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Abstract

Mechanical metamaterials which are often conceptualized as a periodic network of beams have been
receiving significant attention over the last decade, wherein the major focus remains confined to the
design of micro-structural configurations to achieve application-specific multi-functional characteristics
in a passive framework. It is often not possible to actively modulate the metamaterial properties post-
manufacturing, critically limiting the applications for a range of advanced intelligent structural systems.
To achieve physical properties beyond conventional saturation limits attainable only through unit cell
architectures, we propose to shift the design paradigm towards more innovative bi-level modulation
concepts involving the coupled design space of unit cell geometries, architected beam-like members and
their stimuli-responsive deformation physics. On the premise of revolutionary advancements in addi-
tive manufacturing technologies, we introduce hard magnetic soft (HMS) material architectures in the
beam networks following physics-informed insights of the stress resultants. Through this framework, it
is possible to achieve real-time on-demand control and modulation of fundamental mechanical proper-
ties like elastic moduli and Poisson’s ratios based on a contactless far-field stimuli source. A generic
semi-analytical computational framework involving the large-deformation geometric non-linearity and
material non-linearity under magneto-mechanical coupling is developed for the effective elastic prop-
erties of HMS material based bi-level architected lattices under normal or shear modes of mechanical
far-field stresses, wherein we demonstrate that the constitutive behavior can be programmed actively
in an extreme-wide band based on applied magnetic field. Under certain combinations of the exter-
nally applied mechanical stress and magnetic field depending on the residual magnetic flux density, it
is possible to achieve negative stiffness and negative Poisson’s ratio with different degrees of auxecity,
even for the non-auxetic unit cell configurations. The results further reveal that a single metamaterial
could behave like extremely stiff metals to very soft polymers through contactless on-demand modu-
lation, leading to a wide range of applicability in statics, stability, dynamics and control of advanced
mechanical, aerospace, robotics and biomedical systems at different length scales.

Keywords:  Programmable metamaterials; Hard magnetic soft beam; Stimuli-responsive mechanics;
Geometric and material nonlinearity; On-demand contactless stiffness; Active mechanical
metamaterials

1. Introduction

Introduction to mechanical metamaterials and a brief literature review. Mechanical metamaterials
are an advanced broad class of engineered materials with architected microstructures having designed

geometrical arrangements, leading to unprecedented physical and mechanical properties that are derived
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primarily based on their unique internal structures and geometry along with the intrinsic materials from
which they are made. Metamaterials are often conceptualized as a periodic network of beam-like (or
plate and shell-like) members at a relatively lower length scale to obtain effective properties at higher
length scales, and find critical applications in a vast spectrum of structural and mechanical applications
ranging from nano and micro to macro scale systems |1, 2, 3, 4|. A typical bottom-up homogenization
framework ranging from an equivalent continuum (with effective properties) at macro-level to honey-
comb microstructures at a lower length scale is shown in Figure 1(a). Effective mechanical properties
of such periodic beam networks not only depend on the beam-level geometry and intrinsic material
characteristics but also are governed by the configuration of the network, i.e. unit cell geometry |5, 6].
Compared to the conventional naturally available materials, the lattice metamaterials have low den-
sity and they provide tunable enhanced multi-functional properties based on the application-specific
demands |7, 8, 9, 10]. Due to the advantages over the natural materials, the lattice materials have
drawn significant attention of the material scientists and engineers for the last few decades [11, 12, 13].
Revolutionary advancements in the manufacturing technologies especially in the field of additive man-
ufacturing elevated such interest by providing the freedom to the designers in manufacturing complex
configurations [14, 15, 16].

The major focus of the research on mechanical metamaterials has been the development of several
analytical, computational and experimental frameworks for estimation of the effective responses of
periodic beam networks under static loading [17, 18, 19|, dynamic and wave propagation [20, 21|,
buckling |22, 23, 24, 25|, crushing [26], low-velocity impact [27] etc. Another aspect of the research area
has been the modulation of effective properties by designing the network configurations in terms of lattice
geometric parameters, like, cell angle, thickness to span ratio of the cell walls along with the aspect ratio,
etc. [28, 29, 30]. Auxetic configurations among the architected materials have drawn special attention
due to providing negative Poisson’s ratio [31, 32, 33|, and a range of associated mechanical advantages
including impact and indentation resistance, shape modulation, higher stiffness and improved dynamic
properties. In addition to the hexagonal honeycomb and re-entrant auxetic configurations, several
other forms of lattices, like, rhombic, rectangular brick, triangular, rectangular, square, etc., have found
critical engineering applications due to their special bending or stretching dominated characteristics [34].
Manufacturing the designed complex configurations has become feasible using additive manufacturing,
followed by experimental investigations [35, 36, 37, 38| both for validating the computational frameworks
and subsequent industry-scale production.

Due to the extensive investigations on the design of network configurations for modulation of the

effective properties of lattice materials, the research area has become saturated in the past decade.
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Figure 1: Bi-level architected lattice metamaterials with periodic network of soft beams having embedded
hard magnetic particles. (a) A typical homogenization framework for conventional lattice metamaterials ranging
from equivalent continuum at macro-level to honeycomb microstructures at the lower length scales. (b) Schematic
representation of hexagonal HMS beam network with the representative unit cell to analyse multi-physical mechanics
under combined external mechanical and magnetic loads. (c-f) Definition of local Cartesian coordinate systems (x, y)
and representation of residual magnetic flux density Bj in the unit cell of hexagonal HMS beam network to be subjected
to: (c, d) magnetic field along direction-2 in combination with normal stress along direction-1 (o) or direction-2 (o3), (e,
f) magnetic field along direction-2 in combination with in-plane shear stress (7). (g) Different other forms of periodic HMS
beam networks ((I - III) derivatives of hexagonal lattices, (IV) triangular lattice, (V) rectangular lattice) to be analysed
within the proposed multi-physical mechanics-based framework. (h) Large deformation multi-physical mechanics of HMS
beams representing the generalized member of periodic HMS beam networks under combined mechanical and magnetic
loading. (i) Deformation components of a generalized HMS beam element to derive large deformation kinematics.




Hence, the research area has been shifting towards more innovative designs of geometry and intrinsic
material characteristics at the elementary beam-level. One such aspect is to exploit the non-linear
characteristics of the elementary beam members undergoing large deformation. For modulation of the
effective properties of lattice metamaterials as a function of the non-linearity, several geometrically non-
linear frameworks have been developed in the last few years |39, 40, 41|. Another innovative concept
at the elementary beam-level to enhance the effective mechanical properties is providing anti-curvature
to the cell walls subjected to a particular mode of applied mechanical loading [42, 43, 44]. Significant
enhancements in lattice stiffness or flexibility and elastic failure strength can be achieved due to the
introduction of anti-curvature to the cell walls [42, 43, 44]. With the revolutionary advancements in the
field of additive manufacturing, recently lattices made of multiple intrinsic materials have been proposed
which possess unprecedented mechanical properties, attainable based on an expanded design space
|45, 46, 47, 48]. In such literature, the major focus remains confined to the design of micro-structural
configurations to achieve application-specific multi-functional characteristics in a passive framework. Tt
is not possible to actively modulate the metamaterial properties post-manufacturing, critically limiting
the applications for a range of advanced intelligent structural systems. To achieve physical properties
beyond conventional saturation limits attainable only through unit cell architectures, we propose to shift
the design paradigm towards more innovative bi-level modulation concepts involving the coupled design
space of unit cell geometries, architected beam-like members and their stimuli-responsive deformation
physics. We would introduce hard magnetic soft (HMS) material [49] architectures in the beam networks
following physics-informed insights of the stress resultants. The novel HMS lattice or beam network
is very light in weight but it would be able to demonstrate a wide range of stiffness (including sign
reversal) depending on applied magnetic flux. The foundation of the HMS material along with the
relevant reported work in the literature on HMS beam deformations are described very briefly in the
following paragraph.

Soft materials are a class of newly developed materials that have found immense technological appli-
cations in a diverse field, especially in biomedicine [50, 51|, soft robotic [52, 53], and flexible electronic
devices [54, 55]. Controllable properties of soft active materials under external stimuli, like, light [56],
heat [57], electric [58], magnetic field [59] etc., open a new avenue to design application-specific devices.
Recent advancements in 3D and 4D technologies make the innovative designs feasible and motivated the
research community |60, 61, 62]. One interesting class among such soft active materials which promises
significant potential in critical engineering applications is the hard magnetic soft material (HMS ma-
terial) [49]. HMS material is manufactured by embedding hard magnetic particles into soft material

matrix. This newly developed active material (HMS material) shows a magnetically hard and mechani-



cally soft property [63]. As the beam is a very fundamental element in designing any structural device,
investigations on the response of beam made of HMS material under magnetic actuation have drawn
the attention of the research community. The complications coming from geometric non-linearity due
to large deformation and material non-linearity under magneto-mechanical coupling make the analysis
of HMS beam structures challenging [64, 65]. In the past few years, several analytical and numerical
models have been proposed by the researchers to capture the non-liner response of HMS beams under
external magnetic stimulation |66, 67, 68]. Besides the theoretical works, some experimental investiga-
tions on HMS beam responses are also reported in the literature [66, 69]. To use the devices made of
HMS beams in soft robotic and electronic applications, the deformed shapes of the HMS beam are of
interest and need to be controlled. By properly designing the residual magnetic flux density in the HMS
beam to be subjected to a particular external magnetic field, we can design the deformed shapes [70].
As most of the structures in the biological world consist of the feature of functionally graded property,
to meet the complex demand of potential applications of HMS beam structures, recently functionally
graded HMS materials are being designed and manufactured |71, 72]|.

Rationale behind the proposed magneto-active metamaterials. The above-presented literature review
reveals that despite being a topic of interest, the theoretical investigations on HMS beam structures
focus on structural characteristics under magnetic actuation only. Investigations on the multi-physical
mechanics of HMS beam structures under combined mechanical load and magnetic actuation are not
addressed in the literature sufficiently. Moreover, most of the reported theoretical investigations are
numerical in the framework of commercial packages which lack physical insights into the problems.
Some analytical models are also reported in the literature but they are limited to simple beam problems
in terms of loading conditions, geometry, and boundary conditions. In this paper, we consider the
complicated multi-physical mechanics of periodic HMS beam networks subjected to large deformation
under combined mechanical and magnetic loads. One major objective is to develop a physically insightful
semi-analytical framework to estimate the non-linear effective elastic moduli of the HMS beam networks
under the combined fair-field mechanical stress and magnetic field. By properly designing the residual
magnetic flux density in the HMS beam elements under an optimal combination of mechanical stress
and magnetic field along with exploiting the geometric and material non-linearities, modulation of the
effective elastic moduli through the developed semi-analytical framework would be attempted in the
present work.

With the progress in manufacturing capabilities [73], active lattice metamaterials [2, 74] have started
receiving significant attention from the scientific community. In the context of active elastic property

and stiffness modulation in lattice metamaterials with distributed actuation throughout the connecting



beam spans, the pioneering works with detailed computational framework development can be traced in
the area of piezoelectric lattices |75, 76]. The major lacuna in piezoelectric lattices is the absence of con-
tactless modulation and involvement of wire networks for supplying voltage to each constituting beams.
Later, lattices with magnetostrictive layers (with distributed actuation throughout the connecting beam
spans) were proposed for contactless on-demand elasticity programming [77]. All these metamaterials
were developed in the regime of small deformation linear analysis framework. Some of the early research
on active control of stiffness using magnetic control can be traced back to exploitation of discrete mag-
nets attached to the connecting beam members of the lattice unit cells [78]. Unlike most of the active
lattice metamaterials, Gabriel and Teng [79] presented discrete magneto-active lattices where magnetic
particles are embedded in the joints rather than the beam-like connecting elements, wherein the active
joint movement is exploited for property modulation in the proposed design. Jackson et al. [80] pro-
posed 4D field responsive lattice metamaterials with connecting polymer tube-like elements filled with
magnetorheological fluid suspensions. In general, magneto-active metamaterials have been attracting
significant attention recently covering different spectrum of physical designs including elastic, impact,
vibration, wave propagation and acoustics for on-demand control [81, 82, 83, 84, 85]. Lately, HMS
material based hexagonal lattices with distributed uniform actuation along the beam-like constitut-
ing members have been investigated for active contactless property modulation considering geometric
nonlinearity [86]. In this semi-analytical framework of the earlier work, only hexagonal lattices and
their derivatives such as rhombic, rectangular brick and auxetic configurations can be analyzed. In the
present work we extend the computational framework to analyze other bending and stretching domi-
nated lattices such as triangular and rectangular configurations. Further, for enhancing the efficiency
of magnetic actuation, we would introduce non-uniform residual magnetic flux to exploit the concepts
of anti-curvature [42] in metamaterials design.

Description of the bi-level architected lattices with non-uniform magnetic flur density. A typical
hexagonal network of HMS beams is shown schematically in Figure 1(b). Within the framework of unit
cell approach, an appropriate unit cell consisting of three HMS beam members OA, OB, and OC is
chosen as shown in Figure 1(b) to analyse multi-physical lattice mechanics under combined mechanical
and magnetic load. In the figure, an enlarged view of embedded hard magnetic particles is shown
for clear understanding. From the understanding of boundary conditions for the honeycomb lattices
made of conventional elastic materials [5], definitions of local Cartesian coordinate frames (z, y) for
the inclined member OA and vertical member OC of the unit cell to be subjected to the magnetic
field along direction-2 (B®) in combination with normal mechanical stress along direction-1 (o7) or

direction-2 (o9) are shown in Figure 1(c). Similarly, definitions of local Cartesian coordinate frames (z,



y) for the inclined and vertical members of the unit cell to be subjected to the magnetic field along
direction-2 (B®) in combination with in-plane shear stress (7) are shown in Figure 1(e). The direction
and magnitude of residual magnetic flux density B in the HMS beam member are controlled by the
orientation and density of the hard magnetic particles embedded in the soft material. Mathematically,
the direction and magnitude of Bj are defined by a coefficient S. If the residual magnetic flux density
By is uniform along the beam axis and directed along the z axis of the local Cartesian frame (zx, y), the
value of S is unity, i.e., S = 1. If the direction of uniform B is opposite to x axis, then S = —1. For
generalized distribution of Bfj, the coefficient S(z) is a function of beam length along the « axis of the
local Cartesian frame (x, y). For the unit cells to be subjected to the magnetic field along direction-2 in
combination with either normal mode or shear mode of mechanical stress, generalized representations
of the residual magnetic flux density Bj in the HMS beam members are shown in Figure 1(d) and (f)
corresponding to the local frames (z, y) as defined in Figure 1(c) and (e) respectively. Note that in
Figure 1(f), the direction of residual magnetic flux density B} is opposite for the inclined members OA
and OB. This opposite distribution makes the inclined members behave structurally symmetric when
subjected to in-plane shear stress 7 in combination with external magnetic field B®. This phenomenon
will be described in more detail later through schematic diagrams in connection with the mathematical
formulation of shear modulus.

As discussed in the preceding paragraphs, we propose a novel class of metamaterials as a network of
beams made of soft material with embedded hard magnetic particles which enables real-time on-demand
control and modulation of non-linear elastic properties based on a contactless far-field stimuli source.
The metamaterial involves a dual design space at the lower length scale (referred to as micro-scale
in the subject domain of metamaterials) as follows. (1) Architecturing of the hard magnetic particle
distribution within the HMS beam elements tailors their multi-physical large deformation mechanics
at the lower length scale (2) Architecturing of the network’s periodic geometric configurations (cell
angle, vertical to inclined cell wall length ratio, thickness to inclined cell wall length ratio) further
tailors the unit cells’ large deformation mechanics. Such bi-level architectures and designs at the lower
length scale (referred to as micro-scale) govern the homogenized elastic properties of the proposed HMS
metamaterials at the higher length scale (referred to as macro-scale) of the entire lattice dimension.
Hence, the developed computational framework reported in the present article is basically a multi-scale
framework starting from the magnetic particle architected HMS beams and periodic geometry of unit cell
configurations at the micro-scale yielding to tailored homogenized non-linear elastic properties of HMS
beam network at the macro-scale. Note that the computational framework for obtaining the effective

nonlinear elastic properties of the lattice would essentially involve analyzing appropriate unit cells with



periodic boundary conditions. The foundational concept of the multi-scale modeling of conventional
lattice metamaterials (involving unit cells that consist of homogeneous passive beams) is demonstrated
through Figure 1(a), and subsequently, the concept of the proposed bi-level architected novel class of
HMS metamaterials (involving unit cells that consist of architected magneto-active beams) is introduced
through Figure 1(b , g).

Scope of the present study. To estimate the non-linear effective elastic moduli of the periodic HMS
beam network, a generalized multi-physical mechanics problem of HMS beam subjected to combined
mechanical and magnetic loads would be defined within the framework of the unit cell approach. The
HMS beam problem involves complex effects coming from geometric non-linearity due to large deforma-
tion and material non-linearity due to magneto-elastic coupling. A physically insightful semi-analytical
framework would be developed here through the variational principle-based energy method within the
non-linear kinematic setting of the Euler-Bernoulli beam theory using the material constitutive law
according to the Yeoh hyperelastic model. Based on the beam-level deformation results, effective elastic
moduli of the periodic HMS beam networks (i.e lattices) would be computed by accounting the unit
cell geometry and periodic boundary conditions. The semi-analytical beam model will be validated by
comparing the non-linear deformed configurations under separate mechanical load and magnetic actua-
tion with the available literature |65, 70]. After the validation study, a few critical beam-level numerical
results will be presented first under combined mechanical and magnetic loading for HMS beams with
symmetric and asymmetric residual magnetic flux density. Through the numerical results, the effect of
asymmetry in residual magnetic flux density in defining a generalized HMS beam problem of the HMS
beam network along with the effect of centreline extensibility in analysing large deformation character-
istics of HMS beam will be investigated. A validation study of the semi-analytical framework at the
periodic beam network-level will also be carried out by comparing the non-linear effective elastic mod-
uli with the available results in the literature for honeycomb lattices under different modes of far-field
mechanical loads [39, 42|. Following the validated semi-analytical framework, the effects of magnetic
field in combination with the different modes of far-field mechanical stress field on the non-linear effec-
tive elastic moduli of periodic HMS beam network with uniform residual magnetic flux density will be
studied. Based on the kinematic and kinetic conditions of the beam elements of the hexagonal HMS
beam network, two physics-informed designs of residual magnetic flux density will further be proposed
which would significantly influence the non-linear effective elastic moduli. Through the numerical re-
sults, we will show that the proposed lightweight HMS beam networks or lattices possess broadband
modulation capability of the non-linear specific stiffness ranging from very high stiffness like hard metal

to very low stiffness even lower than soft polymers depending on the residual magnetic flux density and



the compound effect of the externally applied mechanical load and the magnetic field. Under certain
combinations of the mechanical and magnetic fields, it will be shown that the HMS lattices show neg-
ative stiffness as well. The generality of the developed multi-physical mechanics-based semi-analytical
framework will be demonstrated by analysing non-linear elastic moduli of five other forms of HMS beam
networks, namely, auxetic, rectangular brick, rhombic, triangular, and rectangular networks as shown
in Figure 1(g). Note that under the influence of combined far-field mechanical stresses and magnetic
field, the unit cell mechanics of different considered lattice configurations becomes significantly involved
that has not been investigated in the literature so far.

After presenting a brief review of literature on mechanical metamaterials and the rationale behind
proposing the present novel class of lattices in this introductory section (section 1), the mathematical
framework for the estimation of non-linear effective elastic moduli of periodic HMS beam networks under
different modes of far-field mechanical stress in combination with magnetic field will be presented in
section 2. Thereafter, section 3 will present the beam-level and periodic beam network-level results along
with the validation studies. Applicability of the proposed physically insightful framework of the periodic
HMS beam network to different forms of lattices will be demonstrated through numerical results. The
conclusions will be drawn in sections 4 and 5 along with the prospective future scopes of the proposed

novel class of HMS lattices.

2. Computational framework for stimuli-responsive lattices

A HMS beam multi-physical mechanics based (refer to Figure 1(h, i)) semi-analytical framework
is developed in this section to estimate the non-linear effective elastic moduli of periodic HMS beam
networks subjected to magnetic field B* along direction-2 either in combination with remote normal
stress along direction-1 (oq), direction-2 (03) or remote in-plane shear stress 7. The combined loading
conditions of mechanical normal stress (o; or 02) and magnetic field (B®) for the unit cell of hexagonal
HMS beam network (refer to Figure 1(d)) are shown in Figure 2(a) and (d) respectively. Whereas,
the loading condition of mechanical in-plane shear stress (7) in combination with the applied magnetic
field (B*) for the corresponding HMS unit cell (refer to Figure 1(f)) is shown in Figure 3(a). Under
the combined loading condition as shown in Figure 2(a), we obtain the longitudinal effective Young’s
modulus F; and Poisson’s ratio v15 of the hexagonal HMS beam network. For the combined loading
condition as shown in Figure 2(d), we obtain the transverse effective Young’s modulus Fy and Poisson’s
ratio v5;. Whereas, under the combined loading condition of the shear mode of mechanical load and
the magnetic field as shown in Figure 3(a), we can estimate the effective shear modulus Gy of the

hexagonal HMS beam network. Similar loading conditions are presented for other forms of lattices in



Figure 4 and 5. Here it should be noted that though the multi-physical mechanics of the HMS unit
cells is presented in Figures 2 - 5 for the compressive mode of normal stress and anti-clockwise mode
of shear stress respectively in combination with the generalized residual magnetic flux density having
coefficient S(z), the developed formulation is generalized and valid for the combination of any mode
of the normal (compressive or tensile) and shear (anti-clockwise or clockwise) mechanical stress with a
generalized magnetic field.

Under the applied combined mechanical stress and magnetic field, developed forces and large defor-
mation kinematics of the HMS beam elements of the unit cell are analysed first. Based on the kinetic and
kinematic descriptions, a large deformation problem of the HMS beam representing a general beam-like
element of the periodic network is defined, wherein the boundary and loading conditions are applied
based on unit cell periodicity and applied external mechanical stress and magnetic flux, respectively.
Non-linear multi-physical mechanics of the defined generalized large deformation HMS beam problem
under combined mechanical and magnetic load is analysed subsequently through the variational energy
principle-based semi-analytical framework (with appropriate beam-level boundary condition to ensure
periodicity of the unit cells). Using the beam-level deformation results within the unit-cell framework,
the effective elastic moduli (E}, v1a, Fa, va1, and G13) of a periodic HMS beam network are computed.
Thus, following a multi-scale framework, the homogenized nonlinear elastic properties of the proposed
metamaterials at the higher length scale (referred to as macro-scale) are estimated in terms of the
beam-level large deformation measures coupled with unit cell geometry under combined mechanical and
magnetic loads at the lower length scale (referred to as micro-scale). In this context, it can be noted
that the proposed computational framework is scale-independent in principle; the only condition is to
maintain a substantial difference between the unit cell dimensions and the dimension of the overall lat-
tice that leads to the computation of homogenized effective properties. In the forthcoming subsections,
followed by establishing a generic beam-level computational framework, we will first develop a semi-
analytical formulation for the effective elastic moduli of hexagonal lattices, and subsequently different

other lattice geometries will be considered.

2.1. Generalized beam-level problem definition

The load-deformation characteristics of any member of the HMS beam network under any combina-
tion of the fair-field normal or shear mode of mechanical stress and magnetic field as presented through
Figures 2 - 5 are defined as a generalized geometrically non-linear HMS beam deformation problem.
Such a generalized large deformation HMS beam problem can be defined either as a full-beam problem
or as a half-beam problem under the specific boundary condition to ensure unit cell level periodicity (all

the beams under consideration here need to have both the edges rotationally restained). Both the type
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of geometrically non-linear HMS beam deformation problem is presented schematically in a generalized

way in Figure 1(h, i) and described in the following two subsections.

2.1.1. Full-beam problem

When the full length of the inclined or vertical members of a periodic HMS beam network (refer to
Figures 2 - 5) is considered for the definition of the generalized beam problem, the problem is called the
full-beam problem. For example, the length L of the generalized HMS beam as shown in Figure 1(h),
is either equal to [ for the inclined member or equal to A for the vertical member of a hexagonal HMS
beam network. For the full-length HMS beam, one end is fixed with the other end being rationally
restrained but free to translation and subjected to concentrated force F' in combination with magnetic
field B* with inclination angles § and « respectively as shown in Figure 1(h).

For the full-length HMS beam, rotation of centreline ¢ is zero at both the ends (x =0 and z = L)
(refer to Figure 1(h, i)). As the HMS beam is subjected to axial load also due to the combined effect
of the mechanical and magnetic field, the beam centreline has non-zero axial strain € at both the ends
(x = 0 and z = L). The kinematic boundary conditions of the HMS full-beam problem are summarized

below. p=0atz=0andx =1L (1a)

e#0atrzr=0andz =1L (1b)

With the proper definition of the load magnitudes (F' and B®) and their inclination angles (5 and «)
as presented later in the manuscript (for example, Equations (23)-(36) for the hexagonal lattices) along
with the respective length (for example, L = [ or L = h for hexagonal lattices) and boundary conditions
(Equation (1)), we can simulate deformation characteristics of each member of the HMS beam networks.
For an ordinary beam of length L, with the prescribed boundary conditions undergoing small de-
formation under mechanical load only, the transverse tip-deflection 4, under transverge load F, and the
F,L; F.L,

e %= o

In these equations, E denotes Young’s modulus of the elastic beam material, and I and A are the rota-

axial tip-deflection J, under axial load F, are obtained analytically [5] as 0, =

tional inertia and area of the beam cross-section. Note that the above-presented analytical solutions are
not concerned with the present large deformation HMS beam problem. These analytical solutions are
only used for analogy demonstration of boundary condition modelling of the full-beam problem using

cantilevered half-beam problem as presented in the following subsection.

2.1.2. Half-beam problem
The full-beam made of ordinary elastic material undergoing small deformation under mechanical
load only as presented in the preceding subsection, can be modelled as two half-beams with cantilever

boundary conditions exploiting the physical insight that bending moment becomes zero for the full

11



beam at the midpoint here. The transverse and axial deflections of the tip of the cantilevered half-beam
F,L} 5 F.L,

nd 6, = )
24E,1 2B, A

obtained from the half-beam model of the ordinary beam are exactly half of the corresponding deflection

of length L,/2 are analytically [5] given by 0, = These analytical deflections
results as presented in section (2.1.1). Hence, doubling the deflection results coming from the half-beam
model gives the same results as the full-beam model for an ordinary beam. A similar observation also
becomes apparent for axial deformation.

Following the observations on boundary conditions, the considered large deformation HMS full-beam
problem under combined mechanical and magnetic load is modelled here as HMS half-beam problem. For
example, in the HMS half-beam problem concerning hexagonal lattices, length L of the generalized HMS
beam as shown in Figure 1(h) will be either {/2 for the inclined member or h/2 for the vertical member
of the HMS beam network. Note that consideration of the half beam will lead to more computational
efficiency compared to considering a full-length beam in the nonlinear multiplysical analysis. Boundary

conditions of the generalized half-beam problem are summarized below.

d

@antx:Oand£:0atx:L (2a)
dz

e#0atr=0andz =1L (2b)

Note that the modelling of HMS full-beam as HMS half-beam is only possible if the residual magnetic
flux density By is symmetric about the mid-point of the full-length beam. The statement will be proved
in section 3 through numerical results from the full-beam and half-beam models with both symmetric
and asymmetric residual magnetic flux density.

Large deformation analysis of the generalized HMS beam (refer to Figure 1(h, i)) with the above-
prescribed boundary conditions (Equations (1) and (2)) under combined mechanical and magnetic load
is not readily available in the literature. A semi-analytical beam model is developed here to analyse

such multi-physical mechanics problem as presented in the next subsection (subsection 2.2).

2.2. Large deformation analysis of generalized HMS beam problem

Large deformation characteristics of the generalized HMS beam with residual magnetic flux density
Bj concerning the initial configuration subjected to combined mechanical load F' and magnetic field
B® as shown in Figure 1(h, i) is analysed. Governing equation of the geometric non-linear problem
is derived in a semi-analytical framework using the variational principle-based minimization of total
potential energy method. In the derivation of the governing equation, we consider the centreline exten-
sion of the beam in addition to the bending mode of deformation within the geometrically non-linear
kinematic setting of the Euler-Bernoulli beam theory. Derivation of the governing equation through

such a generalized extensible model is presented first in the following subsection. To investigate the
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effect of axial rigidity of the hyperelastic HMS beam, a special form of the governing equation neglecting
centreline extension is presented in the following subsection. The final algebraic form of the governing
equation of the HMS beam problem derived either through the extensible model or through the inexten-
sible model involves non-linearity due to the coupling of different deformation degrees of freedom. To
solve the coupled non-linear equation, we develop an iterative computational framework as presented

subsequently in this subsection.

2.2.1. Extensible model

2.2.1.1. Kinematics. To account for geometrically exact non-linearity, the beam deformation is de-
scribed in terms of the rotation ¢ and strain € of the beam centreline instead of the in-plane and
transverse displacement fields v and v respectively. From the geometry of deformation as presented
in Figure 1(i), the displacement fields v and v are expressed in terms of the centreline rotation ¢ and

centreline strain € of the HMS beam as given below.

d
£:(1+€)COSQO—1 (3a)
d
é =(1+4¢)sing (3b)

As the left end of the beam is considered fixed (refer to Figure 1(h)), the displacement fields u and v
are zero at x = 0. With the kinematic conditions, relations of the displacement fields u and v with the

independent variables ¢ and ¢ are obtained by integrating Equation (3) as given below.

u:/ox{(l—l—e)cosgo—l}dx (4a)

U:/ (14+¢)sinpde (4b)
0

2.2.1.2. Material model. The material of the HMS beam under study is considered a soft material with
Young’s modulus F,. The hyperelastic characteristics of the HMS beam material are modelled by the
strain energy density function @ which is defined below according to the Yeoh hyperelastic model [65].

@:gqo{(1+5)2+1i€_3}i (5)

o
The corresponding nominal stress, defined as oy = R is obtained based on the Yeoh hyperelastic
€

model [65] using Equation (5) as given below.

O'N22

2 2 2
Cro + 2051 (1 24 - 3 30504 (1 2 —3
10 + 20{( +€) +1+€ }+ 30{( +€) +1+€ }

(Y
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Through Taylor expansion of Equation (6) keeping the linear term, Young’s modulus of the hyperelastic
beam material is obtained as

E, = 6Cho (7)

2.2.1.3. Governing equation. Governing equation for the large deformation characteristics of the HMS
beam under combined mechanical and magnetic load is derived through variational principle based

minimization of total potential energy, as defined mathematically by
S(Ug+Un+V)=0 (8)

In the above equation, Ug, Uy, and V are the elastic strain energy of the HMS beam, magnetic potential
energy of the HMS beam, and potential energy of the external mechanical load. The elastic strain energy

of the HMS beam Ug consists of membrane and bending strain energies which in total is given by

L EJ [* (dp\”
Ug=A [ &d ° —+)d 9
soa a5 () o ®

Magnetic potential energy Uj, of the HMS beam due to the interaction of the externally applied magnetic

field B® with the residual magnetic flux density B} (refer to Figure 1(h)) is given by [70]
A L
Un = —M—/ S|BI| 1B (14 £) cos (¢ — a) da (10)
0 Jo

In the above equation, py denotes permeability of vacuum. On the other hand, potential energy of
the externally applied mechanical load F is defined as V = —F,u|,— — F,v|,—r, where F, and F,
are the components of force F' in the z and y directions, given by F, = Fcosf and F, = F'sinf
respectively (refer to Figure 1(h)). Using Equation (4), the potential energy V' is expressed in terms of

the independent variables ¢ and ¢ as given below.

L L
V:—Fm/ {(1+€)Cosgo—1}dw—Fy/ (14 ¢)sinpde (11)

0 0
Before going to further derivation of the governing equation through the energy principle, the physical

coordinate system (x, y) is transformed into the computational frame (£, 1) and some other non-

dimensional geometric and material parameters are introduced as defined below.

x y AL% ON |By| | B*| 11, FL* _ - .
=" pnp==< I,=— =— B=———(C=—-,F,=C B, =C 12
6 I’ n I’ 0 J ON Es ) ES,UO ) Es[ ) COSB Y Slnﬂ ( )
Putting the energy expressions presented in Equations (9)-(11) with respect to the normalized coor-

dinate frame (£, n) in terms of the normalized parameters (Equation (12)) into the energy principle
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(Equation (8)), the governing equation is obtained in variational form as presented below.

1 1 d 2 1
5[]]0/0 ¢d§+%/0 (d—§> d§—B/0 S(1+4¢)cos(p —a)d

1 1
—Ccosﬁ/ {(1+5)cosg0—1}d§—6’sinﬂ/ (1+8)sin<pd§] =0
0 0

In the normalized frame (£, 1), the unknown deformation fields ¢ and ¢ are approximated as

nb
%0 = Z Cliw’i (143)
=1

€= Z Co, Vi (14D)

=1

where, ¢;, and ¢y, are the unknown coefficients to be computed, and w; and 1); are the sets of nb and ns
number of coordinate functions chosen satisfying the kinematic boundary conditions. For the full-beam

problem, the function sets are chosen by satisfying the boundary condition of Equation (1) as

w; = sin (im§) (15a)

i = cos {(i — 1)m&} (15b)
Whereas, for the HMS half-beam problem, the function sets as chosen through Equation (2) are

w; = sin (222— 17T§) (16a)

; = cos{(i — 1)m&} (16b)

Now substituting the approximated deformation fields as presented in Equation (14) into the gov-
erning equation (Equation (13)) and carrying out the variational operation, we derive the final algebraic

form of the governing equation as presented below.

(K {ey ={f} (17)

In the above equation, [K], {c}, and {f} denote stiffness matrix, set of unknown coefficients {cli CQZ.}T7
and load vector for the large deformation of HMS beam problem respectively. The detailed expressions

of the stiffness matrix [K } and load vector { f } are given below.

nb nb

K =33 [ etefac

j=1 i=1
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nb ns 1 nb nb
[Klg} = Z Z/ BS sin <Z €1, Wk — a) + C cos [3sin <Z clkwk>
j=1 i=1 "0 k=1 k=1
nb
— (C'sin B cos (Z clkwk>] Yiw; d€
k=1
[ Ko = [0]
ns ns 1
[Ka| = HOZZ/ ON Vit g
j=1 =1 0
nb 1 nb nb nb
{fl} = Z/ — BS'sin (Z Cl Wk — a) — C cos (sin <Z clkwk> + C'sin 3 cos (Z clkwk>]wj d¢
j=1"0 k=1 k=1 k=1

ns 1 nb nb nb
{f2} — Z/ BS cos (Z 1, Wk — 04) + C cos (5 cos (Z clkwk> + C'sin [ sin (Z clkwk>
=170 =1 k=1 k=1

1
— oo {1 — i d
OUNC{ 1+, czkm)z}]w ¢

where,

2
=

ON,

’ 2
ns 5 .
Cho + 2Cy 1+ E Co k| + - — 3%+ 305 14 e i
{ ( k=1 ' ) 1+ Zkzl Ckak } { ( ]; k

2
+ 2 3

2.2.2. Inextensible model

The governing equation (Equation (17)) presented in the previous subsection is derived considering
both the centreline rotation ¢ and centreline extension ¢ of the HMS beam. If we neglect the terms
corresponding to the centreline strain € from the elements of Equation (17), we readily get the governing
equation of the HMS beam deformation problem within the framework of the inextensible model. The

elements of the stiffness matrix [K } and the load vector { f } for the inextensible model are presented

below.
nb nb 1
K] =23 [l
j=1 =1 0
nb 1 nb nb nb
{r}= Z/ — BS'sin <Z C1, Wk — a) — C' cos B sin <Z clkwk> + C'sin 3 cos (Z clkwk> ] w; d§
j=1 0 k=1 k=1 k=1

Note that the Inextensible model is computationally less intensive, but it also becomes less accurate for

large deformation problems.
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2.2.3. Iterative solution scheme

The elements of stiffness matrix [K] and load vector { f} of the governing equation (Equation (17)),
either derived through the extensible model or through the inextensible model, involve unknown coef-
ficients {c} However, the degree of such non-linearity is different for the extensible and inextensible
models. Due to the involved non-linearity, the governing equation can not be solved directly. Hence, an
iterative computational scheme [87, 88| is developed to tackle the non-linearity involved in the governing
equation.

Under an incremental step of non-dimensional mechanical load C' with the inclination angle 3, the
non-dimensional magnetic load B is applied incrementally by a ratio r which is termed as magnetic load
ratio and defined by

r=a (18)

Hence, the inputs of the beam model are the magnitude of the non-dimensional mechanical load C' with
its inclination angle 8 and the magnetic load ratio r along with the coefficient of the residual magnetic
flux density S(§) and the inclination angle of the external magnetic field a.

At the incremental step of the non-dimensional mechanical load C' and magnetic load B = rC, the
iterative solution process to find the set of unknown coefficients {c} starts with assumed set of the
coefficients denoted as {c}i_l, where the superscript ¢ denotes the iteration number. With the assumed
set of the unknown coefficients {c}iil, elements of the stiffness matrix [K]Z and load vector {f}l at the
current iteration step ¢ are computed. With the known [K }Z and { f }i, the set of unknown coefficients

{c}i are computed through the matrix inversion of the governing equation (Equation (17)) as

i —17° i
{e}' =K' {1 (19)
The set of coefficients {c}l computed through the above equation, is compared with its old values
{c}i_1 as [ = {c}Z — {c}i_l. Until the error 1 becomes less than its predefined limit, the set of

unknown coefficient {C}H_l is updated through the successive relaxation scheme presented below and

the next iteration (i + 1) begins.

[V =M} + @ =N} (20)

In the above equation, A denotes the relaxation parameter for the successive relaxation scheme which

lies between 0 to 1. The iterative scheme to compute the large deformation characteristics of the HMS
beam under combined mechanical load and magnetic field is presented in Algorithm 1.

Once the set of unknown coefficients {c} for the current combined load step C' and B is obtained

through the iterative computational scheme, the centreline rotation ¢ and the centreline strain € become
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Algorithm 1: Beam-level computational algorithm to obtain large deformation characteristics of HMS beam under
combined mechanical load and magnetic field.

Define geometry: Define non-dimensional geometric specification of the HMS beam 1.

Define material property: Define the material constitutive parameters Cg, Cyy, and C3g in the
framework of Yeoh hyperelastic model.

Define numerical parameters: Define the numerical values of the computational parameters \,
i, nb, and ns.

Generate: Generate the set of coordinate functions w; and v; through satisfaction of the boundary
conditions of the HMS beam problem under consideration.

Input load: Input the magnitude of the non-dimensional mechanical load C' and magnetic load B
in terms of the magnetic load ratio r as B = r(, along with their orientation angles 3 and a.

Iterate: The iterative computational scheme to obtain the set of unknown coefficients {c} from the
non-linear governing equation [K } {c} = { f } involves the following steps:

e Initialize the set of unknown coefficients denoted as {c}i_l.
e Compute the stiffness matrix [K]Z involving the set of unknown coefficients {c}i_l.

e Compute the load vector { f }Z involving the set of unknown coefficients {c}i_l under the current
step of combined mechanical and magnetic loads.

e Compute the set of unknown coefficients as {c}Z = “K] _l]i {f}Z

e Compare the computed set {c}z with its old values {c}i_l defined as pu = {c}z — {c}i_l.

e Until the error y becomes less than its predefined limit, the set of coefficients is updated by
{c}“rl =M} +(1- )\){c}l_l and go for the next iteration i + 1.

Note output: Once the set of unknown coefficients {c} is obtained trough the iterative computa-
tional scheme, the centreline rotation ¢ and the centreline strain € become known which in turn give
the non-dimensional deflection profile (£, ) and the tip-deflections ¢, and J,,.

known from Equation (14) for the extensible model. Whereas, for the inextensible model, only the

centreline rotation ¢ is obtained. With the known deformation components (¢ and ¢), the deflection

profile (z, y) of the HMS beam is obtained which in turn provides axial deflection 6, and transverse

deflection §, of the tip of the beam. The expressions of the axial and transverse tip-deflections (6, and

dy) in the normalized form as obtained from Equation (4) are given below for the extensible model.

:/1{(1+s)cosc,p—1}d§ (21a)
0

1

(14 ¢)sinpdé (21Db)

=9
<
[
S S
[
N
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For the inextensible model, the normalized tip-deflections (J, and 4,) are obtained from the above

equation by neglecting the ¢ terms as

1

- % = / (cosp —1)d¢ (22a)
L Jo

_ ) 1

o, =2 = / sin ¢ d§ (22b)
L 0

Using the beam-level tip-deflections, we compute unit cell level strains under a given far-field me-
chanical stress and magnetic field, as discussed in the following subsections considering different lattice
geometries.

2.3. Effective elastic moduli of hexagonal HMS beam networks
2.83.1. Beam-level forces and deformation kinematics

As described in Figure 1, the chosen unit cell in hexagonal lattices consists of three HMS beams
having residual magnetic flux density B concerning the initial configuration. The beam-level forces de-
veloped under the two different combinations of normal stress and magnetic fields as shown in Figure 2(a)
and (d), and under the combination of shear stress with the magnetic field as shown in Figure 3(a),
along with the large deformation kinematics of the HMS beam elements are described in the following

three subsections.

2.8.1.1. Mechanical normal stress along direction-1 and magnetic field along direction-2. Under the
combined mechanical stress oy and magnetic field B* as shown in Figure 2(a), the inclined HMS beams
(OA and OB) undergo combined transverse and axial deformations with fixed end O and the other end A
and B being rotationally restrained but free to translation. Whereas the vertical member OC undergoes
axial deformation only with fixed end C. Due to symmetry, we concentrate on one inclined member (OA)
only along with the vertical member OC. The large deformation kinematics of the inclined member OA
and the vertical member OC are shown concerning the local Cartesian frames (z, y) in Figure 2(b) and
(c) respectively. The kinematic boundary conditions of the beam members are conceptualized from the
classical deformation analysis of conventional honeycomb lattices under mechanical stress only [5]. Note
that due to deformations of the HMS members as shown in Figure 2(b) and (c), the residual magnetic
flux density changes from B to B".

As shown in Figure 2(b), the inclined HMS beam OA is subjected to tip concentrated force F;

developed due to the applied stress field o;. Expression of F; in terms of oy is given by

F, = 01b(h + lsin6) (23)
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Figure 2: Multi-physical mechanics of periodic hexagonal HMS beam networks under combined mechanical
normal stress and magnetic field. (a) Combined loading mode of the unit cell of hexagonal HMS beam network
subjected to normal stress along direction-1 (01) and magnetic field along direction-2 (B%). (b, c¢) Beam-level forces
and large deformation kinematics of the inclined and vertical members of the unit cell under the combined normal stress
o1 and magnetic field B*. Note that under the combined loading condition (a-c), we focus on the longitudinal effective
Young’s modulus F; and Poisson’s ratio v12 of the HMS beam network. (d) Combined loading mode of the unit cell
of hexagonal HMS beam network subjected to mechanical normal stress along direction-2 (o2) and magnetic field along
direction-2 (B%). (e, f) Beam-level forces and large deformation kinematics of the inclined and vertical members of the
unit cell under the combined normal stress oo and magnetic field B*. Note that under the combined loading condition
(d-f), we focus on the transverse Young’s modulus Es and Poisson’s ratio vs; of the HMS beam network. (g) Local
coordinate systems (z, y) for the inclined and vertical members and their orientations with the global frame (1, 2).
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The above-presented force F; is inclined by the angle 5; concerning the local Cartesian frame (x, y)
as shown in Figure 2(b). Whereas, the inclination angle of the magnetic field B, concerning the local
frame (z, y) is denoted by «;. The inclination angles are expressed in terms of the inclination angle 6

of the inclined member of the beam network as

Bi=m—0 (24a)
i — 37” 9 (24b)

As shown in Figure 2(c), the vertical HMS beam OC is not subjected to any mechanical load but
subjected to magnetic field B® only with inclination angle «,. For the vertical HMS beam OC, the

kinetic equations similar to Equations (23) and (24) are presented below respectively.
F,=0 (25)

a, = (26)

2.83.1.2. Mechanical normal stress along direction-2 and magnetic field along direction-2. When the unit
cell is subjected to far-field mechanical stress along direction-2 (i.e. 03) along with the magnetic field B*
as shown in Figure 2(d), the kinematic boundary conditions of the HMS members remain the same as
in the case of combined loading o1 and B® considered in the previous subsection. The large deformation
patterns of the inclined member OA and the vertical member OC concerning the local Cartesian frames
(x, y) are shown in Figure 2(e) and (f) respectively. The tip concentrated force F; developed in the

inclined member due to the mechanical stress field oy is expressed in terms of oy as
F; = o9bl cos 0 (27)

The inclination angles of the mechanical load F; and the magnetic field B, concerning the local frame

(x, y) are expressed in terms of the inclination angle 6 as (refer to Figure 2(e))

The vertical HMS beam OC is subjected to mechanical concentrated force F, in addition to the uniform
magnetic field B* as shown in Figure 2(f). Expression of the force F), in terms of the remote stress oy
is given by

F, = 209bl cos (29)

The inclination angles of the mechanical force F, and the magnetic field B* concerning the local frame
(x, y) are given by
Bv =0y =T (30)
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Figure 3: Multi-physical mechanics of periodic hexagonal HMS beam networks under combined mechanical
shear stress and magnetic field. (a) Combined loading mode of the unit cell of hexagonal HMS beam network
subjected to shear stress in 1-2 plane (7) and magnetic field along direction-2 (B®). (b) Free body diagrams of the
inclined and vertical members of the unit cell under the combined in-plane shear stress 7 and magnetic field B%. (c-e)
Beam-level forces and large deformation kinematics of the inclined and vertical members of the unit cell. Note that under
this combined loading condition, we focus on the in-plane shear modulus G5 of the HMS beam network.

2.8.1.3. Mechanical shear stress in 1-2 plane and magnetic field along direction-2. Under the combined
shear stress 7 and the magnetic field B* as shown in Figure 3(a), the developed forces and end moments

at the HMS beam members are shown through free body diagrams in Figure 3(b). The forces F; and
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F, developed due to the far-field mechanical shear stress 7 are expressed as

Fy = 27bl cos 6 (31a)

Fy = 71b(h +1lsinf) (31b)

From the moment balance condition concerning point O (refer to Figure 3(b)), the induced moment
M in the inclined members are found to be M = Fjh/4. Using Equation (31a), the end moment M is

expressed in terms of the remote stress 7 as given below.
1
M = §Tblh cos 6 (32)

Under the mechanical forces and end moments in combination with the magnetic field, all the HMS
beam members (OA, OB, and OC) undergo combined axial and transverse deformations with fixed end
O and the other ends (A, B, and C) being rotationally restrained but free to translation. The large
deformation patterns of the inclined (OA and OB) and vertical (OC) members of the HMS unit cell
concerning the corresponding local Cartesian frames (z, y) are shown in Figure 3(c), 3(d), and 3(e)
respectively. Though the deformed geometries of the inclined members OA and OB look asymmetric,
they behave structurally (i.e. visually asymmetric, but structurally symmetric) the same under the
combined mechanical and magnetic field due to the opposite direction of the residual magnetic flux
density Bj in them. Hence, we consider the mechanics of one inclined member (OA) along with the
vertical member OC. In this context, it may be further emphasized that the direction of residual flux
densities Bj is architected differently under normal and shear far-field stresses (refer to Figures 2(a, d)
and 3(a)) to maintain structural symmetry in the deformation behavior. Here if we keep the distribution
of residual flux densities Bj same for both the far-field normal and shear stresses, the analysis will
involve structural asymmetry in any one of cases of far-field stress, leading to more involved unit cell
level derivation to distribute unbalanced stress resultants at joint O. In the current paper, we have
focused on demonstrating the concepts of active elasticity modulation rather than increasing unit cell
level structural complexity.

The beam-level transverse force F,, for the inclined member OA as shown in Figure 3(c), is the
equivalent force of the end moment M derived following the typical rotationally restrained boundary
condition of the member OA as given by F,, = —2M/l. Whereas, the axial force F}, is obtained from
the components of F} and F; along OA as given by F,, = —(F}/2) cos @ — Fysin . Using Equations (31)
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and (32), the beam-level forces are expressed in terms of the applied remote shear stress 7 as

h
F,, = —1bl {0052 0+ (7 + sin 9) sin@} (33a)
F,, = —1bhcosf (33b)

The inclination angle «; of the externally applied magnetic field B* (refer to Figure 3(c)) is given in
terms of the inclination angle 6 as
3m

As shown in Figure 3(e), the vertical HMS beam member OC is subjected to transverse force F,, which
is given by F;, = Fj. Hence, the expression of the transverse force F;, in terms of the remote stress 7
is obvious from Equation (31a) as

F,, = 21blcosb (35)

In addition to the above presented mechanical force, the vertical HMS beam member OC is subjected
to the vertical magnetic field B%, inclination angle of which concerning the local Cartesian frame (x, y)
is obvious from Figure 3(e) as given below.

a, =0 (36)
2.3.2. Effective elastic moduli

The beam model presented in the previous subsection gives non-dimensional deformation charac-
teristics (0, and d,) of HMS beam with non-dimensional geometric specification 1, for the inputs of
normalized mechanical load C' and magnetic load B in terms of magnetic load ratio r as B = rC
along with their orientation angles § and « respectively. To use the beam model for the estimation
of elastic moduli of hexagonal HMS beam networks following a unit cell approach (refer to Figures 2
and 3), the geometric specifications and loading terms of the HMS beam network need to be defined in
non-dimensional forms. The non-dimensional geometric specifications of the inclined (I1y,) and vertical

(IIy,) members of the HMS beam network are defined following Equation (12) as

12
Ho. = (37&)

0

Iy, = ﬂ (37b)

Under any mode of the applied far-field mechanical stress (o7 or o3 or 7), non-dimensional mechanical

force for the inclined (C;) and vertical (C,) members of the HMS beam network can be obtained following



Equation (12) from the beam-level forces (F; and F),) presented in subsection 2.3.1. Such expressions
of the non-dimensional mechanical loads C; and C, in terms of the applied stress (o1 or oy or 7) are
presented in the subsequent subsections for the three different combinations of mechanical and magnetic
loads. Under the defined non-dimensional mechanical load C; for a particular combination of mechanical
and magnetic loads, the non-dimensional magnetic load B; of the inclined member is defined in terms
of the magnetic load ratio r; as

With the known non-dimensional magnetic load B; from the above equation, the non-dimensional
magnetic load B, of the vertical member becomes known once we know the relationship between B; and
B,. To derive such a relationship between B; and B,, let us observe their definitions from Equation (12)

as given below.

_ | Byl B Ih,

B; 39a
ES,UO ( )
| Bg| [B| Iy,

B,=——F—= 39b

Esﬂo ( )

Using Equation (37), the relationship between B; and B, is obtained from the above equation which

gives the non-dimensional magnetic load B, in terms of B; as presented below.

B, = (?)2& (40)

Now, with the defined non-dimensional geometric and load parameters, the non-dimensional tip-
deflections &, and 5y of the members of the hexagonal HMS beam network are obtained from the
generalized beam model which in turn give the non-linear effective elastic moduli following the framework
of the unit cell approach. Derivations of the effective elastic moduli for the three different combinations
of mechanical and magnetic loads are presented in the following three subsections. In addition, non-

dimensional forms of the effective elastic moduli are defined subsequently.

2.3.2.1. Computation of Ei and vio under combined load o1 and B®. Under the combined loading
of mechanical far-field normal stress o; and magnetic field B® as shown in Figure 2(a-c), the non-

dimensional mechanical loads C; and C, are derived using Equations (23), (25) and (12) as given by

12 (% + sin 0)
CZ' = 01 (41&)

20)

C, =0 (41D)
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With the above-presented non-dimensional mechanical loads C; and C, under normal stress o;, the
non-dimensional magnetic loads B; and B, are defined in terms of the magnetic load ratio r; using
Equations (38) and (40). With the defined mechanical and magnetic loads along with their orientation
angles (Equations (24) and (26)), the non-dimensional tip-deflections of the inclined member (6,, and
6,,) and the vertical member (J,,) of the unit cell of hexagonal HMS beam network (refer to Figure 2(b)
and (c)) are obtained with respect to the local Cartesian frames (x, y) based on the generalized beam
model presented in subsection 2.2. Through the coordinate transformation between the local frames (z,

y) and the global frame (1, 2) as shown in Figure 2(g), the resultant deflection along direction-1 (d;)

and direction-2 (d3) are obtained as
6 =1 (=0, cosf + 6, sinb) (42)
by = —I (8, sin 6 + 6, cos ) — hé,, (43)

The normal strain developed along direction-1 under the combined loading ¢; and B* is obtained by
€1 = 61/l cos B, using Equation (42) which becomes

—0,, cosf + 6, sin @
€1 =

(44)

cos 0
Similarly, the normal strain along direction-2 is obtained by €3 = d2/(h + I sin ), using Equation (43)

which becomes

—0,, 8in 0 — 6, cos O — —0,,
€y = L (45)
h
7 +sin @
The longitudinal effective Young’s modulus of the hexagonal HMS beam network is obtained from

its fundamental definition E; = 01/€; using Equation (44) as

B o1 cos 6
0, cosf + 0, sin 0

Ey (46)

The effective Poisson’s ratio v1o of the HMS beam network under the combined loading o; and B“ is

obtained by the definition vy = —e3/€;, using Equations (44) and (45) which becomes

by, sin 6 + 5, cos ) + %5%}) cos 0
(47)

l

The solution steps involved in the computation of the non-linear effective elastic moduli F; and v5 of

Vig = A - -
(— + sin 0) (=0, cosf + &, sinb)

the hexagonal HMS beam network using the beam model are presented in Algorithm 2. Note that the
solution algorithm is generic and is applicable to the computations of effective elastic moduli under all

the three combined loading conditions of the magnetic field and different far-field mechanical stresses.
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Algorithm 2: Beam network-level computational algorithm to obtain non-linear effective elastic moduli of periodic HMS
beam networks under combined mechanical stress and magnetic field.

Define geometry: Define non-dimensional geometric parameters of the HMS beam network (such
as t/l, h/l, and 6 for hexagonal lattices). With the defined lattice parameters, compute the geometric
specifications of the constituting inclined and vertical HMS beams 11, and II, .

Define mechanical load: Under a particular mode of applied mechanical stress (o1 or oy or 7),
define the non-dimensional mechanical force for the inclined and vertical HMS beams C; and C,
along with their inclination angles 3; and 3,.

Define magnetic load: Define the magnetic load ratio r; for the inclined HMS beam. Compute the
non-dimensional magnetic load of the inclined member in terms of r; and C; as B; = r;C;. Compute
magnetic load of the vertical member as B, = (h/l)?B; along with the inclination angles o; and a,.

Compute beam deflections: Under the combined mechanical and magnetic loads, compute non-
dimensional tip-deflections of the inclined and vertical HMS beams 9, d,,, 0,,, and d,, through
solution Algorithm 1.

Compute effective elastic moduli: In terms of the tip-deflections (Zi, 5%., 5, and Syv, compute
the effective elastic moduli (Ey, vq9, Es, 191, and Gis) of the periodic HMS beam network under the
corresponding mode of mechanical stress in combination with the magnetic field.

2.3.2.2. Computation of Eoy and vey under combined load oo and B*. Under the applied normal far-filed
stress along direction-2 (03) in combination with the magnetic field B* as shown in Figure 2(d)-(f),
the non-dimensional mechanical force for the inclined (C;) and vertical (C,) members of the HMS unit
cell are obtained in terms of oy using Equations (27) and (29) through the normalization scheme of

Equation (12) as

12
Ci = 0—(18193 09 (48&)
E. |-
(1)
2
24 (%) cos 0
Cop=—2—+—0y (48b)

The non-dimensional magnetic loads B; and B, are defined in terms of the magnetic load ratio r;
and the mechanical load C; using Equations (38) and (40). The inclination angles of the mechanical
and magnetic loads (8;, o, B, and «,) are given in Equations (28) and (30). With the defined input
parameters, the tip-deflections of the HMS beam members 0, 5%., and d,, are computed through the
generalized beam model. As the coordinate systems for the current load combination of o5 and B is
the same with the load combination of oy and B® (refer to Figure 2), the expressions of the deflections
91 and 09, and the normal strains ¢; and ey are the same as presented in Equations (42)-(45). Hence,

the equations are not repeated here to maintain brevity of the paper.
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The transverse effective Young’s modulus E5 of the hexagonal HMS beam network is defined as
Ey = 03/ey. Using Equation (45), the final expression of the Young’s modulus E, is obtained in terms

of the beam-level deflections as

h .
09 (7 + sin 6’)
Ey = (49)

—0,, 8inf — 6, cosf — ?5%

Using the strain expressions presented in Equations (44) and (45), the effective Poisson’s ratio of the

hexagonal HMS beam network is obtained through its fundamental definition v9; = —€1 /€y as

h _ _
7 + sin 9) (—0z, cos 0 + 6y, sin )

(50)

Vo1 = B - o
<5xi sin 6 + ¢, cos 6 + 7%) cos 0
2.83.2.3. Computation of G1o under combined load 7 and B*. Under the combined loading condition of
the shear mode of mechanical stress (7) and magnetic field B* along direction-2 as shown in Figure 3,
components of the non-dimensional mechanical force C; for the inclined member of the HMS unit cell

are obtained using Equations (33) and (12) as given below.

12 {COS2 0+ (? + sin@) sin@}
F,, = CicosB; = — 3 T (51a)
(1)
{
12 (%) cos 6
F,=Cisinffj=——""-~4——7 (51b)

N
£ (i)

From the above set of equations, the non-dimensional mechanical force C; along with its orientation
angle [3; can be obtained. In terms of the mechanical load C; and the required magnetic load ratio r;,
the non-dimensional magnetic loads B; and B, are defined using Equations (38) and (40) having the
orientation angles «; and «, as defined in Equations (34) and (36). On the other hand, non-dimensional

form of the transverse mechanical force Fj, having orientation angle 3, = 7/2 (refer to Figure 3) is

derived from Equation (35) and (12) as

) 24 (%) cos 0 5
E

O
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Under the prescribed combined mechanical and magnetic loading, rotation {2 of the inclined member of

the HMS unit cell (refer to Figure 3(c)) is obtained from the generalized beam model as

2=-3, (53)

Total horizontal shear deflection at point C (d;.) comprises of the deflection of the vertical member
OC (6,,) and the deflection component due to the rotation 2 (refer to Figure 3(c) and (e)) defined as
61 = hf2+ hd,,. Using Equation (53), the shear deflection 6, is obtained as

610 =h (_Syi + 5_311)) (54)

The horizontal and vertical components of the axial deflection J,, at point A of the inclined member

(refer to Figure 3(c)) are obtained through a coordinate transformation as given by

81, = —l0,, cosf (5ba)
Sy, = —16,, sinf (55b)

Due to the deflections as presented in Equations (54) and (55), the total shear strain developed in the

HMS unit cell under the combined loading of 7 and B® is given by
oo _
Gt o, by, 7 (0wt ) —dncost 5 g
- : — 7 _
h+1lsinf  lcos6 7+sin0 cosf

The effective shear modulus G5 of the hexagonal HMS beam network under the combined loading

V12 (56)

7 and B® is defined in terms of the developed shear strain as G2 = 7/712. Using the expression of the

shear strain as presented in Equation (56), we get the final form of G5 as shown below.

T (% + sine) cos 0
Gy = . — (57
7 (=0y; + 0y,) cosf — b, cos? 0 — 6, (7 + sin «9) sin 0

From the expressions of effective elastic moduli presented in Equations (46), (47), (49), (50) and (57)

(and subsequently considering the dependencies of the tip deflections), we notice nonlinear dependency of
the moduli on applied magnetic field and far-field stress, along with unit cell geometry, intrinsic material
properties and residual magnetic flux architecture. Such complex interplay of the influencing parameters
in an expanded design space provides a unique scope of designing novel metamaterial functionalities

with unprecedented mechanical behavior.

2.3.2.4. Non-dimensional elastic moduli. To observe the effect of non-linearity along with the incremen-
tal effect of the magnetic field with the applied mechanical load on the hexagonal HMS beam network

explicitly, we present the effective elastic moduli in specific forms. Among the five elastic moduli, the
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Poisson’s ratios 115 and 15, are already in non-dimensional forms. Hence, they are presented in their
original forms. Whereas, the other three effective elastic moduli of the HMS beam network (E;, s,

and G1) are expressed in non-dimensional forms as given below.

El I E2 ~ Gl?
EspS Y 2 Espg Y 12 Espg

Where, p is the relative density of the hexagonal HMS beam network defined as the ratio of the volume

Ey (58)
of the total intrinsic HMS material and the volume of the equivalent plate-like object that the hexagonal

HMS beam network acquires [5]. Expression of the relative density p is given by

(% " z) ! »

P="7y
2 <7 +sin9) cos f

2.83.2.5. Note on different lattice architectures. For the hexagonal network of HMS beams, a detailed
derivation of the non-linear effective elastic moduli within the multi-physical mechanics-based semi-
analytical framework is presented in this subsection. To demonstrate the generality of the physically
insightful framework, non-linear effective elastic properties of five other HMS beam networks, namely,
auxetic, rectangular brick, rhombic, triangular, and rectangular configurations are also analysed within
the broad framework (refer to Figure 1(g)). Among the considered five other forms of HMS beam
networks, the effective elastic moduli of the auxetic, rectangular brick, and rhombic configurations
are readily obtained from the framework for hexagonal HMS beam network by properly selecting the
geometric parameters h/l and 6 (note: for auxetic configuration 6 is negative, for rectangular brick con-
figuration 6 is zero, for rhombic configuration h/l is zero). However, for the triangular and rectangular
HMS beam networks, the appropriate unit cells need to be chosen and analyzed separately. The detailed
derivations of the non-linear elastic moduli for the triangular and rectangular HMS beam networks are
presented in the following subsections. Note that under the influence of combined far-field mechanical
stresses and magnetic field, the unit cell mechanics of different lattice configurations becomes signifi-
cantly involved (due to combined bending and stretching dominance in a multi-physical environment)

that has not been investigated in the literature.

2.4. FEffective elastic moduli of triangular HMS beam networks

The non-linear effective elastic moduli Fy, vis, Fs, 191, and Gio of a triangular network of HMS
beams, as shown in Figure 1(g)IV, under different modes of far-field mechanical stress (oy, o2, and 7)
in combination with the magnetic field B* are derived in this subsection. The unit cell of the triangular
HMS beam network is an equilateral triangle with side [ having residual magnetic flux density B. The

combined loading conditions for the triangular HMS unit cell under the longitudinal and transverse
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normal stresses o; and oy in combination with the magnetic field B* along direction-2 are shown in
Figure 4(a) and (b) respectively. Whereas, the combined loading condition under the in-plane shear
stress 7 and the magnetic field B* for the triangular HMS unit cell is shown in Figure 4(d). Note in
Figure 4(d) that the direction of residual magnetic flux density By for the inclined members OB and AB
is opposite (unlike the unit cells considered under far-field normal stresses). This opposite distribution
of B} makes the members OB and AB structurally symmetric under the in-plane shear stress 7 in
combination with external magnetic field B®. This phenomenon is already described in detail for the
hexagonal HMS beam network and is not repeated here to maintain brevity.

Under only far-field mechanical stress (o1, 02, and 7) in absence of magnetic field B%, the cell members
undergo stretch-dominated deformations [5]. Hence, the effective elastic moduli of the triangular lattice
configurations under mechanical load only are governed by the axial deformations of the members [34].
The analytical formulae for the effective elastic moduli of triangular lattices (with cell wall thickness t)

under mechanical load only within small deformation regime are given by [5, 34|
E, E 2t

1
Vg = V91 = g (60b)
Go _ V31 (60c)
E, 4 1

In this subsection, the conventional unit cell-based approach for triangular lattices [5, 34| is extended
to a magneto-active multi-physical mechanics-based semi-analytical framework following the formulation
for hexagonal HMS beam network presented in the preceding subsection, leading to the evaluation of
non-linear effective elastic moduli of the triangular HMS beam network under combined mechanical
and magnetic loads. Large deformation kinematics of the triangular HMS unit cell and the beam-level
forces developed under different combinations of mechanical stress and magnetic field are described first
in the following subsection. With the identified kinematic and kinetic conditions, the beam-level non-
linear multi-physical mechanics problems are solved through the semi-analytical HMS beam model as
presented in subsection 2.1 and subsection 2.2. Using the beam-level deformation results, computations
of the non-linear effective elastic moduli of the triangular HMS beam network under the combined

mechanical stress and magnetic field are presented subsequently.

2.4.1. Beam-level forces and deformation kinematics
Under the combined mechanical and magnetic loads as presented in Figure 4(a), (b), and (d), the

HMS beam members undergo bending in combination with axial deformation. Kinematics and kinetics
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1+ 6, - 1/2

Figure 4: Multi-physical mechanics of periodic triangular HMS beam network under combined mechanical
stress and magnetic field. (a) Combined loading mode of the triangular HMS unit cell under normal stress along
direction-1 (o) and magnetic field along direction-2 (B®). (b) Combined loading mode of the triangular HMS unit cell
under normal stress along direction-2 (o3) and magnetic field along direction-2 (B®). (¢) Deformed configuration of the
triangular HMS unit cell under combined normal stress o7 or oo and magnetic field B®. (d) Combined loading mode of
the triangular HMS unit cell under shear stress in plane 1-2 (7) and magnetic field along direction-2 (B*). (e) Deformed
configuration of the triangular HMS unit cell under combined shear stress 7 and magnetic field B*. (f) Generalized forces
and large deformation kinematics of inclined and horizontal members under any of the three combined loading conditions.

32



of the beam members under the magnetic field B* in combination with the three different modes of the

mechanical stress oy, 09, and 7 are presented in the following three subsections.

2.4.1.1. Mechanical normal stress along direction-1 and magnetic field along direction-2. Under the
combined loading of far-field normal stress o, and magnetic field B* as shown in Figure 4(a), all the
three members (OA, OB, and AB) of the triangular HMS unit cell undergo combined bending-stretching
deformation with one end fixed, while the other ends being restrained to rotation and transverse dis-
placement but free to axial translation. The deformed configuration of the triangular HMS unit cell
under the combined loading of o; and B* is shown in Figure 4(c). The generalized figure also repre-
sents the deformed configuration under the combined loading of o5 and B“. Note in the figure that the
changes in the span of the HMS beam members are shown in a generalized manner without taking into
consideration of the proper algebraic signs. Those senses of the axial deformations will be implicitly
taken care of by the generic beam model under the proper description of the sense of the beam-level
forces under a particular combined loading condition.

Due to the symmetry of the deformation under the combined loading of o; and B®, we concentrate
on one inclined member OB in addition to the horizontal member OA. To use the developed framework
of hexagonal HMS beam network as presented in the preceding subsection readily for the present multi-
physical mechanics of triangular HMS beam network, we consider half of the members OA and OB of
length [/2 which have similar boundary conditions as those of the members of the hexagonal network,
i.e., one end fixed with the other end being rotationally restrained but free to translation (refer to section
2.1.1). Point O is considered the fixed point and origin of local Cartesian frames (x, y) for half of the
inclined and horizontal members. Large deformation kinematics along with the developed forces in half
of the inclined and horizontal HMS members under the combined loading of o1 and B® are shown in
Figure 4(f). Note that the kinematic and kinetic descriptions of the HMS half beams in Figure 4(f) are a
generalized representation under any of the three combined loading conditions presented in Figure 4(a),
(b), and (d).

Under the remote mechanical stress oy, the tip-concentrated force Fj, developed in the horizontal

member as shown in Figure 4(f) is given by

F = \/;albz (61)

Inclination angles ), and «y, of the above-presented mechanical force F} and the vertical magnetic field
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B® for the horizontal HMS member (refer to Figure 4(f)) are given by

Bp=m (62a)

(62b)

7r
ap = 9
For the inclined HMS member as shown in Figure 4(f), the developed force F; and the inclination angle
«; of the magnetic field B® are given by

F =0 (63)

(64)

a; =

ol

2.4.1.2. Normal stress along direction-2 and magnetic field along direction-2. Under the remote nor-
mal stress oy in combination with the external magnetic field B* as shown in Figure 4(b), the large
deformation kinematics of the triangular HMS unit cell and the kinetics of the HMS beam members are
already described through Figure 4(c) and (f). The concentrated force F}, developed in the horizontal

HMS beam due to the remote stress oy is given by

1
Fy, = ——oybl 65
h 2\/502 ( )

As observed in Figure 4(f), the inclination angles /35, and «y are given by

Br =0 (66a)
an = g (66b)

The concentrated force F; developed in the inclined member is expressed in terms of the remote normal
stress oy (refer to Figure 4(f)) as

1
F, = —=o9bl 67
v (67)

The inclination angles §; and «; of the mechanical and magnetic loads for the inclined member as shown

in Figure 4(f) are presented below.

fi =

o; =

ol 3

2.4.1.3. Far-field shear stress in 1-2 plane and magnetic field along direction-2. When the triangular
HMS beam network is subjected to in-plane shear stress 7 combined with the external magnetic field
B“ as shown in Figure 4(d), all the three members (OA, OB, and AB) of the triangular HMS unit cell
are subjected to the same boundary conditions as those under the combined normal stress (o) or o9)

and the magnetic field (B®) (refer to Figure 4(c)). However, under the combined load of 7 and B
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the two inclined members OB and AB undergo the opposite modes of axial deformation (compression
and tension), and hence the triangular HMS unit cell becomes asymmetric as shown in Figure 4(e).
The opposite distribution of the residual magnetic flux density By in the inclined members OB and AB
makes the structural behaviour under the mechanical and magnetic field in phase with each other (i.e.
structurally symmetric, as discussed in the derivation of hexagonal lattices). Within the unit cell-based
approach to compute the effective shear modulus, we concentrate only on one inclined member OB in
addition to the horizontal member OA. The large deformation kinematics and force kinetics of half of
the inclined and horizontal HMS beams are presented through the generalized schematic in Figure 4(f).

Under the remote shear stress 7, the concentrated axial force Fj, developed in the horizontal member

along with the inclination angle «y, of the magnetic field (refer to Figure 4(f)) are expressed as

EF,=0 (69)
ap = 5 (70)

The concentrated force F; developed in the inclined HMS member as shown in Figure 4(f) is expressed
in terms of the remote shear stress 7 as

The inclination angles 5; and «; of the mechanical force F; and the magnetic field B* for the inclined

HMS beam (refer to Figure 4(f)) are given below.

fi =

Q; =

(72a)

s

(72b)

2.4.2. Effective elastic moduli

To estimate the non-linear effective elastic moduli of the triangular HMS beam network, geometri-
cally non-linear axial tip-deflections d,, and J,, of the horizontal and inclined HMS beams under the
concentrated force Fj, and F; combined with the magnetic field B* as described through Figure 4(f) in
the previous subsection are computed based on the generalized HMS beam model. In the framework of
the generalized HMS beam model, the geometries of the horizontal and inclined HMS half beams shown
in Figure 4(f) are normalized as

Iy, = IIy, = (73)

The non-dimensional forms of the beam-level forces in the framework of the generalized HMS beam

model are presented in the respective subsection estimating the elastic moduli of the triangular HMS
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beam network under a particular combined loading case. Expression of the relative density and non-

dimensional forms of the effective elastic moduli are presented subsequently.

2.4.2.1. Computation of Ey and vi5 under combined load o, and B®. Under the combined loading of
normal stress o; and magnetic field B* (refer to Figure 4(a) and (f)), the non-dimensional mechanical
forces Cj, and C; for the horizontal and inclined members are derived from Equations (61) and (63)

following the normalization scheme discussed earlier as

Ch = L33 01 (74&)

()
C;=0 (74D)

With the non-dimensional mechanical forces C}, and C}, the non-dimensional magnetic loads Bj, and

B; for the horizontal and inclined HMS beams are defined in terms of the magnetic load ratio r;, as
Bh = Bl = ThCh (75)

Under the non-dimensional mechanical and magnetic loads with the inclination angles presented in
Equations (62) and (64), the non-linear non-dimensional tip-deflections d,, and d,, of the horizontal
and inclined HMS beams are computed. The normal strain in direction-1 (€;) is obtained in terms of

the beam-level defection §,, through a suitable coordinate transformation as given by
€1 =0y, (76)

The normal strain in direction-2 (e;) is derived from the deformed geometry of the triangular HMS unit

cell as presented in Figure 4(c). By using the Pythagorean theorem on the triangle, we get

(h+ 6,)% + (H;l)z = (1+0,)? (77)

Noting the geometric relation of the undeformed triangular unit cell as h? + (1/2)* = [? (refer to

Figure 4(a)) and neglecting the higher order terms, the above equation gives
1

From the above relation, the strain e, is obtained in terms of the beam-level displacements as
1 4 -

= —=04, + = 0z, 79

62 3 h 3 @ ( )

With the known normal strains €; and €, as presented in Equations (76) and (79), the non-linear effective

elastic moduli £ and vy are obtained as

2
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1 40,
Z_ 2 E 81
Y1z 3 30y, (81)

2.4.2.2. Computation of Ey and ve; under combined load oo and B*. Under the normal stress oy com-
bined with B as shown in Figure 4(b) and (f), the non-dimensional forces C), and C; for the horizontal

and inclined beams are obtained from Equations (65) and (67) as

Ch=—Y2 o (82a)

Ci=—Y" o, (82b)

In combination with the above-presented non-dimensional mechanical forces ) and C;, the HMS
beams are subjected to the non-dimensional magnetic loads Bj, and B; which are defined in terms of
the magnetic load ratio r; by

By, = B; = r,C; (83)

The inclination angles of the mechanical and magnetic loads are already presented in Equations (66)
and (68). Following the same procedure as in the previous combined loading case in the preceding
subsection, the non-linear non-dimensional tip-deflections d,, and d,, are obtained which give the normal
strains €; and e, having the same mathematical expressions as presented in Equations (76) and (79).
Using the strain expressions, the non-linear effective Young’s modulus F, and the Poisson’s ratio v, of

the triangular HMS beam network are derived as

30’2
Fo= — "= &4
S —y (84)
30,
= —Zh 89
Va1 (5“ ) 6xi ( )

2.4.2.3. Computation of G5 under combined load 7 and B*. Under the combined in-plane shear stress
7 and magnetic field B® as presented in Figure 4(d) and (f), the non-dimensional mechanical forces C),
and C; for the horizontal and inclined HMS beam members as derived from Equations (69) and (71)

are given by
Ch=0 (86a)

Ci=—2 7 (86b)

37



The non-dimensional magnetic loads By, and B; of the horizontal and inclined HMS beam members are

defined similarly as those for the other two combined loading cases as

Under the non-dimensional mechanical and magnetic forces with the inclination angles of Equa-
tions (70) and (72), the non-linear non-dimensional defections §,, and d,, are computed through the
generalized HMS beam model. To derive the in-plane shear strain 7,5 under the combined loading of 7
and B®, we concentrate on the deformed triangular HMS unit cell as presented in Figure 4(e). By using

the Pythagorean theorem on the deformed triangle, we get the following geometric relation

I, 6 ’
h? 4 (5 + 5+ 6903) = (1 +6,)? (88)
Noting the geometric relation of the undeformed triangular unit cell as h* + (1/2)* = [* (refer to

Figure 4(d)) and carrying out some mathematical manipulations by neglecting the higher order terms,

the horizontal displacement ¢, , of point B is obtained as

by = 26— 0 (89)

Due to the the horizontal displacement ¢, ,, the shear strain 7,5 developed in the triangular unit cell is

B
given by v12 = d,,/h. Using the geometric relation from Equation (89), the shear strain ~,9 is expressed

in terms of the beam-level displacements 5” and 5% as

4 - 1 -
T2 = 73 Op; — 7 Oz, (90)

Once the shear strain 7,5 is known as presented above, the non-linear effective shear modulus G5 of

the triangular HMS beam network is obtained through its fundamental definition G135 = 7/719 as

\/§T
= - 1
G = 15 (o)

2.4.2.4. Non-dimensional elastic moduli. As Poisson’s ratios v15 and 15, are already non-dimensional,
they are presented in their original forms. The other three effective elastic moduli £y, Fs, and G5 of
the triangular HMS beam network are presented in non-dimensional forms following the normalization
scheme as

Ey - Ey ~ G

EspS Y 2 Espg Y 12 Espg

E (92)

Here the relative density p of the triangular HMS beam network obtained following the same definition

as the hexagonal beam network is given by

p=2V3 ; (93)
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2.5. Effective elastic moduli of rectangular HMS beam networks

To estimate the non-linear effective elastic moduli F1, v15, Fs, 191, and G5 of periodic rectangular
network of HMS beams, as shown in Figure 1(g)V, the unit cell consisting of horizontal HMS beam of
length [ and vertical HMS beam of length h with residual magnetic flux density Bj is chosen. The three
different combined mechanical and magnetic loading conditions for the rectangular HMS unit cell are
shown in Figure 5(a), (b), and (d) respectively.

Under the normal modes of mechanical stress o; or g, in absence of magnetic field B?, the cell
members of the rectangular lattice undergo stretch-dominated deformations [5]. Whereas, under the
shear mode of mechanical stress 7 in absence of magnetic field B®, the cell members are subjected
to bending-dominated deformations [34]. The analytical formulae for the effective elastic moduli of
rectangular lattice under mechanical load only within small deformation regime are given by |5, 34]

b @ (94a)

E. [k
l

Ey t

-2 _ 4

B (94b)

Vg = V91 = 0 (94C)
(t>3

Gz ! (944)

B by h
[ l

In this subsection, the conventional unit cell-based approach for rectangular lattices |5, 34| is ex-
tended to a magneto-active multi-physical mechanics-based semi-analytical framework following the
formulation for hexagonal HMS beam network presented in the preceding subsection, leading to the
evaluation of non-linear effective elastic moduli of the rectangular HMS beam network under combined
mechanical and magnetic loads. Large deformation kinematics of the rectangular HMS unit cell and
the beam-level forces developed under different combinations of mechanical stress and magnetic field
are described first in the following subsection. With the identified kinematic and kinetic conditions, the
beam-level non-linear multi-physical mechanics problems are solved through the semi-analytical HMS
beam model as presented in subsection 2.1 and subsection 2.2. Using the beam-level deformation results,
computations of the non-linear effective elastic moduli of the rectangular HMS beam network under the

combined mechanical stress and magnetic field are presented subsequently.
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Figure 5: Multi-physical mechanics of periodic rectangular HMS beam network under combined mechan-
ical stress and magnetic field. (a) Combined loading mode of the rectangular HMS unit cell under normal stress
along direction-1 (07) and magnetic field along direction-2 (B®). (b) Combined loading mode of the rectangular HMS
unit cell under normal stress along direction-2 (o2) and magnetic field along direction-2 (B®). (c¢) Generalized forces and
large deformation kinematics of the vertical and horizontal members under combined normal stress oy or o2 and magnetic
field B*. (d) Combined loading mode of the rectangular HMS unit cell under shear stress in plane 1-2 (7) and magnetic
field along direction-2 (B®). (e) Forces and large deformation kinematics of the horizontal and vertical members under
combined shear stress 7 and magnetic field B®.

2.5.1. Beam-level forces and deformation kinematics
Under the three combined mechanical and magnetic loading conditions as presented in Figure 5(a),

(b), and (d), the HMS beam members undergo large deformation, the kinematics and kinetics of which
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are described in the following three subsections.

2.5.1.1. Far-field normal stress along direction-1 and magnetic field along direction-2. Under the com-
bined loading case of normal stress o; and magnetic field B* as shown in Figure 5(a), the horizontal and
vertical HMS beam members OA and OB of the rectangular HMS unit cell undergo combined bending-
stretching deformation with fixed end O and the other ends A and B being restrained to rotation and
transverse displacement but free to axial translation. The other pairs of horizontal and vertical HMS
beams BC and CA are not considered in the analysis due to the structural symmetry of the unit cell.
Following the same procedure as in the case of the triangular HMS beam network (refer to the preceding
subsection), half of the members OA and OB of length /2 and h/2 respectively are considered for the
present multi-physical mechanics. The half beams are subjected to the boundary conditions of one fixed
end with the other end being rotationally restrained but free to translation.

Large deformation kinematics and the force kinetics of the vertical and horizontal HMS half beams
under the combined loading of oy and B® are presented in Figure 5(c) concerning the local Cartesian
frames (z, y) fitted at the fixed point O. Note that the kinematic and kinetic descriptions of the HMS
half beams in Figure 5(c) are a generalized representation under the normal modes of mechanical stress
o1 or oy combined with the magnetic field B* as presented in Figure 5(a) and (b).

The concentrated mechanical force Fj, developed in the horizontal HMS beam under the remote

normal stress o; as shown in Figure 5(c) is given by
Fy, = o1bh (95)

Inclination angles (3, and «y, of the mechanical force F}, and the magnetic field B* respectively for the

horizontal HMS member as shown in Figure 5(c¢) are given by

Bp=m (96a)
a, = = 96h
=g (96b)

The vertical HMS beam (refer to Figure 5(c)) is only subjected to the magnetic field B* without any
mechanical force F, under the present combined loading case. Hence, the kinetics of the vertical HMS
beam is represented as

F,=0 (97)
a, =0 (98)
2.5.1.2. Far-field normal stress along direction-2 and magnetic field along direction-2. The large defor-

mation kinematics and kinetics of the members of the rectangular HMS unit cell under the combined
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loading of o5 and B® are already described through the generalized schematic diagrams in Figure 5(c).
Under the present combined loading case, the horizontal HMS beams are not subjected to any mechan-
ical force F}. However, the horizontal members are subjected to B* with the inclination angle ay,. The

kinetic relations for the horizontal HMS beam member are summarized as

F, =0 (99)
m
an =g (100)

The concentrated force F, developed in the vertical member (refer to Figure 5(c)) is given by
F, = gqbl (101)

The inclination angles 5, and «, of the mechanical and magnetic loads respectively for the vertical

member as presented in Figure 5(c) are given by
By =m (102a)

a, =0 (102b)

2.5.1.3. Shear stress in 1-2 plane and magnetic field along direction-2. Under the combined loading
of in-plane shear stress 7 and magnetic field B* as shown in Figure 5(d), the horizontal and vertical
members OA and OB of the rectangular HMS unit cell undergo bending-dominated large deformation
with fixed end O and the other ends A and B being rotationally restrained but free to translation.
Within the present multi-physical mechanics-based framework, the large deformation kinematics and
kinetics of the horizontal and vertical HMS full beam members OA and OB are analysed as presented
in Figure 5(e).

The tip-concentrated transverse force Fj, developed in the horizontal HMS beam under the remote
shear stress 7 is expressed as

F, = 7bh (103)

The inclination angles ), and «y of the mechanical and magnetic loads for the horizontal HMS beam

as shown in Figure 5(e) are given by

Br = %ﬁ (104a)
ap = g (104b)

The concentrated force F, developed in the vertical HMS beam member under the remote shear stress
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7 (refer to Figure 5(e)) is expressed by
F, = bl (105)

The inclination angles 5, and «, of the mechanical force F, and the magnetic field B* for the vertical

HMS beam as shown in Figure 5(e) are summarized as

By = (106a)

S Ny

(106b)

Q,y =

2.5.2. Effective elastic moduli

To estimate the non-linear effective elastic moduli Ey, vi5, Fs, and vy of the rectangular HMS
beam network under the normal modes of mechanical stress o; or o, in combination with the magnetic
field B?, geometrically non-linear axial tip-deflections d,, and J,, of the horizontal and vertical HMS
half beams under the concentrated force Fj, and F, combined with the magnetic field B® as described
through Figure 5(c¢) in the previous subsection are computed through the generalized HMS beam model.
Whereas, for the estimation of the non-linear effective shear modulus G15 under in-plane shear stress 7
and the magnetic field B“, geometrically non-linear transverse deflections d,, and d,, of the horizontal
and vertical HMS full beams as shown in Figure 5(e) are computed.

In the framework of the generalized HMS beam model, the geometries of the horizontal and vertical
HMS half beams considered for combined loading case under normal stress oy or o, and magnetic field

B® as shown in Figure 5(c) are normalized as

H() = (107&)

" s

Whereas, the non-dimensional geometries of the HMS full beams considered for the combined loading
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case under shear stress 7 and magnetic field B* as shown in Figure 5(e) are given by

2 (108a)

)
Iy, = ﬂ (108b)

2.5.2.1. Computation of E1 and vi5 under combined load o1 and B*. The non-dimensional mechanical
forces (', and C), for the horizontal and vertical HMS beams under the combined loading of normal

stress o7 and magnetic field B® as shown in Figure 5(a) and (c) are obtained from Equations (95) and

(97) as
h
Ch = ﬁ o1 (109a)

C,=0 (109b)

Magnitudes of the non-dimensional magnetic loads Bj, and B, for the horizontal and vertical HMS
beam members of the rectangular HMS unit cell are defined in terms of the magnetic load ratio 7, and

the non-dimensional mechanical force C), as

Bh = Thch (110&)
h 2
B, = (7) rnCh (110D)

Under the prescribed non-dimensional mechanical and magnetic loads with the inclination angles as
presented in Equations (96) and (98), the non-linear axial deflections are computed in non-dimensional
forms &,, and J,,. In terms of the beam-level deflections, the normal strains in direction-1 (€;) and
direction-2 (e3) are defined by

€1 =0y, (111)

€ = 0y, (112)

With the above-presented strains €; and ey, the non-linear effective Young’s modulus E; and Poisson’s
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ratio 5 of the rectangular HMS beam network are obtained readily as

&

E, = (113)

2§>1 |

=gl

il (114)

Th

Vig = —

2.5.2.2. Computation of Fy and vy under combined load oo and B*. When the rectangular HMS beam
network is subjected to combined loading under the normal stress oy and the magnetic field B® as
shown in Figure 5(b), the concentrated forces in the horizontal and vertical HMS beams are expressed

in non-dimensional forms using Equations (99) and (101) as

Cp=0 (115a)

Magnitudes of the non-dimensional magnetic loads Bj and B, are defined in terms of load ratio r,
and non-dimensional load C, in a similar way as in the case of the other previously discussed combined

loading mode as

(116a)

B, = r,C, (116b)

Under the above-presented mechanical and magnetic loads with the inclination angles presented in
Equations (100) and (102), the non-linear beam-level deflections d,, and d,, are computed which in turn
give the normal strains €; and e, through Equations (111) and (112). Using the strain expressions, the
non-linear effective elastic moduli £y and vs; of the rectangular HMS beam network under the combined
loading of o5 and B* are obtained as

)

xT

>

(118)

Vo1 = —
Ty

2.5.2.3. Computation of G1o under combined load 7 and B*. Under the combined loading of 7 and B*

as shown in Figure 5(d) and (e), the non-dimensional forces Cj, and C, for the horizontal and vertical
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beams are derived from Equations (103) and (105) as

—
(N}
VR
~

Cy = W T (119a)
E; 1
= ’ (%)3 (119b)
(1)

The non-dimensional magnetic loads B, and B, for the horizontal and vertical HMS beam members

are defined as

Bh = rhCh (120&)
h 2
BU = (7) rhC’h (120b)

Under the above-presented non-dimensional mechanical and magnetic loads with the inclination
angles presented in Equations (104) and (106), non-linear transverse defections of the beam tips are
computed in non-dimensional forms as denoted by d,, and §,, in Figure 5(e). In terms of the transverse

tip-deflections, rotations of the horizontal and vertical HMS beams are obtained as

2, = =3, (121a)

h

2, =10, (121b)

Due to the above-presented rotations (2, and (2, of the horizontal and vertical HMS beam members

respectively, the total shear strain 7,5 developed in the rectangular unit cell is given by
Y2 = —0y, + 0y, (122)

The non-linear effective shear modulus G5 of the rectangular HMS beam network is obtained subse-

quently through the fundamental definition G5 = 7/712 using Equation (122) as

.
Gog= —— 123
. _5yh + 5yv ( )

2.5.2.4. Non-dimensional elastic moduli. As Poisson’s ratios vqo and vy are already non-dimensional,
they are presented in their original forms. Following a similar representation framework as the other
periodic network configurations, the effective elastic moduli E, F5, and G5 of the rectangular HMS

beam network are normalized as
_ FE _ E ~ G
_ _ oA G
E,p3

(124)



Here the relative density p of the rectangular HMS beam network is derived as

lw 12

[
Having established the semi-analytical large-deformation computational frameworks for different

p:

magneto-active periodic beam networks, we present numerical results in the following section to demon-
strate active broadband elasticity programming as a function of the externally applied magnetic field
and bi-level (unit cell geometry and beam-level spatially-varying residual magnetic flux direction) meta-

material architectures.

3. Results and discussion

The generalized HMS beam model is the backbone of the present semi-analytical framework to
estimate the non-linear effective elastic moduli of hexagonal HMS beam networks under combined me-
chanical and magnetic loads. Hence, before going to investigate the effective elastic moduli of HMS beam
networks, the HMS beam model is validated first, as presented in the first subsection here. Thereafter,
critical numerical beam-level results are furnished with symmetric and asymmetric residual magnetic
flux density under different combinations of mechanical and magnetic loads. Note that modulation
capability of the shapes of such architected beams will constitute the foundation for bi-level design
of lattices, as discussed later in this section. Applicability of the full-beam and half-beam model for
symmetric and asymmetric residual magnetic flux density of HMS beam is also investigated along with
the influence of centreline extensibility on the load-deformation characteristics of HMS beam.

Following the beam-level results, the geometrically non-linear semi-analytical framework estimating
the effective elastic moduli of the HMS beam networks is validated, as presented in the third subsection.
Validations of the present framework at the beam-level as well as at the beam network-level would
provide adequate confidence in the proposed computational models. Subsequently, the effect of magnetic
field in combination with the different modes of mechanical load on the non-linear effective elastic
moduli of hexagonal HMS beam network with uniform residual magnetic flux density is investigated, as
presented in the fourth subsection. Based on the kinematic and kinetic conditions of the beam elements
of the hexagonal HMS beam network, two intuitive designs of residual magnetic flux density S(&)
(beam-level architecture) are proposed in the fifth subsection which would significantly influence the
effective elastic moduli of the HMS beam network under combined mechanical and magnetic loads. In
the following subsection, we demonstrate the applicability of the concept of active broad-band elasticity

modulation for different other forms of lattice geometries, as presented in Figure 1(g).
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For all the computations at beam-level and beam network-level, the material constitutive parameters
in the framework of the Yeoh hyperelastic model are considered as Ciy = 0.2712, Cy = 0.0305, and
C3 = —0.004 [89]. The numerical value of the computational parameter A and the limit of p are
considered as 0.9 and 0.05% respectively. The number of functions for the centreline rotation ¢ and

centreline strain € are selected as nb = ns = 5, based on a convergence study.

8.1. Beam-level validation

Though large deformation analysis of HMS beam structures has become a topic of interest for the
last few years, the studies focus on structural characteristics separately under mechanical load only
and magnetic actuation only. Hence, comparable results for our multi-physical mechanics-based beam
model for coupled mechanical and magnetic loading conditions are not readily available in the literature.
Thus, the current geometrically non-linear HMS beam model is first validated under mechanical load
only by comparing it with the results presented by Chen and Wang [65]. Whereas, for the loading case
of magnetic actuation only, we validate our model with the paper by Chen et al. [70]. The validation
studies for both the mechanical and magnetic loading cases are performed for the non-dimensional
geometric specification of the HMS beam [, = 10000.

The validation study of the generalized HMS beam model under mechanical load only is carried
out for the cantilever boundary conditions subjected to tip-concentrated non-dimensional load C' with
inclination angle /5 as considered in the paper [65]. The non-dimensional deformed configurations (&, n)
of the cantilever beam under different values of C for inclination angle § of 7/4, 7/2, 37 /4, and 97/10
as obtained from the present model are shown through solid lines in Figure S1(a)-(d) respectively.
Whereas, the corresponding deformation results reported in the literature [65] are also plotted through
dotted points in Figure S1. As obvious from Figure S1, an excellent agreement between the present semi-
analytical HMS beam model and the model presented in literature [65] is found for all the considered load
magnitudes C' and the orientation angles 5. Hence, the comparison studies in Figure S1 clearly show the
capability of the present HMS beam model in predicting highly non-linear deformation characteristics
of the soft beam under mechanical load only.

The validation study of the present non-linear beam model under magnetic load only is carried out
for four different deformed shapes obtained under different designs of residual magnetic flux density
S(€) of the HMS beam subjected to multiple boundary conditions as considered in literature [70]. The
first considered case among them is the m-shape deformed configuration which is obtained for the design

of S(§) as given below with the free-free boundary conditions (¢'(0) = 0 and ¢'(1) = 0) and inclination
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angle a = /2 [70].

1, 0<€&<0250r05<&<0.75

g =
—1, 025<€<050r0.75<EL1.0

With the above-presented residual magnetic flux density S(§), the prescribed boundary conditions and
inclination angle, the m-shape deformed configurations of HMS beam under non-dimensional magnetic
actuations B = 30, B = 100, and B = 300 are obtained from the present non-linear model as shown
through solid lines in Figure S2(a)-(c) respectively. The corresponding deformed shapes as reported in
literature [70] are also shown in the plots through dotted points.

The second shape we concentrate on is the s-shape configuration which is obtained under the same
boundary conditions and inclination angle o as in the case of m-shape configurations but with the

following design of S(&) [70]

1 2
I, 0<&<-or-<¢<1
3 3
g —
1 2
_17 — < E< =
3 =¢ 3
The comparison plots between the present model and the results reported in literature [70| for the s-
shape configurations under the non-dimensional magnetic actuation B of 30, 100, and 300 are presented
in Figure S2(d)-(f) respectively.
The third type of deformed shape considered for the validation study of the HMS beam model under
magnetic actuation only is the n-shape configuration. The n-shape configuration is achieved for the

same boundary conditions and inclination angle « as those of the m-shape and s-shape configurations

but with the coefficient of residual magnetic flux density [70]

1, 0<&<05
S —

1, 05<¢<1
Comparisons of n-shape deformed configurations from the present semi-analytical model with the results
reported in literature [70] are shown in Figure S2(g)-(i) for the magnetic actuation B = 30, B = 60,
and B = 100 respectively.

The fourth type of the deformed shape of the HMS beam under magnetic actuation we consider is
the Q-shape configuration. The configuration is achieved for the same design of S(§) as that for the
n-shape configurations but under the boundary conditions of #(0) = 0 and 6(1) = 0 with the inclination
angle of the magnetic field « = 7 [70]. The Q-shape deformed configurations of HMS beam under
magnetic actuation B of 60, 100, and 200 are compared with the present non-linear model and the

reported results in literature [70]| as presented in Figure S2(j)-(1) respectively.
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The excellent matching of the deformation results obtained from the present semi-analytical model
and literature [70], as shown in Figure S2, validates our non-linear model in predicting complex config-
urations of HMS beam with designed spatially-varying residual magnetic flux densities under different

magnetic actuation.

3.2. Beam-level numerical results under coupled mechanical and magnetic loads

Once the developed geometrically non-linear HMS beam model is validated for separate loading
conditions of mechanical load only and magnetic load only, as presented in the previous subsection,
benchmark numerical results under coupled mechanical and magnetic loading conditions are presented
here. Note that the such coupled effect of magneto-mechanical loading has not been investigated in the
literature through the development of a comprehensive computational framework for HMS beams.

An HMS beam representing the generalized element (full or half length) of the HMS beam network
having length L with non-dimensional geometric specification I, = 10000 is considered here. Non-
linear deformation characteristics of the HMS beam are simulated through the full-beam and half-beam
models within the extensible and inextensible versions of the present semi-analytical framework. The
typical boundary conditions (as considered here) of the HMS beam as a full-beam problem and as a
half-beam problem have been already described in detail in subsection 2.1.

The considered HMS full-beam is fixed at one end with the other end being rotationally restrained
but free to translation and subjected to non-dimensional mechanical force C' = 10 applied incrementally
in 50 steps. At each incremental step of C, five non-dimensional magnetic loads B = rC are applied by
five magnetic load ratio r of 0.8, 1.6, 2.4, 3.2, and 4 for two different cases of uniform residual magnetic
flux density with S = 1 and S = —1. For the considered HMS full-beam problem, four different
inclination angles of the mechanical and magnetic loads are considered as a« = f = 7/2, o = = 7/3,
a = =mn/4, and @« = = 7/6. The non-dimensional deformed configurations (&, n) of the HMS
beam with residual magnetic flux density S = 1 and S = —1 under the mechanical load C' = 10 in
combination with different magnetic load ratios r are presented in Figure 6(a)-(d) for the considered four
sets of inclination angles respectively. The solid lines in the plots represent the results obtained from the
extensible model. Whereas, the results obtained from the inextensible version of the non-linear model
are plotted through dotted points in the figure. To observe the effect of magnetic load in combination
with the mechanical loading on the non-linear deformation characteristics of the HMS beam with S = 1
and S = —1, variations of the non-dimensional tip-deflection 5y with the non-dimensional mechanical
load C for the considered different magnetic load ratio r are shown in Figure S3(a)-(d) corresponding

to four sets of inclination angles.
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Figure 6: Deformed shapes of HMS full-beam configurations with symmetric uniform residual magnetic
flux density about the mid-point under combined mechanical and magnetic load. Non-dimensional deformed
configurations (£, n) of HMS full beams with the coefficient of residual magnetic flux density S = 1 and S = —1 under
non-dimensional mechanical force C' = 10 in combination with different magnitudes of non-dimensional magnetic load
B = rC in terms of the magnetic load ratio r with the inclination angles of the mechanical and magnetic loads of (a)

a=p=7/2,(b)a=8=7/3,(c) a=pF=mn/4,and (d) o« =8 = 7/6.
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Figures 6 and S3 clearly show that for the residual magnetic flux density with the coefficient S =1,
deflection under combined mechanical load C' and magnetic field B for all the considered inclination
angles # and « increases with magnetic load ratio » compared to the deflection under mechanical load
only (r = 0). Whereas, for the residual magnetic flux density having coefficient S = —1, the deflection
decreases with r for the same combination of mechanical and magnetic loads. Hence, it is clear from
the results that we can modulate stiffness characteristics of HMS beam as per our requirements by
applying a magnetic field in combination with mechanical load through proper design of the residual
magnetic flux density S(&) of the HMS beam. Such effects are exploited in the current design of lattice
metamaterials for broadband elasticity programming.

Now the HMS full-beam of length L is modelled as two HMS half-beams with length L /2 subjected
to cantilever boundary conditions. To apply the same dimensional force F' as that of the full-beam, the
maximum value of the non-dimensional force C' for the half-beam is taken as 2.5. At each incremental
step of mechanical force C, the same five magnetic load ratios r as those for the full-beam problem
are considered as 0.8, 1.6, 2.4, 3.2, and 4. The deformed configurations of the HMS half-beam in the
non-dimensional plane (£, n) under the maximum step of the mechanical load C' = 2.5 in combination
with the considered different magnetic loads are shown in Figure S4(a)-(d). Whereas, the non-linear
variations of the non-dimensional tip-deflection 5y with the non-dimensional mechanical load C' for the
considered different magnetic load ratio r are presented in Figure S5(a)-(d).

It is evident from Figures 6-S5 that the effects of the magnetic field in combination with the mechan-
ical load on the deformation characteristics of the HMS half-beam are the same as the HMS full-beam.
The overall deflections of the HMS half-beam are exactly half of the deflections for the HMS full-beam
under the same condition of combined mechanical and magnetic loads. Hence, it is proved that an HMS
full-beam with one fixed end and the other end being rotationally restrained but free to translation can
be modelled as an HMS half-beam with cantilever boundary conditions when the HMS beam has sym-
metric residual magnetic flux density about the mid-point. However, for asymmetric residual magnetic
flux density, the applicability of such a modelling concept is investigated in the following paragraphs.

Two different asymmetric distributions of residual magnetic flux density about the mid-point are

considered for HMS full-beam by the following S(¢&).

1, 0<¢<05
S =

~1, 05<E<1
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-1, 0<¢<05
S =

1, 05<¢<1

With the above-presented designs of S(&) for the same geometric and loading parameters as those for the
HMS full-beam with symmetric uniform residual magnetic flux density, load-deformation characteristics
of HMS full-beam are computed. Deformed configurations of the HMS full-beam having asymmetric
magnetic flux density are presented in Figure 7. The figure depicts some non-conventional typical
complex shapes of HMS beam achieved for the considered designs of S(§). Though the curvatures of
the deformed configurations are different for the two considered distributions of residual magnetic flux
density, the endpoints undergo the same deflections. Variations of such common tip-deflection gy with
the mechanical load C' for the considered different magnetic load ratios r are shown in Figure S6. The
figure clearly shows that for the considered two designs of S(&), the deflections got reduced compared
to the loading condition of mechanical load only (r = 0).

The HMS full-beam with the considered two asymmetric distributions of residual magnetic flux
density is tried to be modelled now as two HMS half-length beams either with S = 1 or with § = —1.
Load-deformation characteristics of such HMS half-length beams are already presented in Figures S4 and
S5. Comparisons of the deflection results for the HMS full-beam with asymmetric residual magnetic flux
density as presented in Figures 7 and S6 with those for the HMS half-beam as presented in Figures S4
and S5 depicts that the deflections through the half-beam model are not half of the deflections obtained
through the full-beam model. However, for symmetric residual magnetic flux density, we got exactly the
half deflections from the half-beam model compared to the full-beam model under the same condition
of combined mechanical and magnetic loading as described through comparisons between Figures 6-S5.
Hence, it is concluded from the comparison studies that modelling of HMS full-beam with one fixed
end and the other end being rotationally restrained but free to translation as two half-length cantilever
beams is only possible when the residual magnetic flux density is symmetric about the mid-point of
the HMS full-beam. As we focus on both symmetric and asymmetric designs of S(£) for modulation of
effective elastic moduli of HMS beam networks, the two beam models are applied carefully for analyzing
nonlinear hexagonal lattices in the following subsections.

Comparisons of the deflection results between the extensible and inextensible versions of the present
semi-analytical HMS beam model as presented in Figures 6-S6 clearly show that the effect of centreline
extension is not significant for the considered HMS beam under combined mechanical and magnetic

loads. For achieving higher level of accuracy, we will consider the generalized extensible model in the
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Figure 7: Deformed shapes of HMS full-beam configurations with asymmetric residual magnetic flux
density about the mid-point under combined mechanical and magnetic load. Non-dimensional deformed
configurations (£, n) of HMS full-beam with asymmetric residual magnetic flux density under non-dimensional mechanical
force C' = 10 in combination with different magnitudes of non-dimensional magnetic load B = rC in terms of the magnetic
load ratio » with the inclination angles of the mechanical and magnetic loads as (a) a =8 =n/2, (b) a = =7/3, (c)
a=p=mr/4,and (d) a = =7/6.
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further computations of effective elastic moduli of the HMS beam networks.

3.8. Periodic beam network-level validation

As the hexagonal lattice consisting of HMS beam members subjected to combined mechanical and
magnetic loads is not investigated in the literature, directly comparable results for the presently devel-
oped semi-analytical framework are not readily available for reference and validation. Hence, the current
semi-analytical framework estimating non-linear effective elastic moduli of hexagonal HMS beam net-
work under combined mechanical and magnetic loads is validated for the special case of zero magnetic
field (r; = 0) subjected to different modes of mechanical stress only (o; or oy or 7). Validations for
the non-linear effective elastic moduli £; and vy, under normal mechanical stress o; and for the elastic
moduli Fy and v5; under normal mechanical stress o, are carried out by comparing with the results
presented by Ghuku and Mukhopadhyay [42]. Whereas, for the non-linear effective shear modulus G
under the shear mode of mechanical stress 7, the semi-analytical framework is validated by comparing
with the paper by Fu et al. [39].

The validation study for non-linear elastic moduli (Ey, v19, Fa, and vs) of the hexagonal HMS beam
network under the normal modes of mechanical stress only (o7 and o) [42] is carried out for the lattice
configuration with the geometric specifications h/l = 2, t/l = 0.01, and § = 7/6. Young’s modulus
of the intrinsic material is taken as £, = 200 GPa in the reference literature [42]. Whereas, for the
present semi-analytical model, the material constitutive parameters are considered as Chy = 0.2712,
Cy = 0.0305, and C39p = —0.004 within the framework of the Yeoh hyperelastic model [89]. In the
reference literature [42], the non-linear results are presented as the variations of the non-dimensional
elastic moduli E;, 149, Fs, and 15 with the dimensional input normal stress o; and o,. As the elastic
moduli are presented in non-dimensional forms, they are independent of the intrinsic material property
E,. However, the dimensional form of the input normal stress o, and oy makes the results dependent on
the intrinsic material property E. Hence, to make the input normal stress independent of the material
property E, the stresses oy and oy are also expressed in non-dimensional forms following Equation (58)
as o; = 01/E8p3 and g9 = 02/E5p3. Variations of the non-dimensional effective Young’s modulus E,
and the Poisson’s ratio v of the considered hexagonal lattice configuration with the non-dimensional
compressive and tensile modes of normal stress ; are compared considering the present model, the
results reported in the paper [42], and the linear small-deformation analytical model [5] as presented
in Figure S7(a) and (b). The similar comparison plots for the the non-dimensional effective Young’s
modulus F, and the Poisson’s ratio v,; under the non-dimensional compressive and tensile modes of

normal stress g, are presented in Figure S7(c) and (d).
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The comparison plots in Figure S7 depict that the non-dimensional effective elastic moduli E;, 1o,
F5, and vy, of the hexagonal HMS beam network under normal modes of mechanical stress &; and 7, as
estimated by the present model match exactly with the non-linear model in literature [42] at lower input
stress level. However, the differences between them increase with the input stress level. The geometric
exactness in non-linear kinematics and the hyperelastic material model of the present framework is
the possible cause of this difference with the model reported in [42]. However, the differences in the
elastic moduli at the higher stress levels are not very significant. Moreover, the increasing or decreasing
trends of the elastic moduli with the input stress magnitudes agree well between the present model
and the non-linear model reported in literature [42]. As also observed from Figure S7 that within the
small deformation regime, the non-linear elastic moduli match exactly with the conventional analytical
solutions [5]. Differences between the elastic moduli estimated by the present framework and the linear
solutions [5] increase with input stress magnitude due to the non-linearity in the system which is not
considered in the conventional linear analytical solutions [5].

The validation study of the present non-linear framework for the effective shear modulus G5 of
hexagonal HMS beam network under shear mode of mechanical stress 7 is carried out for the auxetic
configuration with § = —x /6 in terms of shear strain 7,2 versus non-dimensional shear stress 7/FE; curve
and shear strain 75 versus non-dimensional shear modulus G152/ E; curve following similar representation
scheme of the reference literature [39]. The shear strain 7, versus shear stress 7/ E; curves for the auxetic
lattice configuration with A/l = 2 and ¢/l = 0.1 as obtained from the present model, the model reported
by Fu et al. [39], and the analytical model [5] are compared in Figure S8(a). Whereas, the similar
comparison of stress-strain curves under the shear mode of mechanical stress for the auxetic lattice
configuration with h/l = 2 and ¢/l = 0.12 is shown in Figure S8(b). On the other hand, variations of
the non-dimensional effective shear modulus G5/ F; with the shear strain 75 are compared considering
the present model, the model reported by Fu et al. [39], and the analytical model [5] in Figure S8(c)
and (d) for two lattice configurations with h/l = 1.5, ¢/l = 0.1 and h/l = 2, t/l = 0.1 respectively.

The comparison plots in Figure S8(a) and (b) show that the stress-strain curves (7,5 versus 7/FEs) of
the HMS beam network under the shear mode of mechanical stress 7 as estimated by the present semi-
analytical framework match exactly with the analytical solutions [5] within the small deformation regime.
The non-linear stress-strain curves estimated by the present framework also match with the non-linear
model [39] at the lower shear strain levels within the non-linear zone. However, with the increase in the
shear strain 7,9, the differences between the non-linear stress-strain curves increase. Similar observations
are found from the comparison plots of variations of the non-dimensional effective shear modulus G5/ E

of the HMS beam network with the shear strain ;5 in Figure S8(c) and (d). The differences between the
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present framework and the non-linear model reported in [39] arise due to the fundamental differences
in their respective formulations. The present framework is developed in the geometrically exact non-
linear kinematic setting considering combined bending and axial deformations with the hyperelastic
constitutive material model. Whereas, the model reported in the reference literature [39] is developed
within the geometric non-linear kinematic setting excluding the axial deformation considering linear
elastic constitutive material characteristics. Though the non-linear shear stiffness of the HMS beam
network as predicted by the present framework has some difference at the higher strain levels, the
trends are the same with the non-linear model reported in literature [39]. Within the framework of the
existing fundamental differences in the formulations (where the present model is more accurate), the
validation study of the present model with the non-linear model from literature [39] for the effective
shear stiffness of the HMS beam networks can be considered quite satisfactory.

In this subsection, we have primarily concentrated on the hexagonal lattices with non-auxetic and
auxetic geometries for lattice-level validation, depending on the availability of reference literature. While
rectangular brick, re-entrant auxetic and rhombic geometries are direct derivatives of hexagonal lattices
(thus no need for additional validation), the triangular and rectangular lattice configurations are further

validated later in their respective subsections.

3.4. Hexagonal periodic HMS beam networks under uniform residual magnetic flux density

Effect of the magnetic field B* along direction-2 in combination with a particular mode of mechanical
stress (oy or o9 or 7) on the non-linear effective elastic moduli of the hexagonal HMS beam network
having uniform residual magnetic flux density S = 1 and S = —1 is investigated in this subsection.
As mentioned earlier, under the combined loading of normal stress o; and magnetic field B?, we will
focus on the longitudinal non-dimensional Young’s modulus E; and Poisson’s ratio r45. Under the
combined loading of o, and B®, we will focus on the transverse non-dimensional Young’s modulus FE,
and Poisson’s ratio 15;. Whereas, under the combined loading of shear stress 7 and magnetic field
B, we will investigate the effective non-dimensional shear modulus G;,. For a particular mechanical
loading mode in combination with the magnetic field, the hexagonal HMS beam network is subjected
to mechanical stress incrementally in 50 steps. At each step of mechanical loading, the incremental
magnetic load is applied to the hexagonal HMS beam network in terms of the magnetic load ratio r;
through 100 steps.

Variations of the non-dimensional effective Young’s modulus E; of the hexagonal HMS beam network
having the uniform residual magnetic flux density S = 1 as a function of the magnetic load ratio r;
at different stress levels under the compressive mechanical stress oy in combination with the magnetic

field B* are shown in Figure 8(a). Under the same combined loading conditions for the hexagonal HMS
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Figure 8: Effective Young’s modulus of hexagonal HMS beam networks having uniform residual magnetic
flux density under combined mechanical normal stress along direction-1 and magnetic field along direction-
2. Variations of the non-dimensional effective Young’s modulus E; of the hexagonal HMS beam network having uniform
residual magnetic flux density (a, ¢) S =1 and (b, d) S = —1 as function of the magnetic load ratio r; at different
mechanical stress levels o1 under the (a, b) compressive and (c, d) tensile modes of the mechanical stress o; in combination
with the magnetic field B* along direction-2.

beam network having the negative uniform residual magnetic flux density S = —1, variations of the
Young’s modulus E; with the magnetic load ratio r; are shown in Figure 8(b). Whereas, under the

tensile mode of the mechanical normal stress o, in combination with the magnetic field B“, the similar
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plots of the non-dimensional Young’s modulus of the hexagonal HMS beam network with S = 1 and
S = —1 are shown in Figure 8(c) and (d) respectively. Variations of the effective Poisson’s ratio vis
of the hexagonal HMS beam network having the uniform residual magnetic flux density S = 1 and
S = —1 as a function of the magnetic load ratio r; for the same combined loading conditions as of
Figure 8(a)-(d) are presented in Figure 9(a)-(d).

Effects of the magnetic field along with the residual magnetization pattern in combination with
different modes of far-field mechanical loading on the non-linear variations of the elastic moduli as
function of the input stress magnitude are investigated here. As observed in Figure 8(a), (c¢), (d), and
Figure 9(a), (c), (d), singularity points for the effective Young’s modulus E; and Poisson’s ratio v, arise
at some magnetic load ratios r; for the hexagonal HMS beam network with S = 1 under both tension
and compression and for the hexagonal HMS beam network with S = —1 under tensile mode only. The
beam-level deflections under the magnetic load B® corresponding to singular magnetic load ratios r;
balance the deflections under the corresponding far-field mechanical stress levels o;. Hence, at those
magnetic load ratios 7;, the effective Young’s modulus £; and Poisson’s ratio v15 of the hexagonal HMS
beam network become undefined due to no effective lattice-level strain. However, such singularity points
for the effective Young’s modulus E; and Poisson’s ratio 15 do not arise for the hexagonal HMS beam
network with S = —1 under the compressive mode of the mechanical stress 7 in combination with the
magnetic field B® as observed in Figure 8(b) and Figure 9(b). As also observed from Figure 8 that under
certain combinations of the mechanical and magnetic loading, negative stiffness of the hexagonal HMS
beam network can be achieved. To observe the effect of the magnetic load in terms of the magnetic load
ratio r; on the effective stiffness of the hexagonal HMS beam network, variations of the non-dimensional
Young’s modulus F; with the input stress o; for equally spaced magnetic load ratios r; are further
presented in Figure S9(a)-(d). For the same magnetic load ratios r;, variations of the Poisson’s ratio
v12 with the input stress o; are presented in Figure S10(a)-(d). The variations of the elastic moduli
with the input stress magnitude is coming from the geometric non-linearity due to large deformation
and material non-linearity under magneto-mechanical coupling.

As observed from Figure S9(a), the effective non-dimensional Young’s modulus F; of the hexagonal
HMS beam network with S = 1 decreases with the input stress magnitude under the compressive
mechanical stress o1 in combination with the magnetic load having the magnetic load ratio 0 < r; < 0.4.
Under the same loading condition for the magnetic load ratio 0.6 < r; < 0.7, negative stiffness of the
HMS beam network is observed. The negative stiffness initially increases with the stress magnitude o4
and then starts decreasing at the higher stress levels. However, both the positive and negative non-

dimensional Young’s modulus increases with the magnetic load ratio r;. Maximum 225.5% enhancement
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Figure 9: Effective Poisson’s ratio of hexagonal HMS beam networks having uniform residual magnetic flux
density under combined mechanical normal stress along direction-1 and magnetic field along direction-2.
Variations of the effective Poisson’s ratio 12 of the hexagonal HMS beam network having uniform residual magnetic flux
density (a, ¢) S =1 and (b, d) S = —1 as function of the magnetic load ratio r; at different mechanical stress levels
o1 under the (a, b) compressive and (c, d) tensile modes of the mechanical stress o7 in combination with the magnetic
field B® along direction-2.

in the positive Young’s modulus F; is observed from Figure S9(a) compared to the only mechanical
loading condition (r; = 0). Whereas, the maximum enhancement in the negative Young’s modulus £,

is achieved as 74.2% for r; = 0.7 compared to r; = 0.6. Under the compressive stress o; in combination

60



with the magnetic load having 0 < r; < 3 for the hexagonal HMS beam network with S = —1 as
observed from Figure S9(b), E; decreases with the input stress magnitude o; for lower r;. However,
for higher 7;, F; initially decreases and then increases with o;. The overall non-dimensional Young’s
modulus E; decreases with the the magnetic load ratio r;. A maximum 84% reduction in E; is observed
in Figure S9(b) for r; = 3 compared to r; = 0.

As evident from Figure S9(c), for the hexagonal HMS beam network with S = 1 under the tensile
mode of mechanical normal stress ¢; in combination with the magnetic load having 0 < r; < 1.5, the
non-dimensional Young’s modulus E; increases with the stress amplitude. The overall £, decreases
with the magnetic load ratio r; at the lower stress zone, however, at the higher input stress level oy, it
has some mixed trend with r;. Maximum enhancement and reduction in the non-dimensional Young’s
modulus E; compared to the only mechanical loading condition (r; = 0) are obtained as 44.1% and
72.1% respectively. Under the combined tensile stress o; and magnetic field with 0 < r; < 0.4 for
the HMS beam network with the negative residual magnetic flux density S = —1, the positive non-
dimensional Young’s modulus F) increases with the stress amplitude as observed from Figure S9(d).
For the magnetic load ratio 1 < r; < 2, the non-dimensional Young’s modulus E; is negative which
decreases with o;. However, both the positive and negative Young’s modulus F; increases with r;. As
obtained from Figure S9(d), the maximum enhancements in the positive and negative E; are found to
be 189.1% and 67.6% respectively.

As observed from Figure S10(a), for the hexagonal HMS beam network with S = 1 under the
combined compressive stress o; and magnetic load, the effective Poisson’s ratio v15 decreases with oy
for 0 < r; < 0.4 and increases with oy for 0.6 < r; < 0.7. However, for both the ranges of r;, the overall
Poisson’s ratio 115 has an increasing trend with the magnetic load ratio r;. The maximum enhancements
in vy, for the two ranges of r; are found to be 29.8% and 232.8% respectively. Under the same combined
loading conditions for the HMS beam network with S = —1 as presented in Figure S10(b), the effective
Poisson’s ratio vy, has decreasing trends with both o and r;. A maximum 29.8% reduction in vy, is
observed compared to the only mechanical loading condition r; = 0. As evident from Figure S10(c),
the effective Poisson’s ratio v45 of the HMS beam network with S = 1 increases with both input tensile
stress magnitude o; and the magnetic load ratio ;. The maximum enhancement in 145 compared to
the loading condition of r; = 0 is found to be 449.2%. Under the combined loading of tensile o; and r;
within the range 0 < r; < 0.4, v15 of the HMS beam network with S = —1 increases with o, as observed
from Figure S10(d). For the range 1 < r; < 2, vy decreases with oy. For both the ranges of r;, the
overall effective Poisson’s ratio v;5 has decreasing trends with r;. The maximum reductions in 5 for

the considered two ranges of r; are obtained from Figure S10(d) as 20.6% and 21.9% respectively.
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Figure 10: Effective Young’s modulus of hexagonal HMS beam networks having uniform residual magnetic
flux density under combined mechanical normal stress along direction-2 and magnetic field along direction-
2. Variations of the non-dimensional effective Young’s modulus Fy of the hexagonal HMS beam network having the
uniform residual magnetic flux density (a, ¢) S =1 and (b, d) S = —1 as function of the magnetic load ratio r; at
different mechanical stress levels o under the (a, b) compressive and (c, d) tensile modes of the mechanical stress o9 in
combination with the magnetic field B* along direction-2.

Under the compressive and tensile normal stress along direction-2 (02) in combination with the mag-
netic field along direction-2 (B®), effects of the magnetic load ratio r; and input stress magnitude o9

on the non-dimensional elastic moduli Fy and v of the hexagonal HMS beam network with uniform
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Figure 11: Effective Poisson’s ratio of hexagonal HMS beam networks having uniform residual magnetic
flux density under combined mechanical normal stress along direction-2 and magnetic field along direction-
2. Variations of the effective Poisson’s ratio v4; of the hexagonal HMS beam network having the uniform residual magnetic
flux density (a, ¢) S =1 and (b, d) S = —1 as function of the magnetic load ratio r; at different mechanical stress levels
o9 under the (a, b) compressive and (c, d) tensile modes of the mechanical stress oo in combination with the magnetic
field B* along direction-2.

residual magnetic flux density S = 1 and S = —1 are shown in Figures 10-S12 following the repre-
sentation scheme for the combined loading oy and B* (refer to Figures 8-S10). Figure 10(b), (c), and
Figure 11(b), (c) depict that for the hexagonal HMS beam network with S = —1 under compression

and the hexagonal HMS beam network with S = 1 under tension, singularity points on the effective
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and 15 arise at some magnetic load ratios r;. However, for the other two configurations as presented in

Figure 10(a), (d), and Figure 11(a), (d), such phenomena are not observed.
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Figure 12: Effective shear modulus of hexagonal HMS beam networks having uniform residual magnetic
flux density under combined mechanical shear stress in plane 1-2 and magnetic field along direction-2.
Variations of the non-dimensional effective shear modulus G5 of the hexagonal HMS beam network having the uniform
residual magnetic flux density (a, ¢) S =1 and (b, d) S = —1 as function of the magnetic load ratio r; at different
mechanical stress levels 7 under the (a, b) anti-clockwise and (¢, d) clockwise modes of the mechanical stress 7 in
combination with the magnetic field B* along direction-2.

As observed from Figure S11(a), the non-dimensional effective Young’s modulus E, of the hexagonal

HMS beam network with S = 1 decrease with compressive stress magnitude oy for lower values of r;.
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However, for higher values of r;, F5 initially decreases and then increases with oo. The overall stiffness
decreases with r; and maximum 83.9% reduction in F, is observed. Under the same compressive mode
of mechanical loading, the positive and negative £, of the hexagonal HMS beam network with S = —1
for the ranges of the magnetic load ratio 0 < r; < 0.7 and 1.5 < r; < 2.5 respectively decreases with
stress magnitude oy and increases with r; as observed in Figure S11(b). The maximum enhancements
in the positive and negative E, due to the magnetic field are achieved as 233.7% and 66.6% respectively.
As observed from Figure S11(c) and (d), under the tensile mode of the normal stress oy, the effective
Young’s modulus FE, increase with o, for both the hexagonal HMS beam networks with S = 1 and
S = —1. However, for the HMS beam network with S = 1, the positive and negative non-dimensional E,
increases with r; in the considered ranges 0 < r; < 0.7 and 1.5 < r; < 2.5 respectively. Maximum 232.6%
and 66.8% enhancements in the positive and negative E, are achieved as obtained from Figure S11(c).
Whereas, for the HMS beam network with the negative residual magnetic flux density S = —1, opposite
effect of r; is observed in Figure S11(d) with the 83.1% maximum reduction with respect to the only
mechanical loading condition, r; = 0.

As evident from Figure S12(a), the effective Poisson’s ratio o1 of the hexagonal HMS beam network
with S = 1 decreases with both the compressive stress o, and magnetic load ratio r;. A maximum
129.4% reduction in 1o is observed for r; = 5 compared to r; = 0. For the HMS beam network with
S = —1 under tensile mode of normal stress as presented in Figure S12(d), completely opposite effects
of o5 and r; are observed with the maximum 55% enhancement. As obvious from Figure S12(b), for
the HMS beam network with S = —1 under compressive stress o, in combination with the magnetic
load 0 < r; < 0.7, the effective Poisson’s ratio v5; decreases with stress magnitude. For the magnetic
load range 1.5 < r; < 2.5, an opposite effect of the non-linearity is observed. However, for both
the considered magnetic load ranges, 15, increases with r; having the maximum 35.1% and 21.9%
enhancements respectively. Completely opposite effects of oo and r; are observed in Figure S12(c) for
the HMS beam network with S = 1 under tensile stress o,. The corresponding reductions in the effective
v91 due to the application of magnetic field are found to be 15.1% and 39% respectively.

Under the anti-clockwise and clockwise modes of the shear stress 7 in combination with the mag-
netic field B* along direction-2, combined effects of the magnetic load ratio r; and the input stress
magnitude 7 on the non-dimensional shear modulus G, of the hexagonal HMS beam network with
uniform residual magnetic flux density S = 1 and S = —1 are shown in Figures 12 and 513 following
similar representation scheme for the combined loading condition of normal stress and magnetic field.
As obvious from Figure 12(b) and (c), for the HMS beam network with S = —1 under anti-clockwise

shear stress and the HMS beam network with S = 1 under clockwise shear stress, singularity points

65



arise at some r; values. For these combined loading cases, negative shear modulus is observed under
certain combinations of 7 and r;. Whereas, for the other two combined loading conditions as presented
in Figure 12(a) and (d), such singularity points of the shear modulus do not arise.

As obvious from Figure S13(a) and (d), for the hexagonal HMS beam network with S = 1 under
anti-clockwise shear stress and the hexagonal HMS beam network with S = —1 under clockwise shear
stress, the effective non-dimensional shear modulus G, increases with stress magnitude 7 for the lower
values of r;. Whereas, for the higher magnetic loading r;, mixed increasing-decreasing effects of the
stress magnitude are observed. However, for both the configurations, r; has the same decreasing effects
with the corresponding 41.8% and 68.4% maximum reductions in Gy,. For the HMS beam network
with the negative magnetization S = —1 under the anti-clockwise mode of shear stress 7 as presented
in Figure S13(b), some irregular effects of the stress magnitude 7 and the magnetic load ratio r; are
observed on the non-dimensional positive G for 0 < r; < 3 and the mixed negative-positive G for
5 < r; < 6. The maximum enhancement and reduction in the positive G5 are found to be 339.6% and
56.8% respectively. Whereas, the maximum enhancement in the negative G is observed as 47.3%. For
the HMS beam network with S = 1 under the clockwise shear stress 7 as presented in Figure S13(c), the
positive non-dimensional shear modulus Gy, for 0 < r; < 1.5 increases with the input stress amplitude.
However, for the magnetic load range 5 < r; < 6, the negative G, initially increases with 7 but at the
higher stress level becomes almost independent of 7. Both the positive and negative G5 of the HMS
beam network increase with r; resulting in maximum 463.4% and 43.2% enhancements respectively. Tt
is interesting no note from the trends presented for the elastic moduli, the value of applied magnetic
field can be actively modulated (and optimized) based on the applied external mechanical stresses to

achieve a target level of certain elastic modulus and stiffness.

3.5. Periodic HMS beam network with optimally-architected residual magnetic flur density

As described in the mathematical formulation in subsection 2.3.1, the beam elements of the hexagonal
HMS beam network are subjected to finite moments at the ends with zero moment at the mid-point due
to the typical rotationally boundary conditions. Based on the kinetic conditions, two sets of intuitive
designs of the residual magnetic flux density (S(&)) are proposed having maximum hard particle density
at the endpoints with zero at the mid-point of the HMS beam elements. In the first set of design, we
consider either S = 1 or S = —1 at both the ends £ = 0,1 with S = 0 at the mid-point £ = 0.5. The

variation of S(§) along the normalized coordinate ¢ is defined by the following equation with the degree
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of non-linearity n.

H(1—26", 0<E<05
S(€) = ( )

+(—1426)", 05<E<1

For the second set of design, S(&) is varying either from S = —1to S =1 or from S =1to S = —1

(a)1 5 Positive S (b) Negative S
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Figure 13: Physics-informed intuitive designs of spatially-varying residual magnetic flux density in the
HMS beam elements of the hexagonal HMS beam network. Distribution of the coefficient of residual magnetic
flux density S(€) along the normalized coordinate & with the degree of non-linearity n = 0,0.1,0.25,0.5,1, and 3 for: (a,

b) the first set of design of S(£) having (a) positive and (b) negative distribution, and (¢, d) the second set of design of
S(€) varying (c) from S =—-1to S=1and (d) from S=1to S =-1.

67



between the ends £ = 0,1 with S = 0 at the mid-point & = 0.5. The variation of S(§) along the
normalized coordinate £ for the second set of design of S(§) is expressed mathematically below with the

degree of non-linearity n.

F(1-20", 0<E<05
S(§) = ( )
H(—1426)", 05<E<1

The positive and negative distributions of the first designed set of S(£) along the normalized coordinate
¢ with the degree of non-linearity n = 0,0.1,0.25,0.5,1, and 3 are shown in Figure 13(a) and (b)
respectively. Similarly, for the two cases of the second designed set of S(§), the distribution of S(&)
along the normalized coordinate £ are presented in Figure 13(c) and (d) respectively. The effect of the
degree of non-linearity n for the two sets of designed S(£) on the non-linear variation of the elastic
moduli of the hexagonal HMS beam network as functions of the input stress are investigated here as
presented in the following paragraphs.

Variations of the non-dimensional effective Young’s modulus E; of the hexagonal HMS beam network
with the input stress oy for the considered six degrees of non-linearity n (0,0.1,0.25,0.5,1, and 3) of
the positive and negative distribution of the first set of designed S(&) (refer to Figure 13(a) and (b))
under the combined compressive stress along direction-1 (07) and the external magnetic field B, along
direction-2 are shown in Figure 14(a). Whereas, the variations of E; under the tensile mode of the
normal stress o; in combination with the magnetic field B, are presented in Figure 14(b). The similar
plots showing the effects of the degree of non-linearity n on the effective Poisson’s ratio 145 of the
hexagonal HMS beam network with the first set of designed S(&) are shown in Figure 14(c) and (d)
respectively. The results are compared in Figure 14 for the magnetic load ratio r; = 0.4. Under the
combined loading of normal stress along direction-2 (03) and the magnetic field B, along direction-2,
effects of the the degree of non-linearity n on the non-linear variations of the effective Young’s modulus
E, and Poisson’s ratio vy of the hexagonal HMS beam network with the first set of designed S(¢) are
shown in Figure S14 for the magnetic load ratio r; = 0.5. Whereas, similar variations of the non-linear
shear modulus G4y of the HMS beam network with the degree of non-linearity n for the first set of
designed S(§) under the anti-clockwise and clockwise modes of shear stress (7) in combination with the
external magnetic field B, are shown in Figure 15 for the magnetic load ratio r; = 1.5.

As observed from Figure 14(a) and (c), the non-dimensional Young’s modulus F; and the Poisson’s
ratio v non-linearly decreases with compressive stress o; for both the positive and negative distribution
of the first set of design of S(£). Such non-linearity in the system stiffness is coming from the inherent

geometric non-linearity due to large deformation and material non-linearity due to magneto-elastic
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Figure 14: Modulation of the effective elastic moduli of hexagonal HMS beam networks with the first set
of designed S(¢) under the normal stress along direction-1 in combination with the magnetic field along

direction-2. Variations of the (a, b) non-dimensional effective Young’s modulus E; and (c, d) effective Poisson’s ratio

v19 of the hexagonal HMS beam network as function of the input stress o7 for the considered six degrees of non-linearity

n (0,0.1,0.25,0.5,1, and 3) of the positive and negative distributions of the first set of designed S(£) under the (a, c)

compressive and (b, d) tensile mode of normal stress o; along direction-1 in combination with the magnetic field B*

along direction-2. The results are compared for the magnetic load ratio of the inclined member r; = 0.4.
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Figure 15: Modulation of the effective shear modulus of hexagonal HMS beam networks with the first
set of designed S(¢) under the shear stress in plane 1-2 in combination with the magnetic field along
direction-2. Variations of the non-dimensional effective shear modulus G5 of the hexagonal HMS beam network as
function of the input stress 7 for the considered six degrees of non-linearity n (0,0.1,0.25,0.5, 1, and 3) of the positive and
negative distributions of the first set of designed S(§) under the (a) anti-clockwise and (b) clockwise mode of shear stress
7 in plane 1-2 in combination with the magnetic field B* along direction-2. The results are compared for the magnetic
load ratio of the inclined member r; = 1.5.

coupling under the combined mechanical and magnetic loading. For the positive distribution of the
first set of designed S(¢), the overall non-linear Young’s modulus E; and Poisson’s ratio v, decrease
with the degree of non-linearity n as observed in Figure 14(a) and (c¢). Whereas, for the negative
distribution of S(&), the degree of non-linearity n shows the opposite increasing effect on the non-
linear Young’s modulus E; and Poisson’s ratio vi5. Maximum 56% and 11% enhancements in the
non-dimensional Young’s modulus E; and Poisson’s ratio v, are achieved respectively for n = 3 of
the negative distribution of S(§) compared to the uniform distribution (S = —1) for n = 0 (refer to
Figure 14(a) and (c)). Whereas, maximum 66.4% and 21% reductions in E; and vy, are obtained for
n = 3 of the positive S(&) with respect to the uniform distribution (S = 1) for n = 0.

Under the tensile mode of the normal stress o; in combination with the external magnetic field B®
as presented in Figure 14(b) and (d), a completely opposite effect of the inherent system non-linearity is
observed compared to the compressive mode of o1 as shown in Figure 14(a) and (c¢). The non-dimensional

Young’s modulus F, and the Poisson’s ratio vy increase with increase in the tensile o; for both the
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positive and negative distribution of the first set of design of S(§). As shown in Figure 14(b), the overall
non-linear Young’s modulus £, increases with the degree of non-linearity n for the positive distribution
of S(€), whereas, it decreases with n for the negative distribution of S(§). Whereas, as observed from
Figure 14(d), the degree of non-linearity n has the opposite effect on the non-linear Poisson’s ratio v9
compared to the Young’s modulus £;. The maximum 31.1% and 22.7% enhancements in £, and vy, are
achieved respectively for the non-linear S(§) with n = 3 compared to the uniform S with n = 0 under
the tensile mode of normal stress oy in combination with the external magnetic field B* as observed
from Figure 14(b) and (d). Whereas, the maximum reductions in the elastic moduli F; and vy, are
observed as 62.6% and 23.3% respectively from Figure 14(b) and (d) for the non-linear S(§) with n = 3
compared to the uniform S with n = 0.

Under the normal stress along direction-2 (03) in combination with the magnetic field B® along
direction-2, effects of non-linearity on the non-dimensional elastic moduli E5 and v in terms of their
variations with input stress magnitude o are observed from Figure S14 similar to the combined loading
of o1 and B® as presented in Figure 14. However, the effects of the degree of non-linearity n of the
first set of designed S(§) are found opposite for the combined loading of o2 and B* compared to the
combined loading of o; and B*. As evident from Figure S14(a) and (c), the maximum enhancements in
the non-dimensional Young’s modulus E> and Poisson’s ratio v,; under the compressive mode of oy are
achieved as 42.4% and 27.5% respectively for the positive S(£) with n = 3 compared to the uniform S
for n = 0. Whereas, 47.2% and 18% reductions in E, and 1 are obtained for the negative distribution
of S(¢) with n = 3 compared to n = 0. Under the tensile mode of oy in combination with B?, the
maximum enhancement and reduction in E, for n = 3 with respect to the uniform S (n = 0) are found
to be 41% and 46.6% respectively from Figure S14(b). Whereas, as evident from Figure S14(d), the
enhancement and reduction in v for the non-linear S(§) with n = 3 compared to n = 0 under the
tensile mode of o, in combination with B are obtained as 10.4% and 7.3% respectively.

As evident from Figure 15(a) and (b), under both the anti-clockwise and clockwise modes of shear
stress 7 in combination with the magnetic field B®, the non-dimensional shear modulus (15 increases
with the input stress 7 for the positive distribution of the first set of design of S(£). Whereas, for the
HMS beam network with the negative distribution of the first set of designed S(€), the non-dimensional
shear modulus G, initially decreases and then increases with 7 for the lower values of n. However, for
the highest value of the degree of non-linearity n = 3, G5 has an increasing trend with the input stress
7 amplitude. As observed from Figure 15(a), under the anti-clockwise mode of 7 in combination with
the magnetic field B?, the non-dimensional shear modulus G increases with the degree of non-linearity

n for the positive distribution of the first designed set S(¢). However, for the negative distribution of
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S(€), Gy decreases with n at the lower stress level, whereas, it increases with n at the higher stress zone.
Maximum 30.9% enhancement in the non-dimensional shear modulus Gy is achieved for n = 3 of the
positive distribution of the first set of designed S(&) compared to the uniform S with n = 0. Whereas,
the maximum reduction and enhancement in G, for the negative S(€) are observed as 35.6% and 50.9%
respectively. On the other hand, under the clockwise mode of 7 in combination with the magnetic field
B® as observed in Figure 15(b), the non-dimensional shear modulus G5 decreases with the degree of
non-linearity n for the positive distribution of S(§). Whereas, for the hexagonal HMS beam network
with negative designed S(¢), Gy increases with n. The maximum enhancement and reduction in Gy,
are observed from Figure 15(b) as 104.3% and 80.4% respectively compared to the uniform S.

For the second set of design of the residual magnetic flux density (refer to Figure 13(c) and (d)),
the two opposite distributions of S(§) varying from S = —1 to S =1 and from S =1 to S = —1 cause
the same effects on the non-linear elastic moduli of the hexagonal HMS beam network under each mode
of the mechanical stress in combination with the magnetic field. Despite of the opposite curvatures at
the deformed state, the same tip-deflections of HMS beam for the two opposite distributions of S(&)
varying from S = —1 to S = 1 and from S = 1 to S = —1 is the cause behind such phenomenon.
Such a phenomenon is already described in connection with Figures 7 and S6 for a HMS beam with the
opposite signs of S(£) in the two halves. Hence, for the two opposite distributions (varying from S = —1
to S =1 and from S = 1to S = —1) of the second set of designed S(€) as shown in Figure 13(c) and (d),
we get single set of results. Effects of the degree on non-linearity n for the second set of designed S(¢&)
on the non-linear elastic moduli of the hexagonal HMS beam network under the loading combinations
of 01, 09, and 7 with the magnetic field B* are shown in Figures S15-S17 respectively for the magnetic
load ratio r; = 2.5, r; = 4, and r; = 4.

Under the compressive mode of normal stress along direction-1 (¢;) in combination with the external
magnetic field B for the second set of designed S(¢), the non-dimensional Young’s modulus F) initially
decreases with the input stress magnitude oy as observed from Figure S15(a). At the higher magnitude
of the applied stress o1, E; increases with o, for the lower values of n and goes on decreasing for the
higher values of n. Under the same combination of mechanical and magnetic loading, the Poisson’s
ratio v decreases with the applied stress o; as evident from Figure S15(c). Negative Poisson’s ratio
is obtained for n = 0, and 0.1 even for the non-auxetic configuration of the hexagonal HMS beam
network under consideration. Under the tensile mode of the normal stress o; in combination with B® as
observed from Figure S15(b) and (d), both Young’s modulus F; and Poisson’s ratio v, increase with an
increase in the magnitude of the applied stress o;. The overall non-linear Young’s modulus E; decreases

with the degree of non-linearity n of the second set of designed S(£) under both the compressive and
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tensile modes of o; as observed from Figure S15(a) and (b). The maximum reductions in E; for n = 3
compared to n = 0 are observed to be 86.9% and 63.9% under the compression and tension respectively.
As observed in Figure S15(c), the Poisson’s ratio 15 has an increasing trend with n at the lower range
of the compressive stress ;. However, at the higher range of oy, some mixed trend is observed. The
maximum enhancement of 143.5% in vy, for n = 3 compared to n = 0 is achieved. Whereas, under the
tensile mode of o7, Poisson’s ratio v1s decreases with n as shown in Figure S15(d), and the maximum
reduction in vy5 is found to be 73.9%.

As shown in Figure S16(a) and (c), the non-dimensional Young’s modulus E, and Poisson’s ratio
Vo1 of the hexagonal HMS beam network with the second set of designed S(&) decrease with the applied
stress input under the combined loading condition of compressive normal stress along direction-2 (o3)
and magnetic field along direction-2 (B*). The Overall non-linear elastic moduli F5 and vy increase
with the degree of non-linearity n. The maximum enhancements in the elastic moduli Fy and vy, for
the non-linear S(§) with n = 3 with respect to the linear S(§) with n = 0 are found to be 23% and
68.5% respectively. Effects of the inherent system non-linearity and the degree of non-linearity n of the
second set of designed S(¢) on the elastic moduli F and vy, are found exactly the opposite under the
tensile mode of normal stress oy as observed from Figure S16(b) and (d) compared to the compressive
mode (refer to Figure S16(a) and (c)). The maximum reductions of 63.3% and 35.8% are obtained in
the elastic moduli Fy and vy for the non-linear S(¢) with n = 3 compared to the linear S(&) with n = 0.

Under both the anti-clockwise and clockwise modes of shear stress 7 in combination with the external
magnetic field B%, the non-dimensional effective shear modulus G of the hexagonal HMS beam network
with the second set of designed S(€) initially decreases and then increases with the input stress 7 for the
lower values of n as observed from Figure S17(a) and (b). Whereas, for the highest value of the degree
of non-linearity n = 3, G, has an increasing trend with the magnitude of the input stress 7. The plots
in Figure S17(a) and (b) also depict that the non-linear shear modulus G increases with the degree of
non-linearity n of the second set of deigned S(§). The maximum enhancements in the non-dimensional
shear modulus G, are achieved to be 68.9% and 57.5% for the non-linear S(¢) with n = 3 compared
to the linear S(§) with n = 0 under the anti-clockwise and clockwise mode of shear stress respectively.

The numerical results presented in the preceding subsection (subsection 3.4) demonstrate on-demand
magneto-active modulations (enhancements and reductions) of the effective nonlinear elasticity of hexag-
onal HMS beam networks through uniform residual magnetic flux density design in the cell walls under
far-field magnetic field in combination with externally applied mechanical stresses. Physics-informed
(finite moments at the ends with zero moment at the mid-point due to the typical rotationally re-

strained beam boundary conditions for periodic lattices) architecturing of the residual magnetic flux
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density pattern in the cell walls as proposed in the present subsection results further augmentations in
the deformation components due to far-field magnetic field compared to uniform residual magnetic flux
density which are in-phase or out-of-phase with the deformations caused by mechanical stresses only.
The in-phase and out-of-phase deformations coming from magnetic field and mechanical stresses respec-
tively results augmented anti-curvature or pro-curvature effects [42, 43| to the cell wall deformations
compared to the uniform residual magnetic flux density of the cell walls. Such active anti-curvature
or pro-curvature effects cause further enhancements or reductions of the HMS beam network stiffness
compared to the uniform residual magnetic flux density design as demonstrated through the numerical
results in the present subsection (subsection 3.5). In turn this will lead to improved energy efficiency
in achieving a target on-demand stiffness, resulting in sustainable programmable metamaterials with

minimum utilization of the intrinsic materials.

3.6. Applicability to other forms of periodic HMS beam networks

Within the developed multi-physical mechanics-based semi-analytical framework, modulations of
the elastic moduli of hexagonal HMS beam networks with uniform and two intuitively designed residual
magnetic flux densities are extensively investigated in the preceding two subsections. To demonstrate the
generality of the proposed concept of modulating elastic properties through an external magnetic field
within the developed physically insightful computational framework, non-linear effective elastic moduli
of five other forms of HMS beam networks, namely, auxetic, rectangular brick, rhombic, triangular,
and rectangular networks as shown in Figure 1(g) are analysed in this subsection considering uniform
residual magnetic flux density in combination with different modes of far-field mechanical stresses. Note
that the concept of beam-level architecturing the residual magnetic flux density can also be implemented
to different other unit cell architectures for more accentuated elasticity modulation as demonstrated in
the case of hexagonal lattices (refer to section 3.5). However, we limit the current demonstration to

uniform residual magnetic flux density for other lattices in order to maintain the brevity of this paper.

3.6.1. Auzetic HMS beam networks

For the auxetic HMS beam network, as shown in Figure 1(g)I, the geometric parameters are con-
sidered as h/l = 2 and @ = —7/6. The unit cell configuration of the auxetic HMS beam network with
residual magnetic flux density S = 1 subjected to normal (o7 or 03) and shear (7) stresses in combina-
tion with the external magnetic field B is shown in Figure 16(a). Variations of the non-dimensional
elastic moduli Ey, v1a, By, 151, and Gyo with different modes of input stress magnitude under different
magnetic load levels are presented in Figure 16(b)-(f) respectively. It is evident from the figure that

within a small deformation regime in absence of the external magnetic field, all the results obtained
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from the present framework agree well with the analytical solutions from literature [5]. This provides
a degree of confidence and validation to the present computational framework before exploiting it for
further investigation.

As observed from Figure 16(b), the effective non-dimensional Young’s modulus E; of the auxetic
HMS beam network decreases with compressive stress o; and magnetic load ratio r;. Whereas, under
the tensile mode of the normal stress oy, Young’s modulus F; increases with the stress magnitude and
the magnetic load ratio r; for 0 < r; < 0.4. Under the same loading condition for the magnetic load ratio
1 < r; < 2, negative stiffness is observed which decreases with stress magnitude but increases with r;.
Maximum 201.9% enhancement and 46.4% reduction in the positive Young’s modulus FE; are achieved
concerning the only mechanical loading condition (r; = 0). Whereas, the maximum enhancement in
the negative Young’s modulus E; is obtained as 68.8% for r; = 2 compared to r; = 1. Figure 16(c)
depicts that the effective Poisson’s ratio 15 increases with magnetic load ratio r; with different degrees
of auxecity under the compressive and tensile modes of normal stress ;. A maximum 19% enhancement
in vy, for the considered ranges of r; can be obtained from Figure 16(c).

For the combined loading under normal stress o5 and magnetic field B* along direction-2 as presented
in Figure 16(d) and (e), effects of non-linearity in terms of variations of the elastic moduli Ey and vy
with stress magnitude are found opposite compared to the loading combination under o; and B®.
However, decreasing and increasing effects of the magnetic loading under the compressive and tensile
loading modes are the same for E, as that of F;, with maximum 400.4% and 66.49% enhancement and
reduction respectively. However, for 15y, the effect of magnetic load ratio is found opposite to that of
V1o with a maximum 40% reduction. Notably the degree of auxeticity for vy, and 15 can be actively
controlled in a wide band as a function of the magnetic field.

As obvious from Figure 16(f), under the anti-clockwise mode of shear loading, the non-dimensional
shear modulus G, increases with stress magnitude 7 and decreases with magnetic load r;. Under the
clockwise mode of shear loading, G, increases with stress magnitude 7 for a lower range of r;. However,
for a higher range of r; under the clockwise loading, negative G5 are observed having mixed increasing-
decreasing trends with the stress magnitude. However, for both the ranges of r; under the clockwise
loading mode, r; has increasing effects on G15. The maximum enhancement and reduction in the positive
non-dimensional G4 concerning the only mechanical loading condition r; = 0 are observed as 248.3%
and 62.7% respectively. Whereas, in the negative shear modulus G5, a maximum 46% enhancement is

achieved for r; = 10 compared to r; = 8.
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Figure 16: Modulation of the effective elastic moduli of auxetic HMS beam networks having uniform
residual magnetic flux density under different modes of mechanical stress in combination with magnetic
field. (a) The unit cell of auxetic HMS beam network with h/l = 2 and § = —=n/6 having residual magnetic flux
density S = 1 subjected to (1) normal stress o or o2, and (2) shear stress 7 in combination with magnetic field B* along
direction-2. (b-f) Variations of the non-dimensional effective elastic moduli of the auxetic HMS beam network as function
of the different modes of the mechanical stress at equally spaced magnetic load levels r;. The dotted points represent the
analytical solutions [5] without magnetic field under small deformation regime.
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Figure 17: Modulation of the effective elastic moduli of rectangular brick HMS beam networks having
uniform residual magnetic flux density under different modes of mechanical stress in combination with
magnetic field. (a) The unit cell of rectangular brick HMS beam network with h/l = 1 having residual magnetic flux
density S = 1 subjected to (1) normal stress oy or oy, and (2) shear stress 7 in combination with magnetic field B®
along direction-2. (b-f) Variations of the non-dimensional effective elastic moduli of the rectangular brick HMS beam
network as function of different modes of the mechanical stress at equally spaced magnetic load levels r;. The dotted
points represent the analytical solutions [5] without magnetic field under small deformation regime.
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3.6.2. Rectangular brick HMS beam networks

The rectangular brick HMS beam network as shown in Figure 1(g)II is derived readily from the
hexagonal HMS beam network by taking § = 0. The unit cell configuration of the rectangular brick
HMS beam network with ~/l = 1 having uniform residual magnetic flux density (S = 1) is shown
schematically in Figure 17(a). Variations of the non-dimensional effective elastic moduli E\, via, B, 151,
and Gy, of the rectangular brick HMS beam network as functions of the different modes of normal and
shear stresses combined with external magnetic field are presented in Figure 17(b)-(f). Comparisons of
each set of results with the corresponding analytical solutions from literature |5], as presented through
the large dotted points in the plots, validate our framework for the special case in absence of the
magnetic field within a small deformation regime. This provides a degree of confidence to the present
computational framework before exploiting it for further investigation.

As in cases of the other HMS beam networks, modulations of the non-linear elastic moduli of the
rectangular brick HMS beam network in terms of the external magnetic field are evident from Fig-
ure 17(b)-(f). Effects of geometric and material non-linearity on the elastic moduli in terms of their
variations with stress magnitude oy, 0o or 7 and magnetic load ratio r; can be readily noticed Fig-
ure 17(b)-(f). Interestingly, from Figure 17(b)-(f) it becomes obvious that depending on the combina-
tion of the magnetic load with a particular mode of the mechanical stress, negative Young’s modulus,
negative Poisson’s ratio and negative shear modulus can be achieved. Maximum enhancements in £,
E,, and Gy, are noted to be 64.4%, 150%, and 162.1% respectively. Whereas, maximum 32%, 54.5%,
91.7%, and 48.5% reductions in Ey, Ey, a1, and Gy are obtained respectively under the considered
ranges of the magnetic load ratio r;.

Note in Figure 17(c) that under the combined loading of normal stress o; and magnetic field B¢, the
magnitudes of the negative or positive Poisson’s ratio v15 of the rectangular brick HMS beam network
are very large compared to the unity. As obvious from Figure 17(a-1), under the combined loading of
normal stress o7 and magnetic field B%, the normal strain in direction-2 (e3) is governed by the bending-
dominated deformation of the horizontal cell walls. Whereas, the normal strain along direction-1 ()
is governed by the stretching-dominated deformation of the horizontal cell walls. Due to the difference
in the order of magnitudes of the bending and stretching dominated axial strains along direction-1 (e;)
and direction-2 (eg), such large magnitudes of Poisson’s ratio vy, is achieved for the rectangular brick
HMS beam network under the present loading combination. As v;5 is zero under the only mechanical
load in absence of the magnetic field, the enhancement and reduction in it are noted in terms of their

absolute values instead of percentage and they are 240.4 and 109.3 receptively.
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3.6.3. Rhombic HMS beam networks

The rhombic HMS beam network as shown in Figure 1(g)III is obtained from generic hexagonal
HMS beam lattices by putting A/l = 0 and § = 7/4. The unit cell configuration of the rhombic
HMS beam network with uniform residual magnetic flux density (S = 1) is shown in Figure 18(a).
Variations of the non-dimensional effective elastic moduli £y, 112, Es, 151, and Gio of the thombic HMS
beam network with combined stress and external magnetic field along with the comparisons with the
respective analytical results from literature [5] are shown in Figure 18(b)-(f). The good agreement with
literature provides a degree of confidence and validation to the present computational framework before
exploiting it for further investigation.

The self-explanatory plots in Figure 18(b)-(f) establish the idea of modulating the non-linear elastic
moduli Ey, 149, Es, 51, and Gis of the rhombic HMS beam network by external magnetic field in
combination with the different modes of the mechanical stress. The figure also depicts that under
certain combinations of mechanical and magnetic loads, negative stiffness of the rhombic network can
be achieved. Maximum 233%, 36.8%, 232.7%, and 77.6% enhancements in the non-dimensional elastic
moduli By, 119, Ey, and Gyo of the rhombic HMS beam network are obtained respectively under the
considered ranges of the magnetic loads. Whereas, the maximum reductions in the non-dimensional

elastic moduli Fy, Fs, 151, and G15 are achieved to be 58%, 60.2%, 37%, and 36.6% respectively.

3.6.4. Triangular HMS beam networks

The non-linear elastic moduli of the triangular HMS beam network (refer to Figure 1(g)IV) is not
readily derivable from the multi-physical mechanics-based semi-analytical framework for the hexagonal
HMS beam lattices. However, by selecting the proper unit cell as shown in Figure 19(a), the effective
elastic moduli of the triangular HMS beam network are derived following a similar computational
framework. A detailed derivation of non-linear elastic moduli E1, vqo, Fs, 151, and G5 of the triangular
HMS beam network under the combined mechanical stress and magnetic field is presented in section
2.4.

Variations of the non-dimensional elastic moduli £}, 149, Es, vs1, and Gy of the triangular HMS
beam network with different modes of mechanical stress in combination with the magnetic field are
shown in Figure 19(b)-(f). The corresponding analytical results from literature [5, 34| in absence of the
magnetic field within a small deformation regime are also plotted in the figure through the large dotted
points. The comparison studies successfully validate our proposed semi-analytical framework for the
special case of small deformation in absence of the magnetic field.

Figure 19(b)-(f) depicts that the non-linear non-dimensional elastic moduli £, v1, Es, vs1, and G5
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of the triangular HMS beam network can be modulated as per requirement through the magnetic load
in terms of ratio r; or r;. Under certain combinations of mechanical stress with the magnetic field,
even a negative Poisson’s ratio is achievable with different degrees. The maximum enhancements in
the non-dimensional elastic moduli E;, v1a, Fs, 151, and Gys of the triangular HMS beam network are
attainable as 14.1%, 27.5%, 44.5%, 865.5%, and 154% respectively. Whereas, maximum 11.6%, 27.6%,
32%, 1523.5%, and 65.8% reductions in the non-dimensional elastic moduli are obtained respectively.
Note the exceptional enhancement (865.5%) and reduction (1523.5%) in the Poisson’s ratio 1 as
observed from Figure 19(e). As obvious from Figure 19(a-1), under the combined loading of normal stress
oo and magnetic field B, the influence of bending due to the magnetic field is more on the horizontal
member OA compared to the inclined member OB. Such a deformation pattern of the triangular HMS
unit cell creates a difference in the order of magnitudes of the normal strains along direction-1 (e;)
and direction-2 (e) which in turn results in an exceptionally large enhancement and reduction in the

Poisson’s ratio 15 as noted in the numerical results.

3.6.5. Rectangular HMS beam networks

As in the case of the triangular HMS beam network, derivation of the non-linear elastic moduli of
the rectangular HMS beam network (refer to Figure 1(g)V) by considering appropriate unit cell (refer
to Figure 20(a)) within the current semi-analytical framework is presented in section 2.5. Variations of
the non-dimensional elastic moduli Fy, 19, Es, 151, and G of the rectangular HMS beam network with
different modes of mechanical stress in combination with the magnetic field along with the comparisons
with the respective analytical results (concerning only small deformation mechanical stresses) from
literature [5, 34] are presented in Figure 20(b)-(f). As in the case of the other configurations, the
comparison studies between the present semi-analytical framework and the analytical models [5, 34| are
found quite satisfactory in absence of the magnetic field within the small deformation regime.

The concept of modulating non-linear elastic moduli Ey, 119, Es, 121, and G5 through applying an
external magnetic field is demonstrated in Figure 20(b)-(f) for the rectangular HMS beam network. The
figure also depicts that by controlling the external magnetic field in combination with the mechanical
load, mode-dependent negative Poisson’s ratio and negative shear modulus can be achieved. Maximum
111.1%, 66.7%, and 102.1% enhancements in the non-dimensional elastic moduli F;, Fs, and G, are
obtained respectively. Whereas, the maximum reductions in the elastic moduli are found to be 38.8%,
28.6%, and 50% respectively. As the Poisson’s ratios vio and v are zero under only mechanical load,
their enhancements and reductions under magnetic field are expressed by absolute values instead of

percentage values, and they are 0.1 and 13.1 in enhancement and 0.2 and 30.7 in reduction respectively.

82



(@) (d)

670 ‘ - ‘ ‘ 390
B L %7"1,:0.4 IrU:O
f 6047 \ / 1362
=
.S =
0
Pe K 2 538 ‘\ /’ 13345
o g
t 1 g { 1 ot
e e S 472 \ / 1306 =
o A = \\ /l iy
|
3 406§ i i 1278
—=0.5
lr, =0 r, =04
: 340’ & Vro=0 250
005 1 2 3 4 5
oy (MPa) %107

(b) - | ©

770 — 1600
s =20 /
/- /
11410
=690 =
-2 = =
2 1220 -2 2
) =0.1 g g,
=610; =0 & g
3 1030 - 83
S rp = 0.1 5 2
K 530
= 1840 .
\\ N
r, =0
450 - - BN
0.05 1 2 3 4
o1 (MPa) %1077

~
(<]
~—
—_
Nen)

0.1 : ; : : 0.04 0.15 : : ‘ : 0.07
I -0
0.08 —~ / 0 R 0.06
= B Y | k! —
2 / \% -0.05 o B = &
2 0.06 g 3 0.05 &
& & 3 U0 &
] 8
g 0.04 2 E.o. l004 2
= \k 1-0.15 & f_ﬁ/ o
£0.02 ) o 0.1 5
/ rh = 0\ 02 IC 0.03
| P
-o.ow Th, ' ‘ ‘ 2025 202 . ' ‘ . 0.02
005 1 2 3 4 5 002 04 08 12 16 2
o1 (MPa) %107 7 (MPa) %107

Figure 20: Modulation of the effective elastic moduli of rectangular HMS beam networks having uniform
residual magnetic flux density under different modes of mechanical stress in combination with magnetic
field. (a) The unit cell of rectangular HMS beam network with h/l = 0.5 having residual magnetic flux density S =1
subjected to normal stress oy or o2 and shear stress 7 in combination with magnetic field B* along direction-2. (b-
f) Variations of non-dimensional effective elastic moduli of the rectangular HMS beam network as function of different
modes of the mechanical stress at equally spaced magnetic load levels r;, or r,. The dotted points represent the analytical
solutions [5, 34] without magnetic field under small deformation regime.
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The large magnitudes of the positive and negative Poisson’s ratio v5; of the rectangular HMS beam
network are caused by the difference in the order of magnitudes in the normal strains €; and e, under
the combined loading of normal stress oo and magnetic field B* due to different respective modes of
predominant beam deformations.

In general, the numerical results demonstrate the on-demand active modulation of effective elastic
moduli in a wide band (i.e. broadband stiffness and flexibility programming) as a function of the unit
cell geometry, beam-level architecture of residual magnetic flux density and nonlinear intrinsic material
properties along with the applied far-field mechanical stresses and magnetic field. The effectiveness
of applied magnetic field can be further optimized (including target attainment) corresponding to a
particular mode and level of applied far-field stress depending on the unit cell geometry (such as different
bending and stretching dominated unit cells and dimensions of the beam-like members) and beam-level

residual magnetic flux density.

4. Summary and perspective

In the paper, we have proposed a novel class of lattice metamaterials as periodic networks of beams
made of soft material with embedded hard magnetic particles (HMS beam networks) subjected to large
deformation under combined remote mechanical stress and magnetic field. The architected networks
of HMS beams are very light in weight and provide excellent modulation capability of the non-linear
effective elastic properties depending on the hard magnetic particle distribution in the HMS beam
elements, unit cell geometry and the combination of applied mechanical stress with the external magnetic
field. To actively modulate the metamaterial properties post-manufacturing enabling applications for
a range of advanced intelligent structural systems, we propose here to adopt an innovative bi-level
modulation concept involving the coupled design space of unit cell geometries, architected HMS beam-
like members and their stimuli-responsive deformation physics. We have exploited the geometric non-
linearity due to large deformation and material non-linearity under magneto-mechanical coupling to
modulate the effective elastic properties of the novel class of architected HMS beam networks ranging
from very high stiffness like stiff metal to very low stiffness, even lower compared to the soft polymers.

By externally applying different values of the magnetic field intensity, different elastic properties and
stiffness can be achieved, and that too from a distance (i.e. on-demand contactless elasticity control).
Essentially, this will help in minimizing the material utilization to an extreme extent by controlling the
stiffness of a structure based on active operational demands. For example, the stiffness corresponding
to target modes and direction of a structure can be actively increased during an operational condition

when higher magnitudes of loads are experienced to keep the deformations under control or the natural
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frequencies need to be increased to avoid resonance under dynamic loading. The stiffness can also be
actively reduced to allow large deformation and shape control for (soft-)robotic motions or increased
energy absorption and avert sudden failure.

To estimate the non-linear effective elastic moduli under the normal or shear mode of mechanical
stress in combination with the external magnetic field, a physically insightful semi-analytical framework
is developed for periodic HMS beam networks. Within the unit cell-based framework, the non-linear
multi-physical mechanics of rotationally restrained HMS beams subjected to combined mechanical and
magnetic loads representing generalized elements of the architected beam network is defined. Gov-
erning equation of the non-linear HMS beams is derived using the variational principle-based energy
method within the non-linear kinematic setting of the Euler-Bernoulli beam theory and the material
constitutive law of the Yeoh hyperelastic model. To deal with the non-linearity involved in the govern-
ing equation of the multi-physical mechanics problem, a successive two-stage iterative computational
scheme is developed as an integral part of the semi-analytical framework.

Considering the aim of this paper, we have limited the scope to 2D lattices with different bending and
stretching-dominated periodic configurations (as shown in figure 1(b, g)) to demonstrate the concept
of post-manufacturing contactless active mechanical property modulation. Extension of the 2D lattice
framework into 3D lattices can be readily performed by considering the same HMS beam model and
appropriate 3D unit cells with appropriate boundary conditions (for example, refer to [90]).

Within the developed semi-analytical framework, we first investigate the effect of external magnetic
field in combination with different modes of remote mechanical stress on the non-linear effective elastic
moduli of the architected hexagonal HMS beam network having uniform residual magnetic flux den-
sity. Based on the observations along with the kinematics and kinetics of the HMS beam elements, we
have proposed two physics-informed beam-level designs of residual magnetic flux density for the hexag-
onal HMS beam network, leading to enhanced efficiency of the magnetic field. Further to demonstrate
the generality of the proposed multi-physical mechanics-based framework, different other HMS beam
based lattice geometries, namely, auxetic, rectangular brick, rhombic, triangular, and rectangular con-
figurations are investigated considering uniform residual magnetic flux density. Before presenting the
numerical results, the developed semi-analytical framework has been thoroughly validated to ascertain
adequate confidence, considering (1) HMS beam-level deformation under mechanical and magnetic actu-
ation (note that the lattice-level homogenized mechanical behavior depends on beam-level deformation
physics), (2) effective elastic moduli of different lattice geometries considering the conventional linear
regime, and (3) effective nonlinear elastic moduli of hexagonal lattices under large deformation. Such

multi-level validations at the beam and lattice level considering the linear and non-linear deformation
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regimes along with multi-physical loading conditions provide adequate confidence in the proposed com-
putational framework. A full-scale finite element modelling can be carried out to compare the current
results. But considering the complexity of modelling such HMS beam-based lattices in the finite element
framework, it is beyond the scope of this manuscript. Further, a detailed finite element model of the
lattice is also not strictly necessary considering the extensive multi-level validation approach adopted
for the proposed computational framework.

For the hexagonal HMS beam network with the uniform residual magnetic flux density, the maximum
enhancements in the non-dimensional elastic moduli Ey, 112, Es, 121, and Gqo under the compressive
normal modes and anti-clockwise shear mode of the mechanical stress in combination with the magnetic
field are achieved as 225.5%, 232.8%, 233.7%, 35.1%, and 339.6% respectively compared to the only
mechanical loading condition without any magnetic field. Under the same combined loading conditions,
the maximum reductions in the five elastic moduli are observed to be 84%, 29.8%, 83.9%, 129.4%, and
56.8% respectively. Whereas, under the tensile modes of normal stress and the clockwise mode of shear
stress in combination with the magnetic field, 189.1%, 449.2%, 232.6%, 55%, and 463.4% enhancements
and 72.1%, 21.9%, 83.1%, 39%, and 68.4% reductions in the five elastic moduli Ey, via, Es, 51, and
G2 are achieved respectively.

The effectiveness of on-demand elasticity modulation can further be enhanced through beam-level
spatially-varying architectures of the residual magnetic flux density. For the hexagonal HMS beam
network with the first set of designed residual magnetic flux density, 56%, 11%, 42.4%, 27.5%, and 50.9%
enhancements in the non-dimensional elastic moduli E4, 142, Es, 121, and Gy are achieved respectively
compared to the uniform magnetization under the compressive modes of normal stress and anti-clockwise
mode of shear stress in combination with the external magnetic field. Whereas, the maximum reductions
in the non-dimensional elastic moduli Ey, 142, Es, 121, and Gqo under the compressive normal modes
and the anti-clockwise shear mode of the mechanical stress in combination with the magnetic field are
found to be 66.4%, 21%, 47.2%, 18%, and 35.6% respectively. Under the tensile modes of the normal
stress and the clockwise mode of shear stress in combination with the external magnetic field, 31.1%,
22.7%, 41%, 10.4%, and 104.3% enhancements and 62.6%, 23.3%, 46.6%, 7.3%, and 80.4% reductions
in the five elastic moduli Fy, 119, Es, o1, and G1s of the hexagonal HMS beam network with the first
designed set of residual magnetic flux density are obtained respectively.

For the hexagonal HMS beam network with the second set of design (beam-level spatial variation) of
the residual magnetic flux density under the compressive modes of normal stress and the anti-clockwise
mode of shear stress in combination with the magnetic field, maximum 86.9% reduction in F; and max-

imum 143.5%, 23%, 68.5%, and 68.9% enhancements in v15, Ey, o1, and Gqo are achieved respectively
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with respect to uniform designs. Whereas, under the tensile normal modes and the clockwise shear
mode of the mechanical stress in combination with the magnetic field, maximum 63.9%, 73.9%, 63.3%,
and 35.8% reductions in Fy, 149, E», and v and maximum 57.5% enhancement in G, are achieved
respectively. It is worthy to mention that we have explored here two different classes of architectures
for spatially varying residual flux density, while there exist a vast scope of further optimization follow-
ing single and multi-objective optimization algorithms along with unit cell geometry for enhancing the
effectiveness of broad-band elasticity modulation.

For the auxetic HMS beam network with the uniform residual magnetic flux density, the maximum
enhancements in the non-dimensional elastic moduli £, v12, Es, and Gio are achieved to be 201.9%,
19%, 400.4%, and 248.3% respectively compared to the only mechanical loading condition. Whereas,
maximum 46.4%, 66.49%, 40%, and 62.7% reductions are obtained in the non-dimensional elastic moduli
E\, E5, vy, and Gy respectively. For the rectangular brick HMS beam network with the uniform
residual magnetic flux density, maximum 64.4%, 150%, and 162.1% enhancements are achieved in E,
FE,, and G, respectively compared to the only mechanical loading condition. Whereas, the maximum
reductions in E;, Fs, 191, and G1, are obtained to be 32%, 54.5%, 91.7%, and 48.5% respectively. As
V19 is zero for rectangular brick lattices under the only mechanical load in absence of the magnetic field,
the enhancement and reduction in it are noted in terms of their absolute values instead of percentage
and they are 240.4 and 109.3 receptively.

For the rhombic HMS beam network with the uniform residual magnetic flux density, maximum
233%, 36.8%, 232.7%, and 77.6% enhancements in the non-dimensional elastic moduli E;, 149, Es,
and G5 are obtained respectively compared to the only mechanical loading condition. Whereas, the
maximum reductions in the non-dimensional elastic moduli E;, Es, 191, and Gi, are achieved to be
58%, 60.2%, 37%, and 36.6% respectively. For the triangular HMS beam network with the uniform
residual magnetic flux density, the maximum enhancements in non-dimensional elastic moduli F;, v,
E,, 191, and Gis are achieved to be 14.1%, 27.5%, 44.5%, 865.5%, and 154% respectively compared to
the only mechanical loading condition in absence of magnetic field. Whereas, maximum 11.6%, 27.6%,
32%, 1523.5%, and 65.8% reductions in the non-dimensional elastic moduli are obtained respectively.
For rectangular HMS beam network with the uniform residual magnetic flux density, maximum 111.1%,
66.7%, and 102.1% enhancements in the non-dimensional elastic moduli E;, E,, and G4 are obtained
respectively compared to the only mechanical condition. Whereas, the maximum reductions in the
elastic moduli are found to be 38.8%, 28.6%, and 50% respectively. As the Poisson’s ratios vy and vy
are zero for rectangular lattices under only mechanical load, their enhancements and reductions under

magnetic field are expressed by absolute values instead of percentage values, and they are 0.1 and 13.1
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in enhancement and 0.2 and 30.7 in reduction respectively.

The numerical investigations on the effective elastic moduli of the HMS beam networks depict an
excellent modulation capability of the elastic properties in an extremely wide band for the proposed
novel class of lightweight lattice metamaterials through designing the beam-level distribution of residual
magnetic flux density, unit cell geometry and nonlinear coupled material physics, along with controlling
the external magnetic field in combination with the mechanical mode of loading. The numerical results
exhibit non-invariant elastic properties [91] of the periodic HMS beam networks under the anti-clockwise
and clockwise modes of shear stress in addition to the tensile and compressive modes of normal stress.
Moreover, under certain combinations of the externally applied mechanical stress and magnetic field
depending on the residual magnetic flux density, it is possible to achieve negative stiffness and negative
Poisson’s ratio with different degrees of auxecity, even for the non-auxetic unit cell configurations. The
reported numerical results would provide a foundation for more innovative designs of the residual mag-
netic flux density of the HMS beam elements along with the interactive influence of unit cell geometry
to increase the spectrum of modulated effective elastic properties.

In this paper, we have considered different modes of far-field in-plane mechanical stresses (normal
stress along the horizontal and vertical direction (direction-1 and 2) and shear stress in plane 1-2) in
combination with remote magnetic field along direction-2. It can be noted that there are three aspects
of magnetic stimuli in the context of the proposed active metamaterials (1) distribution of residual
magnetic flux density along the length of the constituting beams that form a unit cell, leading to
beam-level magnetic particle distribution architecture, (2) direction of the externally applied magnetic
field, and (3) intensity of externally applied magnetic field. In the analysis of the multi-physical large
deformation mechanics of HMS beam representing the generalized member of periodic HMS beam
networks under the combined mechanical and magnetic loading as presented in subsection 2.1 and
subsection 2.2, generalized direction (inclination angle «) of the externally applied magnetic field B*
is considered in combination with the generalized mechanical force. Hence, the multi-scale framework
estimating the non-linear elastic properties of the proposed HMS metamaterials under the far-field
mechanical and magnetic fields is generalized for considering any arbitrary direction of the external
magnetic field in combination with the different modes of the in-plane mechanical stresses. Though
we have concentrated on the remote magnetic field along direction-2 considering different intensities in
combination with normal and shear modes of the in-plane mechanical stresses, the framework can easily
be extended to consider other directions of magnetic fields. In fact, this will give a scope of achieving
tunable normal-shear lattice level coupling behavior for a given bi-level designed lattice architecture just

by changing the direction of external magnetic field [92]. The effect of intensity of externally applied
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magnetic field is investigated throughout the presented results for multi-physical property modulation
of lattices, while the beam-level architecture based on the distribution of residual magnetic flux density
is explored in subsection subsection 3.5.

We would conclude this section by highlighting, summarizing and justifying some of the keywords and
concepts of the presented research, as reflected in the discussions throughout this paper. (1) Metamate-
rials: The work deals with the development of a new class of mechanical metamaterials conceptualized
as a periodic network of hard magnetic soft beams that can change their properties in real-time based
on external stimuli. (2) Magneto-active: The proposed novel class of metamaterials under consideration
is magneto-active because their mechanical properties can be actively altered by applying an external
magnetic field. The title includes this term to signify the magneto-mechanical interaction that under-
pins the unique homogenized behavior and active effective elastic moduli of these metamaterials. (3)
Nonlinear: The metamaterials’ homogenized constitutive response under the combined mechanical and
magnetic fields is non-linear due to geometric nonlinearity coming from the large deformation of the
beam-like soft cell walls and material nonlinearity of the considered materials. (4) Bi-level architected:
The paper introduces the concept of bi-level modulation of the effective elastic properties of the novel
class of metamaterials under the far-field combined mechanical stress and magnetic stimuli, where the
design incorporates both the unit cell periodic geometries, and the deformation physics of the beam-like
members based on the hard magnetic particle distribution patterns within the soft cell walls. This
term in the title refers to this dual-level design approach, integrating geometric and multi-physical as-
pects (both at unit cell level and beam level) to control the effective lattice-level material behavior.
(5) Multi-physically programmable: The paper discusses the ability to actively modulate the physical
properties of metamaterials, such as elastic moduli and Poisson’s ratios, through contactless far-field
stimuli (magnetic field). This shows that the metamaterials can be programmed post-manufacturing
to exhibit different mechanical behaviors depending on external stimuli as per application-specific op-
erational demands. The term multi-physical highlights the fact that active on-demand elastic moduli
tailoring is achieved here through different physics involving mechanical and magnetic deformations.
(6) Stimuli-responsive: The work emphasizes the stimuli-responsive nature of the metamaterials, where
the mechanical properties change in response to external magnetic fields and mechanical stresses. This
term reflects the adaptability of the metamaterials to different external stimuli, which is a key focus
of the paper. (7) Multi-scale mechanics: The research focuses on the development of a multi-physical
mechanics-based framework for the estimations and modulations of the homogenized mechanical prop-
erties of the proposed metamaterials considering geometric and material non-linearities due to large

deformation and magneto-mechanical coupling. The developed computational framework involves the
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deformation mechanics of hard magnetic soft beams and subsequent integration of that in the unit cell
mechanics to obtain the homogenized mechanical behavior of the lattices. In essence, it may be noted
that the computational mechanics framework developed here entails components and understanding at
different length scales (i.e. multi-scale) to obtain the effective elastic properties: hard magnetic parti-
cles and their distribution at the beam level (i.e. beam-level architecture), unit cell geomety, effective
material properties (i.e. the effective elastic moduli) at continuum level and subsequently design of

structures (such as an aircraft) based on such continuum level effective elastic properties.

5. Conclusions

The current work addresses a critical limitation in conventional mechanical metamaterials in terms of
contactless broad-band programming of elastic moduli based on on-demand operational requirements.
This is achieved through shifting the design paradigm towards more innovative bi-level modulation
concepts involving the coupled design space of unit cell geometries, architected beam-like members and
their stimuli-responsive deformation physics. We have introduced graded hard magnetic soft (HMS)
material architectures in the periodic beam networks following physics-informed insights of the stress
resultants depending on uni cell geometry. The compound effect of spatially-graded residual magnetic
flux density and unit cell geometries lead to improved stimuli efficiency in achieving a target on-demand
stiffness, resulting in programmable and sustainable metamaterials with minimal utilization of the
intrinsic materials. Moreover, under certain combinations of the externally applied mechanical stress
and magnetic field depending on the residual magnetic flux density, it is possible to achieve negative
stiffness and negative Poisson’s ratio with different degrees of auxecity, even for the non-auxetic unit
cell configurations. A generic semi-analytical computational framework involving the large-deformation
geometric non-linearity and material non-linearity under magneto-mechanical coupling is developed
here for the effective elastic moduli of HMS material based bi-level architected lattices under normal
or shear modes of mechanical far-field stresses. Effective elastic moduli being a critically fundamental
property of materials, the capability of having extreme-broadband active control would essentially lead
to on-demand programming of a range of static, stability and dynamic structural behavior, including
direction-dependent deformation, vibration and control, wave propagation, impact and penetration

resistance, energy absorption, shape morphing, robotic motion and actuation at multiple length scales.

Data availability

All data sets used to generate the results are available in the paper. Further details could be obtained

from the corresponding author upon reasonable request.
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