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Abstract: Quantifying defects in carbon-fiber-reinforced polymer (CFRP) composites is
crucial for ensuring quality control and structural integrity. Among non-destructive evalu-
ation techniques, thermography has emerged as a promising solution for defect detection
and characterization. This literature review synthesizes current advancements in active
thermography methods, with a particular focus on vibrothermography and optical ther-
mography, in identifying defects such as delaminations and barely visible impact damage
(BVID) in CFRP composites. The review evaluates state-of-the-art techniques, highlighting
the advanced applications of optical thermography. It identifies a critical research gap in
the integration of vibrothermography with advanced image-processing methods, such as
computer vision, which is more commonly applied in optical thermography. Addressing
this gap holds significant potential to enhance defect quantification accuracy, improve
maintenance practices, and ensure the safety of composite structures.

Keywords: thermography; pulsed thermography; vibrothermography; defect quantification;
principal component analysis; variant of principal component analysis

1. Introduction
Composite structures are increasingly utilized across various industries, including

aerospace, shipbuilding, and wind-turbine manufacturing, owing to their remarkable
mechanical and thermal properties as well as their weight-saving benefits [1,2]. Never-
theless, these composites are prone to damage during both manufacturing and service,
with common issues including delamination, fiber breakage, and matrix cracking [3]. De-
lamination, a prevalent mode of damage propagation characterised by the separation of
adjacent layers, can result from improper curing, cutting during manufacturing, or impact
from ground service vehicles, tools, and foreign objects during service [4,5]. Research
has indicated that visually detecting delamination is particularly challenging, especially
in cases of low-velocity impacts that may not present visible damage, highlighting the
necessity for advanced inspection methods [5]. Detecting and assessing damage in com-
posite materials is critical to preventing structural failures that could lead to catastrophic
events [6]. Damage detection techniques are generally categorized into global and local
strategies; while global techniques are effective for identifying the overall presence of
damage, local methods excel at pinpointing specific damage locations and assessing its
severity [7–9]. Non-destructive testing (NDT) is vital in this context, ensuring that damage
detection occurs without compromising the integrity of the structures [10]. A thorough
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identification, quantification, and localization of delamination in composite structures is
essential for ensuring safe operational conditions [11]. Several academic journals have
explored the application of NDT and assessment methods relevant to composite damage
detection [10,12–14].

Among the various NDT methods available, infrared thermography (IRT) has gained
particular interest due to its ability to provide full-field, non-contact, and rapid defect
detection in CFRP structures. Infrared thermography encompasses multiple techniques,
including pulsed thermography, lock-in thermography, vibrothermography, laser ther-
mography, eddy-current thermography, and microwave thermography [15]. However,
this review focuses exclusively on optical thermography and vibrothermography, as both
techniques are widely used for defect quantification in CFRP material but differ in their
excitation methods. Pulsed thermography has advanced significantly, integrating this
technique with advanced signal-processing techniques such as variants of the principal
component analysis (PCA), and deep learning, leading to improvements in defect char-
acterization and quantification [16,17]. In contrast, vibrothermography has seen fewer
advancements in image-processing techniques, with most studies still relying on traditional
image-processing methods such as traditional PCA, thermographic signal reconstruction
(TSR), and pulsed-phase thermography (PPT). However, recent work has introduced mani-
fold learning in low-power vibrothermography, demonstrating its potential for improved
defect detection [18]. Despite this progress, such image-processing enhancements remain
rare and have not been widely adopted, unlike the more extensive developments seen
in pulsed thermography. Existing reviews provide broad overviews of thermographic
techniques but lack comparative studies on their image-processing evolution. This re-
view addresses that gap by analyzing the development of both techniques, identifying
challenges in vibrothermography, and exploring opportunities for integrating advanced
image-processing methods to the low-power vibrothermography.

This literature review examines the state-of-the-art developments in optical thermog-
raphy and vibrothermography for defect quantification. Additionally, it explores the role of
advanced image-processing techniques in enhancing the accuracy of lateral defect detection
and quantification. Special attention is given to the application of PCA and its variants,
evaluating their significance in improving defect detection and quantification in both vi-
brothermography and optical thermography. By investigating the implementation of these
techniques, this review aims to identify opportunities to bridge methodological gaps and
advance the reliability of non-destructive evaluation methods for composite materials.

1.1. Factors Affecting the Accuracy of the Defect Quantification

The accuracy of thermographic defect detection in composite materials is influenced
by several factors. According to Anwar et al. [19], environmental conditions such as ambi-
ent temperature, background reflections, and surface emissivity can significantly impact
thermographic measurements. Optimising these parameters is essential for achieving
accurate defect detection. Material properties also play a critical role in detection accuracy.
A study by Popow et al. [20] found that CFRP often exhibits anisotropic and inhomoge-
neous thermal properties, which can complicate defect detection. The microstructure of
CFRP materials affects heat conduction, leading to challenges in accurately quantifying
defects. Additionally, defect characteristics such as size, depth, and thickness influence
detection accuracy. Qu et al. [21] found that smaller defects or those located deeper within
the material are more challenging to detect due to heat-diffusion losses. Yang et al. [22]
further emphasized that deeper defects exhibit lower thermal contrast, making them harder
to distinguish from the surrounding material.



Sensors 2025, 25, 1847 3 of 27

Thermal camera specifications play a crucial role in improving the detection and
accuracy of defect quantification. Aldave et al. [23] compared three infrared (IR) cameras
with varying specifications, which are FLIR SC5000 (MWIR, 320 × 256 pixels, Indium
Antimonide), ImageIR 8300 (MWIR, 640 × 512 pixels, Indium Antimonide), and ImageIR
8800 (LWIR, 640 × 512 pixels, Mercury Cadmium Telluride). Specifically, the higher-
resolution MWIR camera, the ImageIR 8300 (MWIR, 640 × 512 pixels), achieved the highest
defect contrast, particularly for subsurface defects. In contrast, the ImageIR 8800 (LWIR,
640 × 512 pixels) exhibited lower contrast in CFRP due to greater sensitivity to background
reflections and limited penetration depth, while the FLIR SC5000 (MWIR, 320 × 256 pixels)
struggled with detecting small and deep defects due to lower spatial resolution. The study
evaluated these cameras in detecting defects in composite materials (CFRP and Glass Fiber
Reinforced Polymer (GFRP)) using active thermography methods, including Optical Pulsed
Thermography (OPT) and Optical Lock-in Thermography (OLT). The results showed that
camera resolution, spectral range, and detector type significantly impact defect-detection
accuracy.

Another significant factor affecting thermography accuracy is noise and outliers in
the thermal data. Ebrahimi et al. [24] highlighted that these artifacts can obscure defect
signals, leading to undetected defects. To address this issue, advanced image-processing
techniques are required to enhance defect detectability. All those factors mention above
should be aware when conducting the thermographic testing.

1.2. Fabrication of Controlled Defects for Thermographic Inspection

Artificial defects in composite materials are critical for advancing NDT techniques.
As defined by Heslehurst et al. [25], a material or structural defect is “any unintentional
local variation in the physical state or mechanical properties of a material or structure that
may affect the structural behaviour of the component”. Creating controlled defects allows
researchers to simulate real-world damage scenarios, enabling the precise calibration and
validation of NDT methods. These benchmarks ensure that NDT tools can reliably detect
and characterise flaws under actual service conditions [26]. Several research groups have
employed different methodologies to simulate defects on composite samples. Liu et al. [27]
developed the 12′′ × 12′′ CFRP coupon as the test specimen by introducing square-shape
teflon between specific layers to mimic the delamination defect. A similar methodology was
conducted by Andleeb et al. [28], where they developed the carbon-fiber prep-reg laminate
sample with a dimension of 450 mm× 500 mm and about 2 mm thick. To achieve artificial
delamination, circle-shaped teflon spacers of different diameters were introduced between
preferred layers of the sample. This setup allowed for known positions and sizes of the
delamination. Shang et al. [29] fabricated test samples from E-glass fiber and epoxy resins.
A delamination was fabricated by inserting a piece of teflon tape between the chosen layer.
In addition to the delamination, disbound defects are also the object of research interest. To
fabricate artificial disbounds, Ptaszek et al. [30] have tapped the hole and inserted a screw
with thermally conductive grease. This modification creates a variable-thickness air gap,
which more accurately mimics the behavior of real adhesive disbonds under thermographic
inspection. Additionally, quartz grains or micro-spacers have been introduced between
bonded layers to replicate real-world bonding inconsistencies. Researchers are also us-
ing a flat-bottomed hole for defect simulation on the composite material. For example,
Wu et al. [31] utilised a GFRP composite board with six machined flat-bottom holes ar-
ranged in two rows and three columns. Fernandes et al. [32] used CFRP test specimens that
have flat-bottom holes. CFRP is 2.2 mm thick and 148.5 mm × 185 mm in length and width.
Barely visible impact damage (BVID) is a type of damage that occurs in CFRP laminates
as a result of low-speed impact events, such as dropped tools or debris [33]. It is called
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“barely visible” because the damage may not be readily apparent to the naked eye, but it
can still significantly affect the structural integrity of the laminate [34,35]. To manufacture
composite specimens that exhibit BVID, Deng et al. [33] created CFRP specimens with sizes
150 mm × 100 mm × 3 mm. The drop-impact test was performed on each sample using
predetermined impact energy levels of 4 J, 6 J, 8 J, 10 J, and 12 J. The impact was executed
by the free fall of a hemispherical indenter weighing precisely 2.281 kg. Tan et al. [34]
created damage in their CFRP sample using a quasi-static indentation (QSI) by following an
ASTM-D6264-17. Katunin et al. [35] introduced low-velocity impact damage with impact
energy 3 J, 6 J , and 9 J to their GFRP sample. In conclusion, creating controlled defects
in composite materials is essential for refining NDT techniques. These defects allow re-
searchers to simulate real-world damage, ensuring that NDT methods can reliably detect
and assess structural flaws.

2. Vibrothermography and Optical Thermography Overview
2.1. Vibrothermography Overview
2.1.1. Basic Principles of Vibrothermography

Vibrothermography, also known as thermosonics or ultrasound thermography, is an
NDT technique initially proposed by Henneke et al. [36]. This method integrates ultrasound
excitation with infrared (IR) thermal imaging and is particularly effective for detecting and
quantifying damage in composite materials [36].

The fundamental principle behind vibrothermography is that when an object is sub-
jected to ultrasound, it generates vibrations that produce heat at defect sites due to friction
and internal damping [36]. This heat is detectable with an infrared camera, allowing for
the identification and measurement of the defect’s characteristics [36–38].

A vibrothermography system typically consists of two main components: an infrared
camera for capturing the evolution of the surface-temperature distribution of the specimen
and an ultrasound system to generate excitement in the specimen. The system is further
complemented by a clamping mechanism and a computer for data analysis [37,39]. To
enhance ultrasound transmission, a coupling material is recommended to be placed be-
tween the transducer and the specimen, as it not only improves ultrasound transmission
but also protects the specimen and prevents misalignment [40]. Experimental findings
by [41] revealed that rigidly fixing the specimen at both ends significantly improved crack
detection in vibrothermography. This method enhanced the reflection of mechanical waves,
thereby converting more mechanical energy into thermal energy at the cracks. Figure 1
provides a typical experimental setup for low-power vibrothermography.

Figure 1. Low−power vibrothermography experiment setup. Image is adapted from Liu et al. [42].
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2.1.2. Heat Generation on the Vibrothermography

Rather than employing an external heat source, such as a lamp, as the excitation system,
vibrothermography utilises ultrasound or vibration for excitation [36]. The nature of heat
generation in vibrothermography has intrigued researchers, prompting them to investigate
this phenomenon. According to [43], there are three primary sources of heat generation in
vibrothermography: frictional heating, plasticity-induced heat generation, and viscoelastic
heating. In vibrothermography, frictional heating occurs through vibration-induced rub-
bing between crack faces. When high-amplitude vibrations are applied, the crack surfaces
rub against each other at small points known as asperities. This intense friction causes
heat due to high stress and rapid movements at these points [44]. Additionally, plastic
deformations generate heat as cracks propagate, creating thermal energy in the plastic zone
beyond the tip of the crack, in conjunction with friction [45]. Viscoelastic phenomena, on
the other hand, are particularly relevant to polymeric composites. Many components made
of polymeric composites undergo intense vibration during operation [46]. Due to the vis-
coelastic nature of these materials, stress and strain amplitudes may oscillate out of phase,
leading to energy dissipation [46]. Since most polymers have low thermal conductivity,
this dissipated mechanical energy translates into heat [46].

Research highlights viscoelasticity as the dominant mechanism contributing to heat
generation in disbanding areas of composite plates during vibrothermography tests [47].
Katunin et al. and Wachla et al. [48,49] further proposed a self-heating-based thermogra-
phy approach, where the specimen is excited at its resonant frequency, generating heat via
a viscoelastic effect known as self-heating. Vaddi et al. [50] suggested that vibrothermog-
raphy can also be used to measure the loss modulus of viscoelastic polymer materials at
high frequencies.

2.1.3. Frequency Dependence in Vibrothermography

The excitation frequency plays a critical role in determining the efficacy of this tech-
nique [51]. Studies have demonstrated that specific frequencies yield a markedly higher
thermal response from defects. For instance, Pieczonka et al. [51] observed that CFRP gen-
erates more heat when using a broadband excitation source. A study by Solodov et al. [52]
advocated for the utilization of ultrasonic waves excited at the local-defect-resonance (LDR)
frequency to enhance defect detection. Applying the LDR frequency facilitates high-contrast
imaging within the milliwatt power range [53], potentially eliminating the necessity for
high-power ultrasonic excitation [54] and advancing remote ultrasonic thermography via
air-coupled ultrasonic excitation [53].

Despite the advantages of using the LDR frequency in vibrothermography, such as re-
duced specimen damage due to lower power requirements, determining the LDR frequency
necessitates additional procedures. Solodov et al. [55] introduced an analytical method
to estimate the LDR frequency for flat-bottom holes. The principle involves recognizing
that the presence of a defect reduces both local mass and stiffness, resulting in a natural
frequency change. When the excitation frequency matches the defect’s local frequency, it
induces local defect resonance. The local-defect-resonance frequency ( fLDR) derived from
the effective stiffness (Keff) and effective mass (Meff) can be expressed as [53,55,56]:

fLDR =
1

2π

√
Keff
Meff

(1)

For a circular flat-bottomed hole (FBH) defect with radius R and thickness h, the
effective rigidity and mass are given by [55]:

Keff =
192πB

R2 , Meff = 1.8 m (2)
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B =
Eh3

12(1− v2)
(3)

where B is the bending stiffness, m is the residual mass of the flat-bottom hole, defined
as m = πρhR2, E is Young’s modulus, ρ is the mass density of the specimen, and v is the
Poisson ratio of the material. Using Equations (1)–(3), the resonant LDR frequency for a
circular flat-bottom hole can be approximated as:

fLDR ≈ 1.6
h

R2

√
E

12ρ(1− v2)
(4)

Alternatively, numerical simulation such as COMSOL version 6.3 Multiphysics [57,58]
can be used to determine the local-defect-resonance frequency. However, an understand-
ing of how to simulate the vibrothermography is required. Another method involves
employing a laser vibrometer and a broadband piezoelectric actuator to identify all poten-
tial resonances within a sample at each point [58–60]. Recent numerical simulations by
Guo et al. [61] suggest that defect characteristic frequencies may enhance the detection of
hidden defects more effectively than the local-defect-resonance frequency, though further
experimental validation is required.

In terms of excitation signal application, vibrothermography is primarily conducted
using three methods: ultrasound lock-in thermography, ultrasound burst-phase thermog-
raphy, and ultrasound sweep or modulation frequency thermography [62]. Ultrasound
lock-in thermography employs amplitude modulation ultrasound as the excitation [63,64].
Dillenz et al. [65] demonstrated that this technique can detect defects without damaging
the part, proving useful in maintenance testing. Its feasibility in detecting hidden corrosion
in metal, vertical cracks in ceramic materials, delaminations in wood, and impact damage
in CFRP materials has been demonstrated [66].

Ultrasound burst-phase thermography uses short sonic bursts to excite the sample, re-
vealing defects within a narrow frequency range with reduced noise and shorter measuring
times [67]. In contrast to single-frequency techniques like ultrasound lock-in and burst-
phase thermography, Zweschper et al. [64] proposed using the frequency modulation of a
sinusoidal signal, which significantly improves damage detectability by eliminating stand-
ing wave patterns. In summary, selecting the appropriate frequency and amplitude signal
for the specific material and defect type can enhance detectability and avoid high-power
excitation that could harm the specimen.

2.2. Optical Thermography Overview
2.2.1. Variants of the Optical Thermography

The optical thermography approach varies depending on the kind of external optical
heat source employed to generate heat on the sample’s surface and the corresponding
heating mechanism. Two common thermal excitation sources are an optical flash or lamp
and an optical laser. The optical flash or lamp-based techniques include pulsed thermog-
raphy (PT), lock-in thermography (LT), step-heating thermography (SHT), long-pulse
thermography (LPT), frequency-modulated thermography (FMT), while the optical laser-
based techniques consist of laser-spot thermography (LST), and laser-line thermography
(LLT) [15,68]. According to Yang et al. [15], optical thermography consists of pulsed
thermography, square-pulse thermography, step-heating thermography, lock-in thermog-
raphy and frequency-modulated thermography thermography. This section will discuss
the fundamental principle of common optic-based thermography that is being used to
detect damage in the composite which is pulsed thermography, lock-in thermography,
step-heating thermography and frequency-modulated thermography. Figure 2 depicts a
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kind of excitation function signal to conduct pulsed thermography, lock-in thermography,
step-heating thermography, and the frequency-modulated thermography experiment.

Figure 2. Excitation function of (a) pulsed thermography, (b) lock-in thermography, (c) step-heating
thermography, and (d) frequency-modulated thermography. Image is adapted from Yang et al. and
Ciampa et al. [15,68].

2.2.2. The Basic Principle of Pulsed Thermography

Pulsed thermography was first introduced by Parker [69]. Pulsed thermography is a
non-destructive evaluation technique that uses a short pulse of heat, often from a xenon
flash tube, applied to the material surface, causing heat diffusion that reveals subsurface
defects as surface-temperature variations detectable by a thermal imager, such as a scanning
infrared camera [70,71]. Figure 3 shows the pulsed thermography experiment to detect a
sample with internal defects.

Figure 3. Pulsed thermography experiment setup. Image is adapted from Pereira et al. [72].
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The analysis of the thermal response over time is crucial for identifying and character-
ising defects [73]. Thermal defect detection relies on heat conduction or diffusion on the
solid [73]. By solving the heat-flow equation and considering specific boundary conditions,
the variation of the temperature over time on the surface of the specimen can be estimated.
The fundamental equation governing this process is the Fourier equation [74,75]:

∂T
∂t

= α∇2T (5)

where T represents temperature, t is time, and α = k
ρc . The variable α defines thermal

diffusivity (m2/s); k represents thermal conductivity (W/mK), ρ represents density (kg/m3),
and c represents specific heat (J/kgK). However, the direct application of this equation
necessitates several simplifying assumptions. This includes adiabatic conditions (neglecting
heat loss), isotropic material properties, and opaque materials, which are often not met in
practical situations and lead to inaccuracies [73]. Lau et al. [75] simplify Equation (5) by
assuming the specimen is uniformly heated, and the conduction process is regarded as a
one-dimensional heat-flow process. The equation becomes:

∂T
∂t

= α
∂2T
∂x2 (6)

where x represents the depth beneath the material’s surface. From Equation (6), the surface
temperature of a semi-infinite half-space specimen after impulse heating or Dirac pulse
heating can be determined by this equation [74,76]:

T(x, t) =
Q√

πρckt
e−

x2
4at (7)

where T(x, t) represents the temperature variation at a depth x below the surface at a time
t following a uniform heat impulse Q (J/m2) applied at the surface (x = 0) at time t = 0.
The temperature evolution at the surface (x = 0) that was scanned by the IR camera will be
T(0, t) [76]:

T(0, t) =
Q√

πρckt
(8)

2.2.3. Basic Principle of Lock-In Thermography

Lock-in thermography (LT) works by applying a periodic heat source to a specimen’s
surface while simultaneously capturing its thermal response using an infrared camera.
The periodic heat creates thermal waves that travel through the material, and defects alter
the wave propagation by causing phase-delay and amplitude changes in the detected
thermal signal. The time delay (phase shift) between the applied heat and the surface
response reveals the location and the depth of the defect [77]. Fourier’s law describes the
propagation of periodic thermal waves in semi-infinite homogeneous material and can be
mathematically expressed as [63,78]:

T(z, t) = T0e−
z
µ cos

(
2πz

λ
−ωt

)
(9)

where T0 is the initial temperature change at the surface of the material, measured in
degrees Celsius (◦C). The parameter ω = 2π f represents the angular modulation frequency,
given in radians per second (rad/s), while f denotes the excitation frequency of the applied
thermal wave, expressed in hertz (Hz).

The thermal wavelength λ describes the spatial cycle of the thermal wave and is
given by:
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λ = 2πµ (10)

The thermal diffusion length µ, which determines how deeply the thermal wave can
penetrate before significant attenuation, is expressed in meters (m) and is defined as:

µ =

√
2α

ω
=

√
α

π f
(11)

Thermal diffusivity α is a fundamental property of the material that influences the propaga-
tion of heat.

The amplitude and phase delay in lock-in thermography can be determined when the
periodic excitation waveform is known. From Figure 4, if both the excitation signal (I) and
the thermal-response signal (S) exhibit sinusoidal behaviour, the amplitude and phase shift
can be extracted using four sampled data points per modulation cycle. These values are
computed using the following mathematical expressions [79]:

A =
√
(S1 − S3)2 + (S2 − S4)2 (12)

φ = arctan
(

S1 − S3

S2 − S4

)
(13)

where A represents the amplitude of the thermal response. φ is the phase shift of the thermal
wave. S1, S2, S3, and S4 are four evenly spaced sampling points within one modulation cycle.

Figure 4. Amplitude and phase extraction from a sinusoidal thermal excitation. Image is adapted
from Busse et al. and Castanedo [79,80].

2.2.4. Basic Principle of Frequency-/Phase-Modulated Thermography

Frequency-modulated thermography (FMT) involves the use of a frequency-modulated
thermal wave to excite the sample. Unlike lock-in thermography, which only uses a single
frequency, FMT employs a range of frequencies, allowing for a more comprehensive analy-
sis of the material’s subsurface features [81]. Mulaveesala et al. [82] present an analytical
analysis of frequency-modulated thermography to predict the temperature distribution on
the surface of the sample, considering the effects of frequency-modulated thermal-wave
propagation. Tuli et al. [83] introduced a frequency-modulated thermography method that
overcomes the requirement of a high-peak-power heat source, a limitation in conventional
pulsed thermography, and lock-in thermography’s limited depth resolution because of a
fix regarding the modulating frequency. Rani et al. [84] combine the frequency-modulated
thermography and correlation-based pulse-compression approach, significantly enhancing
the sensitivity and resolution for detecting deeper defects in CFRP samples compared to
conventional data-processing methods. While frequency-modulated thermography offers
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numerous advantages, it is important to consider the limitations and challenges associated
with its implementation. For instance, the complexity of the modulation techniques and the
need for precise control over the heating source can pose challenges in practical application.

2.2.5. Basic Principle of Long-Pulse Thermography and Step-Heating Thermography

Long-pulse thermography (LPT) and step-heating thermography (SHT) are the NDT
techniques that involve applying continuous heating for a long duration instead of the
short, high-intensity pulses used in flash thermography [68]. The key distinction between
the two methods lies in their data acquisition approach. In SHT, thermal data are recorded
while the heat is being applied, whereas in LPT, the thermal response is captured during
the cooling phase, after the heating source has been removed [85]. The application of
long-pulse thermography (LPT) is limited due to its susceptibility to noise from environ-
mental radiation and reflections, which can lead to blurry images that hinder accurate
defect detection. To tackle the issue of low contrast and blurred edges on the raw data of
long-pulse thermography, Wie et al. [86] proposed a novel method for processing infrared
image sequences using Fourier transform, phase integration, and edge-preserving filters,
which enhances the visualisation of defects in composite materials. Anwar et al. [19] used
an uncooled microbolometer and a low-resolution infrared (IR) camera combined with
an image-segmentation technique to detect the defect in glass-fiber-reinforced polymer,
offering a cost-effective and efficient method for defect assessment with minimal tools.
Instead of dealing with artificial damage, Santo et al. [87] attempted to detect real-life
damage using the integration of LPT with statistical and machine learning to process the
data. A study found that Fuzzy-c clustering outperforms skewness, kurtosis, and PCA
in detecting scalpel-blade defects. Step-heating thermography is particularly suited for
inspecting thick composite structures, as it allows for deeper defect detection by applying
a continuous, low-intensity heat flux over an extended period. A study conducted by
Tromaras et al. [88] on the thick monolithic CFRP (20 mm thickness) and sandwich CFRP
with the polyethylene terephthalate (PET) foam core. Their findings revealed that defects
up to 10 mm depth were detected in a monolithic CFRP sample using SHT, whereas only
front skin defects were identified in the CFRP–PET foam–CFRP sandwich component.
The challenges of inspecting thick composites using SHT were attributed to low surface
emissivity, the significant thickness of the samples, and the thermal diffusion limitations
imposed by insulating core materials. A comparison study between pulsed thermogra-
phy and step-heating thermography conducted by Nategh [89] reveals that step-heating
thermography is better suited for material with lower thermal diffusivity such as steel,
whereas pulsed thermography application is more effective in a material with higher ther-
mal diffusivity, such as aluminium. Overall, the selection between LPT, SHT, and pulsed
thermography should be guided by material properties, defect characteristics, and testing
constraints. Future advancements in heating techniques and image-processing algorithms
will be crucial for further improving the accuracy and applicability of these NDT methods
across a broader range of materials and defect types.

3. Damage Quantification by Vibrothermography and
Optical Thermography
3.1. Damage Quantification by Vibrothermography

This section reviews how vibrothermography quantifies or characterises the damage
exhibited in the materials. Damage quantification is a critical step following damage
identification and localisation.

Vibrothermography has emerged as a promising method for identifying and character-
izing defects, particularly in composite material. Two key studies, those by Zhao et al. [90]
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and Obeidat et al. [91], propose analytical models to describe the relationship between
temperature change and defect depth. While both approaches use 1D heat-diffusion models
and validate them through experimental measurements, their methodologies differ in how
they extract meaningful parameters from the temperature vs time curve. Zhao et al. [90]
directly relate the defect depth to the second derivative of the temperature vs time curve,
then applying polynimial fitting to the experimental data to extract depth information.
While Obeidat et al. [91] employ a linear fitting approach, correlating defect depth with
half-maximum power time (the time at which the temperature reaches half its peak value),
peak slope time (the time corresponding to the highest rate of temperature change) and
second-derivative peak time (a feature extracted from the second derivative of the thermal
curve). Although both studies successfully demonstrate defect depth quantification using a
conventional vibrothermography technique, both studies rely on a 1D heat-diffusion model,
which simplifies the real-world heat-transfer effect. Both studies also assume that defects
have a circular shape, limiting their applicability to more complex defect geometries that
are common in real-world composite structures. Below is the analytical model proposed by
Zhao et al. [90]:

T(0, t) =d
∞

∑
n=−∞

[
t−

1
2 e−

g
t −√gπ +

√
gπ erf

(√
g
t

)]

− d
∞

∑
n=−∞

[
t−

1
2 e−

f
t −

√
f π +

√
f π erf

(√
f
t

)] (14)

where T(0, t) represents the surface temperature at time t above the defect. The material-
dependent coefficient d is defined as:

d =
16ρcπα1

(4πα1α2α3)
3
2

(15)

where ρ is the density of the material (kg/m3), c is the specific heat capacity (J/kg·K), and
α1, α2, α3 are the thermal diffusivities in the three principal directions (m2/s).
The heat-diffusion terms f and g are expressed as:

f =
α3R2 + (b− 2na)2α1

4α1α3
(16)

g =
(b− 2na)2

4α3
(17)

where b is the defect depth (m), R is the defect radius (m), a is the sample thickness (m),
and n represents the thermal-wave reflection index.

A key challenge in vibrothermography is the application of defect-depth quantification
using conventional high-power excitation methods. Given that low-power vibrothermog-
raphy minimizes the thermal impact while maintaining defect detectability, an important
question arises: can the existing analytical models be adapted to low-power vibrothermog-
raphy to quantify defect depth in composite materials? Further investigation is needed
to determine whether the same thermal diffusion principles hold under low-energy ex-
citation conditions, potentially expanding the applicability of vibrothermography in the
structural-health monitoring of composite materials.

Several researchers have attempted to quantify defects by combining low-power
vibrothermography with image-processing techniques. Figure 5 illustrates the general
procedure for defect quantification, which is commonly used to assess lateral defects in
specimens using low-power vibrothermography. This approach has been widely adopted
by researchers, including Wei et al. [92]. Their study explores the application of low-power
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vibrothermography for detecting coating debonds in thermal barrier coatings using a piezo-
ceramic actuator. The study finds that PCA processing yields the highest signal-to-noise
ratio (SNR) and temperature contrast, outperforming fast Fourier transform and thermo-
graphic signal reconstruction. Their study uses a specimen (Q235 steel substrate with
zirconia coating) containing five coating debonds of varying diameters, allowing them to
examine how defect size affects detection. However, the study does not consider the varia-
tion of the coating thickness and focuses solely on lateral defect detection. It is also required
to find out whether low-power vibrothermography can be effectively applied to detect
debonds in composite-based coatings, such as CFRP coatings. Huang et al. [93] investigate
the application of low-power ultrasonic thermography to detect and quantify artificial
delamination in CFRP composites. The authors employ three signal-processing techniques,
which are thermal signal reconstruction, PCA, and fast Fourier transform. Similar to the
study conducted by Wei et al. [92], the study also found that PCA outperforms the two
other signal-processing techniques. The study evaluates how wave-propagation distance,
delamination size and defect depth influence detectability. The specimen being used has
varying diameter (3 mm to 12 mm) and depths (0.375 mm to 2.25 mm). This controlled
approach allows for the detailed investigation of how defect parameters affect detection
sensitivity. The study highlights that wave propagation distance influences defect visibility,
with defects closer to the ultrasonic source exhibiting higher temperature contrast. Even
though the study could capture delamination defects as small as 5 mm in diameter and at a
depth of 1.5 mm, investigating the local defect resonance of the specimen beforehand may
improve detectability. The study exclusively uses circular-shaped artificial delaminations.
Future studies should incorporate variations in the shape of the delamination defect, such
as squares, triangles, or irregular geometries. The study conducted by Liu et al. [42] presents
a quantitative detection framework for identifying and quantifying corrosion defects in
CFRP-strengthened steel structures using low-power vibrothermography. Unlike the study
by Wei et al. [92], which used finite-element modeling (FEM) solely to estimate the local
defect resonance of the specimen, their study employs FEM both to determine a suitable
excitation frequency for the experiment and to simulate heat generation under ultrasonic
excitation. The FEM predictions of temperature distribution help optimize experimental
conditions, ensuring improved defect detectability. Generally, the defect quantification
procedure follows the approach illustrated in Figure 5, with the key contribution being its
feature enhancement method, which reduces noise and refines segmentation to improve
defect quantification. Additionally, Otsu’s segmentation, similar to the image-segmentation
techniques used by Wei et al. [92] and Huang et al. [93], further improves the accuracy
of corrosion defect quantification. In their study, the fast Fourier transform and partial
least-squares regression algorithm is more suitable compared to the PCA and independent
component analysis algorithm in conducting the feature extraction process. It should be
noted that this study focuses exclusively on lateral defect detection on the regular shape
corrosion (circle shape), without addressing the thickness of the corrosion. It is also needed
to develop a simulation of the low-power vibrothermography to the other composite defect,
such as BVID, and the delamination defect on the composite material.

Figure 5. General procedure of low-power vibrothermography defect quantification involving image-
processing technique
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BVID is a critical concern in composite structures, as it can lead to significant struc-
tural degradation without visible surface damage [34]. One of the main challenges in
detecting and quantifying the BVID is that the defect shape and position are unknown
beforehand, unlike artificial delaminations or debonds that are pre-defined in controlled
experiments. Therefore, validation or a reference method is required to confirm detec-
tion accuracy. Several studies have been conducted to quantify this type of defect using
low-power vibrothermography. Xu et al. [94] performed a comparative study between
low-power vibrothermography and terahertz imaging. The raw image data are processed
following the procedure illustrated in Figure 5, where independent component analysis
and Fourier transform are applied for image processing, followed by thresholding-based
image segmentation. The study reveals that vibrothermography is more effective in de-
tecting deeper defects compared to terahertz imaging. However, the experimental setup
does not specify the excitation frequency applied to the three CFRP specimens (with 5 J,
15 J, and 25 J impact damage), making it difficult to replicate the experiment accurately.
Zhang et al. [18] introduce an innovative image-processing approach for BVID in CFRP
composites using manifold learning. Among variants of manifold learning algorithms, they
prefer the local tangent space alignment (LSTA) algorithm in combination with ultrasonic
thermography (UT). The study focuses on lateral defect detection without attempting to
quantify defect depth. In terms of the validation, while the authors compare their results
to pulsed thermography and long-pulse thermography, both methods fail to detect 12 J
BVIDs, leaving the LTSA-based ultrasonic thermography approach without a reliable
reference for result verification. Another machine learning or deep learning-based image-
processing and image-segmentation method for improving defect quantification may need
to be investigated.

The study conducted by Liu et al. [95] presents a different approach to detecting BVID
by relying on raw thermal image data instead of image-processing techniques for defect de-
tection. The raw image data are obtained using a narrowband sweep-frequency excitation,
which enhances defect contrast and improves visibility in BVID inspections. However, the
experiment requires laser Doppler vibrometry for pre-measurement, adding complexity
to the setup. One of the most interesting aspects of this study is its validation method;
rather than using another NDT technique, the authors physically cut the specimen in half
to directly inspect the internal structure and confirm the presence of the defect. This direct
validation approach ensures defect identification, eliminating uncertainties. A LDR-based
vibrothermography study was also conducted by Sharma et al. [96]. Unlike Liu et al. [95],
who focus on optimizing sweep duration, their study compares the effectiveness of the
forward-sweep excitation and backward-sweep excitation to enhance the flat-bottomed
hole and BVID of CFRP detection. The study reveals that backward-sweep excitation leads
to higher defect vibration amplitudes and improved thermal contrast. Their study also
incorporates laser Doppler vibrometry for LDR frequency measurement, but instead of
relying solely on thermal imaging for defect detection, they employ phased-array ultra-
sound testing (PAUT) as an independent verification method. This additional validation
step strengthens the reliability of their findings by confirming defect locations and areas of
the defect.

Further advancements in vibrothermography have explored its integration with other
NDT techniques. The study conducted by He et al. [97] introduces an innovative ap-
proach for detecting BVID in CFRP structures by combining nonlinear ultrasound (NU)
and vibrothermography under a shared excitation setup. This integration enhances energy
efficiency and detection sensitivity while eliminating the need for separate NDT setups.
Additionally, the nonlinear ultrasonic response serves as an independent validation of
defect existence by detecting higher-order harmonic components associated with damage.
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The study employs fast Fourier transform processing to improve the defect visibility. Addi-
tional image-processing methods, such as PCA or thermal signal reconstruction, could be
explored to further enhance defect contrast. Additionally, image-segmentation techniques
could be applied to quantify defect areas and provide more precise defect measurements.
Liu et al. [98] introduce an integrated Leaky Lamb Wave (LLW) and low-power vibrother-
mography technique for detecting debonding defects in CFRP-strengthened steel structures,
optimizing excitation-frequency selection using the Sweep Frequency–Nonlinear Response
(SFNR) method. Their approach enhances detection sensitivity and defect quantification
while reducing complexity through a shared excitation source. A key innovation is the use
of an air-coupled ultrasonic transducer, enabling non-contact detection and minimizing
direct coupling effects. The study employs fast Fourier transform filtering and Otsu’s seg-
mentation for thermal image processing, improving defect contrast and enabling automatic
defect region extraction and size quantification. While their methodology was applied to
debonding defects in CFRP-steel interfaces, it could also be extended to BVID detection in
composite materials or artificial delamination studies. Other advanced feature-extraction
techniques and other image-segmentation techniques could also be investigated that may
improve the accuracy of the defect quantification.

Low-power vibrothermography has shown great potential for defect detection and
quantification, particularly in composite materials. While advancements in analytical mod-
eling and image-processing techniques have improved defect characterization, challenges
remain in accurately quantifying defect depth, especially under low-power excitation. The
integration of advanced signal processing, adaptive frequency selection, and hybrid NDT
techniques offers promising directions for improving detection sensitivity and accuracy.
Future research should focus on refining defect-depth quantification and exploring more
robust feature-extraction and image-segmentation techniques, such as deep learning-based
image processing, to enhance defect assessment in complex structures.

3.2. Defect Quantification Using Optical Thermography

This section will examine the application of optical thermography techniques for defect
quantification. The effectiveness of this technique in quantifying defect size and depth
will be analyzed, particularly in composite structures and aerospace applications. The
discussion will highlight recent advancements, key challenges, and potential improvements
in optical thermography for defect characterization. Special attention is given to heat
conduction models, signal-processing techniques, and limitations in current methodologies.

3.2.1. Heat Conduction Models for Defect Quantification

To better understand heat diffusion and defect quantification, several analytical mod-
els have been developed. One of the foundational models, proposed by Lau et al. [75],
describes the surface-temperature evolution of a homogeneous specimen while considering
subsurface defects as a semi-infinite air gap at depth d:

T(0, t) =
Q√

πρckt

[
1 + 2

∞

∑
n=1

Rne−
(nd)2

4αt

]
(18)

Extending from Equations (7) and (8), this equation models surface-temperature variations
after a pulsed thermal excitation. The first term represents the temperature decay in a
homogeneous solid following a Dirac delta pulse of thermal energy Q. The second term
accounts for thermal reflections at the defect interface, where R is the reflection coefficient,
and multiple reflections are considered through the summation term.
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To improve upon this model, Almond et al. [76] introduced a finite defect model that
incorporates lateral heat-diffusion effects at the defect’s boundary:

T(0, t) =
Q√

πρckt

[
1 + 2

∞

∑
n=1

Rne−
(nd)2

4αt

]
·
(

1− e−
(D/2)2

4αt

)
. (19)

This modification considers the defect as a finite-diameter flaw with diameter D and depth
d, accounting for lateral heat diffusion, which influences surface-temperature distribution.

Building on this concept, Manohar et al. [99] developed a three-dimensional heat-
conduction model to analyze heat flow around finite-sized defects in quasi-isotropic com-
posite materials. The model calculates the excess surface temperature over a defective area
compared to a defect-free region:

Te = abδ
h1h2d T0

(
1 + ∑∞

n=1
2h1
nπa sin

(
nπa
h1

)
e−tα

(
nπ
h1β

)2
)

×
(

1 + ∑∞
m=1

2h2
mπb sin

(
mπb

h2

)
e−tα

(
mπ
h2β

)2
)

×

1 + ∑∞
k=1 2(−1)ke

−tα
(

kπβ2
d

)2.

(20)

Here, α = (K2
pKz)1/3 represents the effective thermal diffusivity, and β =

(
Kz
Kp

)1/6
is the

thermal conductivity ratio. d denotes the defect depth from the surface, and t is the time
after the heat pulse, where Kz and Kp represent through-thickness and in-plane thermal
conductivities, respectively. a and b define half the length and width of the defect, while
h1 and h2 define half the length and width of the heated region. δ represents constant
absorption thickness, and T0 is the initial heat-pulse magnitude. This 3D heat-conduction
model improves defect quantification by incorporating material anisotropy, heat-diffusion
directionality, and thermal conductivity variations.

3.2.2. Lateral Defect Quantification on Composite Material Using Optical Thermography

Lateral defect quantification is a crucial aspect of defect characterization, as it pro-
vides information on the size and spatial extent of a defect within a composite material.
Optical thermography techniques, particularly pulsed thermography, have been widely
used to extract lateral defect dimensions by analyzing thermal contrast, phase analysis,
and image-processing techniques. This section will review various methodologies pro-
posed in the literature for lateral defect quantification. In quantifying the defect size,
Almond et al. [100,101] proposed the estimation of the size of the defect by using the Gaus-
sian full-width half-maximum (FWHM) method. The estimation of the defect size is
determined by drawing a line profile across the defective region, where the temperature
distribution follows a Gaussian pattern, and measuring the full width at half maximum
(FWHM). However, since FWHM decrease over time, obtaining measurements at an early
stage yields more accurate results [102,103]. Zhu et al. [104] introduces the Temperature
Integral Method (TIM), which determines defect size by integrating temperature values of
each pixel across an area of defect to estimate the defect sizes. The defect size is given by:

D(i) =
Tsum − LB

∆T
(21)

where Tsum = total summed temperature values along the profile line; LB is the back-
ground temperature contribution from the non-defective area; ∆T = Td − Ts stand for the
temperature difference between defective (Td) and non-defective (Ts) regions. To ensure
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accurate measurement, TIM finds the characteristic time (ti) at which the defect size should
be measured:

ti =
0.0031

α

(
Tsum − LB

∆T

)2
(22)

where α is the thermal diffusivity of the material. Unlike FWHM, which estimates defect
size at an early stage of heating to minimize errors, TIM focuses on finding the precise
moment (characteristic time) when defect size can be calculated most accurately. The paper
also suggests combining the TIM method with the thermal signal reconstruction (TSR)
method. However, TIM requires knowledge of the material’s thermal diffusivity (α), which
may limit its practical application.

Several researchers use the image-processing technique combined with the image-
segmentation technique to estimate the defect size of the specimens. Wang et al. [105]
conducted a comparative study between long-pulse thermography, pulsed thermography,
and step-heating thermography for the detection of flat-bottomed hole defects in GFRP
and CFRP. Their study involved Absolute Thermal Contrast (ATC), thermographic signal
reconstruction, Phase Fourier Analysis, and PCA’s image-processing technique. The study
reveals that the combination of LPT and PCA demonstrated the highest defect-detection
capability, particularly for deep-seated defects. The study relies on artificial defects (flat-
bottomed holes), which may not fully represent real-world damage, such as delaminations
and impact damage, limiting its applicability. Rajic et al. [106] applied principal component
thermography to inspect the artificial delamination on the AS4/3501 composite laminate
specimen. Based on their experiment, the second PC provides a useful basis for the
estimation of flaw depth. Ardebili et al. [107] employed optical thermography to detect
controlled defects in sandwich carbon-fiber composites, where defects were intentionally
introduced into the carbon sheets, resin layers, and core materials. To enhance defect
detection, PCA image processing was applied, improving contrast and noise suppression.
However, the findings indicate that the technique struggled to detect defects located within
the core and inner resin layers, particularly those embedded in deeper regions. The study
suggests that future research should explore alternative image-processing techniques.
The variant of PCA, such as robust PCA or sparse PCA, could be combined with optical
thermography to investigate the effectiveness of this technique in detecting the defect
located in the core of the sandwich panel.

Despite the widespread use of PCA in data-processing and dimensional reduction
techniques, PCA has several limitations, such as being challenging to interpret because
a principal component is a linear combination of all the original variables [108]. Thus,
improvements are required for better results in detecting the defect through image se-
quence data. Several researchers proposed the improvement of the PCA methods. Tang
et al. [109] introduced the Markov-PCA algorithm to improve the image’s SNR. In their
study, it was found that window position affects Markov-PCA processing. Further im-
provement has been achieved by combining Markov-PCA with neural network theory to
analyse the thermography thermal images [110]. The combined algorithm can quantify
the depth and diameter of debonding defects on the thermal barrier coatings (TBCs). The
study conducted by Tang et al. [110] focused solely on artificial circular defects and found
that a decrease in the diameter–depth ratio will decrease the prediction error of the defect
depth and defect diameter. When dealing with large, high-dimensional data sets and
real-time video streams, Yousefi et al. [111] proposed candid covariance-free incremental
principal component analysis (CCIPCT), a technique that does not require a covariance
matrix and singular value decomposition (SVD) calculations. CCIPCT enables the rapid
processing of input data within an online framework by dynamically updating eigenvalues
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and eigenvectors with each new data point [112]. A study conducted by Yousefi et al. [111]
confirms that principal component thermography provides better contrast response com-
pared to CCIPCT. However, CCIPCT significantly reduces computational expenses, making
it advantageous for handling large, high-dimensional real-time data and enabling online
processing capabilities. Therefore, CCIPCT may not be the best choice for applications
requiring precise defect quantification and high contrast reliability. Thus, using CCIPT to
quantify the defect size is not recommended.

Sparse principal component analysis (sparse PCA) or sparse principal component
thermography (sparse PCT) is another extension of traditional PCA that addresses the
interpretability challenges of PCA by generating principal components with sparse load-
ings [108]. Several studies attempt to apply sparse PCA to the thermography data [113–115].
Yousefi et al. [113] evaluate the sparse PCT for subsurface defect-detection accuracy in
composite material by comparing it against other decomposition methods such as prin-
cipal component thermography (PCT), CCIPCT, and non-negative matrix factorisation
(NMF). Their findings revealed that sparse PCT demonstrated superior defect-detection
capabilities for composite material defect images taken by the square-pulse thermography
method. This finding is consistent with the study conducted by Wu et al. [114], which
also concluded that sparse PCT is more interpretable than the PCT method for detect-
ing defects in CFRP using pulsed thermography. Several advancements in sparse-PCA
techniques have been proposed to enhance defect detection in thermographic data. An
improvement involves applying data reconstruction methods before implementing SPCA.
Jie et al. [116] introduced the sparse moving-window principal component thermography
(SMWPCT) approach, where a preprocessing technique called the moving-window method
is applied to reorganise thermal data. This method segments the data into smaller, over-
lapping subsets, capturing both temporal and spatial relationships before applying SPCA
for defect detection. SMWPCT is well suited for dynamic thermal processes, enabling
the detection of defects that evolve over time. Liu et al. [117] proposed sparse structural
principal component thermography (S2PCT), which involved a shift-sampling augmen-
tation technique to reconstruct thermal image data with specific sliding windows. This
method reorganises the spatial structure of the thermal images by capturing local pixel
relationships within each image. Subsequently, the reconstructed data are processed using
sparse PCT to highlight defect signals while reducing noise and non-uniform background
effects. Based on the study [117], it was found that S2PCT got a higher signal-to-noise ratio
compared to SMWPCT when detecting defects on CFRP specimens containing the nine
subsurface defects. Lou et al. [118] proposed spatial information-based PCA (SIPCA) to
improve on traditional PCA by incorporating spatial relationships between pixels, which
are often neglected during image-data vectorisation, enabling more accurate fault detection
and localisation.

To address the limitation of the small data set, Liu et al. [119] proposed generative
principal component thermography (GAN-PCT), which integrates data augmentation us-
ing generative adversarial networks (GANs) that generate synthetic thermal images with
traditional principal component thermography. Liu et al. [120] further advanced this ap-
proach by introducing the generative-kernel principal component thermography (GKPCT)
method. This method integrates the spectral normalised generative adversarial network
(SNGAN), an enhanced GAN method, with kernel PCT to develop a GKPCT. As GAN
and SNGAN are deep learning-based technique, its implementation requires significant
computational resources and extended training time compared to traditional PCA.

Schölkopf et al. [121] introduced kernel principal component analysis (KPCA) as a
groundbreaking extension of PCA to capture nonlinear relationships by mapping data
into a high-dimensional feature space using kernel functions. KPCA has been applied in
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thermographic defect detection [115] and face recognition [122]. Based on this method, Jiang
et al. [123] proposed parallel principal component analysis and kernel principal component
analysis (KPCA) to solve the issues of mixed data relationships, where some variables
exhibit linear relationships and others exhibit nonlinear relationships. Miao et al. [124]
proposed adaptive KPCA (AKPCA) for fault detection in nonlinear chemical processes,
addressing the limitations of traditional KPCA in handling mutation features. Although
the implementation of the traditional KPCA on thermography image data has been studied,
its variant’s application in identifying the defect in the composite material has not been
studied yet. Future studies will adopt this technique in detecting the various defects of
composite such as delamination and BVID.

To handle situations involving outlier or corrupted observations, Candés et al. [125]
introduced robust principal component analysis (RPCA), which separates a data matrix
into a low-rank component and a sparse component. Several variants of RPCA have been
developed. Ma et al. [126] offer the reviewed variants of this RPCA. So far, this RPCA
has been applied to detect the defect in the aluminium sample and stainless-steel sample
using the eddy-current pulsed thermography technique [127] and to detect the defect in
CFRP using the pulsed thermography technique [24]. The study of [24] revealed that the
time required to process the data is higher than PCT, as the trade-off in improving defect
detection. Another area for future investigation could involve the application of robust
PCA in detecting the BVID on the composite using low-power vibrothermography.

3.2.3. Defect-Depth Quantification on Composite Material Using Optical Thermography

While lateral defect estimation has been widely studied, accurately determining the
depth of a defect presents additional challenges due to anisotropic heat diffusion and
non-uniform defect geometries. Wang et al. [128] propose gaussianization transformation
to improved the traditional defect-depth estimation method for pulsed thermography,
specifically for CFRP materials. Traditional models assume that defect depth (d) follows a
quadratic relationship with the peak contrast time (τm). The peak contrast time is defined
as the moment when the temperature contrast (∆T) reaches its maximum [75,128,129]:

τm =
2d2

α
(23)

where d is the defect depth and α is the thermal diffusivity. The study includes experimen-
tal testing on CFRP specimens with flat-bottom hole defects and Teflon-layered debond-
ing defects, showing that their method improves the accuracy in determining the defect
depth. Future studies may explore the effectiveness of this approach in estimating the
depth of BVID, which presents additional challenges due to its irregular and complex
thermal response.

Research conducted by Castanedo [80] presents a method for defect-depth retrieval
across multiple materials using Fast Fourier Transform (FFT)-based phase analysis known
as pulsed-phase thermography (PPT). The pulsed-phase thermography was introduced
by Maldague et al. [130,131]. Their approach relies on identifying the blind frequency
fb, which correlates with defect depth through thermal diffusivity and diffusion length
calculations. The defect depth z is estimated using the following equation [80]:

z = C1 ·
(

α

π fb

)0.5
(24)

where z is the defect depth, C1 is an experimentally determined calibration constant within
the range 1.5 < C1 < 2.0, α is the thermal diffusivity of the material, and fb is the blind
frequency. To improve depth-retrieval accuracy, the study emphasizes optimizing sampling
intervals ∆t and truncation windows w(t) to reduce noise and maximize phase contrast.
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The paper provides a systematic strategy for selecting these parameters. Unlike studies that
focus exclusively on flat-bottom hole defects, this research also examines artificial delami-
nations and defects on the curved samples, demonstrating its adaptability to more complex
structures. While Castanedo [80] tested artificial delaminations, D’Accardi et al. [132] in-
vestigated the stringer assy made of CFRP that has the real defect with non-uniform
geometry using pulsed-phase thermography.The results were validated using the phased
array method, and the study found that when the calibration constant C1 was set to 2, it
estimated a defect depth of approximately 1.2 mm. An alternative method for defect-depth
estimation was proposed by Xu and Hu [133], where a Gated Recurrent Unit (GRU)-based
deep learning model was implemented in active Infrared Thermography to recognize defect
depth. The study conducted experiments on polymethyl methacrylate (PMMA) specimens
with flat-bottom hole defects, employing PCA to reduce noise and redundant information
before feeding it into the GRU network. The results showed that the PCA-GRU model
outperformed a standard Backpropagation (BP) neural network. In the future, studies
should carry out this approach for composite material with variation in the defect type and
shape.

3.2.4. Simultaneous Quantification of Lateral and Depth Defects Using Optical Thermography

Instead of only dealing with lateral defect quantification or defect-depth quantification,
several researchers are working on both lateral defect quantification and defect depth quan-
tification using optical thermography. Wei et al. [134] enhanced defect-depth estimation
in pulsed thermography by introducing a normalization factor N that accounts for defect
size (p = D/d) and material thickness (v = l/d), addressing the limitations of the classical
peak slope time (PST) method [135]. The classical PST approach assumes one-dimensional
heat conduction, leading to depth-estimation errors, particularly for large defects or thick
materials. It estimates defect depth as:

duncorrected =
√

2.71αtPST (25)

where tPST is the peak slope time, and α is the thermal diffusivity. The proposed method
modifies this equation by incorporating N, determined experimentally from reference
samples, to correct for lateral heat-diffusion effects:

dcorrected =

√
2.71αtPST

N
(26)

A 5th-order polynomial model, developed from flat-bottomed hole (FBH) defects,
enables the prediction of N for new defects by first determining the defect size. To determine
the defect size, they use the image-processing technique proposed by Wei et al. [136]. This
approach significantly improves accuracy, reducing depth-estimation errors from 24 percent
(PST) to 5–7 percent, as validated through finite-element simulations and thermographic
experiments. However, its reliance on FBH defects may limit its applicability to real-
world defects like delaminations and BVID. D’Accardi et al. [137] present a structured
methodology for estimating defect size and depth using PCA and thermal contrast analysis.
Generally, the process begins with thermal data acquisition from a flat-bottom hole GFRP
reference sample using pulsed thermography inspection, followed by pre-processing and
temperature difference evaluation. The thermal sequence is then analyzed using principal
component thermography to extract the most relevant eigenvalue orthogonal function. The
optimal truncation window is determined by re-processing the thermal sequence frame by
frame (changing the size of the truncation window). The best EOF for defect identification is
selected, and Signal Background Contrast (SBC) is computed. A linear correlation between
defect aspect ratio (D/t) and contrast is established using the reference sample, forming
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a calibration curve. This equation is then applied to real GFRP defects to estimate defect
depth based on known diameters. The diameter of the defect could be determined by
conducting binerization. Finally, ultrasound testing (UT) is used to validate the estimated
depths, confirming the method’s accuracy. The detailed procedure can be found in [137].
This methodology offers a repeatable and quantitative approach for defect characterization,
with potential applications for CFRP and other composite materials. However, a new set
of reference samples would need to be manufactured, incorporating variations in fiber
orientation and defect types.

4. Discussion
4.1. Challenges and Limitations in Thermographic Defect Quantification

Thermographic techniques have demonstrated significant potential for detecting and
quantifying defects in composite materials, particularly CFRP. However, current method-
ologies often operate under idealized conditions that do not always translate effectively
to real-world applications. This section discusses key challenges in thermographic defect
quantification, highlighting gaps in the research and areas requiring further development.

This review paper compares the development of methods between vibrothermography
and optical thermography. It can be observed that optical thermography has progressed
further than vibrothermography in quantifying lateral defects, particularly in composite ma-
terials like CFRP. Evidence from this review indicates that optical thermography integrates
experimental data with computer-vision techniques more extensively than vibrothermogra-
phy. In vibrothermography, conventional image-processing methods are predominantly
used, whereas optical thermography integrates more advanced techniques such as the vari-
ants of PCA. Moreover, optical thermography has incorporated deep learning-enhanced
image processing, a step not yet widely evident in vibrothermography. The combination
of the low-power vibrothermography with the deep learning technique is quite rare. To
the best of the author’s knowledge, only one journal discusses the combination of the
vibrothermography and the deep learning technique in detecting the defect on the BVID on
the CFRP material [18]. The implementation of statistical image-processing techniques and
a deep learning approach in analysing the data from low-power vibrothermography should
be further investigated. It should be noted as well that another challenge of low-power
vibrothermography is quantifying the defect depth, particularly in composite material.

Most studies evaluating thermographic techniques rely on standardized specimens
with artificially induced defects, where the size and depth of defects are precisely known
beforehand. While these setups provide valuable validation for new methodologies, they
fail to reflect the complexities of real-world damage, such as BVID. Santo et al. [87] explored
the detection of real-life defects using long-pulse thermography, providing insight into the
challenges of assessing naturally occurring defects. However, the capability of low-power
vibrothermography in detecting real-life defects remains largely unexplored and requires
further investigation.

Another major limitation of existing research is the dominance of flat, square-shaped
specimens in laboratory testing. These specimens provide an even surface for transducer
placement, allowing for optimal ultrasonic excitation and heat diffusion. However, in real-
world applications, composite structures such as aircraft fuselages, automotive panels, and
wind-turbine blades are highly curved and three-dimensional. This geometric complexity
presents significant challenges for vibrothermography, particularly in ensuring consistent
ultrasonic coupling and uniform excitation. Several studies have attempted to detect defects
on a non-flat specimen, like Liu et al. [138], who developed modified transducer designs
specifically for sucker rod-shaped specimens, demonstrating the feasibility of customizing
transducers to match complex geometry-adaptive transducers that can conform to non-
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flat surfaces. Solodov et al. [53] introduced air-coupled ultrasonic excitation techniques
that eliminate the need for direct contact between the transducer and the specimen. The
effectiveness of the low-power vibrothermography approach to different geometries of the
sample needs to be studied.

In aerospace applications, composite structures are commonly coated with paint for
both aesthetic and protective purposes. However, this presents a significant challenge for
thermographic inspection, as removing the paint layer is neither practical nor efficient.
Paint alters the thermal diffusion properties of the material, which can reduce the sensitivity
of infrared cameras in detecting subsurface defects. Although a study by Grosso et al. [139]
demonstrated that pulsed thermography is effective in detecting corrosion beneath coatings
and evaluating adhesion degradation in anticorrosive composite materials, the effectiveness
of low-power vibrothermography in detecting and quantifying defects concealed beneath
coatings or paint remains to be investigated. Future studies should also investigate whether
data-processing techniques such as thermal signal reconstruction or machine learning-
based contrast enhancement can compensate for the interference caused by paint layers.

High-resolution infrared cameras are essential for precise defect quantification, but
they are expensive and not widely accessible. To make thermographic inspection more
practical for industry applications, low-cost alternatives must be explored. Anwar et al. [19]
demonstrated that low-cost, uncooled microbolometer infrared cameras combined with
image-segmentation techniques could detect defects in glass-fiber-reinforced polymer
materials using long-pulse thermography. The effective application of the low-cost thermal
camera in low-power vibrothermography also needs to be studied.

Studies have shown that detecting defects at depths greater than ten millimeters is
difficult, and for materials with a thickness of twenty millimeters or more, the effectiveness
of low-power vibrothermography must be systematically evaluated. Tromaras et al. [88]
investigated thick monolithic CFRP structures using step-heating thermography, revealing
significant limitations in heat penetration depth. Addressing this issue may require opti-
mized excitation methods or a combination of the vibrothermography with an advanced
image-processing or deep learning approach, or the other NDT technique [98].

4.2. Future Directions

Future research should investigate the capability of vibrothermography for detecting
real-life defects in composite materials, moving beyond standardized specimens containing
artificial defects. Developing adaptive transducer designs, such as those proposed for
sucker rod-shaped specimens by Liu et al. [138], could improve defect detection in complex
geometries. Air-coupled ultrasonic excitation should be evaluated to eliminate direct
transducer contact, which may be applied for curved composite structures.

The influence of paint layers on defect detection should be studied further, and
researchers should explore image-enhancement techniques to compensate for signal loss.
Investigating the feasibility of using low-cost microbolometer infrared cameras in aerospace-
grade CFRP inspections would also provide valuable insights. Future studies should
evaluate the effectiveness of low-power vibrothermography for defect detection in thick
composite structures which have a thickness of more than 10 mm.

To advance thermographic techniques for defect quantification, research must shift
towards real-world applications by addressing non-flat geometries, painted surfaces, cost-
effective solutions, and deeper defect detection. By integrating adaptive transducer technol-
ogy, non-contact ultrasonic excitation, machine learning for data enhancement, and hybrid
nondestructive testing approaches, vibrothermography may become a more robust and
industry-relevant inspection method.
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5. Conclusions
Thermographic techniques, particularly vibrothermography and optical thermog-

raphy, have demonstrated significant potential for detecting and quantifying defects in
CFRP composites. This review highlights advancements in these methods, emphasizing
the role of image processing in improving defect characterization. Optical thermography,
particularly pulsed thermography, has seen extensive development in integrating machine
learning and deep learning techniques for enhanced defect detection. In contrast, vibrother-
mography, despite its promising capabilities, has yet to benefit from similar advancements
in image processing.

A key research gap identified in this review is the limited integration of advanced
computational methods, such as PCA variants and deep learning, in vibrothermography for
defect quantification. Addressing this gap presents an opportunity to improve the accuracy
and reliability of defect assessments, particularly for lateral defects such as delaminations
and BVID.

Future research should focus on bridging the methodological differences between
optical and vibrothermographic techniques by incorporating modern image-processing
algorithms in vibrothermography. Additionally, further exploration of low-power vibroth-
ermography and its integration with advanced computer-vision techniques could enhance
defect-detection capabilities while minimizing energy consumption. Advancements in
this field will contribute to safer and more reliable composite structures across industries,
reinforcing the role of thermographic methods in non-destructive testing.
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