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Glycans constitute the most complicated post-translational modification,
modulating protein activity in health and disease. However, structural

annotation from tandem mass spectrometry (MS/MS) datais abottleneckin
glycomics, preventing high-throughput endeavors and relegating glycomics
to afew experts. Trained on a newly curated set of 500,000 annotated
MS/MS spectra, here we present CandyCrunch, a dilated residual neural
network predicting glycan structure from raw liquid chromatography-
MS/MS datain seconds (top-1accuracy: 90.3%). We developed an
open-access Python-based workflow of raw data conversion and prediction,
followed by automated curation and fragment annotation, with predictions
recapitulating and extending expert annotation. We demonstrate that this
canbe used for de novo annotation, diagnostic fragment identification and
high-throughput glycomics. For maximum impact, this entire pipeline is
tightly interlaced with our glycowork platform and can be easily tested at
https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/
main/CandyCrunch.ipynb. We envision CandyCrunch to democratize
structural glycomics and the elucidation of biological roles of glycans.

As the most abundant post-translational modification, glycans are
frequently dysregulated and mechanistically involved in diseases
ranging from cancer’ to metabolic disorders®. The exact structure
of complex carbohydrates is often key in mediating their function’,
such assialicacid only facilitating influenza infectionin a particular
linkage orientation*. From biomarkers to mechanistic understand-
ing'?, structural resolution thusis relevant for integrating and using
glycan information for biomedical gains. In the context of systems
biology, glycans are routinely measured via mass spectrometry
(MS)-based glycomics’, providing insights into which structures or
substructures are dysregulated, which canbe further analyzed with
various methods®’.

Currently, structural determination of glycans is, at best,
semi-manual and proceeds structure by structure®. Since different
glycan structures can result in the same mass, structural isomers are

routinely separated via liquid chromatography (LC)’, followed by
fragmentation into smaller substructures by MS, conceptually akin to
shotgun sequencing. Currentin-depth workflows are hard to paralle-
lize, with a general trade-off between resolution and scale'. All this
has relegated structural glycomics to a few experts, inaccessible to
most life science researchers.

Extensive work by Harvey and others®"'> has demonstrated
that, in principle, most substructures®, linkages' and monosaccha-
rides” have diagnostic fragments or intensity ratios. Using this fine
structuralinformation thatis contained within MS/MS spectra, along
with basic biosynthetic assumptions, it is thus frequently possible to
achieve high-resolution annotations of native glycans. In practice,
however, annotation is often restricted to essentially topological
assignments, not least due to time-constraints. Nuances of diagnostic
indicators are challenging for humans to decrypt manually or encode
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programmatically, especially at scale and accommodating diverse
experimental setups, as each linkage and monosaccharide can be
affected by its sequence context’. This combinatorial explosion, com-
bined withrich data, is promising for scalable artificial intelligence (Al)
approaches which can learn complex mapping functions, as recently
demonstrated by endeavors such as AlphaFold2 (ref.17).

So far, computational attempts to automate MS-based
glycomics'® > did not engage with deep learning. Rather, they relied on
various searchmethods, to search for either possible topologies givena
precursor ionmass or suitable reference spectra, loose constraints that
may yield unphysiological predictions. Their primary limitations are
scale and annotation resolution, ranging from composition to glycan
topology. Neither linkage type nor monosaccharide stereoisomers are
commonly resolved during this algorithmic sequencing. Additional
hurdles to their wider adoptioninclude poor generalizability, asnone
of them employ a rigorous train-test mentality, a standard practice
inmachine learning to evaluate methods on held-out data to prevent
overfitting. Many tools were designed for very specific problems and
were often tested on few spectra’®2°, precluding their usage in many
experimental setups.

Recenteffortsinrelated fields, particularly in proteomics***, have
employed scalable deep learning strategies in MS analysis. Proteomics
has partially similar challenges to glycomics, for example, precur-
sor structure elucidation given fragment ions. We thus posit that the
translation of analogous methods to structural glycomics, combined
with domain-inspired additions such as biosynthetic constraints and
building on the accumulated work of many years of glycomics analysts,
could beamajorleap forward for the field and the usage of glycomics
inthe broader life sciences.

We presentascalable and accurate workflow for predicting gly-
can structure from liquid chromatography with tandem mass spec-
trometry (LC-MS/MS) data, centered on our deep learning model,
CandyCrunch. Using alarge-scale, curated set of tandem spectrafrom
diverse experimental setups, CandyCrunch predicts glycan structure
with high accuracy (-90%), outperforms existing methods on this
task and matches/extends expert annotations on unseen data. This
is facilitated by various domain-specific advancements, for exam-
ple, considering glycan structure similarity in the loss function. We
embedded this into a downstream workflow converting predictions
into interpretable results, further reducing false positive rates, and
estimating relative abundances; allin seconds. This workflowincludes
CandyCrumbs, acomprehensive MS/MS fragment annotation plug-in
we developed here. We used this to uncover diagnostic fragments
and more complex fragmentation behavior atscale, underpinned by
molecular dynamics simulations. Finally, we annotate novel glycomes,
analyze biosynthetic constraints at scale and demonstrate that our
pipeline canbe used in high-throughput glycomics. Our methods are
accessible within a Python package (https://github.com/BojarLab/
CandyCrunch), a free-standing Google Colab notebook at https://
colab.research.google.com/github/BojarLab/CandyCrunch/blob/
main/CandyCrunch.ipynb and a command line interface available
via our Python package (further usage description at https://github.
com/BojarLab/CandyCrunch).

Results
CandyCrunch predicts glycan structure viadomain
knowledge
Reasoning that the fragmentation patterns and propensities (that is,
intensity ratios) in MS/MS are predictive of glycan structure—arela-
tionship that is used by human experts in annotation—we set out to
learn this association via machine learning. For this, we collected and
curated anunprecedentedly large set of annotated LC-MS/MS spectra
that derive from glycans (Fig. 1a,b and Methods). We envision that, even
beyond our efforts here, this dataset will be a valuable resource for
data-driven approaches in glycomics. Crucially, this dataset aims to
provide arepresentative view over current glycomics data, with atotal of
nearly 500,000 labeled MS/MS spectra from >2,000 glycomics experi-
ments, encompassing all major eukaryotic glycan classes (N-linked,
O-linked, glycosphingolipid, milk oligosaccharides) and the most com-
mon experimental setups for glycomics. The exact composition of this
dataset, broken down by glycan classes and experimental parameters,
canbefoundinSupplementary Table 1. To avoid overrepresenting some
classes (for example, core 1 0-glycan), we then limited each class to a
maximum of1,000 spectrain theindependent test set (see Methods for
details) and used the remaining ~450,000 spectrato train our model on
the most likely glycans in a multiclass classification setup (Methods).
Thisresultedin our dilated residual neural network, CandyCrunch,
amodel architecture suited to MS data®. Since experimental param-
eterssuch astheionmode drastically change fragmentation patterns,
it uses the MS/MS spectrum, retention time, precursor ion m/z and
experimental parameters (for example, LC type, ion mode and so
on) as input and predicts glycan rankings as its output (Fig. 1c), using
information from these different sources of input which are only partly
redundant (Supplementary Tables 2 and 3). We note that we neither
claim, nor sought to obtain, the most frugal model for this task, but
rather the most performant and flexible, without noticeable hardware
limitations (CandyCrunch canbe readily used onatypical laptop). Our
current binning strategy lowers the effective resolution of the mass
spectrometer. Yet we note that, for the moment, analyzing the data at
higher resolution, more closely approximating the true instrument
resolution, does not give rise to higher accuracy (Supplementary
Table 4), as most fragments are uniquely specified by our current bin-
ning method (Supplementary Fig.1and Methods). Further, capturing
minute mass differences such asbetween CH,and O (0.036 Da) would
require impractically fine binning and is invalidated by the large pro-
portionof low-resolutiondatain our training dataset. Available options
torun CandyCrunch are shown in Supplementary Fig. 2. The model is
partofapipelineapplied to araw file (forexample, .mzML or .mzXML
files), which groups predictions based on mass and retentionisomers
and further curates predictions with, for example, diagnostic ions
(Fig.1d). We confirmed that this grouping procedure even succeeded
inthe case of retention time overlaps between peaks (Supplementary
Fig.3), although we caution that biological samples may contain more
closely co-eluting structures that are not disambiguated by human
annotatorsin the data used to train CandyCrunch.
Ifprecursorionintensities are availablein the rawfile, this pipeline
canalsoestimate relative abundances. These abundances correlate well

Fig.1|Predicting glycan structure via deep learning. a,b, Overview of the
curated dataset of glycomics LC-MS/MS by glycan class (a) and source (b).
Diagonal bars indicate positive ion mode data. The numbers correspond to
spectrawith annotations. ¢, Schematic view of CandyCrunch model architecture.
d, Pipeline of curating glycan predictions from raw file to final output table.

e, Evaluating top-1accuracy on the independent test set (Methods; see ref. 43)
across different levels of resolution. f, Learned representations of all spectrain
the test set are shown via ¢-distributed stochastic neighbor embedding (¢-SNE),
colored by glycan class. Examples areillustrated with their glycan structures.

g, Excerpt from an example prediction output using our Colab notebook on the

file)JC_171002Y1.mzML (ref. 44). h, Proportional Venn diagram of the comparison
of CandyCrunch and Glycoforest on the raw file JC_131210PMpx5.mzML (ref. 18),
not used for training CandyCrunch but used for developing Glycoforest. Shown
are topologies (Glycoforest does not output full structures) matching those of
the human annotator for each model (see Supplementary Fig. 11 for detailed
comparison). Allmasses shown are from reduced glycans. Glycans here and

in the entire paper are drawn using GlycoDraw* according to the Symbol
Nomenclature for Glycans (SNFG). Conv, convolutional layer; d, dilation;
MO/GSL, milk oligosaccharides/glycosphingolipids; PGC, porous graphitized
carbon chromatography; RT, retention time.
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withthose gained by LC peak areaintegration (Supplementary Fig.4),
a state-of-the-art approach for estimating relative abundances. We
caution that overlapping isomer peaks may lead to moderate

uncertainties in their quantification. Overall, CandyCrunch is highly
performant, with anaccuracy of ~90% of the top-ranked structure pre-
diction in the independent test set (Fig. 1e), performing comparably
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across glycans (Supplementary Fig. 5a,b) and across different MS
setups, glycan classes and derivatized glycans (Supplementary
Tables 2, 5and 6), albeit with lower performance on data-poorer cat-
egoriessuch as permethylated glycans. We also note that any evaluation
is partly confounded by different annotation qualities, which may be,
forinstance, substantiated by exoglycosidase treatment insome cases
butnotinothers, resultingin more ambiguous ‘ground truths’. Conse-
quently, higher-quality data further improve performance, reaching
up to ~95% accuracy currently (Supplementary Table 6). Custom loss
functions estimating structural distance to the ground truth, and many
more domain knowledge-inspired modifications (Methods), ensure
that even erroneous predictions are structurally close to the correct
solution. We quantified this statement by analyzing that structures with
more shared motifs need fewer of their ‘own’ spectrato reach high pre-
diction accuracy, indicating effective cross-training (Supplementary
Fig.6). Our approach alsoincludesincompletely resolved structures,
so that prediction uncertainty can be meaningfully conveyed via, for
instance, missing linkage information (indicated by a higher topology
accuracy thanstructure accuracy; Fig. 1e). Further, the prediction score
is ameaningful indicator of confidence and, when comparing top-1
predictions of the same structures, is higher for correct predictions
(Supplementary Table 7).

Learned representations of spectra by CandyCrunch cluster by
glycan sequence and glycan class (Fig. 1f), demonstrating that the
model haslearned toaccommodate experimental variability. Further,
structurally related glycans, even within the same class, tend to cluster
togetherinthelearned representation space. This can be quantified by
comparing the cosine distance of learned representations of pairs of
glycans with their structural distance, revealing that the co-clustering
described by the representations is indeed suggestive of structural
relatedness of glycans (two-sided Mantel test of correlating the two
resulting cosine distance matrices; P < 0.001), already alluded to via
Supplementary Fig. 6 above.

In framing CandyCrunch as a multiclass classification problem
(thatis, ranking the likelihood of pre-defined glycans), we minimized
the chance for unphysiological glycans in the output, a very real pos-
sibility otherwise, given the sparsity of real glycan sequences among
possible sequences®. However, this made zero-shot predictions—
predicting a glycan sequence that was absent from our training
set—conceptually infeasible. As repositories such as GlycoPOST do
not catalog all physiological glycans, and glycomics studies, such as
mucin-type O-glycomics” or milk glycomics®, routinely discover new
structures, we set out to augment our pipeline to allow for, limited,
zero-shot prediction outside our 3,391 defined glycans.

Reasoning that glycans in a biological sample tend to be biosyn-
thetically related, that is, contain precursors/intermediates of larger
biosynthetic pathways, we turned to our recently developed method of
constructing glycan biosynthetic networks’. Applying this method toa
typical CandyCrunchoutput (Supplementary Fig. 7) revealed the exist-
ence of necessary intermediate structures that were absent from our
predictions but would explain spectra without a valid prediction. We
thus added this routine as an optional step in our inference workflow,
to facilitate a certain subset of physiological zero-shot predictions,
whichwe supportempirically (Supplementary Fig. 8). We caution that
this additional workflow step is only expected to add value if mixtures

of related glycans, such as in cells, blood or tissue, are analyzed, not
purified synthetic structures.

CandyCrunchisfundamentally database-independent but canbe
further enhanced by methods leveraging databases, such as defined
within glycowork?, to augment predictions downstream. By carefully
selecting a suitable subset of reference structures (for example, by
taxonomy, glycan class or tissue), matches for unexplainable spectra
couldbe proposed. These potential matches were then cross-checked
for diagnosticions as well as ranked by biosynthetic compatibility with
true predictions. This, again, allowed for a certain subset of zero-shot
predictions. It should be noted that this procedure still balanced the
theoretical constraint of physiological glycans with the reality of
encountering novel structures in biological samples. Our final infer-
ence workflow then also contained this latter expansion, resulting
inaranked prediction output that can be further investigated by the
researcher (Fig. 1g). It should be noted, however, that the defaultin the
provided notebook is not to run zero-shot inference, as this requires
much more expert review than our regular model-based inference.
We also developed a workflow for batches of samples, which accom-
modates shifts in retention time by grouping peaks across samples,
resulting inimproved predictions (Supplementary Fig. 9).

Next, we compared CandyCrunch with alternative approachesto
this problem. As a preface, we should note that no current approach
combines CandyCrunch’s advantages of scale, generalizability,
performance and its flexibility in usage (Supplementary Fig. 10a).
Further, most methods are maintained for only the briefest of periods
and are no longer realistically accessible. Thus, we had to effectively
constrain ourselves to compare CandyCrunch on individual raw files
that were specifically used to build these alternative approaches, while
we excluded them during training. Still, in direct comparison with
state-of-the-art methods such as Glycoforest'® on challenging fish
mucin glycans, CandyCrunch demonstrated a greater overlap with
manual expert annotations (Fig. 1h; 62.5% versus Glycoforest’s 40.6%)
andasubstantially higher structural resolution (Supplementary Fig.11).
In addition, by tethering CandyCrunch and the below-mentioned
CandyCrumbs to our glycowork ecosystem® and by providing
everything open-source, we substantially increase the chances for the
long-term viability of our presented methods.

Applied to fully unseen datasets, CandyCrunch routinely achieved
high performance (Supplementary Table 8; topology: 75.3% top-1
accuracy, structure: 72.4% top-1accuracy) and potentially can extend
expert annotations by correctly capturing additional structures and
isomers (Supplementary Fig. 12). The additional predictions in this
sample partly even stemmed from remnant glycans from the previ-
ous sample, showcasing the exceptional sensitivity of our model. We
would like to highlight here that the cross-training of CandyCrunch
on all glycan classes yielded performance synergy, as a model only
trained on O-glycans performed worse for predicting O-glycans
(Supplementary Table 8; topology: 72.3% accuracy, structure: 66.9%
accuracy) thanthe model trained on all classes. We posit that this was
due to the structure-based loss function we used for training, as well
assharedinformation between spectra of different classes, stemming
from shared glycan motifs across classes (for example, NeuSAc-Hex).

The speed and relatively low resource requirements of
CandyCrunch (Supplementary Fig. 13a) mean that samples can be

Fig.2|Discovering diagnostic fragmentation using CandyCrumbs.

a, Schematic view of the CandyCrumbs workflow for automatic fragment
ionannotation. b-e, Negative ion mode spectra of reduced glycans with
prediction confidence between 0.9 and 1.0 for Fucal-2GalB1-3GalNAc/Galp1-
4GIcNAcP1-3Fuc (b), Neu5Aca2-3GalB1-3GalNAc/GalB1-3(Neu5SAca2-6)GalNAc
(c), GIcNAcP1-3(NeuSAca2-6)GalNAc/GalNAcal-3(NeuSAca2-6)GalNAc (d) and
GIcNAcPB1-3(Neu5Gca2-6)GalNAc/GalNAcal-3(Neu5Gea2-6)GalNAc (e) were
averaged and juxtaposed. Fragments exhibiting differential abundance were
labeled by CandyCrumbs in the Domon-Costello nomenclature™. f,g, Negative

ion mode spectra of reduced glycans with prediction confidence between

0.6 and 1.0 for Neu5Aca2-3GalB1-4GIcNAcB1-2Manal-3(NeuSAco2-
6GalB1-4GlcNAcB1-2Manal-6)Manf1-4GIcNAcP1-4GIcNAc/NeuSAca2-
3GalP1-4GIcNAcpB1-2Manal-3(NeuSAca2-6Gal1-4GIcNAcB1-2Manal-6)
Manp1-4GIcNAcB1-4GlcNAc (f) and Neu5SAca2-6GalB1-4GlcNAcBl-2Manal-
3(GalB1-4GlcNAcB1-2Manal-6)ManB1-4GlcNAcB1-4GlcNAc/NeuSAca2-3Galfl1-
4GlcNAcB1-2Manal-3(GalB1-4GlcNAcB1-2Manal-6)Manf1-4GlcNAcP1-4GIcNAc
(g) were averaged, juxtaposed and labeled similar to b-e. Doubly charged
fragmentions are colored gray.
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exhaustively analyzed, without practical constraints to the most abun-
dant structures, which is a routine necessity in human analysis. In its
typical application, CandyCrunch also makes fewer assumptions about

what is or should be present in a sample, enhancing the chances for
novel discoveries. This means, for example, that co-released N-glycans
canbe detected in O-glycan preparations (Supplementary Fig.14).
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Fig.3|Molecular dynamics reveals fragmentation mechanism. a,b, Kernel
density estimate distribution of the distance between the center of geometry
of the carboxyl group of the sialic acid and the hydrogen of the hydroxyl
group of C6 of the terminal HexNAc residues for the closed (a) and open (b)
reducing GalNAc residue for both GIcNAcB1-3(NeuSAca2-6)GalNAc (blue)
and GalNAcal-3(Neu5Aca2-6)GalNAc (yellow green). The plots show howin

GIcNAcB1-3(Neu5Aca2-6)GalNAc, the carboxyl group is able to interact with the
hydroxyl of the C6 of the HexNAc. However, thisinteraction is not observed in
GalNAcal-3(Neu5Aca2-6)GalNAc. ¢, A representative snapshot of the structure
of GIcNAcP1-3(Neu5Aca2-6)GalNAc is shown, with the interaction between

the two moieties displayed by a dashed line (orange). KDE, kernel density
estimation.

CandyCrumbs facilitates automated diagnostic ion discovery
When analyzed by humans, fragmentions are usually annotated viathe
Domon-Costello nomenclature® and used for elucidating the struc-
ture of a glycan. While there are programs that automate this assign-
ment**, they either are only accessible via graphical user interfaces
oronly provide annotations for simple fragmentions. We thus decided
to implement an exhaustive Python-based solution to this problem,
CandyCrumbs, whichis also freely available via the CandyCrunch
Python package. Given a candidate glycan sequence and fragment
peaks, CandyCrumbs can automatically and rapidly (Supplementary
Fig.13b) annotate fragment ions in Domon-Costello and International
Union of Pure and Applied Chemistry (IUPAC)-condensed nomencla-
ture (Fig. 2a and Methods). Compared with alternative approaches,
this presents the most feature-complete and rapid implementation
of this task (Supplementary Fig. 10b).

Further, we used several domain knowledge-inspired heuris-
tics and probability rules to highlight the most probable fragments
(Supplementary Fig. 15 and Methods), if multiple fragmentation
options could result in an m/z value that was acceptable at a given
threshold. We then also integrated CandyCrumbs within the aforemen-
tioned open-access Colab notebook (at https://colab.research.google.
com/github/BojarLab/CandyCrunch/blob/main/CandyCrunch.
ipynb) for full flexibility. Our implementation of CandyCrumbs then
allowed us to use it in a high-throughput setting and integrate it into
CandyCrunch workflows, such as for identifying diagnostic ions at
scaleas discussed below, to aid expert annotation of challenging cases.

Reference spectraare routinely used as high-quality examplesin
semi-manual annotation®. As ‘spectrum quality’ is an ill-defined and
subjective characteristic, we aimed to quantify this aspect by using
calibrated® prediction confidence of CandyCrunch as a proxy, with the
reasoning thatamore confidently assessed spectrumis a higher-quality
spectrum with more information for effective prediction. Rather
than one reference spectrum, that is, the usual approach®, we then
extracted hundreds to thousands of high-quality spectra for a given
structure from our dataset and engaged in highly powered statistical

comparisons between isomers. This identified numerous diagnostic
ions and/or ratios for topologically distinct (Fig. 2b,c) and identical
(Fig.2d,e) isomers, with large effect sizes. This also extended to other
glycan classes and, for example, facilitated detecting conserved frag-
mentation differences of linkages (for example, stronger B;ionin a2-6
versus a2-3) across glycan backbones (Fig. 2f,g) and recapitulated
known effects from the literature®, such as a higher stability of a2-6
versus a2-3 innegative mode (see B, ionin Fig. 2g). Importantly, these
differences diminished, and eventually vanished, with lower-quality
spectra (Supplementary Fig.16). We then analyzed the predictiveness
ofthese diagnostic features when reducing spectrum quality. Intrigu-
ingly, some diagnostic features, even if they were not the strongest
initial signal, remained predictive even for medium- to low-quality
spectra (Supplementary Fig. 17), making them promising candidates
for aiding annotation.

Similarities between Neu5Ac and Neu5Gc versions of the sameiso-
mers (Fig. 2d,e) suggested molecular determinants of fragmentation
propensities. We thus first analyzed all high-quality O-glycan spectra
juxtaposing composition-matched glycans containing GalNAcal-3 or
GIcNAcp1-3, confirming systematic fragmentation propensities on a
global scale (Supplementary Fig.18).

Molecular dynamics supports diagnostic fragmentation

Inthe abovementioned scenario (Fig. 2d,e), our conclusion was that
GlcNAcP1-3(Siaa2-6)GalNAc fragmented along the HexNAc-HexNAc
axis, while GalNAcal-3(Siaa2-6)GalNAc fragmented along the
Sia-HexNAc linkage. To elucidate how structural properties of
these molecules could give rise to these differences in fragmenta-
tion behavior, we engaged in molecular dynamics simulations of
bothisomers.

The fragmentation pattern of the GIcNAcf1-3(Siax2-6)GalNAc
glycan displayed evidence of a charge-induced fragmentation mech-
anism (Fig. 2d,e). In agreement with this, we saw evidence of the
carboxylic acid moiety of the terminal sialic acid interacting with the
hydrogen of the C6 hydroxyl group of the terminal HexNAc sugar
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(Fig.3). The interaction sampled 11.9% of our cumulative 2-pis simula-
tions of GIcNAcB1-3(NeuSAca2-6)GalNAc. As these simulations were
conducted in aqueous solution, rather than a vacuum as would be
the environment for fractionation, the frequency of this interaction
will be far greater during the in vacuo fragmentation due to absence
of water molecules competing for hydrogen bonding. Therefore,
this suggests that the charge-induced fragmentation mechanism of
GIcNAcP1-3(Neu5SAca2-6)GalNAc is due to removal of a proton from
the terminal HexNAc sugar, therefore resulting infragmentation along
the HexNAc-HexNAc axis.

Conversely, simulations of GalNAcal-3(Neu5Aca2-6)GalNAc
were not able to sample this interaction (occurrence < 0.1%). As a
result, fragmentation of this glycan occurs along the Neu5SAc-HexNAc
linkage instead.

Furthermore, during the ionization of both of the glycans, reduc-
tive B-elimination would result in the reducing end GalNAc being
reducedtoanalditol. As thislinearized structure may resultinincreased
flexibility, we also conducted molecular dynamics simulations of both
glycanswithalinearized reducing GalNAc. These simulations yielded a
similarinsight to those described previously. In the reduced GIcNAc31-3
(Neu5Aca2-6)GalNAc glycan, the carboxyl group of the terminal sialic
acid interacted with the hydrogen of the C6 hydroxyl group of the
terminal HexNAc sugar during 6.8% of the simulated time. Again, the
reduced GalNAcal-3(Neu5Aca2-6)GalNAc was not able to sample this
interaction (occurrence < 0.1%).

We therefore concluded that the identified fragmentation
behavior can be used to distinguish between these two isomers, an
endeavor that is otherwise challenging without specific enzymatic
digestion. This implied that we could use our CandyCrunch and
CandyCrumbs-powered approach to distinguish very close structural
isomers based on diagnostic fragmentation behaviors, beyond single
diagnosticions or ratios and more akin to how human experts would
distinguish them.

New biological insights via CandyCrunch and CandyCrumbs
Striving towards Al-assisted glycomics, we propose our platform as
a means to enhance human analysts by (1) saving time, (2) making
annotations more robust and (3) analyzing samples more compre-
hensively. We illustrate the latter point with de novo predictions of
murineintestinal glycans that were too lowin abundance tobeincluded
in the original annotation but revealed, for example, the presence of
Neu5Gc-containing glycans and low levels of sialyl-Tn antigenin these
samples (Supplementary Fig. 19). Importantly, we do not claim that
human analysts could not have annotated these structures in princi-
ple, but rather that very real time and resource constraints make this
frequentlyinfeasiblein practice. This limitationis lifted by CandyCrunch.
To demonstrate that we could apply our developed meth-
ods to truly novel samples, we analyzed the serum N-glycome of

southernbluefin tuna (Thunnus maccoyii), which was measured within
GPSTO000182 (ref. 34) but never reported in an annotated manner.
This resulted in over 50 glycans, including high-mannose, hybrid and
complex structures, with features such as bisecting GIcNAc, core and
antenna fucosylation, Neu5Gc and multi-antennae N-glycans (Fig. 4a
and Supplementary Fig. 20). In our comprehensive database within
glycowork, not a single glycan from T. maccoyii has been reported so
far, demonstrating that these pipelines canfacilitate new discoveries.

We alsowanted to highlight how predictions could be used down-
stream to derive new insights from aggregating glycomics studies.
This can even be done in the context of already performed glycomics
experiments, distilling results from the accumulated data of many
years of study. For this, we re-used the total 250,000 O-glycan spectra
mentioned in the context of Fig. 2 to construct biosynthetic networks’.
As described above, this process filled in the gaps of unobserved
intermediates in the biosynthesis of observed structures. A key ben-
efithereis that all datasets have beenanalyzed by the same annotator
(CandyCrunch), eliminating an important source of heterogene-
ity”. Applied to our dataset, this resulted in1,003 biosynthetic net-
works (corresponding to 1,003 glycomics experiments measuring
O-glycans) that we used to analyze systematic effects in that gly-
can class. This revealed that some intermediates were never meas-
ured (Supplementary Fig. 21 and Supplementary Table 9), such as
the reducing end GalNAc (likely due to the mass range of the mass
spectrometer used), while others, such as Gal3Sp1-3GalNAc, were
nearly always reliably measured whenever larger structures that
included this building block as a substructure were presentin a
sample. We believe that this approach might shed light on subsets of
the O-glycome that are currently hard to measure, as we here, again’,
noted the peculiar absence of GIcNAc-terminated structures from
measured glycans as atrend.

Further analyses across our networks then allowed us to com-
parethereaction order of glycosyltransferases, reinforcing the highly
dominant nature of galactosyltransferases’ (Fig. 4b). Decomposing
the biosynthetic networks into communities unveiled several con-
served clusters that were modular and occurred in many of our datasets
(Fig. 4c). Further investigation resulted in the observation that these
clusters corresponded to the O-glycan core structures and their respec-
tive biosynthetic extensions (Fig. 4d). In general, these proved to be
relatively modular, except for cases suchas cores1and 2, which showed
some biosynthetic overlap. We envision that this rapid decomposition
of many networks into biosynthetic subcategories will prove useful for
comparing and understanding the eventual terminal motifs that will be
exposed inthese different O-glycan cores, as well as their biosynthesis.

As a proof of concept, to demonstrate the capabilities of Candy-
Crunchfor high-throughput analysis, we next predicted the O-glycomes
of acute myeloid leukemia (AML) cell lines (GPST000214 (ref. 36))
and differentiated colorectal cancer cell lines (CaCo-2, GPST000256

Fig. 4 | Deriving biological insights from CandyCrunch predictions. a, Serum
N-glycome of the southern bluefin tuna (7. maccoyii). Shown are the precursor
ionintensities, arrayed by LC retention time. Representative structures that are
meant toillustrate the identified sequence diversity are shown via the SNFG.
Next to each structure, we show the cosine similarity of the shown spectrum and
the averaged spectrum of all negative ion mode spectra of reduced glycans of
the predicted structure with a confidence above 0.5 (see Fig. 2 for background).
b, O-glycanreactions are path-dependent. For every situation in which two
glycosyltransferases competed for the same substrate (n = 1,003 biosynthetic
networks), we analyzed which order of reactions was experimentally observed
across our networks. Box plots used the median as the center line and the

25th (Q1) and 75th (Q3) percentiles as the lower and upper edges of the box.

The whiskers extend to the first data point within Q1 - 1.5 x IQR (interquartile
range) and to the last data point within Q3 + 1.5 x IQR and outlier values outside
this range are depicted as diamonds. ¢, O-glycan networks decomposed into
biosynthetic communities relating to core structures. We detected communities

viathe Louvain method and calculated their pairwise Jaccard distances, shown
here as a hierarchically clustered heatmap. d, Community corresponding

to core 5 O-glycans. Clustering of the distance matrix from c using OPTICS
(Ordering Points To Identify the Clustering Structure)*° resulted in conserved
communities broadly corresponding to O-glycan cores, with the one from core
5being shown here as anetwork, nodes scaled by degree. e, Clustering cancer
cellline O-glycomes. Predicted O-glycomes of AML cell lines (GPST000214)

and differentiated colorectal cancer cell lines (CaCo-2, GPST000256), viaa
CandyCrunch model not trained on these datasets, are shown via t-SNE (n=103),
using glycanabundance as features. f, Differential glycan expression between
AML and colorectal cancer cell lines. Given the predicted glycomes of e, we used
the get_volcano function from glycowork to test differential expression at the
motif level (two-tailed Welch’s t-test), shown as a volcano plot. Differentially
expressed glycans are drawn inversely scaled by corrected Pvalue (Holm-Sidak
correction for multiple testing). FC, fold change.
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(ref. 37)). With a total of 103 glycomics raw files for this analysis, we
could show that the predicted glycomes of AML and colorectal cancer
cell lines formed distinct clusters (Fig. 4e), which both were separate
fromthe blanks used in GPST000256. We then engaged in a differential
glycan expression analysis to investigate what distinguished these
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CandyCrunch canbe applied to large sets of glycomics measurements
and eventually be used in conjunction with other glycowork function-
ality to reveal dysregulated glycans and glycan motifs, directly from
LC-MS/MS raw files.

Discussion

We present here generalizable methods to (1) predict glycan structures
from LC-MS/MS datausing deep learning (CandyCrunch) and (2) auto-
matically annotate fragment ions in higher-order tandem mass spec-
trometry spectra (CandyCrumbs). Proven performance onblinded data
with ground truth labels (Fig. 1h, Supplementary Figs.11,12,14 and 19
and Supplementary Table 8) cements the usefulness of CandyCrunch.
Both CandyCrunch and CandyCrumbs are suited for high-throughput
usage and can scale to large datasets as well as extremely diverse gly-
cans and experimental setups. With the high performance that we
demonstrate here, we are confident that these pipelines will be useful
both for experts, accelerating and augmenting their workflows, as
well as for less experienced users, similar to how automated work-
flows in other systems biology disciplines have democratized access
to state-of-the-art methods®®*’. We have demonstrable experience with
maintaining software over longer periods (via our glycowork platform)
and, since we ourselves are active users of CandyCrunch for our core
research, have a natural incentive to further develop this technology.

Our approach is ultimately limited by the representativeness of
available data. While CandyCrunch is applicable to all major glycan
classes and most experimental setups (for now limited to electrospray
ionization-type setups), we do note that the very best results can be
expected for reduced glycansin negative mode, particularly O-glycans
or free oligosaccharides. This is both a result of high-quality data in
those cases and particular efforts in fine-tuning our pipeline for opti-
mal results, as they intersected most with our own research interests
and capabilities. In general, compelling results can be expected for
samples similar to our training data, strongly enriched in mammalian
and fish samples (Supplementary Fig. 22), and we expect to perform
worse, on average, on remote samples suchas frominvertebrates. We
envision that, with increasing data, this will improve. We thus urge
the community to make their glycomics data (as well as high-quality
annotations) available through platforms such as GlycoPOST*’, as this
willimprove approaches such as CandyCrunch, and ultimately advance
glycobiology andits applications.

We recognize that, as with any model, CandyCrunch predictions
areimperfect, exhibiting false negative and false positive predictions,
which occasionally might not resemble errors made by humans. Par-
ticularly, non-CandyCrunch glycan additions within our pipeline, via
biosynthetic networks and database queries, exhibit amore tentative
character and should be further evaluated by experts. Forideal results,
we always recommend predictions to be further refined by experts.
We are, however, convinced that CandyCrunch predictions can raise
result quality and comprehensiveness for both experts and novices,
inaddition to the considerable increase in throughput. Lastly, during
data curation, we assumed expert annotations within our training data
tobecorrect, which may retain analyst bias, such as preferential anno-
tation of type Il versus type I LacNAc structures in N-glycans without
conclusive evidence. We do note, however, that the annotations that we
trained onwere, in part, informed by other sources of information, such
asthird-generation productionspectra or exoglycosidase digestions.
Oncessufficient databecomeavailable, future work may also extend this
approachto higher-order tandem mass spectrometry spectra and/or
exoglycosidase treatments, with more detailed structural information.

Beyond the fact that the zero-shot capabilities of CandyCrunch are
limited, we would also like to note that, while we support common deri-
vatizations such as permethylation, we do not currently supportevery
type of glycan modification within CandyCrunch and CandyCrumbs.
Specialized methods, such as azidosugars”, are at the moment beyond
our scope. Once sufficient raw data of new modifications become

available, CandyCrunch can be easily retrained (the CandyCrunch
packageincludes a training script,and models can beretrainedin less
than12 honafree Google Colabinstance).

Wearealso enthusiastic about the potential of upcoming methods
to simulate high-resolution fragmentation spectraviadeep learning®,
which could be adapted for Al-glycomicsin future work and aid either
training or the evaluation of prediction results. Further, once sufficient
datafromeither high-resolution mass spectrometers or absolute nor-
malizations of retention time (for example, via glucose units) become
available, we expect CandyCrunch toreach even higher performance.
While we focus on glycomics here, we envision that analogous effortsin
glycoproteomics could also advance and accelerate the field. Overall,
we conclude that our presented methods not only pave the way for
Al-enhanced structural glycomics but also enable many other avenues
ranging from systematic comparisons over data science to glycoinfor-
matics. This is facilitated by our large, curated dataset and the ability
to quantify spectrum quality, engaging in analyses at scale for many
different aspects of glycomics data.

Online content
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Methods

Dataset

Tandem mass spectra from electrospray ionization experi-
ments stemmed from repositories such as GlycoPOST*°, MassIVE,
UniCarb-DB*, UniCarb-DR and NIST, as well as from individual publica-
tions with associated public raw data. A full list of the 196 data sources
canbe found in Supplementary Table 10. All raw files were converted
into the open-access format .mzML using the msconvert software*’.
A custom script using the pymzML package*® (v.2.5.2) or pyteomics*
(v.4.6) was used to extract all spectra at the MS/MS level, together
with their stored precursor ion m/z and retention time, if available.
This extraction functionality is now available as the process_mzML_
stack function within our CandyCrunch package (v.0.3.0), next to an
analogous process_mzXML_stack function. We extracted up to 1,000
fragment peaks of the highest intensity per spectrum, if available.
Then, spectra were retained that fell within £0.5-Da m/z and +2-min
retentiontime of reported glycan peaks inthe associated publications.
Allretained spectrawere kept for self-supervised training, paired with
theinformation of the respective glycan class, while only spectra that
could be unambiguously linked to structures described in the respec-
tive publications were kept for supervised training. This resulted in a
total number of 625,547 glycan spectra, of which489,103 spectra were
labeled with a defined structure and could be used for training, the
latter stemming from 3,391 unique glycan structures (Supplementary
Table 11). The full dataset can be found at Zenodo under https://doi.
org/10.5281/zenod0.10029271 (ref. 43).

Data processing

Wefirst removed all spectrawith aretention time below 2 minasnoise.
Retention times then were normalized for each individual sample, by
dividing absolute retention times by the respective maximal retention
time (or a minimum of 30, if the maximum extracted retention time
was below 30). Missing retention times were assigned a value of zero.
Fragmentintensities were normalized for each spectrum, by dividing
theintensity of each peak by the total intensity of the spectrum. Then,
intensities were binned in 2,048 equal-sized m/z windows from the
observed minimum (39.714) up to amaximum of 3,000. Additionally,
the m/z remainder (that is, the difference of the m/z of the highest
intensity peak of a bin to the left bin window) was calculated for each
bin, as suggested in Altenburgetal.”, allowing the model to learn exact
peak location despite binning. We explicitly emphasize here that this
procedure, combined with the fact that most bins contain only one
peak (Supplementary Fig. 1), allows us to override the nominal mass
resolution of 1.45 Da that our binning creates. Glycan class, MS ion
mode, iontrap type, LC type and glycan modification type were coded
asintegersto allow for learned embeddings.

Duringtraining, we capped all glycan structures toat most 1,000
randomly sampled spectra per structure in the independent test set,
to avoid imbalance in assessment by frequently observed but simple
glycans. We used an 85/15 splitinto train/test set for the 489,103 spectra,
which were split on the level of samples, to ensure that spectra of one
sample were not found in both train and test sets and thus make the
generalizability estimation more robust. For training, classes in the
test set that would constitute zero-shot prediction were afterwards
moved into the train set.

Model architecture

CandyCrunchiis a dilated residual neural network, with additional
embedded inputs, to predict glycan structure from tandem mass spec-
trumin a multiclass classification setup.

For the processing of binned intensities and m/z remainders, a
one-dimensional convolution layer was followed by a leaky rectified
linear unit (ReLU) and six residual dilated convolutions, with dilations
of1,2,4,8,16 and 32. Then, we used max-pooling with a kernel size of
20 and afully connected layer to bring this output to adimensionality

0f1,024. Glycan class, MSion mode, ion trap type, LC type and glycan
modification type were embedded into dimensionalities of 24, respec-
tively. Precursor m/zand normalized retention time were also brought
to dimensionalities of 24 viaafully connected layer, alayer normaliza-
tionand aleaky ReLU. Then, all inputs were concatenated and passed
through two sets of fully connected layers, layer normalization, leaky
ReLUs and dropout (at a rate of 0.2). Finally, a last fully connected
layer yielded the class probabilities. In total, CandyCrunch exhibited
12,375,084 trainable parameters.

Model training

Allmodels were trained in PyTorch®® (v.2.1.0) using two Zotac GeForce
RTX4090 Trinity GPUs. CandyCrunch was initialized via He initializa-
tion. All models were trained for 200 epochs, with an early stopping
regularization of stopping training after 12 epochs without improve-
mentinthe testloss and a batch size of 256.

We set the learning rate at 0.0001, with a schedule to reduce the
learning rate to a fifth after four epochs with no improvement in test
loss. As abase optimizer we used AdamW with aweight decay of 2 x107%,
which wasfurther modified viaadaptive sharpness-aware minimization
(ASAM)*' to ensure a generalizable final model.

Data augmentation during training was used only on the train-
ing set and included random (1) low-intensity peak removal, (2) peak
intensity jitter and (3) new peak addition for the binned spectrum, as
proposed previously for MS™, as well as adduct formation of the precur-
sor ion (acetate/sodium adducts) and random noise of the precursor
my/z (+0.5 Da) and retention time (+10%).

As our base loss, we used PolyLoss®’, with an additional
label-smoothing of 0.1and epsilon = 1. We note that the label-smoothing
employed here, as well as the fact that the annotators for many of our
datasets have used additional information to refine their annota-
tions (for example, third-generation product ion spectra, exo-
glycosidases), at least in part counteracts potential concerns about
label uncertainty. We also used two additional loss terms, informed
by domain knowledge, that were added to the PolyLoss term. These
constituted astructure distance loss and acomposition distance loss.
Bothinvolved the calculation of a distance matrix, based on pairwise
cosine distances of fingerprint vectors of either the number of mono-
and disaccharide motifs or the base composition of two glycans. All
operations on glycans were performed using glycowork?’ (v.1.1.0).
Then, the class probabilities for each input sample, transformed via
a softmax activation, were multiplied by the structure distance vec-
tor and the composition distance vector (that is, the distance to the
target glycan), followed by mean averaging to obtain loss terms. This
unsupervised procedure preferentially penalizes confidently predicted
but structurally dissimilar glycans and improves performance as well
as the meaningfulness of errors.

We first engaged in supervised training on annotated MS/MS
spectra. Then, using the trained model we predicted glycan structure
for our unannotated spectrafor self-supervised training. Spectrawith
apredictionscore of over 0.7 were then merged with the original train-
ing dataset, followed by adeduplication step. Specifically, as described
above, weretained the same test set and again formed atraining dataset
with at most 1,000 examples per glycan in the independent test set,
followed by re-training.

Modelinference

To predict glycan structures from unannotated raw files, all tandem
spectrawere extracted viapymzML as described above and processed
as described for the general data processing. Then, we grouped m/z
precursorions by scanning for discontinuities larger than 0.5 Dain the
extracted spectra. Within these m/zgroups, we searched for structural
isomers by analyzing their retention time in chunks of 0.5 min. While
thismay lead to overlaps betweenisomer peaks, thisis notaninherent
problem, as long as co-elution is not perfect, as different chunks will
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still retain the respective isomers as the dominant species, which will
be reflected in the final output table. For each retention time group,
we averaged all spectra for input of a robust averaged spectrum to
CandyCrunch and extracted the median spectrum, to have arepresent-
ative spectrum for each glycan entity in the sample. We first retrieved
the top 25 predictions for each averaged spectrum, using the trained
CandyCrunch model. We then employed a single-parameter variant
of Platt Scaling® to calibrate the prediction confidence before the
softmax layer, using a scaling factor of 1.15 that was estimated via the
limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm.
Using test-time augmentation, we averaged the predictions of five
independent inferences that were modified with the same data aug-
mentation strategy as employed during training.

Next, we used domain knowledge to automatically filter out
predictions, such as of (1) a prediction probability below a thresh-
old of 0.01, (2) the wrong glycan class, (3) the wrong mass, even
when considering multiply charged ion forms, and (4) predictions
that lacked corroborating diagnostic ions in their fragment lists.
Domain-specific exceptions were made, such as allowing cross-class
predictions if the prediction confidence was extraordinarily high
(above 0.2; justified by the fact that O-linked glycan samples often
containremnant N-linked glycans and so on) Finally, predictions were
deduplicated by merging any mass/retention windows that resulted
inidentical predictions.

Lastly, we used biosynthetic knowledge to refine our predictions,
conceptualized in the canonicalize_biosynthesis function within
CandyCrunch. Using the subgraph_isomorphism function from gly-
cowork and starting from the largest glycan prediction, we searched
for top-1predictions of biosynthetic precursors in the whole prediction
dataframe. For each prediction at mass M, we added 0.1 toits prediction
confidence for each unique biosynthetic precursor in top-1predictions
at mass M-1, M-2, ..., M-n. If this changed the order of predictions, we
re-ordered predictions according to their scores. Thereafter, scores
were re-normalized toland the, up to, top-5 predictions were retained.
This procedure not only improved the accuracy of our results but also
increased the meaningfulness and consistency of both correct and
wrong predictions (thatis, wrong predictions were structurally closer
to the ground truth after this procedure).

Spectra without valid predictions but with valid compositions,
cross-referenced by relevant databases within glycowork, were also
retained and subjected to as many of the abovementioned domain
filters as possible. Whenever available, top-1 predictions were paired
with their GlyTouCan ID**. The whole inference workflow, including
elements described below, is available via the wrap_inference func-
tion in the CandyCrunch package. Available options for running the
function are shown in Supplementary Table 12 and mentioned in the
documentation of the CandyCrunch package (https://github.com/
BojarLab/CandyCrunch).

For the case of multiple samples from the same experiment, we
also added the wrap_inference_batch function to the CandyCrunch
package. This expanded workflow aligns retention times across sam-
ples, if possible and suitable, to build a prediction library and ensure
that shiftsin retention time between samples are accommodated.

Zero-shot prediction

For a given sample, all retained top-1 predictions were used to con-
struct a biosynthetic network as described previously’, using the
implementation within glycowork. For milk oligosaccharides, this
also included evolutionary pruning, as pre-calculated species net-
works were available. Then, we calculated whether any of the inferred
biosynthetic precursors would explain the mass and composition of
glycan spectra without a valid prediction. Matches within a mass dif-
ference of 0.5 Da, including multiply charged ions, were retained as
additional predictions beyond our model-defined library of predictable
glycans. While direct model predictions were awarded the evidence

category ‘strong’, the biosynthetic network intermediaries merited the
category ‘medium’.

Next, we checked for missed Neu5Gc-substituted Neu5Ac-glycans
andviceversa (thatis,amass difference of 16 Da per substitution, with
the corresponding diagnosticions). Similarly, in the case of an O-glycan
sample, we checked for missed GIcNAc6S-substituted GIcNAc-glycans
and vice versa (connected to the reducing end GalNAc). Additionally,
we used asuitable subset of the glycowork-stored database, of the right
taxonomic section and glycan class, to search for possible matches
to compositions without predictions. Both of these endeavors were
annotated with the evidence label ‘weak’.

After these additional routines to enable predictions out-
side of our defined list of glycans, we again employed the domain
knowledge-informed filters mentioned above. This ensured that gly-
cans introduced via these methods still had empirical support in the
underlying data. Predictions from these routines were also subjected to
the canonicalize_biosynthesis workflow from above (although ‘bonus’
points were awarded only for biosynthetic precursors fromthe ‘strong’
category), to allow for prioritization of the most probable structures.

Fragment annotation via CandyCrumbs

Thefinal prediction of the CandyCrunch model was used as a starting
point for fragment annotation and converted into a directed graph
using NetworkX (v.3.0), each monosaccharide making up a node and
eachlinkage labeling an edge. The randomized enumeration method
was implemented to find all induced connected subgraphs®. After
filtering which modifications were physically possible based on link-
age numbers, each terminal monosaccharide on the subgraphs was
permuted to create these cross-ring or bond fragmentations. Each
possible global modification was also added to each fragment. The
mass of each theoretical fragment was calculated to then be matched
with observed masses in MS/MS spectra. Finally, the fragments were
converted into Domon-Costello*® and IUPAC-condensed nomencla-
ture. If multiple fragment possibilities could explainagiven m/z value,
aprioritization scheme was developed (Supplementary Fig.15), which
emphasized prior likelihood of each fragment option and the evidence
of theremaining fragmentsinagiventandemspectrum. We note that
fragment prioritization is an optional step in this workflow and can
be disabled, if all possible fragments are desired. CandyCrumbs is
available via CandyCrunch.analysis.CandyCrumbs in our developed
Python package.

Molecular dynamics simulation

Initial conformations for the GIcNAcB1-3(Neu5Aca2-6)GalNAc and
GalNAcal-3(Neu5Aca2-6)GalNAc glycans were obtained using the
Carbohydrate Builder tool of the GLYCAM-Web server®. Four struc-
tures were produced for each glycan with different combinations
of the a2-6 torsion angles. This approach provided different initial
starting points for the simulations, and thus maximized the sampling
ofthe conformational space. Each glycan was parameterized with the
GLYCAMO6-j1 forcefield”, and a cuboid solvent box of TIP3P water
molecules created to produce a minimum solute distance of 15 A. In
the case of the reduced glycan structures, the structures of the open
GalNAc were parameterized using the GAFF2 forcefield*®. Asingle Na*
ion was included in each system to neutralize the net charge of the
system. These systems were then converted into GROMACS topology
files using Acpype®. For each initial starting conformation of each
system, a 500-ns simulation was performed using GROMACS2022.4
(ref. 60), resulting in 2 ps of simulations for each respective system.

Biosynthetic network analysis

For all networks constructed and analyzed in this work, we used
the code functionality within the glycowork.network.biosynthesis
modaule (v.1.1.0). Our analyses were oriented very closely by the ones
described by Thomeés et al.” Briefly, the analysis of glycosyltransferase
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competition was performed by analyzing diamond-like network motifs
via the trace_diamonds and find_diamonds functions within
glycowork. Thereby, we analyzed the proportion of networks that pre-
sented a certain case of glycosyltransferase competition and counted
how often each alternative order of reactions was experimentally
observed among these. This allowed us to analyze which reaction order
dominated across (1) glycan contexts and (2) networks. The differences
shown in Fig. 4 were further filtered to contain at least (1) two glycan
sequence contexts, (2) a mean difference of 30 and (3) a corrected
Pvalue below 0.01.

Biosynthetic communities were extracted using the get_commu-
nities function, from glycowork, on reaction path preference-pruned
biosynthetic networks’. Conserved communities were detected by
first calculating a distance matrix based on pairwise Jaccard distances,
followed by clustering these distances using the OPTICS algorithm
as implemented in scikit-learn (v.1.2.2), with a minimum number of
50 samples per cluster.

Statistical analyses

Comparing two groups was done via one-tailed or two-tailed Welch’s
t-tests. In all cases, significance was defined as P < 0.05. All multiple
testing was corrected with a Holm-Sidak correction. All statistical
testing has been done in Python 3.9 using the statsmodels package
(v.0.13.5) and the scipy package (v.1.10.1). Effect sizes were calculated
as Cohen’s d using glycowork (v.1.1.0). The correlation of distance
matrices was performed via two-sided Mantel tests as implemented
within scikit-bio (v.0.5.8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All relevant data, including their data provenance with accession IDs
from GlycoPOST*°, MassIVE, UniCarb-DB*, UniCarb-DR or NIST, canbe
found at Zenodo via https://doi.org/10.5281/zenod0.10029271 (ref. 43)
or are contained within Supplementary Tables10 and 11. The 196 data
sources are listed in Supplementary Table 10.

Code availability

Allrelevant code is integrated into glycowork (v.1.1.0) and/or can be
found at https://github.com/BojarLab/CandyCrunch. CandyCrunch
and CandyCrumbs can also be readily accessed at https://colab.
research.google.com/github/BojarLab/CandyCrunch/blob/main/
CandyCrunch.ipynb.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All publicly available LC-MS/MS glycomics data using electrospray ionization were gathered from all available sources (cut-off September
2023). This resulted in 625,547 glycan spectra.

Data exclusions  We excluded spectra which we could not unambiguously pair with an expert glycan annotation. This resulted in 489,103 spectra that were
labeled with a defined structure.

Replication All results could be successfully replicated for at least three times, for instance with the same model trained with different seeds.

Randomization  Training and validation data were split randomly on a file basis, so that no spectra of the same raw file could be found in both training and
validation set, improving robustness.

Blinding For all assessments of model performance, experimenters were blinded to the expert annotation, which was only revealed at the time of
evaluation.
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Materials & experimental systems

Methods
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