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ARTICLE INFO ABSTRACT

Invited Editor Ghatu Subhash Mechanical metamaterials which are often conceptualized as a periodic network of beams have been receiving
Keywords: significant attention over the last decade, wherein the major focus remains confined to the design of micro-
Programmable metamaterials structural configurations to achieve application-specific multi-functional characteristics in a passive framework.
Hard magnetic soft beam It is often not possible to actively modulate the metamaterial properties post-manufacturing, critically limiting
Stimuli-responsive mechanics the applications for a range of advanced intelligent structural systems. To achieve physical properties beyond
Geometric and material nonlinearity conventional saturation limits attainable only through unit cell architectures, we propose to shift the design
On-demand contactless stiffness paradigm towards more innovative bi-level modulation concepts involving the coupled design space of unit cell
Active mechanical metamaterials geometries, architected beam-like members and their stimuli-responsive deformation physics. On the premise

of revolutionary advancements in additive manufacturing technologies, we introduce hard magnetic soft (HMS)
material architectures in the beam networks following physics-informed insights of the stress resultants.
Through this framework, it is possible to achieve real-time on-demand control and modulation of fundamental
mechanical properties like elastic moduli and Poisson’s ratios based on a contactless far-field stimuli source. A
generic semi-analytical computational framework involving the large-deformation geometric non-linearity and
material non-linearity under magneto-mechanical coupling is developed for the effective elastic properties
of HMS material based bi-level architected lattices under normal or shear modes of mechanical far-field
stresses, wherein we demonstrate that the constitutive behaviour can be programmed actively in an extreme-
wide band based on applied magnetic field. Under certain combinations of the externally applied mechanical
stress and magnetic field depending on the residual magnetic flux density, it is possible to achieve negative
stiffness and negative Poisson’s ratio with different degrees of auxecity, even for the non-auxetic unit cell
configurations. The results further reveal that a single metamaterial could behave like extremely stiff metals
to very soft polymers through contactless on-demand modulation, leading to a wide range of applicability in
statics, stability, dynamics and control of advanced mechanical, aerospace, robotics and biomedical systems
at different length scales.

1. Introduction systems (Zadpoor, 2016; Sinha and Mukhopadhyay, 2023b; Mukhopad-
hyay and Adhikari, 2017a; Gao et al.,, 2023). A typical bottom-up

Introduction to mechanical metamaterials and a brief literature review. homogenization framework ranging from an equivalent continuum
Mechanical metamaterials are an advanced broad class of engineered (with effective properties) at macro-level to honeycomb microstruc-
materials with architected microstructures having designed geometri- tures at a lower length scale is shown in Fig. 1(a). Effective mechanical
cal arrangements, leading to unprecedented physical and mechanical properties of such periodic beam networks not only depend on the
properties that are derived primarily based on their unique internal beam-level geometry and intrinsic material characteristics but also are
structures and geometry along with the intrinsic materials from which governed by the configuration of the network, i.e. unit cell geome-
they are made. Metamaterials are often conceptualized as a periodic try (Gibson and Ashby, 1999; Fleck et al., 2010). Compared to the
network of beam-like (or plate and shell-like) members at a relatively conventional naturally available materials, the lattice metamaterials
lower length scale to obtain effective properties at higher length scales, have low density and they provide tunable enhanced multi-functional

and find critical applications in a vast spectrum of structural and

properties based on the application-specific demands (Wadley, 2006;
mechanical applications ranging from nano and micro to macro scale
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Wang et al.,, 2020b; Wu et al., 2021b; Bekele et al., 2023). Due to
the advantages over the natural materials, the lattice materials have
drawn significant attention of the material scientists and engineers for
the last few decades (Surjadi et al., 2019; Wu et al., 2021a; Dalela et al.,
2021). Revolutionary advancements in the manufacturing technologies
especially in the field of additive manufacturing elevated such interest
by providing the freedom to the designers in manufacturing complex
configurations (Tibbits, 2014; Bandyopadhyay and Heer, 2018; Chen
and Zheng, 2018).

The major focus of the research on mechanical metamaterials has
been the development of several analytical, computational and ex-
perimental frameworks for estimation of the effective responses of
periodic beam networks under static loading (Malek and Gibson, 2015;
Mukhopadhyay and Adhikari, 2017b; Sinha and Mukhopadhyay, 2022),
dynamic and wave propagation (Adhikari et al., 2021; Gonella and
Ruzzene, 2008), buckling (Wilbert et al., 2011; Jang and Kyriakides,
2015; Jiménez and Triantafyllidis, 2013; Zschernack et al., 2016),
crushing (Liu et al., 2016), low-velocity impact (Hu and Yu, 2013)
etc. Another aspect of the research area has been the modulation of
effective properties by designing the network configurations in terms
of lattice geometric parameters, like, cell angle, thickness to span ratio
of the cell walls along with the aspect ratio, etc. (Thomas and Tiwari,
2019; Scarpa et al., 2000; Sorohan et al., 2019). Auxetic configurations
among the architected materials have drawn special attention due
to providing negative Poisson’s ratio (Yang et al., 2015; Kolken and
Zadpoor, 2017; Mukhopadhyay and Kundu, 2021), and a range of
associated mechanical advantages including impact and indentation
resistance, shape modulation, higher stiffness and improved dynamic
properties. In addition to the hexagonal honeycomb and re-entrant
auxetic configurations, several other forms of lattices, like, rhombic,
rectangular brick, triangular, rectangular, square, etc., have found crit-
ical engineering applications due to their special bending or stretching
dominated characteristics (Wang and McDowell, 2004). Manufacturing
the designed complex configurations has become feasible using addi-
tive manufacturing, followed by experimental investigations (Balawi
and Abot, 2008; Mukhopadhyay et al., 2020a; Papka and Kyriakides,
1998; Damanpack et al., 2019) both for validating the computational
frameworks and subsequent industry-scale production.

Due to the extensive investigations on the design of network config-
urations for modulation of the effective properties of lattice materials,
the research area has become saturated in the past decade. Hence,
the research area has been shifting towards more innovative designs
of geometry and intrinsic material characteristics at the elementary
beam-level. One such aspect is to exploit the non-linear characteristics
of the elementary beam members undergoing large deformation. For
modulation of the effective properties of lattice metamaterials as a
function of the non-linearity, several geometrically non-linear frame-
works have been developed in the last few years (Fu et al., 2016; Zhao
et al., 2020; Nampally et al., 2020). Another innovative concept at the
elementary beam-level to enhance the effective mechanical properties
is providing anti-curvature to the cell walls subjected to a particu-
lar mode of applied mechanical loading (Ghuku and Mukhopadhyay,
2022a; Prajwal et al., 2022; Ghuku and Mukhopadhyay, 2022b). Sig-
nificant enhancements in lattice stiffness or flexibility and elastic failure
strength can be achieved due to the introduction of anti-curvature
to the cell walls (Ghuku and Mukhopadhyay, 2022a; Prajwal et al.,
2022; Ghuku and Mukhopadhyay, 2022b). With the revolutionary ad-
vancements in the field of additive manufacturing, recently lattices
made of multiple intrinsic materials have been proposed which possess
unprecedented mechanical properties, attainable based on an expanded
design space (Vogiatzis et al., 2017; Mirzaali et al., 2018; Kang et al.,
2019; Mukhopadhyay et al., 2020b). In such literature, the major focus
remains confined to the design of micro-structural configurations to
achieve application-specific multi-functional characteristics in a passive
framework. It is not possible to actively modulate the metamaterial
properties post-manufacturing, critically limiting the applications for
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a range of advanced intelligent structural systems. To achieve phys-
ical properties beyond conventional saturation limits attainable only
through unit cell architectures, we propose to shift the design paradigm
towards more innovative bi-level modulation concepts involving the
coupled design space of unit cell geometries, architected beam-like
members and their stimuli-responsive deformation physics. We would
introduce hard magnetic soft (HMS) material (Lu et al., 2024) archi-
tectures in the beam networks following physics-informed insights of
the stress resultants. The novel HMS lattice or beam network is very
light in weight but it would be able to demonstrate a wide range of
stiffness (including sign reversal) depending on applied magnetic flux.
The foundation of the HMS material along with the relevant reported
work in the literature on HMS beam deformations are described very
briefly in the following paragraph.

Soft materials are a class of newly developed materials that have
found immense technological applications in a diverse field, espe-
cially in biomedicine (Pankhurst et al., 2003; Zhao et al., 2011),
soft robotic (Kim et al., 2013; Rich et al., 2018), and flexible elec-
tronic devices (Rogers et al., 2010; Li, 2016). Controllable properties
of soft active materials under external stimuli, like, light (Katz and
Burdick, 2010), heat (Morishima, 2007), electric (Miyajima et al.,
2009), magnetic field (Kim et al., 2018) etc., open a new avenue to
design application-specific devices. Recent advancements in 3D and
4D technologies make the innovative designs feasible and motivated
the research community (Truby and Lewis, 2016; Chu et al., 2020;
Josselin et al.,, 2024). One interesting class among such soft active
materials which promises significant potential in critical engineering
applications is the hard magnetic soft material (HMS material) (Lu
et al., 2024). HMS material is manufactured by embedding hard mag-
netic particles into soft material matrix. This newly developed active
material (HMS material) shows a magnetically hard and mechanically
soft property (Lum et al., 2016). As the beam is a very fundamental ele-
ment in designing any structural device, investigations on the response
of beam made of HMS material under magnetic actuation have drawn
the attention of the research community. The complications coming
from geometric non-linearity due to large deformation and material
non-linearity under magneto-mechanical coupling make the analysis of
HMS beam structures challenging (Wang et al., 2020a; Chen and Wang,
2021). In the past few years, several analytical and numerical models
have been proposed by the researchers to capture the non-linear re-
sponse of HMS beams under external magnetic stimulation (Zhao et al.,
2019; Kim et al., 2019; Chen and Wang, 2020). Besides the theoretical
works, some experimental investigations on HMS beam responses are
also reported in the literature (Zhao et al., 2019; Furusawa et al., 2019).
To use the devices made of HMS beams in soft robotic and electronic
applications, the deformed shapes of the HMS beam are of interest
and need to be controlled. By properly designing the residual magnetic
flux density in the HMS beam to be subjected to a particular external
magnetic field, we can design the deformed shapes (Chen et al., 2020a).
As most of the structures in the biological world consist of the feature of
functionally graded property, to meet the complex demand of potential
applications of HMS beam structures, recently functionally graded HMS
materials are being designed and manufactured (Bartlett et al., 2015;
Chen et al., 2020b).

Rationale behind the proposed magneto-active metamaterials. The
above-presented literature review reveals that despite being a topic of
interest, the theoretical investigations on HMS beam structures focus
on structural characteristics under magnetic actuation only. Investiga-
tions on the multi-physical mechanics of HMS beam structures under
combined mechanical load and magnetic actuation are not addressed
in the literature sufficiently. Moreover, most of the reported theoretical
investigations are numerical in the framework of commercial pack-
ages which lack physical insights into the problems. Some analytical
models are also reported in the literature but they are limited to
simple beam problems in terms of loading conditions, geometry, and
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Fig. 1. Bi-level architected lattice metamaterials with periodic network of soft beams having embedded hard magnetic particles. (a) A typical homogenization framework
for conventional lattice metamaterials ranging from equivalent continuum at macro-level to honeycomb microstructures at the lower length scales. (b) Schematic representation
of hexagonal HMS beam network with the representative unit cell to analyse multi-physical mechanics under combined external mechanical and magnetic loads. (c—f) Definition
of local Cartesian coordinate systems (x, y) and representation of residual magnetic flux density B; in the unit cell of hexagonal HMS beam network to be subjected to: (c, d)
magnetic field along direction-2 in combination with normal stress along direction-1 () or direction-2 (s,), (e, f) magnetic field along direction-2 in combination with in-plane
shear stress (r). (g) Different other forms of periodic HMS beam networks ((I - III) derivatives of hexagonal lattices, (IV) triangular lattice, (V) rectangular lattice) to be analysed
within the proposed multi-physical mechanics-based framework. (h) Large deformation multi-physical mechanics of HMS beams representing the generalized member of periodic
HMS beam networks under combined mechanical and magnetic loading. (i) Deformation components of a generalized HMS beam element to derive large deformation kinematics.
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boundary conditions. In this paper, we consider the complicated multi-
physical mechanics of periodic HMS beam networks subjected to large
deformation under combined mechanical and magnetic loads. One
major objective is to develop a physically insightful semi-analytical
framework to estimate the non-linear effective elastic moduli of the
HMS beam networks under the combined fair-field mechanical stress
and magnetic field. By properly designing the residual magnetic flux
density in the HMS beam elements under an optimal combination
of mechanical stress and magnetic field along with exploiting the
geometric and material non-linearities, modulation of the effective
elastic moduli through the developed semi-analytical framework would
be attempted in the present work.

With the progress in manufacturing capabilities (Montgomery et al.,
2020), active lattice metamaterials (Sinha and Mukhopadhyay, 2023b;
Qi et al., 2022) have started receiving significant attention from the
scientific community. In the context of active elastic property and
stiffness modulation in lattice metamaterials with distributed actuation
throughout the connecting beam spans, the pioneering works with de-
tailed computational framework development can be traced in the area
of piezoelectric lattices (Singh et al., 2021, 2022a). The major lacuna
in piezoelectric lattices is the absence of contactless modulation and
involvement of wire networks for supplying voltage to each constituting
beams. Later, lattices with magnetostrictive layers (with distributed
actuation throughout the connecting beam spans) were proposed for
contactless on-demand elasticity programming (Singh et al., 2022b). All
these metamaterials were developed in the regime of small deformation
linear analysis framework. Some of the early research on active control
of stiffness using magnetic control can be traced back to exploitation
of discrete magnets attached to the connecting beam members of the
lattice unit cells (Dudek et al., 2018). Unlike most of the active lattice
metamaterials, Alkuino and Zhang (2024) presented discrete magneto-
active lattices where magnetic particles are embedded in the joints
rather than the beam-like connecting elements, wherein the active joint
movement is exploited for property modulation in the proposed design.
Jackson et al. (2018) proposed 4D field responsive lattice metamaterials
with connecting polymer tube-like elements filled with magnetorhe-
ological fluid suspensions. In general, magneto-active metamaterials
have been attracting significant attention recently covering different
spectrum of physical designs including elastic, impact, vibration, wave
propagation and acoustics for on-demand control (Sim and Zhao, 2024;
Dudek et al., 2019; Zhang et al.,, 2023; Montgomery et al., 2021;
Galea et al., 2022). Lately, HMS material based hexagonal lattices with
distributed uniform actuation along the beam-like constituting mem-
bers have been investigated for active contactless property modulation
considering geometric nonlinearity (Sinha and Mukhopadhyay, 2023a).
In this semi-analytical framework of the earlier work, only hexagonal
lattices and their derivatives such as rhombic, rectangular brick and
auxetic configurations can be analysed. In the present work we extend
the computational framework to analyse other bending and stretching
dominated lattices such as triangular and rectangular configurations.
Further, for enhancing the efficiency of magnetic actuation, we would
introduce non-uniform residual magnetic flux to exploit the concepts
of anti-curvature (Ghuku and Mukhopadhyay, 2022a) in metamaterials
design.

Description of the bi-level architected lattices with non-uniform magnetic
flux density. A typical hexagonal network of HMS beams is shown
schematically in Fig. 1(b). Within the framework of unit cell approach,
an appropriate unit cell consisting of three HMS beam members OA,
OB, and OC is chosen as shown in Fig. 1(b) to analyse multi-physical
lattice mechanics under combined mechanical and magnetic load. In
the figure, an enlarged view of embedded hard magnetic particles is
shown for clear understanding. From the understanding of boundary
conditions for the honeycomb lattices made of conventional elastic
materials (Gibson and Ashby, 1999), definitions of local Cartesian
coordinate frames (x, y) for the inclined member OA and vertical
member OC of the unit cell to be subjected to the magnetic field along
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direction-2 (B?) in combination with normal mechanical stress along
direction-1 (¢,) or direction-2 (o,) are shown in Fig. 1(c). Similarly,
definitions of local Cartesian coordinate frames (x, y) for the inclined
and vertical members of the unit cell to be subjected to the magnetic
field along direction-2 (B“) in combination with in-plane shear stress
(z) are shown in Fig. 1(e). The direction and magnitude of residual
magnetic flux density B/ in the HMS beam member are controlled by
the orientation and density of the hard magnetic particles embedded in
the soft material. Mathematically, the direction and magnitude of By
are defined by a coefficient S. If the residual magnetic flux density B
is uniform along the beam axis and directed along the x axis of the local
Cartesian frame (x, y), the value of S is unity, i.e., .S = 1. If the direction
of uniform By is opposite to x axis, then § = —1. For generalized dis-
tribution of B, the coefficient S(x) is a function of beam length along
the x axis of the local Cartesian frame (x, y). For the unit cells to be
subjected to the magnetic field along direction-2 in combination with
either normal mode or shear mode of mechanical stress, generalized
representations of the residual magnetic flux density B in the HMS
beam members are shown in Fig. 1(d) and (f) corresponding to the local
frames (x, y) as defined in Fig. 1(c) and (e) respectively. Note that in
Fig. 1(f), the direction of residual magnetic flux density B] is opposite
for the inclined members OA and OB. This opposite distribution makes
the inclined members behave structurally symmetric when subjected
to in-plane shear stress = in combination with external magnetic field
B“. This phenomenon will be described in more detail later through
schematic diagrams in connection with the mathematical formulation
of shear modulus.

As discussed in the preceding paragraphs, we propose a novel class
of metamaterials as a network of beams made of soft material with
embedded hard magnetic particles which enables real-time on-demand
control and modulation of non-linear elastic properties based on a
contactless far-field stimuli source. The metamaterial involves a dual
design space at the lower length scale (referred to as micro-scale in
the subject domain of metamaterials) as follows. (1) Architecturing of
the hard magnetic particle distribution within the HMS beam elements
tailors their multi-physical large deformation mechanics at the lower
length scale (2) Architecturing of the network’s periodic geometric
configurations (cell angle, vertical to inclined cell wall length ratio,
thickness to inclined cell wall length ratio) further tailors the unit
cells’ large deformation mechanics. Such bi-level architectures and
designs at the lower length scale (referred to as micro-scale) govern the
homogenized elastic properties of the proposed HMS metamaterials at
the higher length scale (referred to as macro-scale) of the entire lattice
dimension. Hence, the developed computational framework reported in
the present article is basically a multi-scale framework starting from
the magnetic particle architected HMS beams and periodic geome-
try of unit cell configurations at the micro-scale yielding to tailored
homogenized non-linear elastic properties of HMS beam network at
the macro-scale. Note that the computational framework for obtaining
the effective nonlinear elastic properties of the lattice would essen-
tially involve analysing appropriate unit cells with periodic boundary
conditions. The foundational concept of the multi-scale modelling of
conventional lattice metamaterials (involving unit cells that consist
of homogeneous passive beams) is demonstrated through Fig. 1(a),
and subsequently, the concept of the proposed bi-level architected
novel class of HMS metamaterials (involving unit cells that consist of
architected magneto-active beams) is introduced through Fig. 1(b, g).

Scope of the present study. To estimate the non-linear effective elas-
tic moduli of the periodic HMS beam network, a generalized multi-
physical mechanics problem of HMS beam subjected to combined
mechanical and magnetic loads would be defined within the framework
of the unit cell approach. The HMS beam problem involves complex ef-
fects coming from geometric non-linearity due to large deformation and
material non-linearity due to magneto-elastic coupling. A physically
insightful semi-analytical framework would be developed here through
the variational principle-based energy method within the non-linear
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kinematic setting of the Euler-Bernoulli beam theory using the material
constitutive law according to the Yeoh hyperelastic model. Based on the
beam-level deformation results, effective elastic moduli of the periodic
HMS beam networks (i.e lattices) would be computed by accounting
the unit cell geometry and periodic boundary conditions. The semi-
analytical beam model will be validated by comparing the non-linear
deformed configurations under separate mechanical load and magnetic
actuation with the available literature (Chen and Wang, 2021; Chen
et al., 2020a). After the validation study, a few critical beam-level
numerical results will be presented first under combined mechanical
and magnetic loading for HMS beams with symmetric and asymmetric
residual magnetic flux density. Through the numerical results, the
effect of asymmetry in residual magnetic flux density in defining a
generalized HMS beam problem of the HMS beam network along with
the effect of centreline extensibility in analysing large deformation
characteristics of HMS beam will be investigated. A validation study of
the semi-analytical framework at the periodic beam network-level will
also be carried out by comparing the non-linear effective elastic moduli
with the available results in the literature for honeycomb lattices under
different modes of far-field mechanical loads (Fu et al., 2016; Ghuku
and Mukhopadhyay, 2022a). Following the validated semi-analytical
framework, the effects of magnetic field in combination with the dif-
ferent modes of far-field mechanical stress field on the non-linear
effective elastic moduli of periodic HMS beam network with uniform
residual magnetic flux density will be studied. Based on the kinematic
and kinetic conditions of the beam elements of the hexagonal HMS
beam network, two physics-informed designs of residual magnetic flux
density will further be proposed which would significantly influence
the non-linear effective elastic moduli. Through the numerical results,
we will show that the proposed lightweight HMS beam networks or
lattices possess broadband modulation capability of the non-linear
specific stiffness ranging from very high stiffness like hard metal to very
low stiffness even lower than soft polymers depending on the residual
magnetic flux density and the compound effect of the externally applied
mechanical load and the magnetic field. Under certain combinations
of the mechanical and magnetic fields, it will be shown that the
HMS lattices show negative stiffness as well. The generality of the
developed multi-physical mechanics-based semi-analytical framework
will be demonstrated by analysing non-linear elastic moduli of five
other forms of HMS beam networks, namely, auxetic, rectangular brick,
rhombic, triangular, and rectangular networks as shown in Fig. 1(g).
Note that under the influence of combined far-field mechanical stresses
and magnetic field, the unit cell mechanics of different considered
lattice configurations becomes significantly involved that has not been
investigated in the literature so far.

After presenting a brief review of literature on mechanical meta-
materials and the rationale behind proposing the present novel class
of lattices in this introductory section (Section 1), the mathematical
framework for the estimation of non-linear effective elastic moduli
of periodic HMS beam networks under different modes of far-field
mechanical stress in combination with magnetic field will be presented
in Section 2. Thereafter, Section 3 will present the beam-level and
periodic beam network-level results along with the validation studies.
Applicability of the proposed physically insightful framework of the
periodic HMS beam network to different forms of lattices will be
demonstrated through numerical results. The conclusions will be drawn
in Sections 4 and 5 along with the prospective future scopes of the
proposed novel class of HMS lattices.

2. Computational framework for stimuli-responsive lattices

A HMS beam multi-physical mechanics based (refer to Fig. 1(h,
i)) semi-analytical framework is developed in this section to estimate
the non-linear effective elastic moduli of periodic HMS beam networks
subjected to magnetic field B along direction-2 either in combination
with remote normal stress along direction-1 (s,), direction-2 (¢,) or
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remote in-plane shear stress z. The combined loading conditions of
mechanical normal stress (¢, or ¢,) and magnetic field (B) for the unit
cell of hexagonal HMS beam network (refer to Fig. 1(d)) are shown
in Fig. 2(a) and (d) respectively. Whereas, the loading condition of
mechanical in-plane shear stress () in combination with the applied
magnetic field (B?) for the corresponding HMS unit cell (refer to Fig.
1(f)) is shown in Fig. 3(a). Under the combined loading condition as
shown in Fig. 2(a), we obtain the longitudinal effective Young’s mod-
ulus E; and Poisson’s ratio v, of the hexagonal HMS beam network.
For the combined loading condition as shown in Fig. 2(d), we obtain
the transverse effective Young’s modulus E, and Poisson’s ratio v,,.
Whereas, under the combined loading condition of the shear mode
of mechanical load and the magnetic field as shown in Fig. 3(a), we
can estimate the effective shear modulus G|, of the hexagonal HMS
beam network. Similar loading conditions are presented for other forms
of lattices in Figs. 4 and 5. Here it should be noted that though the
multi-physical mechanics of the HMS unit cells is presented in Figs.
2-5 for the compressive mode of normal stress and anti-clockwise
mode of shear stress respectively in combination with the generalized
residual magnetic flux density having coefficient S(x), the developed
formulation is generalized and valid for the combination of any mode
of the normal (compressive or tensile) and shear (anti-clockwise or
clockwise) mechanical stress with a generalized magnetic field.

Under the applied combined mechanical stress and magnetic field,
developed forces and large deformation kinematics of the HMS beam
elements of the unit cell are analysed first. Based on the kinetic and
kinematic descriptions, a large deformation problem of the HMS beam
representing a general beam-like element of the periodic network is de-
fined, wherein the boundary and loading conditions are applied based
on unit cell periodicity and applied external mechanical stress and
magnetic flux, respectively. Non-linear multi-physical mechanics of the
defined generalized large deformation HMS beam problem under com-
bined mechanical and magnetic load is analysed subsequently through
the variational energy principle-based semi-analytical framework (with
appropriate beam-level boundary condition to ensure periodicity of the
unit cells). Using the beam-level deformation results within the unit-
cell framework, the effective elastic moduli (E,, v|,, E,, v5;, and G},)
of a periodic HMS beam network are computed. Thus, following a
multi-scale framework, the homogenized nonlinear elastic properties
of the proposed metamaterials at the higher length scale (referred to as
macro-scale) are estimated in terms of the beam-level large deformation
measures coupled with unit cell geometry under combined mechanical
and magnetic loads at the lower length scale (referred to as micro-
scale). In this context, it can be noted that the proposed computational
framework is scale-independent in principle; the only condition is to
maintain a substantial difference between the unit cell dimensions and
the dimension of the overall lattice that leads to the computation of
homogenized effective properties. In the forthcoming subsections, fol-
lowed by establishing a generic beam-level computational framework,
we will first develop a semi-analytical formulation for the effective
elastic moduli of hexagonal lattices, and subsequently different other
lattice geometries will be considered.

2.1. Generalized beam-level problem definition

The load-deformation characteristics of any member of the HMS
beam network under any combination of the fair-field normal or shear
mode of mechanical stress and magnetic field as presented through
Figs. 2-5 are defined as a generalized geometrically non-linear HMS
beam deformation problem. Such a generalized large deformation HMS
beam problem can be defined either as a full-beam problem or as a half-
beam problem under the specific boundary condition to ensure unit cell
level periodicity (all the beams under consideration here need to have
both the edges rotationally restrained). Both the type of geometrically
non-linear HMS beam deformation problem is presented schematically
in a generalized way in Fig. 1(h, i) and described in the following two
subsections.
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2.1.1. Full-beam problem

When the full length of the inclined or vertical members of a
periodic HMS beam network (refer to Figs. 2-5) is considered for the
definition of the generalized beam problem, the problem is called the
full-beam problem. For example, the length L of the generalized HMS
beam as shown in Fig. 1(h), is either equal to / for the inclined member
or equal to h for the vertical member of a hexagonal HMS beam
network. For the full-length HMS beam, one end is fixed with the other
end being rationally restrained but free to translation and subjected
to concentrated force F in combination with magnetic field B¢ with
inclination angles f# and a respectively as shown in Fig. 1(h).

For the full-length HMS beam, rotation of centreline ¢ is zero at
both the ends (x = 0 and x = L) (refer to Fig. 1(h, i)). As the HMS
beam is subjected to axial load also due to the combined effect of the
mechanical and magnetic field, the beam centreline has non-zero axial
strain ¢ at both the ends (x = 0 and x = L). The kinematic boundary
conditions of the HMS full-beam problem are summarized below.

p=0atx=0andx=L (1a)
e#0atx=0andx=1L (1b)

With the proper definition of the load magnitudes (F and B“) and
their inclination angles (# and «) as presented later in the manuscript
(for example, Egs. (23)—(36) for the hexagonal lattices) along with the
respective length (for example, L = / or L = h for hexagonal lat-
tices) and boundary conditions (Eq. (1)), we can simulate deformation
characteristics of each member of the HMS beam networks.

For an ordinary beam of length L, with the prescribed boundary
conditions undergoing small deformation under mechanical load only,
the transverse tip-deflection 4, under transverse load F, and the axial
tip-deflection 6, under axial load F, are obtained analytically (Gibson

R L F.L .
and Ashby, 1999) as 5, = BET and §, = E A". In these equations, E,

denotes Young’s modulus of the elastic beamsmaterial, and I and A are
the rotational inertia and area of the beam cross-section. Note that the
above-presented analytical solutions are not concerned with the present
large deformation HMS beam problem. These analytical solutions are
only used for analogy demonstration of boundary condition modelling
of the full-beam problem using cantilevered half-beam problem as
presented in the following subsection.

2.1.2. Half-beam problem

The full-beam made of ordinary elastic material undergoing small
deformation under mechanical load only as presented in the preceding
subsection, can be modelled as two half-beams with cantilever bound-
ary conditions exploiting the physical insight that bending moment
becomes zero for the full beam at the midpoint here. The transverse
and axial deflections of the tip of the cantilevered half-beam of length

F,L}
L,/2 are analytically (Gibson and Ashby, 1999) given by 6, = 24yE OI
N
F. L
and §, = 21’;_ /‘; These analytical deflections obtained from the half-
s

beam model of the ordinary beam are exactly half of the corresponding
deflection results as presented in Section 2.1.1. Hence, doubling the de-
flection results coming from the half-beam model gives the same results
as the full-beam model for an ordinary beam. A similar observation also
becomes apparent for axial deformation.

Following the observations on boundary conditions, the considered
large deformation HMS full-beam problem under combined mechanical
and magnetic load is modelled here as HMS half-beam problem. For
example, in the HMS half-beam problem concerning hexagonal lattices,
length L of the generalized HMS beam as shown in Fig. 1(h) will be
either //2 for the inclined member or //2 for the vertical member of the
HMS beam network. Note that consideration of the half beam will lead
to more computational efficiency compared to considering a full-length
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beam in the nonlinear multiphysical analysis. Boundary conditions of
the generalized half-beam problem are summarized below.

(p:Oatx=0andd—(p=0atx=L (2a)
dx
e#0atx=0and x=L (2b)

Note that the modelling of HMS full-beam as HMS half-beam is only
possible if the residual magnetic flux density Bj is symmetric about
the mid-point of the full-length beam. The statement will be proved in
Section 3 through numerical results from the full-beam and half-beam
models with both symmetric and asymmetric residual magnetic flux
density.

Large deformation analysis of the generalized HMS beam (refer to
Fig. 1(h, i)) with the above-prescribed boundary conditions (Egs. (1)
and (2)) under combined mechanical and magnetic load is not readily
available in the literature. A semi-analytical beam model is developed
here to analyse such multi-physical mechanics problem as presented in
the next subsection (Section 2.2).

2.2. Large deformation analysis of generalized HMS beam problem

Large deformation characteristics of the generalized HMS beam with
residual magnetic flux density Bjj concerning the initial configuration
subjected to combined mechanical load F and magnetic field B* as
shown in Fig. 1(h, i) is analysed. Governing equation of the geometric
non-linear problem is derived in a semi-analytical framework using
the variational principle-based minimization of total potential energy
method. In the derivation of the governing equation, we consider the
centreline extension of the beam in addition to the bending mode of
deformation within the geometrically non-linear kinematic setting of
the Euler-Bernoulli beam theory. Derivation of the governing equation
through such a generalized extensible model is presented first in the
following subsection. To investigate the effect of axial rigidity of the
hyperelastic HMS beam, a special form of the governing equation
neglecting centreline extension is presented in the following subsec-
tion. The final algebraic form of the governing equation of the HMS
beam problem derived either through the extensible model or through
the inextensible model involves non-linearity due to the coupling of
different deformation degrees of freedom. To solve the coupled non-
linear equation, we develop an iterative computational framework as
presented subsequently in this subsection.

2.2.1. Extensible model

2.2.1.1. Kinematics. To account for geometrically exact non-linearity,
the beam deformation is described in terms of the rotation ¢ and strain
e of the beam centreline instead of the in-plane and transverse displace-
ment fields u and v respectively. From the geometry of deformation as
presented in Fig. 1(i), the displacement fields « and v are expressed in
terms of the centreline rotation ¢ and centreline strain & of the HMS
beam as given below.

d—u:(1+z€)c03(p—1 (3a)
dx
dv =(1+¢)sing (3b)
dx

As the left end of the beam is considered fixed (refer to Fig. 1(h)), the
displacement fields u and v are zero at x = 0. With the kinematic condi-
tions, relations of the displacement fields u and v with the independent
variables ¢ and ¢ are obtained by integrating Eq. (3) as given below.

= 1+ s —1¢d (4a)
u /0{( £)Cos @ } x a

v:/ (1+¢)sinpdx (4b)
0
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2.2.1.2. Material model. The material of the HMS beam under study is
considered a soft material with Young’s modulus E,. The hyperelastic
characteristics of the HMS beam material are modelled by the strain
energy density function @ which is defined below according to the Yeoh
hyperelastic model (Chen and Wang, 2021).

3 i
2
=Y Cpd 1+ +—-3 5
Z ,0{( +¢€) +1+2 } 5)

The corresponding nominal stress, defined as oy = dg, is obtained
based on the Yeoh hyperelastic model (Chen and Wang, 2021) using
Eq. (5) as given below.

1+e¢

2
2 2 _ 1
+3C”{“+E)+T:? 3} ]{(L+@ (1+92} 6)

Through Taylor expansion of Eq. (6) keeping the linear term, Young’s
modulus of the hyperelastic beam material is obtained as

oy =2 [c]0+2czo{(1+s)2+i—3}

E; =6C, )

2.2.1.3. Governing equation. Governing equation for the large defor-
mation characteristics of the HMS beam under combined mechani-
cal and magnetic load is derived through variational principle based
minimization of total potential energy, as defined mathematically by

§(Ug+Uy+V)=0 (8

In the above equation, Uy, U,;, and V are the elastic strain energy
of the HMS beam, magnetic potential energy of the HMS beam, and
potential energy of the external mechanical load. The elastic strain
energy of the HMS beam U, consists of membrane and bending strain
energies which in total is given by

L E.T L 2
UE=A/ Ddx + == / <d—“’> dx )
0 2 Jo dx

Magnetic potential energy U,, of the HMS beam due to the interaction
of the externally applied magnetic field B* with the residual magnetic
flux density By (refer to Fig. 1(h)) is given by (Chen et al., 2020a)

L
Uy=-2 [ s

Br
Ho Jo 0

|B?| (1 + €)cos (¢ — a) dx (10)

In the above equation, y, denotes permeability of vacuum. On the
other hand, potential energy of the externally applied mechanical load
F is defined as V' = —Ful,; — F,vl,_;, where F, and F, are the
components of force F in the x and y directions, given by F, = F cos
and F, = Fsinf respectively (refer to Fig. 1(h)). Using Eq. (4), the
potential energy V is expressed in terms of the independent variables
@ and ¢ as given below.

L L
V=—Fx/ {(1+e)cos<p—1}dx—Fy/ (1+#)sin@dx an
0 0

Before going to further derivation of the governing equation through
the energy principle, the physical coordinate system (x, y) is trans-
formed into the computational frame (&, #) and some other non-
dimensional geometric and material parameters are introduced as
defined below.

x y AL _ oy By| 1% 1
¢=—n=5,y=—/,6y=—,B=—r—,
L L T E, E. 1o
FL?> - - .
:TJ,FX:Ccosﬁ, F,=Csinp 12)

Putting the energy expressions presented in Egs. (9)—(11) with respect
to the normalized coordinate frame (&, #) in terms of the normalized
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parameters (Eq. (12)) into the energy principle (Eq. (8)), the governing
equation is obtained in variational form as presented below.

1 1 1 de 2 1
1) 170'/0 <Dd§+§/0 <d_§> dé_B./o S(1+e¢)cos(p—a)dé

1 1
—Ccosﬂ/ {(1+£)005(p—1}d§—Csinﬂ/ (1+5)sin(pd§]:0
0 0
13

In the normalized frame (&, #), the unknown deformation fields ¢
and ¢ are approximated as

nb
0=
i=1
ns
&€= 2 Vi
i=1

where, ¢|, and ¢, are the unknown coefficients to be computed, and

(14a)

(14b)

w; and y; are the sets of nb and ns number of coordinate functions
chosen satisfying the kinematic boundary conditions. For the full-
beam problem, the function sets are chosen by satisfying the boundary
condition of Eq. (1) as

(15a)
(15b)

w; = sin (inf)
w; = cos {(i — D&}

Whereas, for the HMS half-beam problem, the function sets as chosen
through Eq. (2) are

2i

-1
> n.f;) (162)

w; = cos {(i — Dré)

w; = sin<
(16b)

Now substituting the approximated deformation fields as presented
in Eq. (14) into the governing equation (Eq. (13)) and carrying out
the variational operation, we derive the final algebraic form of the
governing equation as presented below.

[K]{e} = {r} an

In the above equation, [K], {c}, and {/} denote stiffness matrix, set
of unknown coefficients {le o, }T, and load vector for the large defor-
mation of HMS beam problem respectively. The detailed expressions of
the stiffness matrix [K| and load vector {f} are given below.

nb  nb

ul = 23 [ o o

j=1i=1

Jj=1i=1 k=1

- Csinﬂcos<z c]ka)k>] yw; d&

k=1

nb ns 1 nb nb
(K] = Z Z/o [BSSin(Z €1, Dk —a) +Ccosﬂsin<z clka)k)
k=1
nb

[Kzl] =[0]

ns ns

1
[K22] =1II, 2 ZA/O 61\/[1[/;‘!/1' &

j=1i=1

nb 1 nb nb
{fl}zz/o [—BSSin(chkwk—a>—Cc0sﬂsin<Zc1kwk>
j=1

k=1 k=1

nb
+Csinﬁcos<z c,kwk> ] w; dé

k=1
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ns 1 nb nb
{f2}=2/ |:BSCOS<chkCOk—a>+CCOSﬂCOS<chka}k>
j=170

k=1 k=1

nb
+ Csin fisin <2 clkwk>

k=1

_ 1
_ HOO_NC{I —T} ] u/jd§
(] +Zk=1 Czﬂ’k)

where,

ns 2
2 2
oy =— | Cp+2C I+ ) ¢ +——— -3
N, E, [ 10 20{( “ 2,3/%) 1+ZZS=1 e, Wi }
ns 2
+ 3Cy { <1 +Zczk"’k>
k=1

2 2
+ —— -3
I+ZZS=1 €, Vi } ]

2.2.2. Inextensible model

The governing equation (Eq. (17)) presented in the previous subsec-
tion is derived considering both the centreline rotation ¢ and centreline
extension ¢ of the HMS beam. If we neglect the terms corresponding to
the centreline strain ¢ from the elements of Eq. (17), we readily get
the governing equation of the HMS beam deformation problem within
the framework of the inextensible model. The elements of the stiffness
matrix [K] and the load vector { f } for the inextensible model are
presented below.

nb  nb

KI=3 % [ olofae

j=1i=1

nb 1 nb nb
{f}:Z/ |:—BSsin<chkwk—a>—Ccosﬂsin(chkwk)
j=170 k=1 k=1
nb
+Csinﬂcos(201kwk>] w; dé

k=1
Note that the Inextensible model is computationally less intensive, but
it also becomes less accurate for large deformation problems.

2.2.3. Iterative solution scheme

The elements of stiffness matrix [K] and load vector {f} of the
governing equation (Eq. (17)), either derived through the extensible
model or through the inextensible model, involve unknown coefficients
{c}. However, the degree of such non-linearity is different for the
extensible and inextensible models. Due to the involved non-linearity,
the governing equation cannot be solved directly. Hence, an iterative
computational scheme (Ghuku and Saha, 2019; Halpern et al., 2002)
is developed to tackle the non-linearity involved in the governing
equation.

Under an incremental step of non-dimensional mechanical load C
with the inclination angle f, the non-dimensional magnetic load B is
applied incrementally by a ratio r which is termed as magnetic load
ratio and defined by

=2 as)

Hence, the inputs of the beam model are the magnitude of the non-
dimensional mechanical load C with its inclination angle g and the
magnetic load ratio r along with the coefficient of the residual magnetic
flux density S(¢) and the inclination angle of the external magnetic field
a.

At the incremental step of the non-dimensional mechanical load C
and magnetic load B = rC, the iterative solution process to find the set
of unknown coefficients {c} starts with assumed set of the coefficients
denoted as {c}'_l, where the superscript i denotes the iteration number.

. .. i—1
With the assumed set of the unknown coefficients {c}' , elements of
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the stiffness matrix [K]' and load vector {f }i at the current iteration
step i are computed. With the known [K ]i and {f }i, the set of unknown
coefficients {c}[ are computed through the matrix inversion of the
governing equation (Eq. (17)) as

ey =K ¢ a9

The set of coefficients {c}i computed through the above equation, is
compared with its old values {c}i—l as y = {c}i - {c}H. Until the error
u becomes less than its predefined limit, the set of unknown coefficient
{c}'+1 is updated through the successive relaxation scheme presented
below and the next iteration (i + 1) begins.

(e} = ey + =i} (20)

In the above equation, A denotes the relaxation parameter for the
successive relaxation scheme which lies between 0 to 1. The iterative
scheme to compute the large deformation characteristics of the HMS
beam under combined mechanical load and magnetic field is presented
in Algorithm 1.

Algorithm 1: Beam-level computational algorithm to obtain large
deformation characteristics of HMS beam under combined
mechanical load and magnetic field.

Define geometry: Define non-dimensional geometric specification
of the HMS beam I1,,.

Define material property: Define the material constitutive
parameters Cj,, C,y, and Cj in the framework of Yeoh
hyperelastic model.

Define numerical parameters: Define the numerical values of the
computational parameters A, y, nb, and ns.
Generate: Generate the set of coordinate functions »; and y;
through satisfaction of the boundary conditions of the HMS beam
problem under consideration.
Input load: Input the magnitude of the non-dimensional
mechanical load C and magnetic load B in terms of the magnetic
load ratio r as B = rC, along with their orientation angles g and a.
Iterate: The iterative computational scheme to obtain the set of
unknown coefficients {c} from the non-linear governing equation
[K]{c} = {f} involves the following steps:

- Initialize the set of unknown coefficients denoted as {c}'_l.

» Compute the stiffness matrix [K]' involving the set of unknown
coefficients {c}'il.

« Compute the load vector {f}' involving the set of unknown
coefficients {c}t_1 under the current step of combined mechanical

and magnetic loads.
» Compute the set of unknown coefficients as

e = 1k 117

« Compare the computed set {c}i with its old values {c}i_1
defined as y = {c}i - {c}i_l.

+ Until the error y becomes less than its predefined limit, the set
of coefficients is updated by {C}m = A{c}[ +(1 = }»){c}H and go
for the next iteration i + 1.

Note output: Once the set of unknown coefficients {c} is obtained
through the iterative computational scheme, the centreline
rotation ¢ and the centreline strain £ become known which in turn
give the non-dimensional deflection profile (¢, #) and the
tip-deflections &, and 5,.

Once the set of unknown coefficients {c} for the current combined
load step C and B is obtained through the iterative computational
scheme, the centreline rotation ¢ and the centreline strain ¢ become
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known from Eq. (14) for the extensible model. Whereas, for the inexten-
sible model, only the centreline rotation ¢ is obtained. With the known
deformation components (¢ and ¢), the deflection profile (x, y) of the
HMS beam is obtained which in turn provides axial deflection &, and
transverse deflection 6, of the tip of the beam. The expressions of the
axial and transverse tip-deflections (6, and é,) in the normalized form

as obtained from Eq. (4) are given below for the extensible model.

SX:%:/OI{(1+5)cosrp—l}d§

5 il 11 ingd
y_z_/o( +¢e)singpdé

(21a)

(21b)

For the inextensible model, the normalized tip-deflections (5, and 5,)
are obtained from the above equation by neglecting the ¢ terms as

.8 !

§x:—X:/ (cos @ — 1)dé (22a)
L 0

5 o ' d 22b

y—z—/o sin g de (22b)

Using the beam-level tip-deflections, we compute unit cell level
strains under a given far-field mechanical stress and magnetic field,
as discussed in the following subsections considering different lattice
geometries.

2.3. Effective elastic moduli of hexagonal HMS beam networks

2.3.1. Beam-level forces and deformation kinematics

As described in Fig. 1, the chosen unit cell in hexagonal lattices
consists of three HMS beams having residual magnetic flux density B
concerning the initial configuration. The beam-level forces developed
under the two different combinations of normal stress and magnetic
fields as shown in Fig. 2(a) and (d), and under the combination of shear
stress with the magnetic field as shown in Fig. 3(a), along with the large
deformation kinematics of the HMS beam elements are described in the
following three subsections.

2.3.1.1. Mechanical normal stress along direction-1 and magnetic field
along direction-2. Under the combined mechanical stress o; and mag-
netic field B¢ as shown in Fig. 2(a), the inclined HMS beams (OA and
OB) undergo combined transverse and axial deformations with fixed
end O and the other end A and B being rotationally restrained but
free to translation. Whereas the vertical member OC undergoes axial
deformation only with fixed end C. Due to symmetry, we concentrate
on one inclined member (OA) only along with the vertical member
OC. The large deformation kinematics of the inclined member OA
and the vertical member OC are shown concerning the local Cartesian
frames (x, y) in Fig. 2(b) and (c) respectively. The kinematic boundary
conditions of the beam members are conceptualized from the clas-
sical deformation analysis of conventional honeycomb lattices under
mechanical stress only (Gibson and Ashby, 1999). Note that due to
deformations of the HMS members as shown in Fig. 2(b) and (c), the
residual magnetic flux density changes from By to B".

As shown in Fig. 2(b), the inclined HMS beam OA is subjected to
tip concentrated force F; developed due to the applied stress field o,.
Expression of F; in terms of ¢, is given by

F; = 6,b(h +1sin6) (23)

The above-presented force F; is inclined by the angle g, concerning
the local Cartesian frame (x, y) as shown in Fig. 2(b). Whereas, the
inclination angle of the magnetic field B, concerning the local frame
(x, y) is denoted by «;. The inclination angles are expressed in terms of
the inclination angle 6 of the inclined member of the beam network as

pi=n-0 (24a)
o = 37” —9 (24b)
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As shown in Fig. 2(c), the vertical HMS beam OC is not subjected to
any mechanical load but subjected to magnetic field B only with incli-
nation angle «,. For the vertical HMS beam OC, the kinetic equations
similar to Egs. (23) and (24) are presented below respectively.

F,=0 (25)

a, =7 (26)

2.3.1.2. Mechanical normal stress along direction-2 and magnetic field
along direction-2. When the unit cell is subjected to far-field mechan-
ical stress along direction-2 (i.e. ;) along with the magnetic field B*
as shown in Fig. 2(d), the kinematic boundary conditions of the HMS
members remain the same as in the case of combined loading ¢, and B“
considered in the previous subsection. The large deformation patterns
of the inclined member OA and the vertical member OC concerning the
local Cartesian frames (x, y) are shown in Fig. 2(e) and (f) respectively.
The tip concentrated force F; developed in the inclined member due to
the mechanical stress field o, is expressed in terms of ¢, as

F; = 6,bl cos O 27)

i

The inclination angles of the mechanical load F; and the magnetic field
B, concerning the local frame (x, y) are expressed in terms of the
inclination angle 6 as (refer to Fig. 2(e))

f=a=2 -0 (28)
The vertical HMS beam OC is subjected to mechanical concentrated
force F, in addition to the uniform magnetic field B as shown in Fig.
2(f). Expression of the force F, in terms of the remote stress o, is given

by
F, =20,blcos 6 (29)

The inclination angles of the mechanical force F, and the magnetic field
B¢ concerning the local frame (x, y) are given by

ﬁu =a,=7n (30)

2.3.1.3. Mechanical shear stress in 1-2 plane and magnetic field along
direction-2. Under the combined shear stress  and the magnetic field
B¢ as shown in Fig. 3(a), the developed forces and end moments at
the HMS beam members are shown through free body diagrams in Fig.
3(b). The forces F, and F, developed due to the far-field mechanical
shear stress r are expressed as

F| =2tblcos 6
Fy = tb(h +Isin )

(31a)
(31b)

From the moment balance condition concerning point O (refer to Fig.
3(b)), the induced moment M in the inclined members are found to be
M = F,h/4. Using Eq. (31a), the end moment M is expressed in terms
of the remote stress = as given below.

M = %rblh cos @ (32)

Under the mechanical forces and end moments in combination with
the magnetic field, all the HMS beam members (OA, OB, and OC)
undergo combined axial and transverse deformations with fixed end
O and the other ends (A, B, and C) being rotationally restrained but
free to translation. The large deformation patterns of the inclined (OA
and OB) and vertical (OC) members of the HMS unit cell concerning
the corresponding local Cartesian frames (x, y) are shown in Fig.
3(c), (d), and (e) respectively. Though the deformed geometries of the
inclined members OA and OB look asymmetric, they behave struc-
turally (i.e. visually asymmetric, but structurally symmetric) the same
under the combined mechanical and magnetic field due to the opposite
direction of the residual magnetic flux density B/ in them. Hence, we

0
consider the mechanics of one inclined member (OA) along with the
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Fig. 2. Multi-physical mechanics of periodic hexagonal HMS beam networks under combined mechanical normal stress and magnetic field. (a) Combined loading mode
of the unit cell of hexagonal HMS beam network subjected to normal stress along direction-1 (¢,) and magnetic field along direction-2 (B%). (b, ¢) Beam-level forces and large
deformation kinematics of the inclined and vertical members of the unit cell under the combined normal stress o, and magnetic field B“. Note that under the combined loading
condition (a—c), we focus on the longitudinal effective Young’s modulus E, and Poisson’s ratio v,, of the HMS beam network. (d) Combined loading mode of the unit cell of
hexagonal HMS beam network subjected to mechanical normal stress along direction-2 (s,) and magnetic field along direction-2 (B). (e, f) Beam-level forces and large deformation
kinematics of the inclined and vertical members of the unit cell under the combined normal stress o, and magnetic field B°. Note that under the combined loading condition
(d-f), we focus on the transverse Young’s modulus E, and Poisson’s ratio v,, of the HMS beam network. (g) Local coordinate systems (x, y) for the inclined and vertical members
and their orientations with the global frame (1, 2).
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Fig. 3. Multi-physical mechanics of periodic hexagonal HMS beam networks under combined mechanical shear stress and magnetic field. (a) Combined loading mode
of the unit cell of hexagonal HMS beam network subjected to shear stress in 1-2 plane (z) and magnetic field along direction-2 (B“). (b) Free body diagrams of the inclined and
vertical members of the unit cell under the combined in-plane shear stress r and magnetic field B“. (c—e) Beam-level forces and large deformation kinematics of the inclined and
vertical members of the unit cell. Note that under this combined loading condition, we focus on the in-plane shear modulus G,, of the HMS beam network.

vertical member OC. In this context, it may be further emphasized
that the direction of residual flux densities By is architected differently
under normal and shear far-field stresses (refer to Figs. 2(a, d) and
3(a)) to maintain structural symmetry in the deformation behaviour.
Here if we keep the distribution of residual flux densities B same for
both the far-field normal and shear stresses, the analysis will involve
structural asymmetry in any one of cases of far-field stress, leading
to more involved unit cell level derivation to distribute unbalanced
stress resultants at joint O. In the current paper, we have focused on
demonstrating the concepts of active elasticity modulation rather than
increasing unit cell level structural complexity.

The beam-level transverse force F, for the inclined member OA as
shown in Fig. 3(c), is the equivalent force of the end moment M derived

11

following the typical rotationally restrained boundary condition of the
member OA as given by F, = —2M/I. Whereas, the axial force F,,
is obtained from the components of F| and F, along OA as given by
F, = —(F;/2)cos§ — F, sinf. Using Eqgs. (31) and (32), the beam-level
forces are expressed in terms of the applied remote shear stress z as

F, = bl {00529+ (? +5in0) sinG} (33a)

F, = —tbhcos@

Vi (33b)

The inclination angle «; of the externally applied magnetic field B“
(refer to Fig. 3(c)) is given in terms of the inclination angle 6 as

a-=3—ﬂ—9

=7 (34)
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As shown in Fig. 3(e), the vertical HMS beam member OC is subjected
to transverse force F, which is given by F, = F. Hence, the
expression of the transverse force F, in terms of the remote stress 7
is obvious from Eq. (31a) as

FU = 27bl cos O

Y (35)

In addition to the above presented mechanical force, the vertical HMS
beam member OC is subjected to the vertical magnetic field B¢, incli-
nation angle of which concerning the local Cartesian frame (x, y) is
obvious from Fig. 3(e) as given below.

=0 (36)

v

2.3.2. Effective elastic moduli

The beam model presented in the previous subsection gives non-
dimensional deformation characteristics (5, and Sy) of HMS beam with
non-dimensional geometric specification 11, for the inputs of normal-
ized mechanical load C and magnetic load B in terms of magnetic
load ratio r as B = rC along with their orientation angles # and «
respectively. To use the beam model for the estimation of elastic moduli
of hexagonal HMS beam networks following a unit cell approach (refer
to Figs. 2 and 3), the geometric specifications and loading terms of
the HMS beam network need to be defined in non-dimensional forms.
The non-dimensional geometric specifications of the inclined (HO,) and
vertical (HOU) members of the HMS beam network are defined following

Eq. (12) as
12

Ho,. = (37a)
()
h 2
0 = @ (37b)
()

Under any mode of the applied far-field mechanical stress (¢, or o, or

7), non-dimensional mechanical force for the inclined (C;) and vertical
(C,) members of the HMS beam network can be obtained following
Eq. (12) from the beam-level forces (F; and F,) presented in Sec-
tion 2.3.1. Such expressions of the non-dimensional mechanical loads
C; and C, in terms of the applied stress (¢, or o, or 7) are presented
in the subsequent subsections for the three different combinations of
mechanical and magnetic loads. Under the defined non-dimensional
mechanical load C; for a particular combination of mechanical and
magnetic loads, the non-dimensional magnetic load B; of the inclined
member is defined in terms of the magnetic load ratio r; as

2 (38)

With the known non-dimensional magnetic load B; from the above
equation, the non-dimensional magnetic load B, of the vertical member
becomes known once we know the relationship between B; and B,.
To derive such a relationship between B; and B,, let us observe their
definitions from Eq. (12) as given below.

|By| 181
B=— (39a)
ES”O
| By | 1B21 11,
B=——"* (39b)
Es/’lO

Using Eq. (37), the relationship between B; and B, is obtained from
the above equation which gives the non-dimensional magnetic load B,
in terms of B, as presented below.

h 2
B.=(7) &
Now, with the defined non-dimensional geometric and load param-
eters, the non-dimensional tip-deflections &, and §, of the members of

(40)
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the hexagonal HMS beam network are obtained from the generalized
beam model which in turn give the non-linear effective elastic moduli
following the framework of the unit cell approach. Derivations of
the effective elastic moduli for the three different combinations of
mechanical and magnetic loads are presented in the following three
subsections. In addition, non-dimensional forms of the effective elastic
moduli are defined subsequently.

2.3.2.1. Computation of E, and v,, under combined load o, and B“.
Under the combined loading of mechanical far-field normal stress o,
and magnetic field B¢ as shown in Fig. 2(a—c), the non-dimensional
mechanical loads C; and C, are derived using Egs. (23), (25) and (12)
as given by
h .
~ 12 <7 + sin 9)

= —F 0

0]

(41a)

i

C,=0 (41b)

With the above-presented non-dimensional mechanical loads C; and
C, under normal stress o, the non-dimensional magnetic loads B; and
B, are defined in terms of the magnetic load ratio r; using Egs. (38)
and (40). With the defined mechanical and magnetic loads along with
their orientation angles (Egs. (24) and (26)), the non-dimensional
tip-deflections of the inclined member (Sx,_ and Syi) and the vertical
member (SXU) of the unit cell of hexagonal HMS beam network (refer to
Fig. 2(b) and (c)) are obtained with respect to the local Cartesian frames
(x, y) based on the generalized beam model presented in Section 2.2.
Through the coordinate transformation between the local frames (x,
y) and the global frame (1, 2) as shown in Fig. 2(g), the resultant
deflection along direction-1 (,) and direction-2 (5,) are obtained as

8 =1 (_5xi cos 0 + 6, sin 0) (42)

- hé

8y =—I (5)5’ sin@ +§,, cos 0) X“ (43)
The normal strain developed along direction-1 under the combined
loading o, and B“ is obtained by ¢, = §,/Icos 8, using Eq. (42) which
becomes

—6,,cos0 + 6, sind

e = (44)

cos 6
Similarly, the normal strain along direction-2 is obtained by ¢, =
8,/(h + I'sin @), using Eq. (43) which becomes

L¥;

=6y, sin0 — 6, cos 6 — 0%,

€ = (45)

%+sin9

The longitudinal effective Young’s modulus of the hexagonal HMS
beam network is obtained from its fundamental definition E, = o, /¢,
using Eq. (44) as

oy cos b

E = (46)

- —6,, cos0+5, sind
The effective Poisson’s ratio v;, of the HMS beam network under the
combined loading ¢, and B¢ is obtained by the definition v,, = —¢, /¢,
using Egs. (44) and (45) which becomes

<5x, sin6 + 5, cos 6 + ?va) cos 0

Vi = (% + sin@) (—Sx‘_ cosf+6, Sine) (47)

The solution steps involved in the computation of the non-linear effec-
tive elastic moduli E; and v,, of the hexagonal HMS beam network
using the beam model are presented in Algorithm 2. Note that the
solution algorithm is generic and is applicable to the computations of
effective elastic moduli under all the three combined loading conditions
of the magnetic field and different far-field mechanical stresses.
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Algorithm 2: Beam network-level computational algorithm to
obtain non-linear effective elastic moduli of periodic HMS beam
networks under combined mechanical stress and magnetic field.
Define geometry: Define non-dimensional geometric parameters
of the HMS beam network (such as ¢/I, h/I, and 6 for hexagonal
lattices). With the defined lattice parameters, compute the
geometric specifications of the constituting inclined and vertical
HMS beams 1, and 11 .

Define mechanical load: Under a particular mode of applied
mechanical stress (¢, or o, or 7), define the non-dimensional
mechanical force for the inclined and vertical HMS beams C; and
C, along with their inclination angles g; and p,.

Define magnetic load: Define the magnetic load ratio r; for the
inclined HMS beam. Compute the non-dimensional magnetic load
of the inclined member in terms of r; and C; as B; = r;C;. Compute
magnetic load of the vertical member as B, = (h/[)>B; along with
the inclination angles «; and «,.

Compute beam deflections: Under the combined mechanical and
magnetic loads, compute non-dimensional tip-deflections of the
inclined and vertical HMS beams &, , §,,, &, , and §, through

Xp? 5)’;"
solution Algorithm 1.

Compute effective elastic moduli: In terms of the tip-deflections
8,5 8,., 6, and §, , compute the effective elastic moduli (Ej, vi,,
E,, vy, and G|,) of the periodic HMS beam network under the

corresponding mode of mechanical stress in combination with the

magnetic field.

2.3.2.2. Computation of E, and v,, under combined load o, and B°.
Under the applied normal far-field stress along direction-2 (o,) in
combination with the magnetic field B? as shown in Fig. 2(d)-(f), the
non-dimensional mechanical force for the inclined (C;) and vertical
(C,) members of the HMS unit cell are obtained in terms of o, using
Egs. (27) and (29) through the normalization scheme of Eq. (12) as

12 [
= COtS - o) (48a)
E(})
2
24 ( ? ) cos 6
C, = ) (48b)

The non-dimensional magnetic loads B; and B, are defined in terms of
the magnetic load ratio r; and the mechanical load C; using Egs. (38)
and (40). The inclination angles of the mechanical and magnetic loads
B;, a;, B,, and «,) are given in Egs. (28) and (30). With the defined
input parameters, the tip-deflections of the HMS beam members le,
Sy[, and SXU are computed through the generalized beam model. As the
coordinate systems for the current load combination of ¢, and B is
the same with the load combination of ¢, and B? (refer to Fig. 2), the
expressions of the deflections 5, and 6,, and the normal strains ¢; and
¢, are the same as presented in Egs. (42)-(45). Hence, the equations
are not repeated here to maintain brevity of the paper.

The transverse effective Young’s modulus E, of the hexagonal HMS
beam network is defined as E, = o,/e,. Using Eq. (45), the final
expression of the Young’s modulus E, is obtained in terms of the
beam-level deflections as

) (% +sin9>

E, = (49)

- _ h -
—0,, sinf — 6, cosf — 76)%

Using the strain expressions presented in Eqs. (44) and (45), the effec-
tive Poisson’s ratio of the hexagonal HMS beam network is obtained
through its fundamental definition v,, = —¢, /¢, as

(? + sin 6‘) <—5x’ cosf +56, sin0>
(50)

V21 = - - h
((SX, sinf + 6, cos 6 + 75% ) cos
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2.3.2.3. Computation of G, under combined load r and B°. Under the
combined loading condition of the shear mode of mechanical stress ()
and magnetic field B? along direction-2 as shown in Fig. 3, components
of the non-dimensional mechanical force C; for the inclined member of
the HMS unit cell are obtained using Egs. (33) and (12) as given below.

12{00320+ (? +sin9>sin0}
T

. (5)

12(?>c059

3
£ (7)

From the above set of equations, the non-dimensional mechanical force
C; along with its orientation angle g, can be obtained. In terms of the
mechanical load C; and the required magnetic load ratio r;, the non-
dimensional magnetic loads B; and B, are defined using Egs. (38) and
(40) having the orientation angles «; and «, as defined in Egs. (34)
and (36). On the other hand, non-dimensional form of the transverse
mechanical force F, having orientation angle f, = z/2 (refer to Fig.
3) is derived from Egs. (35) and (12) as

F, =Cjcosf; =— (51a)

F, =G sing; = — (51b)

2
24<ﬁ) cos 6
_ /i

3
£ (3)
Under the prescribed combined mechanical and magnetic loading,

rotation Q of the inclined member of the HMS unit cell (refer to Fig.
3(c)) is obtained from the generalized beam model as

(52)

Q2=-4,

(53)
Total horizontal shear deflection at point C (51C) comprises of the
deflection of the vertical member OC (6yu) and the deflection com-
ponent due to the rotation 2 (refer to Fig. 3(c) and (e)) defined as

6, =hQ+ hSyU. Using Eq. (53), the shear deflection 6, . is obtained as

b0 =h (-5, +3,) (54)
The horizontal and vertical components of the axial deflection &, at
point A of the inclined member (refer to Fig. 3(c)) are obtained through

a coordinate transformation as given by
(55a)
(55b)

8y, =—16, cosd
8y, = —16, sin6

Due to the deflections as presented in Egs. (54) and (55), the total shear
strain developed in the HMS unit cell under the combined loading of =
and B is given by

~I=

(=6, +8,,) =3, c050 5 sino
- = (56)
cos 6

Bty
“ h+Ising

2

Icos@ =

A

14
" h +siné

The effective shear modulus G|, of the hexagonal HMS beam net-
work under the combined loading r and B? is defined in terms of the
developed shear strain as G|, = 7/y,,. Using the expression of the shear
strain as presented in Eq. (56), we get the final form of G, as shown
below.

r(? +sin0>c030

Gy = 7)

? (—5},[ + Syb_) cos 0 — 6, cos? 0 — &, <? + sin0> sin @

From the expressions of effective elastic moduli presented in Egs.
(46), (47), (49), (50) and (57) (and subsequently considering the
dependencies of the tip deflections), we notice nonlinear dependency
of the moduli on applied magnetic field and far-field stress, along with

unit cell geometry, intrinsic material properties and residual magnetic
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flux architecture. Such complex interplay of the influencing parame-
ters in an expanded design space provides a unique scope of design-
ing novel metamaterial functionalities with unprecedented mechanical
behaviour.

2.3.2.4. Non-dimensional elastic moduli. To observe the effect of non-
linearity along with the incremental effect of the magnetic field with
the applied mechanical load on the hexagonal HMS beam network
explicitly, we present the effective elastic moduli in specific forms.
Among the five elastic moduli, the Poisson’s ratios v,, and v,, are
already in non-dimensional forms. Hence, they are presented in their
original forms. Whereas, the other three effective elastic moduli of the
HMS beam network (E;, E,, and G,,) are expressed in non-dimensional
forms as given below.

- £ - £ G

=—— E=—",G,= (58)
1 s =2 > Y12
E,p3 Ep3 Ep3

where, p is the relative density of the hexagonal HMS beam network
defined as the ratio of the volume of the total intrinsic HMS material
and the volume of the equivalent plate-like object that the hexagonal
HMS beam network acquires (Gibson and Ashby, 1999). Expression of
the relative density p is given by
(7+2)7
=~ (59
2(7 +sin0) cos @

2.3.2.5. Note on different lattice architectures. For the hexagonal net-
work of HMS beams, a detailed derivation of the non-linear effec-
tive elastic moduli within the multi-physical mechanics-based semi-
analytical framework is presented in this subsection. To demonstrate
the generality of the physically insightful framework, non-linear ef-
fective elastic properties of five other HMS beam networks, namely,
auxetic, rectangular brick, rhombic, triangular, and rectangular con-
figurations are also analysed within the broad framework (refer to
Fig. 1(g)). Among the considered five other forms of HMS beam net-
works, the effective elastic moduli of the auxetic, rectangular brick,
and rhombic configurations are readily obtained from the framework
for hexagonal HMS beam network by properly selecting the geometric
parameters A/l and 6 (note: for auxetic configuration 6 is negative,
for rectangular brick configuration 6 is zero, for rhombic configuration
h/l is zero). However, for the triangular and rectangular HMS beam
networks, the appropriate unit cells need to be chosen and analysed
separately. The detailed derivations of the non-linear elastic moduli for
the triangular and rectangular HMS beam networks are presented in
the following subsections. Note that under the influence of combined
far-field mechanical stresses and magnetic field, the unit cell mechanics
of different lattice configurations becomes significantly involved (due
to combined bending and stretching dominance in a multi-physical
environment) that has not been investigated in the literature.

2.4. Effective elastic moduli of triangular HMS beam networks

The non-linear effective elastic moduli E;, v;,, E,, v5;, and G, of
a triangular network of HMS beams, as shown in Fig. 1(g)IV, under
different modes of far-field mechanical stress (¢;, 05, and 7) in com-
bination with the magnetic field B* are derived in this subsection.
The unit cell of the triangular HMS beam network is an equilateral
triangle with side / having residual magnetic flux density B;. The
combined loading conditions for the triangular HMS unit cell under the
longitudinal and transverse normal stresses o; and o, in combination
with the magnetic field B? along direction-2 are shown in Fig. 4(a)
and (b) respectively. Whereas, the combined loading condition under
the in-plane shear stress r and the magnetic field B? for the triangular
HMS unit cell is shown in Fig. 4(d). Note in Fig. 4(d) that the direction
of residual magnetic flux density B! for the inclined members OB

0
and AB is opposite (unlike the unit cells considered under far-field
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normal stresses). This opposite distribution of B makes the members
OB and AB structurally symmetric under the in-plane shear stress
in combination with external magnetic field B?. This phenomenon is
already described in detail for the hexagonal HMS beam network and
is not repeated here to maintain brevity.

Under only far-field mechanical stress (¢, 65, and 7) in absence
of magnetic field B?, the cell members undergo stretch-dominated
deformations (Gibson and Ashby, 1999). Hence, the effective elastic
moduli of the triangular lattice configurations under mechanical load
only are governed by the axial deformations of the members (Wang and
McDowell, 2004). The analytical formulae for the effective elastic mod-
uli of triangular lattices (with cell wall thickness ¢) under mechanical
load only within small deformation regime are given by (Gibson and
Ashby, 1999; Wang and McDowell, 2004)

ETE I

1
va=vai =3 (60b)
G _ V31 (60c)
E, 41

s

In this subsection, the conventional unit cell-based approach for tri-
angular lattices (Gibson and Ashby, 1999; Wang and McDowell, 2004)
is extended to a magneto-active multi-physical mechanics-based semi-
analytical framework following the formulation for hexagonal HMS
beam network presented in the preceding subsection, leading to the
evaluation of non-linear effective elastic moduli of the triangular HMS
beam network under combined mechanical and magnetic loads. Large
deformation kinematics of the triangular HMS unit cell and the beam-
level forces developed under different combinations of mechanical
stress and magnetic field are described first in the following subsection.
With the identified kinematic and kinetic conditions, the beam-level
non-linear multi-physical mechanics problems are solved through the
semi-analytical HMS beam model as presented in Sections 2.1 and 2.2.
Using the beam-level deformation results, computations of the non-
linear effective elastic moduli of the triangular HMS beam network
under the combined mechanical stress and magnetic field are presented
subsequently.

2.4.1. Beam-level forces and deformation kinematics

Under the combined mechanical and magnetic loads as presented
in Fig. 4(a), (b), and (d), the HMS beam members undergo bending
in combination with axial deformation. Kinematics and kinetics of
the beam members under the magnetic field B in combination with
the three different modes of the mechanical stress ¢, 6,, and 7 are
presented in the following three subsections.

2.4.1.1. Mechanical normal stress along direction-1 and magnetic field
along direction-2. Under the combined loading of far-field normal stress
o, and magnetic field B* as shown in Fig. 4(a), all the three members
(OA, OB, and AB) of the triangular HMS unit cell undergo combined
bending-stretching deformation with one end fixed, while the other
ends being restrained to rotation and transverse displacement but free
to axial translation. The deformed configuration of the triangular HMS
unit cell under the combined loading of ¢, and B* is shown in Fig.
4(c). The generalized figure also represents the deformed configuration
under the combined loading of 6, and B“. Note in the figure that
the changes in the span of the HMS beam members are shown in a
generalized manner without taking into consideration of the proper
algebraic signs. Those senses of the axial deformations will be implicitly
taken care of by the generic beam model under the proper description
of the sense of the beam-level forces under a particular combined
loading condition.

Due to the symmetry of the deformation under the combined load-
ing of 6; and B“, we concentrate on one inclined member OB in
addition to the horizontal member OA. To use the developed frame-
work of hexagonal HMS beam network as presented in the preceding
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Fig. 4. Multi-physical mechanics of periodic triangular HMS beam network under combined mechanical stress and magnetic field. (a) Combined loading mode of the
triangular HMS unit cell under normal stress along direction-1 (s,) and magnetic field along direction-2 (B*). (b) Combined loading mode of the triangular HMS unit cell under
normal stress along direction-2 (¢,) and magnetic field along direction-2 (B%). (¢) Deformed configuration of the triangular HMS unit cell under combined normal stress ¢, or o,
and magnetic field B*. (d) Combined loading mode of the triangular HMS unit cell under shear stress in plane 1-2 (r) and magnetic field along direction-2 (B*). (e) Deformed
configuration of the triangular HMS unit cell under combined shear stress r and magnetic field B?. (f) Generalized forces and large deformation kinematics of inclined and
horizontal members under any of the three combined loading conditions.

subsection readily for the present multi-physical mechanics of trian- the members of the hexagonal network, i.e., one end fixed with the
gular HMS beam network, we consider half of the members OA and other end being rotationally restrained but free to translation (refer to
OB of length //2 which have similar boundary conditions as those of Section 2.1.1). Point O is considered the fixed point and origin of local

15
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Cartesian frames (x, y) for half of the inclined and horizontal members.
Large deformation kinematics along with the developed forces in half of
the inclined and horizontal HMS members under the combined loading
of o, and B? are shown in Fig. 4(f). Note that the kinematic and
kinetic descriptions of the HMS half beams in Fig. 4(f) are a generalized
representation under any of the three combined loading conditions
presented in Fig. 4(a), (b), and (d).

Under the remote mechanical stress o, the tip-concentrated force
F;, developed in the horizontal member as shown in Fig. 4(f) is given
by

V3

Fh = Talbl (61)

Inclination angles g, and a, of the above-presented mechanical force
F,, and the vertical magnetic field B¢ for the horizontal HMS member
(refer to Fig. 4(f)) are given by

Bp=rx (62a)
o=t (62b)

For the inclined HMS member as shown in Fig. 4(f), the developed
force F; and the inclination angle «; of the magnetic field B* are given
by

F=0 (63)
(64)

2.4.1.2. Normal stress along direction-2 and magnetic field along direction-
2. Under the remote normal stress ¢, in combination with the external
magnetic field B? as shown in Fig. 4(b), the large deformation kine-
matics of the triangular HMS unit cell and the kinetics of the HMS
beam members are already described through Fig. 4(c) and (f). The
concentrated force F, developed in the horizontal HMS beam due to
the remote stress o, is given by

1
F, = ——ao,bl
243

As observed in Fig. 4(f), the inclination angles §, and «a,, are given by

(65)

Br=0 (66a)
o= (66b)

The concentrated force F; developed in the inclined member is ex-
pressed in terms of the remote normal stress o, (refer to Fig. 4(f)) as

= Lo
3

The inclination angles f; and «; of the mechanical and magnetic loads
for the inclined member as shown in Fig. 4(f) are presented below.

(67)

pi=x (68a)
5= (68b)

2.4.1.3. Far-field shear stress in 1-2 plane and magnetic field along
direction-2. When the triangular HMS beam network is subjected to
in-plane shear stress r combined with the external magnetic field
B? as shown in Fig. 4(d), all the three members (OA, OB, and AB)
of the triangular HMS unit cell are subjected to the same boundary
conditions as those under the combined normal stress (¢} or o,) and the
magnetic field (B?) (refer to Fig. 4(c)). However, under the combined
load of r and B¢, the two inclined members OB and AB undergo the
opposite modes of axial deformation (compression and tension), and
hence the triangular HMS unit cell becomes asymmetric as shown
in Fig. 4(e). The opposite distribution of the residual magnetic flux
density By in the inclined members OB and AB makes the structural
behaviour under the mechanical and magnetic field in phase with each
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other (i.e. structurally symmetric, as discussed in the derivation of
hexagonal lattices). Within the unit cell-based approach to compute the
effective shear modulus, we concentrate only on one inclined member
OB in addition to the horizontal member OA. The large deformation
kinematics and force kinetics of half of the inclined and horizontal HMS
beams are presented through the generalized schematic in Fig. 4(f).

Under the remote shear stress z, the concentrated axial force F,
developed in the horizontal member along with the inclination angle
ay, of the magnetic field (refer to Fig. 4(f)) are expressed as

F,=0 (69)
@, = % (70)

The concentrated force F; developed in the inclined HMS member as

shown in Fig. 4(f) is expressed in terms of the remote shear stress 7 as
F, = bl (71)

The inclination angles g, and a; of the mechanical force F; and the
magnetic field B? for the inclined HMS beam (refer to Fig. 4(f)) are
given below.

(72a)
(72b)

b=

a =

oy N

2.4.2. Effective elastic moduli

To estimate the non-linear effective elastic moduli of the triangular
HMS beam network, geometrically non-linear axial tip-deflections 4,
and &, of the horizontal and inclined HMS beams under the concen-
trated force Fj,, and F; combined with the magnetic field B? as described
through Fig. 4(f) in the previous subsection are computed based on
the generalized HMS beam model. In the framework of the generalized
HMS beam model, the geometries of the horizontal and inclined HMS
half beams shown in Fig. 4(f) are normalized as

3
Iy, =1, =

T N2
(7)
The non-dimensional forms of the beam-level forces in the framework
of the generalized HMS beam model are presented in the respective
subsection estimating the elastic moduli of the triangular HMS beam
network under a particular combined loading case. Expression of the

relative density and non-dimensional forms of the effective elastic
moduli are presented subsequently.

(73)

2.4.2.1. Computation of E; and v,, under combined load o, and B°.
Under the combined loading of normal stress ¢; and magnetic field
B¢ (refer to Fig. 4(a) and (f)), the non-dimensional mechanical forces
C, and C; for the horizontal and inclined members are derived from
Egs. (61) and (63) following the normalization scheme discussed earlier
as

3V3
2E (7)

C =0

C, = o (74a)

(74b)

With the non-dimensional mechanical forces C, and C;, the non-
dimensional magnetic loads B, and B; for the horizontal and inclined
HMS beams are defined in terms of the magnetic load ratio r, as

B, = B, =r,C, (75)

Under the non-dimensional mechanical and magnetic loads with the
inclination angles presented in Egs. (62) and (64), the non-linear non-
dimensional tip-deflections th and le of the horizontal and inclined
HMS beams are computed. The normal strain in direction-1 (¢;) is
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obtained in terms of the beam-level defection §,, through a suitable
coordinate transformation as given by

(76)

€1 =06y,

The normal strain in direction-2 (¢,) is derived from the deformed

geometry of the triangular HMS unit cell as presented in Fig. 4(c). By

using the Pythagorean theorem on the triangle, we get
1+6\?

(h+ 8y + <Tl> = +5)° @77)

Noting the geometric relation of the undeformed triangular unit cell

as h* + (1/2)> = I? (refer to Fig. 4(a)) and neglecting the higher order
terms, the above equation gives
\/552=—%51+25,. (78)

From the above relation, the strain ¢, is obtained in terms of the
beam-level displacements as

(79)

With the known normal strains ¢; and ¢, as presented in Egs. (76) and
(79), the non-linear effective elastic moduli E, and v,, are obtained as

E =2L (80)
5,
1 46

Vip = 5 - 5 —_ (81)

2.4.2.2. Computation of E, and v,, under combined load o, and B“.
Under the normal stress ¢, combined with B? as shown in Fig. 4(b)
and (f), the non-dimensional forces C, and C; for the horizontal and
inclined beams are obtained from Egs. (65) and (67) as

V3
2. ()
V3

C = 7 0
7

In combination with the above-presented non-dimensional mechanical

forces C), and C;, the HMS beams are subjected to the non-dimensional

magnetic loads B, and B; which are defined in terms of the magnetic
load ratio r; by

C, = (82a)

0

(82b)

B, =B, =rC, (83)

The inclination angles of the mechanical and magnetic loads are
already presented in Egs. (66) and (68). Following the same procedure
as in the previous combined loading case in the preceding subsection,
the non-linear non-dimensional tip-deflections 5, and , are obtained
which give the normal strains ¢, and ¢, having the same mathematical
expressions as presented in Egs. (76) and (79). Using the strain expres-
sions, the non-linear effective Young’s modulus E, and the Poisson’s
ratio v,; of the triangular HMS beam network are derived as

3
Ey=—22 (84)
=06y, +40,,
36
Vo1 = % (85)
0y, — 40y,

2.4.2.3. Computation of G, under combined load v and B®. Under the
combined in-plane shear stress r and magnetic field B¢ as presented
in Fig. 4(d) and (f), the non-dimensional mechanical forces C, and C;
for the horizontal and inclined HMS beam members as derived from
Egs. (69) and (71) are given by

C,=0 (86a)
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c=— (86b)

3
£(5)
The non-dimensional magnetic loads B;, and B; of the horizontal and

inclined HMS beam members are defined similarly as those for the
other two combined loading cases as

By, = B; =r,C; (87)

Under the non-dimensional mechanical and magnetic forces with
the inclination angles of Egs. (70) and (72), the non-linear non-
dimensional defections th and SX,, are computed through the general-
ized HMS beam model. To derive the in-plane shear strain y;, under the
combined loading of r and B¢, we concentrate on the deformed trian-
gular HMS unit cell as presented in Fig. 4(e). By using the Pythagorean
theorem on the deformed triangle, we get the following geometric
relation

2 [, &
h* + (5 +
Noting the geometric relation of the undeformed triangular unit cell as
h?+(1/2)* = I? (refer to Fig. 4(d)) and carrying out some mathematical
manipulations by neglecting the higher order terms, the horizontal
displacement 6, , of point B is obtained as
g
2
Due to the horizontal displacement &, , the shear strain y;, developed
in the triangular unit cell is given by y,, = é,, /h. Using the geometric
relation from Eq. (89), the shear strain y;, is expressed in terms of the
beam-level displacements 5, and 5, as

2
+ %) =(+6) (88)

5., =26, 89)

4 1 -

Y2 =—=0y ———=96 (90)
Vi

Once the shear strain y, is known as presented above, the non-linear

effective shear modulus G, of the triangular HMS beam network is

obtained through its fundamental definition G|, = z/y,, as

V3

=—"]/" 91
46, — 0y, oD

12
2.4.2.4. Non-dimensional elastic moduli. As Poisson’s ratios v;, and v,;
are already non-dimensional, they are presented in their original forms.
The other three effective elastic moduli E,, E,, and G, of the triangular
HMS beam network are presented in non-dimensional forms following
the normalization scheme as
. E . E .

G12
1= b=
Ep- Ep-

= 12 92
£y (92)

12
Here the relative density p of the triangular HMS beam network ob-
tained following the same definition as the hexagonal beam network is
given by

p=2\/_§

(93)

2.5. Effective elastic moduli of rectangular HMS beam networks

To estimate the non-linear effective elastic moduli E|, v,, E,, v5;,
and G, of periodic rectangular network of HMS beams, as shown in
Fig. 1(g)V, the unit cell consisting of horizontal HMS beam of length /
and vertical HMS beam of length /1 with residual magnetic flux density
B is chosen. The three different combined mechanical and magnetic
loading conditions for the rectangular HMS unit cell are shown in Fig.
5(a), (b), and (d) respectively.

Under the normal modes of mechanical stress ¢, or o, in absence of
magnetic field B?, the cell members of the rectangular lattice undergo
stretch-dominated deformations (Gibson and Ashby, 1999). Whereas,
under the shear mode of mechanical stress r in absence of magnetic
field B9, the cell members are subjected to bending-dominated defor-
mations (Wang and McDowell, 2004). The analytical formulae for the
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Fig. 5. Multi-physical mechanics of periodic rectangular HMS beam network under combined mechanical stress and magnetic field. (a) Combined loading mode of the
rectangular HMS unit cell under normal stress along direction-1 (¢,) and magnetic field along direction-2 (B“). (b) Combined loading mode of the rectangular HMS unit cell under
normal stress along direction-2 (¢,) and magnetic field along direction-2 (B“). (¢) Generalized forces and large deformation kinematics of the vertical and horizontal members
under combined normal stress ¢, or ¢, and magnetic field B“. (d) Combined loading mode of the rectangular HMS unit cell under shear stress in plane 1-2 (z) and magnetic field
along direction-2 (B“). (e) Forces and large deformation kinematics of the horizontal and vertical members under combined shear stress r and magnetic field B“.

effective elastic moduli of rectangular lattice under mechanical load

only within small deformation regime are given by (Gibson and Ashby,
1999; Wang and McDowell, 2004)

E,
E

&

(1)

(7)

(94a)

(94b)

~1~

18

Vip =V =0 (94c¢)
3
Gy _ (7)
= S THh A (94d)

N

7(+7)

In this subsection, the conventional unit cell-based approach for
rectangular lattices (Gibson and Ashby, 1999; Wang and McDowell,
2004) is extended to a magneto-active multi-physical mechanics-based
semi-analytical framework following the formulation for hexagonal
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HMS beam network presented in the preceding subsection, leading
to the evaluation of non-linear effective elastic moduli of the rectan-
gular HMS beam network under combined mechanical and magnetic
loads. Large deformation kinematics of the rectangular HMS unit cell
and the beam-level forces developed under different combinations
of mechanical stress and magnetic field are described first in the
following subsection. With the identified kinematic and kinetic condi-
tions, the beam-level non-linear multi-physical mechanics problems are
solved through the semi-analytical HMS beam model as presented in
Sections 2.1 and 2.2. Using the beam-level deformation results, compu-
tations of the non-linear effective elastic moduli of the rectangular HMS
beam network under the combined mechanical stress and magnetic
field are presented subsequently.

2.5.1. Beam-level forces and deformation kinematics

Under the three combined mechanical and magnetic loading condi-
tions as presented in Fig. 5(a), (b), and (d), the HMS beam members
undergo large deformation, the kinematics and kinetics of which are
described in the following three subsections.

2.5.1.1. Far-field normal stress along direction-1 and magnetic field along
direction-2. Under the combined loading case of normal stress ¢; and
magnetic field B as shown in Fig. 5(a), the horizontal and vertical
HMS beam members OA and OB of the rectangular HMS unit cell
undergo combined bending-stretching deformation with fixed end O
and the other ends A and B being restrained to rotation and transverse
displacement but free to axial translation. The other pairs of horizontal
and vertical HMS beams BC and CA are not considered in the analysis
due to the structural symmetry of the unit cell. Following the same
procedure as in the case of the triangular HMS beam network (refer to
the preceding subsection), half of the members OA and OB of length
1/2 and h/2 respectively are considered for the present multi-physical
mechanics. The half beams are subjected to the boundary conditions of
one fixed end with the other end being rotationally restrained but free
to translation.

Large deformation kinematics and the force kinetics of the vertical
and horizontal HMS half beams under the combined loading of ¢, and
BY are presented in Fig. 5(c) concerning the local Cartesian frames
(x, y) fitted at the fixed point O. Note that the kinematic and kinetic
descriptions of the HMS half beams in Fig. 5(c) are a generalized
representation under the normal modes of mechanical stress ¢, or o,
combined with the magnetic field B¢ as presented in Fig. 5(a) and (b).

The concentrated mechanical force F, developed in the horizontal
HMS beam under the remote normal stress ¢, as shown in Fig. 5(c) is
given by

F, =o0,bh (95)

Inclination angles g, and a; of the mechanical force F, and the mag-
netic field B“ respectively for the horizontal HMS member as shown in
Fig. 5(c) are given by

pp=rx (96a)
a, = % (96b)

The vertical HMS beam (refer to Fig. 5(c)) is only subjected to the
magnetic field B without any mechanical force F, under the present
combined loading case. Hence, the kinetics of the vertical HMS beam
is represented as

F,=0 97)

=0 (98)
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2.5.1.2. Far-field normal stress along direction-2 and magnetic field along
direction-2. The large deformation kinematics and kinetics of the mem-
bers of the rectangular HMS unit cell under the combined loading of
o, and B“ are already described through the generalized schematic
diagrams in Fig. 5(c). Under the present combined loading case, the
horizontal HMS beams are not subjected to any mechanical force
F,,. However, the horizontal members are subjected to B? with the
inclination angle ;. The kinetic relations for the horizontal HMS beam
member are summarized as

F,=0 (99)
T
== 1
=1 (100)

The concentrated force F, developed in the vertical member (refer to
Fig. 5(c)) is given by
F, = o,bl (101)

The inclination angles g, and «, of the mechanical and magnetic loads
respectively for the vertical member as presented in Fig. 5(c) are given
by

(102a)
(102b)

B=x
a,=0

2.5.1.3. Shear stress in 1-2 plane and magnetic field along direction-2.
Under the combined loading of in-plane shear stress r and magnetic
field B? as shown in Fig. 5(d), the horizontal and vertical members OA
and OB of the rectangular HMS unit cell undergo bending-dominated
large deformation with fixed end O and the other ends A and B being
rotationally restrained but free to translation. Within the present multi-
physical mechanics-based framework, the large deformation kinematics
and kinetics of the horizontal and vertical HMS full beam members OA
and OB are analysed as presented in Fig. 5(e).

The tip-concentrated transverse force F;, developed in the horizontal

HMS beam under the remote shear stress 7 is expressed as
F, = tbh (103)

The inclination angles f, and «;, of the mechanical and magnetic loads
for the horizontal HMS beam as shown in Fig. 5(e) are given by

B, = 37” (104a)
=z
=12 (104b)

The concentrated force F, developed in the vertical HMS beam mem-
ber under the remote shear stress r (refer to Fig. 5(e)) is expressed by

F, = tbl (105)

The inclination angles f, and «, of the mechanical force F, and the
magnetic field B¢ for the vertical HMS beam as shown in Fig. 5(e) are
summarized as

B, =

i
2

a,=0

(106a)

(106b)

2.5.2. Effective elastic moduli

To estimate the non-linear effective elastic moduli E,, v,,, E,, and
vy, of the rectangular HMS beam network under the normal modes of
mechanical stress ¢; or ¢, in combination with the magnetic field B?,
geometrically non-linear axial tip-deflections 6, and 6, of the horizon-
tal and vertical HMS half beams under the concentrated force F, and
F, combined with the magnetic field B* as described through Fig. 5(c)
in the previous subsection are computed through the generalized HMS
beam model. Whereas, for the estimation of the non-linear effective
shear modulus G, under in-plane shear stress r and the magnetic
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field B¢, geometrically non-linear transverse deflections §,, and 6, of
the horizontal and vertical HMS full beams as shown in Fig. 5(e) are
computed.

In the framework of the generalized HMS beam model, the geome-
tries of the horizontal and vertical HMS half beams considered for
combined loading case under normal stress o, or ¢, and magnetic field
B? as shown in Fig. 5(c) are normalized as

(107a)

(107b)

Whereas, the non-dimensional geometries of the HMS full beams
considered for the combined loading case under shear stress r and
magnetic field B? as shown in Fig. 5(e) are given by

Iy, = <§)2 (108a)
h 2
(7)

2.5.2.1. Computation of E, and v,, under combined load o, and B°. The
non-dimensional mechanical forces C, and C, for the horizontal and
vertical HMS beams under the combined loading of normal stress o,
and magnetic field B? as shown in Fig. 5(a) and (c) are obtained from
Egs. (95) and (97) as
h
~ 3(7) .
h= " 301
t
£(5)

C,=0

(109a)

(109b)

Magnitudes of the non-dimensional magnetic loads B, and B, for the

horizontal and vertical HMS beam members of the rectangular HMS
unit cell are defined in terms of the magnetic load ratio r, and the
non-dimensional mechanical force C;, as

By, =rpCy

5.2 (2) n

Under the prescribed non-dimensional mechanical and magnetic
loads with the inclination angles as presented in Egs. (96) and (98),
the non-linear axial deflections are computed in non-dimensional forms
6, and qu. In terms of the beam-level deflections, the normal strains
in direction-1 (¢;) and direction-2 (e,) are defined by

(110a)

(110b)

(111)

€1 X

=

(112)

€ X

With the above-presented strains ¢; and ¢,, the non-linear effective
Young’s modulus E; and Poisson’s ratio v;, of the rectangular HMS
beam network are obtained readily as
%1

0

*h

E, = (113)

=

Vip = —— 114

12 §Xh ( )
2.5.2.2. Computation of E, and v,, under combined load o, and B°.
When the rectangular HMS beam network is subjected to combined
loading under the normal stress o, and the magnetic field B as shown
in Fig. 5(b), the concentrated forces in the horizontal and vertical HMS
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beams are expressed in non-dimensional forms using Egs. (99) and
(101) as
(115a)

(115b)

Magnitudes of the non-dimensional magnetic loads B, and B, are
defined in terms of load ratio r, and non-dimensional load C, in a
similar way as in the case of the other previously discussed combined
loading mode as

C
B, = 4 (116a)
h 2
(7)
B, =r,C, (116b)

Under the above-presented mechanical and magnetic loads with the
inclination angles presented in Egs. (100) and (102), the non-linear
beam-level deflections 5, and 5, are computed which in turn give
the normal strains ¢, and ¢, through Egs. (111) and (112). Using the
strain expressions, the non-linear effective elastic moduli E, and v, of
the rectangular HMS beam network under the combined loading of o,
and B“ are obtained as

E, =22 (117)
5)(13
b}
vy = —gﬂ (118)
xl)

2.5.2.3. Computation of G, under combined load = and B®. Under the
combined loading of = and B“ as shown in Fig. 5(d) and (e), the non-
dimensional forces C,, and C, for the horizontal and vertical beams are
derived from Egs. (103) and (105) as

(1)
£ (1)

The non-dimensional magnetic loads B, and B, for the horizontal and
vertical HMS beam members are defined as

C, = (119a)

C, =

v

(119b)

By, = ryCp (120a)

2
= () e

Under the above-presented non-dimensional mechanical and mag-
netic loads with the inclination angles presented in Eqgs. (104) and
(106), non-linear transverse defections of the beam tips are computed
in non-dimensional forms as denoted by Syh and Syv in Fig. 5(e). In
terms of the transverse tip-deflections, rotations of the horizontal and
vertical HMS beams are obtained as

(120b)

Q,=-5 (121a)

(121b)

Yh
2,=96,,

Due to the above-presented rotations 2, and £, of the horizontal
and vertical HMS beam members respectively, the total shear strain y,,
developed in the rectangular unit cell is given by

Y2 = =8y, +46, (122)

The non-linear effective shear modulus G, of the rectangular HMS
beam network is obtained subsequently through the fundamental defi-
nition G|, = 7/y,, using Eq. (122) as

T

Gl2 = _S—, (123)
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2.5.2.4. Non-dimensional elastic moduli. As Poisson’s ratios v, and v,,
are already non-dimensional, they are presented in their original forms.
Following a similar representation framework as the other periodic
network configurations, the effective elastic moduli E,, E,, and G,, of
the rectangular HMS beam network are normalized as
_ B - E - Gp

=55

E = , G, = (124)
1 2 Ep 12 Ep
Here the relative density p of the rectangular HMS beam network is

derived as

h

1 (1 + 7)
7=
T

Having established the semi-analytical large-deformation compu-

tational frameworks for different magneto-active periodic beam net-

works, we present numerical results in the following section to demon-

strate active broadband elasticity programming as a function of the

externally applied magnetic field and bi-level (unit cell geometry and

beam-level spatially-varying residual magnetic flux direction) metama-

terial architectures.

(125)

3. Results and discussion

The generalized HMS beam model is the backbone of the present
semi-analytical framework to estimate the non-linear effective elastic
moduli of hexagonal HMS beam networks under combined mechanical
and magnetic loads. Hence, before going to investigate the effective
elastic moduli of HMS beam networks, the HMS beam model is vali-
dated first, as presented in the first subsection here. Thereafter, critical
numerical beam-level results are furnished with symmetric and asym-
metric residual magnetic flux density under different combinations of
mechanical and magnetic loads. Note that modulation capability of the
shapes of such architected beams will constitute the foundation for bi-
level design of lattices, as discussed later in this section. Applicability
of the full-beam and half-beam model for symmetric and asymmetric
residual magnetic flux density of HMS beam is also investigated along
with the influence of centreline extensibility on the load-deformation
characteristics of HMS beam.

Following the beam-level results, the geometrically non-linear semi-
analytical framework estimating the effective elastic moduli of the
HMS beam networks is validated, as presented in the third subsection.
Validations of the present framework at the beam-level as well as
at the beam network-level would provide adequate confidence in the
proposed computational models. Subsequently, the effect of magnetic
field in combination with the different modes of mechanical load
on the non-linear effective elastic moduli of hexagonal HMS beam
network with uniform residual magnetic flux density is investigated,
as presented in the fourth subsection. Based on the kinematic and
kinetic conditions of the beam elements of the hexagonal HMS beam
network, two intuitive designs of residual magnetic flux density S(¢)
(beam-level architecture) are proposed in the fifth subsection which
would significantly influence the effective elastic moduli of the HMS
beam network under combined mechanical and magnetic loads. In the
following subsection, we demonstrate the applicability of the concept
of active broad-band elasticity modulation for different other forms of
lattice geometries, as presented in Fig. 1(g).

For all the computations at beam-level and beam network-level,
the material constitutive parameters in the framework of the Yeoh
hyperelastic model are considered as C;, = 0.2712, C,, = 0.0305,
and C;; = —0.004 (Xu and Liu, 2018). The numerical value of the
computational parameter A and the limit of y are considered as 0.9
and 0.05% respectively. The number of functions for the centreline
rotation ¢ and centreline strain e are selected as nb = ns = 5, based
on a convergence study.
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3.1. Beam-level validation

Though large deformation analysis of HMS beam structures has
become a topic of interest for the last few years, the studies focus
on structural characteristics separately under mechanical load only
and magnetic actuation only. Hence, comparable results for our multi-
physical mechanics-based beam model for coupled mechanical and
magnetic loading conditions are not readily available in the literature.
Thus, the current geometrically non-linear HMS beam model is first
validated under mechanical load only by comparing it with the results
presented by Chen and Wang (2021). Whereas, for the loading case
of magnetic actuation only, we validate our model with the paper by
Chen et al. (2020a). The validation studies for both the mechanical
and magnetic loading cases are performed for the non-dimensional
geometric specification of the HMS beam 17, = 10000.

The validation study of the generalized HMS beam model under me-
chanical load only is carried out for the cantilever boundary conditions
subjected to tip-concentrated non-dimensional load C with inclination
angle g as considered in the paper (Chen and Wang, 2021). The non-
dimensional deformed configurations (&, n) of the cantilever beam
under different values of C for inclination angle g of = /4, =/2, 3z /4,
and 97/10 as obtained from the present model are shown through
solid lines in Figure S1(a)-(d) respectively. Whereas, the corresponding
deformation results reported in the literature (Chen and Wang, 2021)
are also plotted through dotted points in Figure S1. As obvious from
Figure S1, an excellent agreement between the present semi-analytical
HMS beam model and the model presented in literature (Chen and
Wang, 2021) is found for all the considered load magnitudes C and the
orientation angles #. Hence, the comparison studies in Figure S1 clearly
show the capability of the present HMS beam model in predicting
highly non-linear deformation characteristics of the soft beam under
mechanical load only.

The validation study of the present non-linear beam model under
magnetic load only is carried out for four different deformed shapes
obtained under different designs of residual magnetic flux density S(&)
of the HMS beam subjected to multiple boundary conditions as consid-
ered in literature (Chen et al., 2020a). The first considered case among
them is the m-shape deformed configuration which is obtained for the
design of S(&) as given below with the free-free boundary conditions
(0'(0) = 0 and 6'(1) = 0) and inclination angle « = z/2 (Chen et al.,
2020a).

I, 0<E<0250r05<E<075

—1, 025<&<050r075<&<1.0

With the above-presented residual magnetic flux density S(&), the
prescribed boundary conditions and inclination angle, the m-shape
deformed configurations of HMS beam under non-dimensional mag-
netic actuations B = 30, B = 100, and B = 300 are obtained from
the present non-linear model as shown through solid lines in Figure
S2(a)-(c) respectively. The corresponding deformed shapes as reported
in literature (Chen et al., 2020a) are also shown in the plots through
dotted points.

The second shape we concentrate on is the s-shape configuration
which is obtained under the same boundary conditions and inclination
angle « as in the case of m-shape configurations but with the following
design of S(¢) (Chen et al., 2020a)

1, 0<¢ 0r§S§S1

-1,

1
< =
3
2
<é< =
<6<3

W | =

The comparison plots between the present model and the results re-
ported in literature (Chen et al., 2020a) for the s-shape configurations
under the non-dimensional magnetic actuation B of 30, 100, and 300
are presented in Figure S2(d)—(f) respectively.
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The third type of deformed shape considered for the validation
study of the HMS beam model under magnetic actuation only is the
n-shape configuration. The n-shape configuration is achieved for the
same boundary conditions and inclination angle « as those of the m-
shape and s-shape configurations but with the coefficient of residual
magnetic flux density (Chen et al., 2020a)

I, 0<&£<05

-1, 05<¢<1

Comparisons of n-shape deformed configurations from the present
semi-analytical model with the results reported in literature (Chen
et al., 2020a) are shown in Figure S2(g)—(i) for the magnetic actuation
B =30, B =60, and B = 100 respectively.

The fourth type of the deformed shape of the HMS beam under
magnetic actuation we consider is the Q-shape configuration. The
configuration is achieved for the same design of .S(¢) as that for the n-
shape configurations but under the boundary conditions of 6(0) = 0 and
6(1) = 0 with the inclination angle of the magnetic field « = = (Chen
et al.,, 2020a). The Q-shape deformed configurations of HMS beam
under magnetic actuation B of 60, 100, and 200 are compared with the
present non-linear model and the reported results in literature (Chen
et al., 2020a) as presented in Figure S2(j)-(1) respectively.

The excellent matching of the deformation results obtained from
the present semi-analytical model and literature (Chen et al., 2020a),
as shown in Figure S2, validates our non-linear model in predicting
complex configurations of HMS beam with designed spatially-varying
residual magnetic flux densities under different magnetic actuation.

3.2. Beam-level numerical results under coupled mechanical and magnetic
loads

Once the developed geometrically non-linear HMS beam model is
validated for separate loading conditions of mechanical load only and
magnetic load only, as presented in the previous subsection, benchmark
numerical results under coupled mechanical and magnetic loading
conditions are presented here. Note that the such coupled effect of
magneto-mechanical loading has not been investigated in the liter-
ature through the development of a comprehensive computational
framework for HMS beams.

An HMS beam representing the generalized element (full or half
length) of the HMS beam network having length L with non-
dimensional geometric specification 77, = 10000 is considered here.
Non-linear deformation characteristics of the HMS beam are simulated
through the full-beam and half-beam models within the extensible and
inextensible versions of the present semi-analytical framework. The
typical boundary conditions (as considered here) of the HMS beam as
a full-beam problem and as a half-beam problem have been already
described in detail in Section 2.1.

The considered HMS full-beam is fixed at one end with the other
end being rotationally restrained but free to translation and subjected
to non-dimensional mechanical force C = 10 applied incrementally in
50 steps. At each incremental step of C, five non-dimensional magnetic
loads B = rC are applied by five magnetic load ratio r of 0.8, 1.6,
2.4, 3.2, and 4 for two different cases of uniform residual magnetic
flux density with S = 1 and S = —1. For the considered HMS full-
beam problem, four different inclination angles of the mechanical and
magnetic loads are considered as a = f=7n/2, a = f=xn/3, a = f =
/4, and « = f = x/6. The non-dimensional deformed configurations
(&, n) of the HMS beam with residual magnetic flux density .S = 1 and
S = —1 under the mechanical load C = 10 in combination with different
magnetic load ratios r are presented in Fig. 6(a)-(d) for the considered
four sets of inclination angles respectively. The solid lines in the plots
represent the results obtained from the extensible model. Whereas, the
results obtained from the inextensible version of the non-linear model
are plotted through dotted points in the figure. To observe the effect
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of magnetic load in combination with the mechanical loading on the
non-linear deformation characteristics of the HMS beam with S = 1
and S = -1, variations of the non-dimensional tip-deflection Sy with
the non-dimensional mechanical load C for the considered different
magnetic load ratio r are shown in Figure S3(a)-(d) corresponding to
four sets of inclination angles.

Figs. 6 and S3 clearly show that for the residual magnetic flux den-
sity with the coefficient .S = 1, deflection under combined mechanical
load C and magnetic field B for all the considered inclination angles f
and « increases with magnetic load ratio r compared to the deflection
under mechanical load only (r = 0). Whereas, for the residual magnetic
flux density having coefficient .§ = —1, the deflection decreases with r
for the same combination of mechanical and magnetic loads. Hence, it
is clear from the results that we can modulate stiffness characteristics
of HMS beam as per our requirements by applying a magnetic field
in combination with mechanical load through proper design of the
residual magnetic flux density S(&) of the HMS beam. Such effects are
exploited in the current design of lattice metamaterials for broadband
elasticity programming.

Now the HMS full-beam of length L is modelled as two HMS half-
beams with length L /2 subjected to cantilever boundary conditions. To
apply the same dimensional force F as that of the full-beam, the max-
imum value of the non-dimensional force C for the half-beam is taken
as 2.5. At each incremental step of mechanical force C, the same five
magnetic load ratios r as those for the full-beam problem are considered
as 0.8, 1.6, 2.4, 3.2, and 4. The deformed configurations of the HMS
half-beam in the non-dimensional plane (¢, #) under the maximum step
of the mechanical load C = 2.5 in combination with the considered
different magnetic loads are shown in Figure S4(a)-(d). Whereas, the
non-linear variations of the non-dimensional tip-deflection §, with
the non-dimensional mechanical load C for the considered different
magnetic load ratio r are presented in Figure S5(a)-(d).

It is evident from Figs. 6-S5 that the effects of the magnetic field
in combination with the mechanical load on the deformation charac-
teristics of the HMS half-beam are the same as the HMS full-beam.
The overall deflections of the HMS half-beam are exactly half of the
deflections for the HMS full-beam under the same condition of com-
bined mechanical and magnetic loads. Hence, it is proved that an HMS
full-beam with one fixed end and the other end being rotationally
restrained but free to translation can be modelled as an HMS half-beam
with cantilever boundary conditions when the HMS beam has symmet-
ric residual magnetic flux density about the mid-point. However, for
asymmetric residual magnetic flux density, the applicability of such a
modelling concept is investigated in the following paragraphs.

Two different asymmetric distributions of residual magnetic flux
density about the mid-point are considered for HMS full-beam by the
following S(&).

g1 ose<os
-1, 05<¢£<1
-1, 0<£<05
s= :
I 05<é<1

With the above-presented designs of S(¢) for the same geometric and
loading parameters as those for the HMS full-beam with symmetric
uniform residual magnetic flux density, load-deformation characteris-
tics of HMS full-beam are computed. Deformed configurations of the
HMS full-beam having asymmetric magnetic flux density are presented
in Fig. 7. The figure depicts some non-conventional typical complex
shapes of HMS beam achieved for the considered designs of .S(&).
Though the curvatures of the deformed configurations are different for
the two considered distributions of residual magnetic flux density, the
endpoints undergo the same deflections. Variations of such common
tip-deflection Sy with the mechanical load C for the considered different
magnetic load ratios r are shown in Figure S6. The figure clearly shows
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Fig. 6. Deformed shapes of HMS full-beam configurations with symmetric uniform residual magnetic flux density about the mid-point under combined mechanical and
magnetic load. Non-dimensional deformed configurations (&, #) of HMS full beams with the coefficient of residual magnetic flux density .S = 1 and S = —1 under non-dimensional
mechanical force C = 10 in combination with different magnitudes of non-dimensional magnetic load B = rC in terms of the magnetic load ratio r with the inclination angles of
the mechanical and magnetic loads of (a) a =f=7/2, (b) a=p=7/3, () a=p=7x/4, and (d) a =p=1x/6.
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Fig. 7. Deformed shapes of HMS full-beam configurations with asymmetric residual magnetic flux density about the mid-point under combined mechanical and magnetic
load. Non-dimensional deformed configurations (&, #) of HMS full-beam with asymmetric residual magnetic flux density under non-dimensional mechanical force C = 10 in
combination with different magnitudes of non-dimensional magnetic load B = rC in terms of the magnetic load ratio » with the inclination angles of the mechanical and magnetic
loads as (@) a=pf=x/2, (b) a=p=x/3,(c) a=p=x/4, and (d) a =f =r/6.
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that for the considered two designs of S(&), the deflections got reduced
compared to the loading condition of mechanical load only (r = 0).

The HMS full-beam with the considered two asymmetric distribu-
tions of residual magnetic flux density is tried to be modelled now
as two HMS half-length beams either with § = 1 or with § = —1.
Load-deformation characteristics of such HMS half-length beams are
already presented in Figures S4 and S5. Comparisons of the deflec-
tion results for the HMS full-beam with asymmetric residual magnetic
flux density as presented in Figs. 7 and S6 with those for the HMS
half-beam as presented in Figures S4 and S5 depicts that the deflec-
tions through the half-beam model are not half of the deflections
obtained through the full-beam model. However, for symmetric resid-
ual magnetic flux density, we got exactly the half deflections from the
half-beam model compared to the full-beam model under the same
condition of combined mechanical and magnetic loading as described
through comparisons between Figs. 6-S5. Hence, it is concluded from
the comparison studies that modelling of HMS full-beam with one
fixed end and the other end being rotationally restrained but free to
translation as two half-length cantilever beams is only possible when
the residual magnetic flux density is symmetric about the mid-point of
the HMS full-beam. As we focus on both symmetric and asymmetric
designs of S(&) for modulation of effective elastic moduli of HMS beam
networks, the two beam models are applied carefully for analysing
nonlinear hexagonal lattices in the following subsections.

Comparisons of the deflection results between the extensible and
inextensible versions of the present semi-analytical HMS beam model
as presented in Figs. 6-S6 clearly show that the effect of centreline
extension is not significant for the considered HMS beam under com-
bined mechanical and magnetic loads. For achieving higher level of
accuracy, we will consider the generalized extensible model in the
further computations of effective elastic moduli of the HMS beam
networks.

3.3. Periodic beam network-level validation

As the hexagonal lattice consisting of HMS beam members subjected
to combined mechanical and magnetic loads is not investigated in
the literature, directly comparable results for the presently developed
semi-analytical framework are not readily available for reference and
validation. Hence, the current semi-analytical framework estimating
non-linear effective elastic moduli of hexagonal HMS beam network
under combined mechanical and magnetic loads is validated for the
special case of zero magnetic field (r; = 0) subjected to different modes
of mechanical stress only (o, or o, or 7). Validations for the non-linear
effective elastic moduli E; and v,, under normal mechanical stress o,
and for the elastic moduli E, and v,; under normal mechanical stress o,
are carried out by comparing with the results presented by Ghuku and
Mukhopadhyay (2022a). Whereas, for the non-linear effective shear
modulus G, under the shear mode of mechanical stress z, the semi-
analytical framework is validated by comparing with the paper by Fu
et al. (2016).

The validation study for non-linear elastic moduli (E,, v;,, E,, and
v,1) of the hexagonal HMS beam network under the normal modes
of mechanical stress only (o; and o,) (Ghuku and Mukhopadhyay,
2022a) is carried out for the lattice configuration with the geometric
specifications h/l = 2, t/l = 0.01, and § = z/6. Young’s modulus
of the intrinsic material is taken as E; = 200 GPa in the reference
literature (Ghuku and Mukhopadhyay, 2022a). Whereas, for the present
semi-analytical model, the material constitutive parameters are con-
sidered as Cy, = 0.2712, Cy; = 0.0305, and C;, = —0.004 within the
framework of the Yeoh hyperelastic model (Xu and Liu, 2018). In the
reference literature (Ghuku and Mukhopadhyay, 2022a), the non-linear
results are presented as the variations of the non-dimensional elastic
moduli E,, v,, E,, and v,; with the dimensional input normal stress o,
and o,. As the elastic moduli are presented in non-dimensional forms,
they are independent of the intrinsic material property E,. However,
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the dimensional form of the input normal stress o; and o, makes
the results dependent on the intrinsic material property E,. Hence,
to make the input normal stress independent of the material property
E, the stresses o, and o, are also expressed in non-dimensional forms
following Eq. (58) as &, = o,/E,p> and &, = o,/E,p>. Variations of
the non-dimensional effective Young’s modulus E, and the Poisson’s
ratio v;, of the considered hexagonal lattice configuration with the
non-dimensional compressive and tensile modes of normal stress &,
are compared considering the present model, the results reported in
the paper (Ghuku and Mukhopadhyay, 2022a), and the linear small-
deformation analytical model (Gibson and Ashby, 1999) as presented
in Figure S7(a) and (b). The similar comparison plots for the non-
dimensional effective Young’s modulus E, and the Poisson’s ratio v,,
under the non-dimensional compressive and tensile modes of normal
stress &, are presented in Figure S7(c) and (d).

The comparison plots in Figure S7 depict that the non-dimensional
effective elastic moduli E;, vi,, E,, and v,, of the hexagonal HMS
beam network under normal modes of mechanical stress 5, and &,
as estimated by the present model match exactly with the non-linear
model in literature (Ghuku and Mukhopadhyay, 2022a) at lower input
stress level. However, the differences between them increase with the
input stress level. The geometric exactness in non-linear kinematics
and the hyperelastic material model of the present framework is the
possible cause of this difference with the model reported in Ghuku
and Mukhopadhyay (2022a). However, the differences in the elastic
moduli at the higher stress levels are not very significant. Moreover,
the increasing or decreasing trends of the elastic moduli with the input
stress magnitudes agree well between the present model and the non-
linear model reported in literature (Ghuku and Mukhopadhyay, 2022a).
As also observed from Figure S7 that within the small deformation
regime, the non-linear elastic moduli match exactly with the con-
ventional analytical solutions (Gibson and Ashby, 1999). Differences
between the elastic moduli estimated by the present framework and
the linear solutions (Gibson and Ashby, 1999) increase with input
stress magnitude due to the non-linearity in the system which is not
considered in the conventional linear analytical solutions (Gibson and
Ashby, 1999).

The validation study of the present non-linear framework for the
effective shear modulus G|, of hexagonal HMS beam network un-
der shear mode of mechanical stress r is carried out for the auxetic
configuration with § = —z/6 in terms of shear strain y;, versus
non-dimensional shear stress 7/E, curve and shear strain y,, ver-
sus non-dimensional shear modulus G,,/E, curve following similar
representation scheme of the reference literature (Fu et al., 2016).
The shear strain y,, versus shear stress z/E; curves for the auxetic
lattice configuration with 4/l = 2 and ¢/l = 0.1 as obtained from
the present model, the model reported by Fu et al. (2016), and the
analytical model (Gibson and Ashby, 1999) are compared in Figure
S8(a). Whereas, the similar comparison of stress-strain curves under
the shear mode of mechanical stress for the auxetic lattice configuration
with 4/l =2 and ¢/ = 0.12 is shown in Figure S8(b). On the other hand,
variations of the non-dimensional effective shear modulus G,/ E, with
the shear strain y,, are compared considering the present model, the
model reported by Fu et al. (2016), and the analytical model (Gibson
and Ashby, 1999) in Figure S8(c) and (d) for two lattice configurations
with a1/l =1.5,1t/1 =0.1 and h/l =2, t/I = 0.1 respectively.

The comparison plots in Figure S8(a) and (b) show that the stress—
strain curves (y, versus 7/E,) of the HMS beam network under the
shear mode of mechanical stress = as estimated by the present semi-
analytical framework match exactly with the analytical solutions (Gib-
son and Ashby, 1999) within the small deformation regime. The non-
linear stress-strain curves estimated by the present framework also
match with the non-linear model (Fu et al., 2016) at the lower shear
strain levels within the non-linear zone. However, with the increase in
the shear strain y,,, the differences between the non-linear stress-strain
curves increase. Similar observations are found from the comparison
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plots of variations of the non-dimensional effective shear modulus
G,/ E, of the HMS beam network with the shear strain y,, in Figure
S8(c) and (d). The differences between the present framework and
the non-linear model reported in Fu et al. (2016) arise due to the
fundamental differences in their respective formulations. The present
framework is developed in the geometrically exact non-linear kinematic
setting considering combined bending and axial deformations with the
hyperelastic constitutive material model. Whereas, the model reported
in the reference literature (Fu et al., 2016) is developed within the
geometric non-linear kinematic setting excluding the axial deformation
considering linear elastic constitutive material characteristics. Though
the non-linear shear stiffness of the HMS beam network as predicted
by the present framework has some difference at the higher strain
levels, the trends are the same with the non-linear model reported
in literature (Fu et al., 2016). Within the framework of the existing
fundamental differences in the formulations (where the present model
is more accurate), the validation study of the present model with the
non-linear model from literature (Fu et al., 2016) for the effective
shear stiffness of the HMS beam networks can be considered quite
satisfactory.

In this subsection, we have primarily concentrated on the hexag-
onal lattices with non-auxetic and auxetic geometries for lattice-level
validation, depending on the availability of reference literature. While
rectangular brick, re-entrant auxetic and rhombic geometries are direct
derivatives of hexagonal lattices (thus no need for additional valida-
tion), the triangular and rectangular lattice configurations are further
validated later in their respective subsections.

3.4. Hexagonal periodic HMS beam networks under uniform residual mag-
netic flux density

Effect of the magnetic field B? along direction-2 in combination
with a particular mode of mechanical stress (¢, or o, or 7) on the non-
linear effective elastic moduli of the hexagonal HMS beam network
having uniform residual magnetic flux density S = 1 and S = -1
is investigated in this subsection. As mentioned earlier, under the
combined loading of normal stress o; and magnetic field B?, we will
focus on the longitudinal non-dimensional Young’s modulus E, and
Poisson’s ratio v;,. Under the combined loading of o, and B¢, we
will focus on the transverse non-dimensional Young’s modulus E, and
Poisson’s ratio v,;. Whereas, under the combined loading of shear
stress 7 and magnetic field B?, we will investigate the effective non-
dimensional shear modulus G,,. For a particular mechanical loading
mode in combination with the magnetic field, the hexagonal HMS beam
network is subjected to mechanical stress incrementally in 50 steps.
At each step of mechanical loading, the incremental magnetic load is
applied to the hexagonal HMS beam network in terms of the magnetic
load ratio r; through 100 steps.

Variations of the non-dimensional effective Young’s modulus E;
of the hexagonal HMS beam network having the uniform residual
magnetic flux density S =1 as a function of the magnetic load ratio r;
at different stress levels under the compressive mechanical stress ¢, in
combination with the magnetic field B* are shown in Fig. 8(a). Under
the same combined loading conditions for the hexagonal HMS beam
network having the negative uniform residual magnetic flux density
S = —1, variations of the Young’s modulus E, with the magnetic load
ratio r; are shown in Fig. 8(b). Whereas, under the tensile mode of the
mechanical normal stress ¢, in combination with the magnetic field
B4, the similar plots of the non-dimensional Young’s modulus of the
hexagonal HMS beam network with § = 1 and § = -1 are shown
in Fig. 8(c) and (d) respectively. Variations of the effective Poisson’s
ratio v, of the hexagonal HMS beam network having the uniform
residual magnetic flux density S = 1 and S = —1 as a function of the
magnetic load ratio r; for the same combined loading conditions as of
Fig. 8(a)-(d) are presented in Fig. 9(a)-(d).
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Effects of the magnetic field along with the residual magnetization
pattern in combination with different modes of far-field mechanical
loading on the non-linear variations of the elastic moduli as function
of the input stress magnitude are investigated here. As observed in
Figs. 8(a), (), (d), and 9(a), (c), (d), singularity points for the effective
Young’s modulus £, and Poisson’s ratio v;, arise at some magnetic load
ratios r; for the hexagonal HMS beam network with S = 1 under both
tension and compression and for the hexagonal HMS beam network
with § = —1 under tensile mode only. The beam-level deflections under
the magnetic load B“ corresponding to singular magnetic load ratios r;
balance the deflections under the corresponding far-field mechanical
stress levels ;. Hence, at those magnetic load ratios r;, the effective
Young’s modulus E; and Poisson’s ratio v, of the hexagonal HMS
beam network become undefined due to no effective lattice-level strain.
However, such singularity points for the effective Young’s modulus
E, and Poisson’s ratio v;, do not arise for the hexagonal HMS beam
network with § = —1 under the compressive mode of the mechanical
stress ¢ in combination with the magnetic field B? as observed in Figs.
8(b) and 9(b). As also observed from Fig. 8 that under certain combina-
tions of the mechanical and magnetic loading, negative stiffness of the
hexagonal HMS beam network can be achieved. To observe the effect of
the magnetic load in terms of the magnetic load ratio r; on the effective
stiffness of the hexagonal HMS beam network, variations of the non-
dimensional Young’s modulus E, with the input stress o, for equally
spaced magnetic load ratios r; are further presented in Figure S9(a)—(d).
For the same magnetic load ratios r;, variations of the Poisson’s ratio
vi, with the input stress o, are presented in Figure S10(a)-(d). The
variations of the elastic moduli with the input stress magnitude is
coming from the geometric non-linearity due to large deformation and
material non-linearity under magneto-mechanical coupling.

As observed from Figure S9(a), the effective non-dimensional
Young’s modulus E, of the hexagonal HMS beam network with .S =
1 decreases with the input stress magnitude under the compressive
mechanical stress ¢; in combination with the magnetic load having the
magnetic load ratio 0 < r; < 0.4. Under the same loading condition
for the magnetic load ratio 0.6 < r; < 0.7, negative stiffness of
the HMS beam network is observed. The negative stiffness initially
increases with the stress magnitude o, and then starts decreasing at
the higher stress levels. However, both the positive and negative non-
dimensional Young’s modulus increases with the magnetic load ratio
r;. Maximum 225.5% enhancement in the positive Young’s modulus
E, is observed from Figure S9(a) compared to the only mechanical
loading condition (r; = 0). Whereas, the maximum enhancement in
the negative Young’s modulus E; is achieved as 74.2% for r;, = 0.7
compared to r; = 0.6. Under the compressive stress ¢; in combination
with the magnetic load having 0 < r; < 3 for the hexagonal HMS beam
network with § = —1 as observed from Figure S9(b), E, decreases
with the input stress magnitude o, for lower r;. However, for higher
r;, E, initially decreases and then increases with o,. The overall non-
dimensional Young’s modulus E, decreases with the magnetic load
ratio r;. A maximum 84% reduction in E, is observed in Figure S9(b)
for r; =3 compared to r; = 0.

As evident from Figure S9(c), for the hexagonal HMS beam network
with § = 1 under the tensile mode of mechanical normal stress o,
in combination with the magnetic load having 0 < r; < 1.5, the non-
dimensional Young’s modulus E, increases with the stress amplitude.
The overall E, decreases with the magnetic load ratio r; at the lower
stress zone, however, at the higher input stress level ¢, it has some
mixed trend with r;. Maximum enhancement and reduction in the non-
dimensional Young’s modulus E; compared to the only mechanical
loading condition (r; = 0) are obtained as 44.1% and 72.1% respec-
tively. Under the combined tensile stress o; and magnetic field with
0 < r; < 04 for the HMS beam network with the negative residual
magnetic flux density S = -1, the positive non-dimensional Young’s
modulus E, increases with the stress amplitude as observed from Figure
S9(d). For the magnetic load ratio 1 < r; < 2, the non-dimensional
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Fig. 8. Effective Young’s modulus of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical normal stress along
direction-1 and magnetic field along direction-2. Variations of the non-dimensional effective Young’s modulus E, of the hexagonal HMS beam network having uniform residual
magnetic flux density (a, ¢) S =1 and (b, d) S = —1 as function of the magnetic load ratio r; at different mechanical stress levels ¢, under the (a, b) compressive and (c, d)
tensile modes of the mechanical stress ¢, in combination with the magnetic field B* along direction-2.

Young’s modulus E, is negative which decreases with o,. However,
both the positive and negative Young’s modulus E, increases with r;. As
obtained from Figure S9(d), the maximum enhancements in the positive
and negative E, are found to be 189.1% and 67.6% respectively.

As observed from Figure S10(a), for the hexagonal HMS beam
network with § = 1 under the combined compressive stress o; and
magnetic load, the effective Poisson’s ratio v, decreases with ¢, for 0 <
r; < 0.4 and increases with ¢, for 0.6 < r; < 0.7. However, for both the
ranges of r;, the overall Poisson’s ratio v;, has an increasing trend with
the magnetic load ratio r;. The maximum enhancements in v, for the
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two ranges of r; are found to be 29.8% and 232.8% respectively. Under
the same combined loading conditions for the HMS beam network with
S = —1 as presented in Figure S10(b), the effective Poisson’s ratio v,,
has decreasing trends with both ¢, and r;. A maximum 29.8% reduction
in v|, is observed compared to the only mechanical loading condition
r; = 0. As evident from Figure S10(c), the effective Poisson’s ratio v,
of the HMS beam network with S = 1 increases with both input tensile
stress magnitude o, and the magnetic load ratio r;. The maximum
enhancement in v;, compared to the loading condition of r; = 0 is
found to be 449.2%. Under the combined loading of tensile o; and
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Fig. 9. Effective Poisson’s ratio of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical normal stress along
direction-1 and magnetic field along direction-2. Variations of the effective Poisson’s ratio v,, of the hexagonal HMS beam network having uniform residual magnetic flux
density (a, ¢) .S =1 and (b, d) S = -1 as function of the magnetic load ratio r; at different mechanical stress levels o, under the (a, b) compressive and (¢, d) tensile modes of

the mechanical stress ¢, in combination with the magnetic field B* along direction-2.

r; within the range 0 < r; < 0.4, v, of the HMS beam network with
S = —1 increases with o, as observed from Figure S10(d). For the range
1 <r; <2, v, decreases with ¢,. For both the ranges of r;, the overall
effective Poisson’s ratio v, has decreasing trends with r;. The maximum
reductions in v,, for the considered two ranges of r; are obtained from
Figure S10(d) as 20.6% and 21.9% respectively.

Under the compressive and tensile normal stress along direction-
2 (0,) in combination with the magnetic field along direction-2 (B),
effects of the magnetic load ratio r; and input stress magnitude o, on
the non-dimensional elastic moduli £, and v,; of the hexagonal HMS
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beam network with uniform residual magnetic flux density .S = 1 and
S = —1 are shown in Figs. 10-S12 following the representation scheme
for the combined loading ¢, and B* (refer to Figs. 8-S10). Figs. 10(b),
(c), and 11(b), (c) depict that for the hexagonal HMS beam network
with § = —1 under compression and the hexagonal HMS beam network
with § = 1 under tension, singularity points on the effective E, and
v,; arise at some magnetic load ratios r;. However, for the other two
configurations as presented in Figs. 10(a), (d), and 11(a), (d), such
phenomena are not observed.
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Fig. 10. Effective Young’s modulus of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical normal stress along
direction-2 and magnetic field along direction-2. Variations of the non-dimensional effective Young’s modulus E, of the hexagonal HMS beam network having the uniform
residual magnetic flux density (a, ¢) S =1 and (b, d) S = -1 as function of the magnetic load ratio r; at different mechanical stress levels ¢, under the (a, b) compressive and
(c, d) tensile modes of the mechanical stress o, in combination with the magnetic field B* along direction-2.

As observed from Figure S11(a), the non-dimensional effective
Young’s modulus E, of the hexagonal HMS beam network with .S = 1
decrease with compressive stress magnitude o, for lower values of
r;. However, for higher values of r;, E, initially decreases and then
increases with o,. The overall stiffness decreases with r; and maximum
83.9% reduction in E, is observed. Under the same compressive mode
of mechanical loading, the positive and negative E, of the hexagonal
HMS beam network with § = —1 for the ranges of the magnetic load
ratio 0 < r; < 0.7 and 1.5 < r; < 2.5 respectively decreases with

S = = =

stress magnitude o, and increases with r; as observed in Figure S11(b).
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The maximum enhancements in the positive and negative E, due to
the magnetic field are achieved as 233.7% and 66.6% respectively. As
observed from Figure S11(c) and (d), under the tensile mode of the
normal stress o,, the effective Young’s modulus E, increase with o,
for both the hexagonal HMS beam networks with § = 1 and S = —1.
However, for the HMS beam network with § = 1, the positive and
negative non-dimensional E, increases with r; in the considered ranges
0 <r <07 and 1.5 < r; < 2.5 respectively. Maximum 232.6% and
66.8% enhancements in the positive and negative E, are achieved as
obtained from Figure S11(c). Whereas, for the HMS beam network with
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Fig. 11. Effective Poisson’s ratio of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical normal stress along
direction-2 and magnetic field along direction-2. Variations of the effective Poisson’s ratio v,, of the hexagonal HMS beam network having the uniform residual magnetic flux
density (a, ¢) S =1 and (b, d) S = -1 as function of the magnetic load ratio r;, at different mechanical stress levels ¢, under the (a, b) compressive and (c, d) tensile modes of

the mechanical stress ¢, in combination with the magnetic field B* along direction-2.

the negative residual magnetic flux density .S = —1, opposite effect of r;
is observed in Figure S11(d) with the 83.1% maximum reduction with
respect to the only mechanical loading condition, r; = 0.

As evident from Figure S12(a), the effective Poisson’s ratio v,; of
the hexagonal HMS beam network with § = 1 decreases with both the
compressive stress o, and magnetic load ratio r;. A maximum 129.4%
reduction in v,, is observed for r, = 5 compared to r;, = 0. For
the HMS beam network with § = —1 under tensile mode of normal
stress as presented in Figure S12(d), completely opposite effects of o,
and r; are observed with the maximum 55% enhancement. As obvious

30

from Figure S12(b), for the HMS beam network with S = —1 under
compressive stress o, in combination with the magnetic load 0 < r; <
0.7, the effective Poisson’s ratio v,; decreases with stress magnitude. For
the magnetic load range 1.5 < r; < 2.5, an opposite effect of the non-
linearity is observed. However, for both the considered magnetic load
ranges, v,; increases with r; having the maximum 35.1% and 21.9%
enhancements respectively. Completely opposite effects of ¢, and r; are
observed in Figure S12(c) for the HMS beam network with § = 1 under
tensile stress o,. The corresponding reductions in the effective v,; due
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Fig. 12. Effective shear modulus of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical shear stress in plane
1-2 and magnetic field along direction-2. Variations of the non-dimensional effective shear modulus G,, of the hexagonal HMS beam network having the uniform residual
magnetic flux density (a, ¢) S =1 and (b, d) .S = —1 as function of the magnetic load ratio r; at different mechanical stress levels r under the (a, b) anti-clockwise and (c, d)
clockwise modes of the mechanical stress 7 in combination with the magnetic field B* along direction-2.

to the application of magnetic field are found to be 15.1% and 39%
respectively.

Under the anti-clockwise and clockwise modes of the shear stress =
in combination with the magnetic field B? along direction-2, combined
effects of the magnetic load ratio r; and the input stress magnitude =
on the non-dimensional shear modulus G, of the hexagonal HMS beam
network with uniform residual magnetic flux density .S =1 and § = -1
are shown in Figs. 12 and S13 following similar representation scheme
for the combined loading condition of normal stress and magnetic field.
As obvious from Fig. 12(b) and (c), for the HMS beam network with
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S = —1 under anti-clockwise shear stress and the HMS beam network
with S = 1 under clockwise shear stress, singularity points arise at some
r; values. For these combined loading cases, negative shear modulus
is observed under certain combinations of = and r;. Whereas, for the
other two combined loading conditions as presented in Fig. 12(a) and
(d), such singularity points of the shear modulus do not arise.

As obvious from Figure S13(a) and (d), for the hexagonal HMS
beam network with § = 1 under anti-clockwise shear stress and the
hexagonal HMS beam network with S = —1 under clockwise shear
stress, the effective non-dimensional shear modulus G, increases with
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stress magnitude 7 for the lower values of r;. Whereas, for the higher
magnetic loading r;, mixed increasing-decreasing effects of the stress
magnitude are observed. However, for both the configurations, r; has
the same decreasing effects with the corresponding 41.8% and 68.4%
maximum reductions in G,,. For the HMS beam network with the
negative magnetization .§ = -1 under the anti-clockwise mode of
shear stress 7 as presented in Figure S13(b), some irregular effects of
the stress magnitude r and the magnetic load ratio r; are observed
on the non-dimensional positive Gy, for 0 < r; < 3 and the mixed
negative-positive G, for 5 < r; < 6. The maximum enhancement
and reduction in the positive G,, are found to be 339.6% and 56.8%
respectively. Whereas, the maximum enhancement in the negative G,
is observed as 47.3%. For the HMS beam network with .§ = 1 under
the clockwise shear stress 7 as presented in Figure S13(c), the positive
non-dimensional shear modulus G, for 0 < r; < 1.5 increases with the
input stress amplitude. However, for the magnetic load range 5 < r; <6,
the negative G, initially increases with r but at the higher stress level
becomes almost independent of 7. Both the positive and negative G,, of
the HMS beam network increase with r; resulting in maximum 463.4%
and 43.2% enhancements respectively. It is interesting no note from the
trends presented for the elastic moduli, the value of applied magnetic
field can be actively modulated (and optimized) based on the applied
external mechanical stresses to achieve a target level of certain elastic
modulus and stiffness.

3.5. Periodic HMS beam network with optimally-architected residual mag-
netic flux density

As described in the mathematical formulation in Section 2.3.1, the
beam elements of the hexagonal HMS beam network are subjected to
finite moments at the ends with zero moment at the mid-point due
to the typical rotationally boundary conditions. Based on the kinetic
conditions, two sets of intuitive designs of the residual magnetic flux
density (S(¢)) are proposed having maximum hard particle density at
the endpoints with zero at the mid-point of the HMS beam elements. In
the first set of design, we consider either S =1 or .§ = —1 at both the
ends ¢ = 0,1 with .§ =0 at the mid-point & = 0.5. The variation of .S(&)
along the normalized coordinate ¢ is defined by the following equation
with the degree of non-linearity n.

+(1-28" 0<¢&<05
S =
+(=14+28)", 05<¢L1
For the second set of design, S(¢) is varying either from § = -1
to S = 1lorfromS =1toS = —1 between the ends ¢ = 0,1

with .§ = 0 at the mid-point £ = 0.5. The variation of S(¢) along the
normalized coordinate ¢ for the second set of design of S(&) is expressed
mathematically below with the degree of non-linearity n.

F(1-2¢8)",
+(=1+28)",

0<£<05
S =
05<e<1

The positive and negative distributions of the first designed set of S(¢)
along the normalized coordinate ¢ with the degree of non-linearity
n=0,0.1,0.25,0.5, 1, and 3 are shown in Fig. 13(a) and (b) respectively.
Similarly, for the two cases of the second designed set of S(¢), the
distribution of S(¢) along the normalized coordinate & are presented
in Fig. 13(c) and (d) respectively. The effect of the degree of non-
linearity » for the two sets of designed .S(¢) on the non-linear variation
of the elastic moduli of the hexagonal HMS beam network as functions
of the input stress are investigated here as presented in the following
paragraphs.

Variations of the non-dimensional effective Young’s modulus E; of
the hexagonal HMS beam network with the input stress o, for the
considered six degrees of non-linearity » (0,0.1,0.25,0.5, 1, and 3) of the
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positive and negative distribution of the first set of designed S(¢) (refer
to Fig. 13(a) and (b)) under the combined compressive stress along
direction-1 (¢|) and the external magnetic field B, along direction-2
are shown in Fig. 14(a). Whereas, the variations of £, under the tensile
mode of the normal stress ¢, in combination with the magnetic field
B, are presented in Fig. 14(b). The similar plots showing the effects of
the degree of non-linearity » on the effective Poisson’s ratio v, of the
hexagonal HMS beam network with the first set of designed S(&) are
shown in Fig. 14(c) and (d) respectively. The results are compared in
Fig. 14 for the magnetic load ratio r; = 0.4. Under the combined loading
of normal stress along direction-2 (0,) and the magnetic field B, along
direction-2, effects of the degree of non-linearity n on the non-linear
variations of the effective Young’s modulus E, and Poisson’s ratio v,
of the hexagonal HMS beam network with the first set of designed .S(¢)
are shown in Figure S14 for the magnetic load ratio r; = 0.5. Whereas,
similar variations of the non-linear shear modulus G,, of the HMS beam
network with the degree of non-linearity n for the first set of designed
S(¢) under the anti-clockwise and clockwise modes of shear stress ()
in combination with the external magnetic field B, are shown in Fig.
15 for the magnetic load ratio r; = 1.5.

As observed from Fig. 14(a) and (c), the non-dimensional Young’s
modulus £, and the Poisson’s ratio v, non-linearly decreases with
compressive stress o; for both the positive and negative distribution
of the first set of design of S(&¢). Such non-linearity in the system
stiffness is coming from the inherent geometric non-linearity due to
large deformation and material non-linearity due to magneto-elastic
coupling under the combined mechanical and magnetic loading. For
the positive distribution of the first set of designed S(¢), the overall
non-linear Young’s modulus E, and Poisson’s ratio v;, decrease with the
degree of non-linearity n as observed in Fig. 14(a) and (c). Whereas, for
the negative distribution of .S(¢), the degree of non-linearity n shows the
opposite increasing effect on the non-linear Young’s modulus E; and
Poisson’s ratio v;,. Maximum 56% and 11% enhancements in the non-
dimensional Young’s modulus E, and Poisson’s ratio v,, are achieved
respectively for n = 3 of the negative distribution of .S(¢) compared to
the uniform distribution (S = —1) for n = 0 (refer to Fig. 14(a) and
(c)). Whereas, maximum 66.4% and 21% reductions in E, and v,, are
obtained for n = 3 of the positive .S(¢) with respect to the uniform
distribution (S = 1) for n = 0.

Under the tensile mode of the normal stress ¢, in combination with
the external magnetic field B¢ as presented in Fig. 14(b) and (d), a com-
pletely opposite effect of the inherent system non-linearity is observed
compared to the compressive mode of ¢, as shown in Fig. 14(a) and
(¢). The non-dimensional Young’s modulus E; and the Poisson’s ratio
v|, increase with increase in the tensile o, for both the positive and
negative distribution of the first set of design of S(£). As shown in Fig.
14(b), the overall non-linear Young’s modulus E, increases with the
degree of non-linearity » for the positive distribution of .S(¢), whereas,
it decreases with n for the negative distribution of S(&). Whereas, as
observed from Fig. 14(d), the degree of non-linearity » has the opposite
effect on the non-linear Poisson’s ratio v, compared to the Young’s
modulus E,. The maximum 31.1% and 22.7% enhancements in E,
and v, are achieved respectively for the non-linear S(¢) with n = 3
compared to the uniform .S with » = 0 under the tensile mode of
normal stress ¢; in combination with the external magnetic field B? as
observed from Fig. 14(b) and (d). Whereas, the maximum reductions
in the elastic moduli E, and v,, are observed as 62.6% and 23.3%
respectively from Fig. 14(b) and (d) for the non-linear S(¢) with n =3
compared to the uniform .S with n = 0.

Under the normal stress along direction-2 (s,) in combination with
the magnetic field B along direction-2, effects of non-linearity on the
non-dimensional elastic moduli E, and v,, in terms of their variations
with input stress magnitude o, are observed from Figure S14 similar to
the combined loading of ¢, and B as presented in Fig. 14. However,
the effects of the degree of non-linearity » of the first set of designed
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Fig. 13. Physics-informed intuitive designs of spatially-varying residual magnetic flux density in the HMS beam elements of the hexagonal HMS beam network.
Distribution of the coefficient of residual magnetic flux density S(¢) along the normalized coordinate ¢ with the degree of non-linearity » = 0,0.1,0.25,0.5,1, and 3 for: (a, b) the
first set of design of S(¢) having (a) positive and (b) negative distribution, and (¢, d) the second set of design of S(&) varying (c) from S = -1 to § =1 and (d) from S =1 to

S =-1

S (&) are found opposite for the combined loading of ¢, and B com-
pared to the combined loading of ¢; and B?. As evident from Figure
S14(a) and (c), the maximum enhancements in the non-dimensional
Young’s modulus E, and Poisson’s ratio v,; under the compressive
mode of o, are achieved as 42.4% and 27.5% respectively for the
positive S(&) with n = 3 compared to the uniform .S for n = 0. Whereas,
47.2% and 18% reductions in E, and v,, are obtained for the negative
distribution of S(¢) with n = 3 compared to n = 0. Under the tensile
mode of ¢, in combination with B?, the maximum enhancement and
reduction in E, for n = 3 with respect to the uniform S (n = 0) are
found to be 41% and 46.6% respectively from Figure S14(b). Whereas,
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as evident from Figure S14(d), the enhancement and reduction in v,;
for the non-linear S(¢) with n = 3 compared to n = 0 under the tensile
mode of ¢, in combination with B? are obtained as 10.4% and 7.3%
respectively.

As evident from Fig. 15(a) and (b), under both the anti-clockwise
and clockwise modes of shear stress 7 in combination with the magnetic
field B¢, the non-dimensional shear modulus G, increases with the in-
put stress 7 for the positive distribution of the first set of design of S(¢).
Whereas, for the HMS beam network with the negative distribution of
the first set of designed S(£), the non-dimensional shear modulus G,
initially decreases and then increases with 7 for the lower values of n.
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Fig. 14. Modulation of the effective elastic moduli of hexagonal HMS beam networks with the first set of designed .S(¢) under the normal stress along direction-1 in
combination with the magnetic field along direction-2. Variations of the (a, b) non-dimensional effective Young’s modulus E, and (c, d) effective Poisson’s ratio v;, of the
hexagonal HMS beam network as function of the input stress o, for the considered six degrees of non-linearity » (0,0.1,0.25,0.5, 1, and 3) of the positive and negative distributions
of the first set of designed .S(¢) under the (a, c¢) compressive and (b, d) tensile mode of normal stress o, along direction-1 in combination with the magnetic field B* along
direction-2. The results are compared for the magnetic load ratio of the inclined member r; = 0.4.
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Fig. 15. Modulation of the effective shear modulus of hexagonal HMS beam networks with the first set of designed S(¢) under the shear stress in plane 1-2 in
combination with the magnetic field along direction-2. Variations of the non-dimensional effective shear modulus G,, of the hexagonal HMS beam network as function of the
input stress = for the considered six degrees of non-linearity n (0,0.1,0.25,0.5,1, and 3) of the positive and negative distributions of the first set of designed .S(¢) under the (a)
anti-clockwise and (b) clockwise mode of shear stress 7 in plane 1-2 in combination with the magnetic field B* along direction-2. The results are compared for the magnetic load

ratio of the inclined member r;, = 1.5.

However, for the highest value of the degree of non-linearity n = 3, G|,
has an increasing trend with the input stress = amplitude. As observed
from Fig. 15(a), under the anti-clockwise mode of r in combination
with the magnetic field B¢, the non-dimensional shear modulus G,
increases with the degree of non-linearity » for the positive distribution
of the first designed set .S(¢). However, for the negative distribution of
S(&), G|, decreases with n at the lower stress level, whereas, it increases
with n at the higher stress zone. Maximum 30.9% enhancement in the
non-dimensional shear modulus G, is achieved for n = 3 of the positive
distribution of the first set of designed S(£) compared to the uniform §
with n = 0. Whereas, the maximum reduction and enhancement in G,
for the negative S(¢) are observed as 35.6% and 50.9% respectively.
On the other hand, under the clockwise mode of 7 in combination with
the magnetic field B? as observed in Fig. 15(b), the non-dimensional
shear modulus G,, decreases with the degree of non-linearity n for
the positive distribution of S(¢). Whereas, for the hexagonal HMS
beam network with negative designed S(¢), G|, increases with n. The
maximum enhancement and reduction in G, are observed from Fig.
15(b) as 104.3% and 80.4% respectively compared to the uniform S.
For the second set of design of the residual magnetic flux density
(refer to Fig. 13(c) and (d)), the two opposite distributions of S(&)
varying from .S = —1to S = | and from S = 1 to .S = —1 cause the same
effects on the non-linear elastic moduli of the hexagonal HMS beam
network under each mode of the mechanical stress in combination with
the magnetic field. Despite of the opposite curvatures at the deformed
state, the same tip-deflections of HMS beam for the two opposite
distributions of S(¢) varying from S = —1 to § = 1 and from S = 1
to S = —1 is the cause behind such phenomenon. Such a phenomenon
is already described in connection with Figs. 7 and S6 for a HMS beam
with the opposite signs of .S(¢) in the two halves. Hence, for the two
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opposite distributions (varying from S = —1to S = 1 and from S =1 to
S = —1) of the second set of designed .S(¢) as shown in Fig. 13(c) and
(d), we get single set of results. Effects of the degree on non-linearity n
for the second set of designed S(¢) on the non-linear elastic moduli of
the hexagonal HMS beam network under the loading combinations of
61, 0,5, and = with the magnetic field B* are shown in Figures S15-S17
respectively for the magnetic load ratio r; = 2.5, r;, =4, and r; = 4.
Under the compressive mode of normal stress along direction-1 (o)
in combination with the external magnetic field B* for the second set
of designed S(£), the non-dimensional Young’s modulus £, initially
decreases with the input stress magnitude o, as observed from Figure
S15(a). At the higher magnitude of the applied stress o,, E, increases
with o, for the lower values of n and goes on decreasing for the
higher values of n. Under the same combination of mechanical and
magnetic loading, the Poisson’s ratio v,, decreases with the applied
stress o, as evident from Figure S15(c). Negative Poisson’s ratio is
obtained for n = 0, and 0.1 even for the non-auxetic configuration of the
hexagonal HMS beam network under consideration. Under the tensile
mode of the normal stress ¢, in combination with B? as observed from
Figure S15(b) and (d), both Young’s modulus E; and Poisson’s ratio
v}, increase with an increase in the magnitude of the applied stress o,.
The overall non-linear Young’s modulus E; decreases with the degree
of non-linearity n of the second set of designed S(¢) under both the
compressive and tensile modes of o, as observed from Figure S15(a)
and (b). The maximum reductions in E; for n = 3 compared to n = 0
are observed to be 86.9% and 63.9% under the compression and tension
respectively. As observed in Figure S15(c), the Poisson’s ratio v, has
an increasing trend with » at the lower range of the compressive stress
o,. However, at the higher range of ¢, some mixed trend is observed.
The maximum enhancement of 143.5% in v;, for n = 3 compared to
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n = 0 is achieved. Whereas, under the tensile mode of ¢, Poisson’s
ratio v, decreases with »n as shown in Figure S15(d), and the maximum
reduction in v, is found to be 73.9%.

As shown in Figure S16(a) and (c), the non-dimensional Young’s
modulus E, and Poisson’s ratio v,, of the hexagonal HMS beam network
with the second set of designed S(¢) decrease with the applied stress
input under the combined loading condition of compressive normal
stress along direction-2 (o,) and magnetic field along direction-2 (B%).
The Overall non-linear elastic moduli E, and v,, increase with the
degree of non-linearity n. The maximum enhancements in the elastic
moduli E, and v,, for the non-linear S(¢) with n = 3 with respect to
the linear S(¢) with n = 0 are found to be 23% and 68.5% respectively.
Effects of the inherent system non-linearity and the degree of non-
linearity n of the second set of designed S(¢) on the elastic moduli
E, and v,, are found exactly the opposite under the tensile mode of
normal stress o, as observed from Figure S16(b) and (d) compared to
the compressive mode (refer to Figure S16(a) and (c)). The maximum
reductions of 63.3% and 35.8% are obtained in the elastic moduli E,
and v,, for the non-linear S(&) with n = 3 compared to the linear S(¢)
with n = 0.

Under both the anti-clockwise and clockwise modes of shear stress ¢
in combination with the external magnetic field B“, the non-
dimensional effective shear modulus G, of the hexagonal HMS beam
network with the second set of designed S(¢) initially decreases and
then increases with the input stress z for the lower values of n as
observed from Figure S17(a) and (b). Whereas, for the highest value
of the degree of non-linearity n = 3, G,, has an increasing trend with
the magnitude of the input stress z. The plots in Figure S17(a) and
(b) also depict that the non-linear shear modulus G, increases with
the degree of non-linearity n of the second set of deigned S(¢). The
maximum enhancements in the non-dimensional shear modulus G, are
achieved to be 68.9% and 57.5% for the non-linear S(&) with n = 3
compared to the linear S(£) with n = 0 under the anti-clockwise and
clockwise mode of shear stress respectively.

The numerical results presented in the preceding subsection (Sec-
tion 3.4) demonstrate on-demand magneto-active modulations (en-
hancements and reductions) of the effective nonlinear elasticity of
hexagonal HMS beam networks through uniform residual magnetic flux
density design in the cell walls under far-field magnetic field in com-
bination with externally applied mechanical stresses. Physics-informed
(finite moments at the ends with zero moment at the mid-point due
to the typical rotationally restrained beam boundary conditions for
periodic lattices) architecturing of the residual magnetic flux density
pattern in the cell walls as proposed in the present subsection results
further augmentations in the deformation components due to far-field
magnetic field compared to uniform residual magnetic flux density
which are in-phase or out-of-phase with the deformations caused by
mechanical stresses only. The in-phase and out-of-phase deformations
coming from magnetic field and mechanical stresses respectively re-
sults augmented anti-curvature or pro-curvature effects (Ghuku and
Mukhopadhyay, 2022a; Prajwal et al., 2022) to the cell wall defor-
mations compared to the uniform residual magnetic flux density of
the cell walls. Such active anti-curvature or pro-curvature effects cause
further enhancements or reductions of the HMS beam network stiffness
compared to the uniform residual magnetic flux density design as
demonstrated through the numerical results in the present subsection
(Section 3.5). In turn this will lead to improved energy efficiency in
achieving a target on-demand stiffness, resulting in sustainable pro-
grammable metamaterials with minimum utilization of the intrinsic
materials.

3.6. Applicability to other forms of periodic HMS beam networks

Within the developed multi-physical mechanics-based semi-
analytical framework, modulations of the elastic moduli of hexagonal
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HMS beam networks with uniform and two intuitively designed resid-
ual magnetic flux densities are extensively investigated in the preceding
two subsections. To demonstrate the generality of the proposed concept
of modulating elastic properties through an external magnetic field
within the developed physically insightful computational framework,
non-linear effective elastic moduli of five other forms of HMS beam
networks, namely, auxetic, rectangular brick, rhombic, triangular, and
rectangular networks as shown in Fig. 1(g) are analysed in this subsec-
tion considering uniform residual magnetic flux density in combination
with different modes of far-field mechanical stresses. Note that the
concept of beam-level architecturing the residual magnetic flux density
can also be implemented to different other unit cell architectures for
more accentuated elasticity modulation as demonstrated in the case
of hexagonal lattices (refer to Section 3.5). However, we limit the
current demonstration to uniform residual magnetic flux density for
other lattices in order to maintain the brevity of this paper.

3.6.1. Auxetic HMS beam networks

For the auxetic HMS beam network, as shown in Fig. 1(g)I, the
geometric parameters are considered as 4/l = 2 and § = —x /6. The
unit cell configuration of the auxetic HMS beam network with residual
magnetic flux density S = 1 subjected to normal (¢, or o,) and shear
(7) stresses in combination with the external magnetic field B¢ is shown
in Fig. 16(a). Variations of the non-dimensional elastic moduli £}, v,,,
E,, v5,, and G, with different modes of input stress magnitude under
different magnetic load levels are presented in Fig. 16(b)-(f) respec-
tively. It is evident from the figure that within a small deformation
regime in absence of the external magnetic field, all the results obtained
from the present framework agree well with the analytical solutions
from literature (Gibson and Ashby, 1999). This provides a degree of
confidence and validation to the present computational framework
before exploiting it for further investigation.

As observed from Fig. 16(b), the effective non-dimensional Young’s
modulus E, of the auxetic HMS beam network decreases with compres-
sive stress o; and magnetic load ratio r;. Whereas, under the tensile
mode of the normal stress ¢,, Young’s modulus E; increases with the
stress magnitude and the magnetic load ratio r; for 0 < r; < 0.4. Under
the same loading condition for the magnetic load ratio 1 < r; < 2,
negative stiffness is observed which decreases with stress magnitude
but increases with r;. Maximum 201.9% enhancement and 46.4% re-
duction in the positive Young’s modulus E, are achieved concerning
the only mechanical loading condition (r; = 0). Whereas, the maximum
enhancement in the negative Young’s modulus E, is obtained as 68.8%
for r; = 2 compared to r; = 1. Fig. 16(c) depicts that the effective
Poisson’s ratio v, increases with magnetic load ratio r; with different
degrees of auxecity under the compressive and tensile modes of normal
stress o;. A maximum 19% enhancement in v, for the considered
ranges of r; can be obtained from Fig. 16(c).

For the combined loading under normal stress ¢, and magnetic
field B“ along direction-2 as presented in Fig. 16(d) and (e), effects
of non-linearity in terms of variations of the elastic moduli E, and
v, with stress magnitude are found opposite compared to the loading
combination under o, and B“. However, decreasing and increasing
effects of the magnetic loading under the compressive and tensile
loading modes are the same for E, as that of E,, with maximum 400.4%
and 66.49% enhancement and reduction respectively. However, for v,,,
the effect of magnetic load ratio is found opposite to that of v;, with
a maximum 40% reduction. Notably the degree of auxeticity for v,
and v, can be actively controlled in a wide band as a function of the
magnetic field.

As obvious from Fig. 16(f), under the anti-clockwise mode of shear
loading, the non-dimensional shear modulus G|, increases with stress
magnitude = and decreases with magnetic load r;,. Under the clockwise
mode of shear loading, G,, increases with stress magnitude r for a
lower range of r;. However, for a higher range of r; under the clockwise
loading, negative G,, are observed having mixed increasing-decreasing
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Fig. 16. Modulation of the effective elastic moduli of auxetic HMS beam networks having uniform residual magnetic flux density under different modes of mechanical
stress in combination with magnetic field. (a) The unit cell of auxetic HMS beam network with s/l =2 and 0 = —z/6 having residual magnetic flux density .§ = 1 subjected
to (1) normal stress o, or o,, and (2) shear stress = in combination with magnetic field B* along direction-2. (b—f) Variations of the non-dimensional effective elastic moduli of
the auxetic HMS beam network as function of the different modes of the mechanical stress at equally spaced magnetic load levels r;. The dotted points represent the analytical
solutions (Gibson and Ashby, 1999) without magnetic field under small deformation regime.
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trends with the stress magnitude. However, for both the ranges of r;
under the clockwise loading mode, r; has increasing effects on G,,. The
maximum enhancement and reduction in the positive non-dimensional
G, concerning the only mechanical loading condition r; = 0 are
observed as 248.3% and 62.7% respectively. Whereas, in the negative
shear modulus G,,, a maximum 46% enhancement is achieved for
r; = 10 compared to r; = 8.

3.6.2. Rectangular brick HMS beam networks

The rectangular brick HMS beam network as shown in Fig. 1(g)II
is derived readily from the hexagonal HMS beam network by taking
0 = 0. The unit cell configuration of the rectangular brick HMS beam
network with A/l = 1 having uniform residual magnetic flux density
(S = 1) is shown schematically in Fig. 17(a). Variations of the non-
dimensional effective elastic moduli E,, v|,, E,, v5;, and G, of the
rectangular brick HMS beam network as functions of the different
modes of normal and shear stresses combined with external magnetic
field are presented in Fig. 17(b)-(f). Comparisons of each set of results
with the corresponding analytical solutions from literature (Gibson and
Ashby, 1999), as presented through the large dotted points in the plots,
validate our framework for the special case in absence of the magnetic
field within a small deformation regime. This provides a degree of
confidence to the present computational framework before exploiting
it for further investigation.

As in cases of the other HMS beam networks, modulations of the
non-linear elastic moduli of the rectangular brick HMS beam network
in terms of the external magnetic field are evident from Fig. 17(b)—(f).
Effects of geometric and material non-linearity on the elastic moduli in
terms of their variations with stress magnitude ¢,, o, or r and magnetic
load ratio r; can be readily noticed Fig. 17(b)-(f). Interestingly, from
Fig. 17(b)—(f) it becomes obvious that depending on the combination
of the magnetic load with a particular mode of the mechanical stress,
negative Young’s modulus, negative Poisson’s ratio and negative shear
modulus can be achieved. Maximum enhancements in E,, E,, and
G, are noted to be 64.4%, 150%, and 162.1% respectively. Whereas,
maximum 32%, 54.5%, 91.7%, and 48.5% reductions in E,, E,, vy,
and G,, are obtained respectively under the considered ranges of the
magnetic load ratio r;.

Note in Fig. 17(c) that under the combined loading of normal stress
o, and magnetic field B“, the magnitudes of the negative or positive
Poisson’s ratio v,, of the rectangular brick HMS beam network are
very large compared to the unity. As obvious from Fig. 17(a-1), under
the combined loading of normal stress o, and magnetic field B?, the
normal strain in direction-2 (e,) is governed by the bending-dominated
deformation of the horizontal cell walls. Whereas, the normal strain
along direction-1 (¢;) is governed by the stretching-dominated defor-
mation of the horizontal cell walls. Due to the difference in the order
of magnitudes of the bending and stretching dominated axial strains
along direction-1 (¢;) and direction-2 (e,), such large magnitudes of
Poisson’s ratio v, is achieved for the rectangular brick HMS beam
network under the present loading combination. As v, is zero under the
only mechanical load in absence of the magnetic field, the enhancement
and reduction in it are noted in terms of their absolute values instead
of percentage and they are 240.4 and 109.3 respectively.

3.6.3. Rhombic HMS beam networks

The rhombic HMS beam network as shown in Fig. 1(g)III is obtained
from generic hexagonal HMS beam lattices by putting 4// = 0 and
0 = z/4. The unit cell configuration of the rhombic HMS beam network
with uniform residual magnetic flux density (S = 1) is shown in Fig.
18(a). Variations of the non-dimensional effective elastic moduli E;,
Viz, E,, v51, and Gy, of the rhombic HMS beam network with combined
stress and external magnetic field along with the comparisons with
the respective analytical results from literature (Gibson and Ashby,
1999) are shown in Fig. 18(b)-(f). The good agreement with liter-
ature provides a degree of confidence and validation to the present
computational framework before exploiting it for further investigation.
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The self-explanatory plots in Fig. 18(b)-(f) establish the idea of
modulating the non-linear elastic moduli E,, v,, E,, v,|, and G, of the
rhombic HMS beam network by external magnetic field in combination
with the different modes of the mechanical stress. The figure also
depicts that under certain combinations of mechanical and magnetic
loads, negative stiffness of the rhombic network can be achieved.
Maximum 233%, 36.8%, 232.7%, and 77.6% enhancements in the non-
dimensional elastic moduli E,, v|,, E,, and G|, of the rhombic HMS
beam network are obtained respectively under the considered ranges
of the magnetic loads. Whereas, the maximum reductions in the non-
dimensional elastic moduli E,, E,, v,;, and G, are achieved to be 58%,
60.2%, 37%, and 36.6% respectively.

3.6.4. Triangular HMS beam networks

The non-linear elastic moduli of the triangular HMS beam network
(refer to Fig. 1(g)IV) is not readily derivable from the multi-physical
mechanics-based semi-analytical framework for the hexagonal HMS
beam lattices. However, by selecting the proper unit cell as shown in
Fig. 19(a), the effective elastic moduli of the triangular HMS beam
network are derived following a similar computational framework. A
detailed derivation of non-linear elastic moduli E|, v|5, E,, v5;, and G,
of the triangular HMS beam network under the combined mechanical
stress and magnetic field is presented in Section 2.4.

Variations of the non-dimensional elastic moduli E}, vi,, E,, vy,
and G, of the triangular HMS beam network with different modes of
mechanical stress in combination with the magnetic field are shown in
Fig. 19(b)-(f). The corresponding analytical results from literature (Gib-
son and Ashby, 1999; Wang and McDowell, 2004) in absence of the
magnetic field within a small deformation regime are also plotted in
the figure through the large dotted points. The comparison studies
successfully validate our proposed semi-analytical framework for the
special case of small deformation in absence of the magnetic field.

Fig. 19(b)-(f) depicts that the non-linear non-dimensional elastic
moduli £, v, E;, vy, and G, of the triangular HMS beam net-
work can be modulated as per requirement through the magnetic load
in terms of ratio r, or r,. Under certain combinations of mechan-
ical stress with the magnetic field, even a negative Poisson’s ratio
is achievable with different degrees. The maximum enhancements in
the non-dimensional elastic moduli E;, vj,, E,, v5;, and G, of the
triangular HMS beam network are attainable as 14.1%, 27.5%, 44.5%,
865.5%, and 154% respectively. Whereas, maximum 11.6%, 27.6%,
32%, 1523.5%, and 65.8% reductions in the non-dimensional elastic
moduli are obtained respectively.

Note the exceptional enhancement (865.5%) and reduction
(1523.5%) in the Poisson’s ratio v,, as observed from Fig. 19(e). As
obvious from Fig. 19(a-1), under the combined loading of normal stress
0, and magnetic field B, the influence of bending due to the magnetic
field is more on the horizontal member OA compared to the inclined
member OB. Such a deformation pattern of the triangular HMS unit cell
creates a difference in the order of magnitudes of the normal strains
along direction-1 (¢;) and direction-2 (e,) which in turn results in an
exceptionally large enhancement and reduction in the Poisson’s ratio
v,; as noted in the numerical results.

3.6.5. Rectangular HMS beam networks

As in the case of the triangular HMS beam network, derivation of
the non-linear elastic moduli of the rectangular HMS beam network
(refer to Fig. 1(g)V) by considering appropriate unit cell (refer to
Fig. 20(a)) within the current semi-analytical framework is presented
in Section 2.5. Variations of the non-dimensional elastic moduli £,
Vis, Ey, vy, and Gy, of the rectangular HMS beam network with
different modes of mechanical stress in combination with the mag-
netic field along with the comparisons with the respective analytical
results (concerning only small deformation mechanical stresses) from
literature (Gibson and Ashby, 1999; Wang and McDowell, 2004) are
presented in Fig. 20(b)-(f). As in the case of the other configurations,
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mechanical stress in combination with magnetic field. (a) The unit cell of rectangular brick HMS beam network with h// = 1 having residual magnetic flux density .S =1
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the comparison studies between the present semi-analytical framework
and the analytical models (Gibson and Ashby, 1999; Wang and McDow-
ell, 2004) are found quite satisfactory in absence of the magnetic field
within the small deformation regime.

The concept of modulating non-linear elastic moduli E,, v;,, E,, vy,
and G, through applying an external magnetic field is demonstrated in
Fig. 20(b)-(f) for the rectangular HMS beam network. The figure also
depicts that by controlling the external magnetic field in combination
with the mechanical load, mode-dependent negative Poisson’s ratio and
negative shear modulus can be achieved. Maximum 111.1%, 66.7%,
and 102.1% enhancements in the non-dimensional elastic moduli E,,
E,, and G, are obtained respectively. Whereas, the maximum reduc-
tions in the elastic moduli are found to be 38.8%, 28.6%, and 50%
respectively. As the Poisson’s ratios v, and v,, are zero under only
mechanical load, their enhancements and reductions under magnetic
field are expressed by absolute values instead of percentage values, and
they are 0.1 and 13.1 in enhancement and 0.2 and 30.7 in reduction
respectively. The large magnitudes of the positive and negative Pois-
son’s ratio v,, of the rectangular HMS beam network are caused by the
difference in the order of magnitudes in the normal strains ¢, and e,
under the combined loading of normal stress ¢, and magnetic field B¢
due to different respective modes of predominant beam deformations.

In general, the numerical results demonstrate the on-demand active
modulation of effective elastic moduli in a wide band (i.e. broadband
stiffness and flexibility programming) as a function of the unit cell
geometry, beam-level architecture of residual magnetic flux density
and nonlinear intrinsic material properties along with the applied
far-field mechanical stresses and magnetic field. The effectiveness of
applied magnetic field can be further optimized (including target at-
tainment) corresponding to a particular mode and level of applied
far-field stress depending on the unit cell geometry (such as different
bending and stretching dominated unit cells and dimensions of the
beam-like members) and beam-level residual magnetic flux density.

4. Summary and perspective

In the paper, we have proposed a novel class of lattice meta-
materials as periodic networks of beams made of soft material with
embedded hard magnetic particles (HMS beam networks) subjected
to large deformation under combined remote mechanical stress and
magnetic field. The architected networks of HMS beams are very light
in weight and provide excellent modulation capability of the non-
linear effective elastic properties depending on the hard magnetic
particle distribution in the HMS beam elements, unit cell geometry
and the combination of applied mechanical stress with the exter-
nal magnetic field. To actively modulate the metamaterial properties
post-manufacturing enabling applications for a range of advanced in-
telligent structural systems, we propose here to adopt an innovative
bi-level modulation concept involving the coupled design space of
unit cell geometries, architected HMS beam-like members and their
stimuli-responsive deformation physics. We have exploited the geomet-
ric non-linearity due to large deformation and material non-linearity
under magneto-mechanical coupling to modulate the effective elastic
properties of the novel class of architected HMS beam networks ranging
from very high stiffness like stiff metal to very low stiffness, even lower
compared to the soft polymers.

By externally applying different values of the magnetic field in-
tensity, different elastic properties and stiffness can be achieved, and
that too from a distance (i.e. on-demand contactless elasticity control).
Essentially, this will help in minimizing the material utilization to an
extreme extent by controlling the stiffness of a structure based on active
operational demands. For example, the stiffness corresponding to target
modes and direction of a structure can be actively increased during an
operational condition when higher magnitudes of loads are experienced
to keep the deformations under control or the natural frequencies need
to be increased to avoid resonance under dynamic loading. The stiffness
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can also be actively reduced to allow large deformation and shape
control for (soft-)robotic motions or increased energy absorption and
avert sudden failure.

To estimate the non-linear effective elastic moduli under the normal
or shear mode of mechanical stress in combination with the external
magnetic field, a physically insightful semi-analytical framework is
developed for periodic HMS beam networks. Within the unit cell-based
framework, the non-linear multi-physical mechanics of rotationally
restrained HMS beams subjected to combined mechanical and mag-
netic loads representing generalized elements of the architected beam
network is defined. Governing equation of the non-linear HMS beams
is derived using the variational principle-based energy method within
the non-linear kinematic setting of the Euler-Bernoulli beam theory
and the material constitutive law of the Yeoh hyperelastic model.
To deal with the non-linearity involved in the governing equation
of the multi-physical mechanics problem, a successive two-stage iter-
ative computational scheme is developed as an integral part of the
semi-analytical framework.

Considering the aim of this paper, we have limited the scope to
2D lattices with different bending and stretching-dominated periodic
configurations (as shown in Fig. 1(b, g)) to demonstrate the concept of
post-manufacturing contactless active mechanical property modulation.
Extension of the 2D lattice framework into 3D lattices can be readily
performed by considering the same HMS beam model and appropriate
3D unit cells with appropriate boundary conditions (for example, refer
to Sinha et al. (2025)).

Within the developed semi-analytical framework, we first investi-
gate the effect of external magnetic field in combination with different
modes of remote mechanical stress on the non-linear effective elas-
tic moduli of the architected hexagonal HMS beam network having
uniform residual magnetic flux density. Based on the observations
along with the kinematics and kinetics of the HMS beam elements,
we have proposed two physics-informed beam-level designs of residual
magnetic flux density for the hexagonal HMS beam network, leading to
enhanced efficiency of the magnetic field. Further to demonstrate the
generality of the proposed multi-physical mechanics-based framework,
different other HMS beam based lattice geometries, namely, auxetic,
rectangular brick, rhombic, triangular, and rectangular configurations
are investigated considering uniform residual magnetic flux density.
Before presenting the numerical results, the developed semi-analytical
framework has been thoroughly validated to ascertain adequate confi-
dence, considering (1) HMS beam-level deformation under mechanical
and magnetic actuation (note that the lattice-level homogenized me-
chanical behaviour depends on beam-level deformation physics), (2)
effective elastic moduli of different lattice geometries considering the
conventional linear regime, and (3) effective nonlinear elastic moduli
of hexagonal lattices under large deformation. Such multi-level valida-
tions at the beam and lattice level considering the linear and non-linear
deformation regimes along with multi-physical loading conditions pro-
vide adequate confidence in the proposed computational framework. A
full-scale finite element modelling can be carried out to compare the
current results. But considering the complexity of modelling such HMS
beam-based lattices in the finite element framework, it is beyond the
scope of this manuscript. Further, a detailed finite element model of
the lattice is also not strictly necessary considering the extensive multi-
level validation approach adopted for the proposed computational
framework.

For the hexagonal HMS beam network with the uniform resid-
ual magnetic flux density, the maximum enhancements in the non-
dimensional elastic moduli E,, v,,, E, v,;, and G|, under the compres-
sive normal modes and anti-clockwise shear mode of the mechanical
stress in combination with the magnetic field are achieved as 225.5%,
232.8%, 233.7%, 35.1%, and 339.6% respectively compared to the only
mechanical loading condition without any magnetic field. Under the
same combined loading conditions, the maximum reductions in the
five elastic moduli are observed to be 84%, 29.8%, 83.9%, 129.4%,
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and 56.8% respectively. Whereas, under the tensile modes of normal
stress and the clockwise mode of shear stress in combination with the
magnetic field, 189.1%, 449.2%, 232.6%, 55%, and 463.4% enhance-
ments and 72.1%, 21.9%, 83.1%, 39%, and 68.4% reductions in the
five elastic moduli E,, v,,, E,, v5;, and G,, are achieved respectively.

The effectiveness of on-demand elasticity modulation can further
be enhanced through beam-level spatially-varying architectures of the
residual magnetic flux density. For the hexagonal HMS beam network
with the first set of designed residual magnetic flux density, 56%, 11%,
42.4%, 27.5%, and 50.9% enhancements in the non-dimensional elastic
moduli E,, v, E,, v,, and G, are achieved respectively compared
to the uniform magnetization under the compressive modes of normal
stress and anti-clockwise mode of shear stress in combination with
the external magnetic field. Whereas, the maximum reductions in the
non-dimensional elastic moduli E,, v,,, E,, v,;, and G, under the
compressive normal modes and the anti-clockwise shear mode of the
mechanical stress in combination with the magnetic field are found to
be 66.4%, 21%, 47.2%, 18%, and 35.6% respectively. Under the tensile
modes of the normal stress and the clockwise mode of shear stress
in combination with the external magnetic field, 31.1%, 22.7%, 41%,
10.4%, and 104.3% enhancements and 62.6%, 23.3%, 46.6%, 7.3%,
and 80.4% reductions in the five elastic moduli E,, v,,, E,, v,;, and
G, of the hexagonal HMS beam network with the first designed set of
residual magnetic flux density are obtained respectively.

For the hexagonal HMS beam network with the second set of design
(beam-level spatial variation) of the residual magnetic flux density
under the compressive modes of normal stress and the anti-clockwise
mode of shear stress in combination with the magnetic field, maximum
86.9% reduction in E; and maximum 143.5%, 23%, 68.5%, and 68.9%
enhancements in v,,, E,, v,;, and G,, are achieved respectively with
respect to uniform designs. Whereas, under the tensile normal modes
and the clockwise shear mode of the mechanical stress in combination
with the magnetic field, maximum 63.9%, 73.9%, 63.3%, and 35.8%
reductions in E,, v,, E,, and v,, and maximum 57.5% enhancement
in G|, are achieved respectively. It is worthy to mention that we have
explored here two different classes of architectures for spatially varying
residual flux density, while there exist a vast scope of further optimiza-
tion following single and multi-objective optimization algorithms along
with unit cell geometry for enhancing the effectiveness of broad-band
elasticity modulation.

For the auxetic HMS beam network with the uniform residual mag-
netic flux density, the maximum enhancements in the non-dimensional
elastic moduli E,, v,, E,, and G,, are achieved to be 201.9%, 19%,
400.4%, and 248.3% respectively compared to the only mechani-
cal loading condition. Whereas, maximum 46.4%, 66.49%, 40%, and
62.7% reductions are obtained in the non-dimensional elastic moduli
E,, E,, v,,, and G, respectively. For the rectangular brick HMS beam
network with the uniform residual magnetic flux density, maximum
64.4%, 150%, and 162.1% enhancements are achieved in E,, E,, and
G, respectively compared to the only mechanical loading condition.
Whereas, the maximum reductions in E,, E,, v,;, and G, are obtained
to be 32%, 54.5%, 91.7%, and 48.5% respectively. As v,, is zero for
rectangular brick lattices under the only mechanical load in absence of
the magnetic field, the enhancement and reduction in it are noted in
terms of their absolute values instead of percentage and they are 240.4
and 109.3 respectively.

For the rhombic HMS beam network with the uniform residual
magnetic flux density, maximum 233%, 36.8%, 232.7%, and 77.6%
enhancements in the non-dimensional elastic moduli E,, v,,, E,, and
G, are obtained respectively compared to the only mechanical loading
condition. Whereas, the maximum reductions in the non-dimensional
elastic moduli E,, E,, v,;, and G,, are achieved to be 58%, 60.2%, 37%,
and 36.6% respectively. For the triangular HMS beam network with the
uniform residual magnetic flux density, the maximum enhancements in
non-dimensional elastic moduli E,, v,,, E,, v,;, and G, are achieved
to be 14.1%, 27.5%, 44.5%, 865.5%, and 154% respectively compared
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to the only mechanical loading condition in absence of magnetic field.
Whereas, maximum 11.6%, 27.6%, 32%, 1523.5%, and 65.8% reduc-
tions in the non-dimensional elastic moduli are obtained respectively.
For rectangular HMS beam network with the uniform residual magnetic
flux density, maximum 111.1%, 66.7%, and 102.1% enhancements
in the non-dimensional elastic moduli E,, E,, and G,, are obtained
respectively compared to the only mechanical condition. Whereas, the
maximum reductions in the elastic moduli are found to be 38.8%,
28.6%, and 50% respectively. As the Poisson’s ratios v,, and v,, are zero
for rectangular lattices under only mechanical load, their enhancements
and reductions under magnetic field are expressed by absolute values
instead of percentage values, and they are 0.1 and 13.1 in enhancement
and 0.2 and 30.7 in reduction respectively.

The numerical investigations on the effective elastic moduli of the
HMS beam networks depict an excellent modulation capability of the
elastic properties in an extremely wide band for the proposed novel
class of lightweight lattice metamaterials through designing the beam-
level distribution of residual magnetic flux density, unit cell geometry
and nonlinear coupled material physics, along with controlling the
external magnetic field in combination with the mechanical mode of
loading. The numerical results exhibit non-invariant elastic proper-
ties (Sinha et al., 2023) of the periodic HMS beam networks under
the anti-clockwise and clockwise modes of shear stress in addition to
the tensile and compressive modes of normal stress. Moreover, under
certain combinations of the externally applied mechanical stress and
magnetic field depending on the residual magnetic flux density, it is
possible to achieve negative stiffness and negative Poisson’s ratio with
different degrees of auxecity, even for the non-auxetic unit cell config-
urations. The reported numerical results would provide a foundation
for more innovative designs of the residual magnetic flux density of
the HMS beam elements along with the interactive influence of unit
cell geometry to increase the spectrum of modulated effective elastic
properties.

In this paper, we have considered different modes of far-field in-
plane mechanical stresses (normal stress along the horizontal and ver-
tical direction (direction-1 and 2) and shear stress in plane 1-2) in
combination with remote magnetic field along direction-2. It can be
noted that there are three aspects of magnetic stimuli in the con-
text of the proposed active metamaterials (1) distribution of residual
magnetic flux density along the length of the constituting beams that
form a unit cell, leading to beam-level magnetic particle distribution
architecture, (2) direction of the externally applied magnetic field,
and (3) intensity of externally applied magnetic field. In the analy-
sis of the multi-physical large deformation mechanics of HMS beam
representing the generalized member of periodic HMS beam networks
under the combined mechanical and magnetic loading as presented
in Sections 2.1 and 2.2, generalized direction (inclination angle «)
of the externally applied magnetic field B? is considered in combi-
nation with the generalized mechanical force. Hence, the multi-scale
framework estimating the non-linear elastic properties of the proposed
HMS metamaterials under the far-field mechanical and magnetic fields
is generalized for considering any arbitrary direction of the external
magnetic field in combination with the different modes of the in-
plane mechanical stresses. Though we have concentrated on the remote
magnetic field along direction-2 considering different intensities in
combination with normal and shear modes of the in-plane mechani-
cal stresses, the framework can easily be extended to consider other
directions of magnetic fields. In fact, this will give a scope of achieving
tunable normal-shear lattice level coupling behaviour for a given bi-
level designed lattice architecture just by changing the direction of
external magnetic field (Mondal et al., 2025). The effect of intensity
of externally applied magnetic field is investigated throughout the
presented results for multi-physical property modulation of lattices,
while the beam-level architecture based on the distribution of residual
magnetic flux density is explored in Section 3.5.
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We would conclude this section by highlighting, summarizing and
justifying some of the keywords and concepts of the presented research,
as reflected in the discussions throughout this paper. (1) Metamaterials:
The work deals with the development of a new class of mechanical
metamaterials conceptualized as a periodic network of hard magnetic
soft beams that can change their properties in real-time based on exter-
nal stimuli. (2) Magneto-active: The proposed novel class of metamate-
rials under consideration is magneto-active because their mechanical
properties can be actively altered by applying an external magnetic
field. The title includes this term to signify the magneto-mechanical
interaction that underpins the unique homogenized behaviour and ac-
tive effective elastic moduli of these metamaterials. (3) Nonlinear: The
metamaterials’ homogenized constitutive response under the combined
mechanical and magnetic fields is non-linear due to geometric non-
linearity coming from the large deformation of the beam-like soft cell
walls and material nonlinearity of the considered materials. (4) Bi-level
architected: The paper introduces the concept of bi-level modulation of
the effective elastic properties of the novel class of metamaterials under
the far-field combined mechanical stress and magnetic stimuli, where
the design incorporates both the unit cell periodic geometries, and
the deformation physics of the beam-like members based on the hard
magnetic particle distribution patterns within the soft cell walls. This
term in the title refers to this dual-level design approach, integrating
geometric and multi-physical aspects (both at unit cell level and beam
level) to control the effective lattice-level material behaviour. (5) Multi-
physically programmable: The paper discusses the ability to actively
modulate the physical properties of metamaterials, such as elastic mod-
uli and Poisson’s ratios, through contactless far-field stimuli (magnetic
field). This shows that the metamaterials can be programmed post-
manufacturing to exhibit different mechanical behaviours depending
on external stimuli as per application-specific operational demands.
The term multi-physical highlights the fact that active on-demand elas-
tic moduli tailoring is achieved here through different physics involving
mechanical and magnetic deformations. (6) stimuli-responsive: The work
emphasizes the stimuli-responsive nature of the metamaterials, where
the mechanical properties change in response to external magnetic
fields and mechanical stresses. This term reflects the adaptability of
the metamaterials to different external stimuli, which is a key focus
of the paper. (7) Multi-scale mechanics: The research focuses on the
development of a multi-physical mechanics-based framework for the
estimations and modulations of the homogenized mechanical properties
of the proposed metamaterials considering geometric and material non-
linearities due to large deformation and magneto-mechanical coupling.
The developed computational framework involves the deformation me-
chanics of hard magnetic soft beams and subsequent integration of
that in the unit cell mechanics to obtain the homogenized mechanical
behaviour of the lattices. In essence, it may be noted that the com-
putational mechanics framework developed here entails components
and understanding at different length scales (i.e. multi-scale) to ob-
tain the effective elastic properties: hard magnetic particles and their
distribution at the beam level (i.e. beam-level architecture), unit cell
geometry, effective material properties (i.e. the effective elastic moduli)
at continuum level and subsequently design of structures (such as an
aircraft) based on such continuum level effective elastic properties.

5. Conclusions

The current work addresses a critical limitation in conventional
mechanical metamaterials in terms of contactless broad-band program-
ming of elastic moduli based on on-demand operational requirements.
This is achieved through shifting the design paradigm towards more
innovative bi-level modulation concepts involving the coupled design
space of unit cell geometries, architected beam-like members and their
stimuli-responsive deformation physics. We have introduced graded
hard magnetic soft (HMS) material architectures in the periodic beam
networks following physics-informed insights of the stress resultants

45

Mechanics of Materials 206 (2025) 105333

depending on uni cell geometry. The compound effect of spatially-
graded residual magnetic flux density and unit cell geometries lead
to improved stimuli efficiency in achieving a target on-demand stiff-
ness, resulting in programmable and sustainable metamaterials with
minimal utilization of the intrinsic materials. Moreover, under certain
combinations of the externally applied mechanical stress and magnetic
field depending on the residual magnetic flux density, it is possible to
achieve negative stiffness and negative Poisson’s ratio with different
degrees of auxecity, even for the non-auxetic unit cell configurations. A
generic semi-analytical computational framework involving the large-
deformation geometric non-linearity and material non-linearity under
magneto-mechanical coupling is developed here for the effective elastic
moduli of HMS material based bi-level architected lattices under nor-
mal or shear modes of mechanical far-field stresses. Effective elastic
moduli being a critically fundamental property of materials, the ca-
pability of having extreme-broadband active control would essentially
lead to on-demand programming of a range of static, stability and
dynamic structural behaviour, including direction-dependent deforma-
tion, vibration and control, wave propagation, impact and penetration
resistance, energy absorption, shape morphing, robotic motion and
actuation at multiple length scales.
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