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ARTICLE INFO ABSTRACT
Keywords: Wheel polygonization, a form of wheel out-of-roundness, has become a common problem on
Rail vehicle trains of urban rail transit systems in recent years. It results in a significant increase of the dy-
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namic responses of both the vehicle and the track, high vibration and noise levels, and structural
fatigue. This paper proposes an innovative method for identifying wheel polygonization orders
and their effective values using convolutional neural network (CNN) regression analysis. First, the
acceleration signal measured on the axle box has been processed with the angular-domain syn-
chronous averaging (ADSA) method, effectively separating the characteristic information asso-
ciated with wheel polygonization within the signal. To extract comprehensive wheel
polygonization information, a feature fusion method is employed, integrating features from both
the time and frequency domain. Then, a CNN regression model is established and trained, with
validation conducted using measured data of vehicle vibration and the wheel polygonization
measured during field tests. Comparative analysis with different identification methods is per-
formed, including a comparison of different preprocessing methods and machine learning models,
which demonstrates the effectiveness of the proposed method in this study. The verification re-
sults show that the proposed method achieves high identification accuracy for wheel poly-
gonization up to the 25th order. The overall average root mean square error value is 2.0 dB.
Finally, the influence of wheel polygonization conditions, track stiffness, and speed fluctuation on
the identification accuracy is discussed. The results show the proposed method exhibits robust
identification capacity under varying conditions, which indicates its wide application and accu-
racy in complex situations during train service. This research contributes to advancing the field of
wheel polygonization detection, offering a reliable and effective solution for application in rail-
way systems.

1. Introduction

Wheel polygonization is a common form of wheel out-of-roundness (OOR), which is mainly manifest as a periodic deviation of
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wheel radius around the circumferential direction [1]. In recent years, wheel polygonization has become a common problem on trains
of urban rail transit systems, resulting in a significant increase of the dynamic responses of both the vehicle and the track components
[2], abnormal vibration and noise of rail vehicles, and structural fatigue [3]. Chen et al. [4] found the wheel polygonization of orders
1-25 has the greatest impact on the operation of the vehicle. The wheel polygonization below the 4th order has a great impact on the
running comfort of the train, while the higher orders above the 10th have a great impact on structural fatigue and noise [5]. Zhang
et al. [6] studied the influence of wheel polygonization on noise levels in high-speed trains, and found the interior noise increased by
8-10 dB in the frequency range 200-2000 Hz in the presence of polygonization.

In addition, due to the significant increase in the wheel/rail interaction force caused by the wheel polygonization [7], fatigue
fracture of key components of the vehicle, such as coil springs [8] and axles [9], may occur, shortening the life of the wheel-rail system
[10,11]. Therefore, it is necessary to detect and maintain the state of the wheels regularly to ensure the running safety and ride quality
of the train during operation. Reprofiling is the main measure available to mitigate the polygonization of wheels. However, in some
cases, the wheel after reprofiling may also have residual polygonization or imperfect reprofiling, so it is important to identify the wheel
condition to confirm whether the wheel meets the requirements.

Current detection methods for wheel polygonization can mainly be divided into two kinds: direct and indirect methods. The direct
method refers to the measurement of the wheels manually with relevant equipment during train maintenance. The test results of this
method are relatively accurate, but the vehicle needs to be out of service, and factors such as operating time and human factors result in
high cost and low efficiency. The indirect methods identify the OOR state of the wheels through the dynamic responses of the vehicle-
track coupled system, such as vibration signals [12], noise signals [13,14] etc., which has the advantages of convenience, high effi-
ciency and low cost. Currently, a significant amount of research [15-18] focuses mainly on qualitative detection and identification of a
certain level of wheel out of roundness under abnormal wear conditions. Xu et al. [19] addressed early wheel polygonal wear detection
and disturbance suppression using the WASMA (weighted angle-synchronous moving average) filter, which effectively filters out
typical disturbances to reduce the misdiagnosis of early wheel polygonization. However, precise identification of multiple orders of
wheel polygonization and their amplitudes has yet to be achieved.

The studies of Yang et al. [20] and Wu et al. [21] showed that the safety of vehicle operation can be reflected through the ac-
celeration of the axle box. Wu et al. [22] verified the correlation between axle box acceleration (ABA) and OOR through tests and
clarified the feasibility of dynamic monitoring of the wheel OOR based on the ABA. Most of the traditional signal processing methods
based on monitoring wheel OOR using ABA are used at present, starting from the perspective of time-frequency analysis. Wang [2.3]
proposed an improved Wigner-Ville method, which can infer whether the type of wheel OOR belongs to the wheel polygonization
according to the vibration acceleration. Li et al. [24] used a time-domain index analysis to identify wheel flats and estimate their
severity. Wang et al. [25] proposed a method for identifying wheel OOR based on sparse track irregularity data and adopted a dense
sampling algorithm to identify the main vibration frequency related to the wheel polygonization. At the same time, it was pointed out
that, due to the influence of the track irregularity excitation, it is necessary to combine the relevant processing methods to separate the
response due to rail and wheel excitation. In response to this problem, Chen et al. [26] proposed a wheel polygonization detection
method based on adaptive chirp mode decomposition (ACMD), which can separate the wheel polygonization feature signal. An
improved frequency domain integration method was developed by Xie et al. [27] to quantitatively capture the orders and the
roughness levels of wheel polygonization. Carrigan and Talbot [28] proposed a method to identify the wheel OOR from the combined
roughness signal obtained from ABA by means of circular averaging. They then proposed a new method to derive the rail roughness
from ABA as well [29]. The above indirect detection methods have improved efficiency compared with direct measurement, but
generally only the polygonization orders with the highest levels and their effective values are detected, and the overall accuracy for
multiple orders of wheel polygonization still needs to be studied and further improved.

With the dramatic increase in computing capacity, neural networks and deep learning have become widely used. The convolutional
neural network (CNN) has great advantages in dealing with nonlinear problems and can effectively analyze the nonlinear relationship
between the vibration of the axle box and the wheel/rail excitation. The application of neural networks in wheel polygonization
detection primarily involves classification and regression problems. The existing research mostly focuses on classification tasks, mainly
used to distinguish damage caused by out-of-round wheels. For instance, Shi et al. [30] proposed a lightweight CNN that utilized
vehicle body acceleration to detect the presence of out-of-round wheels, achieving an identification accuracy of 98 %. Deng et al. [31]
employed a one-dimensional CNN to recognize the types of wheel damage, such as polygonization and scratches, achieving a
recognition accuracy of 99 %. Xie et al. [32] proposed a model based on an optimized multiple kernel extreme learning machine, which
can only effectively extract the main order of polygonal wheels from axle box acceleration. For the regression problem of identifying
the amplitude of different wheel orders of various wavelengths, Ye et al. [33] employed a CNN for recognition. The root mean square
error (RMSE) of the first 25 orders was approximately 5.8 dB. However, this approach was solely based on simulated data and proved
to be highly sensitive to variations in train speed. Dong et al. [34] proposed a quantitative detection method for wheel OOR using a
hybrid deep learning model (CNN-LSTM) for heavy-haul locomotives. While effective in identifying dominant orders of wheel poly-
gonization and their amplitudes for heavy-haul locomotives, the CNN-LSTM model is more complex than a standalone CNN model,
requiring longer processing time for polygonization identification.

In summary, previous studies have shown that the ABA signal contains relevant information related with wheel polygonization.
Using ABA signals for wheel polygonization detection is a very efficient indirect measured method. However, due to interference
factors such as rail roughness, track stiffness and speed fluctuations, the detection accuracy is insufficient, and the identification of
wheel polygonization conditions is still mostly limited to the prominent order and its severity rather than multiple orders of wheel
polygonization. Additionally, some studies, e.g. [35,36], only used simulated data for analysis and validation, without any practical
application on data from actual vehicle operation. The application of neural network methods has been combined with the traditional
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signal processing methods to improve the identification accuracy. However, the existing approaches still mostly adopt a classification
method to distinguish the severity of wheel polygonization rather than analyze it quantitatively. The method of combining neural
networks with regression analysis can allow quantitative analysis of the amplitude of each order of wheel polygonization but requires a
large amount of training data and an appropriate network structure. There are several issues that need to be addressed in the current
research on using neural network regression analysis: (1) Models are very sensitive to vehicle speed, and subtle changes in vehicle
speed can cause significant errors; (2) If the training data and validation data are both simulated data this cannot determine their
effectiveness in practical applications. Overall, there is a need for further research in integrating regression methods and addressing the
aforementioned issues in order to achieve more robust and accurate recognition of non-round wheels.

Compared with previous research, the method proposed in this paper combines several key features: (1) The proposed method,
combining CNN and ADSA aims to simultaneously identify the specific amplitudes of wheel polygonization with multiple different
orders and wavelengths with high accuracy. (2) The method has been tested for both mild and severe polygonization levels. (3) It is
designed to mitigate the influence of various factors, including track properties and train speed, specifically addressing the challenges
posed by variations in track stiffness, thereby enhancing its reliability and practical applicability. (4) Measured data from field tests of
different metro vehicles has been used for validation, ensuring the generality and effectiveness of this indirect approach based on ABA
signals. The rest of the paper is organized as follows: Section 2 introduces field measurements that are used to provide input data.
Section 3 then describes the framework of the proposed wheel polygonization detection method. The angular-domain synchronous
averaging (ADSA) method is first employed to separate the wheel polygonization characteristic signal from the ABA signals. Then the
pre-processed signals are taken into the CNN to identify the orders and the effective values of wheel polygonization. A vehicle-track
coupled dynamic model is established and verified with measured data. It is then used to generate a large number of samples for CNN
training in Section 4. Subsequently, the establishment of both the CNN and the sample dataset are described. In Section 5, the results
obtained for the first 25 orders of polygonization are identified from on-board measurements on urban rail vehicles and the overall
accuracy is determined from field tests. The accuracy of the proposed method is compared with results from alternative methods. The
influence of several factors on the identification results, such as the severity of polygonization, and variations in track stiffness and
train speed, is also discussed in this section. The main conclusions are summarized in Section 6.

2. Field tests

To provide input data for simulations used in training the CNN and to verify the accuracy and applicability of the proposed method
of wheel polygonization identification, the OOR of multiple wheels of different trains and corresponding ABA data are both needed. EN
15610 [37] describes the measurement and data processing procedure for wheel and rail roughness. The rms value can be used to
quantify the roughness of the wheel surface in a given wavelength band. The roughness level Ly, of the wheel is defined as follows:

2
L, = 10log, (rrﬁ) 6))
0

where L, is the wheel surface roughness level in dB; ryys is the rms value of the wheel surface roughness amplitude (in a given
wavelength band); and ry is the reference value, 1 x 10° m.

The wheel OOR measurements were carried out manually with the direct method as shown in Fig. 1(a), which are time consuming.
The wheel was lifted clear of the rail and measured with the M Wheel instrument, attached to the rail surface with the sensor in contact
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Fig. 1. Field tests. (a) Wheel OOR measurement; (b) ABA measurement.
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the wheel tread surface. The OOR of the wheel can be measured by rotating the wheel several times. The ABA response of vehicles was
also measured, which has been used first to validate the vehicle-track coupled dynamic model and second to verify the accuracy of the
proposed method of OOR identification. The ABA measurements were made on two wheels each of two trains, corresponding with the
ABA response before and after re-profiling, which are used to verify the identification results later. The accelerometer on the axle box
was installed as shown in Fig. 1(b). At the same time, the speed of the train was recorded.

Some example measurement results of the wheel circumferential profile obtained from the field tests are shown in Fig. 2. These
wheels have different degrees of OOR condition.

Fig. 3 shows examples of the measured ABAs before and after re-profiling of the wheel. The degree of the wheel polygonization has
a great influence on the ABA response.

As an important part of the track system, the stiffness of the track fastener also has a significant impact on the vibration of both
vehicle and track system. For the same train running on track sections with different fasteners, the ABA test results are shown in Fig. 4.
The ABA signals are very different for different track sections due to the differences of the track conditions, including the rail pad
stiffness and the track irregularity or rail roughness. It can also be observed that, as the running speed of the train increases as it departs
from a station and decreases as it approaches the next one, the ABA signal is strongly affected.The above test results show that the ABA
can reflect the severity of the wheel polygonization, which is why it is selected as the indirect measurement of the polygonization
degree of the wheel. At the same time, however, there are many uncertainties that affect the ABA, such as the stiffness of the track
fastener, the speed of the vehicle, the rail roughness, etc. Due to this, it has proved very difficult in previous studies based on numerical
models or traditional signal processing methods to achieve precise identification of the level of each wheel polygonal order. Whether
the wheel polygonization can be quantified under complex conditions using the proposed method is the key question to be answered.
In this paper, the CNN method is proposed to increase the identification accuracy in the presence of different kinds of uncertainties in
practical operational environments.

3. Framework of wheel polygonization identification method
3.1. CNN model

CNN are increasingly applied in image recognition [38], fault diagnosis [39], etc. The main structure of CNN includes an input
layer, a hidden layer, and an output layer. Of these, the hidden layer is the most important part of the CNN and is mainly composed of
multiple alternating convolution layers and pooling layers. In order to speed up the training and convergence of the neural network, to
control the gradient explosion and to prevent overfitting [40], a batch normalization (BN) layer is added after each convolution layer.
At the same time, the rectified linear unit (ReLU) activation function is adopted after the BN layer. The formula [41] describing the
ReLU activation function f is as follows:

where g(i) is the output value of the i-th layer and also the input value of the function ReLU, n is the network layer number.

This constitutes a Convolution-Batch Normalization-ReLU (Conv-BN-ReLU or CBR) module. The CBR module and pooling layer
alternate to form the basic structure of the proposed CNN, as shown in Fig. 5.

There are multiple convolution kernels in the convolution layer, and their main function is to convolve the input data with the
convolution kernel to extract the feature information in the data. The process of the convolutional layers [42] is shown as follows:

g(i) =K*g(i— 1)+ ©)
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Fig. 2. Examples of some wheel profiles.
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Fig. 4. Comparison of ABA signals of train running on track sections with different fasteners.

where * represents convolution operation, g(i) represents the output data of the i-th layer, k’; represents the i-th convolution kernel of

the j-th layer, H is the corresponding bias.

The pooling layer applies the pooling kernel to obtain a sub-sample of the input data to extract features while reducing the data
dimensionality [43]. There are two common types of pooling layer: maximum pooling and average pooling. Of these, maximum
pooling has the best effect and is widely used. Its formula is as follows [44]:

pl(i,j) = max(j—l)w<t<jw{al(i’t)}7j = 17 27 oty nl “4)

where @™ represents the t-th neuron of the i-th map in the I-th layer. w represents the width of the convolution kernel, and j
represents the j-th pooling kernel.

3.2. Regression analysis and multi-modal fusion

Regression analysis is a statistical analysis method that can analyze and determine the quantitative relationship between variables
[45]. If there is a relationship between the independent variable x;, x3, ---X, and the dependent variable y, then when the independent
variable takes a certain value, the dependent variable has a corresponding probability distribution, and the probability model between
variables can be expressed as [46]:

Y =r(x1,X2,Xn) + € 5)



W. Sun et al. Mechanical Systems and Signal Processing 230 (2025) 112587

Flatten

Input l . _
5) ......... CBR2  MaxPooln | Linear
Maleool 1 | l l

ﬁ_/\ e y
Input Layer Hidden Layer Output Layer

Fig. 5. Schematic diagram of proposed CNN.

where y represents the dependent variable, x7, X2, ---X, represents the independent variables, r(x;, Xz, ---X,) represents the mapping
relationship between the independent variables and the dependent variable, and ¢ represents the error. The relationship between
neural networks and regression analysis [47] is shown in Fig. 6.

Regression analysis allows the relationship between the wheel polygonization and the ABA to be established, and the mapping
relationship between them to be obtained; this can be used to detect the wheel polygonization state from the ABA signal. Since the
relationship between the polygonization of the wheel and the ABA is nonlinear and complex, it is difficult to calculate this relationship,
and it is also impossible to express the relationship between the variables in a concise mathematical model. However, the neural
network has significant advantages in analyzing nonlinear problems. Therefore, the combination of regression analysis and neural
network can fully consider the nonlinear relationship between both the order and the level of the wheel polygonization and the dy-
namic response of the axle box, to achieve a correct identification result.

The same object can be described by different features. The process of combining multiple features for deep learning tasks is called
feature fusion, also known as multi-modal fusion technology (MFT) [48]. This method integrates different types of feature data as the
input of the network, thereby improving the detection accuracy of the neural network model.

The measured ABA signals are typically obtained as discrete time series. Extracting information about signal variations over time
can be achieved from the time-domain signal, while Fourier transformation enables the acquisition of amplitude information at
different frequencies. The information derived from both the time and frequency domains is mutually complementary. Therefore, by
integrating these two types of data, a more comprehensive analysis of the impact of wheel polygonization on the ABA can be

Regression analysis Neural network

Independent variable

X X5 0K, Nonlinear mapping
relationship

Dependent variable

y

=l ER s )

Fig. 6. Regression analysis and neural networks.
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conducted, leading to a more accurate deduction of the amplitude levels for each wheel polygonization order.

In this study, a synergistic approach of regression analysis and convolutional neural network (CNN) is employed, making use of
their combined strengths to address effectively the nonlinear relationship between wheel polygonization order, amplitude, and the
dynamic response of the axle box. Simultaneously, the feature fusion method is adopted to analyze both time-domain and frequency-
domain features holistically, facilitating the precise identification of wheel polygonization.

3.3. Wheel polygonization identification framework

The method proposed in this paper for identifying wheel polygonization order and its corresponding level encompasses several
stages: wheel OOR and ABA data collection from field tests, numerical modeling and verification, ABA data pre-processing using ADSA
(described below), feature extraction, and training using CNN. Subsequently, the method is verified using measured data, also obtained
from field tests. The entire workflow of the identification process is illustrated in Fig. 7.

4. Wheel polygonization identification method
4.1. Establishment and validation of the vehicle-track coupled dynamic model

The rail transit system is a complex nonlinear multi-body dynamic system, comprising the car body, bogie frame, wheelsets, vehicle
suspensions, and track system. A three-dimensional dynamic model, incorporating the coupling of the vehicle and track dynamics, is
established using SIMPACK [49] as shown in Fig. 8. A metro vehicle is studied in this paper using the parameters listed in Table 1 for
the vehicle-track coupled system, taking into account of the flexibilities of both the wheelset and the track. The track model represents
a slab track, where the rail flexibility is neglected to enhance the computational efficiency. However, it includes the rail mass and the
fasteners, which were represented in the model by stiffness and viscous damping elements as listed in Table 1. The model is utilized to
generate a large number of samples for use in the Convolutional Neural Network (CNN) for a broader range of scenarios beyond the
limitations of available measured data. Using a dynamic vehicle-track coupled model allows the generation of a large and diverse
dataset that covers various conditions and track configurations that can be used for both training and validation of the CNN.

Research findings [50] have highlighted the substantial influence of rail fastener stiffness on the ABA, thereby affecting the
identification outcomes. To widen the scope of the simulation model, two different values of fastener stiffnesses (soft and stiff) in the
vertical direction are considered. The train speed was set to 70 km/h. A large number of simulations are carried out using this model
using the excitations of different track irregularities and wheel OORs, generating a substantial number of data samples in the time-
domain for the ABA. The two rail pad stiffness values are applied in the model. To check the realism of the model, the simulation
results are compared with measured ones from the field tests, as shown in Fig. 9 in the form of the power spectral density (PSD) of the
ABA. In these simulations, the wheel OOR data obtained from the direct measurements together with a representative track irregu-
larity is employed as the excitation for the dynamic simulation. The influence of the possible failure of components such as bearings is
not considered in this paper.

The P2 resonance can be seen as the broad peak at around 40 Hz in Fig. 9(a) and around 60-70 Hz in Fig. 9(b). These differences in
P2 frequency are an important reason why the identification method should take account of differences in track properties. The
calculated ABA results show a good agreement with the measurements, thus demonstrating the validity of the vehicle-track coupled
dynamic model. This gives confidence to use samples of ABA data generated from the model in the proposed method.

4.2. Sample database

4.2.1. Data collection of OORs and ABAs

Based on the vehicle-track coupled dynamic model established in the previous section, the simulation models are configured under
conditions encompassing two different values of fastener stiffness and two sets of diverse track irregularities. The vertical stiffness of
the two fasteners is set as 20 MN/m and 80 MN/m. The two groups of track irregularities are based on the AAR class 5 spectrum [51]
and a modified track irregularity spectrum, as shown in Fig. 10. The distinctive feature of the track irregularity spectrum is that it is
characterized by a relatively high amplitude of the long-wave components and a comparatively low amplitude of the short-wave ones.
To enhance the diversity of the track irregularities considered, the modified track irregularity consists of a reduction in the excitation
component of the long wavelength irregularity and an increase in the component of the short-wave irregularity. Measurements
presented in [52] showed that the long-wavelength track irregularity spectrum of slab tracks is flatter and lower compared to con-
ventional ballast tracks. These features give a spectrum that is more similar to the track irregularity spectra in the metro system under
study.

To give the neural network model a higher applicability, it is necessary to ensure a diverse set of training samples are used. This
allows the model to learn comprehensively the characteristics across various sample types. However, incorporating more complex and
diverse sample sets also introduces higher training challenges and prolonged training durations. To address these considerations and
maintain sample diversity, this study focuses on a specific type of metro vehicle, with the properties listed in Table 1. Two trains of this
type were selected for the measurement study, and the wheel OOR was measured multiple times before and after re-profiling the
wheels.

In this paper, a dataset encompassing 500 sets of measured wheel profiles, which exhibit various levels of wear, was gathered. (The
dataset of wheel polygonization levels could also be generated randomly). The roughness amplitude of various polygonal orders
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Fig. 8. The vehicle-track coupled dynamic model.

Table 1

Parameters of the vehicle-track coupled dynamic model.
Parameter Value Unit
Wheelset mass 1180 kg
Wheelset roll moment of inertia 636 kg-m?
Wheelset pitch moment of inertia 85 kg-m?
Wheelset yaw moment of inertia 636 kg-m?
Bogie frame mass 2026 kg
Bogie frame roll moment of inertia 1225 kg-m?
Bogie frame pitch moment of inertia 944 kg-m?
Bogie frame yaw moment of inertia 2606 kg-m?
Car body mass 23,124 kg
Car body roll moment of inertia 39,857 kg-m?
Car body pitch moment of inertia 1,085,179 kg-m?
Car body yaw moment of inertia 1,063,714 kg-m?
Longitudinal stiffness of primary coil spring per axle box 0.7 MN/m
Lateral stiffness of primary coil spring per axle box 0.7 MN/m
Vertical stiffness of primary coil spring per axle box 0.911 MN/m
Vertical damping of primary hydraulic damper per axle box 15 kN-s/m
Longitudinal stiffness of air spring 0.17 MN/m
Lateral stiffness of air spring 0.17 MN/m
Vertical stiffness of air spring 0.3 MN/m
Vertical damping of secondary hydraulic damper 40 kN-s/m
Lateral damping of secondary hydraulic damper 55 kN-s/m
Rail mass per unit length 60 kg/m
Track gauge 1435 mm
Rail inclination 1:40 /
Vertical stiffness of rail fastener (soft) 20 MN/m
Vertical stiffness of rail fastener (stiff) 80 MN/m
Lateral stiffness of rail fastener 30 MN/m
Vertical damping coefficient of rail fastener 10 kN.s/m
Lateral damping coefficient of rail fastener 15 kN.s/m

between the 1st and the 25th are shown in Fig. 11(a) for examples of these measured wheel profiles. The abscissa in the figure denotes
the wheel polygonal orders, while the ordinate represents the roughness rms amplitude at each order expressed in decibels. There is a
very wide range of amplitudes of each order for these 500 different wheel profiles. The polygonal wear of different wheels can be very
different due to various reasons, such as operational mileage, reprofiling method, traction/braking torques and so on. Thus, it is
necessary but difficult to measure the polygonization levels of all wheels regularly and accurately.

To quantify the degree of dispersion in the wheel OOR data, the standard deviation of amplitudes of different orders was deter-
mined from the 500 measured profiles. The results are presented in Fig. 11(b), from which it can be observed that there is a large
standard deviation for all orders, with an average value of 10.5 dB. This confirms that the 500 collected data samples exhibit sig-
nificant diversity, providing a greater variety of data for the CNN and enhancing its applicability. With the samples of wheel
circumferential profile acquired from the test used as the excitation, the vibration responses of the vehicle system in operation are
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Fig. 9. Comparison between PSD of calculated and measured ABA for two values of fastener stiffness.

calculated with the dynamic model. Utilizing the Design of Experiments (DOE) function in SIMPACK, the 500 wheel OOR excitations
combined with the four working conditions (two different track irregularities and two values of fastener stiffness) are processed in
batches, generating a total of 2000 ABA data samples as responses. Each data segment has a length of 10 s and a sampling frequency of
5120 Hz. As explained above, these 2000 data sample sets exhibit rich diversity and complexity, ensuring that the neural network
trained with this dataset has greater applicability. However, it also entails increased challenges and time consumption during the
training phase.

4.2.2. Pre-processing of ABA data with ADSA

The measured ABA data acquired from the tests are recorded as discrete time series with a sampling rate of 5120 Hz. They
encapsulate the total vibration response of the axle box due to the influence of both wheel and track excitations, along with other
external factors. Therefore, it is imperative to preprocess the data to minimize the impact of track irregularities and rail roughness,
aiming to retain and isolate information solely related to wheel polygonization.

The angular-domain synchronous averaging (ADSA) method, commonly used in fault diagnosis of rotating machinery [53-55], is
adept at extracting periodic signal components from composite signals. Unlike other sources of excitation (which are often temporary
and only present on specific track sections), wheel polygonization exhibits a consistent periodic characteristic throughout the entire
train operation. ADSA was employed for its advances in removing non-periodic noise from signals, making it highly suitable for
rotational periodic problems such as wheel polygonization. Therefore, preprocessing raw data with ADSA achieves a critical
improvement in OOR identification accuracy by reducing the noise introduced by these other factors.

The fundamental principle involves resampling the original time-domain signal within the angular period of the periodic signal
from the rotating structure. This conversion transforms the time-domain signal into an angular-domain signal, facilitating analysis of
the periodic signal. Making use of the inherent periodic characteristics of each wheel polygonization order, the ADSA method
effectively separates the excitation signal caused by wheel OOR from the complex vibration signal. This process results in the
extraction of the signal with high correlation to wheel OOR for subsequent data processing. Based on this, a novel angular-domain
averaging method is proposed, which relies on synchronously measured speed data. When the speed fluctuates, the acceleration
signal of the axle box can be precisely divided into multiple segments, each corresponding to the wheel rotation period. It is assumed
that the rotation speed is constant during one revolution, or only varies slowly. These segments are subsequently superimposed and
averaged to enhance signal clarity.

The flow chart of the ADSA method used here is shown in Fig. 12. It can effectively separate ABA signals generated due to the wheel
OOR from those due to track irregularity or rail roughness excitations even where the speed may vary. This is explained in more detail
in the following.

It can be assumed that the collected ABA signal x(t) is the superposition of the periodic signal w(t) and the non-periodic signal n(t),
namely:

x(t) = w(t) +n(t) %)

where t represents time, w(t) is a periodic signal related to the wheel polygonization, and n(t) is an aperiodic signal not related to the
wheel polygonization, which is due to other excitations and may be considered as noise.
Then it is necessary to extract the signal w(t) related to the wheel polygonization from the ABA signal x(t). Since w(t) is assumed to
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be periodic with a period of the wheel rotation,

w(t) = w(t+kT),k=1,2, - .

where t represents time, T represents the wheel rotation period, and k is the index of the k-th wheel rotation period. Subsequently, the
ABA signal x(t) can be partitioned according to the wheel rotation period T to derive the ABA for each wheel rotation cycle.

In the case of a vehicle undergoing speed changes, the signal is not exactly periodic in time and a straightforward division from the
time-domain signal is not feasible. To overcome this, the relationship between speed and distance is utilized. The acceleration signal is
resampled to correspond to an average speed, and the resulting signal is treated as a periodic one.

In this context, x(t) is divided into P segments, each corresponding to one revolution of the wheel. Concurrently, the time domain
signal is converted into an angle-dependent signal. The signal of the i-th segment, denoted as x(6 ;), is expressed as follows:

X(Hi) = W(Hl) + Tl(‘}i) (7)

where 0; represents the i-th segment angular domain signal, w(0;) represents the signal component in the angular domain signal related
to the wheel out-of-roundness, n(6;) represents the signal component not related to the wheel polygonization in the angular domain
signal.

Finally, the P signal segments are averaged to obtain the output signal y, and due to the incoherence of non-periodic signals [56],
the following relation is obtained:

y= %Zf: X(0) ~w(6) +% -n(6,) ®

Because the wheel OOR signal is periodic, it remains unchanged after averaging, while the other non-periodic signals are weakened
by a factor of \/P after averaging. When P is large enough, the other signals that are regarded as noise are sufficiently reduced. Here, P
is set to be 160. Thus, the wheel polygonization signal can be separated from the other signals. The output signal y can approximately
represent the angular-domain signal of ABA caused only by the wheel OOR within one rotation period. The preprocessed data is then
Fourier transformed to obtain the frequency domain spectrum, as shown in Fig. 13.

As shown in the figure, compared with the original signal the noise information in the signal that is unrelated to the wheel pol-
ygonization is greatly attenuated after applying the ADSA pre-processing, while the information related to the wheel polygonization is
preserved. The signal that remains is dominated by frequency components at the various orders of wheel polygonization.

4.2.3. Establishment of sample database

The sample database required by the neural network consists of ABA data in both the time domain and the frequency domain. First,
the time-domain data sample set is established after pre-processing the raw ABA data from each model simulation with ADSA as
described above. Second, the data sample set in the frequency domain is obtained by applying a Fourier transform to the above time-
domain data. Finally, 80 % of the sample set, that is, data from 1600 model simulations, are selected as the training set for training the
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neural network model, and data from the remaining 400 simulations are used together with the measured dataset as the test set for
checking the accuracy of the identification method.

4.3. Setup and training of CNN

Considering the time-domain and frequency-domain characteristics of the acceleration of the axle box, a convolutional neural
network model based on feature fusion was constructed based on the one-dimensional CNN combined with regression analysis. The
neural network model mainly includes two parts. The first part is used to extract the feature vectors in the time domain and the
frequency domain. The second part is used to extract features from the coupled vectors after feature fusion, and this is combined with
the regression analysis to obtain the amplitude of each order of the wheel polygonization.

The feature vectors are extracted in the time domain and the frequency domain. For time-domain signal processing, the Deep
Convolutional Neural Networks with Wide First-layer Kernel (WDCNN) model [57] is adopted. Its structural feature is that the first
layer is a large convolution kernel of size 64 x 1, and the subsequent convolution layers are all small convolution kernels of size 3 x 1.
The convolution kernel in the first layer is large, so that it can reduce redundant information, filter noise pollution, and extract relevant
features of wheel polygonization from large scales. The remaining 3 x 1 three-layer convolution kernel can extract the order and
amplitude relationship of the wheel polygonization from a deeper level. For signal processing in the frequency domain, unlike the time-
domain signals, if the first-layer large convolution kernel method is adopted, the frequency resolution will increase. Therefore, in the
frequency-domain signal processing, the first three layers adopt a small convolution kernel with a size of 3 x 1, while the last layer
adopts a convolution kernel with a size of 5 x 1. After the feature vector is extracted, the time-domain and frequency-domain feature
vectors are spliced and fused to obtain the coupled signal. For coupled signal processing, a feature extraction model of two layers of
convolution plus one layer of pooling is adopted; that is, a pooling layer is placed after every two CBR modules to extract features, and
the convolution kernels adopt a kernel size of 3 x 1, a total of four layers of convolutional networks. The structure for the CNN for this
method is shown in Fig. 14. The parameters for each layer in the model are chosen as shown in Table 2.

The Mean-Square Error (MSE) is selected as the loss function, which is calculated as the mean square error obtained by each
training step between the forward propagation prediction result and the real value used as input. The MSE is calculated [58] as follows

MsE= S (-3 ©

where y represents the actual value of the i-th data point, and y; represents the predicted value of the i-th data point. Here, the unit of
MSE is dB2. The closer the MSE value is to 0, the better the prediction accuracy of the model is.

The Adam optimization algorithm [59] is applied to calculate the gradient of the loss function with respect to each parameter, and
the weight parameters w of the neural network are updated iteratively through back-propagation, which could improve the training
effect. The test set samples are input into the established CNN regression model for iterative training. If the loss function of the test set
no longer decreases, the training will stop. The learning rate, a crucial hyperparameter in both supervised learning and deep learning,
plays a decisive role in determining the convergence of the loss function to the local minimum and the speed at which such
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Fig. 13. Comparison of ABA signal in the frequency domain before and after pre-processing with ADSA method.
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convergence occurs. Here, a learning rate of 0.001 is employed along with a batch size of 256 samples.

An example illustrating the changes in the MSE during the training process is presented in Fig. 15. The plot reveals a continuous
decrease in the MSE as the number of training iterations increases, signifying an improvement in the training effectiveness. By the
102nd training iteration, the MSE reached its optimal value at 7.39 dB?, corresponding to a Root Mean Squared Error (RMSE) of 2.7
dB.

5. Verification and discussion

A method of using the axle box acceleration signal to identify the amplitude of each order of the wheel polygonization has been
proposed, as described above. Its main steps can be summarized as follows: (1) The ADSA method is applied to preprocess the ABAs of
the sample set, which can reduce the noise of the ABA response from other factors except for wheel OOR; (2) The feature fusion and
neural network regression analysis methods are combined and then a large amount of data training is carried out; (3) The neural
network model is used to identify the level of each order of the wheel polygonization from ABA. These steps have been carried out
using simulated data based on measured wheel OOR and track unevenness data using the dynamic model that has been verified in
Section 4.

To evaluate the accuracy of the identification method, in this section it is applied to measured data. Comparisons are also made
with results obtained using some alternative approaches. To illustrate the applicability of the proposed method, the measured ABA
signals of vehicles running in different situations are selected for analysis.

5.1. Verification and comparison between different methods

To illustrate the effectiveness of the proposed wheel polygonization identification method based on the angular domain combined
with the neural network, a comparison is made here between the identification results obtained by this full ADSA-CNN method, results
obtained from CNN alone, and those from a simplified method based on the integration of acceleration combined with the ADSA
method; in each case results are compared with the directly measured OOR results. The basis of this final method is that the
circumferential displacement profile of the wheel can be approximated by applying a double integration to the acceleration of the axle
box. This should give a good approximation to the wheel OOR at frequencies well below the P2 resonance frequency. This double
integration can also be performed in the frequency domain.

The measured acceleration signals of the axle boxes obtained from the different wheels of the two trains are chosen before wheel re-
profiling, and the above three methods are used to identify the wheel roughness. The results for two wheels from each of two trains are

3400%1%L  1133%1%16
77%1%32
= o ets128
gl *1+128 512¢1%1 51 9148
1%384
o 512+11
o = j,— ~ 1704138 64%1
H Z v 170%1%16  pexq432 A w5 4
5 z 56%1%16 =
@ £ 18164 /] 3
g 341464 18%1%32 ! 3
2 £ 5% 1%32 Br1+64 | Q
- = /|BTTx¥%16 1#384 | a, 3
z | | =
| s
L U I : 9 3
]
600% 13 Iy i~
1%32 I) a g
o 7 25 O
-n =
o £ L *1%16 -°.,
o] Qo
s 1708148 U ®
=]
(3]
< L
Qo
)
3
=4 ‘
5 () input  []) cBR (]| Maxpool
g ‘
o { Dropout @ Flatten Cat @ Linear
—Input layer—| Hidden layer FOutput layer—

Fig. 14. Structure diagram of CNN for wheel polygonization identification.

15



W. Sun et al. Mechanical Systems and Signal Processing 230 (2025) 112587

Table 2
Parameters of CNN structure.
Layers Kernel size Stride Number of kernels Padding
Networks for extracting time domain features Convolutional Layerl 64 x 1 3 16 0
Pooling Layerl 3x1 3 16 /
Convolutional Layer2 3x1 1 32 1
Pooling Layer2 3x1 3 32 /
Convolutional Layer3 3x1 3 64 0
Pooling Layer3 3x1 3 64 /
Convolutional Layer4 3x1 2 128 1
Pooling Layer4 2x1 2 128 /
Networks for extracting frequency domain features ConvolutionalLayerl 3x1 3 8 0
Pooling Layerl 3x1 3 8 /
Convolutional Layer2 3x1 1 16 1
Pooling Layer2 3x1 3 16 /
Convolutional Layer3 3x1 1 32 1
Pooling Layer3 3x1 3 32 /
Convolutional Layer4 5x1 1 64 0
Pooling Layer4 3x1 3 64 /
Networks for extracting coupled vector features Convolutional Layerl 3x1 1 8 1
Convolutional Layer2 3x1 1 8 1
Pooling Layerl 3x1 3 8 /
Convolutional Layer3 3x1 1 16 1
Convolutional Layer4 3x1 1 16 1
Pooling Layer2 3x1 2 16 /
Convolutional Layer5 3x1 1 32 1
Convolutional Layer6 3x1 1 32 1
Pooling Layer3 3x1 2 32 /
Convolutional Layer7 3x1 1 64 1
Convolutional Layer8 3x1 1 64 1
Pooling Layer4 3x1 3 64 /
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Fig. 15. The change of MSE with training times.

shown in one-third octave bands in Fig. 16 and compared with the ISO 3095:2013 limit curve [60]. This limit curve is intended as a
threshold for the rail roughness applying in measurements of new rail vehicles, but it can also be seen as an indication of good practice.

It can be seen from the results that the wheel roughness in each wavelength band before wheel re-profiling seriously exceeds the
limit curve from ISO 3095:2013, which will have an important impact on ride comfort, noise and structural fatigue. At the same time,
although the three methods achieve good identification of wheel OOR, the method of ADSA-CNN gives the best agreement with the
measured values. To quantify and compare the overall accuracy of the three methods, the root mean square error (RMSE) of the
roughness levels in dB at wheel OOR orders 1-25 is determined. The results are shown in Table 3.

Among the three methods used for wheel polygonization detection, the ADSA-CNN method exhibits the smallest RMSE, suggesting
that this method combines the advantages of the other two methods. It utilizes the angular-domain synchronous averaging method to
extract relevant components more related to the wheel OOR and utilizes the ability of CNN to solve non-linear problems to determine
the magnitude of each order accurately in the presence of different track stiffnesses and vehicle speeds.

To illustrate further the accuracy of the three methods for the detection of each order of polygonization, the relative errors of the

16



W. Sun et al. Mechanical Systems and Signal Processing 230 (2025) 112587

45 45
) —~
T35 D35t
= Ko
2 5
0257 5251
< 15 [--@-—Measured va < 15 [=-@-=Measured vall
o - = =CNN ® |---CNN
35 po- ADSA R ADSA
[ —&— ADSA-CNN —&— ADSA-CNN
.5 =——1503035 = 103095
100 10-1 100 10—1
Wavelength(m) Wavelength(m)
(a) Train A -Wheel 1 (b) Train A- Wheel 2

45 45
m 35 m 35
) °
[ [
o 25 f 25
[} [2]
n (%]
o [0}
£ 15 =-@-=Measured valu £ 15 =-@-=Measured valu
2 |---CNN 2 |---CNN
g 5 ADSA £ 5 F—-ADA

—&— ADSA-CNN —&— ADA-CNN
_5 [=——1503095 5 1S03095
10° 107" 10° 10™"
Wavelength(m) Wavelength(m)
(c) Train B- Wheel 1 (d) Train B- Wheel 2

Fig. 16. Identification results of different methods before wheel re-profiling.

17



W. Sun et al. Mechanical Systems and Signal Processing 230 (2025) 112587

Table 3
Comparison of the RMSE values between the three methods (Unit: dB).
ADSA CNN ADSA-CNN
Train A Wheel 1 3.5 4.8 2.4
Wheel 2 5.1 3.5 1.7
Train B Wheel 1 3.2 4.2 1.9
Wheel 2 3.5 4.0 2.2
Average 3.8 4.1 2.0
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Fig. 17. Comparison of absolute values of relative errors between the three methods before wheel re-profiling.

wheel roughness at each order identified by the three methods are shown in Fig. 17 as level differences. The relative error is the
difference between the identified level of wheel polygonization with the respective method and the measured result for each order.
Fig. 17 shows that the difference between the identification values and the actual values with the ADSA-CNN method is on average
around 1.5 dB, whereas for the CNN method it is around 3 ~ 4 dB, and for the ADSA method it is around 3 dB. The level differences for
the ADSA and CNN methods have significant fluctuations, with some orders exhibiting larger errors. However, the ADSA-CNN method
shows a good performance in identifying most orders, with recognition errors generally below 5 dB. This indicates a more stable and
accurate identification for the various wheels from different trains. Compared with the results from references [27] and [33], the errors
or RMSE values in the current results are lower. Additionally, it was noted [27] that the methods proposed in recent studies were more
effective for the quantitative detection of dominant wheel orders rather than non-dominant or low order wheel polygonization.

5.2. The influence of different factors

5.2.1. The degrees of wheel polygonization

In the above, the identification of each wheel polygonization order was carried out on the wheels before re-profiling, and a
relatively accurate result was obtained. However, due to the lower roughness level of the wheels after re-profiling, the noise in the
acceleration signal of the axle box is relatively large, which often brings difficulties for the identification. In order to verify the
identification effect of this method on the wheels with low levels of OOR, the ADSA-CNN method is adopted to identify the wheel
roughness from the wheel OOR and vibration measurements carried out after wheel reprofiling. The identification results of four
wheels are shown in Fig. 18 in one-third octave bands.

The OOR levels of the two wheels from Train A are now below the ISO 3095 limit curve after reprofiling. The roughness of the
wheels from Train B also decreased, although the wheels are not exceptionally smooth, and the roughness levels at different wave-
lengths still exceed the standard. The relative errors of the first 25 orders of the wheel OOR after re-profiling are shown in Fig. 19. It can
be seen from Fig. 19 that the proposed ADSA-CNN method also gives a reliable identification of the wheel roughness after re-profiling.

The RMSE values of the two groups of data are listed in Table 4. This confirms that the proposed method also has a good iden-
tification accuracy after wheel re-profiling, although the RMSE values after wheel re-profiling are larger than those before re-profiling.
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As indicated in the tabular data, the ADSA-CNN method gives commendable accuracy even for wheels with low levels of OOR after
undergoing wheel reprofiling operations. This suggests that the method described in this study demonstrates a good applicability
across different degrees of wheel polygonal wear. However, on average, the relative error is larger for wheels with small OOR, for
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Table 4
RMSE values after wheel re-profiling and before re-profiling (Unit: dB).
Train A Train B Average
Wheel 1 Wheel 2 Wheel 1 Wheel 2
After re-profiling 2.8 2.8 2.7 2.7 2.8
Before re-profiling 2.4 1.7 1.9 2.2 2.0

which other factors, such as track irregularities, have a larger influence. The accuracy increases with the development of wheel
polygonization, which is beneficial for on-board identification of wheel polygonization in the field.

5.2.2. Different track stiffness

From the measured ABA results in Fig. 4, it can be seen track stiffness typically affects the ABA response. To verify the effectiveness
of the proposed method in identifying polygonization under different track conditions, ABA data from the vehicle running on different
track locations with varying fastener stiffness were selected. The polygonization was identified based on the ADSA-CNN method, and
the RMSE between the identified and measured levels was calculated. The identification results are presented in Fig. 20 for one wheel
as an example.

It can be seen from Fig. 20 that this method gives a similar identification accuracy for the two fastener stiffnesses, with corre-
sponding RMSE values of 2.5 dB for both high and low stiffness.

A comparison of identification results obtained using training datasets with one or two values of fastener stiffness is shown in
Fig. 21. The results indicate that when the dataset includes samples from these two fastener stiffness conditions, this method effectively
reduces the influence of differences in fastener stiffness on the results. Where greater variations in track properties are expected, a
wider range of track properties could be included in the training data.

5.2.3. Speed fluctuation

To verify the influence of speed on the identification accuracy, the ABA signals corresponding to the vehicle running at relatively
constant and variable speed conditions were selected for identifying the polygonization. The vehicle speed and corresponding ABA
signals are shown in Fig. 22.

In the first case, the vehicle maintains a speed of around 71 km/h, whereas in the second case the speed fluctuated between 67 to
75 km/h. These speed fluctuations can cause variations in the ABA signal, thereby affecting the identification accuracy. The identi-
fication results for the two operating conditions are shown in Fig. 23. Good identification results were achieved under both operating
conditions as shown in the figure. However, the identification result under constant speed condition is better than that under variable
speed condition for most wheel polygonization orders.

The RMSE value under the constant speed condition (2.6 dB) was smaller than that under the variable speed condition (3.5 dB),
indicating that the fluctuation in vehicle speed has a certain impact on the identification results. It should be noted that all training
data were generated from the numerical model at a constant speed of 70 km/h. If the running speed is close to this value, the
identification accuracy can be high. To improve the accuracy for other speeds, the training data could be extended to include a variety
of speeds. However, in practice the trains on a metro network often run at a consistent constant speed.

5.3. Comparison with different preprocessing and machine learning methods

5.3.1. Preprocessing methods

ADSA offers clear advantages as a preprocessing method for rotationally periodic problems. Its key strength lies in operating
directly in the angular domain, aligning signals with the rotational dynamics of the wheel to accurately capture periodic features. In
contrast, methods like EMD (Empirical Mode Decomposition) and EEMD (Ensemble Empirical Mode Decomposition), while effective
for handling non-stationary signals by decomposing them into intrinsic mode functions (IMFs), are sensitive to noise, prone to mode
mixing, and computationally intensive. Although EEMD improves upon EMD by incorporating Gaussian white noise (GWN) to enhance
signal separation, it still lacks the rotational synchronization inherent in ADSA, making it less effective for isolating periodic defects
like wheel polygonization. ADSA also handles variations in train speed effectively, as rotational features are inherently tied to the
angular domain, making it well-suited for railway applications. Moreover, it is computationally efficient and integrates well with deep
learning models.

As for the GWN method, it introduces high-frequency components into acceleration signals, helping the diagnostic network resist
high-frequency impacts [34]. While it improves robustness to noise by diversifying the data and reducing overfitting, its white noise
amplitude must be determined empirically through multiple trials. However, GWN lacks the ability to directly amplify periodic
characteristics associated with rotational defects, such as wheel polygonization, limiting its effectiveness in tasks that rely heavily on
periodic feature extraction.

A comparative analysis of these preprocessing methods, shown in Fig. 24 for one example wheel, demonstrates that ADSA out-
performs the other approaches in terms of the overall RMSE across all 25 orders. In each case the same CNN is applied after the pre-
processing has been carried out. ADSA effectively isolates periodic components of wheel polygonization while suppressing non-
periodic noise, ensuring greater clarity and amplification of periodic features. This makes it particularly robust against noise and
speed variations, making it well-suited for rotational periodicity analysis. Additionally, ADSA is significantly more computationally
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Fig. 21. Comparison of results identified using training datasets based on different fastener stiffness values.
efficient than EMD or EEMD, further enhancing its practicality.

5.3.2. Machine learning models

To demonstrate the effectiveness of the proposed method, commonly used machine learning models, including the OORNet model
[33] and the CNN-LSTM model[34], were compared for their identification performance on the same example wheel. The neural
network architectures for the proposed method and OORNet[33] are similar, except that the latter incorporates an additional time-
—frequency diagram. By contrast [34] employs the most complicated network architecture with only one frequency domain data
feature. Consequently, the training rounds and time are both significantly higher for the models in [33] and [34]. Besides, an alter-
native model, ADSA-SVM (support vector machine)[61] has been included. While SVM offers a simpler and more computationally
efficient workflow, it lacks the hierarchical feature extraction capabilities of the deep learning models. The features of these ap-
proaches are summarized in Table 5.

All the identification results at orders up to the 25th obtained with the different methods are shown in Fig. 25. The identification
effect is best for the proposed method ADSA-CNN in this manuscript and GWN-OORNet[33] also has a good performance. The CNN-
LSTM model from [34] is more complicated, yet due to its costly calculation, the training rounds may not be enough to get a better
result here. It gives a similar result with OORNet, although better than the SVM model.
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6. Conclusions

A method is proposed for identifying wheel polygonization levels with different orders, based on a combination of CNN and ADSA
methods. A validated coupled vehicle-track dynamic model with varying track fastener stiffnesses is established to generate a large
number of ABA signals under different conditions. Based on this, a dataset of 2000 samples is created for CNN training and verification.
The ADSA method is applied to preprocess the data, reducing the noise from track roughness. A CNN model, incorporating feature
fusion techniques, is developed to identify wheel polygonization based on the temporal and spectral characteristics of the axle box
acceleration signals. Combining the CNN and regression analysis, the amplitude of each wheel polygonization order can be deduced
from the ABA signals. After extensive training, the model achieves an overall average RMSE of 2.7 dB for identifying the levels of the
1st to 25th orders of wheel polygonization, significantly outperforming methods based on only CNN or ADSA. Higher orders of wheel
polygonization could be identified with the proposed framework and method, provided that rail flexibility is incorporated into the
model. However, this inclusion would significantly increase computation time.

The superiority and applicability of the proposed ADSA-CNN method were also discussed. The mean RMSE values for the three
methods in identifying the wheel polygonization before reprofiling were approximately 2.0 dB (ADSA-CNN), 4.7 dB (ADSA) and 4.1
dB (CNN) respectively, from which is evident that the ADSA-CNN method outperforms the other two methods. Then the influence of
different factors, including wheel polygonization severity, different track fastener stiffness, and variable vehicle speed, on the iden-
tification accuracy was analyzed. The results show that the severity of the wheel polygonization has an influence on the identification
but the OOR after reprofiling could still be determined with reasonable accuracy (RMSE value after reprofiling: 2.8 dB, before
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Table 5
Comparison between different machine learning models.
Parameter The proposed method OORNet [33] CNN-LSTM [34] SVM[61]
Data Time-domain, frequency-domain Time-domain, frequency-domain, Frequency-domain Frequency-domain
features time—frequency diagram
Neural Two convolutions, concatenation, Three convolutions, concatenation, One convolution followed by 2 Kernel mapping layer (using
network  followed by one convolution followed by one convolution LSTM cells, concatenation RBF) — regression layer
Training 100 500 75/150 /
rounds
RMSE 2.2 2.6 4.5/2.6 5.4

reprofiling: 2.0 dB). The ADSA-CNN method effectively mitigates errors caused by different track fastener stiffness, with a similar
average RMSE value obtained under different stiffness conditions. This is achieved because the sample data was generated from the
dynamic model with two widely different values of fastener stiffness. For more general applicability a wider range of track properties
could be included in the training data in the future. Furthermore, the reliability of the OOR identification is affected by speed fluc-
tuations (RMSE value: 2.6 dB with constant speed, 3.5 dB with speed fluctuation). It is therefore recommended to use data measured
at a constant speed to improve the accuracy. Nevertheless, to widen the applicability the training data could be extended to include
other speeds.

The proposed ADSA-CNN method has demonstrated clear effectiveness and advantages over various preprocessing techniques and
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Fig. 25. Comparison of identification results obtained using different deep learning models.

machine learning models from the literature. While other approaches based on time-frequency analysis or advanced models exist, their
suitability for this specific application requires evaluation. The ADSA-CNN method achieves high accuracy and computational effi-
ciency in identifying wheel polygonization levels across different metro vehicles. ADSA excels at handling periodic rotational signals,
while the CNN effectively captures critical features from the dataset. Additionally, the inclusion of a diverse training dataset incor-
porating metro trains and track stiffness variations ensures practical applicability. These elements collectively make the proposed
method a robust and efficient solution for detecting metro wheel polygonization.
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