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Predicting glycan structure from tandem 
mass spectrometry via deep learning

James Urban1,2, Chunsheng Jin3, Kristina A. Thomsson3, Niclas G. Karlsson    4, 
Callum M. Ives    5, Elisa Fadda6 & Daniel Bojar    1,2 

Glycans constitute the most complicated post-translational modification, 
modulating protein activity in health and disease. However, structural 
annotation from tandem mass spectrometry (MS/MS) data is a bottleneck in 
glycomics, preventing high-throughput endeavors and relegating glycomics 
to a few experts. Trained on a newly curated set of 500,000 annotated  
MS/MS spectra, here we present CandyCrunch, a dilated residual neural 
network predicting glycan structure from raw liquid chromatography– 
MS/MS data in seconds (top-1 accuracy: 90.3%). We developed an 
open-access Python-based workflow of raw data conversion and prediction, 
followed by automated curation and fragment annotation, with predictions 
recapitulating and extending expert annotation. We demonstrate that this 
can be used for de novo annotation, diagnostic fragment identification and 
high-throughput glycomics. For maximum impact, this entire pipeline is 
tightly interlaced with our glycowork platform and can be easily tested at 
https://colab.research.google.com/github/BojarLab/CandyCrunch/blob/
main/CandyCrunch.ipynb. We envision CandyCrunch to democratize 
structural glycomics and the elucidation of biological roles of glycans.

As the most abundant post-translational modification, glycans are 
frequently dysregulated and mechanistically involved in diseases 
ranging from cancer1 to metabolic disorders2. The exact structure 
of complex carbohydrates is often key in mediating their function3, 
such as sialic acid only facilitating influenza infection in a particular 
linkage orientation4. From biomarkers to mechanistic understand-
ing1,2, structural resolution thus is relevant for integrating and using 
glycan information for biomedical gains. In the context of systems 
biology, glycans are routinely measured via mass spectrometry 
(MS)-based glycomics5, providing insights into which structures or 
substructures are dysregulated, which can be further analyzed with 
various methods6,7.

Currently, structural determination of glycans is, at best, 
semi-manual and proceeds structure by structure8. Since different 
glycan structures can result in the same mass, structural isomers are 

routinely separated via liquid chromatography (LC)9, followed by 
fragmentation into smaller substructures by MS, conceptually akin to 
shotgun sequencing. Current in-depth workflows are hard to paralle
lize, with a general trade-off between resolution and scale10. All this  
has relegated structural glycomics to a few experts, inaccessible to 
most life science researchers.

Extensive work by Harvey and others8,11,12 has demonstrated 
that, in principle, most substructures13, linkages14 and monosaccha-
rides15 have diagnostic fragments or intensity ratios. Using this fine 
structural information that is contained within MS/MS spectra, along 
with basic biosynthetic assumptions, it is thus frequently possible to 
achieve high-resolution annotations of native glycans. In practice, 
however, annotation is often restricted to essentially topological 
assignments, not least due to time-constraints. Nuances of diagnostic 
indicators are challenging for humans to decrypt manually or encode 
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Results
CandyCrunch predicts glycan structure via domain 
knowledge
Reasoning that the fragmentation patterns and propensities (that is, 
intensity ratios) in MS/MS are predictive of glycan structure—a rela-
tionship that is used by human experts in annotation—we set out to 
learn this association via machine learning. For this, we collected and 
curated an unprecedentedly large set of annotated LC–MS/MS spectra 
that derive from glycans (Fig. 1a,b and Methods). We envision that, even 
beyond our efforts here, this dataset will be a valuable resource for 
data-driven approaches in glycomics. Crucially, this dataset aims to 
provide a representative view over current glycomics data, with a total of 
nearly 500,000 labeled MS/MS spectra from >2,000 glycomics experi-
ments, encompassing all major eukaryotic glycan classes (N-linked, 
O-linked, glycosphingolipid, milk oligosaccharides) and the most com-
mon experimental setups for glycomics. The exact composition of this 
dataset, broken down by glycan classes and experimental parameters, 
can be found in Supplementary Table 1. To avoid overrepresenting some 
classes (for example, core 1 O-glycan), we then limited each class to a 
maximum of 1,000 spectra in the independent test set (see Methods for 
details) and used the remaining ~450,000 spectra to train our model on 
the most likely glycans in a multiclass classification setup (Methods).

This resulted in our dilated residual neural network, CandyCrunch, 
a model architecture suited to MS data25. Since experimental param-
eters such as the ion mode drastically change fragmentation patterns, 
it uses the MS/MS spectrum, retention time, precursor ion m/z and 
experimental parameters (for example, LC type, ion mode and so 
on) as input and predicts glycan rankings as its output (Fig. 1c), using 
information from these different sources of input which are only partly 
redundant (Supplementary Tables 2 and 3). We note that we neither 
claim, nor sought to obtain, the most frugal model for this task, but 
rather the most performant and flexible, without noticeable hardware 
limitations (CandyCrunch can be readily used on a typical laptop). Our 
current binning strategy lowers the effective resolution of the mass 
spectrometer. Yet we note that, for the moment, analyzing the data at 
higher resolution, more closely approximating the true instrument 
resolution, does not give rise to higher accuracy (Supplementary 
Table 4), as most fragments are uniquely specified by our current bin-
ning method (Supplementary Fig. 1 and Methods). Further, capturing 
minute mass differences such as between CH4 and O (0.036 Da) would 
require impractically fine binning and is invalidated by the large pro-
portion of low-resolution data in our training dataset. Available options 
to run CandyCrunch are shown in Supplementary Fig. 2. The model is 
part of a pipeline applied to a raw file (for example, .mzML or .mzXML 
files), which groups predictions based on mass and retention isomers 
and further curates predictions with, for example, diagnostic ions 
(Fig. 1d). We confirmed that this grouping procedure even succeeded 
in the case of retention time overlaps between peaks (Supplementary 
Fig. 3), although we caution that biological samples may contain more 
closely co-eluting structures that are not disambiguated by human 
annotators in the data used to train CandyCrunch.

If precursor ion intensities are available in the raw file, this pipeline 
can also estimate relative abundances. These abundances correlate well 

programmatically, especially at scale and accommodating diverse 
experimental setups, as each linkage and monosaccharide can be 
affected by its sequence context16. This combinatorial explosion, com-
bined with rich data, is promising for scalable artificial intelligence (AI) 
approaches which can learn complex mapping functions, as recently 
demonstrated by endeavors such as AlphaFold2 (ref. 17).

So far, computational attempts to automate MS-based  
glycomics18–23 did not engage with deep learning. Rather, they relied on 
various search methods, to search for either possible topologies given a 
precursor ion mass or suitable reference spectra, loose constraints that 
may yield unphysiological predictions. Their primary limitations are 
scale and annotation resolution, ranging from composition to glycan 
topology. Neither linkage type nor monosaccharide stereoisomers are 
commonly resolved during this algorithmic sequencing. Additional 
hurdles to their wider adoption include poor generalizability, as none 
of them employ a rigorous train–test mentality, a standard practice 
in machine learning to evaluate methods on held-out data to prevent 
overfitting. Many tools were designed for very specific problems and 
were often tested on few spectra18–20, precluding their usage in many 
experimental setups.

Recent efforts in related fields, particularly in proteomics24,25, have 
employed scalable deep learning strategies in MS analysis. Proteomics 
has partially similar challenges to glycomics, for example, precur-
sor structure elucidation given fragment ions. We thus posit that the 
translation of analogous methods to structural glycomics, combined 
with domain-inspired additions such as biosynthetic constraints and 
building on the accumulated work of many years of glycomics analysts, 
could be a major leap forward for the field and the usage of glycomics 
in the broader life sciences.

We present a scalable and accurate workflow for predicting gly-
can structure from liquid chromatography with tandem mass spec-
trometry (LC–MS/MS) data, centered on our deep learning model, 
CandyCrunch. Using a large-scale, curated set of tandem spectra from 
diverse experimental setups, CandyCrunch predicts glycan structure 
with high accuracy (~90%), outperforms existing methods on this 
task and matches/extends expert annotations on unseen data. This 
is facilitated by various domain-specific advancements, for exam-
ple, considering glycan structure similarity in the loss function. We 
embedded this into a downstream workflow converting predictions 
into interpretable results, further reducing false positive rates, and 
estimating relative abundances; all in seconds. This workflow includes 
CandyCrumbs, a comprehensive MS/MS fragment annotation plug-in 
we developed here. We used this to uncover diagnostic fragments 
and more complex fragmentation behavior at scale, underpinned by 
molecular dynamics simulations. Finally, we annotate novel glycomes, 
analyze biosynthetic constraints at scale and demonstrate that our 
pipeline can be used in high-throughput glycomics. Our methods are 
accessible within a Python package (https://github.com/BojarLab/
CandyCrunch), a free-standing Google Colab notebook at https://
colab.research.google.com/github/BojarLab/CandyCrunch/blob/
main/CandyCrunch.ipynb and a command line interface available 
via our Python package (further usage description at https://github.
com/BojarLab/CandyCrunch).

Fig. 1 | Predicting glycan structure via deep learning. a,b, Overview of the 
curated dataset of glycomics LC–MS/MS by glycan class (a) and source (b). 
Diagonal bars indicate positive ion mode data. The numbers correspond to 
spectra with annotations. c, Schematic view of CandyCrunch model architecture. 
d, Pipeline of curating glycan predictions from raw file to final output table.  
e, Evaluating top-1 accuracy on the independent test set (Methods; see ref. 43) 
across different levels of resolution. f, Learned representations of all spectra in 
the test set are shown via t-distributed stochastic neighbor embedding (t-SNE), 
colored by glycan class. Examples are illustrated with their glycan structures.  
g, Excerpt from an example prediction output using our Colab notebook on the 

file JC_171002Y1.mzML (ref. 44). h, Proportional Venn diagram of the comparison 
of CandyCrunch and Glycoforest on the raw file JC_131210PMpx5.mzML (ref. 18),  
not used for training CandyCrunch but used for developing Glycoforest. Shown 
are topologies (Glycoforest does not output full structures) matching those of 
the human annotator for each model (see Supplementary Fig. 11 for detailed 
comparison). All masses shown are from reduced glycans. Glycans here and 
in the entire paper are drawn using GlycoDraw45 according to the Symbol 
Nomenclature for Glycans (SNFG). Conv, convolutional layer; d, dilation;  
MO/GSL, milk oligosaccharides/glycosphingolipids; PGC, porous graphitized 
carbon chromatography; RT, retention time.
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with those gained by LC peak area integration (Supplementary Fig. 4), 
a state-of-the-art approach for estimating relative abundances. We  
caution that overlapping isomer peaks may lead to moderate 

uncertainties in their quantification. Overall, CandyCrunch is highly 
performant, with an accuracy of ~90% of the top-ranked structure pre-
diction in the independent test set (Fig. 1e), performing comparably 
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across glycans (Supplementary Fig. 5a,b) and across different MS  
setups, glycan classes and derivatized glycans (Supplementary 
Tables 2, 5 and 6), albeit with lower performance on data-poorer cat-
egories such as permethylated glycans. We also note that any evaluation 
is partly confounded by different annotation qualities, which may be, 
for instance, substantiated by exoglycosidase treatment in some cases 
but not in others, resulting in more ambiguous ‘ground truths’. Conse-
quently, higher-quality data further improve performance, reaching 
up to ~95% accuracy currently (Supplementary Table 6). Custom loss 
functions estimating structural distance to the ground truth, and many 
more domain knowledge-inspired modifications (Methods), ensure 
that even erroneous predictions are structurally close to the correct 
solution. We quantified this statement by analyzing that structures with 
more shared motifs need fewer of their ‘own’ spectra to reach high pre-
diction accuracy, indicating effective cross-training (Supplementary 
Fig. 6). Our approach also includes incompletely resolved structures, 
so that prediction uncertainty can be meaningfully conveyed via, for 
instance, missing linkage information (indicated by a higher topology 
accuracy than structure accuracy; Fig. 1e). Further, the prediction score 
is a meaningful indicator of confidence and, when comparing top-1 
predictions of the same structures, is higher for correct predictions 
(Supplementary Table 7).

Learned representations of spectra by CandyCrunch cluster by 
glycan sequence and glycan class (Fig. 1f), demonstrating that the 
model has learned to accommodate experimental variability. Further, 
structurally related glycans, even within the same class, tend to cluster 
together in the learned representation space. This can be quantified by 
comparing the cosine distance of learned representations of pairs of 
glycans with their structural distance, revealing that the co-clustering 
described by the representations is indeed suggestive of structural 
relatedness of glycans (two-sided Mantel test of correlating the two 
resulting cosine distance matrices; P < 0.001), already alluded to via 
Supplementary Fig. 6 above.

In framing CandyCrunch as a multiclass classification problem 
(that is, ranking the likelihood of pre-defined glycans), we minimized 
the chance for unphysiological glycans in the output, a very real pos-
sibility otherwise, given the sparsity of real glycan sequences among 
possible sequences26. However, this made zero-shot predictions— 
predicting a glycan sequence that was absent from our training  
set—conceptually infeasible. As repositories such as GlycoPOST do 
not catalog all physiological glycans, and glycomics studies, such as 
mucin-type O-glycomics27 or milk glycomics28, routinely discover new 
structures, we set out to augment our pipeline to allow for, limited, 
zero-shot prediction outside our 3,391 defined glycans.

Reasoning that glycans in a biological sample tend to be biosyn-
thetically related, that is, contain precursors/intermediates of larger 
biosynthetic pathways, we turned to our recently developed method of 
constructing glycan biosynthetic networks7. Applying this method to a 
typical CandyCrunch output (Supplementary Fig. 7) revealed the exist-
ence of necessary intermediate structures that were absent from our 
predictions but would explain spectra without a valid prediction. We 
thus added this routine as an optional step in our inference workflow, 
to facilitate a certain subset of physiological zero-shot predictions, 
which we support empirically (Supplementary Fig. 8). We caution that 
this additional workflow step is only expected to add value if mixtures 

of related glycans, such as in cells, blood or tissue, are analyzed, not 
purified synthetic structures.

CandyCrunch is fundamentally database-independent but can be 
further enhanced by methods leveraging databases, such as defined 
within glycowork29, to augment predictions downstream. By carefully 
selecting a suitable subset of reference structures (for example, by 
taxonomy, glycan class or tissue), matches for unexplainable spectra 
could be proposed. These potential matches were then cross-checked 
for diagnostic ions as well as ranked by biosynthetic compatibility with 
true predictions. This, again, allowed for a certain subset of zero-shot 
predictions. It should be noted that this procedure still balanced the 
theoretical constraint of physiological glycans with the reality of 
encountering novel structures in biological samples. Our final infer-
ence workflow then also contained this latter expansion, resulting 
in a ranked prediction output that can be further investigated by the 
researcher (Fig. 1g). It should be noted, however, that the default in the 
provided notebook is not to run zero-shot inference, as this requires 
much more expert review than our regular model-based inference. 
We also developed a workflow for batches of samples, which accom-
modates shifts in retention time by grouping peaks across samples, 
resulting in improved predictions (Supplementary Fig. 9).

Next, we compared CandyCrunch with alternative approaches to 
this problem. As a preface, we should note that no current approach 
combines CandyCrunch’s advantages of scale, generalizability, 
performance and its flexibility in usage (Supplementary Fig. 10a).  
Further, most methods are maintained for only the briefest of periods 
and are no longer realistically accessible. Thus, we had to effectively 
constrain ourselves to compare CandyCrunch on individual raw files 
that were specifically used to build these alternative approaches, while 
we excluded them during training. Still, in direct comparison with 
state-of-the-art methods such as Glycoforest18 on challenging fish 
mucin glycans, CandyCrunch demonstrated a greater overlap with 
manual expert annotations (Fig. 1h; 62.5% versus Glycoforest’s 40.6%) 
and a substantially higher structural resolution (Supplementary Fig. 11). 
In addition, by tethering CandyCrunch and the below-mentioned  
CandyCrumbs to our glycowork ecosystem29 and by providing  
everything open-source, we substantially increase the chances for the 
long-term viability of our presented methods.

Applied to fully unseen datasets, CandyCrunch routinely achieved 
high performance (Supplementary Table 8; topology: 75.3% top-1 
accuracy, structure: 72.4% top-1 accuracy) and potentially can extend 
expert annotations by correctly capturing additional structures and 
isomers (Supplementary Fig. 12). The additional predictions in this 
sample partly even stemmed from remnant glycans from the previ-
ous sample, showcasing the exceptional sensitivity of our model. We 
would like to highlight here that the cross-training of CandyCrunch 
on all glycan classes yielded performance synergy, as a model only 
trained on O-glycans performed worse for predicting O-glycans  
(Supplementary Table 8; topology: 72.3% accuracy, structure: 66.9% 
accuracy) than the model trained on all classes. We posit that this was 
due to the structure-based loss function we used for training, as well 
as shared information between spectra of different classes, stemming 
from shared glycan motifs across classes (for example, Neu5Ac-Hex).

The speed and relatively low resource requirements of  
CandyCrunch (Supplementary Fig. 13a) mean that samples can be 

Fig. 2 | Discovering diagnostic fragmentation using CandyCrumbs.  
a, Schematic view of the CandyCrumbs workflow for automatic fragment  
ion annotation. b–e, Negative ion mode spectra of reduced glycans with 
prediction confidence between 0.9 and 1.0 for Fucα1-2Galβ1-3GalNAc/Galβ1-
4GlcNAcβ1-3Fuc (b), Neu5Acα2-3Galβ1-3GalNAc/Galβ1-3(Neu5Acα2-6)GalNAc 
(c), GlcNAcβ1-3(Neu5Acα2-6)GalNAc/GalNAcα1-3(Neu5Acα2-6)GalNAc (d) and 
GlcNAcβ1-3(Neu5Gcα2-6)GalNAc/GalNAcα1-3(Neu5Gcα2-6)GalNAc (e) were 
averaged and juxtaposed. Fragments exhibiting differential abundance were 
labeled by CandyCrumbs in the Domon–Costello nomenclature30. f,g, Negative 

ion mode spectra of reduced glycans with prediction confidence between  
0.6 and 1.0 for Neu5Acα2-3Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-
6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc/Neu5Acα2-
3Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6)
Manβ1-4GlcNAcβ1-4GlcNAc (f) and Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-
3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc/Neu5Acα2-3Galβ1-
4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc 
(g) were averaged, juxtaposed and labeled similar to b–e. Doubly charged 
fragment ions are colored gray.

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | July 2024 | 1206–1215 1210

Article https://doi.org/10.1038/s41592-024-02314-6

exhaustively analyzed, without practical constraints to the most abun-
dant structures, which is a routine necessity in human analysis. In its 
typical application, CandyCrunch also makes fewer assumptions about 

what is or should be present in a sample, enhancing the chances for 
novel discoveries. This means, for example, that co-released N-glycans 
can be detected in O-glycan preparations (Supplementary Fig. 14).
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CandyCrumbs facilitates automated diagnostic ion discovery
When analyzed by humans, fragment ions are usually annotated via the 
Domon–Costello nomenclature30 and used for elucidating the struc-
ture of a glycan. While there are programs that automate this assign-
ment21,22, they either are only accessible via graphical user interfaces 
or only provide annotations for simple fragment ions. We thus decided 
to implement an exhaustive Python-based solution to this problem, 
CandyCrumbs, which is also freely available via the CandyCrunch 
Python package. Given a candidate glycan sequence and fragment 
peaks, CandyCrumbs can automatically and rapidly (Supplementary 
Fig. 13b) annotate fragment ions in Domon–Costello and International 
Union of Pure and Applied Chemistry (IUPAC)-condensed nomencla-
ture (Fig. 2a and Methods). Compared with alternative approaches, 
this presents the most feature-complete and rapid implementation 
of this task (Supplementary Fig. 10b).

Further, we used several domain knowledge-inspired heuris-
tics and probability rules to highlight the most probable fragments  
(Supplementary Fig. 15 and Methods), if multiple fragmentation 
options could result in an m/z value that was acceptable at a given 
threshold. We then also integrated CandyCrumbs within the aforemen-
tioned open-access Colab notebook (at https://colab.research.google.
com/github/BojarLab/CandyCrunch/blob/main/CandyCrunch.
ipynb) for full flexibility. Our implementation of CandyCrumbs then  
allowed us to use it in a high-throughput setting and integrate it into 
CandyCrunch workflows, such as for identifying diagnostic ions at 
scale as discussed below, to aid expert annotation of challenging cases.

Reference spectra are routinely used as high-quality examples in 
semi-manual annotation31. As ‘spectrum quality’ is an ill-defined and 
subjective characteristic, we aimed to quantify this aspect by using 
calibrated32 prediction confidence of CandyCrunch as a proxy, with the 
reasoning that a more confidently assessed spectrum is a higher-quality 
spectrum with more information for effective prediction. Rather 
than one reference spectrum, that is, the usual approach31, we then 
extracted hundreds to thousands of high-quality spectra for a given 
structure from our dataset and engaged in highly powered statistical 

comparisons between isomers. This identified numerous diagnostic 
ions and/or ratios for topologically distinct (Fig. 2b,c) and identical 
(Fig. 2d,e) isomers, with large effect sizes. This also extended to other 
glycan classes and, for example, facilitated detecting conserved frag-
mentation differences of linkages (for example, stronger B3 ion in α2-6 
versus α2-3) across glycan backbones (Fig. 2f,g) and recapitulated 
known effects from the literature33, such as a higher stability of α2-6 
versus α2-3 in negative mode (see B1 ion in Fig. 2g). Importantly, these 
differences diminished, and eventually vanished, with lower-quality 
spectra (Supplementary Fig. 16). We then analyzed the predictiveness 
of these diagnostic features when reducing spectrum quality. Intrigu-
ingly, some diagnostic features, even if they were not the strongest 
initial signal, remained predictive even for medium- to low-quality 
spectra (Supplementary Fig. 17), making them promising candidates 
for aiding annotation.

Similarities between Neu5Ac and Neu5Gc versions of the same iso-
mers (Fig. 2d,e) suggested molecular determinants of fragmentation 
propensities. We thus first analyzed all high-quality O-glycan spectra 
juxtaposing composition-matched glycans containing GalNAcα1-3 or 
GlcNAcβ1-3, confirming systematic fragmentation propensities on a 
global scale (Supplementary Fig. 18).

Molecular dynamics supports diagnostic fragmentation
In the abovementioned scenario (Fig. 2d,e), our conclusion was that 
GlcNAcβ1-3(Siaα2-6)GalNAc fragmented along the HexNAc-HexNAc 
axis, while GalNAcα1-3(Siaα2-6)GalNAc fragmented along the 
Sia-HexNAc linkage. To elucidate how structural properties of 
these molecules could give rise to these differences in fragmenta-
tion behavior, we engaged in molecular dynamics simulations of 
both isomers.

The fragmentation pattern of the GlcNAcβ1-3(Siaα2-6)GalNAc  
glycan displayed evidence of a charge-induced fragmentation mech-
anism (Fig. 2d,e). In agreement with this, we saw evidence of the  
carboxylic acid moiety of the terminal sialic acid interacting with the 
hydrogen of the C6 hydroxyl group of the terminal HexNAc sugar 
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Fig. 3 | Molecular dynamics reveals fragmentation mechanism. a,b, Kernel 
density estimate distribution of the distance between the center of geometry 
of the carboxyl group of the sialic acid and the hydrogen of the hydroxyl 
group of C6 of the terminal HexNAc residues for the closed (a) and open (b) 
reducing GalNAc residue for both GlcNAcβ1-3(Neu5Acα2-6)GalNAc (blue) 
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GlcNAcβ1-3(Neu5Acα2-6)GalNAc, the carboxyl group is able to interact with the 
hydroxyl of the C6 of the HexNAc. However, this interaction is not observed in 
GalNAcα1-3(Neu5Acα2-6)GalNAc. c, A representative snapshot of the structure 
of GlcNAcβ1-3(Neu5Acα2-6)GalNAc is shown, with the interaction between  
the two moieties displayed by a dashed line (orange). KDE, kernel density 
 estimation.
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(Fig. 3). The interaction sampled 11.9% of our cumulative 2-μs simula-
tions of GlcNAcβ1-3(Neu5Acα2-6)GalNAc. As these simulations were 
conducted in aqueous solution, rather than a vacuum as would be 
the environment for fractionation, the frequency of this interaction 
will be far greater during the in vacuo fragmentation due to absence 
of water molecules competing for hydrogen bonding. Therefore, 
this suggests that the charge-induced fragmentation mechanism of 
GlcNAcβ1-3(Neu5Acα2-6)GalNAc is due to removal of a proton from 
the terminal HexNAc sugar, therefore resulting in fragmentation along 
the HexNAc-HexNAc axis.

Conversely, simulations of GalNAcα1-3(Neu5Acα2-6)GalNAc 
were not able to sample this interaction (occurrence < 0.1%). As a 
result, fragmentation of this glycan occurs along the Neu5Ac-HexNAc  
linkage instead.

Furthermore, during the ionization of both of the glycans, reduc-
tive β-elimination would result in the reducing end GalNAc being 
reduced to an alditol. As this linearized structure may result in increased 
flexibility, we also conducted molecular dynamics simulations of both 
glycans with a linearized reducing GalNAc. These simulations yielded a 
similar insight to those described previously. In the reduced GlcNAcβ1-3 
(Neu5Acα2-6)GalNAc glycan, the carboxyl group of the terminal sialic 
acid interacted with the hydrogen of the C6 hydroxyl group of the 
terminal HexNAc sugar during 6.8% of the simulated time. Again, the 
reduced GalNAcα1-3(Neu5Acα2-6)GalNAc was not able to sample this 
interaction (occurrence < 0.1%).

We therefore concluded that the identified fragmentation 
behavior can be used to distinguish between these two isomers, an 
endeavor that is otherwise challenging without specific enzymatic 
digestion. This implied that we could use our CandyCrunch and 
CandyCrumbs-powered approach to distinguish very close structural 
isomers based on diagnostic fragmentation behaviors, beyond single 
diagnostic ions or ratios and more akin to how human experts would 
distinguish them.

New biological insights via CandyCrunch and CandyCrumbs
Striving towards AI-assisted glycomics, we propose our platform as 
a means to enhance human analysts by (1) saving time, (2) making 
annotations more robust and (3) analyzing samples more compre-
hensively. We illustrate the latter point with de novo predictions of 
murine intestinal glycans that were too low in abundance to be included 
in the original annotation but revealed, for example, the presence of 
Neu5Gc-containing glycans and low levels of sialyl-Tn antigen in these 
samples (Supplementary Fig. 19). Importantly, we do not claim that 
human analysts could not have annotated these structures in princi-
ple, but rather that very real time and resource constraints make this  
frequently infeasible in practice. This limitation is lifted by CandyCrunch.

To demonstrate that we could apply our developed meth-
ods to truly novel samples, we analyzed the serum N-glycome of 

southern bluefin tuna (Thunnus maccoyii), which was measured within 
GPST000182 (ref. 34) but never reported in an annotated manner. 
This resulted in over 50 glycans, including high-mannose, hybrid and 
complex structures, with features such as bisecting GlcNAc, core and 
antenna fucosylation, Neu5Gc and multi-antennae N-glycans (Fig. 4a 
and Supplementary Fig. 20). In our comprehensive database within 
glycowork, not a single glycan from T. maccoyii has been reported so 
far, demonstrating that these pipelines can facilitate new discoveries.

We also wanted to highlight how predictions could be used down-
stream to derive new insights from aggregating glycomics studies. 
This can even be done in the context of already performed glycomics 
experiments, distilling results from the accumulated data of many 
years of study. For this, we re-used the total 250,000 O-glycan spectra 
mentioned in the context of Fig. 2 to construct biosynthetic networks7. 
As described above, this process filled in the gaps of unobserved 
intermediates in the biosynthesis of observed structures. A key ben-
efit here is that all datasets have been analyzed by the same annotator  
(CandyCrunch), eliminating an important source of heterogene-
ity35. Applied to our dataset, this resulted in 1,003 biosynthetic net-
works (corresponding to 1,003 glycomics experiments measuring 
O-glycans) that we used to analyze systematic effects in that gly-
can class. This revealed that some intermediates were never meas-
ured (Supplementary Fig. 21 and Supplementary Table 9), such as 
the reducing end GalNAc (likely due to the mass range of the mass 
spectrometer used), while others, such as Gal3Sβ1-3GalNAc, were 
nearly always reliably measured whenever larger structures that 
included this building block as a substructure were present in a 
sample. We believe that this approach might shed light on subsets of 
the O-glycome that are currently hard to measure, as we here, again7, 
noted the peculiar absence of GlcNAc-terminated structures from 
measured glycans as a trend.

Further analyses across our networks then allowed us to com-
pare the reaction order of glycosyltransferases, reinforcing the highly 
dominant nature of galactosyltransferases7 (Fig. 4b). Decomposing 
the biosynthetic networks into communities unveiled several con-
served clusters that were modular and occurred in many of our datasets 
(Fig. 4c). Further investigation resulted in the observation that these 
clusters corresponded to the O-glycan core structures and their respec-
tive biosynthetic extensions (Fig. 4d). In general, these proved to be 
relatively modular, except for cases such as cores 1 and 2, which showed 
some biosynthetic overlap. We envision that this rapid decomposition 
of many networks into biosynthetic subcategories will prove useful for 
comparing and understanding the eventual terminal motifs that will be 
exposed in these different O-glycan cores, as well as their biosynthesis.

As a proof of concept, to demonstrate the capabilities of Candy
Crunch for high-throughput analysis, we next predicted the O-glycomes 
of acute myeloid leukemia (AML) cell lines (GPST000214 (ref. 36)) 
and differentiated colorectal cancer cell lines (CaCo-2, GPST000256  

Fig. 4 | Deriving biological insights from CandyCrunch predictions. a, Serum 
N-glycome of the southern bluefin tuna (T. maccoyii). Shown are the precursor 
ion intensities, arrayed by LC retention time. Representative structures that are 
meant to illustrate the identified sequence diversity are shown via the SNFG. 
Next to each structure, we show the cosine similarity of the shown spectrum and 
the averaged spectrum of all negative ion mode spectra of reduced glycans of 
the predicted structure with a confidence above 0.5 (see Fig. 2 for background). 
b, O-glycan reactions are path-dependent. For every situation in which two 
glycosyltransferases competed for the same substrate (n = 1,003 biosynthetic 
networks), we analyzed which order of reactions was experimentally observed 
across our networks. Box plots used the median as the center line and the 
25th (Q1) and 75th (Q3) percentiles as the lower and upper edges of the box. 
The whiskers extend to the first data point within Q1 − 1.5 × IQR (interquartile 
range) and to the last data point within Q3 + 1.5 × IQR and outlier values outside 
this range are depicted as diamonds. c, O-glycan networks decomposed into 
biosynthetic communities relating to core structures. We detected communities 

via the Louvain method and calculated their pairwise Jaccard distances, shown 
here as a hierarchically clustered heatmap. d, Community corresponding 
to core 5 O-glycans. Clustering of the distance matrix from c using OPTICS 
(Ordering Points To Identify the Clustering Structure)46 resulted in conserved 
communities broadly corresponding to O-glycan cores, with the one from core 
5 being shown here as a network, nodes scaled by degree. e, Clustering cancer 
cell line O-glycomes. Predicted O-glycomes of AML cell lines (GPST000214) 
and differentiated colorectal cancer cell lines (CaCo-2, GPST000256), via a 
CandyCrunch model not trained on these datasets, are shown via t-SNE (n = 103), 
using glycan abundance as features. f, Differential glycan expression between 
AML and colorectal cancer cell lines. Given the predicted glycomes of e, we used 
the get_volcano function from glycowork to test differential expression at the 
motif level (two-tailed Welch’s t-test), shown as a volcano plot. Differentially 
expressed glycans are drawn inversely scaled by corrected P value (Holm–Šídák 
correction for multiple testing). FC, fold change.
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(ref. 37)). With a total of 103 glycomics raw files for this analysis, we 
could show that the predicted glycomes of AML and colorectal cancer 
cell lines formed distinct clusters (Fig. 4e), which both were separate 
from the blanks used in GPST000256. We then engaged in a differential 
glycan expression analysis to investigate what distinguished these 

clusters. While there was considerable intra-cluster heterogeneity, this 
analysis revealed that the colorectal cell lines on average were more 
enriched in structures containing fucosylated galactose and remnant 
N-glycans, while the AML cell lines exhibited higher levels of sialylated 
glycans and Lewis structures (Fig. 4f). This set of analyses shows that 
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CandyCrunch can be applied to large sets of glycomics measurements 
and eventually be used in conjunction with other glycowork function-
ality to reveal dysregulated glycans and glycan motifs, directly from 
LC–MS/MS raw files.

Discussion
We present here generalizable methods to (1) predict glycan structures 
from LC–MS/MS data using deep learning (CandyCrunch) and (2) auto-
matically annotate fragment ions in higher-order tandem mass spec-
trometry spectra (CandyCrumbs). Proven performance on blinded data 
with ground truth labels (Fig. 1h, Supplementary Figs. 11, 12, 14 and 19 
and Supplementary Table 8) cements the usefulness of CandyCrunch. 
Both CandyCrunch and CandyCrumbs are suited for high-throughput 
usage and can scale to large datasets as well as extremely diverse gly-
cans and experimental setups. With the high performance that we 
demonstrate here, we are confident that these pipelines will be useful 
both for experts, accelerating and augmenting their workflows, as 
well as for less experienced users, similar to how automated work-
flows in other systems biology disciplines have democratized access 
to state-of-the-art methods38,39. We have demonstrable experience with 
maintaining software over longer periods (via our glycowork platform) 
and, since we ourselves are active users of CandyCrunch for our core 
research, have a natural incentive to further develop this technology.

Our approach is ultimately limited by the representativeness of 
available data. While CandyCrunch is applicable to all major glycan 
classes and most experimental setups (for now limited to electrospray 
ionization-type setups), we do note that the very best results can be 
expected for reduced glycans in negative mode, particularly O-glycans 
or free oligosaccharides. This is both a result of high-quality data in 
those cases and particular efforts in fine-tuning our pipeline for opti-
mal results, as they intersected most with our own research interests 
and capabilities. In general, compelling results can be expected for 
samples similar to our training data, strongly enriched in mammalian 
and fish samples (Supplementary Fig. 22), and we expect to perform 
worse, on average, on remote samples such as from invertebrates. We 
envision that, with increasing data, this will improve. We thus urge 
the community to make their glycomics data (as well as high-quality 
annotations) available through platforms such as GlycoPOST40, as this 
will improve approaches such as CandyCrunch, and ultimately advance 
glycobiology and its applications.

We recognize that, as with any model, CandyCrunch predictions 
are imperfect, exhibiting false negative and false positive predictions, 
which occasionally might not resemble errors made by humans. Par-
ticularly, non-CandyCrunch glycan additions within our pipeline, via 
biosynthetic networks and database queries, exhibit a more tentative 
character and should be further evaluated by experts. For ideal results, 
we always recommend predictions to be further refined by experts. 
We are, however, convinced that CandyCrunch predictions can raise 
result quality and comprehensiveness for both experts and novices, 
in addition to the considerable increase in throughput. Lastly, during 
data curation, we assumed expert annotations within our training data 
to be correct, which may retain analyst bias, such as preferential anno-
tation of type II versus type I LacNAc structures in N-glycans without 
conclusive evidence. We do note, however, that the annotations that we 
trained on were, in part, informed by other sources of information, such 
as third-generation product ion spectra or exoglycosidase digestions. 
Once sufficient data become available, future work may also extend this 
approach to higher-order tandem mass spectrometry spectra and/or 
exoglycosidase treatments, with more detailed structural information.

Beyond the fact that the zero-shot capabilities of CandyCrunch are 
limited, we would also like to note that, while we support common deri-
vatizations such as permethylation, we do not currently support every 
type of glycan modification within CandyCrunch and CandyCrumbs. 
Specialized methods, such as azidosugars41, are at the moment beyond 
our scope. Once sufficient raw data of new modifications become 

available, CandyCrunch can be easily retrained (the CandyCrunch 
package includes a training script, and models can be retrained in less 
than 12 h on a free Google Colab instance).

We are also enthusiastic about the potential of upcoming methods 
to simulate high-resolution fragmentation spectra via deep learning42, 
which could be adapted for AI-glycomics in future work and aid either 
training or the evaluation of prediction results. Further, once sufficient 
data from either high-resolution mass spectrometers or absolute nor-
malizations of retention time (for example, via glucose units) become 
available, we expect CandyCrunch to reach even higher performance. 
While we focus on glycomics here, we envision that analogous efforts in 
glycoproteomics could also advance and accelerate the field. Overall, 
we conclude that our presented methods not only pave the way for 
AI-enhanced structural glycomics but also enable many other avenues 
ranging from systematic comparisons over data science to glycoinfor-
matics. This is facilitated by our large, curated dataset and the ability 
to quantify spectrum quality, engaging in analyses at scale for many 
different aspects of glycomics data.
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Methods
Dataset
Tandem mass spectra from electrospray ionization experi-
ments stemmed from repositories such as GlycoPOST40, MassIVE, 
UniCarb-DB31, UniCarb-DR and NIST, as well as from individual publica-
tions with associated public raw data. A full list of the 196 data sources 
can be found in Supplementary Table 10. All raw files were converted 
into the open-access format .mzML using the msconvert software47. 
A custom script using the pymzML package48 (v.2.5.2) or pyteomics49 
(v.4.6) was used to extract all spectra at the MS/MS level, together 
with their stored precursor ion m/z and retention time, if available.  
This extraction functionality is now available as the process_mzML_
stack function within our CandyCrunch package (v.0.3.0), next to an 
analogous process_mzXML_stack function. We extracted up to 1,000 
fragment peaks of the highest intensity per spectrum, if available. 
Then, spectra were retained that fell within ±0.5-Da m/z and ±2-min 
retention time of reported glycan peaks in the associated publications. 
All retained spectra were kept for self-supervised training, paired with 
the information of the respective glycan class, while only spectra that 
could be unambiguously linked to structures described in the respec-
tive publications were kept for supervised training. This resulted in a 
total number of 625,547 glycan spectra, of which 489,103 spectra were 
labeled with a defined structure and could be used for training, the 
latter stemming from 3,391 unique glycan structures (Supplementary 
Table 11). The full dataset can be found at Zenodo under https://doi.
org/10.5281/zenodo.10029271 (ref. 43).

Data processing
We first removed all spectra with a retention time below 2 min as noise. 
Retention times then were normalized for each individual sample, by 
dividing absolute retention times by the respective maximal retention 
time (or a minimum of 30, if the maximum extracted retention time 
was below 30). Missing retention times were assigned a value of zero. 
Fragment intensities were normalized for each spectrum, by dividing 
the intensity of each peak by the total intensity of the spectrum. Then, 
intensities were binned in 2,048 equal-sized m/z windows from the 
observed minimum (39.714) up to a maximum of 3,000. Additionally, 
the m/z remainder (that is, the difference of the m/z of the highest 
intensity peak of a bin to the left bin window) was calculated for each 
bin, as suggested in Altenburg et al.25, allowing the model to learn exact 
peak location despite binning. We explicitly emphasize here that this 
procedure, combined with the fact that most bins contain only one 
peak (Supplementary Fig. 1), allows us to override the nominal mass 
resolution of 1.45 Da that our binning creates. Glycan class, MS ion 
mode, ion trap type, LC type and glycan modification type were coded 
as integers to allow for learned embeddings.

During training, we capped all glycan structures to at most 1,000 
randomly sampled spectra per structure in the independent test set, 
to avoid imbalance in assessment by frequently observed but simple 
glycans. We used an 85/15 split into train/test set for the 489,103 spectra, 
which were split on the level of samples, to ensure that spectra of one 
sample were not found in both train and test sets and thus make the 
generalizability estimation more robust. For training, classes in the 
test set that would constitute zero-shot prediction were afterwards 
moved into the train set.

Model architecture
CandyCrunch is a dilated residual neural network, with additional 
embedded inputs, to predict glycan structure from tandem mass spec-
trum in a multiclass classification setup.

For the processing of binned intensities and m/z remainders, a 
one-dimensional convolution layer was followed by a leaky rectified 
linear unit (ReLU) and six residual dilated convolutions, with dilations 
of 1, 2, 4, 8, 16 and 32. Then, we used max-pooling with a kernel size of 
20 and a fully connected layer to bring this output to a dimensionality 

of 1,024. Glycan class, MS ion mode, ion trap type, LC type and glycan 
modification type were embedded into dimensionalities of 24, respec-
tively. Precursor m/z and normalized retention time were also brought 
to dimensionalities of 24 via a fully connected layer, a layer normaliza-
tion and a leaky ReLU. Then, all inputs were concatenated and passed 
through two sets of fully connected layers, layer normalization, leaky 
ReLUs and dropout (at a rate of 0.2). Finally, a last fully connected 
layer yielded the class probabilities. In total, CandyCrunch exhibited 
12,375,084 trainable parameters.

Model training
All models were trained in PyTorch50 (v.2.1.0) using two Zotac GeForce 
RTX 4090 Trinity GPUs. CandyCrunch was initialized via He initializa-
tion. All models were trained for 200 epochs, with an early stopping 
regularization of stopping training after 12 epochs without improve-
ment in the test loss and a batch size of 256.

We set the learning rate at 0.0001, with a schedule to reduce the 
learning rate to a fifth after four epochs with no improvement in test 
loss. As a base optimizer we used AdamW with a weight decay of 2 × 10−5, 
which was further modified via adaptive sharpness-aware minimization 
(ASAM)51 to ensure a generalizable final model.

Data augmentation during training was used only on the train-
ing set and included random (1) low-intensity peak removal, (2) peak 
intensity jitter and (3) new peak addition for the binned spectrum, as 
proposed previously for MS52, as well as adduct formation of the precur-
sor ion (acetate/sodium adducts) and random noise of the precursor 
m/z (±0.5 Da) and retention time (±10%).

As our base loss, we used PolyLoss53, with an additional 
label-smoothing of 0.1 and epsilon = 1. We note that the label-smoothing 
employed here, as well as the fact that the annotators for many of our 
datasets have used additional information to refine their annota-
tions (for example, third-generation product ion spectra, exo-
glycosidases), at least in part counteracts potential concerns about 
label uncertainty. We also used two additional loss terms, informed 
by domain knowledge, that were added to the PolyLoss term. These 
constituted a structure distance loss and a composition distance loss. 
Both involved the calculation of a distance matrix, based on pairwise 
cosine distances of fingerprint vectors of either the number of mono- 
and disaccharide motifs or the base composition of two glycans. All 
operations on glycans were performed using glycowork29 (v.1.1.0). 
Then, the class probabilities for each input sample, transformed via 
a softmax activation, were multiplied by the structure distance vec-
tor and the composition distance vector (that is, the distance to the 
target glycan), followed by mean averaging to obtain loss terms. This 
unsupervised procedure preferentially penalizes confidently predicted 
but structurally dissimilar glycans and improves performance as well 
as the meaningfulness of errors.

We first engaged in supervised training on annotated MS/MS 
spectra. Then, using the trained model we predicted glycan structure 
for our unannotated spectra for self-supervised training. Spectra with 
a prediction score of over 0.7 were then merged with the original train-
ing dataset, followed by a deduplication step. Specifically, as described 
above, we retained the same test set and again formed a training dataset 
with at most 1,000 examples per glycan in the independent test set, 
followed by re-training.

Model inference
To predict glycan structures from unannotated raw files, all tandem 
spectra were extracted via pymzML as described above and processed 
as described for the general data processing. Then, we grouped m/z 
precursor ions by scanning for discontinuities larger than 0.5 Da in the 
extracted spectra. Within these m/z groups, we searched for structural 
isomers by analyzing their retention time in chunks of 0.5 min. While 
this may lead to overlaps between isomer peaks, this is not an inherent 
problem, as long as co-elution is not perfect, as different chunks will 
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still retain the respective isomers as the dominant species, which will 
be reflected in the final output table. For each retention time group, 
we averaged all spectra for input of a robust averaged spectrum to  
CandyCrunch and extracted the median spectrum, to have a represent-
ative spectrum for each glycan entity in the sample. We first retrieved 
the top 25 predictions for each averaged spectrum, using the trained 
CandyCrunch model. We then employed a single-parameter variant 
of Platt Scaling32 to calibrate the prediction confidence before the 
softmax layer, using a scaling factor of 1.15 that was estimated via the 
limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. 
Using test-time augmentation, we averaged the predictions of five 
independent inferences that were modified with the same data aug-
mentation strategy as employed during training.

Next, we used domain knowledge to automatically filter out 
predictions, such as of (1) a prediction probability below a thresh-
old of 0.01, (2) the wrong glycan class, (3) the wrong mass, even 
when considering multiply charged ion forms, and (4) predictions 
that lacked corroborating diagnostic ions in their fragment lists. 
Domain-specific exceptions were made, such as allowing cross-class 
predictions if the prediction confidence was extraordinarily high 
(above 0.2; justified by the fact that O-linked glycan samples often 
contain remnant N-linked glycans and so on) Finally, predictions were 
deduplicated by merging any mass/retention windows that resulted 
in identical predictions.

Lastly, we used biosynthetic knowledge to refine our predictions, 
conceptualized in the canonicalize_biosynthesis function within  
CandyCrunch. Using the subgraph_isomorphism function from gly-
cowork and starting from the largest glycan prediction, we searched 
for top-1 predictions of biosynthetic precursors in the whole prediction 
dataframe. For each prediction at mass M, we added 0.1 to its prediction 
confidence for each unique biosynthetic precursor in top-1 predictions 
at mass M-1, M-2, …, M-n. If this changed the order of predictions, we 
re-ordered predictions according to their scores. Thereafter, scores 
were re-normalized to 1 and the, up to, top-5 predictions were retained. 
This procedure not only improved the accuracy of our results but also 
increased the meaningfulness and consistency of both correct and 
wrong predictions (that is, wrong predictions were structurally closer 
to the ground truth after this procedure).

Spectra without valid predictions but with valid compositions, 
cross-referenced by relevant databases within glycowork, were also 
retained and subjected to as many of the abovementioned domain 
filters as possible. Whenever available, top-1 predictions were paired 
with their GlyTouCan ID54. The whole inference workflow, including 
elements described below, is available via the wrap_inference func-
tion in the CandyCrunch package. Available options for running the 
function are shown in Supplementary Table 12 and mentioned in the 
documentation of the CandyCrunch package (https://github.com/
BojarLab/CandyCrunch).

For the case of multiple samples from the same experiment, we 
also added the wrap_inference_batch function to the CandyCrunch 
package. This expanded workflow aligns retention times across sam-
ples, if possible and suitable, to build a prediction library and ensure 
that shifts in retention time between samples are accommodated.

Zero-shot prediction
For a given sample, all retained top-1 predictions were used to con-
struct a biosynthetic network as described previously7, using the 
implementation within glycowork. For milk oligosaccharides, this 
also included evolutionary pruning, as pre-calculated species net-
works were available. Then, we calculated whether any of the inferred 
biosynthetic precursors would explain the mass and composition of 
glycan spectra without a valid prediction. Matches within a mass dif-
ference of 0.5 Da, including multiply charged ions, were retained as 
additional predictions beyond our model-defined library of predictable 
glycans. While direct model predictions were awarded the evidence 

category ‘strong’, the biosynthetic network intermediaries merited the  
category ‘medium’.

Next, we checked for missed Neu5Gc-substituted Neu5Ac-glycans 
and vice versa (that is, a mass difference of 16 Da per substitution, with 
the corresponding diagnostic ions). Similarly, in the case of an O-glycan 
sample, we checked for missed GlcNAc6S-substituted GlcNAc-glycans 
and vice versa (connected to the reducing end GalNAc). Additionally, 
we used a suitable subset of the glycowork-stored database, of the right 
taxonomic section and glycan class, to search for possible matches 
to compositions without predictions. Both of these endeavors were 
annotated with the evidence label ‘weak’.

After these additional routines to enable predictions out-
side of our defined list of glycans, we again employed the domain 
knowledge-informed filters mentioned above. This ensured that gly-
cans introduced via these methods still had empirical support in the 
underlying data. Predictions from these routines were also subjected to 
the canonicalize_biosynthesis workflow from above (although ‘bonus’ 
points were awarded only for biosynthetic precursors from the ‘strong’ 
category), to allow for prioritization of the most probable structures.

Fragment annotation via CandyCrumbs
The final prediction of the CandyCrunch model was used as a starting 
point for fragment annotation and converted into a directed graph 
using NetworkX (v.3.0), each monosaccharide making up a node and 
each linkage labeling an edge. The randomized enumeration method 
was implemented to find all induced connected subgraphs55. After 
filtering which modifications were physically possible based on link-
age numbers, each terminal monosaccharide on the subgraphs was 
permuted to create these cross-ring or bond fragmentations. Each 
possible global modification was also added to each fragment. The 
mass of each theoretical fragment was calculated to then be matched 
with observed masses in MS/MS spectra. Finally, the fragments were 
converted into Domon–Costello30 and IUPAC-condensed nomencla-
ture. If multiple fragment possibilities could explain a given m/z value, 
a prioritization scheme was developed (Supplementary Fig. 15), which 
emphasized prior likelihood of each fragment option and the evidence 
of the remaining fragments in a given tandem spectrum. We note that 
fragment prioritization is an optional step in this workflow and can 
be disabled, if all possible fragments are desired. CandyCrumbs is 
available via CandyCrunch.analysis.CandyCrumbs in our developed 
Python package.

Molecular dynamics simulation
Initial conformations for the GlcNAcβ1-3(Neu5Acα2-6)GalNAc and 
GalNAcα1-3(Neu5Acα2-6)GalNAc glycans were obtained using the 
Carbohydrate Builder tool of the GLYCAM-Web server56. Four struc-
tures were produced for each glycan with different combinations 
of the α2-6 torsion angles. This approach provided different initial 
starting points for the simulations, and thus maximized the sampling 
of the conformational space. Each glycan was parameterized with the 
GLYCAM06-j1 forcefield57, and a cuboid solvent box of TIP3P water 
molecules created to produce a minimum solute distance of 15 Å. In 
the case of the reduced glycan structures, the structures of the open 
GalNAc were parameterized using the GAFF2 forcefield58. A single Na+ 
ion was included in each system to neutralize the net charge of the 
system. These systems were then converted into GROMACS topology 
files using Acpype59. For each initial starting conformation of each 
system, a 500-ns simulation was performed using GROMACS2022.4 
(ref. 60), resulting in 2 μs of simulations for each respective system.

Biosynthetic network analysis
For all networks constructed and analyzed in this work, we used 
the code functionality within the glycowork.network.biosynthesis 
module (v.1.1.0). Our analyses were oriented very closely by the ones 
described by Thomès et al.7 Briefly, the analysis of glycosyltransferase 
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competition was performed by analyzing diamond-like network motifs 
via the trace_diamonds and find_diamonds functions within 
glycowork. Thereby, we analyzed the proportion of networks that pre-
sented a certain case of glycosyltransferase competition and counted 
how often each alternative order of reactions was experimentally 
observed among these. This allowed us to analyze which reaction order 
dominated across (1) glycan contexts and (2) networks. The differences 
shown in Fig. 4 were further filtered to contain at least (1) two glycan 
sequence contexts, (2) a mean difference of 30 and (3) a corrected  
P value below 0.01.

Biosynthetic communities were extracted using the get_commu-
nities function, from glycowork, on reaction path preference-pruned 
biosynthetic networks7. Conserved communities were detected by 
first calculating a distance matrix based on pairwise Jaccard distances, 
followed by clustering these distances using the OPTICS algorithm 
as implemented in scikit-learn (v.1.2.2), with a minimum number of  
50 samples per cluster.

Statistical analyses
Comparing two groups was done via one-tailed or two-tailed Welch’s 
t-tests. In all cases, significance was defined as P < 0.05. All multiple 
testing was corrected with a Holm–Šídák correction. All statistical 
testing has been done in Python 3.9 using the statsmodels package 
(v.0.13.5) and the scipy package (v.1.10.1). Effect sizes were calculated 
as Cohen’s d using glycowork (v.1.1.0). The correlation of distance 
matrices was performed via two-sided Mantel tests as implemented 
within scikit-bio (v.0.5.8).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data, including their data provenance with accession IDs 
from GlycoPOST40, MassIVE, UniCarb-DB31, UniCarb-DR or NIST, can be 
found at Zenodo via https://doi.org/10.5281/zenodo.10029271 (ref. 43) 
or are contained within Supplementary Tables 10 and 11. The 196 data 
sources are listed in Supplementary Table 10.

Code availability
All relevant code is integrated into glycowork (v.1.1.0) and/or can be 
found at https://github.com/BojarLab/CandyCrunch. CandyCrunch 
and CandyCrumbs can also be readily accessed at https://colab.
research.google.com/github/BojarLab/CandyCrunch/blob/main/
CandyCrunch.ipynb.
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