.

S(ξ) =

∓(1− 2ξ)n, 0 ≤ ξ < 0.5

±(−1 + 2ξ)n, 0.5 ≤ ξ ≤ 1

The positive and negative distributions of the �rst designed set of S(ξ) along the normalized coordinate

ξ with the degree of non-linearity n = 0, 0.1, 0.25, 0.5, 1, and 3 are shown in Figure 13(a) and (b)

respectively. Similarly, for the two cases of the second designed set of S(ξ), the distribution of S(ξ)

along the normalized coordinate ξ are presented in Figure 13(c) and (d) respectively. The e�ect of the

degree of non-linearity n for the two sets of designed S(ξ) on the non-linear variation of the elastic

moduli of the hexagonal HMS beam network as functions of the input stress are investigated here as

presented in the following paragraphs.

Variations of the non-dimensional e�ective Young's modulus Ē1 of the hexagonal HMS beam network

with the input stress σ1 for the considered six degrees of non-linearity n (0, 0.1, 0.25, 0.5, 1, and 3) of

the positive and negative distribution of the �rst set of designed S(ξ) (refer to Figure 13(a) and (b))

under the combined compressive stress along direction-1 (σ1) and the external magnetic �eld Ba along

direction-2 are shown in Figure 14(a). Whereas, the variations of Ē1 under the tensile mode of the

normal stress σ1 in combination with the magnetic �eld Ba are presented in Figure 14(b). The similar

plots showing the e�ects of the degree of non-linearity n on the e�ective Poisson's ratio ν12 of the

hexagonal HMS beam network with the �rst set of designed S(ξ) are shown in Figure 14(c) and (d)

respectively. The results are compared in Figure 14 for the magnetic load ratio ri = 0.4. Under the

combined loading of normal stress along direction-2 (σ2) and the magnetic �eld Ba along direction-2,

e�ects of the the degree of non-linearity n on the non-linear variations of the e�ective Young's modulus

Ē2 and Poisson's ratio ν21 of the hexagonal HMS beam network with the �rst set of designed S(ξ) are

shown in Figure S14 for the magnetic load ratio ri = 0.5. Whereas, similar variations of the non-linear

shear modulus Ḡ12 of the HMS beam network with the degree of non-linearity n for the �rst set of

designed S(ξ) under the anti-clockwise and clockwise modes of shear stress (τ) in combination with the

external magnetic �eld Ba are shown in Figure 15 for the magnetic load ratio ri = 1.5.

As observed from Figure 14(a) and (c), the non-dimensional Young's modulus Ē1 and the Poisson's

ratio ν12 non-linearly decreases with compressive stress σ1 for both the positive and negative distribution

of the �rst set of design of S(ξ). Such non-linearity in the system sti�ness is coming from the inherent

geometric non-linearity due to large deformation and material non-linearity due to magneto-elastic
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Figure 14: Modulation of the e�ective elastic moduli of hexagonal HMS beam networks with the �rst set
of designed S(ξ) under the normal stress along direction-1 in combination with the magnetic �eld along
direction-2. Variations of the (a, b) non-dimensional e�ective Young's modulus Ē1 and (c, d) e�ective Poisson's ratio
ν12 of the hexagonal HMS beam network as function of the input stress σ1 for the considered six degrees of non-linearity
n (0, 0.1, 0.25, 0.5, 1, and 3) of the positive and negative distributions of the �rst set of designed S(ξ) under the (a, c)
compressive and (b, d) tensile mode of normal stress σ1 along direction-1 in combination with the magnetic �eld Ba

along direction-2. The results are compared for the magnetic load ratio of the inclined member ri = 0.4.
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Figure 15: Modulation of the e�ective shear modulus of hexagonal HMS beam networks with the �rst
set of designed S(ξ) under the shear stress in plane 1-2 in combination with the magnetic �eld along
direction-2. Variations of the non-dimensional e�ective shear modulus Ḡ12 of the hexagonal HMS beam network as
function of the input stress τ for the considered six degrees of non-linearity n (0, 0.1, 0.25, 0.5, 1, and 3) of the positive and
negative distributions of the �rst set of designed S(ξ) under the (a) anti-clockwise and (b) clockwise mode of shear stress
τ in plane 1-2 in combination with the magnetic �eld Ba along direction-2. The results are compared for the magnetic
load ratio of the inclined member ri = 1.5.

coupling under the combined mechanical and magnetic loading. For the positive distribution of the

�rst set of designed S(ξ), the overall non-linear Young's modulus Ē1 and Poisson's ratio ν12 decrease

with the degree of non-linearity n as observed in Figure 14(a) and (c). Whereas, for the negative

distribution of S(ξ), the degree of non-linearity n shows the opposite increasing e�ect on the non-

linear Young's modulus Ē1 and Poisson's ratio ν12. Maximum 56% and 11% enhancements in the

non-dimensional Young's modulus Ē1 and Poisson's ratio ν12 are achieved respectively for n = 3 of

the negative distribution of S(ξ) compared to the uniform distribution (S = −1) for n = 0 (refer to

Figure 14(a) and (c)). Whereas, maximum 66.4% and 21% reductions in Ē1 and ν12 are obtained for

n = 3 of the positive S(ξ) with respect to the uniform distribution (S = 1) for n = 0.

Under the tensile mode of the normal stress σ1 in combination with the external magnetic �eld Ba

as presented in Figure 14(b) and (d), a completely opposite e�ect of the inherent system non-linearity is

observed compared to the compressive mode of σ1 as shown in Figure 14(a) and (c). The non-dimensional

Young's modulus Ē1 and the Poisson's ratio ν12 increase with increase in the tensile σ1 for both the
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positive and negative distribution of the �rst set of design of S(ξ). As shown in Figure 14(b), the overall

non-linear Young's modulus Ē1 increases with the degree of non-linearity n for the positive distribution

of S(ξ), whereas, it decreases with n for the negative distribution of S(ξ). Whereas, as observed from

Figure 14(d), the degree of non-linearity n has the opposite e�ect on the non-linear Poisson's ratio ν12

compared to the Young's modulus Ē1. The maximum 31.1% and 22.7% enhancements in Ē1 and ν12 are

achieved respectively for the non-linear S(ξ) with n = 3 compared to the uniform S with n = 0 under

the tensile mode of normal stress σ1 in combination with the external magnetic �eld Ba as observed

from Figure 14(b) and (d). Whereas, the maximum reductions in the elastic moduli Ē1 and ν12 are

observed as 62.6% and 23.3% respectively from Figure 14(b) and (d) for the non-linear S(ξ) with n = 3

compared to the uniform S with n = 0.

Under the normal stress along direction-2 (σ2) in combination with the magnetic �eld Ba along

direction-2, e�ects of non-linearity on the non-dimensional elastic moduli Ē2 and ν21 in terms of their

variations with input stress magnitude σ2 are observed from Figure S14 similar to the combined loading

of σ1 and Ba as presented in Figure 14. However, the e�ects of the degree of non-linearity n of the

�rst set of designed S(ξ) are found opposite for the combined loading of σ2 and Ba compared to the

combined loading of σ1 and B
a. As evident from Figure S14(a) and (c), the maximum enhancements in

the non-dimensional Young's modulus Ē2 and Poisson's ratio ν21 under the compressive mode of σ2 are

achieved as 42.4% and 27.5% respectively for the positive S(ξ) with n = 3 compared to the uniform S

for n = 0. Whereas, 47.2% and 18% reductions in Ē2 and ν21 are obtained for the negative distribution

of S(ξ) with n = 3 compared to n = 0. Under the tensile mode of σ2 in combination with Ba, the

maximum enhancement and reduction in Ē2 for n = 3 with respect to the uniform S (n = 0) are found

to be 41% and 46.6% respectively from Figure S14(b). Whereas, as evident from Figure S14(d), the

enhancement and reduction in ν21 for the non-linear S(ξ) with n = 3 compared to n = 0 under the

tensile mode of σ2 in combination with Ba are obtained as 10.4% and 7.3% respectively.

As evident from Figure 15(a) and (b), under both the anti-clockwise and clockwise modes of shear

stress τ in combination with the magnetic �eld Ba, the non-dimensional shear modulus Ḡ12 increases

with the input stress τ for the positive distribution of the �rst set of design of S(ξ). Whereas, for the

HMS beam network with the negative distribution of the �rst set of designed S(ξ), the non-dimensional

shear modulus Ḡ12 initially decreases and then increases with τ for the lower values of n. However, for

the highest value of the degree of non-linearity n = 3, Ḡ12 has an increasing trend with the input stress

τ amplitude. As observed from Figure 15(a), under the anti-clockwise mode of τ in combination with

the magnetic �eld Ba, the non-dimensional shear modulus Ḡ12 increases with the degree of non-linearity

n for the positive distribution of the �rst designed set S(ξ). However, for the negative distribution of
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S(ξ), Ḡ12 decreases with n at the lower stress level, whereas, it increases with n at the higher stress zone.

Maximum 30.9% enhancement in the non-dimensional shear modulus Ḡ12 is achieved for n = 3 of the

positive distribution of the �rst set of designed S(ξ) compared to the uniform S with n = 0. Whereas,

the maximum reduction and enhancement in Ḡ12 for the negative S(ξ) are observed as 35.6% and 50.9%

respectively. On the other hand, under the clockwise mode of τ in combination with the magnetic �eld

Ba as observed in Figure 15(b), the non-dimensional shear modulus Ḡ12 decreases with the degree of

non-linearity n for the positive distribution of S(ξ). Whereas, for the hexagonal HMS beam network

with negative designed S(ξ), Ḡ12 increases with n. The maximum enhancement and reduction in Ḡ12

are observed from Figure 15(b) as 104.3% and 80.4% respectively compared to the uniform S.

For the second set of design of the residual magnetic �ux density (refer to Figure 13(c) and (d)),

the two opposite distributions of S(ξ) varying from S = −1 to S = 1 and from S = 1 to S = −1 cause

the same e�ects on the non-linear elastic moduli of the hexagonal HMS beam network under each mode

of the mechanical stress in combination with the magnetic �eld. Despite of the opposite curvatures at

the deformed state, the same tip-de�ections of HMS beam for the two opposite distributions of S(ξ)

varying from S = −1 to S = 1 and from S = 1 to S = −1 is the cause behind such phenomenon.

Such a phenomenon is already described in connection with Figures 7 and S6 for a HMS beam with the

opposite signs of S(ξ) in the two halves. Hence, for the two opposite distributions (varying from S = −1

to S = 1 and from S = 1 to S = −1) of the second set of designed S(ξ) as shown in Figure 13(c) and (d),

we get single set of results. E�ects of the degree on non-linearity n for the second set of designed S(ξ)

on the non-linear elastic moduli of the hexagonal HMS beam network under the loading combinations

of σ1, σ2, and τ with the magnetic �eld Ba are shown in Figures S15-S17 respectively for the magnetic

load ratio ri = 2.5, ri = 4, and ri = 4.

Under the compressive mode of normal stress along direction-1 (σ1) in combination with the external

magnetic �eld Ba for the second set of designed S(ξ), the non-dimensional Young's modulus Ē1 initially

decreases with the input stress magnitude σ1 as observed from Figure S15(a). At the higher magnitude

of the applied stress σ1, Ē1 increases with σ1 for the lower values of n and goes on decreasing for the

higher values of n. Under the same combination of mechanical and magnetic loading, the Poisson's

ratio ν12 decreases with the applied stress σ1 as evident from Figure S15(c). Negative Poisson's ratio

is obtained for n = 0, and 0.1 even for the non-auxetic con�guration of the hexagonal HMS beam

network under consideration. Under the tensile mode of the normal stress σ1 in combination with Ba as

observed from Figure S15(b) and (d), both Young's modulus Ē1 and Poisson's ratio ν12 increase with an

increase in the magnitude of the applied stress σ1. The overall non-linear Young's modulus Ē1 decreases

with the degree of non-linearity n of the second set of designed S(ξ) under both the compressive and
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tensile modes of σ1 as observed from Figure S15(a) and (b). The maximum reductions in Ē1 for n = 3

compared to n = 0 are observed to be 86.9% and 63.9% under the compression and tension respectively.

As observed in Figure S15(c), the Poisson's ratio ν12 has an increasing trend with n at the lower range

of the compressive stress σ1. However, at the higher range of σ1, some mixed trend is observed. The

maximum enhancement of 143.5% in ν12 for n = 3 compared to n = 0 is achieved. Whereas, under the

tensile mode of σ1, Poisson's ratio ν12 decreases with n as shown in Figure S15(d), and the maximum

reduction in ν12 is found to be 73.9%.

As shown in Figure S16(a) and (c), the non-dimensional Young's modulus Ē2 and Poisson's ratio

ν21 of the hexagonal HMS beam network with the second set of designed S(ξ) decrease with the applied

stress input under the combined loading condition of compressive normal stress along direction-2 (σ2)

and magnetic �eld along direction-2 (Ba). The Overall non-linear elastic moduli Ē2 and ν21 increase

with the degree of non-linearity n. The maximum enhancements in the elastic moduli Ē2 and ν21 for

the non-linear S(ξ) with n = 3 with respect to the linear S(ξ) with n = 0 are found to be 23% and

68.5% respectively. E�ects of the inherent system non-linearity and the degree of non-linearity n of the

second set of designed S(ξ) on the elastic moduli Ē2 and ν21 are found exactly the opposite under the

tensile mode of normal stress σ2 as observed from Figure S16(b) and (d) compared to the compressive

mode (refer to Figure S16(a) and (c)). The maximum reductions of 63.3% and 35.8% are obtained in

the elastic moduli Ē2 and ν21 for the non-linear S(ξ) with n = 3 compared to the linear S(ξ) with n = 0.

Under both the anti-clockwise and clockwise modes of shear stress τ in combination with the external

magnetic �eld Ba, the non-dimensional e�ective shear modulus Ḡ12 of the hexagonal HMS beam network

with the second set of designed S(ξ) initially decreases and then increases with the input stress τ for the

lower values of n as observed from Figure S17(a) and (b). Whereas, for the highest value of the degree

of non-linearity n = 3, Ḡ12 has an increasing trend with the magnitude of the input stress τ . The plots

in Figure S17(a) and (b) also depict that the non-linear shear modulus Ḡ12 increases with the degree of

non-linearity n of the second set of deigned S(ξ). The maximum enhancements in the non-dimensional

shear modulus Ḡ12 are achieved to be 68.9% and 57.5% for the non-linear S(ξ) with n = 3 compared

to the linear S(ξ) with n = 0 under the anti-clockwise and clockwise mode of shear stress respectively.

The numerical results presented in the preceding subsection (subsection 3.4) demonstrate on-demand

magneto-active modulations (enhancements and reductions) of the e�ective nonlinear elasticity of hexag-

onal HMS beam networks through uniform residual magnetic �ux density design in the cell walls under

far-�eld magnetic �eld in combination with externally applied mechanical stresses. Physics-informed

(�nite moments at the ends with zero moment at the mid-point due to the typical rotationally re-

strained beam boundary conditions for periodic lattices) architecturing of the residual magnetic �ux
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density pattern in the cell walls as proposed in the present subsection results further augmentations in

the deformation components due to far-�eld magnetic �eld compared to uniform residual magnetic �ux

density which are in-phase or out-of-phase with the deformations caused by mechanical stresses only.

The in-phase and out-of-phase deformations coming from magnetic �eld and mechanical stresses respec-

tively results augmented anti-curvature or pro-curvature e�ects [42, 43] to the cell wall deformations

compared to the uniform residual magnetic �ux density of the cell walls. Such active anti-curvature

or pro-curvature e�ects cause further enhancements or reductions of the HMS beam network sti�ness

compared to the uniform residual magnetic �ux density design as demonstrated through the numerical

results in the present subsection (subsection 3.5). In turn this will lead to improved energy e�ciency

in achieving a target on-demand sti�ness, resulting in sustainable programmable metamaterials with

minimum utilization of the intrinsic materials.

3.6. Applicability to other forms of periodic HMS beam networks

Within the developed multi-physical mechanics-based semi-analytical framework, modulations of

the elastic moduli of hexagonal HMS beam networks with uniform and two intuitively designed residual

magnetic �ux densities are extensively investigated in the preceding two subsections. To demonstrate the

generality of the proposed concept of modulating elastic properties through an external magnetic �eld

within the developed physically insightful computational framework, non-linear e�ective elastic moduli

of �ve other forms of HMS beam networks, namely, auxetic, rectangular brick, rhombic, triangular,

and rectangular networks as shown in Figure 1(g) are analysed in this subsection considering uniform

residual magnetic �ux density in combination with di�erent modes of far-�eld mechanical stresses. Note

that the concept of beam-level architecturing the residual magnetic �ux density can also be implemented

to di�erent other unit cell architectures for more accentuated elasticity modulation as demonstrated in

the case of hexagonal lattices (refer to section 3.5). However, we limit the current demonstration to

uniform residual magnetic �ux density for other lattices in order to maintain the brevity of this paper.

3.6.1. Auxetic HMS beam networks

For the auxetic HMS beam network, as shown in Figure 1(g)I, the geometric parameters are con-

sidered as h/l = 2 and θ = −π/6. The unit cell con�guration of the auxetic HMS beam network with

residual magnetic �ux density S = 1 subjected to normal (σ1 or σ2) and shear (τ) stresses in combina-

tion with the external magnetic �eld Ba is shown in Figure 16(a). Variations of the non-dimensional

elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 with di�erent modes of input stress magnitude under di�erent

magnetic load levels are presented in Figure 16(b)-(f) respectively. It is evident from the �gure that

within a small deformation regime in absence of the external magnetic �eld, all the results obtained
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from the present framework agree well with the analytical solutions from literature [5]. This provides

a degree of con�dence and validation to the present computational framework before exploiting it for

further investigation.

As observed from Figure 16(b), the e�ective non-dimensional Young's modulus Ē1 of the auxetic

HMS beam network decreases with compressive stress σ1 and magnetic load ratio ri. Whereas, under

the tensile mode of the normal stress σ1, Young's modulus Ē1 increases with the stress magnitude and

the magnetic load ratio ri for 0 ≤ ri ≤ 0.4. Under the same loading condition for the magnetic load ratio

1 ≤ ri ≤ 2, negative sti�ness is observed which decreases with stress magnitude but increases with ri.

Maximum 201.9% enhancement and 46.4% reduction in the positive Young's modulus Ē1 are achieved

concerning the only mechanical loading condition (ri = 0). Whereas, the maximum enhancement in

the negative Young's modulus Ē1 is obtained as 68.8% for ri = 2 compared to ri = 1. Figure 16(c)

depicts that the e�ective Poisson's ratio ν12 increases with magnetic load ratio ri with di�erent degrees

of auxecity under the compressive and tensile modes of normal stress σ1. A maximum 19% enhancement

in ν12 for the considered ranges of ri can be obtained from Figure 16(c).

For the combined loading under normal stress σ2 and magnetic �eld Ba along direction-2 as presented

in Figure 16(d) and (e), e�ects of non-linearity in terms of variations of the elastic moduli Ē2 and ν21

with stress magnitude are found opposite compared to the loading combination under σ1 and Ba.

However, decreasing and increasing e�ects of the magnetic loading under the compressive and tensile

loading modes are the same for Ē2 as that of Ē1, with maximum 400.4% and 66.49% enhancement and

reduction respectively. However, for ν21, the e�ect of magnetic load ratio is found opposite to that of

ν12 with a maximum 40% reduction. Notably the degree of auxeticity for ν12 and ν21 can be actively

controlled in a wide band as a function of the magnetic �eld.

As obvious from Figure 16(f), under the anti-clockwise mode of shear loading, the non-dimensional

shear modulus Ḡ12 increases with stress magnitude τ and decreases with magnetic load ri. Under the

clockwise mode of shear loading, Ḡ12 increases with stress magnitude τ for a lower range of ri. However,

for a higher range of ri under the clockwise loading, negative Ḡ12 are observed having mixed increasing-

decreasing trends with the stress magnitude. However, for both the ranges of ri under the clockwise

loading mode, ri has increasing e�ects on Ḡ12. The maximum enhancement and reduction in the positive

non-dimensional Ḡ12 concerning the only mechanical loading condition ri = 0 are observed as 248.3%

and 62.7% respectively. Whereas, in the negative shear modulus Ḡ12, a maximum 46% enhancement is

achieved for ri = 10 compared to ri = 8.
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Figure 16: Modulation of the e�ective elastic moduli of auxetic HMS beam networks having uniform
residual magnetic �ux density under di�erent modes of mechanical stress in combination with magnetic
�eld. (a) The unit cell of auxetic HMS beam network with h/l = 2 and θ = −π/6 having residual magnetic �ux
density S = 1 subjected to (1) normal stress σ1 or σ2, and (2) shear stress τ in combination with magnetic �eld Ba along
direction-2. (b-f) Variations of the non-dimensional e�ective elastic moduli of the auxetic HMS beam network as function
of the di�erent modes of the mechanical stress at equally spaced magnetic load levels ri. The dotted points represent the
analytical solutions [5] without magnetic �eld under small deformation regime.
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Figure 17: Modulation of the e�ective elastic moduli of rectangular brick HMS beam networks having
uniform residual magnetic �ux density under di�erent modes of mechanical stress in combination with
magnetic �eld. (a) The unit cell of rectangular brick HMS beam network with h/l = 1 having residual magnetic �ux
density S = 1 subjected to (1) normal stress σ1 or σ2, and (2) shear stress τ in combination with magnetic �eld Ba

along direction-2. (b-f) Variations of the non-dimensional e�ective elastic moduli of the rectangular brick HMS beam
network as function of di�erent modes of the mechanical stress at equally spaced magnetic load levels ri. The dotted
points represent the analytical solutions [5] without magnetic �eld under small deformation regime.
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3.6.2. Rectangular brick HMS beam networks

The rectangular brick HMS beam network as shown in Figure 1(g)II is derived readily from the

hexagonal HMS beam network by taking θ = 0. The unit cell con�guration of the rectangular brick

HMS beam network with h/l = 1 having uniform residual magnetic �ux density (S = 1) is shown

schematically in Figure 17(a). Variations of the non-dimensional e�ective elastic moduli Ē1, ν12, Ē2, ν21,

and Ḡ12 of the rectangular brick HMS beam network as functions of the di�erent modes of normal and

shear stresses combined with external magnetic �eld are presented in Figure 17(b)-(f). Comparisons of

each set of results with the corresponding analytical solutions from literature [5], as presented through

the large dotted points in the plots, validate our framework for the special case in absence of the

magnetic �eld within a small deformation regime. This provides a degree of con�dence to the present

computational framework before exploiting it for further investigation.

As in cases of the other HMS beam networks, modulations of the non-linear elastic moduli of the

rectangular brick HMS beam network in terms of the external magnetic �eld are evident from Fig-

ure 17(b)-(f). E�ects of geometric and material non-linearity on the elastic moduli in terms of their

variations with stress magnitude σ1, σ2 or τ and magnetic load ratio ri can be readily noticed Fig-

ure 17(b)-(f). Interestingly, from Figure 17(b)-(f) it becomes obvious that depending on the combina-

tion of the magnetic load with a particular mode of the mechanical stress, negative Young's modulus,

negative Poisson's ratio and negative shear modulus can be achieved. Maximum enhancements in Ē1,

Ē2, and Ḡ12 are noted to be 64.4%, 150%, and 162.1% respectively. Whereas, maximum 32%, 54.5%,

91.7%, and 48.5% reductions in Ē1, Ē2, ν21, and Ḡ12 are obtained respectively under the considered

ranges of the magnetic load ratio ri.

Note in Figure 17(c) that under the combined loading of normal stress σ1 and magnetic �eld Ba, the

magnitudes of the negative or positive Poisson's ratio ν12 of the rectangular brick HMS beam network

are very large compared to the unity. As obvious from Figure 17(a-1), under the combined loading of

normal stress σ1 and magnetic �eld Ba, the normal strain in direction-2 (ϵ2) is governed by the bending-

dominated deformation of the horizontal cell walls. Whereas, the normal strain along direction-1 (ϵ1)

is governed by the stretching-dominated deformation of the horizontal cell walls. Due to the di�erence

in the order of magnitudes of the bending and stretching dominated axial strains along direction-1 (ϵ1)

and direction-2 (ϵ2), such large magnitudes of Poisson's ratio ν12 is achieved for the rectangular brick

HMS beam network under the present loading combination. As ν12 is zero under the only mechanical

load in absence of the magnetic �eld, the enhancement and reduction in it are noted in terms of their

absolute values instead of percentage and they are 240.4 and 109.3 receptively.
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3.6.3. Rhombic HMS beam networks

The rhombic HMS beam network as shown in Figure 1(g)III is obtained from generic hexagonal

HMS beam lattices by putting h/l = 0 and θ = π/4. The unit cell con�guration of the rhombic

HMS beam network with uniform residual magnetic �ux density (S = 1) is shown in Figure 18(a).

Variations of the non-dimensional e�ective elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 of the rhombic HMS

beam network with combined stress and external magnetic �eld along with the comparisons with the

respective analytical results from literature [5] are shown in Figure 18(b)-(f). The good agreement with

literature provides a degree of con�dence and validation to the present computational framework before

exploiting it for further investigation.

The self-explanatory plots in Figure 18(b)-(f) establish the idea of modulating the non-linear elastic

moduli Ē1, ν12, Ē2, ν21, and Ḡ12 of the rhombic HMS beam network by external magnetic �eld in

combination with the di�erent modes of the mechanical stress. The �gure also depicts that under

certain combinations of mechanical and magnetic loads, negative sti�ness of the rhombic network can

be achieved. Maximum 233%, 36.8%, 232.7%, and 77.6% enhancements in the non-dimensional elastic

moduli Ē1, ν12, Ē2, and Ḡ12 of the rhombic HMS beam network are obtained respectively under the

considered ranges of the magnetic loads. Whereas, the maximum reductions in the non-dimensional

elastic moduli Ē1, Ē2, ν21, and Ḡ12 are achieved to be 58%, 60.2%, 37%, and 36.6% respectively.

3.6.4. Triangular HMS beam networks

The non-linear elastic moduli of the triangular HMS beam network (refer to Figure 1(g)IV) is not

readily derivable from the multi-physical mechanics-based semi-analytical framework for the hexagonal

HMS beam lattices. However, by selecting the proper unit cell as shown in Figure 19(a), the e�ective

elastic moduli of the triangular HMS beam network are derived following a similar computational

framework. A detailed derivation of non-linear elastic moduli E1, ν12, E2, ν21, and G12 of the triangular

HMS beam network under the combined mechanical stress and magnetic �eld is presented in section

2.4.

Variations of the non-dimensional elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 of the triangular HMS

beam network with di�erent modes of mechanical stress in combination with the magnetic �eld are

shown in Figure 19(b)-(f). The corresponding analytical results from literature [5, 34] in absence of the

magnetic �eld within a small deformation regime are also plotted in the �gure through the large dotted

points. The comparison studies successfully validate our proposed semi-analytical framework for the

special case of small deformation in absence of the magnetic �eld.

Figure 19(b)-(f) depicts that the non-linear non-dimensional elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12
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Figure 18: Modulation of the e�ective elastic moduli of rhombic HMS beam networks having uniform
residual magnetic �ux density under di�erent modes of mechanical stress in combination with magnetic
�eld. (a) The unit cell of rhombic HMS beam network with θ = π/4 having residual magnetic �ux density S = 1
subjected to (1) normal stress σ1 or σ2, and (2) shear stress τ in combination with magnetic �eld Ba along direction-
2. (b-f) Variations of the non-dimensional e�ective elastic moduli of the rhombic HMS beam network as function of
the di�erent modes of the mechanical stress at equally spaced magnetic load levels ri. The dotted points represent the
analytical solutions [5] without magnetic �eld under small deformation regime.
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Figure 19: Modulation of the e�ective elastic moduli of triangular HMS beam networks having uniform
residual magnetic �ux density under di�erent modes of mechanical stress in combination with magnetic
�eld. (a) The unit cell of triangular HMS beam network having residual magnetic �ux density S = 1 subjected to (1)
normal stress σ1 or σ2, and (2) shear stress τ in combination with magnetic �eld Ba along direction-2. (b-f) Variations
of non-dimensional e�ective elastic moduli of the triangular HMS beam network as function of the di�erent modes of the
mechanical stress at equally spaced magnetic load levels rh or ri. The dotted points represent the analytical solutions
[5, 34] without magnetic �eld under small deformation regime.
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of the triangular HMS beam network can be modulated as per requirement through the magnetic load

in terms of ratio rh or ri. Under certain combinations of mechanical stress with the magnetic �eld,

even a negative Poisson's ratio is achievable with di�erent degrees. The maximum enhancements in

the non-dimensional elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 of the triangular HMS beam network are

attainable as 14.1%, 27.5%, 44.5%, 865.5%, and 154% respectively. Whereas, maximum 11.6%, 27.6%,

32%, 1523.5%, and 65.8% reductions in the non-dimensional elastic moduli are obtained respectively.

Note the exceptional enhancement (865.5%) and reduction (1523.5%) in the Poisson's ratio ν21 as

observed from Figure 19(e). As obvious from Figure 19(a-1), under the combined loading of normal stress

σ2 and magnetic �eld Ba, the in�uence of bending due to the magnetic �eld is more on the horizontal

member OA compared to the inclined member OB. Such a deformation pattern of the triangular HMS

unit cell creates a di�erence in the order of magnitudes of the normal strains along direction-1 (ϵ1)

and direction-2 (ϵ2) which in turn results in an exceptionally large enhancement and reduction in the

Poisson's ratio ν21 as noted in the numerical results.

3.6.5. Rectangular HMS beam networks

As in the case of the triangular HMS beam network, derivation of the non-linear elastic moduli of

the rectangular HMS beam network (refer to Figure 1(g)V) by considering appropriate unit cell (refer

to Figure 20(a)) within the current semi-analytical framework is presented in section 2.5. Variations of

the non-dimensional elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 of the rectangular HMS beam network with

di�erent modes of mechanical stress in combination with the magnetic �eld along with the comparisons

with the respective analytical results (concerning only small deformation mechanical stresses) from

literature [5, 34] are presented in Figure 20(b)-(f). As in the case of the other con�gurations, the

comparison studies between the present semi-analytical framework and the analytical models [5, 34] are

found quite satisfactory in absence of the magnetic �eld within the small deformation regime.

The concept of modulating non-linear elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 through applying an

external magnetic �eld is demonstrated in Figure 20(b)-(f) for the rectangular HMS beam network. The

�gure also depicts that by controlling the external magnetic �eld in combination with the mechanical

load, mode-dependent negative Poisson's ratio and negative shear modulus can be achieved. Maximum

111.1%, 66.7%, and 102.1% enhancements in the non-dimensional elastic moduli Ē1, Ē2, and Ḡ12 are

obtained respectively. Whereas, the maximum reductions in the elastic moduli are found to be 38.8%,

28.6%, and 50% respectively. As the Poisson's ratios ν12 and ν21 are zero under only mechanical load,

their enhancements and reductions under magnetic �eld are expressed by absolute values instead of

percentage values, and they are 0.1 and 13.1 in enhancement and 0.2 and 30.7 in reduction respectively.

82



Figure 20: Modulation of the e�ective elastic moduli of rectangular HMS beam networks having uniform
residual magnetic �ux density under di�erent modes of mechanical stress in combination with magnetic
�eld. (a) The unit cell of rectangular HMS beam network with h/l = 0.5 having residual magnetic �ux density S = 1
subjected to normal stress σ1 or σ2 and shear stress τ in combination with magnetic �eld Ba along direction-2. (b-
f) Variations of non-dimensional e�ective elastic moduli of the rectangular HMS beam network as function of di�erent
modes of the mechanical stress at equally spaced magnetic load levels rh or rv. The dotted points represent the analytical
solutions [5, 34] without magnetic �eld under small deformation regime.
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The large magnitudes of the positive and negative Poisson's ratio ν21 of the rectangular HMS beam

network are caused by the di�erence in the order of magnitudes in the normal strains ϵ1 and ϵ2 under

the combined loading of normal stress σ2 and magnetic �eld Ba due to di�erent respective modes of

predominant beam deformations.

In general, the numerical results demonstrate the on-demand active modulation of e�ective elastic

moduli in a wide band (i.e. broadband sti�ness and �exibility programming) as a function of the unit

cell geometry, beam-level architecture of residual magnetic �ux density and nonlinear intrinsic material

properties along with the applied far-�eld mechanical stresses and magnetic �eld. The e�ectiveness

of applied magnetic �eld can be further optimized (including target attainment) corresponding to a

particular mode and level of applied far-�eld stress depending on the unit cell geometry (such as di�erent

bending and stretching dominated unit cells and dimensions of the beam-like members) and beam-level

residual magnetic �ux density.

4. Summary and perspective

In the paper, we have proposed a novel class of lattice metamaterials as periodic networks of beams

made of soft material with embedded hard magnetic particles (HMS beam networks) subjected to large

deformation under combined remote mechanical stress and magnetic �eld. The architected networks

of HMS beams are very light in weight and provide excellent modulation capability of the non-linear

e�ective elastic properties depending on the hard magnetic particle distribution in the HMS beam

elements, unit cell geometry and the combination of applied mechanical stress with the external magnetic

�eld. To actively modulate the metamaterial properties post-manufacturing enabling applications for

a range of advanced intelligent structural systems, we propose here to adopt an innovative bi-level

modulation concept involving the coupled design space of unit cell geometries, architected HMS beam-

like members and their stimuli-responsive deformation physics. We have exploited the geometric non-

linearity due to large deformation and material non-linearity under magneto-mechanical coupling to

modulate the e�ective elastic properties of the novel class of architected HMS beam networks ranging

from very high sti�ness like sti� metal to very low sti�ness, even lower compared to the soft polymers.

By externally applying di�erent values of the magnetic �eld intensity, di�erent elastic properties and

sti�ness can be achieved, and that too from a distance (i.e. on-demand contactless elasticity control).

Essentially, this will help in minimizing the material utilization to an extreme extent by controlling the

sti�ness of a structure based on active operational demands. For example, the sti�ness corresponding

to target modes and direction of a structure can be actively increased during an operational condition

when higher magnitudes of loads are experienced to keep the deformations under control or the natural
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frequencies need to be increased to avoid resonance under dynamic loading. The sti�ness can also be

actively reduced to allow large deformation and shape control for (soft-)robotic motions or increased

energy absorption and avert sudden failure.

To estimate the non-linear e�ective elastic moduli under the normal or shear mode of mechanical

stress in combination with the external magnetic �eld, a physically insightful semi-analytical framework

is developed for periodic HMS beam networks. Within the unit cell-based framework, the non-linear

multi-physical mechanics of rotationally restrained HMS beams subjected to combined mechanical and

magnetic loads representing generalized elements of the architected beam network is de�ned. Gov-

erning equation of the non-linear HMS beams is derived using the variational principle-based energy

method within the non-linear kinematic setting of the Euler-Bernoulli beam theory and the material

constitutive law of the Yeoh hyperelastic model. To deal with the non-linearity involved in the govern-

ing equation of the multi-physical mechanics problem, a successive two-stage iterative computational

scheme is developed as an integral part of the semi-analytical framework.

Considering the aim of this paper, we have limited the scope to 2D lattices with di�erent bending and

stretching-dominated periodic con�gurations (as shown in �gure 1(b, g)) to demonstrate the concept

of post-manufacturing contactless active mechanical property modulation. Extension of the 2D lattice

framework into 3D lattices can be readily performed by considering the same HMS beam model and

appropriate 3D unit cells with appropriate boundary conditions (for example, refer to [90]).

Within the developed semi-analytical framework, we �rst investigate the e�ect of external magnetic

�eld in combination with di�erent modes of remote mechanical stress on the non-linear e�ective elastic

moduli of the architected hexagonal HMS beam network having uniform residual magnetic �ux den-

sity. Based on the observations along with the kinematics and kinetics of the HMS beam elements, we

have proposed two physics-informed beam-level designs of residual magnetic �ux density for the hexag-

onal HMS beam network, leading to enhanced e�ciency of the magnetic �eld. Further to demonstrate

the generality of the proposed multi-physical mechanics-based framework, di�erent other HMS beam

based lattice geometries, namely, auxetic, rectangular brick, rhombic, triangular, and rectangular con-

�gurations are investigated considering uniform residual magnetic �ux density. Before presenting the

numerical results, the developed semi-analytical framework has been thoroughly validated to ascertain

adequate con�dence, considering (1) HMS beam-level deformation under mechanical and magnetic actu-

ation (note that the lattice-level homogenized mechanical behavior depends on beam-level deformation

physics), (2) e�ective elastic moduli of di�erent lattice geometries considering the conventional linear

regime, and (3) e�ective nonlinear elastic moduli of hexagonal lattices under large deformation. Such

multi-level validations at the beam and lattice level considering the linear and non-linear deformation
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regimes along with multi-physical loading conditions provide adequate con�dence in the proposed com-

putational framework. A full-scale �nite element modelling can be carried out to compare the current

results. But considering the complexity of modelling such HMS beam-based lattices in the �nite element

framework, it is beyond the scope of this manuscript. Further, a detailed �nite element model of the

lattice is also not strictly necessary considering the extensive multi-level validation approach adopted

for the proposed computational framework.

For the hexagonal HMS beam network with the uniform residual magnetic �ux density, the maximum

enhancements in the non-dimensional elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 under the compressive

normal modes and anti-clockwise shear mode of the mechanical stress in combination with the magnetic

�eld are achieved as 225.5%, 232.8%, 233.7%, 35.1%, and 339.6% respectively compared to the only

mechanical loading condition without any magnetic �eld. Under the same combined loading conditions,

the maximum reductions in the �ve elastic moduli are observed to be 84%, 29.8%, 83.9%, 129.4%, and

56.8% respectively. Whereas, under the tensile modes of normal stress and the clockwise mode of shear

stress in combination with the magnetic �eld, 189.1%, 449.2%, 232.6%, 55%, and 463.4% enhancements

and 72.1%, 21.9%, 83.1%, 39%, and 68.4% reductions in the �ve elastic moduli Ē1, ν12, Ē2, ν21, and

Ḡ12 are achieved respectively.

The e�ectiveness of on-demand elasticity modulation can further be enhanced through beam-level

spatially-varying architectures of the residual magnetic �ux density. For the hexagonal HMS beam

network with the �rst set of designed residual magnetic �ux density, 56%, 11%, 42.4%, 27.5%, and 50.9%

enhancements in the non-dimensional elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 are achieved respectively

compared to the uniform magnetization under the compressive modes of normal stress and anti-clockwise

mode of shear stress in combination with the external magnetic �eld. Whereas, the maximum reductions

in the non-dimensional elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 under the compressive normal modes

and the anti-clockwise shear mode of the mechanical stress in combination with the magnetic �eld are

found to be 66.4%, 21%, 47.2%, 18%, and 35.6% respectively. Under the tensile modes of the normal

stress and the clockwise mode of shear stress in combination with the external magnetic �eld, 31.1%,

22.7%, 41%, 10.4%, and 104.3% enhancements and 62.6%, 23.3%, 46.6%, 7.3%, and 80.4% reductions

in the �ve elastic moduli Ē1, ν12, Ē2, ν21, and Ḡ12 of the hexagonal HMS beam network with the �rst

designed set of residual magnetic �ux density are obtained respectively.

For the hexagonal HMS beam network with the second set of design (beam-level spatial variation) of

the residual magnetic �ux density under the compressive modes of normal stress and the anti-clockwise

mode of shear stress in combination with the magnetic �eld, maximum 86.9% reduction in Ē1 and max-

imum 143.5%, 23%, 68.5%, and 68.9% enhancements in ν12, Ē2, ν21, and Ḡ12 are achieved respectively
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with respect to uniform designs. Whereas, under the tensile normal modes and the clockwise shear

mode of the mechanical stress in combination with the magnetic �eld, maximum 63.9%, 73.9%, 63.3%,

and 35.8% reductions in Ē1, ν12, Ē2, and ν21 and maximum 57.5% enhancement in Ḡ12 are achieved

respectively. It is worthy to mention that we have explored here two di�erent classes of architectures

for spatially varying residual �ux density, while there exist a vast scope of further optimization follow-

ing single and multi-objective optimization algorithms along with unit cell geometry for enhancing the

e�ectiveness of broad-band elasticity modulation.

For the auxetic HMS beam network with the uniform residual magnetic �ux density, the maximum

enhancements in the non-dimensional elastic moduli Ē1, ν12, Ē2, and Ḡ12 are achieved to be 201.9%,

19%, 400.4%, and 248.3% respectively compared to the only mechanical loading condition. Whereas,

maximum 46.4%, 66.49%, 40%, and 62.7% reductions are obtained in the non-dimensional elastic moduli

Ē1, Ē2, ν21, and Ḡ12 respectively. For the rectangular brick HMS beam network with the uniform

residual magnetic �ux density, maximum 64.4%, 150%, and 162.1% enhancements are achieved in Ē1,

Ē2, and Ḡ12 respectively compared to the only mechanical loading condition. Whereas, the maximum

reductions in Ē1, Ē2, ν21, and Ḡ12 are obtained to be 32%, 54.5%, 91.7%, and 48.5% respectively. As

ν12 is zero for rectangular brick lattices under the only mechanical load in absence of the magnetic �eld,

the enhancement and reduction in it are noted in terms of their absolute values instead of percentage

and they are 240.4 and 109.3 receptively.

For the rhombic HMS beam network with the uniform residual magnetic �ux density, maximum

233%, 36.8%, 232.7%, and 77.6% enhancements in the non-dimensional elastic moduli Ē1, ν12, Ē2,

and Ḡ12 are obtained respectively compared to the only mechanical loading condition. Whereas, the

maximum reductions in the non-dimensional elastic moduli Ē1, Ē2, ν21, and Ḡ12 are achieved to be

58%, 60.2%, 37%, and 36.6% respectively. For the triangular HMS beam network with the uniform

residual magnetic �ux density, the maximum enhancements in non-dimensional elastic moduli Ē1, ν12,

Ē2, ν21, and Ḡ12 are achieved to be 14.1%, 27.5%, 44.5%, 865.5%, and 154% respectively compared to

the only mechanical loading condition in absence of magnetic �eld. Whereas, maximum 11.6%, 27.6%,

32%, 1523.5%, and 65.8% reductions in the non-dimensional elastic moduli are obtained respectively.

For rectangular HMS beam network with the uniform residual magnetic �ux density, maximum 111.1%,

66.7%, and 102.1% enhancements in the non-dimensional elastic moduli Ē1, Ē2, and Ḡ12 are obtained

respectively compared to the only mechanical condition. Whereas, the maximum reductions in the

elastic moduli are found to be 38.8%, 28.6%, and 50% respectively. As the Poisson's ratios ν12 and ν21

are zero for rectangular lattices under only mechanical load, their enhancements and reductions under

magnetic �eld are expressed by absolute values instead of percentage values, and they are 0.1 and 13.1
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in enhancement and 0.2 and 30.7 in reduction respectively.

The numerical investigations on the e�ective elastic moduli of the HMS beam networks depict an

excellent modulation capability of the elastic properties in an extremely wide band for the proposed

novel class of lightweight lattice metamaterials through designing the beam-level distribution of residual

magnetic �ux density, unit cell geometry and nonlinear coupled material physics, along with controlling

the external magnetic �eld in combination with the mechanical mode of loading. The numerical results

exhibit non-invariant elastic properties [91] of the periodic HMS beam networks under the anti-clockwise

and clockwise modes of shear stress in addition to the tensile and compressive modes of normal stress.

Moreover, under certain combinations of the externally applied mechanical stress and magnetic �eld

depending on the residual magnetic �ux density, it is possible to achieve negative sti�ness and negative

Poisson's ratio with di�erent degrees of auxecity, even for the non-auxetic unit cell con�gurations. The

reported numerical results would provide a foundation for more innovative designs of the residual mag-

netic �ux density of the HMS beam elements along with the interactive in�uence of unit cell geometry

to increase the spectrum of modulated e�ective elastic properties.

In this paper, we have considered di�erent modes of far-�eld in-plane mechanical stresses (normal

stress along the horizontal and vertical direction (direction-1 and 2) and shear stress in plane 1-2) in

combination with remote magnetic �eld along direction-2. It can be noted that there are three aspects

of magnetic stimuli in the context of the proposed active metamaterials (1) distribution of residual

magnetic �ux density along the length of the constituting beams that form a unit cell, leading to

beam-level magnetic particle distribution architecture, (2) direction of the externally applied magnetic

�eld, and (3) intensity of externally applied magnetic �eld. In the analysis of the multi-physical large

deformation mechanics of HMS beam representing the generalized member of periodic HMS beam

networks under the combined mechanical and magnetic loading as presented in subsection 2.1 and

subsection 2.2, generalized direction (inclination angle α) of the externally applied magnetic �eld Ba

is considered in combination with the generalized mechanical force. Hence, the multi-scale framework

estimating the non-linear elastic properties of the proposed HMS metamaterials under the far-�eld

mechanical and magnetic �elds is generalized for considering any arbitrary direction of the external

magnetic �eld in combination with the di�erent modes of the in-plane mechanical stresses. Though

we have concentrated on the remote magnetic �eld along direction-2 considering di�erent intensities in

combination with normal and shear modes of the in-plane mechanical stresses, the framework can easily

be extended to consider other directions of magnetic �elds. In fact, this will give a scope of achieving

tunable normal-shear lattice level coupling behavior for a given bi-level designed lattice architecture just

by changing the direction of external magnetic �eld [92]. The e�ect of intensity of externally applied
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magnetic �eld is investigated throughout the presented results for multi-physical property modulation

of lattices, while the beam-level architecture based on the distribution of residual magnetic �ux density

is explored in subsection subsection 3.5.

We would conclude this section by highlighting, summarizing and justifying some of the keywords and

concepts of the presented research, as re�ected in the discussions throughout this paper. (1) Metamate-

rials : The work deals with the development of a new class of mechanical metamaterials conceptualized

as a periodic network of hard magnetic soft beams that can change their properties in real-time based

on external stimuli. (2) Magneto-active: The proposed novel class of metamaterials under consideration

is magneto-active because their mechanical properties can be actively altered by applying an external

magnetic �eld. The title includes this term to signify the magneto-mechanical interaction that under-

pins the unique homogenized behavior and active e�ective elastic moduli of these metamaterials. (3)

Nonlinear : The metamaterials' homogenized constitutive response under the combined mechanical and

magnetic �elds is non-linear due to geometric nonlinearity coming from the large deformation of the

beam-like soft cell walls and material nonlinearity of the considered materials. (4) Bi-level architected :

The paper introduces the concept of bi-level modulation of the e�ective elastic properties of the novel

class of metamaterials under the far-�eld combined mechanical stress and magnetic stimuli, where the

design incorporates both the unit cell periodic geometries, and the deformation physics of the beam-like

members based on the hard magnetic particle distribution patterns within the soft cell walls. This

term in the title refers to this dual-level design approach, integrating geometric and multi-physical as-

pects (both at unit cell level and beam level) to control the e�ective lattice-level material behavior.

(5) Multi-physically programmable: The paper discusses the ability to actively modulate the physical

properties of metamaterials, such as elastic moduli and Poisson's ratios, through contactless far-�eld

stimuli (magnetic �eld). This shows that the metamaterials can be programmed post-manufacturing

to exhibit di�erent mechanical behaviors depending on external stimuli as per application-speci�c op-

erational demands. The term multi-physical highlights the fact that active on-demand elastic moduli

tailoring is achieved here through di�erent physics involving mechanical and magnetic deformations.

(6) Stimuli-responsive: The work emphasizes the stimuli-responsive nature of the metamaterials, where

the mechanical properties change in response to external magnetic �elds and mechanical stresses. This

term re�ects the adaptability of the metamaterials to di�erent external stimuli, which is a key focus

of the paper. (7) Multi-scale mechanics : The research focuses on the development of a multi-physical

mechanics-based framework for the estimations and modulations of the homogenized mechanical prop-

erties of the proposed metamaterials considering geometric and material non-linearities due to large

deformation and magneto-mechanical coupling. The developed computational framework involves the
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deformation mechanics of hard magnetic soft beams and subsequent integration of that in the unit cell

mechanics to obtain the homogenized mechanical behavior of the lattices. In essence, it may be noted

that the computational mechanics framework developed here entails components and understanding at

di�erent length scales (i.e. multi-scale) to obtain the e�ective elastic properties: hard magnetic parti-

cles and their distribution at the beam level (i.e. beam-level architecture), unit cell geomety, e�ective

material properties (i.e. the e�ective elastic moduli) at continuum level and subsequently design of

structures (such as an aircraft) based on such continuum level e�ective elastic properties.

5. Conclusions

The current work addresses a critical limitation in conventional mechanical metamaterials in terms of

contactless broad-band programming of elastic moduli based on on-demand operational requirements.

This is achieved through shifting the design paradigm towards more innovative bi-level modulation

concepts involving the coupled design space of unit cell geometries, architected beam-like members and

their stimuli-responsive deformation physics. We have introduced graded hard magnetic soft (HMS)

material architectures in the periodic beam networks following physics-informed insights of the stress

resultants depending on uni cell geometry. The compound e�ect of spatially-graded residual magnetic

�ux density and unit cell geometries lead to improved stimuli e�ciency in achieving a target on-demand

sti�ness, resulting in programmable and sustainable metamaterials with minimal utilization of the

intrinsic materials. Moreover, under certain combinations of the externally applied mechanical stress

and magnetic �eld depending on the residual magnetic �ux density, it is possible to achieve negative

sti�ness and negative Poisson's ratio with di�erent degrees of auxecity, even for the non-auxetic unit

cell con�gurations. A generic semi-analytical computational framework involving the large-deformation

geometric non-linearity and material non-linearity under magneto-mechanical coupling is developed

here for the e�ective elastic moduli of HMS material based bi-level architected lattices under normal

or shear modes of mechanical far-�eld stresses. E�ective elastic moduli being a critically fundamental

property of materials, the capability of having extreme-broadband active control would essentially lead

to on-demand programming of a range of static, stability and dynamic structural behavior, including

direction-dependent deformation, vibration and control, wave propagation, impact and penetration

resistance, energy absorption, shape morphing, robotic motion and actuation at multiple length scales.
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