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 A B S T R A C T

Mechanical metamaterials which are often conceptualized as a periodic network of beams have been receiving 
significant attention over the last decade, wherein the major focus remains confined to the design of micro-
structural configurations to achieve application-specific multi-functional characteristics in a passive framework. 
It is often not possible to actively modulate the metamaterial properties post-manufacturing, critically limiting 
the applications for a range of advanced intelligent structural systems. To achieve physical properties beyond 
conventional saturation limits attainable only through unit cell architectures, we propose to shift the design 
paradigm towards more innovative bi-level modulation concepts involving the coupled design space of unit cell 
geometries, architected beam-like members and their stimuli–responsive deformation physics. On the premise 
of revolutionary advancements in additive manufacturing technologies, we introduce hard magnetic soft (HMS) 
material architectures in the beam networks following physics-informed insights of the stress resultants. 
Through this framework, it is possible to achieve real-time on-demand control and modulation of fundamental 
mechanical properties like elastic moduli and Poisson’s ratios based on a contactless far-field stimuli source. A 
generic semi-analytical computational framework involving the large-deformation geometric non-linearity and 
material non-linearity under magneto-mechanical coupling is developed for the effective elastic properties 
of HMS material based bi-level architected lattices under normal or shear modes of mechanical far-field 
stresses, wherein we demonstrate that the constitutive behaviour can be programmed actively in an extreme-
wide band based on applied magnetic field. Under certain combinations of the externally applied mechanical 
stress and magnetic field depending on the residual magnetic flux density, it is possible to achieve negative 
stiffness and negative Poisson’s ratio with different degrees of auxecity, even for the non-auxetic unit cell 
configurations. The results further reveal that a single metamaterial could behave like extremely stiff metals 
to very soft polymers through contactless on-demand modulation, leading to a wide range of applicability in 
statics, stability, dynamics and control of advanced mechanical, aerospace, robotics and biomedical systems 
at different length scales.
. Introduction

Introduction to mechanical metamaterials and a brief literature review.
echanical metamaterials are an advanced broad class of engineered 
aterials with architected microstructures having designed geometri-
al arrangements, leading to unprecedented physical and mechanical 
roperties that are derived primarily based on their unique internal 
tructures and geometry along with the intrinsic materials from which 
hey are made. Metamaterials are often conceptualized as a periodic 
etwork of beam-like (or plate and shell-like) members at a relatively 
ower length scale to obtain effective properties at higher length scales, 
nd find critical applications in a vast spectrum of structural and 
echanical applications ranging from nano and micro to macro scale 
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systems (Zadpoor, 2016; Sinha and Mukhopadhyay, 2023b; Mukhopad-
hyay and Adhikari, 2017a; Gao et al., 2023). A typical bottom-up 
homogenization framework ranging from an equivalent continuum 
(with effective properties) at macro-level to honeycomb microstruc-
tures at a lower length scale is shown in Fig.  1(a). Effective mechanical 
properties of such periodic beam networks not only depend on the 
beam-level geometry and intrinsic material characteristics but also are 
governed by the configuration of the network, i.e. unit cell geome-
try (Gibson and Ashby, 1999; Fleck et al., 2010). Compared to the 
conventional naturally available materials, the lattice metamaterials 
have low density and they provide tunable enhanced multi-functional 
properties based on the application-specific demands (Wadley, 2006; 
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Wang et al., 2020b; Wu et al., 2021b; Bekele et al., 2023). Due to 
the advantages over the natural materials, the lattice materials have 
drawn significant attention of the material scientists and engineers for 
the last few decades (Surjadi et al., 2019; Wu et al., 2021a; Dalela et al., 
2021). Revolutionary advancements in the manufacturing technologies 
especially in the field of additive manufacturing elevated such interest 
by providing the freedom to the designers in manufacturing complex 
configurations (Tibbits, 2014; Bandyopadhyay and Heer, 2018; Chen 
and Zheng, 2018). 

The major focus of the research on mechanical metamaterials has 
been the development of several analytical, computational and ex-
perimental frameworks for estimation of the effective responses of 
periodic beam networks under static loading (Malek and Gibson, 2015; 
Mukhopadhyay and Adhikari, 2017b; Sinha and Mukhopadhyay, 2022),
dynamic and wave propagation (Adhikari et al., 2021; Gonella and 
Ruzzene, 2008), buckling (Wilbert et al., 2011; Jang and Kyriakides, 
2015; Jiménez and Triantafyllidis, 2013; Zschernack et al., 2016), 
crushing (Liu et al., 2016), low-velocity impact (Hu and Yu, 2013) 
etc. Another aspect of the research area has been the modulation of 
effective properties by designing the network configurations in terms 
of lattice geometric parameters, like, cell angle, thickness to span ratio 
of the cell walls along with the aspect ratio, etc. (Thomas and Tiwari, 
2019; Scarpa et al., 2000; Sorohan et al., 2019). Auxetic configurations 
among the architected materials have drawn special attention due 
to providing negative Poisson’s ratio (Yang et al., 2015; Kolken and 
Zadpoor, 2017; Mukhopadhyay and Kundu, 2021), and a range of 
associated mechanical advantages including impact and indentation 
resistance, shape modulation, higher stiffness and improved dynamic 
properties. In addition to the hexagonal honeycomb and re-entrant 
auxetic configurations, several other forms of lattices, like, rhombic, 
rectangular brick, triangular, rectangular, square, etc., have found crit-
ical engineering applications due to their special bending or stretching 
dominated characteristics (Wang and McDowell, 2004). Manufacturing 
the designed complex configurations has become feasible using addi-
tive manufacturing, followed by experimental investigations (Balawi 
and Abot, 2008; Mukhopadhyay et al., 2020a; Papka and Kyriakides, 
1998; Damanpack et al., 2019) both for validating the computational 
frameworks and subsequent industry-scale production.

Due to the extensive investigations on the design of network config-
urations for modulation of the effective properties of lattice materials, 
the research area has become saturated in the past decade. Hence, 
the research area has been shifting towards more innovative designs 
of geometry and intrinsic material characteristics at the elementary 
beam-level. One such aspect is to exploit the non-linear characteristics 
of the elementary beam members undergoing large deformation. For 
modulation of the effective properties of lattice metamaterials as a 
function of the non-linearity, several geometrically non-linear frame-
works have been developed in the last few years (Fu et al., 2016; Zhao 
et al., 2020; Nampally et al., 2020). Another innovative concept at the 
elementary beam-level to enhance the effective mechanical properties 
is providing anti-curvature to the cell walls subjected to a particu-
lar mode of applied mechanical loading (Ghuku and Mukhopadhyay, 
2022a; Prajwal et al., 2022; Ghuku and Mukhopadhyay, 2022b). Sig-
nificant enhancements in lattice stiffness or flexibility and elastic failure 
strength can be achieved due to the introduction of anti-curvature 
to the cell walls (Ghuku and Mukhopadhyay, 2022a; Prajwal et al., 
2022; Ghuku and Mukhopadhyay, 2022b). With the revolutionary ad-
vancements in the field of additive manufacturing, recently lattices 
made of multiple intrinsic materials have been proposed which possess 
unprecedented mechanical properties, attainable based on an expanded 
design space (Vogiatzis et al., 2017; Mirzaali et al., 2018; Kang et al., 
2019; Mukhopadhyay et al., 2020b). In such literature, the major focus 
remains confined to the design of micro-structural configurations to 
achieve application-specific multi-functional characteristics in a passive 
framework. It is not possible to actively modulate the metamaterial 
properties post-manufacturing, critically limiting the applications for 
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a range of advanced intelligent structural systems. To achieve phys-
ical properties beyond conventional saturation limits attainable only 
through unit cell architectures, we propose to shift the design paradigm 
towards more innovative bi-level modulation concepts involving the 
coupled design space of unit cell geometries, architected beam-like 
members and their stimuli–responsive deformation physics. We would 
introduce hard magnetic soft (HMS) material (Lu et al., 2024) archi-
tectures in the beam networks following physics-informed insights of 
the stress resultants. The novel HMS lattice or beam network is very 
light in weight but it would be able to demonstrate a wide range of 
stiffness (including sign reversal) depending on applied magnetic flux. 
The foundation of the HMS material along with the relevant reported 
work in the literature on HMS beam deformations are described very 
briefly in the following paragraph.

Soft materials are a class of newly developed materials that have 
found immense technological applications in a diverse field, espe-
cially in biomedicine (Pankhurst et al., 2003; Zhao et al., 2011), 
soft robotic (Kim et al., 2013; Rich et al., 2018), and flexible elec-
tronic devices (Rogers et al., 2010; Li, 2016). Controllable properties 
of soft active materials under external stimuli, like, light (Katz and 
Burdick, 2010), heat (Morishima, 2007), electric (Miyajima et al., 
2009), magnetic field (Kim et al., 2018) etc., open a new avenue to 
design application-specific devices. Recent advancements in 3D and 
4D technologies make the innovative designs feasible and motivated 
the research community (Truby and Lewis, 2016; Chu et al., 2020; 
Josselin et al., 2024). One interesting class among such soft active 
materials which promises significant potential in critical engineering 
applications is the hard magnetic soft material (HMS material) (Lu 
et al., 2024). HMS material is manufactured by embedding hard mag-
netic particles into soft material matrix. This newly developed active 
material (HMS material) shows a magnetically hard and mechanically 
soft property (Lum et al., 2016). As the beam is a very fundamental ele-
ment in designing any structural device, investigations on the response 
of beam made of HMS material under magnetic actuation have drawn 
the attention of the research community. The complications coming 
from geometric non-linearity due to large deformation and material 
non-linearity under magneto-mechanical coupling make the analysis of 
HMS beam structures challenging (Wang et al., 2020a; Chen and Wang, 
2021). In the past few years, several analytical and numerical models 
have been proposed by the researchers to capture the non-linear re-
sponse of HMS beams under external magnetic stimulation (Zhao et al., 
2019; Kim et al., 2019; Chen and Wang, 2020). Besides the theoretical 
works, some experimental investigations on HMS beam responses are 
also reported in the literature (Zhao et al., 2019; Furusawa et al., 2019). 
To use the devices made of HMS beams in soft robotic and electronic 
applications, the deformed shapes of the HMS beam are of interest 
and need to be controlled. By properly designing the residual magnetic 
flux density in the HMS beam to be subjected to a particular external 
magnetic field, we can design the deformed shapes (Chen et al., 2020a). 
As most of the structures in the biological world consist of the feature of 
functionally graded property, to meet the complex demand of potential 
applications of HMS beam structures, recently functionally graded HMS 
materials are being designed and manufactured (Bartlett et al., 2015; 
Chen et al., 2020b).

Rationale behind the proposed magneto-active metamaterials. The
above-presented literature review reveals that despite being a topic of 
interest, the theoretical investigations on HMS beam structures focus 
on structural characteristics under magnetic actuation only. Investiga-
tions on the multi-physical mechanics of HMS beam structures under 
combined mechanical load and magnetic actuation are not addressed 
in the literature sufficiently. Moreover, most of the reported theoretical 
investigations are numerical in the framework of commercial pack-
ages which lack physical insights into the problems. Some analytical 
models are also reported in the literature but they are limited to 
simple beam problems in terms of loading conditions, geometry, and 
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Fig. 1. Bi-level architected lattice metamaterials with periodic network of soft beams having embedded hard magnetic particles. (a) A typical homogenization framework 
for conventional lattice metamaterials ranging from equivalent continuum at macro-level to honeycomb microstructures at the lower length scales. (b) Schematic representation 
of hexagonal HMS beam network with the representative unit cell to analyse multi-physical mechanics under combined external mechanical and magnetic loads. (c–f) Definition 
of local Cartesian coordinate systems (𝑥, 𝑦) and representation of residual magnetic flux density 𝐵𝑟0 in the unit cell of hexagonal HMS beam network to be subjected to: (c, d) 
magnetic field along direction-2 in combination with normal stress along direction-1 (𝜎1) or direction-2 (𝜎2), (e, f) magnetic field along direction-2 in combination with in-plane 
shear stress (𝜏). (g) Different other forms of periodic HMS beam networks ((I - III) derivatives of hexagonal lattices, (IV) triangular lattice, (V) rectangular lattice) to be analysed 
within the proposed multi-physical mechanics-based framework. (h) Large deformation multi-physical mechanics of HMS beams representing the generalized member of periodic 
HMS beam networks under combined mechanical and magnetic loading. (i) Deformation components of a generalized HMS beam element to derive large deformation kinematics.

Mechanics of Materials 206 (2025) 105333 
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boundary conditions. In this paper, we consider the complicated multi-
physical mechanics of periodic HMS beam networks subjected to large 
deformation under combined mechanical and magnetic loads. One 
major objective is to develop a physically insightful semi-analytical 
framework to estimate the non-linear effective elastic moduli of the 
HMS beam networks under the combined fair-field mechanical stress 
and magnetic field. By properly designing the residual magnetic flux 
density in the HMS beam elements under an optimal combination 
of mechanical stress and magnetic field along with exploiting the 
geometric and material non-linearities, modulation of the effective 
elastic moduli through the developed semi-analytical framework would 
be attempted in the present work.

With the progress in manufacturing capabilities (Montgomery et al., 
2020), active lattice metamaterials (Sinha and Mukhopadhyay, 2023b; 
Qi et al., 2022) have started receiving significant attention from the 
scientific community. In the context of active elastic property and 
stiffness modulation in lattice metamaterials with distributed actuation 
throughout the connecting beam spans, the pioneering works with de-
tailed computational framework development can be traced in the area 
of piezoelectric lattices (Singh et al., 2021, 2022a). The major lacuna 
in piezoelectric lattices is the absence of contactless modulation and 
involvement of wire networks for supplying voltage to each constituting 
beams. Later, lattices with magnetostrictive layers (with distributed 
actuation throughout the connecting beam spans) were proposed for 
contactless on-demand elasticity programming (Singh et al., 2022b). All 
these metamaterials were developed in the regime of small deformation 
linear analysis framework. Some of the early research on active control 
of stiffness using magnetic control can be traced back to exploitation 
of discrete magnets attached to the connecting beam members of the 
lattice unit cells (Dudek et al., 2018). Unlike most of the active lattice 
metamaterials, Alkuino and Zhang (2024) presented discrete magneto-
active lattices where magnetic particles are embedded in the joints 
rather than the beam-like connecting elements, wherein the active joint 
movement is exploited for property modulation in the proposed design. 
Jackson et al. (2018) proposed 4D field responsive lattice metamaterials 
with connecting polymer tube-like elements filled with magnetorhe-
ological fluid suspensions. In general, magneto-active metamaterials 
have been attracting significant attention recently covering different 
spectrum of physical designs including elastic, impact, vibration, wave 
propagation and acoustics for on-demand control (Sim and Zhao, 2024; 
Dudek et al., 2019; Zhang et al., 2023; Montgomery et al., 2021; 
Galea et al., 2022). Lately, HMS material based hexagonal lattices with 
distributed uniform actuation along the beam-like constituting mem-
bers have been investigated for active contactless property modulation 
considering geometric nonlinearity (Sinha and Mukhopadhyay, 2023a). 
In this semi-analytical framework of the earlier work, only hexagonal 
lattices and their derivatives such as rhombic, rectangular brick and 
auxetic configurations can be analysed. In the present work we extend 
the computational framework to analyse other bending and stretching 
dominated lattices such as triangular and rectangular configurations. 
Further, for enhancing the efficiency of magnetic actuation, we would 
introduce non-uniform residual magnetic flux to exploit the concepts 
of anti-curvature (Ghuku and Mukhopadhyay, 2022a) in metamaterials 
design.

Description of the bi-level architected lattices with non-uniform magnetic 
flux density. A typical hexagonal network of HMS beams is shown 
schematically in Fig.  1(b). Within the framework of unit cell approach, 
an appropriate unit cell consisting of three HMS beam members OA, 
OB, and OC is chosen as shown in Fig.  1(b) to analyse multi-physical 
lattice mechanics under combined mechanical and magnetic load. In 
the figure, an enlarged view of embedded hard magnetic particles is 
shown for clear understanding. From the understanding of boundary 
conditions for the honeycomb lattices made of conventional elastic 
materials (Gibson and Ashby, 1999), definitions of local Cartesian 
coordinate frames (𝑥, 𝑦) for the inclined member OA and vertical 
member OC of the unit cell to be subjected to the magnetic field along 
4 
direction-2 (𝐵𝑎) in combination with normal mechanical stress along 
direction-1 (𝜎1) or direction-2 (𝜎2) are shown in Fig.  1(c). Similarly, 
definitions of local Cartesian coordinate frames (𝑥, 𝑦) for the inclined 
and vertical members of the unit cell to be subjected to the magnetic 
field along direction-2 (𝐵𝑎) in combination with in-plane shear stress 
(𝜏) are shown in Fig.  1(e). The direction and magnitude of residual 
magnetic flux density 𝐵𝑟0 in the HMS beam member are controlled by 
the orientation and density of the hard magnetic particles embedded in 
the soft material. Mathematically, the direction and magnitude of 𝐵𝑟0
are defined by a coefficient 𝑆. If the residual magnetic flux density 𝐵𝑟0
is uniform along the beam axis and directed along the 𝑥 axis of the local 
Cartesian frame (𝑥, 𝑦), the value of 𝑆 is unity, i.e., 𝑆 = 1. If the direction 
of uniform 𝐵𝑟0 is opposite to 𝑥 axis, then 𝑆 = −1. For generalized dis-
tribution of 𝐵𝑟0, the coefficient 𝑆(𝑥) is a function of beam length along 
the 𝑥 axis of the local Cartesian frame (𝑥, 𝑦). For the unit cells to be 
subjected to the magnetic field along direction-2 in combination with 
either normal mode or shear mode of mechanical stress, generalized 
representations of the residual magnetic flux density 𝐵𝑟0 in the HMS 
beam members are shown in Fig.  1(d) and (f) corresponding to the local 
frames (𝑥, 𝑦) as defined in Fig.  1(c) and (e) respectively. Note that in 
Fig.  1(f), the direction of residual magnetic flux density 𝐵𝑟0 is opposite 
for the inclined members OA and OB. This opposite distribution makes 
the inclined members behave structurally symmetric when subjected 
to in-plane shear stress 𝜏 in combination with external magnetic field 
𝐵𝑎. This phenomenon will be described in more detail later through 
schematic diagrams in connection with the mathematical formulation 
of shear modulus.

As discussed in the preceding paragraphs, we propose a novel class 
of metamaterials as a network of beams made of soft material with 
embedded hard magnetic particles which enables real-time on-demand 
control and modulation of non-linear elastic properties based on a 
contactless far-field stimuli source. The metamaterial involves a dual 
design space at the lower length scale (referred to as micro-scale in 
the subject domain of metamaterials) as follows. (1) Architecturing of 
the hard magnetic particle distribution within the HMS beam elements 
tailors their multi-physical large deformation mechanics at the lower 
length scale (2) Architecturing of the network’s periodic geometric 
configurations (cell angle, vertical to inclined cell wall length ratio, 
thickness to inclined cell wall length ratio) further tailors the unit 
cells’ large deformation mechanics. Such bi-level architectures and 
designs at the lower length scale (referred to as micro-scale) govern the 
homogenized elastic properties of the proposed HMS metamaterials at 
the higher length scale (referred to as macro-scale) of the entire lattice 
dimension. Hence, the developed computational framework reported in 
the present article is basically a multi-scale framework starting from 
the magnetic particle architected HMS beams and periodic geome-
try of unit cell configurations at the micro-scale yielding to tailored 
homogenized non-linear elastic properties of HMS beam network at 
the macro-scale. Note that the computational framework for obtaining 
the effective nonlinear elastic properties of the lattice would essen-
tially involve analysing appropriate unit cells with periodic boundary 
conditions. The foundational concept of the multi-scale modelling of 
conventional lattice metamaterials (involving unit cells that consist 
of homogeneous passive beams) is demonstrated through Fig.  1(a), 
and subsequently, the concept of the proposed bi-level architected 
novel class of HMS metamaterials (involving unit cells that consist of 
architected magneto-active beams) is introduced through Fig.  1(b, g).

Scope of the present study. To estimate the non-linear effective elas-
tic moduli of the periodic HMS beam network, a generalized multi-
physical mechanics problem of HMS beam subjected to combined 
mechanical and magnetic loads would be defined within the framework 
of the unit cell approach. The HMS beam problem involves complex ef-
fects coming from geometric non-linearity due to large deformation and 
material non-linearity due to magneto-elastic coupling. A physically 
insightful semi-analytical framework would be developed here through 
the variational principle-based energy method within the non-linear 
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kinematic setting of the Euler–Bernoulli beam theory using the material 
constitutive law according to the Yeoh hyperelastic model. Based on the 
beam-level deformation results, effective elastic moduli of the periodic 
HMS beam networks (i.e lattices) would be computed by accounting 
the unit cell geometry and periodic boundary conditions. The semi-
analytical beam model will be validated by comparing the non-linear 
deformed configurations under separate mechanical load and magnetic 
actuation with the available literature (Chen and Wang, 2021; Chen 
et al., 2020a). After the validation study, a few critical beam-level 
numerical results will be presented first under combined mechanical 
and magnetic loading for HMS beams with symmetric and asymmetric 
residual magnetic flux density. Through the numerical results, the 
effect of asymmetry in residual magnetic flux density in defining a 
generalized HMS beam problem of the HMS beam network along with 
the effect of centreline extensibility in analysing large deformation 
characteristics of HMS beam will be investigated. A validation study of 
the semi-analytical framework at the periodic beam network-level will 
also be carried out by comparing the non-linear effective elastic moduli 
with the available results in the literature for honeycomb lattices under 
different modes of far-field mechanical loads (Fu et al., 2016; Ghuku 
and Mukhopadhyay, 2022a). Following the validated semi-analytical 
framework, the effects of magnetic field in combination with the dif-
ferent modes of far-field mechanical stress field on the non-linear 
effective elastic moduli of periodic HMS beam network with uniform 
residual magnetic flux density will be studied. Based on the kinematic 
and kinetic conditions of the beam elements of the hexagonal HMS 
beam network, two physics-informed designs of residual magnetic flux 
density will further be proposed which would significantly influence 
the non-linear effective elastic moduli. Through the numerical results, 
we will show that the proposed lightweight HMS beam networks or 
lattices possess broadband modulation capability of the non-linear 
specific stiffness ranging from very high stiffness like hard metal to very 
low stiffness even lower than soft polymers depending on the residual 
magnetic flux density and the compound effect of the externally applied 
mechanical load and the magnetic field. Under certain combinations 
of the mechanical and magnetic fields, it will be shown that the 
HMS lattices show negative stiffness as well. The generality of the 
developed multi-physical mechanics-based semi-analytical framework 
will be demonstrated by analysing non-linear elastic moduli of five 
other forms of HMS beam networks, namely, auxetic, rectangular brick, 
rhombic, triangular, and rectangular networks as shown in Fig.  1(g). 
Note that under the influence of combined far-field mechanical stresses 
and magnetic field, the unit cell mechanics of different considered 
lattice configurations becomes significantly involved that has not been 
investigated in the literature so far.

After presenting a brief review of literature on mechanical meta-
materials and the rationale behind proposing the present novel class 
of lattices in this introductory section (Section 1), the mathematical 
framework for the estimation of non-linear effective elastic moduli 
of periodic HMS beam networks under different modes of far-field 
mechanical stress in combination with magnetic field will be presented 
in Section 2. Thereafter, Section 3 will present the beam-level and 
periodic beam network-level results along with the validation studies. 
Applicability of the proposed physically insightful framework of the 
periodic HMS beam network to different forms of lattices will be 
demonstrated through numerical results. The conclusions will be drawn 
in Sections 4 and 5 along with the prospective future scopes of the 
proposed novel class of HMS lattices.

2. Computational framework for stimuli–responsive lattices

A HMS beam multi-physical mechanics based (refer to Fig.  1(h, 
i)) semi-analytical framework is developed in this section to estimate 
the non-linear effective elastic moduli of periodic HMS beam networks 
subjected to magnetic field 𝐵𝑎 along direction-2 either in combination 
with remote normal stress along direction-1 (𝜎 ), direction-2 (𝜎 ) or 
1 2

5 
remote in-plane shear stress 𝜏. The combined loading conditions of 
mechanical normal stress (𝜎1 or 𝜎2) and magnetic field (𝐵𝑎) for the unit 
cell of hexagonal HMS beam network (refer to Fig.  1(d)) are shown 
in Fig.  2(a) and (d) respectively. Whereas, the loading condition of 
mechanical in-plane shear stress (𝜏) in combination with the applied 
magnetic field (𝐵𝑎) for the corresponding HMS unit cell (refer to Fig. 
1(f)) is shown in Fig.  3(a). Under the combined loading condition as 
shown in Fig.  2(a), we obtain the longitudinal effective Young’s mod-
ulus 𝐸1 and Poisson’s ratio 𝜈12 of the hexagonal HMS beam network. 
For the combined loading condition as shown in Fig.  2(d), we obtain 
the transverse effective Young’s modulus 𝐸2 and Poisson’s ratio 𝜈21. 
Whereas, under the combined loading condition of the shear mode 
of mechanical load and the magnetic field as shown in Fig.  3(a), we 
can estimate the effective shear modulus 𝐺12 of the hexagonal HMS 
beam network. Similar loading conditions are presented for other forms 
of lattices in Figs.  4 and 5. Here it should be noted that though the 
multi-physical mechanics of the HMS unit cells is presented in Figs. 
2–5 for the compressive mode of normal stress and anti-clockwise 
mode of shear stress respectively in combination with the generalized 
residual magnetic flux density having coefficient 𝑆(𝑥), the developed 
formulation is generalized and valid for the combination of any mode 
of the normal (compressive or tensile) and shear (anti-clockwise or 
clockwise) mechanical stress with a generalized magnetic field.

Under the applied combined mechanical stress and magnetic field, 
developed forces and large deformation kinematics of the HMS beam 
elements of the unit cell are analysed first. Based on the kinetic and 
kinematic descriptions, a large deformation problem of the HMS beam 
representing a general beam-like element of the periodic network is de-
fined, wherein the boundary and loading conditions are applied based 
on unit cell periodicity and applied external mechanical stress and 
magnetic flux, respectively. Non-linear multi-physical mechanics of the 
defined generalized large deformation HMS beam problem under com-
bined mechanical and magnetic load is analysed subsequently through 
the variational energy principle-based semi-analytical framework (with 
appropriate beam-level boundary condition to ensure periodicity of the 
unit cells). Using the beam-level deformation results within the unit-
cell framework, the effective elastic moduli (𝐸1, 𝜈12, 𝐸2, 𝜈21, and 𝐺12) 
of a periodic HMS beam network are computed. Thus, following a 
multi-scale framework, the homogenized nonlinear elastic properties 
of the proposed metamaterials at the higher length scale (referred to as 
macro-scale) are estimated in terms of the beam-level large deformation 
measures coupled with unit cell geometry under combined mechanical 
and magnetic loads at the lower length scale (referred to as micro-
scale). In this context, it can be noted that the proposed computational 
framework is scale-independent in principle; the only condition is to 
maintain a substantial difference between the unit cell dimensions and 
the dimension of the overall lattice that leads to the computation of 
homogenized effective properties. In the forthcoming subsections, fol-
lowed by establishing a generic beam-level computational framework, 
we will first develop a semi-analytical formulation for the effective 
elastic moduli of hexagonal lattices, and subsequently different other 
lattice geometries will be considered.

2.1. Generalized beam-level problem definition

The load–deformation characteristics of any member of the HMS 
beam network under any combination of the fair-field normal or shear 
mode of mechanical stress and magnetic field as presented through 
Figs.  2–5 are defined as a generalized geometrically non-linear HMS 
beam deformation problem. Such a generalized large deformation HMS 
beam problem can be defined either as a full-beam problem or as a half-
beam problem under the specific boundary condition to ensure unit cell 
level periodicity (all the beams under consideration here need to have 
both the edges rotationally restrained). Both the type of geometrically 
non-linear HMS beam deformation problem is presented schematically 
in a generalized way in Fig.  1(h, i) and described in the following two 
subsections.
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2.1.1. Full-beam problem
When the full length of the inclined or vertical members of a 

periodic HMS beam network (refer to Figs.  2–5) is considered for the 
definition of the generalized beam problem, the problem is called the 
full-beam problem. For example, the length 𝐿 of the generalized HMS 
beam as shown in Fig.  1(h), is either equal to 𝑙 for the inclined member 
or equal to ℎ for the vertical member of a hexagonal HMS beam 
network. For the full-length HMS beam, one end is fixed with the other 
end being rationally restrained but free to translation and subjected 
to concentrated force 𝐹  in combination with magnetic field 𝐵𝑎 with 
inclination angles 𝛽 and 𝛼 respectively as shown in Fig.  1(h).

For the full-length HMS beam, rotation of centreline 𝜑 is zero at 
both the ends (𝑥 = 0 and 𝑥 = 𝐿) (refer to Fig.  1(h, i)). As the HMS 
beam is subjected to axial load also due to the combined effect of the 
mechanical and magnetic field, the beam centreline has non-zero axial 
strain 𝜀 at both the ends (𝑥 = 0 and 𝑥 = 𝐿). The kinematic boundary 
conditions of the HMS full-beam problem are summarized below. 

𝜑 = 0 at 𝑥 = 0 and 𝑥 = 𝐿 (1a)

𝜀 ≠ 0 at 𝑥 = 0 and 𝑥 = 𝐿 (1b)

 With the proper definition of the load magnitudes (𝐹  and 𝐵𝑎) and 
their inclination angles (𝛽 and 𝛼) as presented later in the manuscript 
(for example, Eqs. (23)–(36) for the hexagonal lattices) along with the 
respective length (for example, 𝐿 = 𝑙 or 𝐿 = ℎ for hexagonal lat-
tices) and boundary conditions (Eq. (1)), we can simulate deformation 
characteristics of each member of the HMS beam networks.

For an ordinary beam of length 𝐿𝑜 with the prescribed boundary 
conditions undergoing small deformation under mechanical load only, 
the transverse tip-deflection 𝛿𝑦 under transverse load 𝐹𝑦 and the axial 
tip-deflection 𝛿𝑥 under axial load 𝐹𝑥 are obtained analytically (Gibson 
and Ashby, 1999) as 𝛿𝑦 =

𝐹𝑦𝐿3
𝑜

12𝐸𝑠𝐼
 and 𝛿𝑥 =

𝐹𝑥𝐿𝑜
𝐸𝑠𝐴

. In these equations, 𝐸𝑠
denotes Young’s modulus of the elastic beam material, and 𝐼 and 𝐴 are 
the rotational inertia and area of the beam cross-section. Note that the 
above-presented analytical solutions are not concerned with the present 
large deformation HMS beam problem. These analytical solutions are 
only used for analogy demonstration of boundary condition modelling 
of the full-beam problem using cantilevered half-beam problem as 
presented in the following subsection.

2.1.2. Half-beam problem
The full-beam made of ordinary elastic material undergoing small 

deformation under mechanical load only as presented in the preceding 
subsection, can be modelled as two half-beams with cantilever bound-
ary conditions exploiting the physical insight that bending moment 
becomes zero for the full beam at the midpoint here. The transverse 
and axial deflections of the tip of the cantilevered half-beam of length 
𝐿𝑜∕2 are analytically (Gibson and Ashby, 1999) given by 𝛿𝑦 =

𝐹𝑦𝐿3
𝑜

24𝐸𝑠𝐼

and 𝛿𝑥 =
𝐹𝑥𝐿𝑜
2𝐸𝑠𝐴

. These analytical deflections obtained from the half-

beam model of the ordinary beam are exactly half of the corresponding 
deflection results as presented in Section 2.1.1. Hence, doubling the de-
flection results coming from the half-beam model gives the same results 
as the full-beam model for an ordinary beam. A similar observation also 
becomes apparent for axial deformation.

Following the observations on boundary conditions, the considered 
large deformation HMS full-beam problem under combined mechanical 
and magnetic load is modelled here as HMS half-beam problem. For 
example, in the HMS half-beam problem concerning hexagonal lattices, 
length 𝐿 of the generalized HMS beam as shown in Fig.  1(h) will be 
either 𝑙∕2 for the inclined member or ℎ∕2 for the vertical member of the 
HMS beam network. Note that consideration of the half beam will lead 
to more computational efficiency compared to considering a full-length 
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beam in the nonlinear multiphysical analysis. Boundary conditions of 
the generalized half-beam problem are summarized below. 

𝜑 = 0 at 𝑥 = 0 and
d𝜑
d𝑥

= 0 at 𝑥 = 𝐿 (2a)

𝜀 ≠ 0 at 𝑥 = 0 and 𝑥 = 𝐿 (2b)

 Note that the modelling of HMS full-beam as HMS half-beam is only 
possible if the residual magnetic flux density 𝐵𝑟0 is symmetric about 
the mid-point of the full-length beam. The statement will be proved in 
Section 3 through numerical results from the full-beam and half-beam 
models with both symmetric and asymmetric residual magnetic flux 
density.

Large deformation analysis of the generalized HMS beam (refer to 
Fig.  1(h, i)) with the above-prescribed boundary conditions (Eqs. (1) 
and (2)) under combined mechanical and magnetic load is not readily 
available in the literature. A semi-analytical beam model is developed 
here to analyse such multi-physical mechanics problem as presented in 
the next subsection (Section 2.2).

2.2. Large deformation analysis of generalized HMS beam problem

Large deformation characteristics of the generalized HMS beam with 
residual magnetic flux density 𝐵𝑟0 concerning the initial configuration 
subjected to combined mechanical load 𝐹  and magnetic field 𝐵𝑎 as 
shown in Fig.  1(h, i) is analysed. Governing equation of the geometric 
non-linear problem is derived in a semi-analytical framework using 
the variational principle-based minimization of total potential energy 
method. In the derivation of the governing equation, we consider the 
centreline extension of the beam in addition to the bending mode of 
deformation within the geometrically non-linear kinematic setting of 
the Euler–Bernoulli beam theory. Derivation of the governing equation 
through such a generalized extensible model is presented first in the 
following subsection. To investigate the effect of axial rigidity of the 
hyperelastic HMS beam, a special form of the governing equation 
neglecting centreline extension is presented in the following subsec-
tion. The final algebraic form of the governing equation of the HMS 
beam problem derived either through the extensible model or through 
the inextensible model involves non-linearity due to the coupling of 
different deformation degrees of freedom. To solve the coupled non-
linear equation, we develop an iterative computational framework as 
presented subsequently in this subsection.

2.2.1. Extensible model
2.2.1.1. Kinematics. To account for geometrically exact non-linearity, 
the beam deformation is described in terms of the rotation 𝜑 and strain 
𝜀 of the beam centreline instead of the in-plane and transverse displace-
ment fields 𝑢 and 𝑣 respectively. From the geometry of deformation as 
presented in Fig.  1(i), the displacement fields 𝑢 and 𝑣 are expressed in 
terms of the centreline rotation 𝜑 and centreline strain 𝜀 of the HMS 
beam as given below. 
d𝑢
d𝑥

= (1 + 𝜀) cos𝜑 − 1 (3a)

d𝑣
d𝑥

= (1 + 𝜀) sin𝜑 (3b)

 As the left end of the beam is considered fixed (refer to Fig.  1(h)), the 
displacement fields 𝑢 and 𝑣 are zero at 𝑥 = 0. With the kinematic condi-
tions, relations of the displacement fields 𝑢 and 𝑣 with the independent 
variables 𝜑 and 𝜀 are obtained by integrating Eq. (3) as given below. 

𝑢 = ∫

𝑥

0

{

(1 + 𝜀) cos𝜑 − 1
}

d𝑥 (4a)

𝑣 =
𝑥
(1 + 𝜀) sin𝜑 d𝑥 (4b)
∫0
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2.2.1.2. Material model. The material of the HMS beam under study is 
considered a soft material with Young’s modulus 𝐸𝑠. The hyperelastic 
characteristics of the HMS beam material are modelled by the strain 
energy density function 𝛷 which is defined below according to the Yeoh 
hyperelastic model (Chen and Wang, 2021). 

𝛷 =
3
∑

𝑖=1
𝐶𝑖0

{

(1 + 𝜀)2 + 2
1 + 𝜀

− 3
}𝑖

(5)

The corresponding nominal stress, defined as 𝜎𝑁 = d𝛷
d𝜀
, is obtained 

based on the Yeoh hyperelastic model (Chen and Wang, 2021) using 
Eq. (5) as given below.

𝜎𝑁 = 2

[

𝐶10 + 2𝐶20

{

(1 + 𝜀)2 + 2
1 + 𝜀

− 3
}

+ 3𝐶30

{

(1 + 𝜀)2 + 2
1 + 𝜀

− 3
}2

]

{

(1 + 𝜀) − 1
(1 + 𝜀)2

}

(6)

Through Taylor expansion of Eq.  (6) keeping the linear term, Young’s 
modulus of the hyperelastic beam material is obtained as 

𝐸𝑠 = 6𝐶10 (7)

2.2.1.3. Governing equation. Governing equation for the large defor-
mation characteristics of the HMS beam under combined mechani-
cal and magnetic load is derived through variational principle based 
minimization of total potential energy, as defined mathematically by 

𝛿
(

𝑈𝐸 + 𝑈𝑀 + 𝑉
)

= 0 (8)

In the above equation, 𝑈𝐸 , 𝑈𝑀 , and 𝑉  are the elastic strain energy 
of the HMS beam, magnetic potential energy of the HMS beam, and 
potential energy of the external mechanical load. The elastic strain 
energy of the HMS beam 𝑈𝐸 consists of membrane and bending strain 
energies which in total is given by 

𝑈𝐸 = 𝐴∫

𝐿

0
𝛷 d𝑥 +

𝐸𝑠𝐼
2 ∫

𝐿

0

(

d𝜑
d𝑥

)2
d𝑥 (9)

Magnetic potential energy 𝑈𝑀  of the HMS beam due to the interaction 
of the externally applied magnetic field 𝐵𝑎 with the residual magnetic 
flux density 𝐵𝑟0 (refer to Fig.  1(h)) is given by (Chen et al., 2020a) 

𝑈𝑀 = − 𝐴
𝜇0 ∫

𝐿

0
𝑆 |

|

|

𝐵𝑟0
|

|

|

|𝐵𝑎| (1 + 𝜀) cos (𝜑 − 𝛼) d𝑥 (10)

In the above equation, 𝜇0 denotes permeability of vacuum. On the 
other hand, potential energy of the externally applied mechanical load 
𝐹  is defined as 𝑉 = −𝐹𝑥𝑢|𝑥=𝐿 − 𝐹𝑦𝑣|𝑥=𝐿, where 𝐹𝑥 and 𝐹𝑦 are the 
components of force 𝐹  in the 𝑥 and 𝑦 directions, given by 𝐹𝑥 = 𝐹 cos 𝛽
and 𝐹𝑦 = 𝐹 sin 𝛽 respectively (refer to Fig.  1(h)). Using Eq. (4), the 
potential energy 𝑉  is expressed in terms of the independent variables 
𝜑 and 𝜀 as given below. 

𝑉 = −𝐹𝑥 ∫

𝐿

0

{

(1 + 𝜀) cos𝜑 − 1
}

d𝑥 − 𝐹𝑦 ∫

𝐿

0
(1 + 𝜀) sin𝜑 d𝑥 (11)

Before going to further derivation of the governing equation through
the energy principle, the physical coordinate system (𝑥, 𝑦) is trans-
formed into the computational frame (𝜉, 𝜂) and some other non-
dimensional geometric and material parameters are introduced as 
defined below.

𝜉 = 𝑥
𝐿
, 𝜂 =

𝑦
𝐿
, 𝛱0 =

𝐴𝐿2

𝐼
, 𝜎̄𝑁 =

𝜎𝑁
𝐸𝑠

, 𝐵 =
|

|

|

𝐵𝑟0
|

|

|

|𝐵𝑎|𝛱0

𝐸𝑠𝜇0
,

𝐶 = 𝐹𝐿2

𝐸𝑠𝐼
, 𝐹𝑥 = 𝐶 cos 𝛽, 𝐹𝑦 = 𝐶 sin 𝛽 (12)

Putting the energy expressions presented in Eqs. (9)–(11) with respect 
to the normalized coordinate frame (𝜉, 𝜂) in terms of the normalized 
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parameters (Eq. (12)) into the energy principle (Eq. (8)), the governing 
equation is obtained in variational form as presented below. 

𝛿

[

𝛱0 ∫

1

0
𝛷 d𝜉 + 1

2 ∫

1

0

(

d𝜑
d𝜉

)2
d𝜉 − 𝐵 ∫

1

0
𝑆(1 + 𝜀) cos (𝜑 − 𝛼) d𝜉

− 𝐶 cos 𝛽 ∫

1

0

{

(1 + 𝜀) cos𝜑 − 1
}

d𝜉 − 𝐶 sin 𝛽 ∫

1

0
(1 + 𝜀) sin𝜑 d𝜉

]

= 0

(13)

In the normalized frame (𝜉, 𝜂), the unknown deformation fields 𝜑
and 𝜀 are approximated as 

𝜑 =
𝑛𝑏
∑

𝑖=1
𝑐1𝑖𝜔𝑖 (14a)

𝜀 =
𝑛𝑠
∑

𝑖=1
𝑐2𝑖𝜓𝑖 (14b)

 where, 𝑐1𝑖  and 𝑐2𝑖  are the unknown coefficients to be computed, and 
𝜔𝑖 and 𝜓𝑖 are the sets of 𝑛𝑏 and  ns number of coordinate functions 
chosen satisfying the kinematic boundary conditions. For the full-
beam problem, the function sets are chosen by satisfying the boundary 
condition of Eq.  (1) as 

𝜔𝑖 = sin (𝑖𝜋𝜉) (15a)

𝜓𝑖 = cos {(𝑖 − 1)𝜋𝜉} (15b)

 Whereas, for the HMS half-beam problem, the function sets as chosen 
through Eq. (2) are 

𝜔𝑖 = sin
( 2𝑖 − 1

2
𝜋𝜉

)

(16a)

𝜓𝑖 = cos {(𝑖 − 1)𝜋𝜉} (16b)

Now substituting the approximated deformation fields as presented 
in Eq.  (14) into the governing equation (Eq. (13)) and carrying out 
the variational operation, we derive the final algebraic form of the 
governing equation as presented below. 
[

𝐾
]{

𝑐
}

=
{

𝑓
}

(17)

In the above equation, [𝐾]

, {𝑐}, and {𝑓} denote stiffness matrix, set 
of unknown coefficients {𝑐1𝑖 𝑐2𝑖

}𝑇 , and load vector for the large defor-
mation of HMS beam problem respectively. The detailed expressions of 
the stiffness matrix [𝐾] and load vector {𝑓} are given below.

[

𝐾11
]

=
𝑛𝑏
∑

𝑗=1

𝑛𝑏
∑

𝑖=1
∫

1

0
𝜔′
𝑖𝜔

′
𝑗 d𝜉

[

𝐾12
]

=
𝑛𝑏
∑

𝑗=1

𝑛𝑠
∑

𝑖=1
∫

1

0

[

𝐵𝑆 sin

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘 − 𝛼

)

+ 𝐶 cos 𝛽 sin

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘

)

− 𝐶 sin 𝛽 cos

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘

) ]

𝜓𝑖𝜔𝑗 d𝜉

[

𝐾21
]

= [0]

[

𝐾22
]

= 𝛱0

𝑛𝑠
∑

𝑗=1

𝑛𝑠
∑

𝑖=1
∫

1

0
𝜎̄𝑁𝑐𝜓𝑖𝜓𝑗 d𝜉

{

𝑓1
}

=
𝑛𝑏
∑

𝑗=1
∫

1

0

[

−𝐵𝑆 sin

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘 − 𝛼

)

− 𝐶 cos 𝛽 sin

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘

)

+ 𝐶 sin 𝛽 cos

( 𝑛𝑏
∑

𝑐1𝑘𝜔𝑘

) ]

𝜔𝑗 d𝜉

𝑘=1
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{

𝑓2
}

=
𝑛𝑠
∑

𝑗=1
∫

1

0

[

𝐵𝑆 cos

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘 − 𝛼

)

+ 𝐶 cos 𝛽 cos

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘

)

+ 𝐶 sin 𝛽 sin

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘

)

− 𝛱0𝜎̄𝑁𝑐

{

1 − 1
(

1 +
∑𝑛𝑠
𝑘=1 𝑐2𝑘𝜓𝑘

)2

} ]

𝜓𝑗 d𝜉

where,

𝜎̄𝑁𝑐 =
2
𝐸𝑠

[

𝐶10 + 2𝐶20

{(

1 +
𝑛𝑠
∑

𝑘=1
𝑐2𝑘𝜓𝑘

)2

+ 2
1 +

∑𝑛𝑠
𝑘=1 𝑐2𝑘𝜓𝑘

− 3

}

+ 3𝐶30

{ (

1 +
𝑛𝑠
∑

𝑘=1
𝑐2𝑘𝜓𝑘

)2

+ 2
1 +

∑𝑛𝑠
𝑘=1 𝑐2𝑘𝜓𝑘

− 3

} 2 ]

2.2.2. Inextensible model
The governing equation (Eq. (17)) presented in the previous subsec-

tion is derived considering both the centreline rotation 𝜑 and centreline 
extension 𝜀 of the HMS beam. If we neglect the terms corresponding to 
the centreline strain 𝜀 from the elements of Eq.  (17), we readily get 
the governing equation of the HMS beam deformation problem within 
the framework of the inextensible model. The elements of the stiffness 
matrix [𝐾] and the load vector {𝑓} for the inextensible model are 
presented below.
[

𝐾
]

=
𝑛𝑏
∑

𝑗=1

𝑛𝑏
∑

𝑖=1
∫

1

0
𝜔′
𝑖𝜔

′
𝑗 d𝜉

{

𝑓
}

=
𝑛𝑏
∑

𝑗=1
∫

1

0

[

−𝐵𝑆 sin

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘 − 𝛼

)

− 𝐶 cos 𝛽 sin

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘

)

+ 𝐶 sin 𝛽 cos

( 𝑛𝑏
∑

𝑘=1
𝑐1𝑘𝜔𝑘

) ]

𝜔𝑗 d𝜉

Note that the Inextensible model is computationally less intensive, but 
it also becomes less accurate for large deformation problems.

2.2.3. Iterative solution scheme
The elements of stiffness matrix [𝐾] and load vector {𝑓} of the 

governing equation (Eq. (17)), either derived through the extensible 
model or through the inextensible model, involve unknown coefficients 
{

𝑐
}

. However, the degree of such non-linearity is different for the 
extensible and inextensible models. Due to the involved non-linearity, 
the governing equation cannot be solved directly. Hence, an iterative 
computational scheme (Ghuku and Saha, 2019; Halpern et al., 2002) 
is developed to tackle the non-linearity involved in the governing 
equation.

Under an incremental step of non-dimensional mechanical load 𝐶
with the inclination angle 𝛽, the non-dimensional magnetic load 𝐵 is 
applied incrementally by a ratio 𝑟 which is termed as magnetic load 
ratio and defined by 

𝑟 = 𝐵
𝐶

(18)

Hence, the inputs of the beam model are the magnitude of the non-
dimensional mechanical load 𝐶 with its inclination angle 𝛽 and the 
magnetic load ratio 𝑟 along with the coefficient of the residual magnetic 
flux density 𝑆(𝜉) and the inclination angle of the external magnetic field 
𝛼.

At the incremental step of the non-dimensional mechanical load 𝐶
and magnetic load 𝐵 = 𝑟𝐶, the iterative solution process to find the set 
of unknown coefficients {𝑐} starts with assumed set of the coefficients 
denoted as {𝑐}𝑖−1, where the superscript 𝑖 denotes the iteration number. 
With the assumed set of the unknown coefficients {𝑐}𝑖−1, elements of 
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the stiffness matrix [𝐾]𝑖 and load vector {𝑓}𝑖 at the current iteration 
step 𝑖 are computed. With the known [𝐾]𝑖 and {𝑓}𝑖, the set of unknown 
coefficients {𝑐}𝑖 are computed through the matrix inversion of the 
governing equation (Eq. (17)) as 
{

𝑐
}𝑖 =

[

[

𝐾
]−1

]𝑖
{

𝑓
}𝑖 (19)

The set of coefficients {𝑐}𝑖 computed through the above equation, is 
compared with its old values {𝑐}𝑖−1 as 𝜇 =

{

𝑐
}𝑖−

{

𝑐
}𝑖−1. Until the error 

𝜇 becomes less than its predefined limit, the set of unknown coefficient 
{

𝑐
}𝑖+1 is updated through the successive relaxation scheme presented 

below and the next iteration (𝑖 + 1) begins. 
{

𝑐
}𝑖+1 = 𝜆

{

𝑐
}𝑖 + (1 − 𝜆)

{

𝑐
}𝑖−1 (20)

In the above equation, 𝜆 denotes the relaxation parameter for the 
successive relaxation scheme which lies between 0 to 1. The iterative 
scheme to compute the large deformation characteristics of the HMS 
beam under combined mechanical load and magnetic field is presented 
in Algorithm 1.

 Algorithm 1: Beam-level computational algorithm to obtain large 
deformation characteristics of HMS beam under combined 
mechanical load and magnetic field.

 

 Define geometry: Define non-dimensional geometric specification 
of the HMS beam 𝛱0.

 

 Define material property: Define the material constitutive 
parameters 𝐶10, 𝐶20, and 𝐶30 in the framework of Yeoh 
hyperelastic model.

 

 Define numerical parameters: Define the numerical values of the 
computational parameters 𝜆, 𝜇, 𝑛𝑏, and  ns.

 

 Generate: Generate the set of coordinate functions 𝜔𝑖 and 𝜓𝑖
through satisfaction of the boundary conditions of the HMS beam 
problem under consideration.

 

 Input load: Input the magnitude of the non-dimensional 
mechanical load 𝐶 and magnetic load 𝐵 in terms of the magnetic 
load ratio 𝑟 as 𝐵 = 𝑟𝐶, along with their orientation angles 𝛽 and 𝛼.

 

 Iterate: The iterative computational scheme to obtain the set of 
unknown coefficients {𝑐} from the non-linear governing equation 
[

𝐾
]{

𝑐
}

=
{

𝑓
} involves the following steps:

 • Initialize the set of unknown coefficients denoted as {𝑐}𝑖−1.
 • Compute the stiffness matrix [𝐾]𝑖 involving the set of unknown 
coefficients {𝑐}𝑖−1.
 • Compute the load vector {𝑓}𝑖 involving the set of unknown 
coefficients {𝑐}𝑖−1 under the current step of combined mechanical 
and magnetic loads.
 • Compute the set of unknown coefficients as 
{

𝑐
}𝑖 =

[

[

𝐾
]−1

]𝑖
{

𝑓
}𝑖.

 • Compare the computed set {𝑐}𝑖 with its old values {𝑐}𝑖−1
defined as 𝜇 =

{

𝑐
}𝑖 −

{

𝑐
}𝑖−1.

 • Until the error 𝜇 becomes less than its predefined limit, the set 
of coefficients is updated by {𝑐}𝑖+1 = 𝜆

{

𝑐
}𝑖 + (1 − 𝜆)

{

𝑐
}𝑖−1 and go 

for the next iteration 𝑖 + 1.

 

 Note output: Once the set of unknown coefficients {𝑐} is obtained 
through the iterative computational scheme, the centreline 
rotation 𝜑 and the centreline strain 𝜀 become known which in turn 
give the non-dimensional deflection profile (𝜉, 𝜂) and the 
tip-deflections 𝛿𝑥 and 𝛿𝑦.

 

Once the set of unknown coefficients {𝑐} for the current combined 
load step 𝐶 and 𝐵 is obtained through the iterative computational 
scheme, the centreline rotation 𝜑 and the centreline strain 𝜀 become 
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known from Eq.  (14) for the extensible model. Whereas, for the inexten-
sible model, only the centreline rotation 𝜑 is obtained. With the known 
deformation components (𝜑 and 𝜀), the deflection profile (𝑥, 𝑦) of the 
HMS beam is obtained which in turn provides axial deflection 𝛿𝑥 and 
transverse deflection 𝛿𝑦 of the tip of the beam. The expressions of the 
axial and transverse tip-deflections (𝛿𝑥 and 𝛿𝑦) in the normalized form 
as obtained from Eq.  (4) are given below for the extensible model. 

𝛿𝑥 =
𝛿𝑥
𝐿

= ∫

1

0

{

(1 + 𝜀) cos𝜑 − 1
}

d𝜉 (21a)

𝛿𝑦 =
𝛿𝑦
𝐿

= ∫

1

0
(1 + 𝜀) sin𝜑 d𝜉 (21b)

 For the inextensible model, the normalized tip-deflections (𝛿𝑥 and 𝛿𝑦) 
are obtained from the above equation by neglecting the 𝜀 terms as 

𝛿𝑥 =
𝛿𝑥
𝐿

= ∫

1

0
(cos𝜑 − 1) d𝜉 (22a)

𝛿𝑦 =
𝛿𝑦
𝐿

= ∫

1

0
sin𝜑 d𝜉 (22b)

Using the beam-level tip-deflections, we compute unit cell level 
strains under a given far-field mechanical stress and magnetic field, 
as discussed in the following subsections considering different lattice 
geometries.

2.3. Effective elastic moduli of hexagonal HMS beam networks

2.3.1. Beam-level forces and deformation kinematics
As described in Fig.  1, the chosen unit cell in hexagonal lattices 

consists of three HMS beams having residual magnetic flux density 𝐵𝑟0
concerning the initial configuration. The beam-level forces developed 
under the two different combinations of normal stress and magnetic 
fields as shown in Fig.  2(a) and (d), and under the combination of shear 
stress with the magnetic field as shown in Fig.  3(a), along with the large 
deformation kinematics of the HMS beam elements are described in the 
following three subsections.
2.3.1.1. Mechanical normal stress along direction-1 and magnetic field 
along direction-2. Under the combined mechanical stress 𝜎1 and mag-
netic field 𝐵𝑎 as shown in Fig.  2(a), the inclined HMS beams (OA and 
OB) undergo combined transverse and axial deformations with fixed 
end O and the other end A and B being rotationally restrained but 
free to translation. Whereas the vertical member OC undergoes axial 
deformation only with fixed end C. Due to symmetry, we concentrate 
on one inclined member (OA) only along with the vertical member 
OC. The large deformation kinematics of the inclined member OA 
and the vertical member OC are shown concerning the local Cartesian 
frames (𝑥, 𝑦) in Fig.  2(b) and (c) respectively. The kinematic boundary 
conditions of the beam members are conceptualized from the clas-
sical deformation analysis of conventional honeycomb lattices under 
mechanical stress only (Gibson and Ashby, 1999). Note that due to 
deformations of the HMS members as shown in Fig.  2(b) and (c), the 
residual magnetic flux density changes from 𝐵𝑟0 to 𝐵𝑟.

As shown in Fig.  2(b), the inclined HMS beam OA is subjected to 
tip concentrated force 𝐹𝑖 developed due to the applied stress field 𝜎1. 
Expression of 𝐹𝑖 in terms of 𝜎1 is given by 
𝐹𝑖 = 𝜎1𝑏(ℎ + 𝑙 sin 𝜃) (23)

The above-presented force 𝐹𝑖 is inclined by the angle 𝛽𝑖 concerning 
the local Cartesian frame (𝑥, 𝑦) as shown in Fig.  2(b). Whereas, the 
inclination angle of the magnetic field 𝐵𝑎 concerning the local frame 
(𝑥, 𝑦) is denoted by 𝛼𝑖. The inclination angles are expressed in terms of 
the inclination angle 𝜃 of the inclined member of the beam network as
𝛽𝑖 = 𝜋 − 𝜃 (24a)

𝛼𝑖 =
3𝜋
2

− 𝜃 (24b)
9 
 As shown in Fig.  2(c), the vertical HMS beam OC is not subjected to 
any mechanical load but subjected to magnetic field 𝐵𝑎 only with incli-
nation angle 𝛼𝑣. For the vertical HMS beam OC, the kinetic equations 
similar to Eqs. (23) and (24) are presented below respectively. 
𝐹𝑣 = 0 (25)

𝛼𝑣 = 𝜋 (26)

2.3.1.2. Mechanical normal stress along direction-2 and magnetic field 
along direction-2. When the unit cell is subjected to far-field mechan-
ical stress along direction-2 (i.e. 𝜎2) along with the magnetic field 𝐵𝑎
as shown in Fig.  2(d), the kinematic boundary conditions of the HMS 
members remain the same as in the case of combined loading 𝜎1 and 𝐵𝑎
considered in the previous subsection. The large deformation patterns 
of the inclined member OA and the vertical member OC concerning the 
local Cartesian frames (𝑥, 𝑦) are shown in Fig.  2(e) and (f) respectively. 
The tip concentrated force 𝐹𝑖 developed in the inclined member due to 
the mechanical stress field 𝜎2 is expressed in terms of 𝜎2 as 
𝐹𝑖 = 𝜎2𝑏𝑙 cos 𝜃 (27)

The inclination angles of the mechanical load 𝐹𝑖 and the magnetic field 
𝐵𝑎 concerning the local frame (𝑥, 𝑦) are expressed in terms of the 
inclination angle 𝜃 as (refer to Fig.  2(e)) 

𝛽𝑖 = 𝛼𝑖 =
3𝜋
2

− 𝜃 (28)

The vertical HMS beam OC is subjected to mechanical concentrated 
force 𝐹𝑣 in addition to the uniform magnetic field 𝐵𝑎 as shown in Fig. 
2(f). Expression of the force 𝐹𝑣 in terms of the remote stress 𝜎2 is given 
by 
𝐹𝑣 = 2𝜎2𝑏𝑙 cos 𝜃 (29)

The inclination angles of the mechanical force 𝐹𝑣 and the magnetic field 
𝐵𝑎 concerning the local frame (𝑥, 𝑦) are given by 
𝛽𝑣 = 𝛼𝑣 = 𝜋 (30)

2.3.1.3. Mechanical shear stress in 1–2 plane and magnetic field along 
direction-2. Under the combined shear stress 𝜏 and the magnetic field 
𝐵𝑎 as shown in Fig.  3(a), the developed forces and end moments at 
the HMS beam members are shown through free body diagrams in Fig. 
3(b). The forces 𝐹1 and 𝐹2 developed due to the far-field mechanical 
shear stress 𝜏 are expressed as 
𝐹1 = 2𝜏𝑏𝑙 cos 𝜃 (31a)

𝐹2 = 𝜏𝑏(ℎ + 𝑙 sin 𝜃) (31b)

 From the moment balance condition concerning point O (refer to Fig. 
3(b)), the induced moment 𝑀 in the inclined members are found to be 
𝑀 = 𝐹1ℎ∕4. Using Eq. (31a), the end moment 𝑀 is expressed in terms 
of the remote stress 𝜏 as given below. 

𝑀 = 1
2
𝜏𝑏𝑙ℎ cos 𝜃 (32)

Under the mechanical forces and end moments in combination with 
the magnetic field, all the HMS beam members (OA, OB, and OC) 
undergo combined axial and transverse deformations with fixed end 
O and the other ends (A, B, and C) being rotationally restrained but 
free to translation. The large deformation patterns of the inclined (OA 
and OB) and vertical (OC) members of the HMS unit cell concerning 
the corresponding local Cartesian frames (𝑥, 𝑦) are shown in Fig. 
3(c), (d), and (e) respectively. Though the deformed geometries of the 
inclined members OA and OB look asymmetric, they behave struc-
turally (i.e. visually asymmetric, but structurally symmetric) the same 
under the combined mechanical and magnetic field due to the opposite 
direction of the residual magnetic flux density 𝐵𝑟0 in them. Hence, we 
consider the mechanics of one inclined member (OA) along with the 
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Fig. 2. Multi-physical mechanics of periodic hexagonal HMS beam networks under combined mechanical normal stress and magnetic field. (a) Combined loading mode 
of the unit cell of hexagonal HMS beam network subjected to normal stress along direction-1 (𝜎1) and magnetic field along direction-2 (𝐵𝑎). (b, c) Beam-level forces and large 
deformation kinematics of the inclined and vertical members of the unit cell under the combined normal stress 𝜎1 and magnetic field 𝐵𝑎. Note that under the combined loading 
condition (a–c), we focus on the longitudinal effective Young’s modulus 𝐸1 and Poisson’s ratio 𝜈12 of the HMS beam network. (d) Combined loading mode of the unit cell of 
hexagonal HMS beam network subjected to mechanical normal stress along direction-2 (𝜎2) and magnetic field along direction-2 (𝐵𝑎). (e, f) Beam-level forces and large deformation 
kinematics of the inclined and vertical members of the unit cell under the combined normal stress 𝜎2 and magnetic field 𝐵𝑎. Note that under the combined loading condition 
(d–f), we focus on the transverse Young’s modulus 𝐸2 and Poisson’s ratio 𝜈21 of the HMS beam network. (g) Local coordinate systems (𝑥, 𝑦) for the inclined and vertical members 
and their orientations with the global frame (1, 2).
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Fig. 3. Multi-physical mechanics of periodic hexagonal HMS beam networks under combined mechanical shear stress and magnetic field. (a) Combined loading mode 
of the unit cell of hexagonal HMS beam network subjected to shear stress in 1–2 plane (𝜏) and magnetic field along direction-2 (𝐵𝑎). (b) Free body diagrams of the inclined and 
vertical members of the unit cell under the combined in-plane shear stress 𝜏 and magnetic field 𝐵𝑎. (c–e) Beam-level forces and large deformation kinematics of the inclined and 
vertical members of the unit cell. Note that under this combined loading condition, we focus on the in-plane shear modulus 𝐺12 of the HMS beam network.
vertical member OC. In this context, it may be further emphasized 
that the direction of residual flux densities 𝐵𝑟0 is architected differently 
under normal and shear far-field stresses (refer to Figs.  2(a, d) and 
3(a)) to maintain structural symmetry in the deformation behaviour. 
Here if we keep the distribution of residual flux densities 𝐵𝑟0 same for 
both the far-field normal and shear stresses, the analysis will involve 
structural asymmetry in any one of cases of far-field stress, leading 
to more involved unit cell level derivation to distribute unbalanced 
stress resultants at joint O. In the current paper, we have focused on 
demonstrating the concepts of active elasticity modulation rather than 
increasing unit cell level structural complexity.

The beam-level transverse force 𝐹𝑦𝑖  for the inclined member OA as 
shown in Fig.  3(c), is the equivalent force of the end moment 𝑀 derived 
11 
following the typical rotationally restrained boundary condition of the 
member OA as given by 𝐹𝑦𝑖 = −2𝑀∕𝑙. Whereas, the axial force 𝐹𝑥𝑖
is obtained from the components of 𝐹1 and 𝐹2 along OA as given by 
𝐹𝑥𝑖 = −(𝐹1∕2) cos 𝜃 − 𝐹2 sin 𝜃. Using Eqs. (31) and (32), the beam-level 
forces are expressed in terms of the applied remote shear stress 𝜏 as 

𝐹𝑥𝑖 = −𝜏𝑏𝑙
{

cos2 𝜃 +
(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃
}

(33a)

𝐹𝑦𝑖 = −𝜏𝑏ℎ cos 𝜃 (33b)

 The inclination angle 𝛼𝑖 of the externally applied magnetic field 𝐵𝑎
(refer to Fig.  3(c)) is given in terms of the inclination angle 𝜃 as 

𝛼 = 3𝜋 − 𝜃 (34)
𝑖 2
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As shown in Fig.  3(e), the vertical HMS beam member OC is subjected 
to transverse force 𝐹𝑦𝑣  which is given by 𝐹𝑦𝑣 = 𝐹1. Hence, the 
expression of the transverse force 𝐹𝑦𝑣  in terms of the remote stress 𝜏
is obvious from Eq.  (31a) as 
𝐹𝑦𝑣 = 2𝜏𝑏𝑙 cos 𝜃 (35)

In addition to the above presented mechanical force, the vertical HMS 
beam member OC is subjected to the vertical magnetic field 𝐵𝑎, incli-
nation angle of which concerning the local Cartesian frame (𝑥, 𝑦) is 
obvious from Fig.  3(e) as given below. 
𝛼𝑣 = 0 (36)

2.3.2. Effective elastic moduli
The beam model presented in the previous subsection gives non-

dimensional deformation characteristics (𝛿𝑥 and 𝛿𝑦) of HMS beam with 
non-dimensional geometric specification 𝛱0 for the inputs of normal-
ized mechanical load 𝐶 and magnetic load 𝐵 in terms of magnetic 
load ratio 𝑟 as 𝐵 = 𝑟𝐶 along with their orientation angles 𝛽 and 𝛼
respectively. To use the beam model for the estimation of elastic moduli 
of hexagonal HMS beam networks following a unit cell approach (refer 
to Figs.  2 and 3), the geometric specifications and loading terms of 
the HMS beam network need to be defined in non-dimensional forms. 
The non-dimensional geometric specifications of the inclined (𝛱0𝑖 ) and 
vertical (𝛱0𝑣 ) members of the HMS beam network are defined following 
Eq. (12) as 

𝛱0𝑖 =
12

( 𝑡
𝑙

)2
(37a)

𝛱0𝑣 =
12

(ℎ
𝑙

)2

( 𝑡
𝑙

)2
(37b)

 Under any mode of the applied far-field mechanical stress (𝜎1 or 𝜎2 or 
𝜏), non-dimensional mechanical force for the inclined (𝐶𝑖) and vertical 
(𝐶𝑣) members of the HMS beam network can be obtained following 
Eq. (12) from the beam-level forces (𝐹𝑖 and 𝐹𝑣) presented in Sec-
tion 2.3.1. Such expressions of the non-dimensional mechanical loads 
𝐶𝑖 and 𝐶𝑣 in terms of the applied stress (𝜎1 or 𝜎2 or 𝜏) are presented 
in the subsequent subsections for the three different combinations of 
mechanical and magnetic loads. Under the defined non-dimensional 
mechanical load 𝐶𝑖 for a particular combination of mechanical and 
magnetic loads, the non-dimensional magnetic load 𝐵𝑖 of the inclined 
member is defined in terms of the magnetic load ratio 𝑟𝑖 as 

𝑟𝑖 =
𝐵𝑖
𝐶𝑖

(38)

With the known non-dimensional magnetic load 𝐵𝑖 from the above 
equation, the non-dimensional magnetic load 𝐵𝑣 of the vertical member 
becomes known once we know the relationship between 𝐵𝑖 and 𝐵𝑣. 
To derive such a relationship between 𝐵𝑖 and 𝐵𝑣, let us observe their 
definitions from Eq.  (12) as given below. 

𝐵𝑖 =
|

|

|

𝐵𝑟0
|

|

|

|𝐵𝑎|𝛱0𝑖

𝐸𝑠𝜇0
(39a)

𝐵𝑣 =
|

|

|

𝐵𝑟0
|

|

|

|𝐵𝑎|𝛱0𝑣

𝐸𝑠𝜇0
(39b)

 Using Eq. (37), the relationship between 𝐵𝑖 and 𝐵𝑣 is obtained from 
the above equation which gives the non-dimensional magnetic load 𝐵𝑣
in terms of 𝐵𝑖 as presented below. 

𝐵𝑣 =
(ℎ
𝑙

)2
𝐵𝑖 (40)

Now, with the defined non-dimensional geometric and load param-
eters, the non-dimensional tip-deflections 𝛿  and 𝛿  of the members of 
𝑥 𝑦
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the hexagonal HMS beam network are obtained from the generalized 
beam model which in turn give the non-linear effective elastic moduli 
following the framework of the unit cell approach. Derivations of 
the effective elastic moduli for the three different combinations of 
mechanical and magnetic loads are presented in the following three 
subsections. In addition, non-dimensional forms of the effective elastic 
moduli are defined subsequently.
2.3.2.1. Computation of 𝐸1 and 𝜈12 under combined load 𝜎1 and 𝐵𝑎. 
Under the combined loading of mechanical far-field normal stress 𝜎1
and magnetic field 𝐵𝑎 as shown in Fig.  2(a–c), the non-dimensional 
mechanical loads 𝐶𝑖 and 𝐶𝑣 are derived using Eqs. (23), (25) and (12) 
as given by 

𝐶𝑖 =
12

(ℎ
𝑙
+ sin 𝜃

)

𝐸𝑠
( 𝑡
𝑙

)3
𝜎1 (41a)

𝐶𝑣 = 0 (41b)

 With the above-presented non-dimensional mechanical loads 𝐶𝑖 and 
𝐶𝑣 under normal stress 𝜎1, the non-dimensional magnetic loads 𝐵𝑖 and 
𝐵𝑣 are defined in terms of the magnetic load ratio 𝑟𝑖 using Eqs. (38) 
and (40). With the defined mechanical and magnetic loads along with 
their orientation angles (Eqs. (24) and (26)), the non-dimensional 
tip-deflections of the inclined member (𝛿𝑥𝑖  and 𝛿𝑦𝑖 ) and the vertical 
member (𝛿𝑥𝑣 ) of the unit cell of hexagonal HMS beam network (refer to 
Fig.  2(b) and (c)) are obtained with respect to the local Cartesian frames 
(𝑥, 𝑦) based on the generalized beam model presented in Section 2.2. 
Through the coordinate transformation between the local frames (𝑥, 
𝑦) and the global frame (1, 2) as shown in Fig.  2(g), the resultant 
deflection along direction-1 (𝛿1) and direction-2 (𝛿2) are obtained as

𝛿1 = 𝑙
(

−𝛿𝑥𝑖 cos 𝜃 + 𝛿𝑦𝑖 sin 𝜃
)

(42)

𝛿2 = −𝑙
(

𝛿𝑥𝑖 sin 𝜃 + 𝛿𝑦𝑖 cos 𝜃
)

− ℎ𝛿𝑥𝑣 (43)

The normal strain developed along direction-1 under the combined 
loading 𝜎1 and 𝐵𝑎 is obtained by 𝜖1 = 𝛿1∕𝑙 cos 𝜃, using Eq. (42) which 
becomes 

𝜖1 =
−𝛿𝑥𝑖 cos 𝜃 + 𝛿𝑦𝑖 sin 𝜃

cos 𝜃
(44)

Similarly, the normal strain along direction-2 is obtained by 𝜖2 =
𝛿2∕(ℎ + 𝑙 sin 𝜃), using Eq. (43) which becomes 

𝜖2 =
−𝛿𝑥𝑖 sin 𝜃 − 𝛿𝑦𝑖 cos 𝜃 −

ℎ
𝑙
𝛿𝑥𝑣

ℎ
𝑙
+ sin 𝜃

(45)

The longitudinal effective Young’s modulus of the hexagonal HMS 
beam network is obtained from its fundamental definition 𝐸1 = 𝜎1∕𝜖1
using Eq. (44) as 

𝐸1 =
𝜎1 cos 𝜃

−𝛿𝑥𝑖 cos 𝜃 + 𝛿𝑦𝑖 sin 𝜃
(46)

The effective Poisson’s ratio 𝜈12 of the HMS beam network under the 
combined loading 𝜎1 and 𝐵𝑎 is obtained by the definition 𝜈12 = −𝜖2∕𝜖1, 
using Eqs. (44) and (45) which becomes 

𝜈12 =

(

𝛿𝑥𝑖 sin 𝜃 + 𝛿𝑦𝑖 cos 𝜃 +
ℎ
𝑙
𝛿𝑥𝑣

)

cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)(

−𝛿𝑥𝑖 cos 𝜃 + 𝛿𝑦𝑖 sin 𝜃
)

(47)

The solution steps involved in the computation of the non-linear effec-
tive elastic moduli 𝐸1 and 𝜈12 of the hexagonal HMS beam network 
using the beam model are presented in Algorithm 2. Note that the 
solution algorithm is generic and is applicable to the computations of 
effective elastic moduli under all the three combined loading conditions 
of the magnetic field and different far-field mechanical stresses.
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 Algorithm 2: Beam network-level computational algorithm to 
obtain non-linear effective elastic moduli of periodic HMS beam 
networks under combined mechanical stress and magnetic field.

 

 Define geometry: Define non-dimensional geometric parameters 
of the HMS beam network (such as 𝑡∕𝑙, ℎ∕𝑙, and 𝜃 for hexagonal 
lattices). With the defined lattice parameters, compute the 
geometric specifications of the constituting inclined and vertical 
HMS beams 𝛱0𝑖  and 𝛱0𝑣 .

 

 Define mechanical load: Under a particular mode of applied 
mechanical stress (𝜎1 or 𝜎2 or 𝜏), define the non-dimensional 
mechanical force for the inclined and vertical HMS beams 𝐶𝑖 and 
𝐶𝑣 along with their inclination angles 𝛽𝑖 and 𝛽𝑣.

 

 Define magnetic load: Define the magnetic load ratio 𝑟𝑖 for the 
inclined HMS beam. Compute the non-dimensional magnetic load 
of the inclined member in terms of 𝑟𝑖 and 𝐶𝑖 as 𝐵𝑖 = 𝑟𝑖𝐶𝑖. Compute 
magnetic load of the vertical member as 𝐵𝑣 = (ℎ∕𝑙)2𝐵𝑖 along with 
the inclination angles 𝛼𝑖 and 𝛼𝑣.

 

 Compute beam deflections: Under the combined mechanical and 
magnetic loads, compute non-dimensional tip-deflections of the 
inclined and vertical HMS beams 𝛿𝑥𝑖 , 𝛿𝑦𝑖 , 𝛿𝑥𝑣 , and 𝛿𝑦𝑣  through 
solution Algorithm 1.

 

 Compute effective elastic moduli: In terms of the tip-deflections 
𝛿𝑥𝑖 , 𝛿𝑦𝑖 , 𝛿𝑥𝑣  and 𝛿𝑦𝑣 , compute the effective elastic moduli (𝐸1, 𝜈12, 
𝐸2, 𝜈21, and 𝐺12) of the periodic HMS beam network under the 
corresponding mode of mechanical stress in combination with the 
magnetic field.

 

2.3.2.2. Computation of 𝐸2 and 𝜈21 under combined load 𝜎2 and 𝐵𝑎. 
Under the applied normal far-field stress along direction-2 (𝜎2) in 
combination with the magnetic field 𝐵𝑎 as shown in Fig.  2(d)–(f), the 
non-dimensional mechanical force for the inclined (𝐶𝑖) and vertical 
(𝐶𝑣) members of the HMS unit cell are obtained in terms of 𝜎2 using 
Eqs. (27) and (29) through the normalization scheme of Eq.  (12) as 

𝐶𝑖 =
12 cos 𝜃

𝐸𝑠
( 𝑡
𝑙

)3
𝜎2 (48a)

𝐶𝑣 =
24

(ℎ
𝑙

)2
cos 𝜃

𝐸𝑠
( 𝑡
𝑙

)3
𝜎2 (48b)

 The non-dimensional magnetic loads 𝐵𝑖 and 𝐵𝑣 are defined in terms of 
the magnetic load ratio 𝑟𝑖 and the mechanical load 𝐶𝑖 using Eqs. (38) 
and (40). The inclination angles of the mechanical and magnetic loads 
(𝛽𝑖, 𝛼𝑖, 𝛽𝑣, and 𝛼𝑣) are given in Eqs. (28) and (30). With the defined 
input parameters, the tip-deflections of the HMS beam members 𝛿𝑥𝑖 , 
𝛿𝑦𝑖 , and 𝛿𝑥𝑣  are computed through the generalized beam model. As the 
coordinate systems for the current load combination of 𝜎2 and 𝐵𝑎 is 
the same with the load combination of 𝜎1 and 𝐵𝑎 (refer to Fig.  2), the 
expressions of the deflections 𝛿1 and 𝛿2, and the normal strains 𝜖1 and 
𝜖2 are the same as presented in Eqs. (42)–(45). Hence, the equations 
are not repeated here to maintain brevity of the paper.

The transverse effective Young’s modulus 𝐸2 of the hexagonal HMS 
beam network is defined as 𝐸2 = 𝜎2∕𝜖2. Using Eq. (45), the final 
expression of the Young’s modulus 𝐸2 is obtained in terms of the 
beam-level deflections as 

𝐸2 =
𝜎2

(ℎ
𝑙
+ sin 𝜃

)

−𝛿𝑥𝑖 sin 𝜃 − 𝛿𝑦𝑖 cos 𝜃 −
ℎ
𝑙
𝛿𝑥𝑣

(49)

Using the strain expressions presented in Eqs. (44) and (45), the effec-
tive Poisson’s ratio of the hexagonal HMS beam network is obtained 
through its fundamental definition 𝜈21 = −𝜖1∕𝜖2 as 

𝜈21 =

(ℎ
𝑙
+ sin 𝜃

)(

−𝛿𝑥𝑖 cos 𝜃 + 𝛿𝑦𝑖 sin 𝜃
)

(

𝛿 sin 𝜃 + 𝛿 cos 𝜃 + ℎ𝛿
)

cos 𝜃
(50)
𝑥𝑖 𝑦𝑖 𝑙 𝑥𝑣
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2.3.2.3. Computation of 𝐺12 under combined load 𝜏 and 𝐵𝑎. Under the 
combined loading condition of the shear mode of mechanical stress (𝜏) 
and magnetic field 𝐵𝑎 along direction-2 as shown in Fig.  3, components 
of the non-dimensional mechanical force 𝐶𝑖 for the inclined member of 
the HMS unit cell are obtained using Eqs. (33) and (12) as given below. 

𝐹𝑥𝑖 = 𝐶𝑖 cos 𝛽𝑖 = −
12

{

cos2 𝜃 +
(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃
}

𝐸𝑠
( 𝑡
𝑙

)3
𝜏 (51a)

𝐹𝑦𝑖 = 𝐶𝑖 sin 𝛽𝑖 = −
12

(ℎ
𝑙

)

cos 𝜃

𝐸𝑠
( 𝑡
𝑙

)3
𝜏 (51b)

 From the above set of equations, the non-dimensional mechanical force 
𝐶𝑖 along with its orientation angle 𝛽𝑖 can be obtained. In terms of the 
mechanical load 𝐶𝑖 and the required magnetic load ratio 𝑟𝑖, the non-
dimensional magnetic loads 𝐵𝑖 and 𝐵𝑣 are defined using Eqs. (38) and 
(40) having the orientation angles 𝛼𝑖 and 𝛼𝑣 as defined in Eqs. (34) 
and (36). On the other hand, non-dimensional form of the transverse 
mechanical force 𝐹𝑦𝑣  having orientation angle 𝛽𝑣 = 𝜋∕2 (refer to Fig. 
3) is derived from Eqs.  (35) and (12) as 

𝐹𝑦𝑣 = 𝐶𝑣 =
24

(ℎ
𝑙

)2
cos 𝜃

𝐸𝑠
( 𝑡
𝑙

)3
𝜏 (52)

Under the prescribed combined mechanical and magnetic loading, 
rotation 𝛺 of the inclined member of the HMS unit cell (refer to Fig. 
3(c)) is obtained from the generalized beam model as 
𝛺 = −𝛿𝑦𝑖 (53)

Total horizontal shear deflection at point C (𝛿1𝐶 ) comprises of the 
deflection of the vertical member OC (𝛿𝑦𝑣 ) and the deflection com-
ponent due to the rotation 𝛺 (refer to Fig.  3(c) and (e)) defined as 
𝛿1𝐶 = ℎ𝛺+ ℎ𝛿𝑦𝑣 . Using Eq. (53), the shear deflection 𝛿1𝐶  is obtained as 

𝛿1𝐶 = ℎ
(

−𝛿𝑦𝑖 + 𝛿𝑦𝑣
)

(54)

The horizontal and vertical components of the axial deflection 𝛿𝑥𝑖  at 
point A of the inclined member (refer to Fig.  3(c)) are obtained through 
a coordinate transformation as given by 
𝛿1𝐴 = −𝑙𝛿𝑥𝑖 cos 𝜃 (55a)

𝛿2𝐴 = −𝑙𝛿𝑥𝑖 sin 𝜃 (55b)

 Due to the deflections as presented in Eqs. (54) and (55), the total shear 
strain developed in the HMS unit cell under the combined loading of 𝜏
and 𝐵𝑎 is given by 

𝛾12 =
𝛿1𝐶 + 𝛿1𝐴
ℎ + 𝑙 sin 𝜃

+
𝛿2𝐴
𝑙 cos 𝜃

=

ℎ
𝑙

(

−𝛿𝑦𝑖 + 𝛿𝑦𝑣
)

− 𝛿𝑥𝑖 cos 𝜃

ℎ
𝑙
+ sin 𝜃

−
𝛿𝑥𝑖 sin 𝜃
cos 𝜃

(56)

The effective shear modulus 𝐺12 of the hexagonal HMS beam net-
work under the combined loading 𝜏 and 𝐵𝑎 is defined in terms of the 
developed shear strain as 𝐺12 = 𝜏∕𝛾12. Using the expression of the shear 
strain as presented in Eq.  (56), we get the final form of 𝐺12 as shown 
below. 

𝐺12 =
𝜏
(ℎ
𝑙
+ sin 𝜃

)

cos 𝜃

ℎ
𝑙

(

−𝛿𝑦𝑖 + 𝛿𝑦𝑣
)

cos 𝜃 − 𝛿𝑥𝑖 cos
2 𝜃 − 𝛿𝑥𝑖

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃
(57)

From the expressions of effective elastic moduli presented in Eqs.
(46), (47), (49), (50) and (57) (and subsequently considering the 
dependencies of the tip deflections), we notice nonlinear dependency 
of the moduli on applied magnetic field and far-field stress, along with 
unit cell geometry, intrinsic material properties and residual magnetic 



S. Ghuku et al. Mechanics of Materials 206 (2025) 105333 
flux architecture. Such complex interplay of the influencing parame-
ters in an expanded design space provides a unique scope of design-
ing novel metamaterial functionalities with unprecedented mechanical 
behaviour.

2.3.2.4. Non-dimensional elastic moduli. To observe the effect of non-
linearity along with the incremental effect of the magnetic field with 
the applied mechanical load on the hexagonal HMS beam network 
explicitly, we present the effective elastic moduli in specific forms. 
Among the five elastic moduli, the Poisson’s ratios 𝜈12 and 𝜈21 are 
already in non-dimensional forms. Hence, they are presented in their 
original forms. Whereas, the other three effective elastic moduli of the 
HMS beam network (𝐸1, 𝐸2, and 𝐺12) are expressed in non-dimensional 
forms as given below. 

𝐸̄1 =
𝐸1

𝐸𝑠𝜌3
, 𝐸̄2 =

𝐸2

𝐸𝑠𝜌3
, 𝐺̄12 =

𝐺12

𝐸𝑠𝜌3
(58)

where, 𝜌 is the relative density of the hexagonal HMS beam network 
defined as the ratio of the volume of the total intrinsic HMS material 
and the volume of the equivalent plate-like object that the hexagonal 
HMS beam network acquires (Gibson and Ashby, 1999). Expression of 
the relative density 𝜌 is given by 

𝜌 =

(ℎ
𝑙
+ 2

) 𝑡
𝑙

2
(ℎ
𝑙
+ sin 𝜃

)

cos 𝜃
(59)

2.3.2.5. Note on different lattice architectures. For the hexagonal net-
work of HMS beams, a detailed derivation of the non-linear effec-
tive elastic moduli within the multi-physical mechanics-based semi-
analytical framework is presented in this subsection. To demonstrate 
the generality of the physically insightful framework, non-linear ef-
fective elastic properties of five other HMS beam networks, namely, 
auxetic, rectangular brick, rhombic, triangular, and rectangular con-
figurations are also analysed within the broad framework (refer to 
Fig.  1(g)). Among the considered five other forms of HMS beam net-
works, the effective elastic moduli of the auxetic, rectangular brick, 
and rhombic configurations are readily obtained from the framework 
for hexagonal HMS beam network by properly selecting the geometric 
parameters ℎ∕𝑙 and 𝜃 (note: for auxetic configuration 𝜃 is negative, 
for rectangular brick configuration 𝜃 is zero, for rhombic configuration 
ℎ∕𝑙 is zero). However, for the triangular and rectangular HMS beam 
networks, the appropriate unit cells need to be chosen and analysed 
separately. The detailed derivations of the non-linear elastic moduli for 
the triangular and rectangular HMS beam networks are presented in 
the following subsections. Note that under the influence of combined 
far-field mechanical stresses and magnetic field, the unit cell mechanics 
of different lattice configurations becomes significantly involved (due 
to combined bending and stretching dominance in a multi-physical 
environment) that has not been investigated in the literature.

2.4. Effective elastic moduli of triangular HMS beam networks

The non-linear effective elastic moduli 𝐸1, 𝜈12, 𝐸2, 𝜈21, and 𝐺12 of 
a triangular network of HMS beams, as shown in Fig.  1(g)IV, under 
different modes of far-field mechanical stress (𝜎1, 𝜎2, and 𝜏) in com-
bination with the magnetic field 𝐵𝑎 are derived in this subsection. 
The unit cell of the triangular HMS beam network is an equilateral 
triangle with side 𝑙 having residual magnetic flux density 𝐵𝑟0. The 
combined loading conditions for the triangular HMS unit cell under the 
longitudinal and transverse normal stresses 𝜎1 and 𝜎2 in combination 
with the magnetic field 𝐵𝑎 along direction-2 are shown in Fig.  4(a) 
and (b) respectively. Whereas, the combined loading condition under 
the in-plane shear stress 𝜏 and the magnetic field 𝐵𝑎 for the triangular 
HMS unit cell is shown in Fig.  4(d). Note in Fig.  4(d) that the direction 
of residual magnetic flux density 𝐵𝑟0 for the inclined members OB 
and AB is opposite (unlike the unit cells considered under far-field 
14 
normal stresses). This opposite distribution of 𝐵𝑟0 makes the members 
OB and AB structurally symmetric under the in-plane shear stress 𝜏
in combination with external magnetic field 𝐵𝑎. This phenomenon is 
already described in detail for the hexagonal HMS beam network and 
is not repeated here to maintain brevity.

Under only far-field mechanical stress (𝜎1, 𝜎2, and 𝜏) in absence 
of magnetic field 𝐵𝑎, the cell members undergo stretch-dominated 
deformations (Gibson and Ashby, 1999). Hence, the effective elastic 
moduli of the triangular lattice configurations under mechanical load 
only are governed by the axial deformations of the members (Wang and 
McDowell, 2004). The analytical formulae for the effective elastic mod-
uli of triangular lattices (with cell wall thickness 𝑡) under mechanical 
load only within small deformation regime are given by (Gibson and 
Ashby, 1999; Wang and McDowell, 2004) 
𝐸1
𝐸𝑠

=
𝐸2
𝐸𝑠

= 2
√

3

𝑡
𝑙

(60a)

𝜈12 = 𝜈21 =
1
3

(60b)

𝐺12
𝐸𝑠

=

√

3
4

𝑡
𝑙

(60c)

In this subsection, the conventional unit cell-based approach for tri-
angular lattices (Gibson and Ashby, 1999; Wang and McDowell, 2004) 
is extended to a magneto-active multi-physical mechanics-based semi-
analytical framework following the formulation for hexagonal HMS 
beam network presented in the preceding subsection, leading to the 
evaluation of non-linear effective elastic moduli of the triangular HMS 
beam network under combined mechanical and magnetic loads. Large 
deformation kinematics of the triangular HMS unit cell and the beam-
level forces developed under different combinations of mechanical 
stress and magnetic field are described first in the following subsection. 
With the identified kinematic and kinetic conditions, the beam-level 
non-linear multi-physical mechanics problems are solved through the 
semi-analytical HMS beam model as presented in Sections 2.1 and 2.2. 
Using the beam-level deformation results, computations of the non-
linear effective elastic moduli of the triangular HMS beam network 
under the combined mechanical stress and magnetic field are presented 
subsequently.

2.4.1. Beam-level forces and deformation kinematics
Under the combined mechanical and magnetic loads as presented 

in Fig.  4(a), (b), and (d), the HMS beam members undergo bending 
in combination with axial deformation. Kinematics and kinetics of 
the beam members under the magnetic field 𝐵𝑎 in combination with 
the three different modes of the mechanical stress 𝜎1, 𝜎2, and 𝜏 are 
presented in the following three subsections.
2.4.1.1. Mechanical normal stress along direction-1 and magnetic field 
along direction-2. Under the combined loading of far-field normal stress 
𝜎1 and magnetic field 𝐵𝑎 as shown in Fig.  4(a), all the three members 
(OA, OB, and AB) of the triangular HMS unit cell undergo combined 
bending–stretching deformation with one end fixed, while the other 
ends being restrained to rotation and transverse displacement but free 
to axial translation. The deformed configuration of the triangular HMS 
unit cell under the combined loading of 𝜎1 and 𝐵𝑎 is shown in Fig. 
4(c). The generalized figure also represents the deformed configuration 
under the combined loading of 𝜎2 and 𝐵𝑎. Note in the figure that 
the changes in the span of the HMS beam members are shown in a 
generalized manner without taking into consideration of the proper 
algebraic signs. Those senses of the axial deformations will be implicitly 
taken care of by the generic beam model under the proper description 
of the sense of the beam-level forces under a particular combined 
loading condition.

Due to the symmetry of the deformation under the combined load-
ing of 𝜎1 and 𝐵𝑎, we concentrate on one inclined member OB in 
addition to the horizontal member OA. To use the developed frame-
work of hexagonal HMS beam network as presented in the preceding 
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Fig. 4. Multi-physical mechanics of periodic triangular HMS beam network under combined mechanical stress and magnetic field. (a) Combined loading mode of the 
triangular HMS unit cell under normal stress along direction-1 (𝜎1) and magnetic field along direction-2 (𝐵𝑎). (b) Combined loading mode of the triangular HMS unit cell under 
normal stress along direction-2 (𝜎2) and magnetic field along direction-2 (𝐵𝑎). (c) Deformed configuration of the triangular HMS unit cell under combined normal stress 𝜎1 or 𝜎2
and magnetic field 𝐵𝑎. (d) Combined loading mode of the triangular HMS unit cell under shear stress in plane 1–2 (𝜏) and magnetic field along direction-2 (𝐵𝑎). (e) Deformed 
configuration of the triangular HMS unit cell under combined shear stress 𝜏 and magnetic field 𝐵𝑎. (f) Generalized forces and large deformation kinematics of inclined and 
horizontal members under any of the three combined loading conditions.
subsection readily for the present multi-physical mechanics of trian-
gular HMS beam network, we consider half of the members OA and 
OB of length 𝑙∕2 which have similar boundary conditions as those of 
15 
the members of the hexagonal network, i.e., one end fixed with the 
other end being rotationally restrained but free to translation (refer to 
Section 2.1.1). Point O is considered the fixed point and origin of local 
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Cartesian frames (𝑥, 𝑦) for half of the inclined and horizontal members. 
Large deformation kinematics along with the developed forces in half of 
the inclined and horizontal HMS members under the combined loading 
of 𝜎1 and 𝐵𝑎 are shown in Fig.  4(f). Note that the kinematic and 
kinetic descriptions of the HMS half beams in Fig.  4(f) are a generalized 
representation under any of the three combined loading conditions 
presented in Fig.  4(a), (b), and (d).

Under the remote mechanical stress 𝜎1, the tip-concentrated force 
𝐹ℎ developed in the horizontal member as shown in Fig.  4(f) is given 
by 

𝐹ℎ =

√

3
2
𝜎1𝑏𝑙 (61)

Inclination angles 𝛽ℎ and 𝛼ℎ of the above-presented mechanical force 
𝐹ℎ and the vertical magnetic field 𝐵𝑎 for the horizontal HMS member 
(refer to Fig.  4(f)) are given by 
𝛽ℎ = 𝜋 (62a)

𝛼ℎ = 𝜋
2

(62b)

 For the inclined HMS member as shown in Fig.  4(f), the developed 
force 𝐹𝑖 and the inclination angle 𝛼𝑖 of the magnetic field 𝐵𝑎 are given 
by 
𝐹𝑖 = 0 (63)

𝛼𝑖 =
𝜋
6

(64)

2.4.1.2. Normal stress along direction-2 and magnetic field along direction-
2. Under the remote normal stress 𝜎2 in combination with the external 
magnetic field 𝐵𝑎 as shown in Fig.  4(b), the large deformation kine-
matics of the triangular HMS unit cell and the kinetics of the HMS 
beam members are already described through Fig.  4(c) and (f). The 
concentrated force 𝐹ℎ developed in the horizontal HMS beam due to 
the remote stress 𝜎2 is given by 

𝐹ℎ = 1

2
√

3
𝜎2𝑏𝑙 (65)

As observed in Fig.  4(f), the inclination angles 𝛽ℎ and 𝛼ℎ are given by 
𝛽ℎ = 0 (66a)

𝛼ℎ = 𝜋
2

(66b)

 The concentrated force 𝐹𝑖 developed in the inclined member is ex-
pressed in terms of the remote normal stress 𝜎2 (refer to Fig.  4(f)) as

𝐹𝑖 =
1
√

3
𝜎2𝑏𝑙 (67)

The inclination angles 𝛽𝑖 and 𝛼𝑖 of the mechanical and magnetic loads 
for the inclined member as shown in Fig.  4(f) are presented below. 
𝛽𝑖 = 𝜋 (68a)

𝛼𝑖 =
𝜋
6

(68b)

2.4.1.3. Far-field shear stress in 1–2 plane and magnetic field along
direction-2. When the triangular HMS beam network is subjected to 
in-plane shear stress 𝜏 combined with the external magnetic field 
𝐵𝑎 as shown in Fig.  4(d), all the three members (OA, OB, and AB) 
of the triangular HMS unit cell are subjected to the same boundary 
conditions as those under the combined normal stress (𝜎1 or 𝜎2) and the 
magnetic field (𝐵𝑎) (refer to Fig.  4(c)). However, under the combined 
load of 𝜏 and 𝐵𝑎, the two inclined members OB and AB undergo the 
opposite modes of axial deformation (compression and tension), and 
hence the triangular HMS unit cell becomes asymmetric as shown 
in Fig.  4(e). The opposite distribution of the residual magnetic flux 
density 𝐵𝑟0 in the inclined members OB and AB makes the structural 
behaviour under the mechanical and magnetic field in phase with each 
16 
other (i.e. structurally symmetric, as discussed in the derivation of 
hexagonal lattices). Within the unit cell-based approach to compute the 
effective shear modulus, we concentrate only on one inclined member 
OB in addition to the horizontal member OA. The large deformation 
kinematics and force kinetics of half of the inclined and horizontal HMS 
beams are presented through the generalized schematic in Fig.  4(f).

Under the remote shear stress 𝜏, the concentrated axial force 𝐹ℎ
developed in the horizontal member along with the inclination angle 
𝛼ℎ of the magnetic field (refer to Fig.  4(f)) are expressed as 

𝐹ℎ = 0 (69)

𝛼ℎ = 𝜋
2

(70)

The concentrated force 𝐹𝑖 developed in the inclined HMS member as 
shown in Fig.  4(f) is expressed in terms of the remote shear stress 𝜏 as 

𝐹𝑖 = 𝜏𝑏𝑙 (71)

The inclination angles 𝛽𝑖 and 𝛼𝑖 of the mechanical force 𝐹𝑖 and the 
magnetic field 𝐵𝑎 for the inclined HMS beam (refer to Fig.  4(f)) are 
given below. 

𝛽𝑖 = 𝜋 (72a)

𝛼𝑖 =
𝜋
6

(72b)

2.4.2. Effective elastic moduli
To estimate the non-linear effective elastic moduli of the triangular 

HMS beam network, geometrically non-linear axial tip-deflections 𝛿𝑥ℎ
and 𝛿𝑥𝑖  of the horizontal and inclined HMS beams under the concen-
trated force 𝐹ℎ and 𝐹𝑖 combined with the magnetic field 𝐵𝑎 as described 
through Fig.  4(f) in the previous subsection are computed based on 
the generalized HMS beam model. In the framework of the generalized 
HMS beam model, the geometries of the horizontal and inclined HMS 
half beams shown in Fig.  4(f) are normalized as 

𝛱0ℎ = 𝛱0𝑖 =
3

( 𝑡
𝑙

)2
(73)

The non-dimensional forms of the beam-level forces in the framework 
of the generalized HMS beam model are presented in the respective 
subsection estimating the elastic moduli of the triangular HMS beam 
network under a particular combined loading case. Expression of the 
relative density and non-dimensional forms of the effective elastic 
moduli are presented subsequently.
2.4.2.1. Computation of 𝐸1 and 𝜈12 under combined load 𝜎1 and 𝐵𝑎. 
Under the combined loading of normal stress 𝜎1 and magnetic field 
𝐵𝑎 (refer to Fig.  4(a) and (f)), the non-dimensional mechanical forces 
𝐶ℎ and 𝐶𝑖 for the horizontal and inclined members are derived from 
Eqs. (61) and (63) following the normalization scheme discussed earlier 
as 

𝐶ℎ =
3
√

3

2𝐸𝑠
( 𝑡
𝑙

)3
𝜎1 (74a)

𝐶𝑖 = 0 (74b)

 With the non-dimensional mechanical forces 𝐶ℎ and 𝐶𝑖, the non-
dimensional magnetic loads 𝐵ℎ and 𝐵𝑖 for the horizontal and inclined 
HMS beams are defined in terms of the magnetic load ratio 𝑟ℎ as 

𝐵ℎ = 𝐵𝑖 = 𝑟ℎ𝐶ℎ (75)

Under the non-dimensional mechanical and magnetic loads with the 
inclination angles presented in Eqs. (62) and (64), the non-linear non-
dimensional tip-deflections 𝛿𝑥ℎ  and 𝛿𝑥𝑖  of the horizontal and inclined 
HMS beams are computed. The normal strain in direction-1 (𝜖 ) is 
1
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obtained in terms of the beam-level defection 𝛿𝑥ℎ  through a suitable 
coordinate transformation as given by 

𝜖1 = 𝛿𝑥ℎ (76)

The normal strain in direction-2 (𝜖2) is derived from the deformed 
geometry of the triangular HMS unit cell as presented in Fig.  4(c). By 
using the Pythagorean theorem on the triangle, we get 

(ℎ + 𝛿2)2 +
(

𝑙 + 𝛿1
2

)2
= (𝑙 + 𝛿𝑖)2 (77)

Noting the geometric relation of the undeformed triangular unit cell 
as ℎ2 + (𝑙∕2)2 = 𝑙2 (refer to Fig.  4(a)) and neglecting the higher order 
terms, the above equation gives 
√

3 𝛿2 = −1
2
𝛿1 + 2 𝛿𝑖 (78)

From the above relation, the strain 𝜖2 is obtained in terms of the 
beam-level displacements as 

𝜖2 = −1
3
𝛿𝑥ℎ +

4
3
𝛿𝑥𝑖 (79)

With the known normal strains 𝜖1 and 𝜖2 as presented in Eqs. (76) and 
(79), the non-linear effective elastic moduli 𝐸1 and 𝜈12 are obtained as

𝐸1 =
𝜎1
𝛿𝑥ℎ

(80)

𝜈12 =
1
3
− 4

3
𝛿𝑥𝑖
𝛿𝑥ℎ

(81)

2.4.2.2. Computation of 𝐸2 and 𝜈21 under combined load 𝜎2 and 𝐵𝑎. 
Under the normal stress 𝜎2 combined with 𝐵𝑎 as shown in Fig.  4(b) 
and (f), the non-dimensional forces 𝐶ℎ and 𝐶𝑖 for the horizontal and 
inclined beams are obtained from Eqs. (65) and (67) as 

𝐶ℎ =

√

3

2𝐸𝑠
( 𝑡
𝑙

)3
𝜎2 (82a)

𝐶𝑖 =

√

3

𝐸𝑠
( 𝑡
𝑙

)3
𝜎2 (82b)

 In combination with the above-presented non-dimensional mechanical 
forces 𝐶ℎ and 𝐶𝑖, the HMS beams are subjected to the non-dimensional 
magnetic loads 𝐵ℎ and 𝐵𝑖 which are defined in terms of the magnetic 
load ratio 𝑟𝑖 by 

𝐵ℎ = 𝐵𝑖 = 𝑟𝑖𝐶𝑖 (83)

The inclination angles of the mechanical and magnetic loads are 
already presented in Eqs. (66) and (68). Following the same procedure 
as in the previous combined loading case in the preceding subsection, 
the non-linear non-dimensional tip-deflections 𝛿𝑥ℎ  and 𝛿𝑥𝑖  are obtained 
which give the normal strains 𝜖1 and 𝜖2 having the same mathematical 
expressions as presented in Eqs. (76) and (79). Using the strain expres-
sions, the non-linear effective Young’s modulus 𝐸2 and the Poisson’s 
ratio 𝜈21 of the triangular HMS beam network are derived as 

𝐸2 =
3 𝜎2

−𝛿𝑥ℎ + 4 𝛿𝑥𝑖
(84)

𝜈21 =
3 𝛿𝑥ℎ

𝛿𝑥ℎ − 4 𝛿𝑥𝑖
(85)

2.4.2.3. Computation of 𝐺12 under combined load 𝜏 and 𝐵𝑎. Under the 
combined in-plane shear stress 𝜏 and magnetic field 𝐵𝑎 as presented 
in Fig.  4(d) and (f), the non-dimensional mechanical forces 𝐶ℎ and 𝐶𝑖
for the horizontal and inclined HMS beam members as derived from 
Eqs. (69) and (71) are given by 

𝐶 = 0 (86a)
ℎ

17 
𝐶𝑖 =
3

𝐸𝑠
( 𝑡
𝑙

)3
𝜏 (86b)

 The non-dimensional magnetic loads 𝐵ℎ and 𝐵𝑖 of the horizontal and 
inclined HMS beam members are defined similarly as those for the 
other two combined loading cases as 
𝐵ℎ = 𝐵𝑖 = 𝑟𝑖𝐶𝑖 (87)

Under the non-dimensional mechanical and magnetic forces with 
the inclination angles of Eqs. (70) and (72), the non-linear non-
dimensional defections 𝛿𝑥ℎ  and 𝛿𝑥𝑖  are computed through the general-
ized HMS beam model. To derive the in-plane shear strain 𝛾12 under the 
combined loading of 𝜏 and 𝐵𝑎, we concentrate on the deformed trian-
gular HMS unit cell as presented in Fig.  4(e). By using the Pythagorean 
theorem on the deformed triangle, we get the following geometric 
relation 

ℎ2 +
(

𝑙
2
+
𝛿1
2

+ 𝛿𝑥𝐵

)2
= (𝑙 + 𝛿𝑖)2 (88)

Noting the geometric relation of the undeformed triangular unit cell as 
ℎ2 +(𝑙∕2)2 = 𝑙2 (refer to Fig.  4(d)) and carrying out some mathematical 
manipulations by neglecting the higher order terms, the horizontal 
displacement 𝛿𝑥𝐵  of point B is obtained as 

𝛿𝑥𝐵 = 2 𝛿𝑖 −
𝛿1
2

(89)

Due to the horizontal displacement 𝛿𝑥𝐵 , the shear strain 𝛾12 developed 
in the triangular unit cell is given by 𝛾12 = 𝛿𝑥𝐵∕ℎ. Using the geometric 
relation from Eq.  (89), the shear strain 𝛾12 is expressed in terms of the 
beam-level displacements 𝛿𝑥ℎ  and 𝛿𝑥𝑖  as 

𝛾12 =
4
√

3
𝛿𝑥𝑖 −

1
√

3
𝛿𝑥ℎ (90)

Once the shear strain 𝛾12 is known as presented above, the non-linear 
effective shear modulus 𝐺12 of the triangular HMS beam network is 
obtained through its fundamental definition 𝐺12 = 𝜏∕𝛾12 as 

𝐺12 =

√

3 𝜏
4 𝛿𝑥𝑖 − 𝛿𝑥ℎ

(91)

2.4.2.4. Non-dimensional elastic moduli. As Poisson’s ratios 𝜈12 and 𝜈21
are already non-dimensional, they are presented in their original forms. 
The other three effective elastic moduli 𝐸1, 𝐸2, and 𝐺12 of the triangular 
HMS beam network are presented in non-dimensional forms following 
the normalization scheme as 
𝐸̄1 =

𝐸1

𝐸𝑠𝜌3
, 𝐸̄2 =

𝐸2

𝐸𝑠𝜌3
, 𝐺̄12 =

𝐺12

𝐸𝑠𝜌3
(92)

Here the relative density 𝜌 of the triangular HMS beam network ob-
tained following the same definition as the hexagonal beam network is 
given by 
𝜌 = 2

√

3 𝑡
𝑙

(93)

2.5. Effective elastic moduli of rectangular HMS beam networks

To estimate the non-linear effective elastic moduli 𝐸1, 𝜈12, 𝐸2, 𝜈21, 
and 𝐺12 of periodic rectangular network of HMS beams, as shown in 
Fig.  1(g)V, the unit cell consisting of horizontal HMS beam of length 𝑙
and vertical HMS beam of length ℎ with residual magnetic flux density 
𝐵𝑟0 is chosen. The three different combined mechanical and magnetic 
loading conditions for the rectangular HMS unit cell are shown in Fig. 
5(a), (b), and (d) respectively.

Under the normal modes of mechanical stress 𝜎1 or 𝜎2 in absence of 
magnetic field 𝐵𝑎, the cell members of the rectangular lattice undergo 
stretch-dominated deformations (Gibson and Ashby, 1999). Whereas, 
under the shear mode of mechanical stress 𝜏 in absence of magnetic 
field 𝐵𝑎, the cell members are subjected to bending-dominated defor-
mations (Wang and McDowell, 2004). The analytical formulae for the 
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Fig. 5. Multi-physical mechanics of periodic rectangular HMS beam network under combined mechanical stress and magnetic field. (a) Combined loading mode of the 
rectangular HMS unit cell under normal stress along direction-1 (𝜎1) and magnetic field along direction-2 (𝐵𝑎). (b) Combined loading mode of the rectangular HMS unit cell under 
normal stress along direction-2 (𝜎2) and magnetic field along direction-2 (𝐵𝑎). (c) Generalized forces and large deformation kinematics of the vertical and horizontal members 
under combined normal stress 𝜎1 or 𝜎2 and magnetic field 𝐵𝑎. (d) Combined loading mode of the rectangular HMS unit cell under shear stress in plane 1–2 (𝜏) and magnetic field 
along direction-2 (𝐵𝑎). (e) Forces and large deformation kinematics of the horizontal and vertical members under combined shear stress 𝜏 and magnetic field 𝐵𝑎.
effective elastic moduli of rectangular lattice under mechanical load 
only within small deformation regime are given by (Gibson and Ashby, 
1999; Wang and McDowell, 2004) 

𝐸1
𝐸𝑠

=

( 𝑡
𝑙

)

(ℎ
𝑙

)
(94a)

𝐸2 = 𝑡 (94b)

𝐸𝑠 𝑙

18 
𝜈12 = 𝜈21 = 0 (94c)

𝐺12
𝐸𝑠

=

( 𝑡
𝑙

)3

ℎ
𝑙

(

1 + ℎ
𝑙

)
(94d)

In this subsection, the conventional unit cell-based approach for 
rectangular lattices (Gibson and Ashby, 1999; Wang and McDowell, 
2004) is extended to a magneto-active multi-physical mechanics-based 
semi-analytical framework following the formulation for hexagonal 
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HMS beam network presented in the preceding subsection, leading 
to the evaluation of non-linear effective elastic moduli of the rectan-
gular HMS beam network under combined mechanical and magnetic 
loads. Large deformation kinematics of the rectangular HMS unit cell 
and the beam-level forces developed under different combinations 
of mechanical stress and magnetic field are described first in the 
following subsection. With the identified kinematic and kinetic condi-
tions, the beam-level non-linear multi-physical mechanics problems are 
solved through the semi-analytical HMS beam model as presented in 
Sections 2.1 and 2.2. Using the beam-level deformation results, compu-
tations of the non-linear effective elastic moduli of the rectangular HMS 
beam network under the combined mechanical stress and magnetic 
field are presented subsequently.

2.5.1. Beam-level forces and deformation kinematics
Under the three combined mechanical and magnetic loading condi-

tions as presented in Fig.  5(a), (b), and (d), the HMS beam members 
undergo large deformation, the kinematics and kinetics of which are 
described in the following three subsections.

2.5.1.1. Far-field normal stress along direction-1 and magnetic field along 
direction-2. Under the combined loading case of normal stress 𝜎1 and 
magnetic field 𝐵𝑎 as shown in Fig.  5(a), the horizontal and vertical 
HMS beam members OA and OB of the rectangular HMS unit cell 
undergo combined bending–stretching deformation with fixed end O 
and the other ends A and B being restrained to rotation and transverse 
displacement but free to axial translation. The other pairs of horizontal 
and vertical HMS beams BC and CA are not considered in the analysis 
due to the structural symmetry of the unit cell. Following the same 
procedure as in the case of the triangular HMS beam network (refer to 
the preceding subsection), half of the members OA and OB of length 
𝑙∕2 and ℎ∕2 respectively are considered for the present multi-physical 
mechanics. The half beams are subjected to the boundary conditions of 
one fixed end with the other end being rotationally restrained but free 
to translation.

Large deformation kinematics and the force kinetics of the vertical 
and horizontal HMS half beams under the combined loading of 𝜎1 and 
𝐵𝑎 are presented in Fig.  5(c) concerning the local Cartesian frames 
(𝑥, 𝑦) fitted at the fixed point O. Note that the kinematic and kinetic 
descriptions of the HMS half beams in Fig.  5(c) are a generalized 
representation under the normal modes of mechanical stress 𝜎1 or 𝜎2
combined with the magnetic field 𝐵𝑎 as presented in Fig.  5(a) and (b).

The concentrated mechanical force 𝐹ℎ developed in the horizontal 
HMS beam under the remote normal stress 𝜎1 as shown in Fig.  5(c) is 
given by 

𝐹ℎ = 𝜎1𝑏ℎ (95)

Inclination angles 𝛽ℎ and 𝛼ℎ of the mechanical force 𝐹ℎ and the mag-
netic field 𝐵𝑎 respectively for the horizontal HMS member as shown in 
Fig.  5(c) are given by 

𝛽ℎ = 𝜋 (96a)

𝛼ℎ = 𝜋
2

(96b)

 The vertical HMS beam (refer to Fig.  5(c)) is only subjected to the 
magnetic field 𝐵𝑎 without any mechanical force 𝐹𝑣 under the present 
combined loading case. Hence, the kinetics of the vertical HMS beam 
is represented as 

𝐹𝑣 = 0 (97)

𝛼𝑣 = 0 (98)
19 
2.5.1.2. Far-field normal stress along direction-2 and magnetic field along 
direction-2. The large deformation kinematics and kinetics of the mem-
bers of the rectangular HMS unit cell under the combined loading of 
𝜎2 and 𝐵𝑎 are already described through the generalized schematic 
diagrams in Fig.  5(c). Under the present combined loading case, the 
horizontal HMS beams are not subjected to any mechanical force 
𝐹ℎ. However, the horizontal members are subjected to 𝐵𝑎 with the 
inclination angle 𝛼ℎ. The kinetic relations for the horizontal HMS beam 
member are summarized as 
𝐹ℎ = 0 (99)

𝛼ℎ = 𝜋
2

(100)

The concentrated force 𝐹𝑣 developed in the vertical member (refer to 
Fig.  5(c)) is given by 
𝐹𝑣 = 𝜎2𝑏𝑙 (101)

The inclination angles 𝛽𝑣 and 𝛼𝑣 of the mechanical and magnetic loads 
respectively for the vertical member as presented in Fig.  5(c) are given 
by 
𝛽𝑣 = 𝜋 (102a)

𝛼𝑣 = 0 (102b)

2.5.1.3. Shear stress in 1–2 plane and magnetic field along direction-2. 
Under the combined loading of in-plane shear stress 𝜏 and magnetic 
field 𝐵𝑎 as shown in Fig.  5(d), the horizontal and vertical members OA 
and OB of the rectangular HMS unit cell undergo bending-dominated 
large deformation with fixed end O and the other ends A and B being 
rotationally restrained but free to translation. Within the present multi-
physical mechanics-based framework, the large deformation kinematics 
and kinetics of the horizontal and vertical HMS full beam members OA 
and OB are analysed as presented in Fig.  5(e).

The tip-concentrated transverse force 𝐹ℎ developed in the horizontal 
HMS beam under the remote shear stress 𝜏 is expressed as 
𝐹ℎ = 𝜏𝑏ℎ (103)

The inclination angles 𝛽ℎ and 𝛼ℎ of the mechanical and magnetic loads 
for the horizontal HMS beam as shown in Fig.  5(e) are given by 

𝛽ℎ = 3𝜋
2

(104a)

𝛼ℎ = 𝜋
2

(104b)

 The concentrated force 𝐹𝑣 developed in the vertical HMS beam mem-
ber under the remote shear stress 𝜏 (refer to Fig.  5(e)) is expressed by 

𝐹𝑣 = 𝜏𝑏𝑙 (105)

The inclination angles 𝛽𝑣 and 𝛼𝑣 of the mechanical force 𝐹𝑣 and the 
magnetic field 𝐵𝑎 for the vertical HMS beam as shown in Fig.  5(e) are 
summarized as 
𝛽𝑣 =

𝜋
2

(106a)

𝛼𝑣 = 0 (106b)

2.5.2. Effective elastic moduli
To estimate the non-linear effective elastic moduli 𝐸1, 𝜈12, 𝐸2, and 

𝜈21 of the rectangular HMS beam network under the normal modes of 
mechanical stress 𝜎1 or 𝜎2 in combination with the magnetic field 𝐵𝑎, 
geometrically non-linear axial tip-deflections 𝛿𝑥ℎ  and 𝛿𝑥𝑣  of the horizon-
tal and vertical HMS half beams under the concentrated force 𝐹ℎ and 
𝐹𝑣 combined with the magnetic field 𝐵𝑎 as described through Fig.  5(c) 
in the previous subsection are computed through the generalized HMS 
beam model. Whereas, for the estimation of the non-linear effective 
shear modulus 𝐺  under in-plane shear stress 𝜏 and the magnetic 
12
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field 𝐵𝑎, geometrically non-linear transverse deflections 𝛿𝑦ℎ  and 𝛿𝑦𝑣  of 
the horizontal and vertical HMS full beams as shown in Fig.  5(e) are 
computed.

In the framework of the generalized HMS beam model, the geome-
tries of the horizontal and vertical HMS half beams considered for 
combined loading case under normal stress 𝜎1 or 𝜎2 and magnetic field 
𝐵𝑎 as shown in Fig.  5(c) are normalized as 

𝛱0ℎ = 3
( 𝑡
𝑙

)2
(107a)

𝛱0𝑣 =
3
(ℎ
𝑙

)2

( 𝑡
𝑙

)2
(107b)

 Whereas, the non-dimensional geometries of the HMS full beams 
considered for the combined loading case under shear stress 𝜏 and 
magnetic field 𝐵𝑎 as shown in Fig.  5(e) are given by 

𝛱0ℎ = 12
( 𝑡
𝑙

)2
(108a)

𝛱0𝑣 =
12

(ℎ
𝑙

)2

( 𝑡
𝑙

)2
(108b)

2.5.2.1. Computation of 𝐸1 and 𝜈12 under combined load 𝜎1 and 𝐵𝑎. The 
non-dimensional mechanical forces 𝐶ℎ and 𝐶𝑣 for the horizontal and 
vertical HMS beams under the combined loading of normal stress 𝜎1
and magnetic field 𝐵𝑎 as shown in Fig.  5(a) and (c) are obtained from 
Eqs. (95) and (97) as 

𝐶ℎ =
3
(ℎ
𝑙

)

𝐸𝑠
( 𝑡
𝑙

)3
𝜎1 (109a)

𝐶𝑣 = 0 (109b)

 Magnitudes of the non-dimensional magnetic loads 𝐵ℎ and 𝐵𝑣 for the 
horizontal and vertical HMS beam members of the rectangular HMS 
unit cell are defined in terms of the magnetic load ratio 𝑟ℎ and the 
non-dimensional mechanical force 𝐶ℎ as 

𝐵ℎ = 𝑟ℎ𝐶ℎ (110a)

𝐵𝑣 =
(ℎ
𝑙

)2
𝑟ℎ𝐶ℎ (110b)

Under the prescribed non-dimensional mechanical and magnetic 
loads with the inclination angles as presented in Eqs. (96) and (98), 
the non-linear axial deflections are computed in non-dimensional forms 
𝛿𝑥ℎ  and 𝛿𝑥𝑣 . In terms of the beam-level deflections, the normal strains 
in direction-1 (𝜖1) and direction-2 (𝜖2) are defined by 
𝜖1 = 𝛿𝑥ℎ (111)

𝜖2 = 𝛿𝑥𝑣 (112)

With the above-presented strains 𝜖1 and 𝜖2, the non-linear effective 
Young’s modulus 𝐸1 and Poisson’s ratio 𝜈12 of the rectangular HMS 
beam network are obtained readily as 

𝐸1 =
𝜎1
𝛿𝑥ℎ

(113)

𝜈12 = −
𝛿𝑥𝑣
𝛿𝑥ℎ

(114)

2.5.2.2. Computation of 𝐸2 and 𝜈21 under combined load 𝜎2 and 𝐵𝑎. 
When the rectangular HMS beam network is subjected to combined 
loading under the normal stress 𝜎2 and the magnetic field 𝐵𝑎 as shown 
in Fig.  5(b), the concentrated forces in the horizontal and vertical HMS 
20 
beams are expressed in non-dimensional forms using Eqs. (99) and 
(101) as 
𝐶ℎ = 0 (115a)

𝐶𝑣 =
3
(ℎ
𝑙

)2

𝐸𝑠
( 𝑡
𝑙

)3
𝜎2 (115b)

 Magnitudes of the non-dimensional magnetic loads 𝐵ℎ and 𝐵𝑣 are 
defined in terms of load ratio 𝑟𝑣 and non-dimensional load 𝐶𝑣 in a 
similar way as in the case of the other previously discussed combined 
loading mode as 

𝐵ℎ =
𝑟𝑣𝐶𝑣
(ℎ
𝑙

)2
(116a)

𝐵𝑣 = 𝑟𝑣𝐶𝑣 (116b)

Under the above-presented mechanical and magnetic loads with the 
inclination angles presented in Eqs. (100) and (102), the non-linear 
beam-level deflections 𝛿𝑥ℎ  and 𝛿𝑥𝑣  are computed which in turn give 
the normal strains 𝜖1 and 𝜖2 through Eqs. (111) and (112). Using the 
strain expressions, the non-linear effective elastic moduli 𝐸2 and 𝜈21 of 
the rectangular HMS beam network under the combined loading of 𝜎2
and 𝐵𝑎 are obtained as 
𝐸2 =

𝜎2
𝛿𝑥𝑣

(117)

𝜈21 = −
𝛿𝑥ℎ
𝛿𝑥𝑣

(118)

2.5.2.3. Computation of 𝐺12 under combined load 𝜏 and 𝐵𝑎. Under the 
combined loading of 𝜏 and 𝐵𝑎 as shown in Fig.  5(d) and (e), the non-
dimensional forces 𝐶ℎ and 𝐶𝑣 for the horizontal and vertical beams are 
derived from Eqs. (103) and (105) as 

𝐶ℎ =
12

(ℎ
𝑙

)

𝐸𝑠
( 𝑡
𝑙

)3
𝜏 (119a)

𝐶𝑣 =
12

(ℎ
𝑙

)2

𝐸𝑠
( 𝑡
𝑙

)3
𝜏 (119b)

 The non-dimensional magnetic loads 𝐵ℎ and 𝐵𝑣 for the horizontal and 
vertical HMS beam members are defined as 
𝐵ℎ = 𝑟ℎ𝐶ℎ (120a)

𝐵𝑣 =
(ℎ
𝑙

)2
𝑟ℎ𝐶ℎ (120b)

Under the above-presented non-dimensional mechanical and mag-
netic loads with the inclination angles presented in Eqs. (104) and 
(106), non-linear transverse defections of the beam tips are computed 
in non-dimensional forms as denoted by 𝛿𝑦ℎ  and 𝛿𝑦𝑣  in Fig.  5(e). In 
terms of the transverse tip-deflections, rotations of the horizontal and 
vertical HMS beams are obtained as 
𝛺ℎ = −𝛿𝑦ℎ (121a)

𝛺𝑣 = 𝛿𝑦𝑣 (121b)

 Due to the above-presented rotations 𝛺ℎ and 𝛺𝑣 of the horizontal 
and vertical HMS beam members respectively, the total shear strain 𝛾12
developed in the rectangular unit cell is given by 
𝛾12 = −𝛿𝑦ℎ + 𝛿𝑦𝑣 (122)

The non-linear effective shear modulus 𝐺12 of the rectangular HMS 
beam network is obtained subsequently through the fundamental defi-
nition 𝐺12 = 𝜏∕𝛾12 using Eq. (122) as 
𝐺12 =

𝜏
̄ ̄ (123)
−𝛿𝑦ℎ + 𝛿𝑦𝑣
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2.5.2.4. Non-dimensional elastic moduli. As Poisson’s ratios 𝜈12 and 𝜈21
are already non-dimensional, they are presented in their original forms. 
Following a similar representation framework as the other periodic 
network configurations, the effective elastic moduli 𝐸1, 𝐸2, and 𝐺12 of 
the rectangular HMS beam network are normalized as 

𝐸̄1 =
𝐸1

𝐸𝑠𝜌3
, 𝐸̄2 =

𝐸2

𝐸𝑠𝜌3
, 𝐺̄12 =

𝐺12

𝐸𝑠𝜌3
(124)

Here the relative density 𝜌 of the rectangular HMS beam network is 
derived as 

𝜌 = 𝑡
𝑙

(

1 + ℎ
𝑙

)

ℎ
𝑙

(125)

Having established the semi-analytical large-deformation compu-
tational frameworks for different magneto-active periodic beam net-
works, we present numerical results in the following section to demon-
strate active broadband elasticity programming as a function of the 
externally applied magnetic field and bi-level (unit cell geometry and 
beam-level spatially-varying residual magnetic flux direction) metama-
terial architectures.

3. Results and discussion

The generalized HMS beam model is the backbone of the present 
semi-analytical framework to estimate the non-linear effective elastic 
moduli of hexagonal HMS beam networks under combined mechanical 
and magnetic loads. Hence, before going to investigate the effective 
elastic moduli of HMS beam networks, the HMS beam model is vali-
dated first, as presented in the first subsection here. Thereafter, critical 
numerical beam-level results are furnished with symmetric and asym-
metric residual magnetic flux density under different combinations of 
mechanical and magnetic loads. Note that modulation capability of the 
shapes of such architected beams will constitute the foundation for bi-
level design of lattices, as discussed later in this section. Applicability 
of the full-beam and half-beam model for symmetric and asymmetric 
residual magnetic flux density of HMS beam is also investigated along 
with the influence of centreline extensibility on the load–deformation 
characteristics of HMS beam.

Following the beam-level results, the geometrically non-linear semi-
analytical framework estimating the effective elastic moduli of the 
HMS beam networks is validated, as presented in the third subsection. 
Validations of the present framework at the beam-level as well as 
at the beam network-level would provide adequate confidence in the 
proposed computational models. Subsequently, the effect of magnetic 
field in combination with the different modes of mechanical load 
on the non-linear effective elastic moduli of hexagonal HMS beam 
network with uniform residual magnetic flux density is investigated, 
as presented in the fourth subsection. Based on the kinematic and 
kinetic conditions of the beam elements of the hexagonal HMS beam 
network, two intuitive designs of residual magnetic flux density 𝑆(𝜉)
(beam-level architecture) are proposed in the fifth subsection which 
would significantly influence the effective elastic moduli of the HMS 
beam network under combined mechanical and magnetic loads. In the 
following subsection, we demonstrate the applicability of the concept 
of active broad-band elasticity modulation for different other forms of 
lattice geometries, as presented in Fig.  1(g).

For all the computations at beam-level and beam network-level, 
the material constitutive parameters in the framework of the Yeoh 
hyperelastic model are considered as 𝐶10 = 0.2712, 𝐶20 = 0.0305, 
and 𝐶30 = −0.004 (Xu and Liu, 2018). The numerical value of the 
computational parameter 𝜆 and the limit of 𝜇 are considered as 0.9 
and 0.05% respectively. The number of functions for the centreline 
rotation 𝜑 and centreline strain 𝜀 are selected as 𝑛𝑏 = 𝑛𝑠 = 5, based 
on a convergence study.
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3.1. Beam-level validation

Though large deformation analysis of HMS beam structures has 
become a topic of interest for the last few years, the studies focus 
on structural characteristics separately under mechanical load only 
and magnetic actuation only. Hence, comparable results for our multi-
physical mechanics-based beam model for coupled mechanical and 
magnetic loading conditions are not readily available in the literature. 
Thus, the current geometrically non-linear HMS beam model is first 
validated under mechanical load only by comparing it with the results 
presented by Chen and Wang (2021). Whereas, for the loading case 
of magnetic actuation only, we validate our model with the paper by 
Chen et al. (2020a). The validation studies for both the mechanical 
and magnetic loading cases are performed for the non-dimensional 
geometric specification of the HMS beam 𝛱0 = 10000.

The validation study of the generalized HMS beam model under me-
chanical load only is carried out for the cantilever boundary conditions 
subjected to tip-concentrated non-dimensional load 𝐶 with inclination 
angle 𝛽 as considered in the paper (Chen and Wang, 2021). The non-
dimensional deformed configurations (𝜉, 𝜂) of the cantilever beam 
under different values of 𝐶 for inclination angle 𝛽 of 𝜋∕4, 𝜋∕2, 3𝜋∕4, 
and 9𝜋∕10 as obtained from the present model are shown through 
solid lines in Figure S1(a)–(d) respectively. Whereas, the corresponding 
deformation results reported in the literature (Chen and Wang, 2021) 
are also plotted through dotted points in Figure S1. As obvious from 
Figure S1, an excellent agreement between the present semi-analytical 
HMS beam model and the model presented in literature (Chen and 
Wang, 2021) is found for all the considered load magnitudes 𝐶 and the 
orientation angles 𝛽. Hence, the comparison studies in Figure S1 clearly 
show the capability of the present HMS beam model in predicting 
highly non-linear deformation characteristics of the soft beam under 
mechanical load only.

The validation study of the present non-linear beam model under 
magnetic load only is carried out for four different deformed shapes 
obtained under different designs of residual magnetic flux density 𝑆(𝜉)
of the HMS beam subjected to multiple boundary conditions as consid-
ered in literature (Chen et al., 2020a). The first considered case among 
them is the m-shape deformed configuration which is obtained for the 
design of 𝑆(𝜉) as given below with the free-free boundary conditions 
(𝜃′(0) = 0 and 𝜃′(1) = 0) and inclination angle 𝛼 = 𝜋∕2 (Chen et al., 
2020a).

𝑆 =

⎧

⎪

⎨

⎪

⎩

1, 0 ≤ 𝜉 ≤ 0.25 or 0.5 ≤ 𝜉 ≤ 0.75

−1, 0.25 < 𝜉 < 0.5 or 0.75 < 𝜉 ≤ 1.0

With the above-presented residual magnetic flux density 𝑆(𝜉), the 
prescribed boundary conditions and inclination angle, the m-shape 
deformed configurations of HMS beam under non-dimensional mag-
netic actuations 𝐵 = 30, 𝐵 = 100, and 𝐵 = 300 are obtained from 
the present non-linear model as shown through solid lines in Figure 
S2(a)–(c) respectively. The corresponding deformed shapes as reported 
in literature (Chen et al., 2020a) are also shown in the plots through 
dotted points.

The second shape we concentrate on is the s-shape configuration 
which is obtained under the same boundary conditions and inclination 
angle 𝛼 as in the case of m-shape configurations but with the following 
design of 𝑆(𝜉) (Chen et al., 2020a)

𝑆 =

⎧

⎪

⎨

⎪

⎩

1, 0 ≤ 𝜉 < 1
3
or 2

3
≤ 𝜉 ≤ 1

−1, 1
3
≤ 𝜉 < 2

3
The comparison plots between the present model and the results re-
ported in literature (Chen et al., 2020a) for the s-shape configurations 
under the non-dimensional magnetic actuation 𝐵 of 30, 100, and 300 
are presented in Figure S2(d)–(f) respectively.
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The third type of deformed shape considered for the validation 
study of the HMS beam model under magnetic actuation only is the 
n-shape configuration. The n-shape configuration is achieved for the 
same boundary conditions and inclination angle 𝛼 as those of the m-
shape and s-shape configurations but with the coefficient of residual 
magnetic flux density (Chen et al., 2020a)

𝑆 =

⎧

⎪

⎨

⎪

⎩

1, 0 ≤ 𝜉 < 0.5

−1, 0.5 ≤ 𝜉 ≤ 1

Comparisons of n-shape deformed configurations from the present 
semi-analytical model with the results reported in literature (Chen 
et al., 2020a) are shown in Figure S2(g)–(i) for the magnetic actuation 
𝐵 = 30, 𝐵 = 60, and 𝐵 = 100 respectively.

The fourth type of the deformed shape of the HMS beam under 
magnetic actuation we consider is the 𝛺-shape configuration. The 
configuration is achieved for the same design of 𝑆(𝜉) as that for the n-
shape configurations but under the boundary conditions of 𝜃(0) = 0 and 
𝜃(1) = 0 with the inclination angle of the magnetic field 𝛼 = 𝜋 (Chen 
et al., 2020a). The 𝛺-shape deformed configurations of HMS beam 
under magnetic actuation 𝐵 of 60, 100, and 200 are compared with the 
present non-linear model and the reported results in literature (Chen 
et al., 2020a) as presented in Figure S2(j)–(l) respectively.

The excellent matching of the deformation results obtained from 
the present semi-analytical model and literature (Chen et al., 2020a), 
as shown in Figure S2, validates our non-linear model in predicting 
complex configurations of HMS beam with designed spatially-varying 
residual magnetic flux densities under different magnetic actuation.

3.2. Beam-level numerical results under coupled mechanical and magnetic 
loads

Once the developed geometrically non-linear HMS beam model is 
validated for separate loading conditions of mechanical load only and 
magnetic load only, as presented in the previous subsection, benchmark 
numerical results under coupled mechanical and magnetic loading 
conditions are presented here. Note that the such coupled effect of 
magneto-mechanical loading has not been investigated in the liter-
ature through the development of a comprehensive computational 
framework for HMS beams.

An HMS beam representing the generalized element (full or half 
length) of the HMS beam network having length 𝐿 with non-
dimensional geometric specification 𝛱0 = 10000 is considered here. 
Non-linear deformation characteristics of the HMS beam are simulated 
through the full-beam and half-beam models within the extensible and 
inextensible versions of the present semi-analytical framework. The 
typical boundary conditions (as considered here) of the HMS beam as 
a full-beam problem and as a half-beam problem have been already 
described in detail in Section 2.1.

The considered HMS full-beam is fixed at one end with the other 
end being rotationally restrained but free to translation and subjected 
to non-dimensional mechanical force 𝐶 = 10 applied incrementally in 
50 steps. At each incremental step of 𝐶, five non-dimensional magnetic 
loads 𝐵 = 𝑟𝐶 are applied by five magnetic load ratio 𝑟 of 0.8, 1.6, 
2.4, 3.2, and 4 for two different cases of uniform residual magnetic 
flux density with 𝑆 = 1 and 𝑆 = −1. For the considered HMS full-
beam problem, four different inclination angles of the mechanical and 
magnetic loads are considered as 𝛼 = 𝛽 = 𝜋∕2, 𝛼 = 𝛽 = 𝜋∕3, 𝛼 = 𝛽 =
𝜋∕4, and 𝛼 = 𝛽 = 𝜋∕6. The non-dimensional deformed configurations 
(𝜉, 𝜂) of the HMS beam with residual magnetic flux density 𝑆 = 1 and 
𝑆 = −1 under the mechanical load 𝐶 = 10 in combination with different 
magnetic load ratios 𝑟 are presented in Fig.  6(a)–(d) for the considered 
four sets of inclination angles respectively. The solid lines in the plots 
represent the results obtained from the extensible model. Whereas, the 
results obtained from the inextensible version of the non-linear model 
are plotted through dotted points in the figure. To observe the effect 
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of magnetic load in combination with the mechanical loading on the 
non-linear deformation characteristics of the HMS beam with 𝑆 = 1
and 𝑆 = −1, variations of the non-dimensional tip-deflection 𝛿𝑦 with 
the non-dimensional mechanical load 𝐶 for the considered different 
magnetic load ratio 𝑟 are shown in Figure S3(a)–(d) corresponding to 
four sets of inclination angles.

Figs.  6 and S3 clearly show that for the residual magnetic flux den-
sity with the coefficient 𝑆 = 1, deflection under combined mechanical 
load 𝐶 and magnetic field 𝐵 for all the considered inclination angles 𝛽
and 𝛼 increases with magnetic load ratio 𝑟 compared to the deflection 
under mechanical load only (𝑟 = 0). Whereas, for the residual magnetic 
flux density having coefficient 𝑆 = −1, the deflection decreases with 𝑟
for the same combination of mechanical and magnetic loads. Hence, it 
is clear from the results that we can modulate stiffness characteristics 
of HMS beam as per our requirements by applying a magnetic field 
in combination with mechanical load through proper design of the 
residual magnetic flux density 𝑆(𝜉) of the HMS beam. Such effects are 
exploited in the current design of lattice metamaterials for broadband 
elasticity programming.

Now the HMS full-beam of length 𝐿 is modelled as two HMS half-
beams with length 𝐿∕2 subjected to cantilever boundary conditions. To 
apply the same dimensional force 𝐹  as that of the full-beam, the max-
imum value of the non-dimensional force 𝐶 for the half-beam is taken 
as 2.5. At each incremental step of mechanical force 𝐶, the same five 
magnetic load ratios 𝑟 as those for the full-beam problem are considered 
as 0.8, 1.6, 2.4, 3.2, and 4. The deformed configurations of the HMS 
half-beam in the non-dimensional plane (𝜉, 𝜂) under the maximum step 
of the mechanical load 𝐶 = 2.5 in combination with the considered 
different magnetic loads are shown in Figure S4(a)–(d). Whereas, the 
non-linear variations of the non-dimensional tip-deflection 𝛿𝑦 with 
the non-dimensional mechanical load 𝐶 for the considered different 
magnetic load ratio 𝑟 are presented in Figure S5(a)–(d).

It is evident from Figs.  6–S5 that the effects of the magnetic field 
in combination with the mechanical load on the deformation charac-
teristics of the HMS half-beam are the same as the HMS full-beam. 
The overall deflections of the HMS half-beam are exactly half of the 
deflections for the HMS full-beam under the same condition of com-
bined mechanical and magnetic loads. Hence, it is proved that an HMS 
full-beam with one fixed end and the other end being rotationally 
restrained but free to translation can be modelled as an HMS half-beam 
with cantilever boundary conditions when the HMS beam has symmet-
ric residual magnetic flux density about the mid-point. However, for 
asymmetric residual magnetic flux density, the applicability of such a 
modelling concept is investigated in the following paragraphs.

Two different asymmetric distributions of residual magnetic flux 
density about the mid-point are considered for HMS full-beam by the 
following 𝑆(𝜉).

𝑆 =

{

1, 0 ≤ 𝜉 < 0.5
−1, 0.5 ≤ 𝜉 ≤ 1

𝑆 =

{

−1, 0 ≤ 𝜉 < 0.5
1, 0.5 ≤ 𝜉 ≤ 1

With the above-presented designs of 𝑆(𝜉) for the same geometric and 
loading parameters as those for the HMS full-beam with symmetric 
uniform residual magnetic flux density, load–deformation characteris-
tics of HMS full-beam are computed. Deformed configurations of the 
HMS full-beam having asymmetric magnetic flux density are presented 
in Fig.  7. The figure depicts some non-conventional typical complex 
shapes of HMS beam achieved for the considered designs of 𝑆(𝜉). 
Though the curvatures of the deformed configurations are different for 
the two considered distributions of residual magnetic flux density, the 
endpoints undergo the same deflections. Variations of such common 
tip-deflection 𝛿𝑦 with the mechanical load 𝐶 for the considered different 
magnetic load ratios 𝑟 are shown in Figure S6. The figure clearly shows 
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Fig. 6. Deformed shapes of HMS full-beam configurations with symmetric uniform residual magnetic flux density about the mid-point under combined mechanical and 
magnetic load. Non-dimensional deformed configurations (𝜉, 𝜂) of HMS full beams with the coefficient of residual magnetic flux density 𝑆 = 1 and 𝑆 = −1 under non-dimensional 
mechanical force 𝐶 = 10 in combination with different magnitudes of non-dimensional magnetic load 𝐵 = 𝑟𝐶 in terms of the magnetic load ratio 𝑟 with the inclination angles of 
the mechanical and magnetic loads of (a) 𝛼 = 𝛽 = 𝜋∕2, (b) 𝛼 = 𝛽 = 𝜋∕3, (c) 𝛼 = 𝛽 = 𝜋∕4, and (d) 𝛼 = 𝛽 = 𝜋∕6.
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Fig. 7. Deformed shapes of HMS full-beam configurations with asymmetric residual magnetic flux density about the mid-point under combined mechanical and magnetic 
load. Non-dimensional deformed configurations (𝜉, 𝜂) of HMS full-beam with asymmetric residual magnetic flux density under non-dimensional mechanical force 𝐶 = 10 in 
combination with different magnitudes of non-dimensional magnetic load 𝐵 = 𝑟𝐶 in terms of the magnetic load ratio 𝑟 with the inclination angles of the mechanical and magnetic 
loads as (a) 𝛼 = 𝛽 = 𝜋∕2, (b) 𝛼 = 𝛽 = 𝜋∕3, (c) 𝛼 = 𝛽 = 𝜋∕4, and (d) 𝛼 = 𝛽 = 𝜋∕6.
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that for the considered two designs of 𝑆(𝜉), the deflections got reduced 
compared to the loading condition of mechanical load only (𝑟 = 0).

The HMS full-beam with the considered two asymmetric distribu-
tions of residual magnetic flux density is tried to be modelled now 
as two HMS half-length beams either with 𝑆 = 1 or with 𝑆 = −1. 
Load–deformation characteristics of such HMS half-length beams are 
already presented in Figures S4 and S5. Comparisons of the deflec-
tion results for the HMS full-beam with asymmetric residual magnetic 
flux density as presented in Figs.  7 and S6 with those for the HMS 
half-beam as presented in Figures S4 and S5 depicts that the deflec-
tions through the half-beam model are not half of the deflections 
obtained through the full-beam model. However, for symmetric resid-
ual magnetic flux density, we got exactly the half deflections from the 
half-beam model compared to the full-beam model under the same 
condition of combined mechanical and magnetic loading as described 
through comparisons between Figs.  6–S5. Hence, it is concluded from 
the comparison studies that modelling of HMS full-beam with one 
fixed end and the other end being rotationally restrained but free to 
translation as two half-length cantilever beams is only possible when 
the residual magnetic flux density is symmetric about the mid-point of 
the HMS full-beam. As we focus on both symmetric and asymmetric 
designs of 𝑆(𝜉) for modulation of effective elastic moduli of HMS beam 
networks, the two beam models are applied carefully for analysing 
nonlinear hexagonal lattices in the following subsections.

Comparisons of the deflection results between the extensible and 
inextensible versions of the present semi-analytical HMS beam model 
as presented in Figs.  6–S6 clearly show that the effect of centreline 
extension is not significant for the considered HMS beam under com-
bined mechanical and magnetic loads. For achieving higher level of 
accuracy, we will consider the generalized extensible model in the 
further computations of effective elastic moduli of the HMS beam 
networks.

3.3. Periodic beam network-level validation

As the hexagonal lattice consisting of HMS beam members subjected 
to combined mechanical and magnetic loads is not investigated in 
the literature, directly comparable results for the presently developed 
semi-analytical framework are not readily available for reference and 
validation. Hence, the current semi-analytical framework estimating 
non-linear effective elastic moduli of hexagonal HMS beam network 
under combined mechanical and magnetic loads is validated for the 
special case of zero magnetic field (𝑟𝑖 = 0) subjected to different modes 
of mechanical stress only (𝜎1 or 𝜎2 or 𝜏). Validations for the non-linear 
effective elastic moduli 𝐸1 and 𝜈12 under normal mechanical stress 𝜎1
and for the elastic moduli 𝐸2 and 𝜈21 under normal mechanical stress 𝜎2
are carried out by comparing with the results presented by Ghuku and 
Mukhopadhyay (2022a). Whereas, for the non-linear effective shear 
modulus 𝐺12 under the shear mode of mechanical stress 𝜏, the semi-
analytical framework is validated by comparing with the paper by Fu 
et al. (2016).

The validation study for non-linear elastic moduli (𝐸1, 𝜈12, 𝐸2, and 
𝜈21) of the hexagonal HMS beam network under the normal modes 
of mechanical stress only (𝜎1 and 𝜎2) (Ghuku and Mukhopadhyay, 
2022a) is carried out for the lattice configuration with the geometric 
specifications ℎ∕𝑙 = 2, 𝑡∕𝑙 = 0.01, and 𝜃 = 𝜋∕6. Young’s modulus 
of the intrinsic material is taken as 𝐸𝑠 = 200 GPa in the reference 
literature (Ghuku and Mukhopadhyay, 2022a). Whereas, for the present 
semi-analytical model, the material constitutive parameters are con-
sidered as 𝐶10 = 0.2712, 𝐶20 = 0.0305, and 𝐶30 = −0.004 within the 
framework of the Yeoh hyperelastic model (Xu and Liu, 2018). In the 
reference literature (Ghuku and Mukhopadhyay, 2022a), the non-linear 
results are presented as the variations of the non-dimensional elastic 
moduli 𝐸̄1, 𝜈12, 𝐸̄2, and 𝜈21 with the dimensional input normal stress 𝜎1
and 𝜎2. As the elastic moduli are presented in non-dimensional forms, 
they are independent of the intrinsic material property 𝐸 . However, 
𝑠
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the dimensional form of the input normal stress 𝜎1 and 𝜎2 makes 
the results dependent on the intrinsic material property 𝐸𝑠. Hence, 
to make the input normal stress independent of the material property 
𝐸𝑠, the stresses 𝜎1 and 𝜎2 are also expressed in non-dimensional forms 
following Eq. (58) as 𝜎̄1 = 𝜎1∕𝐸𝑠𝜌3 and 𝜎̄2 = 𝜎2∕𝐸𝑠𝜌3. Variations of 
the non-dimensional effective Young’s modulus 𝐸̄1 and the Poisson’s 
ratio 𝜈12 of the considered hexagonal lattice configuration with the 
non-dimensional compressive and tensile modes of normal stress 𝜎̄1
are compared considering the present model, the results reported in 
the paper (Ghuku and Mukhopadhyay, 2022a), and the linear small-
deformation analytical model (Gibson and Ashby, 1999) as presented 
in Figure S7(a) and (b). The similar comparison plots for the non-
dimensional effective Young’s modulus 𝐸̄2 and the Poisson’s ratio 𝜈21
under the non-dimensional compressive and tensile modes of normal 
stress 𝜎̄2 are presented in Figure S7(c) and (d).

The comparison plots in Figure S7 depict that the non-dimensional 
effective elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, and 𝜈21 of the hexagonal HMS 
beam network under normal modes of mechanical stress 𝜎̄1 and 𝜎̄2
as estimated by the present model match exactly with the non-linear 
model in literature (Ghuku and Mukhopadhyay, 2022a) at lower input 
stress level. However, the differences between them increase with the 
input stress level. The geometric exactness in non-linear kinematics 
and the hyperelastic material model of the present framework is the 
possible cause of this difference with the model reported in Ghuku 
and Mukhopadhyay (2022a). However, the differences in the elastic 
moduli at the higher stress levels are not very significant. Moreover, 
the increasing or decreasing trends of the elastic moduli with the input 
stress magnitudes agree well between the present model and the non-
linear model reported in literature (Ghuku and Mukhopadhyay, 2022a). 
As also observed from Figure S7 that within the small deformation 
regime, the non-linear elastic moduli match exactly with the con-
ventional analytical solutions (Gibson and Ashby, 1999). Differences 
between the elastic moduli estimated by the present framework and 
the linear solutions (Gibson and Ashby, 1999) increase with input 
stress magnitude due to the non-linearity in the system which is not 
considered in the conventional linear analytical solutions (Gibson and 
Ashby, 1999).

The validation study of the present non-linear framework for the 
effective shear modulus 𝐺12 of hexagonal HMS beam network un-
der shear mode of mechanical stress 𝜏 is carried out for the auxetic 
configuration with 𝜃 = −𝜋∕6 in terms of shear strain 𝛾12 versus 
non-dimensional shear stress 𝜏∕𝐸𝑠 curve and shear strain 𝛾12 ver-
sus non-dimensional shear modulus 𝐺12∕𝐸𝑠 curve following similar 
representation scheme of the reference literature (Fu et al., 2016). 
The shear strain 𝛾12 versus shear stress 𝜏∕𝐸𝑠 curves for the auxetic 
lattice configuration with ℎ∕𝑙 = 2 and 𝑡∕𝑙 = 0.1 as obtained from 
the present model, the model reported by Fu et al. (2016), and the 
analytical model (Gibson and Ashby, 1999) are compared in Figure 
S8(a). Whereas, the similar comparison of stress–strain curves under 
the shear mode of mechanical stress for the auxetic lattice configuration 
with ℎ∕𝑙 = 2 and 𝑡∕𝑙 = 0.12 is shown in Figure S8(b). On the other hand, 
variations of the non-dimensional effective shear modulus 𝐺12∕𝐸𝑠 with 
the shear strain 𝛾12 are compared considering the present model, the 
model reported by Fu et al. (2016), and the analytical model (Gibson 
and Ashby, 1999) in Figure S8(c) and (d) for two lattice configurations 
with ℎ∕𝑙 = 1.5, 𝑡∕𝑙 = 0.1 and ℎ∕𝑙 = 2, 𝑡∕𝑙 = 0.1 respectively.

The comparison plots in Figure S8(a) and (b) show that the stress–
strain curves (𝛾12 versus 𝜏∕𝐸𝑠) of the HMS beam network under the 
shear mode of mechanical stress 𝜏 as estimated by the present semi-
analytical framework match exactly with the analytical solutions (Gib-
son and Ashby, 1999) within the small deformation regime. The non-
linear stress–strain curves estimated by the present framework also 
match with the non-linear model (Fu et al., 2016) at the lower shear 
strain levels within the non-linear zone. However, with the increase in 
the shear strain 𝛾12, the differences between the non-linear stress–strain 
curves increase. Similar observations are found from the comparison 
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plots of variations of the non-dimensional effective shear modulus 
𝐺12∕𝐸𝑠 of the HMS beam network with the shear strain 𝛾12 in Figure 
S8(c) and (d). The differences between the present framework and 
the non-linear model reported in Fu et al. (2016) arise due to the 
fundamental differences in their respective formulations. The present 
framework is developed in the geometrically exact non-linear kinematic 
setting considering combined bending and axial deformations with the 
hyperelastic constitutive material model. Whereas, the model reported 
in the reference literature (Fu et al., 2016) is developed within the 
geometric non-linear kinematic setting excluding the axial deformation 
considering linear elastic constitutive material characteristics. Though 
the non-linear shear stiffness of the HMS beam network as predicted 
by the present framework has some difference at the higher strain 
levels, the trends are the same with the non-linear model reported 
in literature (Fu et al., 2016). Within the framework of the existing 
fundamental differences in the formulations (where the present model 
is more accurate), the validation study of the present model with the 
non-linear model from literature (Fu et al., 2016) for the effective 
shear stiffness of the HMS beam networks can be considered quite 
satisfactory.

In this subsection, we have primarily concentrated on the hexag-
onal lattices with non-auxetic and auxetic geometries for lattice-level 
validation, depending on the availability of reference literature. While 
rectangular brick, re-entrant auxetic and rhombic geometries are direct 
derivatives of hexagonal lattices (thus no need for additional valida-
tion), the triangular and rectangular lattice configurations are further 
validated later in their respective subsections.

3.4. Hexagonal periodic HMS beam networks under uniform residual mag-
netic flux density

Effect of the magnetic field 𝐵𝑎 along direction-2 in combination 
with a particular mode of mechanical stress (𝜎1 or 𝜎2 or 𝜏) on the non-
linear effective elastic moduli of the hexagonal HMS beam network 
having uniform residual magnetic flux density 𝑆 = 1 and 𝑆 = −1
is investigated in this subsection. As mentioned earlier, under the 
combined loading of normal stress 𝜎1 and magnetic field 𝐵𝑎, we will 
focus on the longitudinal non-dimensional Young’s modulus 𝐸̄1 and 
Poisson’s ratio 𝜈12. Under the combined loading of 𝜎2 and 𝐵𝑎, we 
will focus on the transverse non-dimensional Young’s modulus 𝐸̄2 and 
Poisson’s ratio 𝜈21. Whereas, under the combined loading of shear 
stress 𝜏 and magnetic field 𝐵𝑎, we will investigate the effective non-
dimensional shear modulus 𝐺̄12. For a particular mechanical loading 
mode in combination with the magnetic field, the hexagonal HMS beam 
network is subjected to mechanical stress incrementally in 50 steps. 
At each step of mechanical loading, the incremental magnetic load is 
applied to the hexagonal HMS beam network in terms of the magnetic 
load ratio 𝑟𝑖 through 100 steps.

Variations of the non-dimensional effective Young’s modulus 𝐸̄1
of the hexagonal HMS beam network having the uniform residual 
magnetic flux density 𝑆 = 1 as a function of the magnetic load ratio 𝑟𝑖
at different stress levels under the compressive mechanical stress 𝜎1 in 
combination with the magnetic field 𝐵𝑎 are shown in Fig.  8(a). Under 
the same combined loading conditions for the hexagonal HMS beam 
network having the negative uniform residual magnetic flux density 
𝑆 = −1, variations of the Young’s modulus 𝐸̄1 with the magnetic load 
ratio 𝑟𝑖 are shown in Fig.  8(b). Whereas, under the tensile mode of the 
mechanical normal stress 𝜎1 in combination with the magnetic field 
𝐵𝑎, the similar plots of the non-dimensional Young’s modulus of the 
hexagonal HMS beam network with 𝑆 = 1 and 𝑆 = −1 are shown 
in Fig.  8(c) and (d) respectively. Variations of the effective Poisson’s 
ratio 𝜈12 of the hexagonal HMS beam network having the uniform 
residual magnetic flux density 𝑆 = 1 and 𝑆 = −1 as a function of the 
magnetic load ratio 𝑟𝑖 for the same combined loading conditions as of 
Fig.  8(a)–(d) are presented in Fig.  9(a)–(d).
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Effects of the magnetic field along with the residual magnetization 
pattern in combination with different modes of far-field mechanical 
loading on the non-linear variations of the elastic moduli as function 
of the input stress magnitude are investigated here. As observed in 
Figs.  8(a), (c), (d), and 9(a), (c), (d), singularity points for the effective 
Young’s modulus 𝐸̄1 and Poisson’s ratio 𝜈12 arise at some magnetic load 
ratios 𝑟𝑖 for the hexagonal HMS beam network with 𝑆 = 1 under both 
tension and compression and for the hexagonal HMS beam network 
with 𝑆 = −1 under tensile mode only. The beam-level deflections under 
the magnetic load 𝐵𝑎 corresponding to singular magnetic load ratios 𝑟𝑖
balance the deflections under the corresponding far-field mechanical 
stress levels 𝜎1. Hence, at those magnetic load ratios 𝑟𝑖, the effective 
Young’s modulus 𝐸̄1 and Poisson’s ratio 𝜈12 of the hexagonal HMS 
beam network become undefined due to no effective lattice-level strain. 
However, such singularity points for the effective Young’s modulus 
𝐸̄1 and Poisson’s ratio 𝜈12 do not arise for the hexagonal HMS beam 
network with 𝑆 = −1 under the compressive mode of the mechanical 
stress 𝜎1 in combination with the magnetic field 𝐵𝑎 as observed in Figs. 
8(b) and 9(b). As also observed from Fig.  8 that under certain combina-
tions of the mechanical and magnetic loading, negative stiffness of the 
hexagonal HMS beam network can be achieved. To observe the effect of 
the magnetic load in terms of the magnetic load ratio 𝑟𝑖 on the effective 
stiffness of the hexagonal HMS beam network, variations of the non-
dimensional Young’s modulus 𝐸̄1 with the input stress 𝜎1 for equally 
spaced magnetic load ratios 𝑟𝑖 are further presented in Figure S9(a)–(d). 
For the same magnetic load ratios 𝑟𝑖, variations of the Poisson’s ratio 
𝜈12 with the input stress 𝜎1 are presented in Figure S10(a)–(d). The 
variations of the elastic moduli with the input stress magnitude is 
coming from the geometric non-linearity due to large deformation and 
material non-linearity under magneto-mechanical coupling.

As observed from Figure S9(a), the effective non-dimensional
Young’s modulus 𝐸̄1 of the hexagonal HMS beam network with 𝑆 =
1 decreases with the input stress magnitude under the compressive 
mechanical stress 𝜎1 in combination with the magnetic load having the 
magnetic load ratio 0 ≤ 𝑟𝑖 ≤ 0.4. Under the same loading condition 
for the magnetic load ratio 0.6 ≤ 𝑟𝑖 ≤ 0.7, negative stiffness of 
the HMS beam network is observed. The negative stiffness initially 
increases with the stress magnitude 𝜎1 and then starts decreasing at 
the higher stress levels. However, both the positive and negative non-
dimensional Young’s modulus increases with the magnetic load ratio 
𝑟𝑖. Maximum 225.5% enhancement in the positive Young’s modulus 
𝐸̄1 is observed from Figure S9(a) compared to the only mechanical 
loading condition (𝑟𝑖 = 0). Whereas, the maximum enhancement in 
the negative Young’s modulus 𝐸̄1 is achieved as 74.2% for 𝑟𝑖 = 0.7
compared to 𝑟𝑖 = 0.6. Under the compressive stress 𝜎1 in combination 
with the magnetic load having 0 ≤ 𝑟𝑖 ≤ 3 for the hexagonal HMS beam 
network with 𝑆 = −1 as observed from Figure S9(b), 𝐸̄1 decreases 
with the input stress magnitude 𝜎1 for lower 𝑟𝑖. However, for higher 
𝑟𝑖, 𝐸̄1 initially decreases and then increases with 𝜎1. The overall non-
dimensional Young’s modulus 𝐸̄1 decreases with the magnetic load 
ratio 𝑟𝑖. A maximum 84% reduction in 𝐸̄1 is observed in Figure S9(b) 
for 𝑟𝑖 = 3 compared to 𝑟𝑖 = 0.

As evident from Figure S9(c), for the hexagonal HMS beam network 
with 𝑆 = 1 under the tensile mode of mechanical normal stress 𝜎1
in combination with the magnetic load having 0 ≤ 𝑟𝑖 ≤ 1.5, the non-
dimensional Young’s modulus 𝐸̄1 increases with the stress amplitude. 
The overall 𝐸̄1 decreases with the magnetic load ratio 𝑟𝑖 at the lower 
stress zone, however, at the higher input stress level 𝜎1, it has some 
mixed trend with 𝑟𝑖. Maximum enhancement and reduction in the non-
dimensional Young’s modulus 𝐸̄1 compared to the only mechanical 
loading condition (𝑟𝑖 = 0) are obtained as 44.1% and 72.1% respec-
tively. Under the combined tensile stress 𝜎1 and magnetic field with 
0 ≤ 𝑟𝑖 ≤ 0.4 for the HMS beam network with the negative residual 
magnetic flux density 𝑆 = −1, the positive non-dimensional Young’s 
modulus 𝐸̄1 increases with the stress amplitude as observed from Figure 
S9(d). For the magnetic load ratio 1 ≤ 𝑟 ≤ 2, the non-dimensional 
𝑖
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Fig. 8. Effective Young’s modulus of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical normal stress along 
direction-1 and magnetic field along direction-2. Variations of the non-dimensional effective Young’s modulus 𝐸̄1 of the hexagonal HMS beam network having uniform residual 
magnetic flux density (a, c) 𝑆 = 1 and (b, d) 𝑆 = −1 as function of the magnetic load ratio 𝑟𝑖 at different mechanical stress levels 𝜎1 under the (a, b) compressive and (c, d)
tensile modes of the mechanical stress 𝜎1 in combination with the magnetic field 𝐵𝑎 along direction-2.
Young’s modulus 𝐸̄1 is negative which decreases with 𝜎1. However, 
both the positive and negative Young’s modulus 𝐸̄1 increases with 𝑟𝑖. As 
obtained from Figure S9(d), the maximum enhancements in the positive 
and negative 𝐸̄1 are found to be 189.1% and 67.6% respectively.

As observed from Figure S10(a), for the hexagonal HMS beam 
network with 𝑆 = 1 under the combined compressive stress 𝜎1 and 
magnetic load, the effective Poisson’s ratio 𝜈12 decreases with 𝜎1 for 0 ≤
𝑟𝑖 ≤ 0.4 and increases with 𝜎1 for 0.6 ≤ 𝑟𝑖 ≤ 0.7. However, for both the 
ranges of 𝑟𝑖, the overall Poisson’s ratio 𝜈12 has an increasing trend with 
the magnetic load ratio 𝑟 . The maximum enhancements in 𝜈  for the 
𝑖 12
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two ranges of 𝑟𝑖 are found to be 29.8% and 232.8% respectively. Under 
the same combined loading conditions for the HMS beam network with 
𝑆 = −1 as presented in Figure S10(b), the effective Poisson’s ratio 𝜈12
has decreasing trends with both 𝜎1 and 𝑟𝑖. A maximum 29.8% reduction 
in 𝜈12 is observed compared to the only mechanical loading condition 
𝑟𝑖 = 0. As evident from Figure S10(c), the effective Poisson’s ratio 𝜈12
of the HMS beam network with 𝑆 = 1 increases with both input tensile 
stress magnitude 𝜎1 and the magnetic load ratio 𝑟𝑖. The maximum 
enhancement in 𝜈12 compared to the loading condition of 𝑟𝑖 = 0 is 
found to be 449.2%. Under the combined loading of tensile 𝜎  and 
1
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Fig. 9. Effective Poisson’s ratio of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical normal stress along 
direction-1 and magnetic field along direction-2. Variations of the effective Poisson’s ratio 𝜈12 of the hexagonal HMS beam network having uniform residual magnetic flux 
density (a, c) 𝑆 = 1 and (b, d) 𝑆 = −1 as function of the magnetic load ratio 𝑟𝑖 at different mechanical stress levels 𝜎1 under the (a, b) compressive and (c, d) tensile modes of 
the mechanical stress 𝜎1 in combination with the magnetic field 𝐵𝑎 along direction-2.
𝑟𝑖 within the range 0 ≤ 𝑟𝑖 ≤ 0.4, 𝜈12 of the HMS beam network with 
𝑆 = −1 increases with 𝜎1 as observed from Figure S10(d). For the range 
1 ≤ 𝑟𝑖 ≤ 2, 𝜈12 decreases with 𝜎1. For both the ranges of 𝑟𝑖, the overall 
effective Poisson’s ratio 𝜈12 has decreasing trends with 𝑟𝑖. The maximum 
reductions in 𝜈12 for the considered two ranges of 𝑟𝑖 are obtained from 
Figure S10(d) as 20.6% and 21.9% respectively.

Under the compressive and tensile normal stress along direction-
2 (𝜎2) in combination with the magnetic field along direction-2 (𝐵𝑎), 
effects of the magnetic load ratio 𝑟𝑖 and input stress magnitude 𝜎2 on 
the non-dimensional elastic moduli 𝐸̄  and 𝜈  of the hexagonal HMS 
2 21

28 
beam network with uniform residual magnetic flux density 𝑆 = 1 and 
𝑆 = −1 are shown in Figs.  10–S12 following the representation scheme 
for the combined loading 𝜎1 and 𝐵𝑎 (refer to Figs.  8–S10). Figs.  10(b), 
(c), and 11(b), (c) depict that for the hexagonal HMS beam network 
with 𝑆 = −1 under compression and the hexagonal HMS beam network 
with 𝑆 = 1 under tension, singularity points on the effective 𝐸̄2 and 
𝜈21 arise at some magnetic load ratios 𝑟𝑖. However, for the other two 
configurations as presented in Figs.  10(a), (d), and 11(a), (d), such 
phenomena are not observed.
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Fig. 10. Effective Young’s modulus of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical normal stress along 
direction-2 and magnetic field along direction-2. Variations of the non-dimensional effective Young’s modulus 𝐸̄2 of the hexagonal HMS beam network having the uniform 
residual magnetic flux density (a, c) 𝑆 = 1 and (b, d) 𝑆 = −1 as function of the magnetic load ratio 𝑟𝑖 at different mechanical stress levels 𝜎2 under the (a, b) compressive and
(c, d) tensile modes of the mechanical stress 𝜎2 in combination with the magnetic field 𝐵𝑎 along direction-2.
As observed from Figure S11(a), the non-dimensional effective 
Young’s modulus 𝐸̄2 of the hexagonal HMS beam network with 𝑆 = 1
decrease with compressive stress magnitude 𝜎2 for lower values of 
𝑟𝑖. However, for higher values of 𝑟𝑖, 𝐸̄2 initially decreases and then 
increases with 𝜎2. The overall stiffness decreases with 𝑟𝑖 and maximum 
83.9% reduction in 𝐸̄2 is observed. Under the same compressive mode 
of mechanical loading, the positive and negative 𝐸̄2 of the hexagonal 
HMS beam network with 𝑆 = −1 for the ranges of the magnetic load 
ratio 0 ≤ 𝑟𝑖 ≤ 0.7 and 1.5 ≤ 𝑟𝑖 ≤ 2.5 respectively decreases with 
stress magnitude 𝜎  and increases with 𝑟  as observed in Figure S11(b). 
2 𝑖

29 
The maximum enhancements in the positive and negative 𝐸̄2 due to 
the magnetic field are achieved as 233.7% and 66.6% respectively. As 
observed from Figure S11(c) and (d), under the tensile mode of the 
normal stress 𝜎2, the effective Young’s modulus 𝐸̄2 increase with 𝜎2
for both the hexagonal HMS beam networks with 𝑆 = 1 and 𝑆 = −1. 
However, for the HMS beam network with 𝑆 = 1, the positive and 
negative non-dimensional 𝐸̄2 increases with 𝑟𝑖 in the considered ranges 
0 ≤ 𝑟𝑖 ≤ 0.7 and 1.5 ≤ 𝑟𝑖 ≤ 2.5 respectively. Maximum 232.6% and 
66.8% enhancements in the positive and negative 𝐸̄2 are achieved as 
obtained from Figure S11(c). Whereas, for the HMS beam network with 
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Fig. 11. Effective Poisson’s ratio of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical normal stress along 
direction-2 and magnetic field along direction-2. Variations of the effective Poisson’s ratio 𝜈21 of the hexagonal HMS beam network having the uniform residual magnetic flux 
density (a, c) 𝑆 = 1 and (b, d) 𝑆 = −1 as function of the magnetic load ratio 𝑟𝑖 at different mechanical stress levels 𝜎2 under the (a, b) compressive and (c, d) tensile modes of 
the mechanical stress 𝜎2 in combination with the magnetic field 𝐵𝑎 along direction-2.
the negative residual magnetic flux density 𝑆 = −1, opposite effect of 𝑟𝑖
is observed in Figure S11(d) with the 83.1% maximum reduction with 
respect to the only mechanical loading condition, 𝑟𝑖 = 0.

As evident from Figure S12(a), the effective Poisson’s ratio 𝜈21 of 
the hexagonal HMS beam network with 𝑆 = 1 decreases with both the 
compressive stress 𝜎2 and magnetic load ratio 𝑟𝑖. A maximum 129.4% 
reduction in 𝜈21 is observed for 𝑟𝑖 = 5 compared to 𝑟𝑖 = 0. For 
the HMS beam network with 𝑆 = −1 under tensile mode of normal 
stress as presented in Figure S12(d), completely opposite effects of 𝜎2
and 𝑟  are observed with the maximum 55% enhancement. As obvious 
𝑖

30 
from Figure S12(b), for the HMS beam network with 𝑆 = −1 under 
compressive stress 𝜎2 in combination with the magnetic load 0 ≤ 𝑟𝑖 ≤
0.7, the effective Poisson’s ratio 𝜈21 decreases with stress magnitude. For 
the magnetic load range 1.5 ≤ 𝑟𝑖 ≤ 2.5, an opposite effect of the non-
linearity is observed. However, for both the considered magnetic load 
ranges, 𝜈21 increases with 𝑟𝑖 having the maximum 35.1% and 21.9% 
enhancements respectively. Completely opposite effects of 𝜎2 and 𝑟𝑖 are 
observed in Figure S12(c) for the HMS beam network with 𝑆 = 1 under 
tensile stress 𝜎 . The corresponding reductions in the effective 𝜈  due 
2 21
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Fig. 12. Effective shear modulus of hexagonal HMS beam networks having uniform residual magnetic flux density under combined mechanical shear stress in plane 
1–2 and magnetic field along direction-2. Variations of the non-dimensional effective shear modulus 𝐺̄12 of the hexagonal HMS beam network having the uniform residual 
magnetic flux density (a, c) 𝑆 = 1 and (b, d) 𝑆 = −1 as function of the magnetic load ratio 𝑟𝑖 at different mechanical stress levels 𝜏 under the (a, b) anti-clockwise and (c, d)
clockwise modes of the mechanical stress 𝜏 in combination with the magnetic field 𝐵𝑎 along direction-2.
to the application of magnetic field are found to be 15.1% and 39% 
respectively.

Under the anti-clockwise and clockwise modes of the shear stress 𝜏
in combination with the magnetic field 𝐵𝑎 along direction-2, combined 
effects of the magnetic load ratio 𝑟𝑖 and the input stress magnitude 𝜏
on the non-dimensional shear modulus 𝐺̄12 of the hexagonal HMS beam 
network with uniform residual magnetic flux density 𝑆 = 1 and 𝑆 = −1
are shown in Figs.  12 and S13 following similar representation scheme 
for the combined loading condition of normal stress and magnetic field. 
As obvious from Fig.  12(b) and (c), for the HMS beam network with 
31 
𝑆 = −1 under anti-clockwise shear stress and the HMS beam network 
with 𝑆 = 1 under clockwise shear stress, singularity points arise at some 
𝑟𝑖 values. For these combined loading cases, negative shear modulus 
is observed under certain combinations of 𝜏 and 𝑟𝑖. Whereas, for the 
other two combined loading conditions as presented in Fig.  12(a) and 
(d), such singularity points of the shear modulus do not arise.

As obvious from Figure S13(a) and (d), for the hexagonal HMS 
beam network with 𝑆 = 1 under anti-clockwise shear stress and the 
hexagonal HMS beam network with 𝑆 = −1 under clockwise shear 
stress, the effective non-dimensional shear modulus 𝐺̄  increases with 
12
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stress magnitude 𝜏 for the lower values of 𝑟𝑖. Whereas, for the higher 
magnetic loading 𝑟𝑖, mixed increasing–decreasing effects of the stress 
magnitude are observed. However, for both the configurations, 𝑟𝑖 has 
the same decreasing effects with the corresponding 41.8% and 68.4% 
maximum reductions in 𝐺̄12. For the HMS beam network with the 
negative magnetization 𝑆 = −1 under the anti-clockwise mode of 
shear stress 𝜏 as presented in Figure S13(b), some irregular effects of 
the stress magnitude 𝜏 and the magnetic load ratio 𝑟𝑖 are observed 
on the non-dimensional positive 𝐺̄12 for 0 ≤ 𝑟𝑖 ≤ 3 and the mixed 
negative–positive 𝐺̄12 for 5 ≤ 𝑟𝑖 ≤ 6. The maximum enhancement 
and reduction in the positive 𝐺̄12 are found to be 339.6% and 56.8% 
respectively. Whereas, the maximum enhancement in the negative 𝐺̄12
is observed as 47.3%. For the HMS beam network with 𝑆 = 1 under 
the clockwise shear stress 𝜏 as presented in Figure S13(c), the positive 
non-dimensional shear modulus 𝐺̄12 for 0 ≤ 𝑟𝑖 ≤ 1.5 increases with the 
input stress amplitude. However, for the magnetic load range 5 ≤ 𝑟𝑖 ≤ 6, 
the negative 𝐺̄12 initially increases with 𝜏 but at the higher stress level 
becomes almost independent of 𝜏. Both the positive and negative 𝐺̄12 of 
the HMS beam network increase with 𝑟𝑖 resulting in maximum 463.4% 
and 43.2% enhancements respectively. It is interesting no note from the 
trends presented for the elastic moduli, the value of applied magnetic 
field can be actively modulated (and optimized) based on the applied 
external mechanical stresses to achieve a target level of certain elastic 
modulus and stiffness.

3.5. Periodic HMS beam network with optimally-architected residual mag-
netic flux density

As described in the mathematical formulation in Section 2.3.1, the 
beam elements of the hexagonal HMS beam network are subjected to 
finite moments at the ends with zero moment at the mid-point due 
to the typical rotationally boundary conditions. Based on the kinetic 
conditions, two sets of intuitive designs of the residual magnetic flux 
density (𝑆(𝜉)) are proposed having maximum hard particle density at 
the endpoints with zero at the mid-point of the HMS beam elements. In 
the first set of design, we consider either 𝑆 = 1 or 𝑆 = −1 at both the 
ends 𝜉 = 0, 1 with 𝑆 = 0 at the mid-point 𝜉 = 0.5. The variation of 𝑆(𝜉)
along the normalized coordinate 𝜉 is defined by the following equation 
with the degree of non-linearity 𝑛.

𝑆(𝜉) =

⎧

⎪

⎨

⎪

⎩

±(1 − 2𝜉)𝑛, 0 ≤ 𝜉 < 0.5

±(−1 + 2𝜉)𝑛, 0.5 ≤ 𝜉 ≤ 1

For the second set of design, 𝑆(𝜉) is varying either from 𝑆 = −1
to 𝑆 = 1 or from 𝑆 = 1 to 𝑆 = −1 between the ends 𝜉 = 0, 1
with 𝑆 = 0 at the mid-point 𝜉 = 0.5. The variation of 𝑆(𝜉) along the 
normalized coordinate 𝜉 for the second set of design of 𝑆(𝜉) is expressed 
mathematically below with the degree of non-linearity 𝑛.

𝑆(𝜉) =

⎧

⎪

⎨

⎪

⎩

∓(1 − 2𝜉)𝑛, 0 ≤ 𝜉 < 0.5

±(−1 + 2𝜉)𝑛, 0.5 ≤ 𝜉 ≤ 1

The positive and negative distributions of the first designed set of 𝑆(𝜉)
along the normalized coordinate 𝜉 with the degree of non-linearity 
𝑛 = 0, 0.1, 0.25, 0.5, 1, and 3 are shown in Fig.  13(a) and (b) respectively. 
Similarly, for the two cases of the second designed set of 𝑆(𝜉), the 
distribution of 𝑆(𝜉) along the normalized coordinate 𝜉 are presented 
in Fig.  13(c) and (d) respectively. The effect of the degree of non-
linearity 𝑛 for the two sets of designed 𝑆(𝜉) on the non-linear variation 
of the elastic moduli of the hexagonal HMS beam network as functions 
of the input stress are investigated here as presented in the following 
paragraphs.

Variations of the non-dimensional effective Young’s modulus 𝐸̄1 of 
the hexagonal HMS beam network with the input stress 𝜎1 for the 
considered six degrees of non-linearity 𝑛 (0, 0.1, 0.25, 0.5, 1, and 3) of the 
32 
positive and negative distribution of the first set of designed 𝑆(𝜉) (refer 
to Fig.  13(a) and (b)) under the combined compressive stress along 
direction-1 (𝜎1) and the external magnetic field 𝐵𝑎 along direction-2 
are shown in Fig.  14(a). Whereas, the variations of 𝐸̄1 under the tensile 
mode of the normal stress 𝜎1 in combination with the magnetic field 
𝐵𝑎 are presented in Fig.  14(b). The similar plots showing the effects of 
the degree of non-linearity 𝑛 on the effective Poisson’s ratio 𝜈12 of the 
hexagonal HMS beam network with the first set of designed 𝑆(𝜉) are 
shown in Fig.  14(c) and (d) respectively. The results are compared in 
Fig.  14 for the magnetic load ratio 𝑟𝑖 = 0.4. Under the combined loading 
of normal stress along direction-2 (𝜎2) and the magnetic field 𝐵𝑎 along 
direction-2, effects of the degree of non-linearity 𝑛 on the non-linear 
variations of the effective Young’s modulus 𝐸̄2 and Poisson’s ratio 𝜈21
of the hexagonal HMS beam network with the first set of designed 𝑆(𝜉)
are shown in Figure S14 for the magnetic load ratio 𝑟𝑖 = 0.5. Whereas, 
similar variations of the non-linear shear modulus 𝐺̄12 of the HMS beam 
network with the degree of non-linearity 𝑛 for the first set of designed 
𝑆(𝜉) under the anti-clockwise and clockwise modes of shear stress (𝜏) 
in combination with the external magnetic field 𝐵𝑎 are shown in Fig. 
15 for the magnetic load ratio 𝑟𝑖 = 1.5.

As observed from Fig.  14(a) and (c), the non-dimensional Young’s 
modulus 𝐸̄1 and the Poisson’s ratio 𝜈12 non-linearly decreases with 
compressive stress 𝜎1 for both the positive and negative distribution 
of the first set of design of 𝑆(𝜉). Such non-linearity in the system 
stiffness is coming from the inherent geometric non-linearity due to 
large deformation and material non-linearity due to magneto-elastic 
coupling under the combined mechanical and magnetic loading. For 
the positive distribution of the first set of designed 𝑆(𝜉), the overall 
non-linear Young’s modulus 𝐸̄1 and Poisson’s ratio 𝜈12 decrease with the 
degree of non-linearity 𝑛 as observed in Fig.  14(a) and (c). Whereas, for 
the negative distribution of 𝑆(𝜉), the degree of non-linearity 𝑛 shows the 
opposite increasing effect on the non-linear Young’s modulus 𝐸̄1 and 
Poisson’s ratio 𝜈12. Maximum 56% and 11% enhancements in the non-
dimensional Young’s modulus 𝐸̄1 and Poisson’s ratio 𝜈12 are achieved 
respectively for 𝑛 = 3 of the negative distribution of 𝑆(𝜉) compared to 
the uniform distribution (𝑆 = −1) for 𝑛 = 0 (refer to Fig.  14(a) and 
(c)). Whereas, maximum 66.4% and 21% reductions in 𝐸̄1 and 𝜈12 are 
obtained for 𝑛 = 3 of the positive 𝑆(𝜉) with respect to the uniform 
distribution (𝑆 = 1) for 𝑛 = 0.

Under the tensile mode of the normal stress 𝜎1 in combination with 
the external magnetic field 𝐵𝑎 as presented in Fig.  14(b) and (d), a com-
pletely opposite effect of the inherent system non-linearity is observed 
compared to the compressive mode of 𝜎1 as shown in Fig.  14(a) and 
(c). The non-dimensional Young’s modulus 𝐸̄1 and the Poisson’s ratio 
𝜈12 increase with increase in the tensile 𝜎1 for both the positive and 
negative distribution of the first set of design of 𝑆(𝜉). As shown in Fig. 
14(b), the overall non-linear Young’s modulus 𝐸̄1 increases with the 
degree of non-linearity 𝑛 for the positive distribution of 𝑆(𝜉), whereas, 
it decreases with 𝑛 for the negative distribution of 𝑆(𝜉). Whereas, as 
observed from Fig.  14(d), the degree of non-linearity 𝑛 has the opposite 
effect on the non-linear Poisson’s ratio 𝜈12 compared to the Young’s 
modulus 𝐸̄1. The maximum 31.1% and 22.7% enhancements in 𝐸̄1
and 𝜈12 are achieved respectively for the non-linear 𝑆(𝜉) with 𝑛 = 3
compared to the uniform 𝑆 with 𝑛 = 0 under the tensile mode of 
normal stress 𝜎1 in combination with the external magnetic field 𝐵𝑎 as 
observed from Fig.  14(b) and (d). Whereas, the maximum reductions 
in the elastic moduli 𝐸̄1 and 𝜈12 are observed as 62.6% and 23.3% 
respectively from Fig.  14(b) and (d) for the non-linear 𝑆(𝜉) with 𝑛 = 3
compared to the uniform 𝑆 with 𝑛 = 0.

Under the normal stress along direction-2 (𝜎2) in combination with 
the magnetic field 𝐵𝑎 along direction-2, effects of non-linearity on the 
non-dimensional elastic moduli 𝐸̄2 and 𝜈21 in terms of their variations 
with input stress magnitude 𝜎2 are observed from Figure S14 similar to 
the combined loading of 𝜎1 and 𝐵𝑎 as presented in Fig.  14. However, 
the effects of the degree of non-linearity 𝑛 of the first set of designed 
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Fig. 13. Physics-informed intuitive designs of spatially-varying residual magnetic flux density in the HMS beam elements of the hexagonal HMS beam network.
Distribution of the coefficient of residual magnetic flux density 𝑆(𝜉) along the normalized coordinate 𝜉 with the degree of non-linearity 𝑛 = 0, 0.1, 0.25, 0.5, 1, and 3 for: (a, b) the 
first set of design of 𝑆(𝜉) having (a) positive and (b) negative distribution, and (c, d) the second set of design of 𝑆(𝜉) varying (c) from 𝑆 = −1 to 𝑆 = 1 and (d) from 𝑆 = 1 to 
𝑆 = −1.
𝑆(𝜉) are found opposite for the combined loading of 𝜎2 and 𝐵𝑎 com-
pared to the combined loading of 𝜎1 and 𝐵𝑎. As evident from Figure 
S14(a) and (c), the maximum enhancements in the non-dimensional 
Young’s modulus 𝐸̄2 and Poisson’s ratio 𝜈21 under the compressive 
mode of 𝜎2 are achieved as 42.4% and 27.5% respectively for the 
positive 𝑆(𝜉) with 𝑛 = 3 compared to the uniform 𝑆 for 𝑛 = 0. Whereas, 
47.2% and 18% reductions in 𝐸̄2 and 𝜈21 are obtained for the negative 
distribution of 𝑆(𝜉) with 𝑛 = 3 compared to 𝑛 = 0. Under the tensile 
mode of 𝜎2 in combination with 𝐵𝑎, the maximum enhancement and 
reduction in 𝐸̄2 for 𝑛 = 3 with respect to the uniform 𝑆 (𝑛 = 0) are 
found to be 41% and 46.6% respectively from Figure S14(b). Whereas, 
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as evident from Figure S14(d), the enhancement and reduction in 𝜈21
for the non-linear 𝑆(𝜉) with 𝑛 = 3 compared to 𝑛 = 0 under the tensile 
mode of 𝜎2 in combination with 𝐵𝑎 are obtained as 10.4% and 7.3% 
respectively.

As evident from Fig.  15(a) and (b), under both the anti-clockwise 
and clockwise modes of shear stress 𝜏 in combination with the magnetic 
field 𝐵𝑎, the non-dimensional shear modulus 𝐺̄12 increases with the in-
put stress 𝜏 for the positive distribution of the first set of design of 𝑆(𝜉). 
Whereas, for the HMS beam network with the negative distribution of 
the first set of designed 𝑆(𝜉), the non-dimensional shear modulus 𝐺̄12
initially decreases and then increases with 𝜏 for the lower values of 𝑛. 
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Fig. 14. Modulation of the effective elastic moduli of hexagonal HMS beam networks with the first set of designed 𝑆(𝜉) under the normal stress along direction-1 in 
combination with the magnetic field along direction-2. Variations of the (a, b) non-dimensional effective Young’s modulus 𝐸̄1 and (c, d) effective Poisson’s ratio 𝜈12 of the 
hexagonal HMS beam network as function of the input stress 𝜎1 for the considered six degrees of non-linearity 𝑛 (0, 0.1, 0.25, 0.5, 1, and 3) of the positive and negative distributions 
of the first set of designed 𝑆(𝜉) under the (a, c) compressive and (b, d) tensile mode of normal stress 𝜎1 along direction-1 in combination with the magnetic field 𝐵𝑎 along 
direction-2. The results are compared for the magnetic load ratio of the inclined member 𝑟𝑖 = 0.4.
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Fig. 15. Modulation of the effective shear modulus of hexagonal HMS beam networks with the first set of designed 𝑆(𝜉) under the shear stress in plane 1–2 in 
combination with the magnetic field along direction-2. Variations of the non-dimensional effective shear modulus 𝐺̄12 of the hexagonal HMS beam network as function of the 
input stress 𝜏 for the considered six degrees of non-linearity 𝑛 (0, 0.1, 0.25, 0.5, 1, and 3) of the positive and negative distributions of the first set of designed 𝑆(𝜉) under the (a)
anti-clockwise and (b) clockwise mode of shear stress 𝜏 in plane 1–2 in combination with the magnetic field 𝐵𝑎 along direction-2. The results are compared for the magnetic load 
ratio of the inclined member 𝑟𝑖 = 1.5.
However, for the highest value of the degree of non-linearity 𝑛 = 3, 𝐺̄12
has an increasing trend with the input stress 𝜏 amplitude. As observed 
from Fig.  15(a), under the anti-clockwise mode of 𝜏 in combination 
with the magnetic field 𝐵𝑎, the non-dimensional shear modulus 𝐺̄12
increases with the degree of non-linearity 𝑛 for the positive distribution 
of the first designed set 𝑆(𝜉). However, for the negative distribution of 
𝑆(𝜉), 𝐺̄12 decreases with 𝑛 at the lower stress level, whereas, it increases 
with 𝑛 at the higher stress zone. Maximum 30.9% enhancement in the 
non-dimensional shear modulus 𝐺̄12 is achieved for 𝑛 = 3 of the positive 
distribution of the first set of designed 𝑆(𝜉) compared to the uniform 𝑆
with 𝑛 = 0. Whereas, the maximum reduction and enhancement in 𝐺̄12
for the negative 𝑆(𝜉) are observed as 35.6% and 50.9% respectively. 
On the other hand, under the clockwise mode of 𝜏 in combination with 
the magnetic field 𝐵𝑎 as observed in Fig.  15(b), the non-dimensional 
shear modulus 𝐺̄12 decreases with the degree of non-linearity 𝑛 for 
the positive distribution of 𝑆(𝜉). Whereas, for the hexagonal HMS 
beam network with negative designed 𝑆(𝜉), 𝐺̄12 increases with 𝑛. The 
maximum enhancement and reduction in 𝐺̄12 are observed from Fig. 
15(b) as 104.3% and 80.4% respectively compared to the uniform 𝑆.

For the second set of design of the residual magnetic flux density 
(refer to Fig.  13(c) and (d)), the two opposite distributions of 𝑆(𝜉)
varying from 𝑆 = −1 to 𝑆 = 1 and from 𝑆 = 1 to 𝑆 = −1 cause the same 
effects on the non-linear elastic moduli of the hexagonal HMS beam 
network under each mode of the mechanical stress in combination with 
the magnetic field. Despite of the opposite curvatures at the deformed 
state, the same tip-deflections of HMS beam for the two opposite 
distributions of 𝑆(𝜉) varying from 𝑆 = −1 to 𝑆 = 1 and from 𝑆 = 1
to 𝑆 = −1 is the cause behind such phenomenon. Such a phenomenon 
is already described in connection with Figs.  7 and S6 for a HMS beam 
with the opposite signs of 𝑆(𝜉) in the two halves. Hence, for the two 
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opposite distributions (varying from 𝑆 = −1 to 𝑆 = 1 and from 𝑆 = 1 to 
𝑆 = −1) of the second set of designed 𝑆(𝜉) as shown in Fig.  13(c) and 
(d), we get single set of results. Effects of the degree on non-linearity 𝑛
for the second set of designed 𝑆(𝜉) on the non-linear elastic moduli of 
the hexagonal HMS beam network under the loading combinations of 
𝜎1, 𝜎2, and 𝜏 with the magnetic field 𝐵𝑎 are shown in Figures S15–S17 
respectively for the magnetic load ratio 𝑟𝑖 = 2.5, 𝑟𝑖 = 4, and 𝑟𝑖 = 4.

Under the compressive mode of normal stress along direction-1 (𝜎1) 
in combination with the external magnetic field 𝐵𝑎 for the second set 
of designed 𝑆(𝜉), the non-dimensional Young’s modulus 𝐸̄1 initially 
decreases with the input stress magnitude 𝜎1 as observed from Figure 
S15(a). At the higher magnitude of the applied stress 𝜎1, 𝐸̄1 increases 
with 𝜎1 for the lower values of 𝑛 and goes on decreasing for the 
higher values of 𝑛. Under the same combination of mechanical and 
magnetic loading, the Poisson’s ratio 𝜈12 decreases with the applied 
stress 𝜎1 as evident from Figure S15(c). Negative Poisson’s ratio is 
obtained for 𝑛 = 0, and 0.1 even for the non-auxetic configuration of the 
hexagonal HMS beam network under consideration. Under the tensile 
mode of the normal stress 𝜎1 in combination with 𝐵𝑎 as observed from 
Figure S15(b) and (d), both Young’s modulus 𝐸̄1 and Poisson’s ratio 
𝜈12 increase with an increase in the magnitude of the applied stress 𝜎1. 
The overall non-linear Young’s modulus 𝐸̄1 decreases with the degree 
of non-linearity 𝑛 of the second set of designed 𝑆(𝜉) under both the 
compressive and tensile modes of 𝜎1 as observed from Figure S15(a) 
and (b). The maximum reductions in 𝐸̄1 for 𝑛 = 3 compared to 𝑛 = 0
are observed to be 86.9% and 63.9% under the compression and tension 
respectively. As observed in Figure S15(c), the Poisson’s ratio 𝜈12 has 
an increasing trend with 𝑛 at the lower range of the compressive stress 
𝜎1. However, at the higher range of 𝜎1, some mixed trend is observed. 
The maximum enhancement of 143.5% in 𝜈  for 𝑛 = 3 compared to 
12
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𝑛 = 0 is achieved. Whereas, under the tensile mode of 𝜎1, Poisson’s 
ratio 𝜈12 decreases with 𝑛 as shown in Figure S15(d), and the maximum 
reduction in 𝜈12 is found to be 73.9%.

As shown in Figure S16(a) and (c), the non-dimensional Young’s 
modulus 𝐸̄2 and Poisson’s ratio 𝜈21 of the hexagonal HMS beam network 
with the second set of designed 𝑆(𝜉) decrease with the applied stress 
input under the combined loading condition of compressive normal 
stress along direction-2 (𝜎2) and magnetic field along direction-2 (𝐵𝑎). 
The Overall non-linear elastic moduli 𝐸̄2 and 𝜈21 increase with the 
degree of non-linearity 𝑛. The maximum enhancements in the elastic 
moduli 𝐸̄2 and 𝜈21 for the non-linear 𝑆(𝜉) with 𝑛 = 3 with respect to 
the linear 𝑆(𝜉) with 𝑛 = 0 are found to be 23% and 68.5% respectively. 
Effects of the inherent system non-linearity and the degree of non-
linearity 𝑛 of the second set of designed 𝑆(𝜉) on the elastic moduli 
𝐸̄2 and 𝜈21 are found exactly the opposite under the tensile mode of 
normal stress 𝜎2 as observed from Figure S16(b) and (d) compared to 
the compressive mode (refer to Figure S16(a) and (c)). The maximum 
reductions of 63.3% and 35.8% are obtained in the elastic moduli 𝐸̄2
and 𝜈21 for the non-linear 𝑆(𝜉) with 𝑛 = 3 compared to the linear 𝑆(𝜉)
with 𝑛 = 0.

Under both the anti-clockwise and clockwise modes of shear stress 𝜏
in combination with the external magnetic field 𝐵𝑎, the non-
dimensional effective shear modulus 𝐺̄12 of the hexagonal HMS beam 
network with the second set of designed 𝑆(𝜉) initially decreases and 
then increases with the input stress 𝜏 for the lower values of 𝑛 as 
observed from Figure S17(a) and (b). Whereas, for the highest value 
of the degree of non-linearity 𝑛 = 3, 𝐺̄12 has an increasing trend with 
the magnitude of the input stress 𝜏. The plots in Figure S17(a) and 
(b) also depict that the non-linear shear modulus 𝐺̄12 increases with 
the degree of non-linearity 𝑛 of the second set of deigned 𝑆(𝜉). The 
maximum enhancements in the non-dimensional shear modulus 𝐺̄12 are 
achieved to be 68.9% and 57.5% for the non-linear 𝑆(𝜉) with 𝑛 = 3
compared to the linear 𝑆(𝜉) with 𝑛 = 0 under the anti-clockwise and 
clockwise mode of shear stress respectively.

The numerical results presented in the preceding subsection (Sec-
tion 3.4) demonstrate on-demand magneto-active modulations (en-
hancements and reductions) of the effective nonlinear elasticity of 
hexagonal HMS beam networks through uniform residual magnetic flux 
density design in the cell walls under far-field magnetic field in com-
bination with externally applied mechanical stresses. Physics-informed 
(finite moments at the ends with zero moment at the mid-point due 
to the typical rotationally restrained beam boundary conditions for 
periodic lattices) architecturing of the residual magnetic flux density 
pattern in the cell walls as proposed in the present subsection results 
further augmentations in the deformation components due to far-field 
magnetic field compared to uniform residual magnetic flux density 
which are in-phase or out-of-phase with the deformations caused by 
mechanical stresses only. The in-phase and out-of-phase deformations 
coming from magnetic field and mechanical stresses respectively re-
sults augmented anti-curvature or pro-curvature effects (Ghuku and 
Mukhopadhyay, 2022a; Prajwal et al., 2022) to the cell wall defor-
mations compared to the uniform residual magnetic flux density of 
the cell walls. Such active anti-curvature or pro-curvature effects cause 
further enhancements or reductions of the HMS beam network stiffness 
compared to the uniform residual magnetic flux density design as 
demonstrated through the numerical results in the present subsection 
(Section 3.5). In turn this will lead to improved energy efficiency in 
achieving a target on-demand stiffness, resulting in sustainable pro-
grammable metamaterials with minimum utilization of the intrinsic 
materials.

3.6. Applicability to other forms of periodic HMS beam networks

Within the developed multi-physical mechanics-based semi-
analytical framework, modulations of the elastic moduli of hexagonal 
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HMS beam networks with uniform and two intuitively designed resid-
ual magnetic flux densities are extensively investigated in the preceding 
two subsections. To demonstrate the generality of the proposed concept 
of modulating elastic properties through an external magnetic field 
within the developed physically insightful computational framework, 
non-linear effective elastic moduli of five other forms of HMS beam 
networks, namely, auxetic, rectangular brick, rhombic, triangular, and 
rectangular networks as shown in Fig.  1(g) are analysed in this subsec-
tion considering uniform residual magnetic flux density in combination 
with different modes of far-field mechanical stresses. Note that the 
concept of beam-level architecturing the residual magnetic flux density 
can also be implemented to different other unit cell architectures for 
more accentuated elasticity modulation as demonstrated in the case 
of hexagonal lattices (refer to Section 3.5). However, we limit the 
current demonstration to uniform residual magnetic flux density for 
other lattices in order to maintain the brevity of this paper.

3.6.1. Auxetic HMS beam networks
For the auxetic HMS beam network, as shown in Fig.  1(g)I, the 

geometric parameters are considered as ℎ∕𝑙 = 2 and 𝜃 = −𝜋∕6. The 
unit cell configuration of the auxetic HMS beam network with residual 
magnetic flux density 𝑆 = 1 subjected to normal (𝜎1 or 𝜎2) and shear 
(𝜏) stresses in combination with the external magnetic field 𝐵𝑎 is shown 
in Fig.  16(a). Variations of the non-dimensional elastic moduli 𝐸̄1, 𝜈12, 
𝐸̄2, 𝜈21, and 𝐺̄12 with different modes of input stress magnitude under 
different magnetic load levels are presented in Fig.  16(b)–(f) respec-
tively. It is evident from the figure that within a small deformation 
regime in absence of the external magnetic field, all the results obtained 
from the present framework agree well with the analytical solutions 
from literature (Gibson and Ashby, 1999). This provides a degree of 
confidence and validation to the present computational framework 
before exploiting it for further investigation.

As observed from Fig.  16(b), the effective non-dimensional Young’s 
modulus 𝐸̄1 of the auxetic HMS beam network decreases with compres-
sive stress 𝜎1 and magnetic load ratio 𝑟𝑖. Whereas, under the tensile 
mode of the normal stress 𝜎1, Young’s modulus 𝐸̄1 increases with the 
stress magnitude and the magnetic load ratio 𝑟𝑖 for 0 ≤ 𝑟𝑖 ≤ 0.4. Under 
the same loading condition for the magnetic load ratio 1 ≤ 𝑟𝑖 ≤ 2, 
negative stiffness is observed which decreases with stress magnitude 
but increases with 𝑟𝑖. Maximum 201.9% enhancement and 46.4% re-
duction in the positive Young’s modulus 𝐸̄1 are achieved concerning 
the only mechanical loading condition (𝑟𝑖 = 0). Whereas, the maximum 
enhancement in the negative Young’s modulus 𝐸̄1 is obtained as 68.8% 
for 𝑟𝑖 = 2 compared to 𝑟𝑖 = 1. Fig.  16(c) depicts that the effective 
Poisson’s ratio 𝜈12 increases with magnetic load ratio 𝑟𝑖 with different 
degrees of auxecity under the compressive and tensile modes of normal 
stress 𝜎1. A maximum 19% enhancement in 𝜈12 for the considered 
ranges of 𝑟𝑖 can be obtained from Fig.  16(c).

For the combined loading under normal stress 𝜎2 and magnetic 
field 𝐵𝑎 along direction-2 as presented in Fig.  16(d) and (e), effects 
of non-linearity in terms of variations of the elastic moduli 𝐸̄2 and 
𝜈21 with stress magnitude are found opposite compared to the loading 
combination under 𝜎1 and 𝐵𝑎. However, decreasing and increasing 
effects of the magnetic loading under the compressive and tensile 
loading modes are the same for 𝐸̄2 as that of 𝐸̄1, with maximum 400.4% 
and 66.49% enhancement and reduction respectively. However, for 𝜈21, 
the effect of magnetic load ratio is found opposite to that of 𝜈12 with 
a maximum 40% reduction. Notably the degree of auxeticity for 𝜈12
and 𝜈21 can be actively controlled in a wide band as a function of the 
magnetic field.

As obvious from Fig.  16(f), under the anti-clockwise mode of shear 
loading, the non-dimensional shear modulus 𝐺̄12 increases with stress 
magnitude 𝜏 and decreases with magnetic load 𝑟𝑖. Under the clockwise 
mode of shear loading, 𝐺̄12 increases with stress magnitude 𝜏 for a 
lower range of 𝑟𝑖. However, for a higher range of 𝑟𝑖 under the clockwise 
loading, negative 𝐺̄  are observed having mixed increasing–decreasing 
12
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Fig. 16. Modulation of the effective elastic moduli of auxetic HMS beam networks having uniform residual magnetic flux density under different modes of mechanical 
stress in combination with magnetic field. (a) The unit cell of auxetic HMS beam network with ℎ∕𝑙 = 2 and 𝜃 = −𝜋∕6 having residual magnetic flux density 𝑆 = 1 subjected 
to (1) normal stress 𝜎1 or 𝜎2, and (2) shear stress 𝜏 in combination with magnetic field 𝐵𝑎 along direction-2. (b–f) Variations of the non-dimensional effective elastic moduli of 
the auxetic HMS beam network as function of the different modes of the mechanical stress at equally spaced magnetic load levels 𝑟𝑖. The dotted points represent the analytical 
solutions (Gibson and Ashby, 1999) without magnetic field under small deformation regime.
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trends with the stress magnitude. However, for both the ranges of 𝑟𝑖
under the clockwise loading mode, 𝑟𝑖 has increasing effects on 𝐺̄12. The 
maximum enhancement and reduction in the positive non-dimensional 
𝐺̄12 concerning the only mechanical loading condition 𝑟𝑖 = 0 are 
observed as 248.3% and 62.7% respectively. Whereas, in the negative 
shear modulus 𝐺̄12, a maximum 46% enhancement is achieved for 
𝑟𝑖 = 10 compared to 𝑟𝑖 = 8.

3.6.2. Rectangular brick HMS beam networks
The rectangular brick HMS beam network as shown in Fig.  1(g)II 

is derived readily from the hexagonal HMS beam network by taking 
𝜃 = 0. The unit cell configuration of the rectangular brick HMS beam 
network with ℎ∕𝑙 = 1 having uniform residual magnetic flux density 
(𝑆 = 1) is shown schematically in Fig.  17(a). Variations of the non-
dimensional effective elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 of the 
rectangular brick HMS beam network as functions of the different 
modes of normal and shear stresses combined with external magnetic 
field are presented in Fig.  17(b)–(f). Comparisons of each set of results 
with the corresponding analytical solutions from literature (Gibson and 
Ashby, 1999), as presented through the large dotted points in the plots, 
validate our framework for the special case in absence of the magnetic 
field within a small deformation regime. This provides a degree of 
confidence to the present computational framework before exploiting 
it for further investigation.

As in cases of the other HMS beam networks, modulations of the 
non-linear elastic moduli of the rectangular brick HMS beam network 
in terms of the external magnetic field are evident from Fig.  17(b)–(f). 
Effects of geometric and material non-linearity on the elastic moduli in 
terms of their variations with stress magnitude 𝜎1, 𝜎2 or 𝜏 and magnetic 
load ratio 𝑟𝑖 can be readily noticed Fig.  17(b)–(f). Interestingly, from 
Fig.  17(b)–(f) it becomes obvious that depending on the combination 
of the magnetic load with a particular mode of the mechanical stress, 
negative Young’s modulus, negative Poisson’s ratio and negative shear 
modulus can be achieved. Maximum enhancements in 𝐸̄1, 𝐸̄2, and 
𝐺̄12 are noted to be 64.4%, 150%, and 162.1% respectively. Whereas, 
maximum 32%, 54.5%, 91.7%, and 48.5% reductions in 𝐸̄1, 𝐸̄2, 𝜈21, 
and 𝐺̄12 are obtained respectively under the considered ranges of the 
magnetic load ratio 𝑟𝑖.

Note in Fig.  17(c) that under the combined loading of normal stress 
𝜎1 and magnetic field 𝐵𝑎, the magnitudes of the negative or positive 
Poisson’s ratio 𝜈12 of the rectangular brick HMS beam network are 
very large compared to the unity. As obvious from Fig.  17(a-1), under 
the combined loading of normal stress 𝜎1 and magnetic field 𝐵𝑎, the 
normal strain in direction-2 (𝜖2) is governed by the bending-dominated 
deformation of the horizontal cell walls. Whereas, the normal strain 
along direction-1 (𝜖1) is governed by the stretching-dominated defor-
mation of the horizontal cell walls. Due to the difference in the order 
of magnitudes of the bending and stretching dominated axial strains 
along direction-1 (𝜖1) and direction-2 (𝜖2), such large magnitudes of 
Poisson’s ratio 𝜈12 is achieved for the rectangular brick HMS beam 
network under the present loading combination. As 𝜈12 is zero under the 
only mechanical load in absence of the magnetic field, the enhancement 
and reduction in it are noted in terms of their absolute values instead 
of percentage and they are 240.4 and 109.3 respectively.

3.6.3. Rhombic HMS beam networks
The rhombic HMS beam network as shown in Fig.  1(g)III is obtained 

from generic hexagonal HMS beam lattices by putting ℎ∕𝑙 = 0 and 
𝜃 = 𝜋∕4. The unit cell configuration of the rhombic HMS beam network 
with uniform residual magnetic flux density (𝑆 = 1) is shown in Fig. 
18(a). Variations of the non-dimensional effective elastic moduli 𝐸̄1, 
𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 of the rhombic HMS beam network with combined 
stress and external magnetic field along with the comparisons with 
the respective analytical results from literature (Gibson and Ashby, 
1999) are shown in Fig.  18(b)–(f). The good agreement with liter-
ature provides a degree of confidence and validation to the present 
computational framework before exploiting it for further investigation.
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The self-explanatory plots in Fig.  18(b)–(f) establish the idea of 
modulating the non-linear elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 of the 
rhombic HMS beam network by external magnetic field in combination 
with the different modes of the mechanical stress. The figure also 
depicts that under certain combinations of mechanical and magnetic 
loads, negative stiffness of the rhombic network can be achieved. 
Maximum 233%, 36.8%, 232.7%, and 77.6% enhancements in the non-
dimensional elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, and 𝐺̄12 of the rhombic HMS 
beam network are obtained respectively under the considered ranges 
of the magnetic loads. Whereas, the maximum reductions in the non-
dimensional elastic moduli 𝐸̄1, 𝐸̄2, 𝜈21, and 𝐺̄12 are achieved to be 58%, 
60.2%, 37%, and 36.6% respectively.

3.6.4. Triangular HMS beam networks
The non-linear elastic moduli of the triangular HMS beam network 

(refer to Fig.  1(g)IV) is not readily derivable from the multi-physical 
mechanics-based semi-analytical framework for the hexagonal HMS 
beam lattices. However, by selecting the proper unit cell as shown in 
Fig.  19(a), the effective elastic moduli of the triangular HMS beam 
network are derived following a similar computational framework. A 
detailed derivation of non-linear elastic moduli 𝐸1, 𝜈12, 𝐸2, 𝜈21, and 𝐺12
of the triangular HMS beam network under the combined mechanical 
stress and magnetic field is presented in Section 2.4.

Variations of the non-dimensional elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, 
and 𝐺̄12 of the triangular HMS beam network with different modes of 
mechanical stress in combination with the magnetic field are shown in 
Fig.  19(b)–(f). The corresponding analytical results from literature (Gib-
son and Ashby, 1999; Wang and McDowell, 2004) in absence of the 
magnetic field within a small deformation regime are also plotted in 
the figure through the large dotted points. The comparison studies 
successfully validate our proposed semi-analytical framework for the 
special case of small deformation in absence of the magnetic field.

Fig.  19(b)–(f) depicts that the non-linear non-dimensional elastic 
moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 of the triangular HMS beam net-
work can be modulated as per requirement through the magnetic load 
in terms of ratio 𝑟ℎ or 𝑟𝑖. Under certain combinations of mechan-
ical stress with the magnetic field, even a negative Poisson’s ratio 
is achievable with different degrees. The maximum enhancements in 
the non-dimensional elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 of the 
triangular HMS beam network are attainable as 14.1%, 27.5%, 44.5%, 
865.5%, and 154% respectively. Whereas, maximum 11.6%, 27.6%, 
32%, 1523.5%, and 65.8% reductions in the non-dimensional elastic 
moduli are obtained respectively.

Note the exceptional enhancement (865.5%) and reduction
(1523.5%) in the Poisson’s ratio 𝜈21 as observed from Fig.  19(e). As 
obvious from Fig.  19(a-1), under the combined loading of normal stress 
𝜎2 and magnetic field 𝐵𝑎, the influence of bending due to the magnetic 
field is more on the horizontal member OA compared to the inclined 
member OB. Such a deformation pattern of the triangular HMS unit cell 
creates a difference in the order of magnitudes of the normal strains 
along direction-1 (𝜖1) and direction-2 (𝜖2) which in turn results in an 
exceptionally large enhancement and reduction in the Poisson’s ratio 
𝜈21 as noted in the numerical results.

3.6.5. Rectangular HMS beam networks
As in the case of the triangular HMS beam network, derivation of 

the non-linear elastic moduli of the rectangular HMS beam network 
(refer to Fig.  1(g)V) by considering appropriate unit cell (refer to 
Fig.  20(a)) within the current semi-analytical framework is presented 
in Section 2.5. Variations of the non-dimensional elastic moduli 𝐸̄1, 
𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 of the rectangular HMS beam network with 
different modes of mechanical stress in combination with the mag-
netic field along with the comparisons with the respective analytical 
results (concerning only small deformation mechanical stresses) from 
literature (Gibson and Ashby, 1999; Wang and McDowell, 2004) are 
presented in Fig.  20(b)–(f). As in the case of the other configurations, 
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Fig. 17. Modulation of the effective elastic moduli of rectangular brick HMS beam networks having uniform residual magnetic flux density under different modes of 
mechanical stress in combination with magnetic field. (a) The unit cell of rectangular brick HMS beam network with ℎ∕𝑙 = 1 having residual magnetic flux density 𝑆 = 1
subjected to (1) normal stress 𝜎1 or 𝜎2, and (2) shear stress 𝜏 in combination with magnetic field 𝐵𝑎 along direction-2. (b–f) Variations of the non-dimensional effective elastic 
moduli of the rectangular brick HMS beam network as function of different modes of the mechanical stress at equally spaced magnetic load levels 𝑟𝑖. The dotted points represent 
the analytical solutions (Gibson and Ashby, 1999) without magnetic field under small deformation regime.
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Fig. 18. Modulation of the effective elastic moduli of rhombic HMS beam networks having uniform residual magnetic flux density under different modes of mechanical 
stress in combination with magnetic field. (a) The unit cell of rhombic HMS beam network with 𝜃 = 𝜋∕4 having residual magnetic flux density 𝑆 = 1 subjected to (1) normal 
stress 𝜎1 or 𝜎2, and (2) shear stress 𝜏 in combination with magnetic field 𝐵𝑎 along direction-2. (b–f) Variations of the non-dimensional effective elastic moduli of the rhombic HMS 
beam network as function of the different modes of the mechanical stress at equally spaced magnetic load levels 𝑟𝑖. The dotted points represent the analytical solutions (Gibson 
and Ashby, 1999) without magnetic field under small deformation regime.
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Fig. 19. Modulation of the effective elastic moduli of triangular HMS beam networks having uniform residual magnetic flux density under different modes of mechanical 
stress in combination with magnetic field. (a) The unit cell of triangular HMS beam network having residual magnetic flux density 𝑆 = 1 subjected to (1) normal stress 𝜎1
or 𝜎2, and (2) shear stress 𝜏 in combination with magnetic field 𝐵𝑎 along direction-2. (b–f) Variations of non-dimensional effective elastic moduli of the triangular HMS beam 
network as function of the different modes of the mechanical stress at equally spaced magnetic load levels 𝑟ℎ or 𝑟𝑖. The dotted points represent the analytical solutions (Gibson 
and Ashby, 1999; Wang and McDowell, 2004) without magnetic field under small deformation regime.
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Fig. 20. Modulation of the effective elastic moduli of rectangular HMS beam networks having uniform residual magnetic flux density under different modes of mechanical 
stress in combination with magnetic field. (a) The unit cell of rectangular HMS beam network with ℎ∕𝑙 = 0.5 having residual magnetic flux density 𝑆 = 1 subjected to normal 
stress 𝜎1 or 𝜎2 and shear stress 𝜏 in combination with magnetic field 𝐵𝑎 along direction-2. (b–f) Variations of non-dimensional effective elastic moduli of the rectangular HMS 
beam network as function of different modes of the mechanical stress at equally spaced magnetic load levels 𝑟ℎ or 𝑟𝑣. The dotted points represent the analytical solutions (Gibson 
and Ashby, 1999; Wang and McDowell, 2004) without magnetic field under small deformation regime.
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the comparison studies between the present semi-analytical framework 
and the analytical models (Gibson and Ashby, 1999; Wang and McDow-
ell, 2004) are found quite satisfactory in absence of the magnetic field 
within the small deformation regime.

The concept of modulating non-linear elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, 
and 𝐺̄12 through applying an external magnetic field is demonstrated in 
Fig.  20(b)–(f) for the rectangular HMS beam network. The figure also 
depicts that by controlling the external magnetic field in combination 
with the mechanical load, mode-dependent negative Poisson’s ratio and 
negative shear modulus can be achieved. Maximum 111.1%, 66.7%, 
and 102.1% enhancements in the non-dimensional elastic moduli 𝐸̄1, 
𝐸̄2, and 𝐺̄12 are obtained respectively. Whereas, the maximum reduc-
tions in the elastic moduli are found to be 38.8%, 28.6%, and 50% 
respectively. As the Poisson’s ratios 𝜈12 and 𝜈21 are zero under only 
mechanical load, their enhancements and reductions under magnetic 
field are expressed by absolute values instead of percentage values, and 
they are 0.1 and 13.1 in enhancement and 0.2 and 30.7 in reduction 
respectively. The large magnitudes of the positive and negative Pois-
son’s ratio 𝜈21 of the rectangular HMS beam network are caused by the 
difference in the order of magnitudes in the normal strains 𝜖1 and 𝜖2
under the combined loading of normal stress 𝜎2 and magnetic field 𝐵𝑎
due to different respective modes of predominant beam deformations.

In general, the numerical results demonstrate the on-demand active 
modulation of effective elastic moduli in a wide band (i.e. broadband 
stiffness and flexibility programming) as a function of the unit cell 
geometry, beam-level architecture of residual magnetic flux density 
and nonlinear intrinsic material properties along with the applied 
far-field mechanical stresses and magnetic field. The effectiveness of 
applied magnetic field can be further optimized (including target at-
tainment) corresponding to a particular mode and level of applied 
far-field stress depending on the unit cell geometry (such as different 
bending and stretching dominated unit cells and dimensions of the 
beam-like members) and beam-level residual magnetic flux density.

4. Summary and perspective

In the paper, we have proposed a novel class of lattice meta-
materials as periodic networks of beams made of soft material with 
embedded hard magnetic particles (HMS beam networks) subjected 
to large deformation under combined remote mechanical stress and 
magnetic field. The architected networks of HMS beams are very light 
in weight and provide excellent modulation capability of the non-
linear effective elastic properties depending on the hard magnetic 
particle distribution in the HMS beam elements, unit cell geometry 
and the combination of applied mechanical stress with the exter-
nal magnetic field. To actively modulate the metamaterial properties 
post-manufacturing enabling applications for a range of advanced in-
telligent structural systems, we propose here to adopt an innovative 
bi-level modulation concept involving the coupled design space of 
unit cell geometries, architected HMS beam-like members and their 
stimuli–responsive deformation physics. We have exploited the geomet-
ric non-linearity due to large deformation and material non-linearity 
under magneto-mechanical coupling to modulate the effective elastic 
properties of the novel class of architected HMS beam networks ranging 
from very high stiffness like stiff metal to very low stiffness, even lower 
compared to the soft polymers.

By externally applying different values of the magnetic field in-
tensity, different elastic properties and stiffness can be achieved, and 
that too from a distance (i.e. on-demand contactless elasticity control). 
Essentially, this will help in minimizing the material utilization to an 
extreme extent by controlling the stiffness of a structure based on active 
operational demands. For example, the stiffness corresponding to target 
modes and direction of a structure can be actively increased during an 
operational condition when higher magnitudes of loads are experienced 
to keep the deformations under control or the natural frequencies need 
to be increased to avoid resonance under dynamic loading. The stiffness 
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can also be actively reduced to allow large deformation and shape 
control for (soft-)robotic motions or increased energy absorption and 
avert sudden failure.

To estimate the non-linear effective elastic moduli under the normal 
or shear mode of mechanical stress in combination with the external 
magnetic field, a physically insightful semi-analytical framework is 
developed for periodic HMS beam networks. Within the unit cell-based 
framework, the non-linear multi-physical mechanics of rotationally 
restrained HMS beams subjected to combined mechanical and mag-
netic loads representing generalized elements of the architected beam 
network is defined. Governing equation of the non-linear HMS beams 
is derived using the variational principle-based energy method within 
the non-linear kinematic setting of the Euler–Bernoulli beam theory 
and the material constitutive law of the Yeoh hyperelastic model. 
To deal with the non-linearity involved in the governing equation 
of the multi-physical mechanics problem, a successive two-stage iter-
ative computational scheme is developed as an integral part of the 
semi-analytical framework.

Considering the aim of this paper, we have limited the scope to 
2D lattices with different bending and stretching-dominated periodic 
configurations (as shown in Fig.  1(b, g)) to demonstrate the concept of 
post-manufacturing contactless active mechanical property modulation. 
Extension of the 2D lattice framework into 3D lattices can be readily 
performed by considering the same HMS beam model and appropriate 
3D unit cells with appropriate boundary conditions (for example, refer 
to Sinha et al. (2025)).

Within the developed semi-analytical framework, we first investi-
gate the effect of external magnetic field in combination with different 
modes of remote mechanical stress on the non-linear effective elas-
tic moduli of the architected hexagonal HMS beam network having 
uniform residual magnetic flux density. Based on the observations 
along with the kinematics and kinetics of the HMS beam elements, 
we have proposed two physics-informed beam-level designs of residual 
magnetic flux density for the hexagonal HMS beam network, leading to 
enhanced efficiency of the magnetic field. Further to demonstrate the 
generality of the proposed multi-physical mechanics-based framework, 
different other HMS beam based lattice geometries, namely, auxetic, 
rectangular brick, rhombic, triangular, and rectangular configurations 
are investigated considering uniform residual magnetic flux density. 
Before presenting the numerical results, the developed semi-analytical 
framework has been thoroughly validated to ascertain adequate confi-
dence, considering (1) HMS beam-level deformation under mechanical 
and magnetic actuation (note that the lattice-level homogenized me-
chanical behaviour depends on beam-level deformation physics), (2) 
effective elastic moduli of different lattice geometries considering the 
conventional linear regime, and (3) effective nonlinear elastic moduli 
of hexagonal lattices under large deformation. Such multi-level valida-
tions at the beam and lattice level considering the linear and non-linear 
deformation regimes along with multi-physical loading conditions pro-
vide adequate confidence in the proposed computational framework. A 
full-scale finite element modelling can be carried out to compare the 
current results. But considering the complexity of modelling such HMS 
beam-based lattices in the finite element framework, it is beyond the 
scope of this manuscript. Further, a detailed finite element model of 
the lattice is also not strictly necessary considering the extensive multi-
level validation approach adopted for the proposed computational 
framework. 

For the hexagonal HMS beam network with the uniform resid-
ual magnetic flux density, the maximum enhancements in the non-
dimensional elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 under the compres-
sive normal modes and anti-clockwise shear mode of the mechanical 
stress in combination with the magnetic field are achieved as 225.5%, 
232.8%, 233.7%, 35.1%, and 339.6% respectively compared to the only 
mechanical loading condition without any magnetic field. Under the 
same combined loading conditions, the maximum reductions in the 
five elastic moduli are observed to be 84%, 29.8%, 83.9%, 129.4%, 
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and 56.8% respectively. Whereas, under the tensile modes of normal 
stress and the clockwise mode of shear stress in combination with the 
magnetic field, 189.1%, 449.2%, 232.6%, 55%, and 463.4% enhance-
ments and 72.1%, 21.9%, 83.1%, 39%, and 68.4% reductions in the 
five elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 are achieved respectively.

The effectiveness of on-demand elasticity modulation can further 
be enhanced through beam-level spatially-varying architectures of the 
residual magnetic flux density. For the hexagonal HMS beam network 
with the first set of designed residual magnetic flux density, 56%, 11%, 
42.4%, 27.5%, and 50.9% enhancements in the non-dimensional elastic 
moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 are achieved respectively compared 
to the uniform magnetization under the compressive modes of normal 
stress and anti-clockwise mode of shear stress in combination with 
the external magnetic field. Whereas, the maximum reductions in the 
non-dimensional elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 under the 
compressive normal modes and the anti-clockwise shear mode of the 
mechanical stress in combination with the magnetic field are found to 
be 66.4%, 21%, 47.2%, 18%, and 35.6% respectively. Under the tensile 
modes of the normal stress and the clockwise mode of shear stress 
in combination with the external magnetic field, 31.1%, 22.7%, 41%, 
10.4%, and 104.3% enhancements and 62.6%, 23.3%, 46.6%, 7.3%, 
and 80.4% reductions in the five elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 
𝐺̄12 of the hexagonal HMS beam network with the first designed set of 
residual magnetic flux density are obtained respectively.

For the hexagonal HMS beam network with the second set of design 
(beam-level spatial variation) of the residual magnetic flux density 
under the compressive modes of normal stress and the anti-clockwise 
mode of shear stress in combination with the magnetic field, maximum 
86.9% reduction in 𝐸̄1 and maximum 143.5%, 23%, 68.5%, and 68.9% 
enhancements in 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 are achieved respectively with 
respect to uniform designs. Whereas, under the tensile normal modes 
and the clockwise shear mode of the mechanical stress in combination 
with the magnetic field, maximum 63.9%, 73.9%, 63.3%, and 35.8% 
reductions in 𝐸̄1, 𝜈12, 𝐸̄2, and 𝜈21 and maximum 57.5% enhancement 
in 𝐺̄12 are achieved respectively. It is worthy to mention that we have 
explored here two different classes of architectures for spatially varying 
residual flux density, while there exist a vast scope of further optimiza-
tion following single and multi-objective optimization algorithms along 
with unit cell geometry for enhancing the effectiveness of broad-band 
elasticity modulation.

For the auxetic HMS beam network with the uniform residual mag-
netic flux density, the maximum enhancements in the non-dimensional 
elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, and 𝐺̄12 are achieved to be 201.9%, 19%, 
400.4%, and 248.3% respectively compared to the only mechani-
cal loading condition. Whereas, maximum 46.4%, 66.49%, 40%, and 
62.7% reductions are obtained in the non-dimensional elastic moduli 
𝐸̄1, 𝐸̄2, 𝜈21, and 𝐺̄12 respectively. For the rectangular brick HMS beam 
network with the uniform residual magnetic flux density, maximum 
64.4%, 150%, and 162.1% enhancements are achieved in 𝐸̄1, 𝐸̄2, and 
𝐺̄12 respectively compared to the only mechanical loading condition. 
Whereas, the maximum reductions in 𝐸̄1, 𝐸̄2, 𝜈21, and 𝐺̄12 are obtained 
to be 32%, 54.5%, 91.7%, and 48.5% respectively. As 𝜈12 is zero for 
rectangular brick lattices under the only mechanical load in absence of 
the magnetic field, the enhancement and reduction in it are noted in 
terms of their absolute values instead of percentage and they are 240.4 
and 109.3 respectively.

For the rhombic HMS beam network with the uniform residual 
magnetic flux density, maximum 233%, 36.8%, 232.7%, and 77.6% 
enhancements in the non-dimensional elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, and 
𝐺̄12 are obtained respectively compared to the only mechanical loading 
condition. Whereas, the maximum reductions in the non-dimensional 
elastic moduli 𝐸̄1, 𝐸̄2, 𝜈21, and 𝐺̄12 are achieved to be 58%, 60.2%, 37%, 
and 36.6% respectively. For the triangular HMS beam network with the 
uniform residual magnetic flux density, the maximum enhancements in 
non-dimensional elastic moduli 𝐸̄1, 𝜈12, 𝐸̄2, 𝜈21, and 𝐺̄12 are achieved 
to be 14.1%, 27.5%, 44.5%, 865.5%, and 154% respectively compared 
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to the only mechanical loading condition in absence of magnetic field. 
Whereas, maximum 11.6%, 27.6%, 32%, 1523.5%, and 65.8% reduc-
tions in the non-dimensional elastic moduli are obtained respectively. 
For rectangular HMS beam network with the uniform residual magnetic 
flux density, maximum 111.1%, 66.7%, and 102.1% enhancements 
in the non-dimensional elastic moduli 𝐸̄1, 𝐸̄2, and 𝐺̄12 are obtained 
respectively compared to the only mechanical condition. Whereas, the 
maximum reductions in the elastic moduli are found to be 38.8%, 
28.6%, and 50% respectively. As the Poisson’s ratios 𝜈12 and 𝜈21 are zero 
for rectangular lattices under only mechanical load, their enhancements 
and reductions under magnetic field are expressed by absolute values 
instead of percentage values, and they are 0.1 and 13.1 in enhancement 
and 0.2 and 30.7 in reduction respectively.

The numerical investigations on the effective elastic moduli of the 
HMS beam networks depict an excellent modulation capability of the 
elastic properties in an extremely wide band for the proposed novel 
class of lightweight lattice metamaterials through designing the beam-
level distribution of residual magnetic flux density, unit cell geometry 
and nonlinear coupled material physics, along with controlling the 
external magnetic field in combination with the mechanical mode of 
loading. The numerical results exhibit non-invariant elastic proper-
ties (Sinha et al., 2023) of the periodic HMS beam networks under 
the anti-clockwise and clockwise modes of shear stress in addition to 
the tensile and compressive modes of normal stress. Moreover, under 
certain combinations of the externally applied mechanical stress and 
magnetic field depending on the residual magnetic flux density, it is 
possible to achieve negative stiffness and negative Poisson’s ratio with 
different degrees of auxecity, even for the non-auxetic unit cell config-
urations. The reported numerical results would provide a foundation 
for more innovative designs of the residual magnetic flux density of 
the HMS beam elements along with the interactive influence of unit 
cell geometry to increase the spectrum of modulated effective elastic 
properties.

In this paper, we have considered different modes of far-field in-
plane mechanical stresses (normal stress along the horizontal and ver-
tical direction (direction-1 and 2) and shear stress in plane 1–2) in 
combination with remote magnetic field along direction-2. It can be 
noted that there are three aspects of magnetic stimuli in the con-
text of the proposed active metamaterials (1) distribution of residual 
magnetic flux density along the length of the constituting beams that 
form a unit cell, leading to beam-level magnetic particle distribution 
architecture, (2) direction of the externally applied magnetic field, 
and (3) intensity of externally applied magnetic field. In the analy-
sis of the multi-physical large deformation mechanics of HMS beam 
representing the generalized member of periodic HMS beam networks 
under the combined mechanical and magnetic loading as presented 
in Sections 2.1 and 2.2, generalized direction (inclination angle 𝛼) 
of the externally applied magnetic field 𝐵𝑎 is considered in combi-
nation with the generalized mechanical force. Hence, the multi-scale 
framework estimating the non-linear elastic properties of the proposed 
HMS metamaterials under the far-field mechanical and magnetic fields 
is generalized for considering any arbitrary direction of the external 
magnetic field in combination with the different modes of the in-
plane mechanical stresses. Though we have concentrated on the remote 
magnetic field along direction-2 considering different intensities in 
combination with normal and shear modes of the in-plane mechani-
cal stresses, the framework can easily be extended to consider other 
directions of magnetic fields. In fact, this will give a scope of achieving 
tunable normal-shear lattice level coupling behaviour for a given bi-
level designed lattice architecture just by changing the direction of 
external magnetic field (Mondal et al., 2025). The effect of intensity 
of externally applied magnetic field is investigated throughout the 
presented results for multi-physical property modulation of lattices, 
while the beam-level architecture based on the distribution of residual 
magnetic flux density is explored in Section 3.5.
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We would conclude this section by highlighting, summarizing and 
justifying some of the keywords and concepts of the presented research, 
as reflected in the discussions throughout this paper. (1) Metamaterials: 
The work deals with the development of a new class of mechanical 
metamaterials conceptualized as a periodic network of hard magnetic 
soft beams that can change their properties in real-time based on exter-
nal stimuli. (2) Magneto-active: The proposed novel class of metamate-
rials under consideration is magneto-active because their mechanical 
properties can be actively altered by applying an external magnetic 
field. The title includes this term to signify the magneto-mechanical 
interaction that underpins the unique homogenized behaviour and ac-
tive effective elastic moduli of these metamaterials. (3) Nonlinear : The 
metamaterials’ homogenized constitutive response under the combined 
mechanical and magnetic fields is non-linear due to geometric non-
linearity coming from the large deformation of the beam-like soft cell 
walls and material nonlinearity of the considered materials. (4) Bi-level 
architected: The paper introduces the concept of bi-level modulation of 
the effective elastic properties of the novel class of metamaterials under 
the far-field combined mechanical stress and magnetic stimuli, where 
the design incorporates both the unit cell periodic geometries, and 
the deformation physics of the beam-like members based on the hard 
magnetic particle distribution patterns within the soft cell walls. This 
term in the title refers to this dual-level design approach, integrating 
geometric and multi-physical aspects (both at unit cell level and beam 
level) to control the effective lattice-level material behaviour. (5) Multi-
physically programmable: The paper discusses the ability to actively 
modulate the physical properties of metamaterials, such as elastic mod-
uli and Poisson’s ratios, through contactless far-field stimuli (magnetic 
field). This shows that the metamaterials can be programmed post-
manufacturing to exhibit different mechanical behaviours depending 
on external stimuli as per application-specific operational demands. 
The term multi-physical highlights the fact that active on-demand elas-
tic moduli tailoring is achieved here through different physics involving 
mechanical and magnetic deformations. (6) stimuli–responsive: The work 
emphasizes the stimuli–responsive nature of the metamaterials, where 
the mechanical properties change in response to external magnetic 
fields and mechanical stresses. This term reflects the adaptability of 
the metamaterials to different external stimuli, which is a key focus 
of the paper. (7) Multi-scale mechanics: The research focuses on the 
development of a multi-physical mechanics-based framework for the 
estimations and modulations of the homogenized mechanical properties 
of the proposed metamaterials considering geometric and material non-
linearities due to large deformation and magneto-mechanical coupling. 
The developed computational framework involves the deformation me-
chanics of hard magnetic soft beams and subsequent integration of 
that in the unit cell mechanics to obtain the homogenized mechanical 
behaviour of the lattices. In essence, it may be noted that the com-
putational mechanics framework developed here entails components 
and understanding at different length scales (i.e. multi-scale) to ob-
tain the effective elastic properties: hard magnetic particles and their 
distribution at the beam level (i.e. beam-level architecture), unit cell 
geometry, effective material properties (i.e. the effective elastic moduli) 
at continuum level and subsequently design of structures (such as an 
aircraft) based on such continuum level effective elastic properties.

5. Conclusions

The current work addresses a critical limitation in conventional 
mechanical metamaterials in terms of contactless broad-band program-
ming of elastic moduli based on on-demand operational requirements. 
This is achieved through shifting the design paradigm towards more 
innovative bi-level modulation concepts involving the coupled design 
space of unit cell geometries, architected beam-like members and their 
stimuli–responsive deformation physics. We have introduced graded 
hard magnetic soft (HMS) material architectures in the periodic beam 
networks following physics-informed insights of the stress resultants 
45 
depending on uni cell geometry. The compound effect of spatially-
graded residual magnetic flux density and unit cell geometries lead 
to improved stimuli efficiency in achieving a target on-demand stiff-
ness, resulting in programmable and sustainable metamaterials with 
minimal utilization of the intrinsic materials. Moreover, under certain 
combinations of the externally applied mechanical stress and magnetic 
field depending on the residual magnetic flux density, it is possible to 
achieve negative stiffness and negative Poisson’s ratio with different 
degrees of auxecity, even for the non-auxetic unit cell configurations. A 
generic semi-analytical computational framework involving the large-
deformation geometric non-linearity and material non-linearity under 
magneto-mechanical coupling is developed here for the effective elastic 
moduli of HMS material based bi-level architected lattices under nor-
mal or shear modes of mechanical far-field stresses. Effective elastic 
moduli being a critically fundamental property of materials, the ca-
pability of having extreme-broadband active control would essentially 
lead to on-demand programming of a range of static, stability and 
dynamic structural behaviour, including direction-dependent deforma-
tion, vibration and control, wave propagation, impact and penetration 
resistance, energy absorption, shape morphing, robotic motion and 
actuation at multiple length scales.
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