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ABSTRACT Deep learning is fastly gaining ground in neuroscience. In the field of implantable brain
computer interfaces, a fundamental application of deep learning is to sort action potentials (known as spikes),
measured with extracellular electrodes, according to their origin neurons. This enables the generation of
precise modulatory patterns of neuronal circuits. Deep learning-based spike sorting algorithms are based
on power-intensive dot products, which poses challenges for on-chip processing with resource-constrained
devices. In contrast, binarized neural networks offer great potential for on-chip sorting, mainly relying on
bitwise operations and accumulations. However, recently published binarized models perform significantly
worse than deep full-precision networks and fail on challenging neural data. This work presents a binarized
neural network for spike sorting that narrows the performance gap between recently developed binarized
models and more accurate full-precision models. The novelty of this work resides in the developed network
architecture. In comparison to previous research, this work presents a deep binarized neural network featuring
two hidden layers, each containing 256 units to effectively capture the spike characteristics of complex
neural data. Before training, spikes were pre-sorted in an unsupervised way to generate pseudo-labels.
Subsequently, the deep binarized model and an equally sized full-precision model were trained and evaluated
using experimentally obtained and synthetic spike waveforms. The proposed binarized model could achieve
results close to more advanced network types, such as convolutional and long short-term memory networks,
which is remarkable considering that the binarized model was primarily designed to maintain a balance
between resource consumption and accuracy. The equally sized full-precision model could even outperform
the aforementioned models, despite its much lighter architecture.

INDEX TERMS Binarized neural network, deep learning, implantable brain computer interfaces, neural
spike classification, signal processing, spike sorting.

I. INTRODUCTION

Neuronal signals can be captured using extracellular record-
ings, which typically show the activity of a small number
of neurons that are communicating in the vicinity of the
recording electrode by transmitting electrical impulses. The
analysis of these signals on a cellular level offers insights
into the functional behaviors of neuronal circuits. Clinically,
it aids in gaining an understanding of neurological conditions
like paralysis [1] or cognitive loss [2]. By using implantable
brain computer interfaces (iBCls), the neuronal signals can
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be translated into commands to control external devices [3].
iBCIs not only offer the ability to read neural signals but
also enable the alteration of neural circuits through elec-
trical stimulation [4]. In recent years, wireless iBCIs have
gained lots of interest in the field of neurotechnology, which
has been boosted by the emergence of Neuralink’s wireless
iBCI [5]. Wireless signal transmission significantly increases
the practicality of these devices for daily use. However, the
wireless transmission of neural signals captured with multiple
electrodes usually results in high power consumption and
delay which limits real-time processing. In [6], the authors
illustrate this problem with the following example: using
a multi-electrode array (MEA) with 100 channels, sampled
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at 20 kHz with 10-bit resolution, results in a data stream
of 20 Mbps. Nevertheless, the data stream can be reduced to
2-3 kbps if only spiking activity is transmitted. To reduce the
data rate, there are two approaches to choose from: i) spikes
are detected and compressed on-chip before transmission [8];
i) spikes are detected and sorted on-chip [9], resulting in
binary spike trains, (i.e., raster activity) that can be transmit-
ted for external signal analysis [10], [11]. Sorting the spikes
according to their neuron of origin has proven to be helpful
in many applications such as visual stimuli [12] and memory
decoding [2] and therefore adds value to iBCls.

Different features of spike waveforms are mainly influ-
enced by the type of cell, distribution of ion channels,
structure of dendritic trees, and orientation and distance to
the recording electrode and lead to characteristic waveforms
that enable sorting [13], [14]. Conventionally spike sorting
is a multi-step procedure with the following steps: a) pre-
processing, which usually includes band-pass filtering [15];
b) spike detection: this is often done with voltage thresh-
olding [15] or the non-linear energy operator method [16];
c) spike alignment: typically, spikes are aligned to their
amplitude peaks as this facilitates the following step [15];
d) feature extraction: methods like Principle Component
Analysis (PCA) [17] or Independent Component Analysis
(ICA) [18] are used to reduce dimensions; e) clustering: the
reduced feature space enables clustering with standard meth-
ods like k-means or hierarchical clustering [19]. Alongside
the pipeline for spike sorting described above, there are also
classic approaches such as template matching [20], as well
as more modern solutions based on the use of deep neural
networks (DNN5s) to detect spikes [21] extract features [22],
and classify spikes concerning their underlying neuron [23].
In 2024, the authors of this paper published a comprehen-
sive survey of spike sorting models based on deep learning,
providing more details in this area [24].

Most spike sorting solutions that are based on neural net-
works are not specifically designed for in vivo operation but
for use on external processing units. The majority of studies in
this area deal with the processing of single-channel data and
use both synthetic and experimentally acquired recordings
for the training and evaluation of their models [25], [26],
[27], [28]. These studies involve supervised learning mod-
els that are provided with the corresponding label for each
example during training. In addition to the models mentioned
so far, networks with fully binarized weights and activations
(BNNSs) have also been presented in recent years, which are
detailed below.

In 2021, Valencia and Mohammad [29] presented a super
low-complexity solution for neural spike classification. Using
the synthetic data in [15], their model takes a spike wave-
form as input (64 samples) and processes it through one
hidden layer with only five hidden units. Trained and tested
on the data in [15] they achieved an average accuracy of
90%, which is remarkable considering the shallow network
architecture. In 2023, Valencia and Mohammad presented
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another solution based on partially binarized neural net-
works [30]. In contrast to their previous work, they applied
a resource-efficient feature extraction method based on dis-
crete derivates (DD-2Ex [31]) to the raw spike waveforms to
reduce the network input from 64 to 4 samples. The model
in [30] also has one hidden layer which, like the output
layer, consists of only three units. Valencia and Mohammad
carried out experiments on different quantization schemes.
The model without binarization achieved the best results with
an average accuracy of 88.1%, while the performance drop
was already severe for the model with binarized output layer
weights, which achieved an average accuracy of 69.69%.
Nevertheless, the authors in [30] demonstrated that spike
classification with super low complexity models can yield
acceptable performance. Notably, the performance gap to
other full-precision models (FPMs) is quite high. The much
heavier deep learning networks mentioned at the beginning of
this section managed to reach accuracies of more than 99%
using the same data, clearly showcasing the trade-off between
model accuracy and efficiency. However, due to their com-
putational simplicity, BNNs are much better candidates for
on-chip processing than the named FPMs but quickly reach
their limits with more complex neural data. Attempts have
been made in the past to reduce the resource consumption
of deep learning models in spike sorting, such as Seong et
al [9], who developed neural networks with quantized weights
to save memory. The primary limitations of these models lie
in the required chip area and power per processed channel.
Minimizing resource consumption is therefore essential to
develop scalable next-generation neurotechnology.

This work addresses this challenge by designing a model
that maximizes performance while operating with minimal
resource usage. The proposed binarized neural network with
two hidden layers was trained and tested on both synthetic
and experimentally obtained data, aimed at outperforming
the classification accuracy of the existing BNN-based spike
sorting models [29], [30] and reaching comparable perfor-
mance to the DNN-based models proposed in [25], [26],
[27], [28]. Thereby, the main focus was on maintaining low
resource consumption to enable on-chip spike sorting. In con-
trast to [9], where weights were quantized to 4 or more
bits, the weights and activations of the neural network in
this work were quantized to one bit, which not only reduces
memory but also simplifies the computation since no power-
intensive dot-products are required during inference, creating
optimal conditions for on-chip processing. To the best of
our knowledge, this work represents the first “deep” BNN
used for spike sorting. In addition to the proposed BNN,
an equally sized FPM was developed to investigate the influ-
ence of binarization on the results. In contrast to the models
just mentioned, this work did not use the true labels of
the synthetic data. Instead, a pseudo-labeling technique was
developed to simulate real experimental conditions. By using
more challenging experimental data, this work demonstrates
that the low-complexity model proposed in [29] is not capable

60259



IEEE Access

L. M. Meyer et al.: Binarized Neural Networks for Resource-Efficient Spike Sorting

TABLE 1. Spike counts per neuron (N) across channels in dataset1.

Channel ID N1 N2 N3 N4 N5
125 1297 9315
66 10076 6919 3455
69 11719 11183 9140
71 2217 16577 6261
79 2441 13441 3845
84 3682 6900 1485
87 423 40703 1819
91 4022 12711 6865
92 1630 15481 6344
94 308 1685 2367
98 103 9998 1067
99 810 19872 3938
100 4525 29771 6801
101 2209 22729 6213
108 2368 9954 3901
109 4764 12568 10724
112 187 1551 1165
114 4207 16073 6219
115 679 15541 12832
122 794 13904 8368
124 972 15163 5266
67 621 2507 2207 2361
68 889 7017 2068 2164
70 1672 8910 5448 1979
83 2233 7289 9073 3063
95 522 37769 13478 2980
107 6261 9166 1040 795
116 6402 12898 2955 1678
82 76 9441 1216 478 494
90 1626 6924 2965 2946 2039
126 11853 14038 10046 4460 4011

of providing sufficient sorting results. Moreover, it is shown
that the previously mentioned DNNss are fundamentally over-
sized, requiring extreme implementation costs which render
them unsuitable for iBCI applications. Comparable results
can be achieved with much simpler models, as long as the data
is prepared appropriately and machine learning best practices
are considered.

Section II describes the methods used in this paper includ-
ing the datasets, the data preparation technique, and the neural
network selection and architecture. Section III presents the
results achieved. In Section IV, the general performance
of the method is discussed and the models are compared
with the aforementioned deep learning-based spike sorting
algorithms. Furthermore, this section discusses the hardware
considerations, addresses the limitations of this work and
outlines future directions.

il. METHODS

A. DATASETS

This study used experimentally obtained recordings and
synthetic neural data to train and evaluate the proposed mod-
els. In the following, the experimental recordings are often
referred to as Datasetl and the synthetic data as Dataset2.

1) EXPERIMENTAL DATA

The proposed models in this work were optimized, trained
and evaluated on extracellular recordings obtained from the
primary cortex (V1) of macaque monkeys [33], [34]. Dataset1
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FIGURE 1. Four distinct color-coded neurons captured from channel #70
inDataset1. These spikes are aligned and sorted using SPC and
resortedmanually for accurate performance evaluation purpose.

has been used in many spike sorting studies [25], [26], [27],
[35] and is publicly available on the data-sharing platform of
Collaborative Research in Computational Neuroscience [36].
The recordings in Datasetl show the activity of two, three,
four and five neurons that are influenced by recording noise
(12 samples per spike; sampling rate: 24.4 kHz). Datasetl
has already been sorted using SPC [15]. Moreover, the spikes
were re-sorted manually to minimize potential errors. Ground
truth is not available for these recordings, as usual for real
recordings. Table 1 indicates the data distribution of Dataset1.
As can be seen, the number of firings per neuron is imbal-
anced, and some neurons only show a small number of spikes
(cf. Table 1; Channel #82, Neuron 1). Fig. 1 illustrates the
peak-aligned spike waveforms of channel #70 in Dataset1.

2) SYNTHETIC DATA

Dataset2, introduced by Quiroga et al. [15], consists of
the four subsets C_Easyl, C_Easy2, C_Difficultl and
C_Difficult2 that have also been widely used by the deep
learning-based spike sorting community [23], [25], [26], [27],
[35]. Each subset contains four one-minute single-channel
recordings that show the activity of three distinct neurons at
different noise levels (standard deviations on of 5%, 10%,
15% and 20% with respect to the normalized spike ampli-
tudes). Dataset2 was synthesized in the following way: i)
based on a pool of 594 spike waveforms derived from the
basal ganglia and neocortex from monkey, randomly shifted
waveforms were superimposed to mimic a local field poten-
tial (LFP); ii) three normalized distinct spike-waveforms of
the above-mentioned pool were superimposed with this LFP
to imitate neuron activity close the recording probe. The
sampling rate of Dataset2 is 24 kHz. In contrast to Datasetl,
Dataset2 contains spike overlaps. Due to the synthetic nature
of this data, ground truth is available and could be used for
model evaluation.

B. DATA PREPARATION
1) EXPERIMENTAL DATA
As outlined in Table 1, Datasetl shows strong class imbal-
ance. Using this data, most research groups in the field of
deep learning-based spike sorting trained their models with
a specific fraction, for example, 50% of all spikes from each
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FIGURE 2. Data augmentation for dataset1. The presented example
corresponds to Channel #90. First, 50% of all spike classes from the active
neurons (Neuron 1 to 5) were included in the training set. Then all classes
were augmented so that each class contains the most same number of
samples. 50% of all spikes from each class were used for testing.
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FIGURE 3. Fully automatic pre-processing and labelling scheme for
dataset2. (a) Spikes from three neurons (cyan, magenta and yellow) are
extracted from the signal and (b) aligned to their peaks. Note that
overlapping spikes were excluded of this figure for clarity. (c) Gradients
are determined and waveforms are reduced from 64 to 12 samples.

(d) Features are extracted by using t-SNE and clustered by utilising
DBSCAN. 80% of the spikes are then selected based on their density
scores estimated with KDE. The neglected spikes are highlighted in grey.
Spikes with a length of 12 samples that correspond to the colored
examples are included into the training set.

class. This may result in a biased model as it overestimates the
importance of classes with many examples. Therefore, this
work employs data augmentation, a common best practice
in machine learning [37], to re-balance the training sets. The
proposed augmentation technique is illustrated in Fig. 2 and
works as follows. First, a random example of the respective
class was selected and copied. Subsequently, random scal-
ing was applied to the copied spike by using noise from a
Gaussian distribution, similar to the data augmentation tech-
nique in [35]. This procedure was repeated until the desired
number of spikes was reached. The pseudo-labels obtained
through the SPC and manual re-sorting were used to train the
proposed models.

2) SYNTHETIC DATA

As the classes of Dataset2 are almost balanced, data aug-
mentation was not necessary. However, spikes needed to
be extracted and prepared for training. Many research
groups [25], [26], [27], [28] used the available ground-truth
labels to train their supervised deep learning models on
Dataset2. Since ground truth is not available in real data,
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an unsupervised pre-sorting stage is proposed in this work
to provide pseudo-labels that can be used for model train-
ing. The data preparation and the employed pseudo-labelling
technique for Dataset2 are illustrated in Fig. 3. The extracted
spikes were aligned to their peaks, as shown in Fig. 3b,
to ensure that the proposed model learns the spike waveforms
instead of their cluster-specific peak positions. This means
that each spike was shifted so that each peak amplitude
was situated at sample #26. Subsequently, spike gradients
were calculated as shown in Fig. 3c. Spike derivatives have
already proven as an effective tool to extract useful features
in class separation and diminishing the noise effect [38]. This
technique was also used on Dataset2 in [22] to use more
substantial spike features. The 64 sample long spikes were
then reduced to twelve samples each, as the network input
size impacts the processing speed and the required computa-
tion. Moreover, this reduced the number of actual overlaps
of two spikes with peak-to-peak distances greater than six
samples. Each subset was split into a training set (50%)
and a testing set (50%). Subsequently, the training data was
pre-sorted using t-distributed stochastic neighbor embedding
(t-SNE) [39] to extract features and density-based spatial
clustering of applications with noise (DBSCAN) [40] was
utilized for clustering. T-SNE is a relatively modern dimen-
sionality reduction technique which is increasingly being
used in the field of spike sorting [32], [41]. DBSCAN is a
common clustering method in spike sorting [22], [42, [43] and
often outperforms standard methods like k-means as it does
not require specifying the number of clusters, handles noise
and outliers effectively, identifies small and arbitrarily shaped
clusters, and is robust to variations in initialization and cluster
sizes, making it particularly suited for complex neural data.
Both t-SNE and DBSCAN rely on hyperparameters that were
tuned using a grid-search algorithm. Subset C_Difficult2 with
the highest noise level of 20% was used for optimization,
resulting in the following hyperparameters: [perplexity = 30;
learning rate = 500; epsilon = 8], where perplexity controls
the balance between local and global structure preservation,
and epsilon defining the maximum distance of two points to
be considered as neighbors (same cluster). Finally, Kernel
Density Estimation (KDE) [43] was applied to each data
point, which reflects its local point density based on the
surrounding distribution of spikes in the cluster. By ranking
all points in a cluster according to these density scores, the
top 80% of spikes—representing the densest regions—were
retained. This ensures that the most representative and well-
clustered spikes, which are less likely to be noise or artefacts,
are used for further processing. This method effectively cap-
tures the core structure of irregularly shaped clusters, which
improves the quality of the dataset used for training the neural
network by focusing on high-density regions while mitigating
the impact of outliers due to noise and artefacts. In contrast to
this approach, other studies have relied on selecting a fraction
of samples closest to the centroid of each cluster [23]. This is
not effective for clusters with non-convex shapes, leading to
many mislabeled examples that doomed the neural network

60261



IEEE Access

L. M. Meyer et al.: Binarized Neural Networks for Resource-Efficient Spike Sorting

used in [23]. The proposed method of this work results in
significantly fewer mislabeled spikes which is reflected in
better results with an even simpler model. It should be noted
that the proposed labeling technique for Dataset2 represents a
fully automatic training method without requiring any human
intervention.

C. MODEL SELECTION AND ARCHITECTURE

While DNNs typically require a lot of space for mem-
ory, quantization techniques can help to reduce the required
memory as already shown with DNN-based spike sort-
ing models [9], [32]. Binarization is the most extreme
form of quantization. In 2015, Courbariaux et al. presented
BinaryConnect [44] where they trained DNNs with 1-bit
weights instead of 32-bit floating point values. This converts
multiply-accumulate operations (MACs) to simple accumu-
lations and reduces the overall required system memory.
In another work, Courbariaux et al. presented the first BNN
model with binarized weights and activations [45]. In this
network [45], most calculations are based on bitwise opera-
tions including XNOR gates and popcounts. This drastically
reduces the computational complexity and makes BNNs
good candidates for running on resource-constrained devices.
Courbariaux et al. recommended to keep the input and
output layers of BNNs on full precision to maintain high
accuracy [45]. The forward propagation in BNNs is much
more efficient than in full-precision models (FPMs) as it
uses the sign function (1) for binarization and thus reduces
overall complexity. However, the fine-tuning of the model
weights (training) implies an increased complexity compared
to FPMs. This is due to the fact that the derivative of the sign
function is zero which makes it impossible to use standard
methods like gradient descent for optimization. Therefore,
Courbariaux et al. proposed to use the Straight-Through-
Estimator (STE), which introduces gradient approximations
as expressed in (2) and (3) [45]. For further details of BNNs
and the current state of research in this area, reference is made
to recently published reviews [46], [47].

1, if x>0,
Sign (x) = 1
gn () {—l, otherwise, M
X, ifx>—land x <1,
Approx (x) = 1 =1, ifx <—1 2)
1, otherwise,
SApprox(x) |1, ifx>—landx <1, 3)
8(x) - 0, otherwise.

In this paper, the Python Larq framework [14] in Tensor-
Flow was used to implement the BNN. In addition to the
proposed BNN, an equally sized FPM was designed to inves-
tigate the performance gap caused by the binarization of
the model’s weights and activations. Note that the input
and output layer units were not binarized in this work and
the models were developed without bias terms. Given that
the BNNs usually require longer training times due to the

60262

nature of binary weight updates and the ineffectiveness of
many gradient changes, a higher than usual learning rate of
0.01 was chosen to accelerate convergence and compensate
for the slow binary weight changes. The models were trained
over 250 epochs using categorical cross-entropy loss and the
Adam optimizer [48]. A batch size of 128 was used to speed
up training. The BNN was optimised using Channel #125
of Datasetl as this recording consists of highly correlated
spikes with a high level of class imbalance. A grid search
was performed to find the optimal network architecture with
regard to the number of hidden layers [1], [2], [3] and units
per layer [8, 16, 32, 64, 128, 256, 512, 1024]. The model
input consists of 12 units which is equal to the number of
samples per spike, while the output of the model has » units
depending on the number of active neurons in the recording.
The Softmax function was used for classification.

Classification models can be evaluated based on several
metrics. Classification accuracy, defined in (4), is com-
monly utilized to quantify the performance. With strongly
imbalanced data, like in Datasetl, Accuracy often does not
correctly reflect the actual performance of the classification
model for minor classes. The Fi-Score (5), a more appro-
priate metric for imbalanced data, determines the harmonic
mean of the precision and recall and usually ranges from zero
to one. In the following, F is always denoted in percent. Pre-
cision indicates the ratio of positive classifications that were
actually correct, while recall represents the proportion of
actual positives that were correctly identified. For multi-class
classification problems with class imbalance, Macro-F (6) is
commonly used as it treats every class with the same impor-
tance. Due to the strong imbalance in Datasetl, it was used as
the evaluation metric in the described grid search. In (4), (5)
and (6), TP denotes true positive predictions, FP represents
false positives, FN are false negatives and C denotes the
number of classes in the data:

C
< TP
Accuracy = —Czjfl d , “4)
Zj:l TP; + FN;
TP
Fy = ; Q)
TP+0.5(FP + FN)
1 (¢
Macro—F = C Zj:1 Fyj. (6)

The results of the grid search are shown in Fig. 4. As can
be seen, models with a single hidden layer achieve neither
satisfactory nor stable results. Similar results were observed
when evaluating the models with a single hidden layer across
alternative channels, hence, the authors of this paper refrained
from investigating these models further in this study, as the
complexity of the neural data requires more sophisticated and
extensive architectures to adequately capture relevant spike
features. This is also true for multi-hidden layer models with
a small number of hidden units per layer. However, the BNN
performs better when the number of units per hidden layer
increases. This is due to the fact that more units help to iden-
tify precise decision boundaries in the feature space. Since
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FIGURE 4. Evaluation of the neural architecture search. Results of the
grid search using a BNN with an equal number of hidden units per hidden
layer. The red highlighted parameter combination was used for the
experiments in this work.

the performance of the model with three hidden layers is not
superior to the model with two hidden layers, the following
experiments were carried with a BNN with two hidden layers.
The required memory capacity was compared for a varying
number of hidden units as shown in Fig. 5. The turning point
occurs when the hidden layer consists of 256 neurons, where
an acceptable trade-off between memory requirement and
Macro-F; is achieved (cf. Fig. 5). The final model is illus-
trated in Fig. 6. The proposed BNN requires only 12.44 kB
(FPM: 274 kB) of memory. As pointed out by Comon [18],
the binarization of model parameters itself can be seen as
a form of regularisation. Moreover, dropout [19] and batch
normalization (BN) [20] were utilized to stabilize training
and minimize overfitting For the sake of simplicity, both of
these methods are not illustrated in Fig. 6. Note that the
full precision parameters were used for BN. Shift-based BN,
which approximates BN nearly without any multiplications,
while it maintains the same level of accuracy [45] can be
used to keep resources low. Note that 32.16% of the required
memory in the proposed model is used to store the parameters
for BN. Early stopping was also used for regularisation,
meaning that if there was no improvement in validation loss
over 25 consecutive epochs, training ceased, and the best
model parameters were restored. The primary distinction
from prior works, such as [29], lies in the enhanced deep
network architecture proposed. The observed improvement in
accuracy is a result of this tailored architectural design, rather
than simply increasing the network size. In addition, this work
introduces specific modifications, e.g., BN or advanced data
preprocessing, aimed at improving the network’s capacity,
further distinguishing it from prior research.

Ill. RESULTS

The derived results from the BNN architecture shown in
Fig. 6 using the presented datasets in Section II are pre-
sented and discussed in the following sections. Ten experi-
ments were conducted for each recording and the standard
deviations were determined to provide statistical results.

A. PERFORMANCE ON DATASET1

Table 2 shows the classification accuracy and Macro-F of
the BNN and the equally-sized FPM using Dataset]l. The
results indicate that the FPM could reach an average accuracy
of 97.30% and Macro-F; of 94.63%. The lightweight BNN
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FIGURE 5. Memory usage of the BNNs with two hidden layers in
comparison to their Macro-F1. Macro-F1 increases only slightly from a
value of 256 hidden units per layer whereas the required memory
increases exponentially. This is considered as an optimal design point
(highlighted in red).
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FIGURE 6. Proposed architecture. A spike waveform is fed to BNN with
12 full precision units (u). This waveform is then processed by two hidden
layers with 256 units. The dot product of the full-precision input X and
the binarized weights W, are simplified to a 32-bit accumulation,
resulting in Z,, which is then binarized using the sign function.
Subsequently, the XNOR operator is applied to sign(Z,) and W,.
Popcounting (PC) the result of this operation leads to Z,. The previous
step is repeated in the next layer. A Softmax function is applied in the last
layer to classify the input into one of two, three, four or five classes that
correspond to the underlying neurons in the neural recording channel.
The non-binarized elements of the BNN are highlighted in blue.

reached values of 94.61% and 90.02%, respectively. This is
a remarkable result considering that the model compression
rate is 5%, with 95.6% of the MACs being binarized. The
trade-off between performance and efficiency is shown in
Fig. 7 and is clearly in favor of the BNN. While the FPM
reaches accuracy of 99.15% and Macro-F; of 98.87% on
certain recordings, including Channel #126 with five active
neurons, the BNN could also reach high results of 97.48% and
96.57% on this data. Nevertheless, there are two recordings
on which the proposed models were not able to achieve
satisfying results. For example, the BNN reached an accu-
racy of 86.31% and a Macro-Fjof 75.34% on channel #68.
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TABLE 2. Accuracy and Macro-F1 achieved with the proposed BNN and FPM using dataset1.

Channel ID Accuracy BNN Accuracy FPM Macro-F; BNN Macro-F, FPM
125 94.45+0.86 97.24 £0.45 89.51 £1.31 93.93 £0.55
66 95.73£0.55 98.54£0.13 95.04 £0.58 98.40 £0.27
69 97.65%0.19 98.66 £0.15 97.62£0.19 98.64 £0.22
77 95.49 £0.67 97.65£0.12 92.00 £0.90 95.66 £0.23
79 92.66 £0.95 96.86 £0.32 89.57£1.10 95.39 £0.54
84 97.25%1.17 98.91 £0.56 96.14 £1.30 98.42 £0.76
87 97.31£0.32 98.66 £0.10 80.55+£1.52 88.12+0.17
91 93.63 £0.69 96.60 £0.30 92.20£0.86 9591 +£0.36
92 95.58 £0.61 98.13£0.23 91.68 £1.02 95.97 £0.43
94 94.36 £0.83 96.21 £0.33 90.07 £1.49 93.44 £ 0.45
98 95.88 £0.62 97.21 £0.55 83.45+1.37 86.12 £ 0.87
99 95.03 £0.49 97.54£0.45 8531+£1.43 91.83 £0.60
100 92.68 £0.97 97.58£0.25 89.16 £1.38 96.19 £ 0.40
101 94.03 £1.47 97.59£0.19 89.23 £1.88 94.79 £0.22
108 94.51£0.77 96.86 £0.13 93.14£0.80 95.95+0.13
109 92.70 £1.13 96.31£0.32 91.44+1.15 95.59+£0.43
112 93.80£1.15 94.77 £0.53 90.16 £1.20 92.67 £0.78
114 94.52 £1.56 97.91+£0.13 9291 £1.58 97.09 £0.18
115 97.22+£0.18 98.62 £0.10 90.50 £0.98 94.38 £0.14
122 96.28 £0.51 98.04 £ 0.11 90.36 £ 0.90 94.37 £0.15
124 94.38 £0.50 97.04 £0.20 88.24 £1.07 92.65+0.23
67 96.07 £0.65 97.22£0.12 94.26 £0.91 96.20 £ 0.33
68 86.31+2.53 97.18+£0.33 75.34+£3.52 93.86 £0.59
70 94.56 £ 0.43 97.02+0.12 91.46+0.73 95.11 £0.17
83 93.47£0.50 97.12£0.21 92.06 £0.45 95.97£0.26
95 98.76 £ 0.11 99.50 £0.04 91.16 £ 0.41 95.78 £0.29
107 92.61 £1.06 96.60 + 0.35 89.33+1.20 95.32+£0.36
116 97.56 £ 0.41 98.54£0.13 96.45 £0.54 97.99 £0.15
82 92.65 £0.65 92.65+£0.23 79.12£1.78 79.12£0.47
90 88.34+£0.75 94.38 £0.45 86.66 £0.96 86.66 £0.51
126 9748 £0.13 99.15£0.08 96.57£0.15 98.87£0.11

Average 94.61 £ 0.76 97.30 £ 0.25 90.02 +1.12 94.21 £0.37

Fig. 8a shows the confusion matrix that was obtained in an
experiment where the BNN was applied to Channel #68. The
model performed well in classifying Neurons 2, 3 and 4 but
it overpredicts spikes of Neuron 1. This resulted in an F|
drop of Neuron 1 to 37.64%. The reason for this may be the
high waveform similarity of spikes from Neurons 1, 2 and
4 in this recording. For such scenarios, it is beneficial to
use the FPM (accuracy of 97.18% and Macro-Fof 93.84%),
as the binarized parameters of the model are not sufficient to
distinguish highly correlated spikes. Channel #82 is the other
recording where the BNN did not yield satisfying results. The
respective confusion matrix is displayed in Fig. 8b. As can be
seen, there are only 38 examples of Neuron 1 in the test set
(cf. Table 1: Channel #82, 50% of N1), implying that only a
few examples could be used to augment the training set for
this class. This was not sufficient to create a representative
training set, resulting in a relatively large number of FPs and
FNs for this class. The value of Macro-F; is low for this
channel because F is only 51.11% for class 1. In addition,
many spikes of Neuron 2 are predicted as spikes of Neuron 5,
as these waveforms appear to be very similar, resulting in an
F1 of 61.79% for class five.

B. PERFORMANCE ON DATASET2
Table 3 shows the model performance on the synthetic data.
The respective noise level of each recording is denoted in
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the last part of the Channel ID, e.g., C_Easyl_05 refers to
a noise level of 5%. In addition to the results of the neural
networks, the performance of the proposed labeling technique
is also shown. Applied to the test data, an average accuracy
of 98.97% was achieved using t-SNE and DBSCAN. The
FPM slightly outperformed this performance with an accu-
racy of 99.07%, whereas the BNN still reached a remarkable
accuracy of 98.39%. The performance gap between the two
neural networks is only 0.68%, which is much smaller than
for Datasetl where the performance gap for accuracy and
Macro-F1 is 2.81% and 4.61%, respectively. Moreover, it can
be observed that the model performance differs between the
subsets C_Easyx and C_Difficultx, with the latter showing
slightly lower results. This is attributed to the higher preva-
lence of overlapping spikes and the greater similarity of spike
waveforms among different neurons in C_Difficultx. The
proposed models of this work and the results are discussed
in the following.

IV. DISCUSSION

A. PERFORMANCE ANALYSIS

The obtained results in Dataset2 are significantly higher than
those achieved with Datasetl. In addition, the performance
gap between the BNN and FPM is bigger for Dataset]. In this
regard, it should be emphasized that it is possible to achieve
higher results on Dataset] when using a network with more
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FIGURE 7. Comparison of the required memory and full-precision MACs
ofthe BNN and FPM (top) and quantitative metrics (bottom). Compared to
the FPM, the BNN takes a small fraction of the required memory and full
precision MACs while maintaining high accuracy and Macro F1. All results.
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FIGURE 8. Confusion matrices: Results of the BNN applied on Channel
#68 (a) and #82 (b). Accuracy is on an acceptable level as the TPs of the
dominant classes are high in absolute numbers. However, Macro-F1 is
significantly lower as it treats every class with the same weight,
showcasing that the BNN struggles to identify spikes from certain
neurons. The colormap considers each column individually instead of the
matrix as a whole to emphasise precision.

hidden units (cf. Fig. 4 and 5). For Dataset2, the model
performance is closer to convergence with the proposed archi-
tecture. As the dimensions of the model increase and the
accuracy converges towards the maximum achievable value,
the performance gap between FPM and BNN decreases.
Moreover, the spike waveforms of the experimental dataset
often show a higher inter-class correlation, making them more
difficult to distinguish. Furthermore, the spikes of Datasetl
are contaminated with real noise, which makes signal pro-
cessing more challenging compared to spikes from Dataset2,
where noise is solely simulated by the superposition of atten-
uated spikes. For Dataset2, the selected spikes utilizing the
approach explained in Section II-B demonstrate a minimal
error rate, culminating in a robust training set containing a
small number of misclassified instances. However, the accu-
racy of the labels for the experimental recordings relies on
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TABLE 3. Classification accuracy achieved using dataset2.

Channel t-SNE + BNN FPM
DBSCAN

C_Easyl 05 99.32 £0.06 98.63+0.78 99.00+0.12
C_Easyl 10 99.49 £0.03 99.01£0.25 99.50 £ 0.04
C_Easyl 15 99.54 £ 0.02 98.90+0.13 99.53 £ 0.06
C_Easyl 20 99.48 £0.01 99.19 £ 0.39 99.29+0.12
C_Easy2 05 98.71 £0.06 98.06 + 0.62 99.24+0.13
C_Easy2 10 99.43+0.01 97.94+0.21 99.41 £0.06
C_Easy2 15 99.30 £0.02 98.38+0.17 99.30 £ 0.04
C_Easy2 20 99.26 £ 0.05 98.83 £ 0.50 99.16 £ 0.09
C_Difficultl 05 98.93 £0.07 98.20 £ 0.77 98.80 £ 0.09
C_Difficultl 10 98.78 £0.10 98.65+0.43 99.07 £ 0.06
C_Difficultl 15 98.67 +0.07 97.90 £ 0.20 98.55+0.05
C_Difficultl 20 98.36 +0.05 97.73+0.33 98.69+£0.16
C _Difficult2 05 98.63 +0.05 97.74+£0.75 98.94+0.13
C Difficult2 10 98.67 £0.04 98.99 £ 0.30 99.30 £ 0.07
C _Difficult2 15 98.89 £ 0.06 98.27+£0.35 98.74 £ 0.08
C_Difficult2 20 97.99 £ 0.05 97.82+0.22 98.64 + 0.09
Average 98.97 £ 0.05 98.39 + 0.40 99.07 + 0.09

SPC and manual re-sorting and remains unverifiable, due to
missing ground truth. The significant spike correlation indi-
cates the potential for Dataset] to possess a higher labelling
error rate compared to Dataset2, thereby posing a greater
challenge for the classification of spikes by the model as
labelling errors may have a negative impact on the model
performance. At this point, it must be mentioned that the
performance on Datasetl is relative to the labeling method
mentioned above and the results are therefore not entirely
conclusive. The ensuing discussion examines specific chal-
lenges related to spike sorting that the proposed BNN has
been able to effectively address, as well as those that need
to be given greater focus in the future.

1) NOISE RESISTANCE

The BNN exhibited no significant decline in performance
despite the heightened noise levels in Dataset2, which is
beneficial for the use on neural data that is often contaminated
with high noise from various sources such as the recording
device or the signals of more distant neurons.

2) OVERLAPPING SPIKES

It was noted that temporal spikes with stronger phase shifts do
not disrupt the network. Nonetheless, an examination of the
network’s errors indicated that a considerable number of mis-
classified instances stemmed from overlapping spikes with
minimal peak-to-peak intervals. The superposition of these
waveforms generates an unfamiliar pattern for the network,
leading to a somewhat arbitrary classification into one of the
different classes.

3) SCALABILITY

Scaling is another important challenge in spike sorting, as the
number of electrodes used in electrophysiology is growing
continuously. At this point, the proposed model in this work is
tailored for single-channel data. High-density multi-electrode
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arrays (HD-MEAs) may require more efficient models for
resource-adequate spike sorting. Extending the suggested
framework to incorporate the processing of numerous chan-
nels, and the additional utilization of spatial spike data,
possesses the capability to enhance not solely the rate of data
processing, but also the accuracy and therefore the applica-
bility in practical scenarios for iBCls.

4) TRANSFERABILITY AND REPRODUCIBILITY
The model transferability could be shown with high results
across datasets. Reproducibility is ensured by making the

proposed model open source. The model can be found using
the following link: www.github.com/LucaMMeyer/BNN.

B. COMPARISON TO OTHER WORK

A straightforward tabular comparison of model performance
with other state-of-the-art models has been omitted owing
to considerable variations in training set sizes, foundational
assumptions, and evaluation parameters across different stud-
ies. Such discrepancies can result in erroneous conclusions
if not adequately contextualized. Rather, comprehensive
descriptions and metrics are presented in this section to
enable readers to assess the models within their specific
contexts, aiming to allow a fair comparison.

1) DATSET1

In 2020, Li et al. [25] proposed a 1D-CNN for spike classi-
fication which was also evaluated on Datasetl. This model
contains four convolutional layers, 2 max pooling layers and
a fully connected network (FCN) with 300, 100 hidden units
and two to five units. The FCN, which only represents the
output of the model in [25], has a comparable size to the
entire network proposed in this paper. The model of Li et al.
[25], due to its heavy architecture, certainly relies on external
processing, however, the models proposed in this paper can
compete with the performance of the heavy model in [25].
While the FPM in this work takes 139,267 FLOPs to pro-
cess a neural waveform, the CNN in [25] requires 5,788,250
FLOPs [24]. Using Datasetl, Li et al. [25] reached an average
accuracy of 96.53% and Macro-F of 95.68% using 50% of
the available spikes, while not testing their model on Channel
#87 and #90. Averaged over the same channels, the proposed
FPM achieved values of 97.48% and 94.89% respectively,
showcasing the proposed data augmentation technique can
compensate for a much more complex network architecture
in [25].

In 2023, Wang et al. [28] proposed a model for spike classi-
fication consisting of an LSTM layer, two 2D-convolutional
layers and a fully connected network at the end of the net-
work. Applied to channels #66, #69, #98, #115, #68, #70,
#83,#95, #82 and #126 of Datasetl, Wang et al. [28] achieved
an average accuracy of 94.77% using 50% of the spikes for
training. Both models presented in this work (BNN: 94.97%;
FPM: 97.93%) outperformed the model presented by
Wang et al. [28].
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While the authors of [28] did not try to come up with
a solution regarding the class imbalance issue of Datasetl,
in 2023, Li et al. [27] presented a deep reinforcement learning
approach targeting this issue. They trained a digital agent
called ‘ImbSorter’ to classify spikes using a dynamic reward
function that pays higher reward to the model for classifying
rare classes. The proposed model is a convolutional network
with two 2D-convolutional layers, a max pooling layer and a
fully connected network at the network output. Evaluated on
Datasetl, Imbsorter achieved an average accuracy of 97.9%
and an average Macro-F of 95.8%. Despite its significantly
higher complexity, it performed only slightly better than the
proposed FPM.

2) DATSET2

In 2019, Park et al. [23] proposed an approach based on
PCA and the k-means to obtain pseudo labels which they
used to train their deep learning model. After the clustering
stage, they selected examples that were located closest to the
centroids in the feature space in order to minimize labeling
errors. They trained a fully connected network with four
hidden layers (256 units each) with the labeled spikes and
reached an overall accuracy of 94.09%. The proposed BNN
and FPM reached accuracies of 98.39% and 99.07%, clearly
outperforming the model from Park et al. However, the better
performance achieved in this work is mainly associated to
the use of spike gradients and the proposed pseudo-labeling
technique (t-SNE 4+ DBSCAN + KDE) which generates
pseudo-labels with much lower error rates.

Li et al. [25], Wang et al. [28] and Li et al. [27] also eval-
uated their models using Dataset2, but trained their models
with ground-truth labels. However, the extracted spikes from
the synthetic recordings were not aligned in [27] before they
were included in the training set, which may have led to
falsely promising results [24]. Moreover, in [27], classes were
handled slightly different as overlapping spikes were treated
as separate classes, resulting in an average accuracy of 98.4%.
Nevertheless, these studies were used for comparison in order
to compare the performance of the models presented in this
work with more complex deep learning methods. Using the
sixteen recordings in Dataset2 and utilizing 50% of the avail-
able spikes for training, Li et al. [25] reached an average
accuracy of 99.32%. By using 40% of the spikes for training
the model in [28], Wang et al. achieved an average accuracy
of 99.5%. With an accuracy of 99.07%, the performance
of the FPM in this work is just slightly below the models
mentioned, even though the FPM has a much smaller size
and was trained with pseudo-labels instead of ground truth.
It is mentioned in Section I that Valencia and Mohammad
applied their BNN [29] and PBNN [30] to Dataset2 as well
and achieved an average accuracy of up to 90%. By using
an additional layer, more units per layer and BN, the BNN
in this work reduces the performance gap of [29] and [30] to
the more advanced deep learning models mentioned above on
less than 1%.
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Given the advantages of the proposed BNN over the
proposed FPM, and thus all other deep learning models men-
tioned in Section IV-B, it becomes clear why the proposed
BNN is preferable in the context of iBCls:

1. Small chip area

2. Low implementation cost
3. Moderate energy use

4. Robust performance

Chip area, a critical constraint in iBCls, is significantly
reduced in the proposed BNN compared to FPMs. While this
claim is currently theoretical—rooted in the BNN’s lower
computational complexity—ongoing work on an FPGA-
based implementation, to be published soon, will substantiate
it. Moreover, the BNN incurs lower implementation costs,
requiring reduced memory and fewer, less complex math-
ematical operations, as illustrated in Fig. 7. Consequently,
it also offers lower power consumption. Although BNNs
from [29], [30] excel in these aspects, the deep BNN pro-
posed here achieves significantly higher accuracy, enabling
its application to more complex neural datasets.

C. HARDWARE CONSIDERATIONS

The proposed BNN is specifically tailored for resource-
constrained environments, such as iBCIs. Several key fea-
tures of the BNN model directly address common hardware
limitations and are discussed in the following.

1) ADAPTIVE MODEL ARCHITECTURE

The relationship between model size and performance,
as illustrated in Fig. 5, provides a clear guideline for hardware
implementation, allowing for precise model tuning to make
use of available resources while maximizing performance.
In scenarios with limited memory, a smaller model can be
selected with a predictable trade-off in accuracy. This flexibil-
ity ensures that the proposed models can be adapted to a wide
range of hardware configurations, from highly constrained
implantable devices to more capable external processors,
where the FPM may be preferred over the BNN architecture.

2) MEMORY AND COMPUTATIONAL EFFICIENCY

The proposed BNN requires only 12.44 kB of memory, which
is a 95% reduction compared to the equally-sized FPM.
This dramatic decrease in memory is crucial for iBCI appli-
cations. The compact memory requirement not only saves
physical space in the implantable device but also reduces
power consumption associated with memory access opera-
tions, which can be a significant factor in overall energy
usage. The binarization of weights and activations in the BNN
model directly translates to bitwise operations in hardware.
This means that spike sorting can be performed using simple
logic gates and accumulators rather than complex floating-
point operations, drastically reducing both the silicon area
required and the power consumed per operation. With 95.6%
of MACs being binarized, the BNN achieves substantial
computational efficiency. This allows faster processing times,
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enabling real-time spike sorting even in resource-constrained
environments. As proposed in [49], during inference, the
computationally expensive Softmax function can be replaced
with Hardmax (argmax). Hardmax can be used because Soft-
max is a monotonic function, or in other words, it maintains
the order of the input values. This further optimizes hardware
implementation without sacrificing classification accuracy.
The combination of reduced memory, simplified computa-
tions, and flexible architecture allows for efficient real-time
processing of neural signals, enabling more sophisticated
on-chip analysis in implantable neural interfaces. As shown
in previous studies [9], models with milder quantization can
also be used for spike sorting and achieve good efficiency.
However, such mild quantization, to e.g. 4-bit, may be suf-
ficient for smaller systems, but can become a significant
bottleneck when scaling up to larger systems. iBCIs with
a large number of channels require minimal resource con-
sumption due to strict power and thermal constraints. In these
scenarios, small binarized models offer significant advan-
tages over medium-sized networks with mild quantization,
as they allow a significant reduction in energy and area with
little loss of accuracy.

D. LIMITATIONS AND OUTLOOK

The proposed BNN, while effective, presents several limi-
tations. First, it is designed for single-channel processing,
restricting its scalability. Additionally, the model struggles
with overlapping spikes, particularly those with minimal
peak-to-peak intervals, as the resulting superimposed wave-
forms lead to higher misclassification rates. The BNN’s per-
formance is also influenced by the accuracy of pseudo-labels,
which can introduce errors and affect overall classification
accuracy. Finally, although the model shows robustness to
both simulated and real noise, its generalization to more
advanced signal complexities, such as biological artifacts or
electromagnetic interference, requires further investigation.
In general, it must be emphasized at this point that supervised
models must always be trained on the respective recording to
achieve optimal performance. Even if this is the case, certain
signal complexities can pose problems for the model, such as
infrequently firing neurons whose spikes were not part of the
training set.

To address these challenges and elevate BNN-based spike
sorting to a more advanced status, prospective research
should concentrate on three principal domains: model adap-
tivity, hardware implementation and multi-channel process-
ing for large-scale HD-MEAs. For hardware, the BNN will
be optimized for FPGAs or ASICs, emphasizing memory
efficiency, reduced power consumption, and low-latency
operation. Techniques like weight pruning will further min-
imize memory usage, while replacing Softmax with Hard-
max will streamline computations and reduce inference
latency. In parallel, the framework should be extended to
process multi-channel data from HD-MEAs using a bina-
rized convolutional neural network (BCNN) designed for
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spatiotemporal feature extraction. This BCNN will leverage
spatial correlations across electrodes and temporal dynam-
ics to enhance spike classification. Additionally, adaptive
mechanisms could be explored to dynamically allocate com-
putational resources based on channel activity, improving
accuracy and efficiency. These advancements aim to create
a scalable, energy-efficient spike sorting solution suitable for
next-generation neural interfaces.
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