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 
Abstract: There is a need for fast adaptation in spike sorting 
algorithms to implement  brain-machine interface (BMIs) in 
different applications. Learning and adapting the 
functionality of the sorting process in real-time can 
significantly improve the performance. However, deep 
neural networks (DNNs) depend on  large amounts of data 
for training models and their performance sustainability 
decreases when data is limited. Inspired by meta-learning, 
this paper proposes a few-shot spike sorting framework 
(FS-SS) with variable network model size that requires 
minimal learning training and supervision. The framework 
is not only compatible with few-shot adaptations, but also 
it uses attention mechanism and dilated convolutional 
neural networks. This allows scaling the network 
parameters to learn the important features of spike signals 
and to quickly generalize the learning ability to new spike 
waveforms in recording channels after few observations. 
The FS-SS was evaluated by using freely accessible 
datasets, also compared with the other state-of-the-art 
algorithms. The average classification accuracy of the 
proposed method is 99.28%, which shows extreme 
robustness to background noise and similarity of the spike 
waveforms. When the number of training samples is 
reduced by 90%, the parameter scale is reduced by 68.2%, 
while the accuracy only decreased by 0.55%. The paper also 
visualizes the model's attention distribution under spike 
sorting tasks of different difficulty levels. The attention 
distribution results show that the proposed model has clear 
interpretability and high robustness.  
 
Index Terms—Implantable brain-machine interface (iBMI), 
unsupervised spike sorting, attention mechanism, dilated 
convolutional neural network, few-shot (FS) learning, meta-
learning, fast channel adaptation, robust feature extraction.  

I. INTRIDUCTION 

xtracellular recordings have been widely used to monitor 
neuronal activity by implanting multi-electrodes in the 

cortex and capturing multidimensional neural data. A 
processing step, known as spike sorting shown in Fig.1, is 
necessary to separate the multi-unit neural activities and assign 
the captured spikes to their originating neurons [1-6]. Spike 
sorting is an invaluable research tool applied in implantable 
brain-machine interface (iBMI) research for studying and 
decoding neural signals from different brain regions and 
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understanding the mechanisms of the brain. It is extremely 
beneficial in design and development of various applications 
such as identifying the optimal patterns and parameters to 
condition diseases by artificially modulating irregular or faulty 
electrical impulses [7], realizing a communication bridge for 
control of assistive devices for patients with damaged 
sensory/motor functions such as hand prosthesis [8], and 
stimulating a particular pathway for biological functionality 
regularization [9].  
The recent trend in brain sensing is about the utilization of  
high-channel count neural interfaces that include tens of 
thousands of sensing probes [10]. There are two important 
aspects associated with the large-scale data streaming: 

(i) Recording channel variability: three factors are involved: 
a) neurons can show different dynamics based on electrode 
location. (b) neurons have various structures depending on 
the cortex regions and layers [11] which results in generation 
of unique actions potentials. And (c) action potentials are also 
function of time [12]. Considering such variations, there is 
high probability of spike shape changes over time. Therefore, 
a solid model is required to adapt itself to the recording 
channel variations.  
(ii) Training time: The second challenge is training time 
which means adaptation to the characteristics of the recording 
channel. This certainly requires huge amount of training data 
as the deep learning algorithms are data hungry [13].  

There is a need for a spike classification algorithm that adapts 
(or learns), and embeds intermittently the information about 
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Fig. 1. (a) Recording activities from neurons A, B and C using Neuropixels 
electrode arrays. (b) Spike sorting process for determining single unit 
activity. Data is progressively reduced over processing blocks (Z <K< N). 
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new channel with only a  few observations through a fast 
learning approach.  
In recent years, different types of DNNs have been developed 
and utilized in spike sorting [14]. However, few-shot learning 
is not widely adopted in spike sorting. For example, Wu et al. 
[15] in 2019 developed a semi-supervised spike classification 
method called few-shot spike sorting using general adversarial 
network (GAN). The authors in [15] successfully categorized 
spikes within the utilized synthetic data: using 50 labelled 
spikes from a recording with a noise standard deviation of 5%, 
an accuracy of 97.7% was achieved. By increasing the number 
of labelled spikes to 200, the accuracy improved to 98.2%. In 
the presence of noise with a standard deviation of 20%, they 
reached an accuracy level of 66.4% (50 labelled spikes) and 
85.5% (200 labelled spikes) [15]. Also tested on experimental 
data, it was demonstrated that training the GAN on particular 
waveforms with only a “few shots” was sufficient to recognize 
similar spikes in inference mode.   
Few-shot learning is also used in other biomedical signal 
processing applications. In [16], authors proposed a novel 
framework referred to as the few-shot hand gesture recognition 
(FS-HGR). The FS-HGR quickly adapts by using a small 
number of observations to a new gesture (or user) through 
learning on its prior experience.  Tested on  second Ninapro 
databases (also referred to as the DB2) [17], which consists of 
50 gestures (rest included) from 40 healthy subjects, FS-HGR 
led to 85.94% classification accuracy. FS-HGR led to 83.99% 
classification accuracy on new repetitions with few-shot 
observations (5-way 5-shot). Also, authors in [16] achieved 
81.29% accuracy on new subjects with few-shot observation (5-
way 5-shot). In [18], authors introduced a few-shot learning 
(FSL) applicability for electrocardiogram  (ECG) signal 
proximity-based classification. They embedded the FLS to a 
deep convolutional neural network to recognize 2, 5 and 20 
different heart disease classes. The extracted QRS complexes 
from PTB-XL dataset [19] containing the labelled 10-second 
raw signal ECG was used to train the model in [16]. The FSL-
based classification provides continuous classification accuracy 
augmentation without network adjustments, and it achieves 
classification of healthy and sick patients ranging from 93.2% 
to 89.2%.  
In essence, a solid and structured study on few-shot learning for 
spike sorting application is required, as having access to an 
implantable processor for changing its parameters is an 
extremely challenging and tedious task. This paper introduces 
a few-shot learning framework for improved spike 
classification accuracy. Compared with traditional methods, the 
introduced framework only requires a small number of training 
data to achieve high-performance deep learning spike sorting. 
The main contributions of this paper are summarized as 
follows: 
 The FS-SS framework alleviates the problem of few 

observations learning in the spike sorting where the 
number of training samples are extremely limited.   

 The FS-SS model dynamically adjusts the number of 
output channels in the convolution layer and the dropout 
rate according to the number of training data. This ensures 
optimal resource utilization to minimize computational 
overhead and hardware resources.  

 Unique building blocks are designed and introduced in FS-
SS. Embedding module to integrate few-shot adaptations 
capability, residual attention (RA) module to enhance 
classification robustness in noisy conditions and residual 
dilated convolution (RDC) to capture neuronal activity 
patterns at different scales and improve the model's ability 
to process multi-scale features while maintaining suitable 
resolution and reducing computational complexity. 

To the best of our knowledge, this is the first time that a paper 
outlines in detail a few-shot adaptation algorithm in spike 
sorting. The rest of the paper is structured as follows: Section II 
describes the proposed architecture, including details of the 
individual constituent modules and how these modules are 
organized in the FS-SS framework. Section III describes the 
used datasets for performance analysis and the evaluation 
methods. Section IV scrutinizes the performance of the FS-SS 
framework by comparing it with other sorting methods, testing 
adaptation with different dataset proportions and visualization 
of sorting and attention results. Finally, Section V makes some 
concluding remarks.  

II. PROPOSED SPIKE SORTING ARCHITECTURE 

This section first briefly explains the meta-learning method for 
the few-shot problem, then describes the basic building blocks 
of the proposed FS-SS network, and finally illustrates the 
overall FS-SS architecture and how to align the meta-learning 
method with the spike sorting process.  

A. Meta-learning Problem 

In recent years, meta-learning [20] has been offering an 
extremely effective approach in solving problems that require 
minimal supervision [21-23]. Meta-learning is also called 
learning to learn aiming to improve the adaptability of the 
model to new tasks by learning the distribution of multiple 
tasks, rather than relying solely on the data of a single task [24]. 
This learning approach enables the deep learning algorithms to 
quickly adapt to new tasks by training on multiple different but 
related tasks. It is extremely suitable for classification problems 
with high complexity, high dimensions, and few samples such 
as spike sorting.  
Unlike traditional supervised learning methods, the minimum 
data for updating neural network parameters based on meta-
learning is a task rather than a single spike sample [25]. A task 
contains multiple spikes, including support (𝑆) spikes and query 
(𝑄) spikes, so a task consists of 𝑆 + 𝑄 spikes. The support set 
and query set are defined as in Eq. (1) and (2), where 𝑥௜

௝ 

represents the jth sample of the ith class and 𝑦௜
௝  is its 

corresponding label. The query set usually has only one sample 
per class, so the superscript j is omitted. 

𝑆 = ൛൫𝑥௜
௝ , 𝑦௜

௝
൯ൟ

௜ୀଵ,௝ୀଵ

ே,௞
(1) 

   𝑄 = {(𝑥௜ , 𝑦௜)}௜ୀଵ
௤

     (2) 
The meta-learning problem with 𝑁  classes and 𝑘  samples in 
each category is called 𝑁-way 𝑘-shot problem [25] as shown in 
Fig. 2. In the proposed FS-SS framework, a 2-way 2-shot meta-
learning is adopted which means that the support set has 2 
classes (𝑁=2) each class has 2 samples (𝑘=2) with one sample 
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in the query set (𝑞=1). Therefore, a total number of 5 spike 
waveforms, which can be expressed as follows: 

𝑆 = {(𝑥ଵ
ଵ, 𝑦ଵ

ଵ), (𝑥ଵ
ଶ, 𝑦ଵ

ଶ), (𝑥ଶ
ଵ, 𝑦ଶ

ଵ), (𝑥ଶ
ଶ, 𝑦ଶ

ଶ)} (3) 
𝑄 = {(𝑥ଵ, 𝑦ଵ)} (4) 

Inspired by [26], the true labels of the support set are fed into 
the network while the labels of the query set are treated as non-
existent labels represented by −1 in the training phase. Then 
these 𝑁 × 𝑘 + 1 labels and their corresponding sequences X 
are fed into the network. In the parameter update phase, the loss 
value ℒொ(𝑓ఏ) is calculated only for the output label of the query 
set 𝑓ఏ൫𝑥௤൯ and the true label 𝑦௤ as indicated in Eq. (5). This loss 
is used to update the learnable parameters 𝜃  of the entire 
network and obtain the new parameters 𝜃 ’. Where 𝛼 represents 
the learning rate, and ∇ఏ represents the result of the gradient of 
𝜃 as indicated in Eq. (6). After multiple iterations of the above 
process, the model will learn how to encode the support set and 
predict the true label of the query set [26]. 

ℒொ(𝑓ఏ) = 𝑙𝑜𝑠𝑠൫𝑓ఏ൫𝑥௤൯, 𝑦௤൯ (5) 
𝜃 ’ = 𝜃 − 𝛼∇ఏℒொ(𝑓ఏ) (6) 

B. The Building Modules of the FS-SS Framework 

This section explains the design ideas and implementation 
details of the constituent modules in the FS-SS framework. It 
finally outlines the overall architecture of the  FS-SS.  
1) The Embedding Module 
The embedding block integrates the few-shot observations 
capability onto the FS-SS network. It performs preliminary 
feature extraction and to map input spike waveforms (5 spikes, 
66 samples per spike)  onto a standardized feature vector [27]. 
As shown in Fig.3, the embedding block first extracts the 
primary time domain features of the spike signal through a 1D 
convolution layer. The kernel size in the 1D convolution layer 
is set to 3, it has stride of 1 and also padding size is set to 1. The 
number of output channels shown by 𝑓 in the 1D convolution 
layer (i.e., the number of convolution kernels) is not fixed and 
it depends on the number of the spikes used in the training 
dataset. When the training dataset is large, the number of 
convolution kernels can be dynamically increased to capture 
wider features. On the other hand,  when the training dataset is 
small, the number of convolution kernels can be appropriately 
reduced to avoid overfitting. This design ensures that the model 
can dynamically adjust its complexity according to the size of 
the dataset, thereby achieving a balance between extracting rich 
features and preventing overfitting. In addition, smaller number 

of parameters means less computation and lower computation 
cost which is more suited more to implantable brain processing. 
A batch normalization (BN) layer is connected after the 
convolution layer to speed up the training process [28].  
The number of output channels 𝑓 of the 1D convolutional layer 
shown in the  embedding block in Fig.3 is calculated by linear 
interpolation according to the size of the 𝑁ௗ , where 𝑁ௗ 
represents the number of spikes used to train the model. 
Assuming that the maximum number of convolution kernels is 
𝑓௠௔௫, the minimum number of convolution kernels is 𝑓௠௜௡, the 
maximum dataset size is 𝑁௠௔௫ , and the minimum dataset size 
is 𝑁௠௜௡, the basic steps of the process are as follows: 
a) Determine the normalization ratio 𝑃௦௧ௗ used for the dataset 
size: 

𝑃௦௧ௗ =
𝑁ௗ − 𝑁௠௜௡

𝑁௠௔௫ − 𝑁௠௜௡

(7) 

b) Then, the initial value of the number of convolution kernels 
𝑓௟௜௡௘௔௥ is calculated by linear interpolation: 

𝑓௟௜௡௘௔௥ = 𝑓௠௜௡ + ൫𝑃௦௧ௗ × (𝑓௠௔௫ − 𝑓௠௜௡)൯ (8) 
c) Finally, 𝑓௟௜௡௘௔௥ is rounded to the nearest power of 2 to get 𝑓, 
where ⌊∙⌋ represents rounding in Eq. (9). Adjusting the number 
of convolution kernels to a power of 2 can better utilize the 
memory alignment and parallel computing capabilities of the 
GPU: 

𝑓 = 2⌊୪୭୥మ( ௙೗೔೙೐ೌೝ)ା଴.ହ⌋ (9) 
The determination of 𝑓  is performed in model initialization 
phase and is utilized in the embedding module during the 
training phase. A basic self-attention unit follows the 
convolutional layer, taking the output of the previous 
convolution layer as input and further processing these features. 
Specifically, by adding the self-attention mechanism unit, the 
embedding module can generate the corresponding attention 
weight matrix by learning the primary time domain features 
obtained by convolution, so that the FS-SS model can focus 
more on the important time domain features of the spike signal. 
Finally, the output of the attention unit passes through two fully 
connected layers shown by Fc1 and Fc2 in Fig.3. The number 
of neurons in the first fully connected layer depends on the 
output feature dimensions of the attention unit after flattening, 
which is also closely related to the number of the kernels in the 
convolutional layer (because the input and output dimensions 
of the attention module are unchanged), which means that the 
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Fig.3. Details of embedding block of the FS-SS network. This module is 
used to standardize the input sequence, and also facilitates the use of few-
shot capability in the deep learning processing pipeline. It includes a 1D 
convolution layer with a variable number of output channels 𝑓 depending 
on the size of the dataset, a batch normalization layer (BN), a self-attention 
mechanism unit and two fully connected layers (Fc1 and Fc2) outputs a 
128-dimensional feature vector. 

x

FS-SS network

x1
1 y1
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Fig.2.  Meta-learning-based FS-SS network training process. The input 
includes support spikes and query spikes. In this paper, the support set 
contains two classes (𝑁=2), each class includes two spikes (𝑘=2), and the 
query set contains only one spike (𝑞=1). The FS-SS network is used to 
predict the label corresponding to the query set spike.  
 



First Author et al.: FS-SS: Few-Shot Learning for Fast and Accurate Spike Sorting of High-channel Count Probes  9 

number of neurons in this layer is also adaptive. After the first 
fully connected layer (Fc1), a dropout layer is connected to 
prevent the "co-adaptation" problem [29]. The dropout rate is 
also determined by the size of the 𝑁ௗ, and linear interpolation 
is also used. In this work, the maximum dropout rate is 0.5 and 
the minimum dropout rate is 0.1. The dropout rate is inversely 
proportional to the size of the dataset, because small-scale 
datasets are prone to overfitting, so a larger dropout rate is 
required [29]. The output of the second fully connected layer 
(Fc2) is fixed to 128 to standardize the embedding results. This 
means that no matter what the scale of the input data is, the final 
embedding result length is always 128, thus ensuring the 
consistency of subsequent processing. 
2) Residual Attention (RA) Block 
Residual attention (RA) block based on the self-attention 
mechanism is considered in the network to capture the potential 
relationships of the features from the embedding module, and 
to provide more abstract sequence of features. The attention 
mechanism has been proven to be very effective in processing 
features with long-distance dependencies [27] so it is natural to 
apply the attention mechanism for tasks with multi-scale 
temporal features such as spike sorting shown in Fig.1.  
The input of the RA accepts 𝐶 channels with the input length of 
𝐷, which corresponds to the number of extracted feature vectors 
from the previous stage. For example, the input of the first RA 
(𝐶=128, 𝐷=5) comes from the embedding module consisting of 
extracted features from 4 support spike waveforms and 1 query 
spike.  
The number of channels processed by RA is 𝐶, so 𝐶 will not 
change before and after passing through this module. The 
feature matrix of 𝐷 × 𝐶  is linearly mapped using three fully 
connected layers to key (𝐾), query (𝑄) and value (𝑉). The 
corresponding fully connected layer sizes are recorded as 𝐷ொ , 
𝐷௄  and 𝐷௏ , and the corresponding weight matrices are called 
𝑊ொ，𝑊௄  and 𝑊௏  respectively. The attention score is then 
calculated by the dot product between 𝐾 and 𝑄 which reflects 
the dependencies between the features. Subsequently, in order 
to prevent the gradient saturation caused by excessive 
calculation results, the dot product result of 𝐾 and 𝑄 is divided 
by the scaling factor ඥ𝐷௄ . The Softmax function is then applied 
to convert the calculation result into a weight, and finally the 

weight is applied to the value vector 𝑉  to obtain the 
corresponding attention output. The whole process is expressed 
as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄𝐾்

ඥ𝐷௄

ቇ 𝑉 (10) 

Finally, in order to prevent degrading the performance of the 
model from due to the deepening of the network layers, residual 
connection is used in the RA block. The feature with a length 
of 𝐷  becomes 𝐷௏  after being processed by the attention 
mechanism (Eq. 10), and the original features and processed 
features are concatenated, so the final output feature length of 
the RA block is 𝐷 + 𝐷௏ . 
3) Residual Dilated Convolutions (RDC) Block 
Inspired by [26] and [30], a RDC block is designed that consists 
of two dilated convolutional layers and a residual operation as 
shown in Fig.5. The RDC block extracts more abstract features 
of the spike waveforms and it achieves a wider receptive field 
by sequentially stacking more RDC blocks.  
Traditional convolution can be used to achieve a wider 
receptive field. However this needs to expand the size of the 
convolution kernels or stack more convolution layers [31]. Both 
methods inevitably introduce a sharp increase in computational 
complexity, limiting the practical use of deep neural networks 
in iBMIs. Therefore,  dilation convolution is utilized in FS-SS 
to increase the receptive field of the convolution kernel without 
increasing the number of parameters (i.e. the implementation 
cost). This convolution method has significant advantages in 
processing multi-scale features and maintaining spatial 
resolution [32]. 
Dilated convolution significantly increases the receptive field 
without increasing the number of parameters [32] by scaling the 
convolution kernels as shown by red circles in Fig.5. Utilizing 
scaling factors, a spike waveform is decomposed to different 
time features. A temporal convolution (TC) module consists of 
two RDCs as shown in Fig.5. The TC modules are then stacked 
multiple times to achieve gradual increase of receptive field. 
Therefore, a smaller dilation rate is used to capture short-term 
peak features in the first RDC module. For instance, the first 
RDC has the dilation rate of 1,  its corresponding convolution 
kernel size is set to 3 with a  stride set to 1. Also, the padding in 
the first RDC is set to 1 to keep the input and output dimensions 
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Fig.5. The RDC block used in the FS-SS network consists of two dilated 
convolutional layers (Layer 1 and Layer 2) and a residual operation, 
where the dilation rate (d) and the number of convolutional layer output 
channels are variable. Details of RDC are annotated on figure. TDC maps 
C×D to an output feature vector of C×(D+f).   
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Fig.4. The RA block of the FS-SS network. The feature matrix of C×D is 
linearly mapped using three fully connected layers to key (K), query (Q) 
and value (V).  The length of processed input data D is mapped to D + Dv 

where Dv corresponds to the additional length introduced by the attention 
mechanism.  
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equal. For the subsequent RDC modules,  larger dilation rates 
need to be used to obtain deeper receptive filed.  Following [32] 
and [33], the dilation rate of the RDC modules is set to twice 
that of the previous RDC module to capture the longer features 
of the spike signal. Therefore, the dilation rate corresponding to 
two sequentially connected RDC modules increases 
exponentially which can effectively expand the receptive field. 
The number of RDC modules (𝑍 ) in a TC depends on the 
complexity of the meta-learning task, which is reflected here as 
the sum of the number of spikes in the support set and the query 
set 𝑆 + 𝑄 determined by the following equation:  

Z =  ⌈logଶ(𝑆 + 𝑄)⌉                          (11) 
where ⌈·⌉ represents rounding operation. As the RDC modules 
are stacked, the neural network will learn more and more 
abstract features. However, this will result in a serious gradient 
vanishing problem. As expressed in Eq. (12), the residual 
mechanism ensures that the gradient does not disappear during 
the backpropagation process by directly passing information to 
the subsequent layers [34]. For a input feature vector (𝑥) with a  
length of 𝐷 , the dimension is changed to 𝐷 + 𝑓  after being 
processed by TC due to the residual operation, where 𝑓  is 
determined by the number of convolution kernels. This allows 
to build and stack more RDC modules for implementing a 
deeper network. 

𝑅𝐴 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑥 + 𝑓(𝑥, 𝜃) (12) 

C. Architecture of FS-SS 

As shown in Fig.6, the entire FS-SS network consists of 1 
embedding module, 4 RA blocks and 3 TC modules. Each TC 
module consists of 2 RDC blocks. Finally, a basic fully 
connected layer (Fc3) is added to predict the spike classes. Fig.6 
also shows the dimensional changes of the input samples after 
passing through each module under a task. In the proposed FS-
SS network, 4 support spikes are included in the support set (i.e. 
2-way 2-shot), and the query set consists of 1 spike highlighted 
in green. All 5 spikes are sent to the embedding module, and the 
final output feature vector dimension is standardized to 128 
(128, 5). Subsequently, the true label of the support set is added 
to the 128-dimensional feature as an additional feature, and the 
label of the query set is blurred to a non-existent label -1 [26]. 
The concatenated 129-dimensional features are sent to the first 
RA block to learn the attention relationships between features. 
The attention results are concatenated with the residual path, 
and the final output dimension is 129+32 features where 32 

represents the size of the 𝐷௏  of the RA1 block. In the next three 
RA blocks (RA2, RA3 and RA4), due to the continuous 
increase in feature dimensions, the corresponding attention 
range also needs to be expanded accordingly. So the 
corresponding 𝐷௏  of RA2, RA3 and RA4 modules also 
increases to 64, 128 and 256 respectively. In each RA block, 
𝐷௄  is equal to twice 𝐷௏ , and 𝐷ொ is equal to 𝐷௄. As mentioned 
earlier, the TC module contains 2 RDC blocks, and the 
corresponding number of convolution kernels 𝑓 is determined 
by the size of the dataset 𝑁ௗ . Similar to the RA block, the 
corresponding feature dimension increases by 𝑓 after each TC 
module due to residual connections. Fig.6 shows the input and 
output size of each module when 𝑓 is 128. 
During the network training phase, the learning rate was 
adjusted to 0.001, number of epochs was set to 50, the number 
of batches was set to 50, and the Adam optimizer and cross 
entropy loss function were used. The proportions of the training 
set, validation set and test set were 70%, 10% and 20% 
respectively. 

III. MATERIALS AND METHODS 

A. Datasets and Pre-processing 

To compare the performance of the proposed method with other 
works, the Wave_Clus spike bank was used [35]. The database 
in [35] comprises various average spike waveforms obtained 
from the neocortex and basal ganglia of humans. To replicate 
the background noise activity, attenuated spike waveforms 
selected at random from the data library were incorporated into 
the generated datasets. There are four datasets in the collected 
database, each has three spike mean waveforms and provides 
corresponding spike times and their labels. Besides, the four 
datasets are categorized according to the different degrees of 
difficulty (e.g., similarity of spike shape) and the noise levels. 
The datasets are labeled as C_Easy1_noise, C_Easy2_noise, 
C_Difficult1_noise, and C_Difficult2_noise, with noise levels 
represented by standard deviations (𝜎N) of 0.05, 0.1, 0.15, and 
0.2. The terms "Easy" and "Difficult" refer to the similarity 
index between spike shapes in each dataset. Easy1 has also 
additional noise levels of 0.25, 0.3, 0.35 and 0.4 for further 
spike sorting performance analysis. Based on the time 
information for each spike,  a sampling window consists of 66 
samples was generated to extract the spike waveforms to 
examine the classification performance of the proposed FS-SS 
framework. Before the spike waveforms are fed to the  network 
for classification, a simple min-max normalization is performed 
on the spike data. 

B. Evaluation Methods 

Three metrics are used in this study to evaluate the sorting 
performance of the proposed framework, including precision, 
recall and accuracy. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is determined by dividing the 
number of true positive spikes (TPS) by the total number of all 
predicted positive spikes, including true positive spikes (TPS) 
and false positive spikes (FPS): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑆

𝑇𝑃𝑆 + 𝐹𝑃𝑆
(13) 

𝑅𝑒𝑐𝑎𝑙𝑙 is determined by dividing the number of true positive 
spikes (TPS) by the number of all actual positive spikes, 
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Fig.6. Overall architecture of the proposed FS-SS network. The network 
consists of an embedding module, RA blocks and three TC modules. Each 
TC module stacks two RDC blocks. The figure shows the input and output 
dimensions of each module when the input spike data (66,5). 66 is the 
length of the extracted spike waveform, and 5 represents 4 support set 
spikes and one query set spike. The dilation factors in the TDC units 
increase exponentially for effective expansion of the receptive field 
without introducing significant computation cost.   
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including true positive spikes (TPS) and false negative spikes 
(FNS) expressed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑆

𝑇𝑃𝑆 + 𝐹𝑁𝑆
(14) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  indicates the proportion of correctly classified 
spikes, expressed as the sum of true positive (TPS) and true 
negative (TNS) divided by the number of all spikes, including 
true positive spikes (TPS), true negative spikes (TNS), false 
positive spikes (FPS) and false negative spikes (FNS), 
expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃𝑆 + 𝑇𝑁𝑆

𝑇𝑃𝑆 + 𝐹𝑃𝑆 + 𝐹𝑁𝑆 + 𝑇𝑁𝑆
 (15) 

IV. EXPERIMENTS AND RESULTS 

In this section, the proposed FS-SS framework is applied to the 
spike classification task. First, the performance of the FS-SS 
framework is compared with existing state-of-the-art 
algorithms. Then, to explore the adaptability of the model, 
explained dataset in Section III are divided into different 
portions to explore the performance of the FS-SS under 
different dataset sizes. Furthermore, attention visualization in 
various scenarios are presented in order to understand the 
feature extraction capability and interpretability of the proposed 
FS-SS network. 

A. Evaluation of Classification Performance 

The sorting performance of the proposed FS-SS framework and 
other state-of-the-arts including Wave_Clus [35], combination 
of PCA and K-means (PCA-K) [36], and deep spike detection 
(DSD) [3] are shown in Table I. Algorithms in [3], [35] and [36] 
are briefly explained in the footnote of Table I. All three 
explained performance metrics in Section III. B, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 
𝑅𝑒𝑐𝑎𝑙𝑙 and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 are evaluated and reported in Table I for 
the considered spike sorting methods. To ensure the fairness of 
the comparisons, the mean sorting accuracy of seven epochs is 
calculated and two epochs with the highest and lowest  
performance values are removed (i.e. removing deviated 

values). Therefore, the performance metrics listed in Table I are 
the average of 5 epochs.  
The comparison of FS-SS, Wave_Clus [35], PCA-K [36], and 
deep DSD [3] is performed across all spike shapes in “Easy” 
and “Difficult” datasets and the noise levels (0.05, 0.1, 0.15 and 
0.2). It is observed from Table I that in Easy2_0.05, the 
proposed FS-SS reaches 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 99.18% , a 𝑅𝑒𝑐𝑎𝑙𝑙  of 
99.16% and 99.16% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦. This is lower than the PCA_K 
method, but higher than the Wave_Clus and DSD methods. 
When the noise standard deviation (𝜎N) is 0.1, the accuracy is 
still slightly lower than the PCA-K method. But when the noise 
level increases to 0.15 and 0.2, the accuracy of the proposed FS-
SS is higher reaching to 99.64% and 99.53% respectively. In 
the other datasets, the FS-SS achieves higher sorting accuracy 
except the PCA_K method on the Difficult1 dataset (𝜎N=0.1). 
This demonstrates the FS-SS network's ability to accurately 
identify the most informative features for sorting step, and its 
extreme robustness to spike similarity and noise level.  

B. Learning with Different Dataset Proportions  

As explained in Section II. B , linear interpolation was used to 
obtain optimal number of convolution kernels in feature 
extraction and to limit the size of the entire model to avoid 
unnecessary computations. Therefore, this section further 
evaluates the performance of scale-adaptive FS-SS model by 
using of 10 different data proportions ranging from 10% (or 0.1) 
to 100% (or 1). Data proportions refer to the number of the data 
samples used to simulate and verify the adaptation capability 
and classification performance of the FS-SS framework. Table 
II lists the total number of model parameters in different dataset 
proportions, as well as the corresponding hyperparameter 
information such as the number of convolution kernels and 
dropout rate. Fig.7 shows the classification performance of the 
FS-SS model for different training dataset proportions and 
different noise levels (taking the last 12 epochs and removing 
the maximum and minimum values).  
From the overall trend in Fig.7, the FS-SS model shows a high 
classification accuracy in most cases, with slight fluctuations on 

Table I  Comparison of classification performance of the proposed FS-SS and other methods including  Wave_Clus, PCA-K and DSD under different 
datasets and noise levels. Precision, recall and the accuracy  are  calculated based on Eq. (13), (14) and (15) respectively. 

 

 

Dataset 
Noise 
levels 

Proposed Others (Accuracy) 
Precision Recall Accuracy Wave_Clusa PCA-Kb DSDc 

Easy1 0.05 99.18 99.16 99.16 98.82 99.40 99.13 
Easy1 0.1 99.60 99.60 99.60 98.81 99.65 99.31 
Easy1 0.15 99.64 99.64 99.64 98.72 99.45 99.13 
Easy1 0.2 99.52 99.53 99.53 98.55 99.51 98.93 
Easy2 0.05 99.60 99.60 99.60 96.88 95.21 97.31 
Easy2 0.1 99.89 99.89 99.89 91.62 95.18 92.40 
Easy2 0.15 99.53 99.52 99.53 91.30 96.77 92.23 
Easy2 0.2 99.51 99.52 99.51 84.52 93.34 84.62 

Difficult1 0.05 98.84 98.84 98.84 89.10 98.84 97.22 
Difficult1 0.1 98.19 98.11 98.13 93.44 98.93 95.24 
Difficult1 0.15 98.70 98.65 98.66 66.95 97.32 57.68 
Difficult1 0.2 98.27 98.26 98.26 75.19 92.95 67.73 
Difficult2 0.05 99.29 99.32 99.30 93.52 87.28 96.57 
Difficult2 0.1 99.65 99.64 99.65 94.05 83.90 98.66 
Difficult2 0.15 99.54 99.53 99.54 83.16 72.63 91.87 
Difficult2 0.2 99.68 99.69 99.69 56.17 32.32 78.82 

Mean  99.29 99.28 99.28 88.18 90.17 91.53 
a) DWT(four-level Haar wavelet) and Kolmogorov–Smirnov used in Wave_Clus [35]. 
b) PCA-K [36] uses three principle components in conjunction with K-means algorithm to classify the spikes. 
c) Deep spike detection (DSD) [3] uses two CNNs to identify the active spike channels and to extract authentic spike data. 
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small dataset proportions. As the dataset proportion continues 
to increase, the accuracy of the model tends to stabilize. 
Especially in the case of low noise (𝜎N=0.05 and 𝜎N=0.1), the 
accuracy remains high across different data proportions 
showing extremely high robustness. In the case of high noise 
(𝜎N=0.15 and 𝜎N=0.2), although the accuracy fluctuates to a 
certain extent, the overall mean accuracy remains high (i.e. 
minor fluctuations). This shows that the FS-SS has extremely 
fast adaptability to the recording channels changes over time 
even when 10% of data is used for training purposes. Assuming 
that there are originally 3514 spike waveforms for training and 
testing in Easy1_0.05. 10% of the spikes for training and testing 
results in 98.7% accuracy. The performance of the FS-SS 
network evolves quickly by employing meta-learning 
mechanism and adaptive hyperparameters even under small 
training data conditions.  
A linear fit was performed to further understand the mean 
accuracy versus dataset proportions. The slope of the fit was 
used to quantify the impact of the dataset proportion on the 
model performance. The gray shaded areas shown in Fig.7 
represents an incremental trend and the calculated slopes are all 
positive which indicate the increase in the proportion of the 
datasets resulted in accuracy improvement in. For example, in 
Difficult1, the overall mean accuracy is dropped by 1.43% from 
0.0143, when dataset proportion is reduced by 90%. This results 
in the total number of FS-SS parameters reduction from 3M to 
0.9M as shown in Table II (e.g. when the number of convolution 
kernels is reduced from 64 to 8). In Easy1, Easy2 and Difficult2 
datasets, reducing the dataset proportion by 90% only reduces 
the accuracy by 0.35%, 0.23%, and 0.17%. 
This shows that the FS-SS model can successfully reduce the 
total number of parameters of the entire network by reducing 

the number of convolution kernels when facing a small dataset, 
without decisively affecting the overall classification 
performance. This is associated to two reasons: first, 
dynamically adjusting the number of convolution kernels and 
the size of the dropout rate can effectively alleviate overfitting 
and improve the performance of the model on small datasets. 
Second, the FS-SS model utilizes meta-learning which is 
designed for adaptations using small datasets. By training on 
multiple related tasks, the FS-SS network can quickly learn key 
features when faced with new tasks. This proves the superior 
performance of the FS-SS network on spike classification with 
real-time adaptability. 

C. Spike Alignment and Feature Visualization  

In order to further understand the feature extraction ability of 
the FS-SS, Fig.8 shows two-dimensional (2D) scatter plots of 
the embedding module after t-SNE (t-Distributed Stochastic 
Neighbor Embedding) dimension reduction [37]. The left and 
right columns in Fig.8 represent low (𝜎N=0.05) and high 
(𝜎N=0.2) noise datasets. Each row in Fig.8 also represents the 
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Fig.7. Classification accuracy of Easy1, Easy2, Difficult1, and Difficult2 datasets at different standard deviations (𝜎N) of 0.01, 0.05, 0.15, and 0.2 versus 
dataset proportions ranging from 10% to 100%. The shaded area represents the mean accuracy that corresponds to more than >95% confidence level in the 
datasets. Slope in each figure is calculated from curve fitting (gray straight line), which indicates the impact of increasing the dataset proportion on the 
classification accuracy. Overall, FS-SS represents an outstanding robustness to the dataset proportion in the adaptation process. 
 

Table II  Dropout rate, number of convolution kernels and model size 
for different data proportions. 

Proportion Dropout rate Kernels numbers Model Size 
10% (0.1) 0.5 8 967,502 
20% (0.2) 0.45 16 1,238,070 
30% (0.3) 0.41 16 1,238,070 
40% (0.4) 0.36 32 1,804,550 
50% (0.5) 0.32 32 1,804,550 
60% (0.6) 0.27 32 1,804,550 
70% (0.7) 0.23 32 1,804,550 
80% (0.8) 0.18 64 3,038,886 
90% (0.9) 0.14 64 3,038,886 
100% (1) 0.1 64 3,038,886 
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type of dataset. The test spike waveforms are color-coded 
according to the ground-truth to better distinguish between the 
neurons. Aligned color-coded mean spike waveforms along 
with their shaded fluctuation range are shown for each dataset.   
It is observed from Fig.8 that, whether for the Easy dataset with 
lower similarity or the Difficult dataset with higher similarity, 
the mean waveforms are clear and identifiable which shows the 
proposed FS-SS network strong ability to extract time domain 
features of different spikes. Noisy conditions introduce a wider  
shaded area, however the superimposed classified waveforms 
still show an acceptable degree of separation. This shows that 
the noise has very little impact on the aligned spikes after 
classification, and the proposed FS-SS grasps the key features 
and maintains stable performance in the face of high noise.  
The 2D scatter plot on the right shows the t-SNE dimensionality 
reduction result of the embedding module after label prediction 
in the test set. It is observed that the feature points after 
dimensionality reduction show robust classification, and the 
boundaries between clusters corresponding to different classes 
are clear. Even in the case of high noise, there will be no high 
overlaps between different 2D cluster projection borders which 
shows that the FS-SS model can effectively encode features and 
so to distinguish features of different categories. 

D. Visualization of Attention Results 

This section illustrates the time domain feature heatmap of 
different spike waveforms in the embedding module since this 

has a significant impact on the overall classification 
performance. Visualization of the attention distributions in 
different test datasets at a noise standard deviation of (𝜎N=0.15) 
are shown in Fig.9, for example the first row in Fig.9 
corresponds to the Easy1_0.15 dataset.  
Fig.9 also superimposes the spike waveform, its first-order 
derivative (FD) by green dashed line and its second-order 
derivative (SD) using blue dotted line. FDmax, FDmin, SDmax, 
SDmin representing maximum and minimum of FD and SD are 
marked in each figure for better understanding of attention 
heatmaps. It is observed from the top row in Fig. 9 that for the 
Easy1_0.15, the attention heatmap mainly focuses on the FDmax 
and FDmin points of spike #1. There is also a part of attention 
distributed after SDmax. For spike #2, part of the attention is 
distributed in the rising phase near FDmax which represents the 
phase with the fastest voltage rise (i.e. maximum slope). 
Another part of the attention is distributed in the falling phase 
after SDmin, suggesting that the model considers this phase as 
the key morphological feature in spike #2 in Easy1_0.15. For 
spike #3 in Easy1_0.15, the attention distribution is slightly 
different, with one feature concentrated between SDmin and 
FDmin and the other part distributed after FDmin. This indicates 
that the proposed model believes the slow transition after FDmin 
is the key feature to distinguish spike #3 which is consistent 
with observations. These results strongly indicate that the 
proposed FS-SS network is not completely a "black box", on 
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Fig.8.  Alignment and feature visualization of spike waveforms of different datasets for 𝜎N =0.05 (left column) and 𝜎N=0.2 (right column). Under each column,  
color-coded spike waveforms are superimposed based on the ground-truth. The shaded part represents the 60% data distribution range. Annotated numbers 
next to the spikes show the number of predicted and aligned waveforms in each class. The scatter plot under left or right columns shows the visualization 
result of the 128-dimensional features after the embedding module using t-SNE dimensionality reduction. Each color represents a different class, and the 
envelope shows the boundary of the corresponding cluster.  
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the contrary, it has a fairly strong electrophysiological 
interpretability. 
In Easy2_0.15 dataset, the distribution of attention is mainly 
concentrated on the rising phase of the spike aligned with FDmax 
and after the SDmin. In the Difficult1_0.15 dataset with higher 
waveform similarity, there is no higher attention distribution 
near FDmin (i.e. the region with the fastest voltage drop) which 
indicates that the FS-SS believes this segment cannot 
effectively distinguish the three spike waveforms. More 
specifically, part of the attention is distributed around FDmax, 
where there is a fast voltage rise. Another part of the attention 
is distributed around SDmax and after that. This shows that the 
model observes more subtle differences in morphological 
features and places more attention on these two areas. The 
attention distribution corresponding to the Difficult2_0.15 
dataset is almost similar to Difficult1_0.15, with more attention 
near FDmax. There is not so much attention distribution in the 
falling stage around FDmin. In short, the proposed model 
provides a fairly strong electrophysiological interpretation 
through attention in distinguishing the most informative 
features in different spikes, and can dynamically adjust 
attention according to the characteristics of different 
morphologies. The dynamic attention distribution adjustment is 
not only used to assist in observing direct or indirect features, 

but also demonstrates the superior performance of the FS-SS 
network in spike sorting.  

V. CONCLUSION 

This paper proposed a FS-SS framework based on meta-
learning and attention mechanism which is suitable for 
implantable brain processing (referred as spike sorting), where 
collecting training data is an extremely challenging task. The 
proposed framework consists of crucial building blocks 
including an embedding module, residual attention (RA) 
module and residual dilated convolution (RDC) module. 
Combination of these key modules ensure quick generalization 
of learning with only two-shot from each class by building upon 
the previous experiences in the learning phase, and also 
extraction of the most informative features in the classification 
stage. The results show that the proposed framework achieves 
leading performance on the public dataset. Specifically, when 
using all samples, FS-SS achieved an average precision of 
99.29%, an average recall of 99.28%, and an average 
classification accuracy of 99.28%. Even on sub-datasets with 
high noise or high similarity, the proposed framework shows 
robust outcomes. In addition, by designing hyperparameters 
that can be dynamically adjusted according to the number of 

 
Fig.9.  Attention heatmaps of three sike waveforms in different datasets in Easy1_0.15 (first row), Easy2_0.15 (second row), Difficult1_0.15 (third row) and 
Difficult1_0.15 (fourth row). The horizontal axis of each sub-graph represents the time point, and the vertical axis represents the sample number. The darker 
color reflects the degree of attention in the RA module to different time points. Three waveforms are also superimposed on the heatmaps: a) the mean of the 
spike waveform according to the predicted label, b) the green dotted line that represents its corresponding first-order derivative (FD), and the blue dotted line 
represents the second-order derivative (SD). The key features are marked including FDmax (maximum value of the first derivative), FDmin (minimum value of 
the first derivative), SDmax (maximum value of the second derivative), and SDmin (minimum value of the second derivative).  
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training data, the parameter size of the model is adaptive. When 
the number of samples is reduced by 90%, the model size 
becomes 31.8% of the original, while the average accuracy only 
decreases by 0.55%. This makes it highly suitable for 
implantable on-chip spike sorting algorithms with extremely 
high performance and power requirements. Finally, the t-SNE 
results of the embedding layer and the visualization of the time-
domain attention results prove that the framework has a certain 
physiological explanation rationality and provides more trust in 
terms of sorting robustness. In future work, the FS-SS will be 
further improved and actual tests will be conducted using in-
vivo  datasets. 
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