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ABSTRACT

R-mode oscillations of rotating neutron stars are promising candidates for continuous gravitational

wave (GW) observations. The r-mode frequencies for slowly rotating Newtonian stars are well-known

and independent of the equation of state (EOS) but for neutron stars, several mechanisms can alter

the r-mode frequency of which the relativistic correction is dominant and relevant for most of the

neutron stars. The most sensitive searches for continuous GWs are those for known pulsars for which

GW frequencies are in targeted narrow frequency bands of few Hz. In this study, we investigate the

effect of several state-of-the-art multi-messenger constraints on the r-mode frequency for relativistic,

slowly rotating, barotropic stars. Imposing these recent constraints on the EOS, we find that the r-

mode frequency range is slightly higher from the previous study and the narrow band frequency range

can increase upto 8-25% for the most promising candidate PSR J0537-6910 depending on the range

of compactness. We also derive universal relations between r-mode frequency and dimensionless tidal

deformability which can be used to estimate the dynamical tide of the r-mode resonant excitation during

the inspiral signal. These results can be used to construct the parameter space for r-mode searches in

gravitational wave data and also constrain the nuclear equation of state following a successful r-mode

detection.
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1. INTRODUCTION

Gravitational waves (GW) can drive various modes

of oscillation in a rotating Neutron Star (NS) unstable

(Chandrasekhar 1970; Friedman & Schutz 1978). The

r-mode is a toroidal mode of fluid oscillation for which

the restoring force is the Coriolis force. For any rotat-
ing star, r-modes can become unstable to gravitational

wave emission via the Chandrasekhar-Friedman-Schutz

(CFS) mechanism (Andersson 1998, 2003). This in-

stability can explain the spin down of hot and young

neutron stars (Andersson et al. 1999; Lindblom et al.

1998; Alford & Schwenzer 2014) as well as old, accreting

neutron stars in low mass x-ray binaries (LMXBs) (Ho

et al. 2011), and provides a plausible explanation for the

absence of very fast rotating neutron stars in nature.

Although shear and bulk viscosity of the NS matter

can damp these oscillation modes (Lindblom & Owen

2002; Chatterjee & Bandyopadhyay 2006, 2007), while
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spinning down, neutron stars can enter a region of tem-

perature and rotational frequency in which viscosity

cannot damp the r-mode and the mode grows to a large

amplitude leading to GW emission (Lindblom et al.

1998).

Because of its astrophysical significance (Abbott et al.

2022), there have been recent searches for continuous

GW emission specifically from r-modes using the LIGO-

Virgo-Kagra (LVK) global network of gravitational wave

detectors (Aasi et al. 2015; Abbott et al. 2016; Acernese

et al. 2014; Akutsu et al. 2021). A search for GWs from

r-modes in the Crab pulsar was carried out by Rajb-

handari et al. (2021) and from PSR J0537 by Fesik

& Papa (2020a,b) and the LVK collaboration (Abbott

et al. 2021). No GWs were detected in these searches,

but upper limits on GW amplitude were obtained.

As the r-modes are rotationally restored stellar oscil-

lations, their frequency is proportional to the rotation

frequency (Papaloizou & Pringle 1978) for slowly rotat-

ing stars. If the targeted pulsar rotational frequency

is known from electromagnetic data, the GW searches
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are done in a relatively narrow frequency band obtained

from theoretical estimates (Caride et al. 2019). The r-

mode frequency for slowly and uniformly rotating New-

tonian star in the perfect fluid approximation is found to

be independent of the Equation of state (EOS) (Provost

et al. 1981)

κ ≡ σR
Ω

=
2m

l(l + 1)
, (1)

where σR is the r-mode frequency in the co-rotating

frame, Ω is the rotational angular velocity of the star, l

and m are the spherical harmonic indices. In the inertial

frame, the frequency is given by f = |(κ−m)Ω|. For neu-

tron stars, dominant factors influencing the r-mode fre-

quency are relativistic effects (Lockitch et al. 2000, 2003;

Idrisy et al. 2015) and rapid rotation (Lindblom et al.

1999; Yoshida et al. 2005). There are several other fac-

tors like the presence of solid crust (Levin & Ushomirsky

2001), stratification (Yoshida & Lee 2000; Passamonti

et al. 2009), magnetic field (Ho & Lai 2000; Morsink &

Rezania 2002) or superfluidity in the core (Lindblom &

Mendell 2000; Andersson & Comer 2001) that might af-

fect the r-mode frequency but their effect was found to

be negligible for most stars (Idrisy et al. 2015). Rapid

rotation can increase the value of κ by ∼ 6% for fastest

rotating stars (Idrisy et al. 2015). But since this correc-

tion is of the order (Ω/ΩK)2 where ΩK is the Keplerian

frequency, the rotational corrections become negligible

for slowly spinning stars. Lockitch et al. (2000, 2003)

first derived the perturbation equations to solve for r-

mode frequency for relativistic barotropic stars and cal-

culated them using only polytropic EOSs. Later Idrisy

et al. (2015) calculated the same for some tabulated

EOSs. They sampled 14 EOSs that support a maximum

mass of at least 1.85M� and obtained the universal re-

lation between r-mode frequency and compactness (Fig

3 in (Idrisy et al. 2015)) as

κ = 0.627 + 0.079(M/R)− 2.25(M/R)2 . (2)

Since this work, there have been several recent multi-

messenger observations of neutron stars that have put

constraints on the Neutron star equation of state. The

detection of gravitational waves from the binary neutron

star merger GW170817 (Abbott et al. 2017, 2018, 2019,

2020a), the NICER measurement of mass and radius

of pulsars (Miller et al. 2019; Riley et al. 2019; Miller

et al. 2021; Riley et al. 2021) has been extensively used

to constrain the nuclear equation of state (Pang et al.

2021; Traversi et al. 2020; Dietrich et al. 2020; Legred

et al. 2021; Annala et al. 2018; Biswas et al. 2021; Ghosh

et al. 2022). The maximum observed mass of pulsar is

also updated to around 2.08M� (Fonseca et al. 2021).

These multi-messenger constraints (Abbott et al. 2020a)

have ruled out with good confidence several tabulated

EOSs that were used in Idrisy et al. (2015). Also, in

the universal relation Eqn. 2, they did not impose two

important physical constraints on the r-mode frequency

that(i) in the Newtonian limit when M/R −→ 0, then

κ = 2/3(0.667) for l = m = 2 mode and (ii) the linear

coefficient in the fit relation should be negative, other-

wise it implies that the r-mode frequency increases with

increase in compactness upto a certain value (Lockitch

et al. 2000).

In this study, we calculate the r-mode frequency for

15 tabulated equations of state sampled from (Idrisy

et al. 2015; Abbott et al. 2020a) that are consistent

with recent multi-messenger observations of neutron

stars. Along with these tabulated EOSs, we also con-

sider a posterior for the EOS from Legred et al. (2021),

employing a nonparametric EOS model based on Gaus-

sian processes and combining information from pulsar

masses, NICER observation of mass radius and GW

observations of binary neutron star mergers. The ad-

vantages of this nonparametric EOS model is that this

allows more model freedom in the EOS representation

than any direct parametrization with a small num-

ber of parameters; can account for different degrees

of freedom, including hyperonic, quark models, phase

transition and is not subject to any systematic errors

that arise with parametrized EOS families (Legred et al.

2021). A couple of recent studies (Gupta et al. 2022; Ma

et al. 2021) have also looked into the possible resonant

r-modes detection in the inspiral phase of the binary

mergers using the third generation detector Einstein

telescope (Punturo et al. 2010; Hild et al. 2011). The

r-mode introduces an additional phase to the waveform

model which is estimated from the r-mode frequency

κ as function of the dimensionless tidal deformability

of the neutron star. So, for both of these sets of EOS

models, we calculate the r-mode frequency as a func-

tion of dimensionless tidal deformability. We also give

universal relations of the r-mode frequency with both

the compactness and dimensionless tidal deformability

which will be useful to constrain the parameter space

for searches for r-modes from both isolated pulsars and

excitation during inspiral phase in binary. In case, grav-

itational wave is detected from the r-mode oscillations,

these universal relations can also be used to constrain

the neutron star EOS.

The structure of the article is as follows: in Sec. 2, we

describe the formalism of the structure of equilibrium

configuration of slowly and uniformly rotating star, rel-

evant perturbation and boundary equations. The details
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of the numerical scheme and their convergence are dis-

cussed in Sec. 3. We first test the scheme by comparing

with the results of Idrisy et al. (2015); Lockitch et al.

(2003) in Sec 4. We then extend the analysis for our EOS

models and demonstrate the results of the investigation,

including the universal relations in Sec. 4. Finally, in

Sec. 5 we discuss the main implications of this work.

2. FORMALISM

2.1. Equilibrium configuration of slowly and uniformly

rotating star

We consider a slowly and uniformly rotating perfect

fluid star with angular velocity Ω. The slow rotation

approximation requires that Ω � ΩK where ΩK is the

Keplerian frequency(∝
√
M/R3). In this slow-rotation

approximation, the neutron star retains its spherical ge-

ometry as the centrifugal deformations are an order Ω2

effect (Hartle 1967). The equilibrium solution to the

slowly and uniformly rotating star is obtained by solv-

ing the Einstein equations Gαβ = 8πTαβ using the line

element given by (Lockitch et al. 2000)

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dθ2

+ r2 sin2(θ)dφ2 − 2ω(r)r2 sin2(θ)dtdφ,
(3)

where ω(r) is the rotational frame-dragging inside the

star. The energy momentum tensor for the perfect fluid

is given by

Tαβ = (ε+ p)uαuβ + pgαβ . (4)

Here, ε, p are the total energy density and pressure of the

fluid respectively measured by an observer co-moving

with the 4-velocity

uα = e−ν(tα + Ωφα), (5)

where tα and φα are the timelike and rotational killing

vectors of the spacetime. Solving the Einstein equa-

tions for the metric and fluid variables, they reduce to

Tolman-Oppenheimer-Volkov (TOV) equations given in

Eqn. (6)

dm(r)

dr
= 4πε(r)r2 ,

dp(r)

dr
=− [p(r) + ε(r)][m(r) + 4πr3p(r)]

r(r − 2m(r))
.

(6)

We also obtain the equations for the metric functions

ν(r) and λ(r) as

dν(r)

dr
=− 1

ε+ p

dp(r)

dr
,

e−2λ= 1− 2m(r)

r
.

(7)

For a given EOS p = p(ε), the TOV equations (6)

are integrated from the centre of the star to the sur-

face using the boundary conditions of vanishing mass,

m|r=0 = 0, at the centre of the star, and a vanishing

pressure, p|r=R = 0, at the surface (r = R). For the

metric function ν(r), we start the integration from r = 0

with ν(0) = 0 and the solution must match the exterior

solution at the surface. We implement it by making the

following variable change (Glendenning 2012)

ν(r) −→ ν(r)− ν(R) +
1

2
ln

(
1− 2M

R

)
, (8)

where M = m(R) is the total mass of the star.

For the slowly rotating equilibrium configuration, in

addition to the TOV equations, we need to solve an

equation for the other metric function ω(r) given by the

Hartle equation (Hartle 1967)

1

r4

d

dr

(
r4j

dω̄

dr

)
+

4

r

dj

dr
ω̄ = 0, (9)

where

ω̄(r) = Ω− ω(r). (10)

j(r) is defined in terms of the metric functions as

j(r) = e−(ν+λ) for r ≤ R,

= 1 for r > R. (11)

The differential equation (9) for ω(r) can be integrated

from r = 0 with an arbitrary choice of the central value

ω̄(0) and a vanishing slope (Glendenning 2012). At the

surface, it should match the exterior solution. From

equation (9), the exterior solution (r > R) is given by

ω(r) =
2J

r3
, (12)

where J is the angular momentum of the star. At the

surface, the corresponding boundary conditions should

be matched

J =
1

6
R4

(
dω̄

dr

)
R

,

Ω = ω̄(R) +
2J

R3
.

(13)

Since, ω̄(r) depends on the rotational frequency Ω, we

normalise ω̄(r) by Ω, ω̄(r) ≡ ω̄(r)
Ω and make Ω = 1.

The tidal deformability parameter quantifies the de-

gree of the tidal deformation effects due to the compan-

ion in coalescing binary NS systems during the early

stages of an inspiral. It is defined as

λ = −Qij
εij

, (14)
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where Qij is the induced mass quadrupole moment of

the NS and εij is the gravitational tidal field of the com-

panion. The dimensionless tidal deformability (Λ) can

be obtained by solving a set of differential equations

coupled with the TOV equations and it is related to

the dimensionless l = 2 tidal Love number k2 (Hinderer

2008; Flanagan & Hinderer 2008) as

Λ =
2

3
k2

(
R

M

)5

. (15)

2.2. Perturbation equations

Here, we consider the non-radial perturbations of

these slowly rotating equilibrium models to linear or-

der in Ω. Since the equilibrium spacetime is stationary

and axisymmetric, we decompose our perturbations us-

ing the Lagrangian formalism into modes of the form

ei(σt+mφ) (Lockitch et al. 2000). We express the per-

turbed configuration in terms of the set (hαβ , ζ
α, δε, δp).

Since, the perturbed energy density and pressure are

scalar, they have polar parity and given as

δε = δε(r)Y ml , δp = δp(r)Y ml . (16)

The Lagrangian displacement vector is defined as

ζα =
1

iκΩ

∞∑
l=m

(
1

r
Wl(r)Y

m
l rα + Vl(r)∇αY ml

−iUl(r)Pαν ενβγδ∇βY lm∇γt∇δr
)
eiσt,

(17)

where

Pαν = eν+λ(δαν − tν∇αt), (18)

and the co-moving frequency is given by

κΩ ≡ σ +mΩ. (19)

The perturbation variables Wl&Vl have polar parity and

Ul has axial parity. In the Regge-Wheeler gauge the

metric perturbation is given by

hµν = Y ml eiσt
∞∑
l=m

H0,l(r)e
2ν H1,l(r) h0,l(r)(

m
sin(θ) ) ih0,l(r) sin(θ)∂θ

H1,l(r)e
2ν H2,l(r) h1,l(r)(

m
sin(θ) ) ih0,l(r) sin(θ)∂θ

symm symm r2Kl(r) 0

symm symm 0 r2 sin2(θ)Kl(r)

 ,
(20)

which contains both axial (h0,l, h1,l) and polar

(H0,l, H1,l, H2,l,Kl) parity components. We obtain the

perturbation equations by requiring δGαβ = 8πδTαβ
term by term. Since we are considering upto order Ω

variables and the displacement vector in Eqn. (17) has

already a κΩ term, we only keep the zeroth order pertur-

bation variables. The variables can be grouped depend-

ing upon their order of dependence on the rotational

frequency Ω. The relevant variables which are zeroth

order in Ω are Wl, Vl, Ul, H1,l, h0,l. Because h1,l is an

order Ω variable, we drop the “0” subscript and write

h0,l as hl. The relevant O(1) equations are given by

H1,l +
16π(ε+ p)

l(l + 1)
e2λrWl = 0 , (21)

Vl[l(l + 1)(ε+ p)]− e−(ν+λ)[(ε+ p)eν+λWl]
′ = 0, (22)

r2h′′l − r2(ν′ + λ′)h′l + [(2− l2 − l)e2λ

−r(ν′ + λ′)− 2]hl − 4r(ν′ + λ′)Ul = 0,
(23)

where a prime denotes a derivative with respect to r.

We have used Eq. (21) to eliminate the variable H1,l in

favour of Wl.

To close the system of equations we obtain two other

independent equations that arise at O(Ω) which enforces

the conservation of vorticity in constant entropy surfaces

0 = [l(l + 1)κΩ(hl + Ul)− 2mω̄Ul]

+ (l + 1)Ql[(2ω̄ + µ)Wl−1 − 2(l − 1)ω̄Vl−1]

−Ql+1[(2ω̄ + µ)Wl+1 + 2(l + 2)ω̄Vl+1], (24)

0 = (l − 2)l(l + 1)Ql−1Ql
[
−2ω̄rU ′l−2

+2(l − 1)ω̄Ul−2 + (l − 3)µUl−2]

+ (l + 1)Ql
[
(l − 1)lκΩrV ′l−1 − 2mlω̄rV ′l−1

−2l(l − 1)κΩrν′Vl−1 + 2ml(l − 1)ω̄Vl−1

+m(l − 3)lµVl−1]− (l + 1)Ql[
(l − 1)lκΩe2λWl−1 − 4κΩr(ν′ + λ′)Wl−1

]
+ l(l + 1) [mκΩr(h′l + U ′l )− 2mκΩrν′(hl + Ul)

+((l + 1)Q2
l − lQ2

l+1)(2ω̄rU ′l + 2µUl)
]

+ l(l + 1)
[
m2 + l(l + 1)(Q2

l+1 +Q2
l − 1)

]
× (2ω̄ + µ)Ul − lQl+1

[
(l + 1)(l + 2)κΩrV ′l+1

+2m(l + 1)ω̄rV ′l+1 − 2(l + 1)(l + 2)κΩrν′Vl+1

]
− lQl+1 [2m(l + 1)(l + 2)ω̄Vl+1

+m(l + 1)(l + 4)µVl+1 − (l + 1)(l + 2)κΩe2λWl+1

+4κΩr(ν′ + λ′)Wl+1]

+ l(l + 1)(l + 3)Ql+1Ql+2

[
2ω̄rU ′l+2

+2(l + 2)ω̄Ul+2 + (l + 4)µUl+2] ,
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where we have defined µ = re2ν(ω̄e−2ν)′. Please note

that the equation (25) is a simplified form of Eq. (48)

from Idrisy et al. (2015)(or Eq. (22) of Lockitch et al.

(2003)) which we have taken from Eq. (346) of Lockitch

(1999). For the barotropic stars (which is the case for

cold neutron stars), the conservation of vorticity gives

rise to a mixing of axial and polar modes at zeroth order

in Ω (Lockitch et al. 2000).This suggests that the modes

of barotropic stars will generically be of a hybrid nature.

2.3. Boundary Conditions

In order to solve the equations (22) (23) (24) (25),

we need to apply the appropriate boundary conditions.

The first boundary condition is also called the regularity

condition which says that the perturbation equations

must be regular at the centre of the star. To implement

this boundary condition, we introduce a new variable F̃l
corresponding to each perturbation variable Fl as

Fl(r) =
( r
R

)l+q
F̃l(r), (25)

where Fl is any one of the perturbation variables

Wl, Vl, Ul, hl. The axial parity variables (Ul, hl)

have q = 1 and polar parity variables (Wl, Vl) have

q = 0 (Lockitch et al. 2003).

The next boundary condition comes from the fact that

the Lagrangian perturbation of the pressure is zero at

the surface of the star which translates to

Wl(R) = 0 . (26)

Now hl is the only variable defined outside the star also

where it follows(
1− 2M

r

)
d2hl
dr2
−
[
l(l + 1)

r2
− 4M

r3

]
hl = 0. (27)

The solution of this equation is given by the hy-

pergeometric function hl(r) =2 F1(l − 1, l + 2; 2l +

2; 2M/r) (Idrisy et al. 2015). The interior and exte-

rior solutions are matched via the following boundary

conditions

lim
ε→0

[hl(R− ε)− hl(R+ ε)] = 0, (28)

lim
ε→0

[hl(R− ε)h′l(R+ ε)− h′l(R− ε)hl(R+ ε)] = 0. (29)

3. NUMERICAL METHOD

To get the r mode frequencies, we need to solve the

perturbation equation (22) (23) (24) (25) along with

the boundary conditions (25) (26) (28) (29). For a

given EOS, solving the TOV equations (6) and the Har-

tle equation (9) gives the necessary equilibrium vari-

ables p(r), ε(r), ν(r), λ(r) and ω(r). Since the perturba-

tion equations are coupled in terms of l, we need to set

a upper limit to our l value (lmax) up to which we will

solve these equations. As we are focusing on axial-led

hybrid modes, we fix lmax to an odd value to get a closed

system of equations (Idrisy et al. 2015). For this choice

of axial-led hybrid modes, the perturbation variables has

contribution only from the terms with (Lockitch et al.

2000)

axial parity(hl, Ul) with l=m,m+ 2,m+ 4,

polar parity(Wl, Vl) with l=m+ 1,m+ 3,m+ 5 .

So, we solve for the eigenfunctions hl, Ul,Wl+1, Vl+1 for

l = m,m+ 2, ... and set others to zero.

Instead of integrating the coupled perturbation equa-

tions, we adopt a spectral method using the Chebyshev

polynomials to find the eigenfrequency κ similar to Lock-

itch et al. (2003); Idrisy et al. (2015). We express our

system of ordinary differential equations in terms of sum

of basis functions, Chebyshev polynomials in our case

and using some useful identities, we reduce these differ-

ential equations in a system of algebric equations which

is then solved using root-finding techniques to get the

eigenfrequency.

3.1. Chebyshev Polynomials

The Chebyshev polynomials of first kind are defined

in [−1, 1] range by

Ti(y) = cos(i arccos(y)) . (30)

Any function S(y) expanded in terms Chebyshev poly-

nomials are given by

S(y) =

imax∑
i=0

siTi(y)− 1

2
s0, (31)

where

si =
2

imax

imax+1∑
j=0

[
S

[
cos

(
π(j + 1

2 )

imax

)]

cos

(
πi(j + 1

2 )

imax

)]
.

(32)

Since our variable r is in domain [0,R], we define a new

variable y = 2
(
r
R

)
−1. Now, choosing imax is a trade-off

as increasing imax gives better convergence but it also

increases the number of equations to solve. Along with
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this, we also make use of two other identities for Cheby-

shev polynomials involving derivatives of a function and

product of functions.

If f ′l and fl are the Chebyshev coefficients of the

derivative of a function and the function itself respec-

tively, then they are related by

f ′l,i − f ′l,i+2 = 2(i+ 1)fl,i+1. (33)

If bi and fl,i are the Chebyshev coefficients of a back-

ground function B(y) and perturbation variable Fl(y)

respectively, then the Chebyshev coefficients for their

products are given by

πl,i =

imax∑
j=0

[bi+j + Θ(j − 1)b|i−j|]fl,j , (34)

where Θ is the step function.

After imposing the regularity condition (25),each term

in the perturbation equation can be written in terms of

a background function(B(r)) which depends on the star

equilibrium profiles and a foreground function(F̃l(r))

which are the perturbation variables. Since, f ′l and fl
are connected by the Eq. (33), we only have fl as our

unknown functions. Now we expand each of them in

terms of the chebyshev polynomials and simplify them

using the identities (32) (33) (34). We also re-write the

boundary conditions in the same way.

After expanding all the perturbation equations in

terms of Chebyshev polynomials, we extract the co-

efficients using the identities (32) (33) (34). This leads

to a system of 2(lmax−3)imax linear equations for κ with
the unknown functions fl. We represent the system of

equations as

A(κ)x = 0, (35)

where x is the vector of fls containing Chebyshev coeffi-

cients of the perturbation variables. To incorporate the

boundary conditions, we replace the equation that came

from the highest order Chebyshev coefficient fimax
by a

boundary condition (Idrisy et al. 2015). For example, to

implement the boundary condition Wl(R) = 0 (26), we

replace the highest order Chebyshev coefficient fimax
as

wlimax
=

1

2
wl0 −

imax−1∑
i=0

wli , (36)

where wl’s are the Chebyshev coefficients of the variable

Wl. We have used at at r = R, y = 1 and Ti(1) = 1 ∀i.

3.2. Root finding method

To find the eigenfrequency κ, we set det(A(κ)) = 0.

This leads to a very high degree of polynomial in κ

for any reasonable value of lmax and imax which is not

solvable by any standard root-finding techniques. We

use the second root-finding algorithm given in Idrisy

et al. (2015) which uses the Singular Value Decomposi-

tion (SVD) of the matrix A, SVD(A) = UΣV . We vary

κ in the physically possible range (0.67-0.4) and look for

the value of κ that results in the smallest value for the

last element on the diagonal of Σ. For a particular lmax
and imax, we find several roots for κ. The way to deter-

mine the correct root is to start at small values of lmax
and imax and increase them step by step. We will al-

ways converge to the correct root for any lmax and imax
while the others will change unpredictably.

In Fig. 1 we plot the last diagonal element in SVD of

the matrix A vs κ for different choice of imax with fixed

lmax and vice versa for an n = 1 polytrope with com-

pactness of 0.153. For the polytropes we get convergence

at minimum of lmax = 7 and imax = 9 and the conver-

gence stops above lmax = 13 and imax = 13. For both

polytropes and realistic equation of states, we get con-

vergence upto 3 orders after decimal place. Sometimes,

the converged root will vary in the 3rd decimal place

with different lmax and imax. We take the statistical

mode of the roots for different combinations of lmax and

imax.

4. RESULTS

4.1. Polytropic EOS

For the Newtonian stars, the l = m = 2 r-mode is the

one expected to dominate the gravitational wave radia-

tion from the hot and fast rotating Neutron stars (An-

dersson et al. 1999; Lindblom et al. 1998). But,

Lockitch et al. (2000) showed that for the relativistic

barotropes pure l = m = 2 does not exist. The corre-

sponding modes are axial-led hybrid modes with m = 2.

To test the accuracy of our numerical code, we first con-

sider the case for polytropic EOS and compare our re-

sults with previous studies (Idrisy et al. 2015; Lockitch

et al. 2003). In Fig 2, we plot the r-mode frequency as a

function of compactness for uniform density star model

or n = 0 polytropic EOS and compare the same with Fig

(1) in Lockitch et al. (2003). We get a significant match

and the relative error is around 0.1 − 0.7%. In Fig 3,

we plot the r-mode frequency as a function of compact-

ness for n = 1 polytropic EOS along with the quadratic

fit relation between r-mode frequency and compactness

given by Eq. (69) in Idrisy et al. (2015). In this case,

we see a greater deviation (around 2 − 3%) in the r-

mode frequency from the results in Idrisy et al. (2015).
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Figure 1. Convergence of the root with changing lmax and
imax. The upper panel shows the convergence for varying
imax while lmax = 9 and the lower panel shows convergence
for varying lmax for imax = 10

We discuss the implications and possible reasons for this

difference in Sec. 5

In Fig 4, we show the best linear and quadratic model

fits using Least Squares method to our results. For

quadratic models, we also use a second model where

the zeroth order term of the polynomial is fixed to 2/3

to constrain the fact that as M/R −→ 0, we reach New-

tonian limit where the r-mode frequency for l = m = 2

mode is given by

κN =
2

m+ 1
= 2/3 .

From the R2 value of the fits, we see that any quadratic

model is a better fit than the linear model. So, we use

the quadratic model which satisfies the Newtonian limit
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Figure 2. Normalised eigenfrequency κ/κN of m = 2 mode
with their Newtonian counterparts for uniform density star
as a function of compactness. Relative differences are shown
in the bottom panel.
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Figure 3. Eigenvalue κ for equilibrium stars of n = 1
polytrope for different compactness. Relative differences are
shown in the bottom panel.

κ = 0.667− 0.461C − 1.129C2. (37)

We also see that along with the negative quadratic term,

we also have the linear term negative in our fit equa-

tion (37). This also satisfies the physical constraint that

the r-mode frequency should decrease as we increase

compactness (Lockitch et al. 2000) unlike the Eq. (69)

in Idrisy et al. (2015) which implies that κ increases

with increasing compactness for M/R < 0.10 due to the

positive linear term.

4.2. Realistic equations of state

4.2.1. Tabulated equation of state

For realistic equation of states, (Idrisy et al. 2015)

considered 14 EOSs under the constraint that the EOS
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κ = 0.704− 0.858C ; r2 = 0.995

κ = 0.644− 0.165C − 1.948C2 ; r2 = 0.9998

κ = 0.667− 0.461C − 1.129C2 ; r2 = 0.999

Figure 4. Linear and Quadratic fits to κ vs compactness
results for equilibrium stars of n = 1 polytrope

could support a minimum of 1.85M�. From the re-

cent observations, the heaviest known pulsar PSR

J0740+6620 has a maximum mass of 2.08+0.07
−0.07 M� (Fon-

seca et al. 2021). Taking a upper limit of 1-σ confidence

interval of this maximum observed pulsar mass, we only

consider EOS that support a minimum of 2.01M� neu-

tron star which rules out 3 EOSs - GNH3,BBB2 and

ALF4 used in Idrisy et al. (2015). Also, the recent

analyses of the GW170817 event (Abbott et al. 2019)

apply a constraint on the upper bound of the effective

tidal deformability Λ̃ < 720 (Tong et al. 2020) using the

PhenomPNRTwaveform model and low-spin highest

posterior density interval for tidal deformability. Using

these multi-messenger observations of neutron stars, 2

very stiff EOSs (MS1,MS1b) considered in Idrisy et al.

(2015) have been ruled out with good confidence (Ab-

bott et al. 2020a; Biswas 2022). Along with the 9

remaining EOSs from Idrisy et al. (2015), we consider 6

additional EOSs that satisfy the multi-messenger con-
straints. Out of these additional 6 EOSs, one model

QHC19 (Baym et al. 2019) incorporates a transition

between a hadronic phase in the crust and a quark

matter phase in the core and one other EOS model

CMF5 (Dexheimer & Schramm 2008) includes nucleons

and hyperons. The other equation of state models de-

scribe purely nucleonic matter. All our EOS tables are

obtained from either COMPOSE (Oertel et al. 2017a,b)

or an EOS catalogue from Özel & Freire (2016) used

in LALSuite (LIGO Scientific Collaboration 2018). For

the EOS tables obtained from COMPOSE, we use their

first-order interpolation option (Oertel et al. 2017b) and

for the tables from Özel & Freire (2016) we use standard

cubic spline interpolation (Abbott et al. 2020a). All the

EOSs with their maximum mass and radius at 1.4M�
are listed in Table 1.

We compute the r-mode frequency κ for these EOS

models for a range of compactness varying from 0.1 to

a maximum of 0.31. This compactness spans the range

of possible neutron stars. In Fig 5, we plot the r-mode

frequency κ vs compactness for all the 15 EOSs and see

that κ does not change much as a function of compact-

ness for different EOSs. We use a quadratic fit with the
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DD2

BSK22

SLY9

QHC19C

CMF5

SKI4

Figure 5. κ vs compactness results for all 15 EOSs. The
black line represents the best fir to our quadratic model.

zeroth term fixed to its Newtonian value 2/3 and get the

universal relation for κ vs compactness C as

κ = 0.667− 0.478C − 1.11C2. (38)

To compare the results from Gupta et al. (2022); Ma

et al. (2021) where they looked for possible resonant r-

modes detection in the inspiral phase of the binary merg-

ers using the third generation detector Einstein tele-

scope, in Fig 6, we plot κ as a function of log(Λ) for

all the 15 EOSs and fit it to a quadratic model. The

corresponding universal relation is given by

κ = 0.3446 + 0.0471 log(Λ)− 0.002 log2(Λ). (39)

Comparing the result from Gupta et al. (2022), we get

around 5-6% difference in the r-mode frequency for a

given tidal deformability. In Table 1, we also report the

value of r-mode frequency κ for a compactness of 0.15

and a tidal deformability of 400 for each of the 15 EOSs.

4.2.2. Nonparametric EOS model

Several different parametrizations of the neutron

star EOS have been proposed to constrain the EOS

from multi-messenger observations of the neutron stars.

Generic parametrizations in terms of piecewise poly-

tropes (Annala et al. 2018; Hebeler et al. 2013; Read
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Figure 6. κ vs log(Λ) results for all 15 EOSs. The black
line represents the best fir to our quadratic model.

Table 1. List of all the tabulated EOSs with correspond-
ing maximum mass, radius for 1.4M�(in km) star, κ for a
compactness of 0.15 (along with the same from Idrisy et al.
(2015)) and tidal deformability of 400.

EOS Mmax R1.4M� κ.15C( Idrisy et al. (2015)) κ400Λ

SLY 2.05 11.77 0.573(0.587) 0.558

AP3 2.39 12.06 0.572(0.588) 0.555

AP4 2.21 11.40 0.571(0.587) 0.557

ALF2 2.09 13.18 0.571(0.588) 0.552

WFF1 2.13 10.40 0.572(0.587) 0.551

WFF2 2.20 11.14 0.571(0.587) 0.554

MPA1 2.46 12.48 0.571(0.588) 0.553

ENG 2.25 12.08 0.572(0.588) 0.546

H4 2.03 12.95 0.573(0.591) 0.552

DD2 2.42 13.04 0.572(-) 0.554

BSK22 2.26 12.73 0.571(-) 0.554

SLY9 2.16 12.20 0.574(-) 0.555

QHC19 2.18 11.35 0.574(-) 0.553

CMF5 2.07 12.87 0.573(-) 0.554

SKI4 2.17 12.10 0.574(-) 0.556

et al. 2009; Gamba et al. 2019), spectral decomposi-

tion (Fasano et al. 2019; Lindblom 2018) and speed-of-

sound (Tews et al. 2018; Greif et al. 2019) have been

extensively used for such studies. Here we consider

the nonparametric representation constructed through

Gaussian process (Landry & Essick 2019; Essick et al.

2020) rather than a parametrization for the EOS. This

EOS representation allows more model freedom and can

account for different degrees of freedom. In Legred et al.

(2021), using this model they studied the implications of

the following multi-messenger observations for the neu-

tron star equation of state (EOS)-

• the radio mass measurements for J0348+0432 (An-

toniadis et al. 2013) and J0740+6620 (Cromartie

et al. 2019; Fonseca et al. 2021).

• the GW mass and tidal deformability measure-

mentsfrom GW170817 (Abbott et al. 2017, 2018,

2019) and GW190425 (Abbott et al. 2020b)

• mass and radius constraints from NICER obser-

vations of J0030+0451 (Miller et al. 2019; Riley

et al. 2019) and J0740+6620 (Miller et al. 2021;

Riley et al. 2021)

Using these combined radio, GW and x-ray data, they

put constraints for the microscopic EOS and the macro-

scopic NS properties, masses, radius and tidal deforma-

bilities. In Fig 7, we plot the 95% confidence interval for

the pressure-energy density relation using the posterior

obtained by combining all the constraints (Legred et al.

2022). From this posterior set of 10,000 EOSs, we choose
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Figure 7. 95% confidence interval for pressure-density re-
lation with constraints from GW, NICER and PSR mass
measurement

1000 EOS randomly and calculate the r-mode frequency

as a function of compactness and tidal deformability.

In Fig. 8, we plot the 95% confidence interval for the

r-mode frequency κ as a function of compactness and

tidal deformability. We find a substantial spread unlike

the Fig. 5 for tabulated EOSs owing to the fact that

we now have considered 1000 EOSs which span a wide

region in the pressure-density relation 7.

The best fits for the r-mode frquency κ to our

quadratic models are given by

κ = 0.67− 0.593C − 0.772C2, (40)
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Figure 8. The upper panel shows the 95% level of the r-
mode frequency for a range of compactness and the best
quadratic model fit to the posterior. The lower panel shows
the same as a function of tidal deformability

κ = 0.3517 + 0.0463 log(Λ)− 0.0019 log2(Λ). (41)

5. DISCUSSION AND CONCLUSION

In this work, we solved perturbation equations for rel-

ativistic barotropic stars consistently with the boundary

conditions using a spectral method and calculated the

r-mode frequency as a function of compactness for vari-

ous equation of states. First we checked the convergence

of our code and then compared our results for n = 0

polytrope with Fig. 1 from Lockitch et al. (2003) and

for n = 1 polytropes with Fig. 2 from Idrisy et al.

(2015). We see that our results match up to 0.1% for

n = 0 polytrope from Lockitch et al. (2003). Since the

precision of the converged κ value in our case is upto 3

decimal places, an error of the order ≤ 1% is expected.

But we see a greater deviation ∼ 2− 3% for the results

for n = 1 polytrope from Idrisy et al. (2015). Probable

reason for this much larger deviation could be an erro-

neous representation of the perturbation and boundary

condition (Eq. 41 and Eq. 50) in Idrisy et al. (2015) in

comparison with Eq. 20 and Eq. A4 in Lockitch et al.

(2003) respectively. From Table 1 we find that, while

considering the realistic EOS tables, there is also around

3% deviation in the r-mode frequency from Idrisy et al.

(2015).

To get the frequency band to look for r-modes from

astrophysical sources, we should consider the spread of

compactness in the neutron star population. The com-

pactness is estimated by the ratio of its stellar mass to

the radius (Idrisy et al. 2015)

M

R
≈ 0.207

(
M

1.4M�

)(
10 km

R

)
. (42)

The minimum value of neutron star mass is taken to be

1M� from Fig 1 of Lattimer & Prakash (2010). The

limit is conservative in a sense that stellar cores with

lesser mass probably would not go through supernova

explosion to produce neutron stars. For our set of tab-

ulated EOSs listed in Table 1, we find the maximum

radius for 1M� stars to be around 14.5km. This gives

the lower limit of compactness to be ≈ 0.103. Assuming

the casuality of EOSs, there is a upper limit to the

compactness M
R ≤ 0.35 (Lattimer & Prakash 2007) but

none of the EOSs from Table 1 reach this high value for

any stable configuration. Idrisy et al. (2015) uses the

compactness range 0.11 − 0.31, but we give our limits

of the r-mode frequency for both compactness ranges in

Table 2.

Now, to calculate the narrow frequency band to search

over in LIGO data, the r-mode frequency(f) is given in

terms of the rotational frequency(ν) (Caride et al. 2019;

Abbott et al. 2021) as

f

ν
= A−B

(
ν

νK

)2

, (43)

where νK is the Keplerian frequency = 506 Hz consid-

ered in Abbott et al. (2021). The uncertainties in the

range of A and B give the parameter space for the GW

signal model (Caride et al. 2019; Abbott et al. 2021).

General relativistic corrections for slowly rotating stars

give the range of A (Idrisy et al. 2015) and rapid ro-

tation correction gives the range of B (Yoshida et al.

2005). The ranges are given by (Caride et al. 2019)

1.39 ≤ A ≤ 1.57,

0 ≤ B ≤ 0.195 . (44)
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Since, the r-mode frequency in the inertial frame is given

by f = |(κ−m)Ω|, we can use the limits on κ to update

the limits on A value which is also listed in Table 2.

Considering all these multi-messenger constraints and a

conservative limit on the possible ranges of compactness,

we put a limit on the value of A to be 1.39 ≤ A ≤
1.64 which should be used for narrow-band gravitational

wave searches for known pulsars.

Table 2. Proposed ranges of κ and A (Caride et al. 2019)
for ranges of compactness comparing universal relations from
Idrisy et al. (2015) with our results for both Tabulated EOS
and Non-parametric EOSs

Universal relation κ A

(compactness range)

(Idrisy et al. 2015)(0.11-0.31) 0.614-0.433 1.39-1.57

Tabulated EOS(38)(0.11-0.31) 0.601-0.412 1.40-1.59

Tabulated EOS(38)(0.10-0.35) 0.608-0.364 1.39-1.64

Non-parametric EOS(40)(0.11-0.31) 0.596-0.415 1.39-1.59

Non-parametric EOS(40)(0.10-0.35) 0.604-0.371 1.40-1.63

PSR J0537-6910 is particularly interesting for r-mode

searches because it is the fastest-spinning known young

pulsar with rotation frequency ν =62 Hz which places

gravitational-wave frequency in the LIGO sensitivity

band and its inter-glitch braking index n ≈ 7 which is

expected for GW emission via r-mode (Andersson et al.

2018). In the latest LIGO r-mode search from PSR

J0537, values of A and B given in (44) gives the r-mode

frequency band 86-98 Hz. If we use our universal rela-

tion (38) for a compactness range of 0.11 − 0.31 (same

as in Idrisy et al. (2015)), we get the frequency band

87-99 Hz which is 1 Hz higher in both lower and upper

bounds. This might not appear very large but since

we are looking at narrow frequency band searches for

these analyses, this new universal relation introduces a

8.3% change (1 Hz in a frequency band of 12 Hz) in the

frequency band. For a compactness range of 0.10−0.35,

this range becomes 86-101 Hz.

We also provided universal relations for the r-mode

frequency κ and the dimsionless tidal deformability(Λ)

in Eq. (39) and Eq. (41). Recent work by Gupta et al.

(2022) used such a relation to reconstruct the EOS with

observations of the inspiral signal by Einstein Telescope

(ET) with or without r-modes. They used the universal

relation for κ vs compactness from Idrisy et al. (2015)

to derive the r-mode frequency as a function of log(Λ).

If we compare with Eq. (7) from Gupta et al. (2022)

against our universal relation, we observe a 5− 6% dif-

ference in the r-mode frequency which can be significant

while constraining the nuclear EOS from inspiral signal

with r modes.

To conclude, we have derived the r-mode frequency as

a function of compactness for neutron stars and showed

that, one can obtain a universal relation between r-mode

frequency and the compactness which is independent of

the EOSs. With a physically motivated range of com-

pactness, we derived the frequency band to search for

r-modes in the LIGO data. For the particular inter-

esting candidate PSR J0537-6910, we showed that our

narrow-band frequency range can vary from the previous

searches by 8−25% depending on the compactness range

chosen. If a continuous wave from r-mode is detected,

these universal relations can also be used to constrain

the nuclear EOS but distinguishing between different

EOSs will be difficult as the deviation in r-mode fre-

quency is < 1% for different EOSs. Using ET, if r-mode

excitation is observed in the inspiral signal, we also can

constrain the tidal deformability and the EOS using our

universal relations. Although in this study, we ignored

rapid rotation and other physical mechanisms inside the

neutron star that can affect the r-mode frequency, they

might be important for some particular neutron stars

and in future, we would like to explore how these mech-

anisms affect r-mode frequency for different EOSs.
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