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Abstract

Evaluating risks from external hazards is crucial for the safety of nuclear power stations throughout their lifecycle. In coastal
areas, a key threat arises from the risks of coastal flooding and erosion via a combination of simultaneous processes (e.g.,
tides, waves, and storm surges) acting on varying spatial and temporal scales. Therefore, an accurate characterisation of
local sea state conditions is essential for risk assessment and mitigation. In this paper, we use a weather typing method to
downscale local wave climate and storm surge conditions at the Hartlepool nuclear power station. Model validation suggests
that the use of 36 weather types can effectively downscale multivariate wave variables (wave height, period, and direction)
and storm surge with overall good performance, though the accuracy is limited for wave direction and extreme wave height.
Comprehensive sensitivity tests are conducted to investigate key factors influencing the downscaling process, including
predictor variable, spatial and temporal definitions, predictor resolution, the number of weather types, and the weighting
parameter in semi-supervised classification. For example, we find that the model with sea level pressure and sea level pres-
sure gradient as the predictor has better overall performance in downscaling multivariate predictands than the model using
either one individually. These results can facilitate the development of weather typing models to enable efficient and reli-
able estimations of local predictands in wider applications. This approach links atmospheric conditions to potential coastal
threats, which offers a valuable tool for proactive hazard preparedness and risk management in nuclear power and other
critical infrastructure sectors.

Keywords Weather types - Wave climate - Storm surge - Sensitivity analysis - Statistical downscaling

1 Introduction

Understanding the driving mechanisms of, and contribut-
ing factors to, coastal hazards is fundamental to providing
reliable characterisation and predictions of hazard-related
parameters, which are essential for robust hazard assess-
ments. Coastal hazards like flooding and erosion often arise
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several days before their arrival (Hegermiller et al. 2017).
Storm surges result from the combined effect of local wind
stress and regional barometric pressure anomalies and can
occur over several hours to days depending on the weather
events. Over interannual time scales, climate oscillation pat-
terns like El Nifio Southern Oscillation (ENSO) and North
Atlantic Oscillation (NAQO) also modulate local wave and
water conditions (Odériz et al. 2020; Scott et al. 2021). In
addition, climate change can significantly increase exposure
to coastal hazards in the long term, with research linking
global sea level rise with heightened risks of coastal flooding
and erosion hazards (Vousdoukas et al. 2018, 2020).

The characterisation of exposure to coastal hazards is
thus a complex problem that requires consideration of the
inherent variability of multiple hazard drivers. However,
historical records are limited in spatial coverage and often
not long enough to have observed the full range of vari-
abilities, especially for extreme conditions (Anderson et al.
2019). Numerous approaches have been proposed to address
this issue. For example, stochastic models were designed
to generate a large number of synthetic sea state scenarios
to allow for more robust and reliable coastal risk analysis
(Wahl et al. 2011; Gouldby et al. 2014). Additionally, the
ever-increasing computation power has advanced numerical
simulations (reanalyses and hindcasts) on regional or even
global scales (e.g., Hersbach et al. 2020; Muis et al. 2020),
which in turn provide insights into sea state conditions at
locations where observational data are absent, as well as
the spatial distribution and variations of extreme conditions.

Meanwhile, with advancements in global climate mod-
els (GCMs) providing more reliable climate projections for
various climate-change scenarios, downscaling techniques
have emerged as a promising tool to translate large-scale
climate forcings into local sea state responses to facilitate
local climate impact studies. These techniques can account
for local-scale processes unresolved in GCMs and provide
outputs at resolutions suited to coastal applications. Con-
ventional downscaling methods can be broadly classified
into dynamical or statistical models. Dynamical downs-
caling defines approaches to embedding higher-resolution
regional climate models (RCMs) into GCMs, using outputs
from GCMs as boundary conditions, capable of produc-
ing accurate and physically consistent local information
(Fowler et al. 2007; Gaur and Simonovic 2019). How-
ever, the associated high computational demand has led
to interest in applying statistical downscaling (SD) models
as an efficient alternative. SD models relate large-scale
atmospheric conditions (predictors) to local variables (pre-
dictands) through developing empirical statistical relation-
ships. Three categories of SD methods exist: regression-
based models, weather-type approaches, and stochastic
weather generators (Wilby and Wigley 1997). SD methods
can downscale GCM outputs in multiple scenarios with
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low computational cost and are thus desirable for esti-
mating uncertainties associated with climate variabilities
(Fowler et al. 2007; Gaur and Simonovic 2019).

One SD method based on weather type classification
(Camus et al. 2014b), originally proposed to downscale
multivariate local wave climates, has been widely applied
in coastal settings (e.g., Rueda et al. 2019; Costa et al.
2020; Zhao et al. 2024). A key advantage of this type of
approach is the ability to trace back the synoptic condi-
tions (i.e., the atmospheric conditions over a wide area at
a given time) responsible for local responses (Rueda et al.
2016). In addition to downscaling local variables, recent
studies have demonstrated their potential to provide robust
projections of coastal conditions to manage coastal ero-
sion (Toimil et al. 2017) and build operational forecasting
tools for coastal flooding (Neal et al. 2018). Other efforts
have been made to couple such weather typing methods
with climate emulators to account for climate variabilities
at multiple temporal scales (e.g., Anderson et al. 2019;
Cagigal et al. 2020).

A fundamental requirement for approaches based on
weather types and other SD models is that there should be a
strong relationship between the predictors and predictands
(Schoof 2013; Gaur and Simonovic 2019). Research efforts
have been made to identify suitable predictor variables
depending on the predictand of interest. For example, vari-
ables based on sea level pressure and wind have been con-
sidered for downscaling significant wave height (Wang et al.
2010; Casas-Prat et al. 2014) and storm surge (Costa et al.
2020). Besides the choice of predictor variables, factors
like the spatial and temporal definitions (i.e., the spatial and
temporal extent over which the predictor is defined) also
affect the performance of SD models (Camus et al. 2014a;
Hegermiller et al. 2017). While these findings are gener-
ally transferable to SD model development elsewhere, there
could be site-specific factors that need to be accounted for.
For instance, the multivariate regression model developed
in Cid et al. (2017) for reconstructing global daily surge
levels showed reduced accuracy around tropical areas com-
pared to higher latitudes. They attributed this discrepancy to
the larger spatial and temporal scales of ocean dynamics at
equatorial regions, which their uniform spatial and temporal
definitions of predictor could not adequately capture. This
highlights the importance of considering the impact of these
factors and adjusting the predictor definition to sufficiently
account for the processes contributing to the variations of
local variables. Despite these insights, only a limited number
of studies have investigated the impact of different factors
on weather typing and optimised their model configurations
accordingly. Most of them considered a few factors and their
impacts on significant wave height and storm surge, with
little attention paid to other predictands like wave period
and direction. Consequently, there remains the need for a
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more comprehensive analysis of how different factors affect
the downscaling of local multivariate sea state conditions.

Downscaling local wave climates from regional atmos-
pheric conditions has been the focus of extensive research.
Advances have been made by recognizing distinct features
in the generation of wind waves and swells, and incorpo-
rating these differences into predictor definitions (Camus
et al. 2014a; Hegermiller et al. 2017). However, most studies
have primarily focused on estimating bulk wave parameters
(e.g., significant wave height and mean wave period) for the
combined wind waves and swells (e.g., Camus et al. 2014b;
Rueda et al. 2016; Zhao et al. 2024), while few studies have
explicitly evaluated how these SD methods perform for indi-
vidual wind wave and swell parameters. Characteristics of
these two wave components can be crucial to understand
nearshore wave processes to support wave impact studies
and coastal hazard assessments.

The overall aim of this paper is to apply a weather typ-
ing method to downscale local hazard-related conditions
at a nuclear power station in the UK. The study has three
objectives: (1) develop a set of weather types to characterise
the synoptic conditions and their relationships with wave
climate and storm surge at the chosen site; (2) validate the
model’s ability to downscale local multivariate wave climate
and storm surge; (3) investigate the impact of various factors
on weather typing. Here, we explore the limit of the weather
typing model in providing multivariate sea state conditions,
including the combined wind waves and swells, the indi-
vidual wind wave and swell components, and storm surge.
Model validation was conducted to ensure model perfor-
mance and robustness for each predictand. We then identify
factors affecting the downscaling process and evaluate their
relative importance through sensitivity analysis. The results
will provide relevant information for the probabilistic assess-
ment of coastal hazards at a later stage.

This paper is structured as follows. Section 2 describes
the data involved and the processes for weather typing,
model validation, and sensitivity analysis. Section 3 presents
the developed weather types and their associated distribu-
tions of local predictands (i.e., the statistical relationships)
and evaluates the model performance and its sensitivity to
different factors. Section 4 further discusses the impact of
these factors, with conclusions given in Section 5.

2 Data and methodology

2.1 Data sources

This study focuses on the EDF Energy UK Hartlepool
nuclear power station (Fig. 1), which is located on the north-

east coast of England, facing the North Sea. Historically, the
North Sea region experienced several intense storm events,

which had caused extensive coastal flooding to many of the
adjacent countries (e.g., in 1953 and 2013). Coastal erosion
is also a major concern, with 27% of the coastline undergo-
ing erosion in the northeast of England (Masselink et al.
2020). The exposure to these potential risks at Hartlepool
needs to be better understood for the safety of daily opera-
tions and long-term risk management.

Three types of data are utilised in this study at this site,
which are described below (also see Table 1). First, sea level
pressure (SLP) is used to represent the regional atmospheric
conditions. We used hourly mean SLP fields from the fifth
generation of atmospheric reanalysis (ERAS) produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF; Hersbach et al. 2020). ERAS provides detailed
estimates of the global atmosphere, land surface and ocean
waves from 1940 to present. The spatial resolution of the
atmospheric variables is 0.25°. Three spatial domains are
considered in this work (see Fig. S1).

The local wave climate is also obtained from ERAS5 at
the grid node closest to Hartlepool (55°N, 1°W), approxi-
mately 42 km from the site. Wave parameters are generated
by an ocean wave model (WAM; The WAMDI Group 1988)
embedded in the ECMWF Integrated Forecast System. In
addition, wave buoy observations from CEFAS WaveNet site
at Tyne/Tees (54°55'08"N, 0°44'55"W) are used to validate
the ERAS wave data. The wave buoy has a 30-min resolution
while ERAS provides hourly values.

Last, to derive non-tidal residuals (storm surges), still water
levels from two sources are used: (1) modelled still sea levels
from the Coastal Dataset for the Evaluation of Climate Impact
(CODEC; Muis et al. 2020); and (2) tide gauge observations at
North Shields and Whitby from the UK National Tide Gauge
Network (obtained from the British Oceanographic Data Cen-
tre). Here we use CODEC as the primary data source as it is
continuous (i.e., without large gaps in the time series). The
grid node closest to the aforementioned ERA5 wave grid node
in CODEC is selected for model development. Tide gauge
measurements are used to validate and correct bias within
the CODEC data. As water levels from CODEC are available
only from 1979 to 2018 (40 years in total), the same period is
used for SLP and waves for consistency. The links to access
these datasets are provided in the Data Availability section.

2.2 Data validation and pre-processing
2.2.1 Atmospheric data

The original high-resolution hourly SLP fields from ERAS5
are averaged to produce daily SLP values at a 2° resolution.
The spatial averaging needs to account for the change in the
area each point represents due to the Earth’s curvature. There-
fore, each point is weighted by the cosine of its latitude. SLP
fields at 0.5° and 1° resolution are also obtained to test the
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Fig. 1 Map of the study site and
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Table 1 Summary of the datasets used in this work
Data type Variables Temporal resolution Source (Station) Period considered
Modelled datasets Atmospheric conditions Mean SLP lh ERAS 1979-2018 (40 years)
Wave Combined wind 1h ERAS
waves and
swells: H,, T,
1,6,
Wind waves: H,
? Tm’ 0"‘1
Swells: H, T, 6
Non-tidal residual Total water level 1h CODEC
Observations Wave Combined wind 30 min CEFAS WaveNet (Tyne/  2006-2018

Non-tidal residual

waves and
swells: H, Tp

Total water level

1h (before 1993),
15 min (1993
onwards)

Tees)

UK National Tide Gauge
Network (North Shields,
Whitby)

1979-2018 (not continuous)

H, significant wave height, 7, mean wave period, T, peak wave period.

sensitivity of weather typing to spatial resolutions. In addition
to SLP, the squared SLP gradient (SLPG) is also included as
the predictor. Mathematically, it is the sum of the squared SLP
gradients along both latitude and longitude (Wang and Swail
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6 mean wave direction

2006). Thus, SLPG at a grid node can be calculated from SLP
values at the surrounding four grid nodes. We derive the daily
SLPG fields at 0.5°, 1° and 2° resolutions from their corre-
sponding daily SLP fields with the same spatial resolutions.
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2.2.2 Wave data

Wave parameters extracted from ERAS include significant
wave height H,, mean wave period 7,,,, peak wave period 7,
and mean wave direction @, for combined wind waves and
swells. Hereafter, the combined wind waves and swells will
be referred to as total waves. In addition, wind wave and
swell parameters, including H,, T,,, and §,,, are also avail-
able from ERAS5 and were used for detailed analysis of these
two wave components. We observed an anomaly in the wind
wave data, characterised by a large concentration of data
within a narrow range of 7, from 3.8 to 3.9 s and 6,, from
35° to 36°. Most of these waves have wave heights below 3
mm. This results in an unusually tall and narrow spike in the
joint probability distributions. Given the disproportionately
high probability density of these data points, we considered
them suspicious and excluded them from our analysis.

The CEFAS wave buoy at Tyne/Tees is used to validate
the ERAS wave data. Due to data availability, the validation
is only conducted for H; and 7, (as CEFAS provides peak
wave direction instead of mean direction) for the period of
2006-2018. A comparison of the two datasets shows rela-
tively better agreement for H, (Pearson’s correlation p=0.97,
root mean square deviation RMSD =0.35 m) but weaker
results for 7, (p=0.62, RMSD =2.48 s). It is worth noting
that ERAS tends to underestimate extremes in H and 7)), a
systematic bias caused by factors such as uncertainties in
wind forcing and limitations in modelling wave processes
(Fanti et al. 2023). Therefore, bias correction of the wave
reanalysis is usually considered important to avoid under-
predictions for coastal risk assessments where extreme
events are of particular focus. However, we use the original
wave data from ERAS5 based on the following considera-
tions: (1) we are looking at a much wider range of variables
than the local wave buoy can provide; and (2) correcting
the modelled data independently using the corresponding
observations may compromise the physical consistency and
dependencies between different wave variables (Bhowmik
and Sankarasubramanian 2019). For developing weather
types and understanding factors relevant to wave downscal-
ing, using uncorrected reanalysis data is unlikely to intro-
duce significant errors.

2.2.3 Non-tidal residuals

The non-tidal component of sea level is obtained following
the approach of Jenkins et al. (2023). First, a linear regres-
sion method is applied to still water levels to identify any
trend in mean sea level, which is then removed. Next, the
astronomical tides are derived from the detrended water
levels through a year-by-year harmonic analysis using the
MATLAB Unified Tidal Analysis and Prediction Functions
(UTide; Codiga 2024). The tidal constituents are selected

using an automated decision tree method. Last, the astro-
nomical component is subtracted from the detrended water
levels to leave the non-tidal residuals. Hereafter, the term
“storm surge” or “surge” will be used to refer to the non-
tidal residual.

To validate the CODEC data, we compare it with records
from the two nearby tide gauges. Water levels at grid nodes
closest to North Shields and Whitby are extracted from
CODEC. Storm surges are calculated for, and compared
between, those two grid nodes and two tide gauges. The
results indicate that: (1) there is no significant spatial varia-
tion in storm surge in this region (p=0.95, RMSD=0.05 m
between observed surges at the two tide gauges); (2) CODEC
agrees well with observations (p=0.83 and RMSD=0.10 m
for hourly values, and p=0.89 and RMSD =0.09 m for daily
maximum). It is worth noting that CODEC also tends to
slightly underestimate high surge values and overestimate
low surge values. To account for this, a bias correction
method is applied. We perform a simple linear regression
on hourly surges between CODEC (SS,,,,) and tide gauge
observations (SS,,,) at North Shields and Whitby (Eq. 1).
The resulting gradient k and intercept b are applied to the
CODEC to get bias-corrected surges (SS! ) at the previ-
ously selected grid node for model development (Eq. 2).
After correction, the linear regression equation between
SS! ,and SS , yielded k=1 and b=0 (i.e., the regression
line aligns perfectly with the 1:1 diagonal line), while p
remains unchanged but RMSD slightly increases from 0.10
to 0.12 m.

SSmod =k- SSObS +b (1)

SS! = (SS,u0a — b)/k 2)

2.3 Statistical downscaling

The SD model applied herein is based on the weather typ-
ing method developed by Camus et al. (2014b, 2016) which
embraces several data mining techniques. An overview of
the method is shown in Fig. 2. The method produces a set
of daily synoptic circulation patterns (known as weather
types) along with the corresponding empirical distributions
of local predictands (i.e., wave and storm surge variables at
Hartlepool).

2.3.1 Developing weather types

The predictors are defined by 2° daily mean SLP and SLPG
fields with a spatial domain spanning from 26°N to 76°N
and from 40°W to 30°E in the North Atlantic Ocean (see
Domain 2 in Fig. S1). To account for the latest weather con-
ditions responsible for generating waves and storm surges,
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Fig.2 Flowchart of the weather typing method based on Camus et al. (2014b). Symbols and equations are explained in detail in Sect. 2

the predictors are averaged over 4 days to represent the over-
all conditions over a given day and its preceding 3 days.
The definition of predictors is important in the first place
to ensure the validity and robustness of the weather typing
model. The sensitivity of the model to different predictor
definitions is tested in terms of the choice of predictor vari-
able, the temporal coverage (i.e., the number of days aver-
aged), and the spatial domain. The daily predictors are then
standardised to have a mean of 0 and a standard deviation
of 1, followed by a principal component analysis (PCA).
PCA is a widely used statistical technique to reduce
the dimensionality of complex data and reveal underly-
ing patterns. PCA identifies the directions in which the
variance of the data is maximised, which are defined
by the eigenvectors (known as Empirical Orthogonal
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Functions or EOFs) of the data covariance matrix with
the eigenvalue representing the associated explained
variance (Jolliffe and Cadima 2016). The projected
data onto each vector are referred to as the principal
components (PC). The original dataset X can then be
reconstructed by

X =) EOF,;-PC, 3)
i=1

where n is the total dimension of dataset X. The PCs are
sorted in decreasing order of explained variance, with the
first PC explaining the most data variance and each subse-
quent PC explaining progressively less. As such, it is valid to
use a reduced number of PCs (i.e., the first d PCs; Eq. 4) and
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the corresponding EOFs to represent the original dataset.
Typically, PCs explaining 95% of data variance are selected.

XFOF = {PC(0), -, PCy(0)} )

Next, a regression-guided classification (Camus et al.
2016) is employed to categorize the predictors into a pre-
defined number of weather types (WTs). This semi-super-
vised approach differs from the original method (Camus
et al. 2014b) in that it incorporates local predictand infor-
mation to guide the classification so that weather patterns
generating similar local conditions are more likely to be
clustered together. The regression-guided classification is
achieved by two steps. First, a multivariate linear regression
model (Eq. 5) is established between the predictor X*°F and
the selected predictand ¥ which consists of daily mean H|,
T, and 6, and daily maximum storm surge SS,,,,, (Fig. 2).
The fitted coefficient § is then used to make predictions for
Y (Eq. 6).

Y = pX*f + E )

P =px"" ©)

The regression model captures the synoptic-scale influ-
ence on the local predictands and filters out irrelevant infor-
mation contained in observations caused by other processes
(Cannon 2012). The predicted Y is then concatenated with
XEOF to form a new dataset Z (Eq. 7). Here, a weighting
parameter « is introduced to adjust the relative importance
of predictors and predictands in the clustering process. The
classification becomes unsupervised and fully supervised
when a is 0 and 1, respectively. We used a value of 0.6 based
on previous research (Camus et al. 2016), and conducted
sensitivity tests across the range of 0 to 1.

Z = [(1 — )X"°F:a¥] @)

The dataset Z is then clustered using a k-means cluster-
ing algorithm (KMA), a classification scheme that aims
to partition a set of data points into K clusters so that the
total within-cluster variance is minimised. KMA iteratively
assigns each data point to the nearest cluster centroid and
then updates the centroids based on the newly formed clus-
ters (Hastie et al. 2009). While the initial cluster centroids
can be randomly selected from the data points, we adopt
the maximum dissimilarity algorithm (MDA; Snarey et al.
1997) to ensure that the initially selected centroids are well-
spaced and representative of the original dataset, as well
as to guarantee a deterministic clustering outcome (Camus
et al. 2011, 2014b). The generated clusters (i.e., WTs) are
represented by the corresponding cluster centroids projected
back to the original high-dimension space, which are organ-
ised into a bi-dimensional lattice in a way that WTs with

similar patterns (i.e., lower centroid distances) are placed
together for better visualisation (Camus et al. 2014b).

The following step is to define empirical statistical rela-
tionships between predictors and predictands. Since each
WT is associated with certain dates, hourly wave and surge
parameters of those dates are collected to derive the prob-
ability distributions f;(Y) of these parameters associated with
each WT. Together with the probability of occurrence p; for
each WT', the complete distribution of the local predictands
f(Y) during the calibration period can be given as follows:

N
) =Y p-£(¥) ®)

i=1

where N is the number of WTs. The empirical relationships
f:(Y) derived in the calibration period are assumed to be
stationary and valid in any period. Hence, the probability
distributions of predictands in a new period f’(Y) can be
inferred by:

N

F o)=Y p-f) ©)
i=1

where P} is the new probability for W7, in that period.

2.3.2 Model validation

The model’s ability to downscale local wave climate and
storm surge is evaluated by K-fold cross-validation. Here K
means the number of subsets into which the whole dataset
is divided and the number of iterations the cross-validation
process undergoes. We select K =35 to ensure that each train-
ing data subset remains representative of the whole dataset
while maintaining a manageable computational load for the
validation process. First, the entire 40 years of data are split
into five subsets. Each subset contains data at five-year inter-
vals (e.g., the first subset contains data from 1979, 1984,
..., and 2014). Each time, four periods are used as calibra-
tion datasets to develop a set of weather types, which are
then used to estimate local waves and surges for the fifth
period (i.e., the validation period). We estimate the monthly
mean and/or the monthly and annual n-th percentile of a
predictand over the validation period based on the empiri-
cal distributions derived in Eq. 9. The subset not included in
previous model training can be used as the reference to vali-
date against the model estimations. This process is repeated
five times with each subset being used exactly once as the
validation dataset. Note that five sets of weather types (i.e.,
five models) will be developed during the validation and
they are different from the weather types derived from the
whole period and used for final risk assessment. Results are
shown in Sect. 3.2. Three metrics are calculated to evalu-
ate how well the reference values x; (i.e., values directly
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calculated from ERAS and CODEC) are replicated by the
model y; (i.e., values estimated from the weather typing
model). The Pearson’s correlation p is given by:

N _ _
_ 1 X=X\ (Yi—)y
p_N—IZ< o )( o, > (10)

i=1 x y

where N is the number of monthly values, X is the mean of
x;, and o is the standard deviation. The bias can be calcu-
lated by:

BIAS=Xx-Yy (11)

The RMSD is given by:

RMSD = (12

Equations 11 and 12 are also applicable to wave direc-
tions with some adjustments on calculating the difference
and mean. The angular difference in radian is given by the
length of the shortest arc from one direction to the other
along the unit circle. The mean direction 6 is calculated by:
5 = tan™! —Zi\il sin Gi

YV cos 6,

i=1

13)

Note that wave directions are by default in the nautical
convention (i.e., measured clockwise from the North or the
positive y-axis) in our context and they need to be converted
to the Cartesian convention (i.e., measured counterclock-
wise from the East or the positive x-axis) before applying
Eq. 13. Likewise, the resulting mean direction should be
transformed back to the nautical convention. For correlation,
we use a MATLAB toolbox to calculate circular-circular
correlation p,. (Berens 2009):

Z,-Si“<9i - §>sin(qoi -9)
Pec =
\/Zisin2 <9,- - 5) sin’(p; — @)

where 60, and @; are two directional variables and 6 and @ are
the angular means.

(14)

2.3.3 Sensitivity analysis

A series of sensitivity analyses was conducted to evalu-
ate the importance of different factors in the downscal-
ing of local wave and surge conditions. Table 2 lists all
the factors and values considered. The tests were done
by varying one factor at a time while keeping the rest
at their baseline values. For each testing factor, several
weather typing models with different model settings were

@ Springer

Table 2 Factors and their values tested in the sensitivity analysis. The
values in bold are baseline values and are also used in the final model
settings. The three spatial domains are shown in Fig. S1

Testing factors Values

SLP; SLPG; SLP and SLPG

1;2;3;4;5

Domainl (50°W-40°E,
20°—80°N)

Domain2 (40°W-30°E,
26°—76°N)

Domain3 (30°W-20°E,
30°-70°N)

0.5;1;2

16; 25; 36; 49; 64

0;0.2;0.4;0.6;0.8; 1

Predictor variable
Temporal coverage (days)
Spatial domain

Spatial resolution of predictors (°)
Number of weather types

The weighting parameter a in
regression-guided classification

developed and validated regarding their abilities to esti-
mate the monthly averages of H,, T, 0,,, and the monthly
95th percentile of storm surge (SSys). Furthermore, the
monthly mean of wind wave and swell wave parameters
(H,,T,,0,) were also estimated to investigate how those
testing factors impact the model skill in downscaling the
two wave components.

The closeness of model estimations to the reference
values from ERAS and CODEC could be assessed by
several metrics. Here, we use Taylor diagrams (Taylor
2001) to facilitate the intercomparison of multiple mod-
els. Taylor diagrams are designed to visualise three com-
plementary metrics: p, RMSD, and o. These statistics are
interrelated with one another in a way that resembles the
law of cosines, which allows them to be plotted on a 2D
graph simultaneously.

However, the original Taylor diagram is constructed
for scalar quantities, such as wave height and period,
and does not apply to circular quantities like wave direc-
tion. To address this issue, a Vector Field Evaluation
(VFE) diagram was proposed (Xu et al. 2016) which
is essentially a generalized form of the Taylor diagram
for evaluating vector quantities. Likewise, three interre-
lated statistical metrics are visualized to compare vec-
tor fields: vector similarity coefficient, root mean square
length (RMSL), and root mean square vector difference
(RMSVD). Detailed descriptions of these three statistics
can be found in Xu et al. (2016). Note that wave direction
in our context is not a vector as it does not have magni-
tude. Nonetheless, we can still use the VFE diagrams for
evaluating wave directions by assuming the vector mag-
nitude to be one. As a result, the RMSL for all models
will be equal to one since this parameter measures the
mean of vector magnitude. The results will be discussed
in Sect. 3.3.
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3 Results

3.1 Weather types and their associated
distributions

The first objective of the study is to develop a set of
weather types to characterise the synoptic conditions and
their relationships with local wave climates and storm
surge at Hartlepool. A set of 36 WTs was generated as
the representative synoptic circulation patterns over the
British Isles and the surrounding Atlantic and European
region. These WTs are displayed in a bi-dimensional lat-
tice in Fig. 3 where WTs exhibiting similar spatial SLP
patterns are placed in adjacent locations in the lattice for
better visualization. The seasonal probability of occur-
rence for each WT is shown in Fig. 4. WTs at the top of
the lattice are generally characterised by a low-pressure
system in the north and a high-pressure system in the south
(e.g., WT1, 7, 25, and 31), though the location, size and
intensity of these pressure systems vary across different
WTs. WTs with such strong pressure gradients are most
likely to occur in winter months. On the other hand, WTs
with weak pressure gradients (e.g., WT16, 22, and 28) are
found in the middle of the lattice and have higher prob-
abilities of occurrence during summer. Notice that weather
conditions in summer can be described by much fewer

Fig.3 36 WTs represented by
SLP. WTs with similar patterns
are placed in neighbouring
locations

0 73 4 6 8
Probability (%)

Fig.4 Seasonal probability of occurrence of each WT. Each cell in
the box corresponds to the WT of the same location in Fig. 3

WTs than those in other seasons (Fig. 4), which is also
observed in Camus et al. (2014b) and Zhao et al. (2024).
This indicates that the summer synoptic circulation pat-
terns exhibit less variations.

Each individual WT is associated with unique distribu-
tions of sea state conditions. The distribution of hourly H|
for each WT is given in Fig. 5. Some distributions are char-
acterised by a narrow and high peak below 2 m, indicating
mild wave climate. Widespread distributions with a long
tail are also found for certain WTs, suggesting the poten-
tial of extreme wave conditions. Together with other sea
state parameters, these empirical distributions allow the
investigation of the relationships between regional synop-
tic patterns and the local wave climates and surge response
at Hartlepool. We illustrate this by comparing two WTs
with contrasting synoptic patterns (Fig. 6). WT10 exhibits

960 970 980 990

1000 1010 1020 1030 1040 1050 1060
Sea Level Pressure (hPa)
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Fig.5 The distribution of hourly H, at Hartlepool for each WT (blue), along with the overall distribution of all 40 years of wave data (orange)

for comparison

a high-pressure centre over the British Isles which results
in waves mainly from the north with H, generally below 2
m (0.94 m on average). In the H-T), joint distribution, two
peaks can be observed which mainly differ in 7),, with one
roughly at 6 s and the other at 10 s, representing wind waves
and swells respectively. This highlights the significance of
both wave components under this synoptic condition. On the
other hand, WT31 features a stronger-than-average pressure
difference between the Icelandic Low and the Azores High.
Under this condition, waves are mainly from the west with
higher H, (1.55 m on average) and a defined peak in 7, at 5s,
which suggests the presence of strong wind wave activity.
These two WTs also lead to very distinct surge behaviours.
The surge distribution of WT10 has a more peaked shape
(6=0.14) which sits more on the negative side (84% of the
surge is negative), whereas the distribution of WT31 is more
widespread (6=0.33) and more on the positive side (80%

@ Springer

of the surge is positive). The contrast in wave and surge
behaviours demonstrates how local sea state parameters are
affected by different regional synoptic conditions.

3.2 Validation of the weather typing model

The second objective of the study is to validate the weather
typing model’s ability to downscale local multivariate wave
climate and storm surge. The model represented in Fig. 3 is
designed to balance its overall performance on different sea
state parameters. In Fig. 7, the model’s ability to downscale
ten parameters is evaluated, including the monthly means
of H, Tp, T, 0,,, the monthly 95th and 99th percentiles of
H_ for total waves (H 5, Hg9) and storm surges (SSys, SSg9),
and the annual H g and SSgg.

For the four parameters representing mean wave condi-
tions (Fig. 7a-d), the model estimations agree well with the
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Fig.6 Two WTs and their associated distributions of local pre-
dictands at Hartlepool. a The SLP pattern of WT10, with the prob-
ability of occurrence indicated. b The joint distribution of hourly H|
and Tp associated with WT10. ¢ The joint distribution of hourly H,

reference values from ERAS and CODEC with relatively
high p (0.87-0.94), low RMSD, and low BIAS. The wave
direction appears to be the least accurate, with several points
deviating from the 1:1 line and the RMSD reaching nearly
30°, but the overall performance remains good (p..=0.87,
BIAS =0.63°). Besides the mean conditions, the model’s
ability to capture more extreme conditions is crucial in
applications like coastal hazard assessments. We selected
the 95th and 99th percentiles at monthly and annual scales
to represent various extreme scenarios. The results suggest
good model performance in representing extreme storm
surges, with relatively low RMSD (within ~0.1 m). How-
ever, the performance for extreme wave events is less satis-
factory compared to storm surge, as indicated by the broader
scattering of data points, lower p, and larger RMSD (Fig. 7f
and i). In general, the validation across a wide range of sea
state parameters demonstrates the weather typing model’s
overall ability to downscale local conditions of total waves
and storm surges, with reduced accuracy in wave direction
and extreme wave height.

Although the development of the weather typing model
is guided by total wave conditions, it can also be applied to
downscale wind wave and swell variables. Similar valida-
tion was conducted regarding the model’s skill in estimat-
ing the monthly means of H,, T,,, and 6,, for wind wave and
swell (Fig. 8). For both wave components, the estimations
in H; and T,, are almost as accurate as those for the total
wave. For 6,,, the model performs much better for swells
(p=0.88, RMSD = 14.20°) than for wind waves (p=0.72,
RMSD =47.08°). Note that wind wave 8, is widely scattered

20| d I =-013
0 4 _ | 0=0.14
B 215 1
LI 3E 2> 1
= = = 1
] o | 10
01 § 2T £
['% o 5
0.01 1
0 0
1 0 1
Surge (m)
20
10 4 _
; g S5
2 ' 2
3 » 5
01 8 2T g0
S S
o o 5
0.01 1
0 0

and 6, associated with WT10, represented by a wave rose. d The dis-
tribution of hourly storm surge associated with WT10, with the mean
u and standard deviation ¢ displayed in metres. Similarly, panels (e)
to (h) are for WT31

and covers all possible directions whereas swells mainly
come from the northeast. As a result, the higher variation of
wind wave direction is harder for the model to reproduce.
Overall, the model can downscale the individual wind wave
and swell components with reasonably good accuracy.

3.3 Sensitivity analysis

The third objective of the study is to investigate the impact
of different factors on weather typing. The performance
of SD methods largely depends on the quality of predic-
tor definition, which includes the choice of predictor vari-
ables and how they are defined spatially and temporally.
For weather-type approaches, the number of WTs and other
method-specific factors can also affect downscaling skills.
In this section, several aspects of the model configuration
are investigated in detail as to their impacts on downscaling
different sea state parameters. We use Taylor diagrams and
VFE diagrams to visualise the differences in model skills.
In these diagrams, models with higher p or vector similarity
coefficients, lower RMSD or RMSVD, and standard devia-
tions or RMSL closer to the reference values are considered
more accurate, which can be indicated by their proximity to
the reference points on the diagram.

3.3.1 Downscaling total wave and storm surge
First, we focus on the downscaling of total wave and storm

surge conditions. In terms of predictor variables (Fig. 9),
using the combination of SLP and SLPG as the predictor
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Fig. 7 Density scatterplots of monthly (panels (a) to (h)) and annual
(panels (i) and (j)) sea state parameters in the period of 1979-2018
between model estimations and the corresponding reference values
calculated from ERAS and CODEC. The diagonal line in black is the
1:1 line. The axes in panel (d) for 6,, are adjusted so that most data

yields better model performance compared to using either
one individually, indicating that both variables are related to
the local wave and surge conditions. For temporal coverage
(Fig. S2), models with 2 to 5 days generally exhibit com-
parable accuracy at H,, 6,,, and SSys. However, the estima-
tions of 7, improve significantly as more preceding days are
included to define the predictor, suggesting that 7), is sensi-
tive to the amount of recent synoptic conditions captured
by the daily WTs. Similar results are observed for spatial
domain (Fig. S3). The model with a bigger domain performs
marginally better in 7}, than that with a smaller domain. For
the other three parameters, there is no significant difference
among models with different values.

Regarding the spatial resolution of the atmospheric data
used to define predictors, the model does not appear to
be sensitive to this factor, as only a minor improvement
in 6,, is found when using finer-resolution data (Fig. S4).

@ Springer

points are in the center of the figure. Three metrics (p, RMSD, and
BIAS) are displayed to indicate model performance. Circular statis-
tics are used for 6,,. The colour bar only applies to monthly param-
eters. See Sect. 2.3.2 for detailed explanations on model validation

This indicates the use of low-resolution data in weather
typing can also produce robust results while maintaining
a low computational cost. In contrast, the estimations of
all four predictands improve to varying degrees with a
larger number of WTs, but this improvement becomes less
pronounced as the number of WTs increases (Fig. S5).
Finally, the model performance turns out to be highly
sensitive to the value of a (Fig. S6), which represents the
relative weight of local environmental information against
atmospheric predictors in weather typing. The impact of
a is not monotonic. For example, H, is better reproduced
as «a increases from O to 0.6; for a > 0.6, the model does
not yield better results with a higher «, even when the
model becomes fully supervised (a=1). This pattern is
also observed for the remaining predictands, with different
threshold values ranging between 0.4 and 0.6. Waves seem
to be more sensitive to a than surges.
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Fig.8 The same as Fig. 7, but for monthly averages of wind wave and swell parameters

3.3.2 Downscaling wind wave and swell

The model sensitivity in downscaling wind wave and swell is
also evaluated to reveal how the impact of each testing factor
differs between these two wave components. For predictor
variables, the model developed with SLP and SLPG exhibits
the best overall accuracy (Fig. 10). Considering the cases
with a single variable, using SLPG alone performs better
than using SLP in downscaling wind wave H, and T,,, with
results nearly as accurate as those using both predictor vari-
ables. Conversely, for wind wave 6,,, SLP is more beneficial
than SLPG. Unlike wind waves, the difference between SLP
and SLPG is not that pronounced in swell. In this case, using
both variables is important to achieve better model results.

In terms of temporal coverage (Fig. S7), the optimal
value varies across different predictands, but wind waves
generally favour shorter days, while swell parameters tend
to benefit from longer days. Specifically, wind wave param-
eters achieve the best accuracy with a 2-day coverage, and
their accuracy gradually decreases with more days included.
Swells are better estimated when the predictors are aver-
aged over 3 to 5 days. Among all predictands, the swell 7,,,
seems to be the most sensitive. This predictand also exhibits
some sensitivity to the chosen spatial domain, as indicated in
Fig. S8. A larger domain leads to improved estimations for
swell T,,, but the remaining predictands do not appear to be

affected by the spatial extent. Lastly, the impacts of predictor
resolution, the number of WTs, and the value of ¢ on wind
wave and swell are similar to those on the total wave (i.e.,
without distinguishing wind from swell; Fig. S9-11).

4 Discussion

In this paper, we applied a weather typing method to down-
scale local hazard-related conditions, including wave cli-
mates and storm surges, at the Hartlepool nuclear power
station. The weather types and their associated distributions
offer valuable insights into the linkage between regional syn-
optic circulations and the local response of wave climate
and storm surge. For example, the SLP pattern of WT31
(Fig. 6e) resembles the standard positive phase of NAO,
which is characterised by strengthened westerlies. Such
wind conditions result in waves mostly coming from the
west (Fig. 6g) with larger H, than normal conditions (Fig. 5).
These waves are mostly young wind seas because the fetch
(e.g., the area of ocean over which the wind blows) west of
our selected grid node is limited (Fig. 1). On the other hand,
the regional atmospheric pressure at Hartlepool in WT31 is
relatively low which leads to more positive surges (Fig. 6h)
due to the inverse barometer effect (Pugh and Woodworth
2014). Additionally, the higher frequency of extreme storms
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Fig.9 Diagrams for comparing model performance in estimating
total wave and storm surge conditions with different predictor vari-
ables. Taylor diagrams are used for scalar quantities whereas the VFE
diagrams are used for circular quantities. Each coloured dot repre-
sents a model with a different configuration. The black reference
points are calculated based on ERAS5 or CODEC. The correlation

in positive NAO phases (Pinto et al. 2009) likely contributes
to the increased probability of large surges.

In addition to providing intuitive understanding of the
local impact of regional synoptic systems, the statistical
relationships represented by the WTs and their correspond-
ing empirical distributions are the foundation for predicting
local sea state conditions in practical applications. In this
work, we validated the model’s ability to estimate multiple
sea state parameters, including both the mean and extreme
conditions. While the model performs well in predict-
ing mean wave conditions and extreme storm surges, its
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Reference

coefficient and vector similarity coefficient are indicated by the azi-
muthal angle (blue dash-dotted contours); the RMSD and RMSVD
are proportional to the distance between each coloured point and the
reference point (grey dashed contours); the standard deviation and the
RMSL are proportional to the radial distance from the origin (black
dotted contours)

accuracy in estimating extreme wave height remains limited.
This limitation could stem from several factors: (1) the use
of mean wave height rather than extreme conditions (such
as daily maxima) in the regression-guided classification; (2)
the model's dependence on historical extreme events associ-
ated with each WT, which is constrained by dataset length;
and (3) the consideration of all hourly values in develop-
ing the empirical distributions, which may not suit extreme
event modelling. A potential way to improve performance
on extremes is to focus on daily maximum predictands rather
than all hourly values of each WT, fit probability distribution
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Fig. 10 Diagrams for comparing model performance in estimating wind wave and swell variables with different predictor variables. For detailed

explanations, please refer to Fig. 9

functions to model their potential of extreme, and incorpo-
rate these fitted distributions into model simulations instead
of relying on empirical ones. This approach has been suc-
cessfully implemented by Rueda et al. (2016) and Lucio
et al. (2020) in their stochastic weather emulators to bet-
ter simulate extreme events, and will be considered in our
future work when the focus shifts to simulating the impact
of extreme events. In this study, the objective is to evaluate
the overall capability of the method. Our validation confirms
these statistical relationships as reliable indicators of sea
state conditions associated with specific WTs, which ena-
bles proactive risk management. For instance, when weather
forecasts predict WTs linked to elevated storm surge lev-
els or intensified wave activity, nuclear power stations can
implement timely preparedness measures to avoid or miti-
gate potential damages.

In the sensitivity analysis, we evaluated the importance of
different factors to the downscaling of local wave climates
and storm surges. First, the selection of predictor variables
is fundamental, as they should capture the primary driv-
ing mechanisms influencing the local predictands. Previ-
ous work has used regional SLP and SLPG to downscale
local wave climates (Wang et al. 2012; Casas-Prat et al.
2014; Camus et al. 2014b) as well as storm surges (Rueda
et al. 2016; Costa et al. 2020). Our results demonstrate the
added value of using both predictors in wave and surge

downscaling, compared to using either one individually.
SLPG is shown to be more relevant than SLP for estimat-
ing wind wave H, and T,,. This is reasonable as H, can be
estimated from wind speed in a fully developed sea state
(Janssen et al. 2002), while SLPG is closely related to the
geostrophic winds and is often used as a proxy for surface
wind (Casas-Prat et al. 2014). On the other hand, SLPG is
relatively less useful for wind wave direction 6,,, possibly
because it relates to the magnitude of wind speed and lacks
directional information. The explanatory power of wind has
been demonstrated by Wang et al. (2010), who suggested the
use of the wind-based predictor alone is sufficient to repre-
sent the relationship between atmospheric conditions and
H,. However, SLP fields are less biased than wind in climate
models (Wang et al. 2010), which leads to the common use
of SLP-based predictors in SD models (Wang et al. 2012;
Camus et al. 2014b; Neal et al. 2016). Variations in the defi-
nition of SLP-based predictors were found in the literature.

For example, Costa et al. (2020) used daily minimum SLP

and daily maximum SLPG to downscale daily maximum
storm surges. This definition is perhaps more suitable for

extreme conditions than the commonly used mean values,

although they did not present a comparison to that effect.

Moreover, Wang et al. (2010) suggested the use of predictor

anomalies instead of predictor values to reduce the effects of
model climate bias. This adjustment is possibly equivalent
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to standardising the predictor, as presented in our work. The
effect of these variations in predictor definition is not within
the scope of this research. Future work may consider these
aspects by doing similar sensitivity analysis or fitting regres-
sion models to improve the predictor definition.

The spatial and temporal scales used to define predictors
are also crucial factors to consider (Camus et al. 2014a).
Waves observed at the coast usually comprise wind waves
and swell waves. Swell waves can be generated from a far-
away location and the weather conditions responsible for
developing those waves may have occurred several days
prior. Similarly, storms that cause local surges can originate
from a distant place, travel for several days before reach-
ing the site, and last for some time. Consequently, synoptic
conditions over the primary region of wave or storm genera-
tion and during the average travel time are often required
to downscale local sea state conditions. In our case, most
waves reaching Hartlepool originate from the North Sea,
which is included in all three domains tested in the sen-
sitivity analysis. This explains the marginal differences
among their wave estimations, as a larger domain does not
provide much more relevant information in this case. For a
given spatial domain, the waves generated at different loca-
tions do not arrive at the coast at the same time. When we
include more days of atmospheric conditions into the pre-
dictor definition, the waves generated further away from our
site (and thus have longer travel time) are more likely to be
captured. These waves are mostly swells, which explains
the improvement in swell parameters with longer temporal
coverage. The increased accuracy in 7), is also likely due to
a better representation of swell. Wind waves, on the other
hand, are more linked to short-term atmospheric condi-
tions. When more days are included, the detailed informa-
tion contained in those more recent days is smoothed out,
leading to decreased model performance. Consequently, the
optimal spatial domain and temporal coverage of predictors
depends on the predictand of interest. To achieve the most
accuracy for both wave components, one may consider using
two or more predictors with different spatial and temporal
definitions (Camus et al. 2014a; Hegermiller et al. 2017). In
areas experiencing multi-modal wave climate (e.g., in large
ocean basins), such consideration can be crucial to explicitly
account for waves generated at multiple discrete regions.

Our results suggest that spatial resolution is not a critical
factor in weather typing. Using lower-resolution data can
produce outcomes that are as accurate and robust as those
from higher-resolution data, which agrees with Hegermiller
et al. (2017). This may indicate that processes occurring at
finer spatial scales (e.g., convective-scale features) are not
particularly relevant to local sea state conditions, or that the
weather typing method is unable to preserve such detailed
information as the clustering tends to smooth these out, only
leaving synoptic-scale patterns in the final WTs (which is
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especially true when the number of WT is small). In either
situation, using higher-resolution data would introduce
redundant information that increases computational costs
but does not entail better model performance. Cid et al.
(2017) found lower model skills in downscaling surges at
semi-enclosed areas and suggested to use higher-resolution
predictors. However, our findings confirm that the benefits
of increasing the resolution can be minimal. In fact, the
effect of local bathymetry can be significant in these shallow
basins which is often unrelated to the synoptic conditions.
In such cases, incorporating the impact of local features
into the model (e.g., by doing supervised classification in
weather typing) can be more effective.

Decisions on the number of WTs are quite subjective,
with previous studies choosing a wide range of values
(Camus et al. 2014a; Neal et al. 2016; Rueda et al. 2019).
The choice represents a compromise between minimising
climate variability within each group and ensuring distinct
characteristics across different clusters. Our results suggest
that model improves as the number of WTs increases, pos-
sibly because more details in the synoptic conditions are
preserved and represented, but the improvement is less sig-
nificant for larger numbers of WTs, which is also reported in
Ireland et al. (2024). In our analysis, the model with 64 WTs
has the best accuracy. However, it should be highlighted that
having more WTs means each one is associated with fewer
days. As a result, the empirical distributions will be devel-
oped from a smaller amount of data, making them less repre-
sentative of the typical conditions caused by certain weather
patterns, and perhaps more prone to overfitting. In realistic
applications, the number of WTs needs be manageable for
efficient decision-making. For example, the weather regime
forecasting tool applied in the UK Met Office is based on
a set of 30 WTs (Neal et al. 2016). When combined with
weather forecast outputs from ensemble prediction models,
the forecasting tool can reduce the number of scenarios to a
few weather types for further detailed analysis. Therefore,
we choose to use 36 WTs which can achieve comparable
model performance to 64 WTs but with fewer WTs and
lower computational demand.

Last, the impact of a is quite significant in weather typ-
ing, which is understandable as local sea state conditions are
not only a response to the atmospheric conditions but also
influenced by local bathymetry and coastal morphology. By
incorporating the impact of these local processes, which are
independent of the synoptic conditions, into the clustering
process, the model is greatly improved. The improvement
reaches its limit when a exceeds 0.4-0.6, depending on the
specific predictands. Similar results were also obtained in
Camus et al. (2016). Although we only include total waves
and surges in the regression-guided classification, the benefit
is not limited to those predictands and observed for wind
wave and swell as well.
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These findings can support the broader application of
weather typing models in other locations. For works con-
cerning wave climate and/or storm surge, SLP-based predic-
tors are sufficient to downscale a wide range of variables col-
lectively in a single model. When applied to an enclosed sea
similar to the North Sea, the spatial domain does not need to
be extended far beyond the main ocean basin. If 7, is the pre-
dictand of interest or swells are the dominant wave compo-
nent, using a longer temporal coverage would be beneficial.
The use of low-resolution data which still preserves the main
synoptic-scale patterns would not significantly compromise
model performance. The inclusion of local conditions to
guide the classification of weather types is generally sug-
gested, as it improves the overall model accuracy.

5 Conclusions

In this paper, we applied a weather typing approach to down-
scale local, coastal hazard-related conditions at the Hartle-
pool nuclear power station. A set of 36 WTs was generated
to characterise the variabilities of synoptic circulation pat-
terns. Each WT is associated with empirical distributions
of multivariate predictands which represent the statistical
relationships. These relationships demonstrate how changes
in synoptic patterns can result in distinct wave and surge
responses. The validation proves the model’s capability to
downscale multivariate sea state conditions, including the
combined wind waves and swells, storm surges, and the
individual wind wave and swell components, with varying
levels of accuracy. Wave direction, particularly wind wave
direction, is less accurately estimated due to its high vari-
ability, making it more challenging to reproduce. We also
demonstrate the model’s ability to downscale extreme condi-
tions of wave height and storm surge, which is particularly
relevant for hazard assessments at nuclear power stations.
While the model performs well for extreme storm surge
events, its accuracy in estimating extreme wave heights is
comparatively lower.

A series of sensitivity analyses was undertaken to assess
the significance of various parameters in downscaling local
wave and surge conditions. We find that the choice of predic-
tor variables is generally important for all predictands. The
combination of SLP and SLPG as predictors outperforms
using either one individually. The impact of temporal cover-
age can also be quite significant to certain wave parameters,
such as 7}, and swell 7,,. Model performance is not very
sensitive to spatial domain, as long as the atmospheric con-
ditions over the main region of wave and storm generation
are included. Similarly, the impact of the spatial resolution
of predictors is negligible. Last, increasing the number of
WTs and the value of @ can improve the model performance
to a certain extent.

While our findings stem from a case study in Hartle-
pool, their relevance extends beyond this specific area.
Our research offers insights that can inform the devel-
opment of weather typing models for broader applica-
tions, particularly in defining predictors and optimiz-
ing model configurations. The empirical distributions
are the foundation for evaluating potential flooding
and erosion hazards. They can help identify WTs with
higher probabilities of local extreme wave climates and
storm surge conditions so that the nuclear station can
implement preparedness measures once such WTs are
anticipated in the short term. Furthermore, these empiri-
cal distributions can be used as boundary conditions in
dynamical downscaling to simulate the hazards resulted
from the corresponding WTs. This will be the focus of
our future work, where we aim to provide probabilistic
assessments of coastal hazard exposure at nuclear power
stations, contributing to more effective risk management
and mitigation strategies.
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