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Abstract—A low-complexity robust cooperative hybrid beam-
former is designed for both the downlink and uplink of
cell-free millimeter wave (mmWave) multiple-input-multiple-
output (MIMO) networks, while considering realistic imperfect
channel state information (CSI). To begin with, a second-
order cone program (SOCP)-based robust fully-digital beam-
former (FDBF) is designed for minimizing the worst-case
interference for the downlink of multiple-input-single-output
(MISO) systems. Subsequently, we develop a Bayesian learning
(BL) framework for determining both the analog and digital
components of the hybrid transmit precoder (TPC) from
the FDBF. The above designs are subsequently extended to
employing eigenvector perturbation theory for constructing the
robust TPC for the cell-free mmWave MIMO downlink, where
the users have multiple receive antennas (RAs). Furthermore,
the multi-dimensional covariance fitting (MCF) framework is
harnessed for designing the robust TPC of the corresponding
uplink. Finally, the efficiency of the proposed TPC designs is
evaluated by simulation results both in terms of their ability to
mitigate the multi-user interference (MUI), and improving the
spectral efficiency achieved. Additionally, the proposed designs
are shown to be computationally efficient and equivalent to a
minimum variance hybrid beamformer.

Index Terms—mmWave, cooperative beamforming, cell-free
networks, robust beamforming, CSI uncertainty.

I. INTRODUCTION

The increasing need for ultra-high data rates, fuelled
by novel applications and the exponential increase in the
number of connected devices, has consistently driven the
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evolution of wireless networks. The existing sub-6 GHz
frequency bands are experiencing significant congestion
due to limited bandwidth availability. The high-frequency
millimeter-wave (mmWave) technology, which operates in
the frequency range of 30 − 300 GHz, has the potential of
meeting the ever-increasing demand for high data rates in
next-generation (NG) wireless networks [1]–[3]. However,
the practical realization of mmWave technology still faces
multiple challenges, such as severe signal blockage, high
path loss, and hardware complexity, resulting in low received
signal [4], [5]. As a remedy, network densification is capable
of mitigating these challenges by creating small cells illumi-
nated by distributed access points (APs) [6]. This can poten-
tially reduce the distance between a user and the AP, hence
enhancing network coverage and the area spectral efficiency
(ASE) quantified in terms of bit/sec/Hz/m2. However, the
reduced mmWave cell size may introduce increased inter-cell
interference (ICI), thereby constraining the overall system
performance [7]. Furthermore, users located at the cell edge
might continue to experience eroded communication quality
due to the susceptibility of mmWave beams to blockage.

To address these challenges, the cell-free multiple-input-
multiple-output (MIMO) framework has been introduced
as a prospective architecture for NG wireless networks
[8]–[10]. This approach has emerged as a viable strategy
for enhancing the system throughput by surmounting the
limitations inherent in the traditional fixed cell arrangement.
Through the utilization of multiple cooperative APs for
supporting multiple users, the cell-free network improves the
available spatial degrees of freedom. This facilitates efficient
cooperative transmission and reception, which results in
improved performance and judicious rate-fairness.

In addition to its wider bandwidth, the shorter wavelength
of mmWave signals offers the advantage of implementing
large antenna arrays on compact devices. This MIMO system
configuration can deliver the much needed beamforming
gain crucial for mmWave networks to counteract the effects
of substantial blockages, atmospheric absorption, and pen-
etration losses that typify communication in the mmWave
band [11]–[13]. Nevertheless, in a conventional MIMO
system employing a fully digital (FD) signal processing
architecture, each antenna element necessitates a dedicated
radio frequency chain (RFC). The substantial number of
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TABLE I: List of acronyms

MIMO multiple-input multiple-output
SOCP Second-order cone program
FDBF Fully-digital beamformer
MISO multiple-input-single-output
BL Bayesian learning
TPC Transmit precoder
TA Transmit antenna
RA Receive antenna
MCF Multi-dimensional covaraince fitting
MUI Multi-user interference
RFC Radio frequency chain
HBF Hybrid beamformer
BB baseband
H-RDBF Hybrid robust downlink beamformer
H-RUBF Hybrid robust uplink beamformer
DL downlink
UL Uplink
UE User-equipment
T-ARV Transmit array response vector
R-ARV Receive ARV
CSI-UA CSI uncertainty agnostic
RCBF Robust Capon beamforming
PCSI Perfect CSI
QoS Quality of service
AoA Angle of arrival
AoD Angle of departure

RFCs required by large antenna arrays results in escalating
cost and power consumption. Thus, these factors restrict
the viability of the FD signal processing architecture in
mmWave MIMO systems [14]–[16]. A promising solution to
surmount this challenge involves harnessing a novel hybrid
RF baseband (BB) MIMO architecture. This innovative
technique utilizes a considerably lower number of RFCs than
the total number of antennas. However, the efficient design
of the hybrid beamformer (HBF) requires the availability of
perfect channel state information (CSI), which is challenging
to obtain in practice due to limited feedback and pilot
sequence length. If not appropriately addressed, the resultant
finite-resolution and outdated CSI may lead to substantial
performance erosion in the overall system. Consequently,
it becomes imperative to develop a resilient cooperative
HBF scheme for cell-free mmWave MIMO networks that
incorporates the CSI imperfections. For quick reference, a
list of acronyms used in this work is provided in Table I.

A. Related Works

The HBF design has garnered significant attention in
recent years as a promising architecture for mmWave MIMO
networks. The early contributions were focused on designing
the hybrid precoders for single-user scenarios [15], [17]–
[20]. As a further development, the authors of [21]–[25]
investigated the HBF design for multi-user (MU) mmWave
MIMO systems. Liang et al. [21] proposed a phased
zero-forcing (PZF) low-complexity HBF scheme for MU
mmWave MIMO systems, wherein the RF transmit precoder
(TPC) is designed by matching the phase of the conjugate
transpose of the downlink channel and the BB transmit
TPC is obtained via the zero-forcing (ZF) method. Ni and
Dong designed the RF combiners for each user based on

the principle of equal-gain transmission in order to attain a
significant array gain. Subsequently, the BB TPC was de-
rived using the popular block-diagonalization (BD) method
for mitigating the multi-user interference (MUI). Khateeb
et al. [23] proposed a low-complexity iterative method
to obtain the HBF weights, which results in significant
spectral efficiency gains. This proposed framework exploited
the inherent sparsity of the mmWave wireless channel for
conceiving an efficient design. Sohrabi et al. [24] proposed
a heuristic HBF design that approaches the performance
of the FD beamformer (FDBF), despite having a limited
number of RFCs. Zhan and Dong [25] proposed a successive
interference cancellation (SIC)-based HBF design, wherein
the ZF method is employed to mitigate the MUI and SIC is
used for reducing the intra-user interference.

As a further development, several authors have investi-
gated the HBF design of cooperative mmWave multi-cell
networks [26]–[29]. Zhu et al. [26] proposed a cooperative
HBF design for mmWave multi-cell networks, where they
decomposed the analog TPCs and array manifold vectors
into Kronecker products of unit-magnitude vectors. Sun et
al. [27] put forward a regularized ZF-based HBF for both
single-stream and multi-stream transmission in cooperative
mmWave multi-cell networks. Kim et al. [28] proposed
HBF schemes for cloud radio access networks, wherein
the weighted minimum-mean-square-error (MMSE)-based
block coordinate descent (BCD) framework was employed
for handling the unit-magnitude constraint of the RF TPC.
Fang et al. [29] considered joint transmission and base
station (BS) silencing approach for designing the HBF
schemes. Their proposed framework considered both fully
and partially connected hybrid architectures and minimized
the sum-power of the BSs.

Several authors explored HBF schemes conceived for
mmWave cell-free MIMO networks [8], [30]–[32]. Femenias
and Riera [8] considered both the downlink (DL) and uplink
(UL) of mmWave cell-free MIMO systems and evaluated
the per-user rate of the system. In particular, their RF
TPC was obtained based on the second-order statistics
of the mmWave wireless channel, whereas the BB TPC
was designed by exploiting the small-scale estimated CSI.
As a further development, Alonzo et al. [30] proposed
energy-efficient HBF designs by harnessing the subspace
decomposition framework for dividing the FD TPCs into its
RF and BB constituents. Feng et al. [31] proposed a low-
complexity BCD scheme for their HBF design to overcome
the challenges of unit-magnitude constraints imposed on the
RF TPC, which maximizes the weighted sum rate. Nguyen
et al. [32] proposed both semi-centralized and decentralized
HBF designs for the uplink, where the BB TPC is designed
specifically at each access point (AP), and the RF TPC
is obtained at the control unit (CU). Furthermore, Jafri et
al. [33] designed the HBF for both unicast and multicast
scenarios by mitigating the MUI in cooperative mmWave
cell-free MIMO networks.

The performance of hybrid beamformer critically relies
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on having access to channel state information (CSI). Recent
research in cell-free MIMO systems has introduced advanced
methods for estimating the channels in cell-free networks.
However, high dimensional channel estimation in cell-free
mmWave MIMO networks is extremely challenging due to
the requirement of a high pilot overhead and the limited
computing capability of the APs [34]. To address these
challenges, several contributions have leveraged the sparse
nature of the mmWave channel. Leveraging this sparsity can
notably decrease the pilot overhead, while still enhancing the
estimation accuracy. Towards this, Zhao et. al. [35] proposed
an enhanced sparse Bayesian learning (ESBL) procedure for
sparse channel estimation in cell-free mmWave networks.
The proposed framework first obtains the high-dimensional
received signal at each AP, but only a low-dimensional
received signal is fed back to the CPU via backhaul links
for sparse estimation. The contributions reviewed above
design the HBF based on the assumption that perfect CSI
is available at each AP. However, obtaining perfect CSI at
APs is not feasible in practice due to realistic factors such
as channel estimation error, outdated CSI, and quantized
feedback [36]. Hence, Palhares et al. [37] proposed an
MMSE-based robust TPC design relying on imperfect CSI,
which minimized the effect of channel estimation errors. As
a further advance, Li et al. [38] proposed an alternating
direction method of multipliers (ADMM) based TPC for
cell-free massive MIMO systems. Yu et al. [39] proposed
a rate-splitting multiple access (RSMA) framework for en-
hancing the system’s throughput in the downlink of cell-
free MIMO systems considering the availability of only
imperfect channel knowledge. Yao et al. [40] conceived
robust beamformers for an reconfigurable intelligent surface
(RIS)-aided cell-free system for maximizing the worst-case
sum rate.

However, the aforementioned treatises primarily concen-
trated on designing robust FD TPCs for cell-free systems, re-
quiring an excessive number of RFCs. Furthermore, our pre-
vious work [33] designed the cooperative HBF for mmWave
cell-free MIMO networks by considering the availability
of perfect CSI, which is difficult to obtain in practice.
Thus, inspired by the aforementioned knowledge gap in the
existing literature, we conceive a robust HBF design relying
on imperfect CSI for both the DL and UL of cooperative
mmWave cell-free systems. Table II presents a bold and
explicit contrast to the literature, which is also detailed
below.

B. Contribution

This work presents the cooperative robust HBF design of
cell-free mmWave MIMO systems in the face of imperfect
channel knowledge.

• We commence with the cooperative hybrid robust
downlink beamformer (H-RDBF) design of cell-free
mmWave systems by considering a single receive an-
tenna (RA) at each user. The pertinent optimization
framework is shown to be non-convex, which renders it

mathematically challenging. Consequently, a novel two-
step framework is developed for addressing this issue.
In the first step, the problem is formulated as a second-
order cone program (SOCP) for minimizing the worst-
case interference to obtain the robust FDBF. Next, a
Bayesian learning (BL)-based framework is employed
for splitting the FDBF into its RF and BB parts for
obtaining the H-RDBF. The key novelty of our work is
to derive the robust HBF, in contrast to our previously
published work [33], which considered the availability
of perfect CSI.

• Subsequently, the H-RDBF design framework is ex-
tended to mmWave MIMO scenarios considering mul-
tiple RAs at each user. The classic eigenvector per-
turbation theory is employed for characterizing the
ellipsoidal uncertainty and the uncertainty radius. We
also demonstrate that the proposed robust TPC vectors
are equivalent to the beamformers derived in [33] with
the aid of perfect CSI.

• Next, we propose a robust hybrid uplink beamformer
(H-RUBF) design for the cell-free mmWave uplink
scenario by harnessing a novel multidimensional covari-
ance fitting (MCF) approach that efficiently mitigates
the degradation of SINR caused by imperfect CSI.

• Finally, it is shown that the proposed techniques per-
form similarly to the perfect CSI scenario, demonstrat-
ing their improved spectral efficiency and enhanced
interference cancellation capability.

C. Notation

Matrices and vectors are represented by boldfaced upper
and lowercase letters, respectively, while scalar quantities
are denoted by lowercase letters. The conjugate, transpose,
Hermitian, and inverse of a matrix A are denoted by A∗,
AT , AH , and A−1, respectively. Furthermore, the quantities
∥x∥2 and ∥A∥F denote the l2-norm and Frobenius of a
vector a and matrix A, respectively, while Tr(A) is the
trace of a matrix A. The quantity E [.] signifies the expec-
tation operator. Furthermore, I denotes an identity matrix of
suitable size, and A ⪰ 0 indicates that the matrix A belongs
to the cone of positive semi-definite (PSD) matrices. A brief
list of the main notations is provided in Table III.

II. SYSTEM MODEL

Consider a cooperative cell-free mmWave MIMO system
relying on N APs, connected to a control unit (CPU),
and U user equipment (UEs) relying on the hybrid signal
processing architecture illustrated in Fig. 1. Each AP has
NT transmit antennas (TAs) and NRF RFCs, where we have
1 ≤ NRF << NT , ∀n, 1 ≤ n ≤ N , and provides service
to U UEs with Nu receive antennas (RAs) and URF RFCs
each, 1 ≤ URF << Nu, ∀1 ≤ u ≤ U . The downlink
signal zu received at the output of the RF receive combiner
WRF,u ∈ CNu×URF of the uth UE can be expressed as
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TABLE II: Boldly contrasting our work to the existing literature

[15] [21] [25] [26] [29] [8] [30] [31] [32] [33] [37] [38] [39] Proposed Work
mmWave communication ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hybrid architecture ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multi-user ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cooperative beamforming ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Downlink ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Uplink ✓ ✓ ✓ ✓ ✓ ✓
Cell-free ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Robust FDBF ✓ ✓ ✓ ✓
Joint downlink and uplink ✓
Robust HBF ✓

TABLE III: List of notations

N Number of APs
NT Number of TAs at each AP
NRF Number of RFCs at each AP
U Number of UEs
Nu Number of RAs at each UE
URF Number of RFCs at each UE
GRF,n RF TPC matrix at nth AP
gBB,u,n BB TPC for uth UE
Hu,n Channel vector between nth AP and uth UE
WRF,u RF matrix at uth UE
γnk Target SINR of UEnk

Q Size of dictionary matrix
e CSI error vector
DT Dictionary matrix

Fig. 1: Cooperative cell-free mmWave MIMO network

zu =WH
RF,u

N∑
n=1

Hu,nGRF,ngBB,u,nsu

+WH
RF,u

U∑
i=1
i ̸=u

N∑
n=1

Hu,nGRF,ngBB,i,nsi + ñu, (1)

where gBB,u,n ∈ CNRF×1 and GRF,n ∈ CNT×NRF de-
note the BB and RF TPCs at the nth AP for the uth
UE, respectively. Furthermore, su represents the unit power
symbol intended for user u and ñu = WH

RF,unu denotes
the effective noise vector, where nu ∈ CNR×1 represents
the Gaussian noise at UE u with mean zero and variance σ2

n

of each element. The SINR of the uth user can be expressed

as

SINRu =
∥WH

RF,u

∑N
n=1 Hu,nGRF,ngBB,u,n∥2

∥WH
RF,u

∑U
i=1
i ̸=u

∑N
n=1 Hu,nGRF,ngBB,i,n∥2 + σ2

n

.

(2)

Therefore, the capacity C expression can be formulated as

C =

U∑
u=1

log2 (1 + SINRu) . (3)

Upon employing the geometric channel model discussed in
[15], [41], the channel matrix Hu,n ∈ CNu×NT spanning
from the nth AP to uth UE can be expressed as

Hu,n =

√
NTNR

L

L∑
l=1

α(l)
u,naR(ϕ

R
l,u,n)a

H
T (ϕTl,u,n), (4)

where L denotes the number of multipath components
and αl

u,n represents the gain of the lth path between
the nth AP and the uth UE. Furthermore, the quantities
aT (ϕ

T
l ) ∈ CNT×1 and aR(ϕ

R
l ) ∈ CNR×1 represent the

transmit array response vector (T-ARV) and receive ARV
(R-ARV), respectively, where ϕTl and ϕRl denote the angle
of departure (AoD) and angle of arrival (AoA), respectively,
corresponding to the lth path spanning from the nth AP
to the uth UE. Note that the geometric channel model
eminently is suitable for mmWave communication due to its
ability to accurately capture the sparse scattering, dominant
non-line-of-sight (NLOS) paths, and other characteristics of
high-frequency propagation [2], [14], [15]. The mmWave
MIMO channel can alternatively be expressed concisely as

Hu,n = AR,u,nH
α
u,nA

H
T,u,n,

where AR =
[
aR(ϕ

R
1,u,n), . . . ,aR(ϕ

R
L,u,n)

]
∈ CNu×L and

AT =
[
aT (ϕ

T
1,u,n), . . . ,aT (ϕ

T
L,u,n)

]
∈ CNT×L denote the

concatenated receive and transmit array response matrices,
respectively, as described in [33]. Furthermore, Hα

u,n =

diag
(
α
(1)
u,n, α

(2)
u,n, . . . , α

(L)
u,n

)
denotes the diagonal matrix of

path gains.
To consider the CSI uncertainty, let the concatenated chan-

nel spanning from the single antenna user u and all the co-
operating APs be modeled as hu = [hu,1,hu,2, . . . ,hu,N ] ∈
CNNT×1

hu = ĥu + e, (5)
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where hu,n ∈ CNT×1 represents the channel vector between
nth AP and uth UE. Furthermore, ĥu denotes the estimated
CSI vector and eu represents the CSI error, which is modeled
as e = Quau, so that ∥a∥2 ≤ 1. Furthermore, Qu denotes
the square root of the positive semi-definite (PSD) matrix
Cu, i.e., Cu = QuQ

H
u . In the literature, this is represented

by a well-known ellipsoidal uncertainty model [42]–[44],
which can be defined as

Eu =
{
ĥu +Quau

∣∣∣ ∥au∥2 ≤ 1
}
. (6)

Next, we describe the robust hybrid beamformer design of
cooperative cell-free mmWave networks considering a single
RA at each user.

III. BL-BASED H-RDBF DESIGN FOR CELL-FREE
MMWAVE MISO SYSTEMS

This section develops the robust HBF (RHBF) design
framework for a multiple-input-single-output (MISO) sce-
nario, wherein each UE is equipped with a single RA. Sub-
sequently, the proposed framework is extended to the MIMO
scenario in the later sections. The assumption of imperfect
CSI significantly increases the complexity of the downlink
beamforming problem compared to [33], where perfect CSI
was assumed. In this work, imperfect CSI estimates intro-
duce channel uncertainties, necessitating the development of
robust optimization frameworks that account for worst-case
performance scenarios. Specifically, we employ ellipsoidal
uncertainty models and SOCP to design robust FDBF, which
are then decomposed into RF and BB components using a
Bayesian learning framework. Let hu,n ∈ CNT×1 represent
the channel vector between the nth AP and uth UE. The
signal zu ∈ C received at the uth UE can be written as

zu =

N∑
n=1

hH
u,nGRF,ngBB,u,nsu

+

N∑
n=1

U∑
j=1
j ̸=u

hH
u,nGRF,ngBB,j,nsj + nu. (7)

Let gBB,u ∈ CNNRF×1 denote the concatenated BB TPC
vector for the uth user, which is defined as gBB,u =[
gT
BB,u,1,g

T
BB,u,2, . . . ,g

T
BB,u,N

]T
. Similarly, the concate-

nated channel vector spanning from user u and all the
cooperating APs is given as hu = [hT

u,1,h
T
u,2, . . . ,h

T
u,N ]T ∈

CNNT×1. Therefore, the effective received signal at uth UE
can be written as

zu = hH
u GRFgBB,usu +

U∑
j=1
j ̸=u

hH
u GRFgBB,jsj + nu, (8)

where GRF = blkdiag (GRF,1,GRF,2, ...GRF,n) ∈
CNNT×NNRF denotes the block-diagonal RF TPC matrix
corresponding to the nth AP. Note that the knowledge of
perfect CSI is essential for efficient information transmission
and HBF design. However, in practice, obtaining perfect
CSI is unrealistic due to channel estimation errors, delayed

feedback, and quantization errors. To address this challenge,
we propose robust HBF schemes for cell-free systems. The
optimization problem of minimizing the worst-case MUI
in the design of the HBF while satisfying the quality-of-
service (QoS) constraints with perfect knowledge of CSI is
expressed as

min .
γ,gBB,1,...,gBB,U

γ

s.t. hH
u GRFgBB,u ≥ 1, ∀u

hH
u GRFgBB,j ≤ γ, j ̸= u

|GRF(i,m)| = 1√
NT

∀i,m, (9)

where γ denotes the worst-case MUI. Note that the first and
second constraints in (9) represent QoS constraints. Further-
more, the third constraint denotes the constant-magnitude
constraint imposed on each entry of the RF TPC, which
makes the optimization non-convex and, hence, mathemat-
ically intractable. To address these challenges, a two-step
procedure can be employed for solving the optimization
problem (9). First, we determine the FD-TPC by relaxing
the constant-magnitude constraint and then obtain the hybrid
TPC by decomposing the FD-TPC via a BL-based frame-
work. Thus, substituting gu = GRFgBB,u ∈ CNNT×1 into
(9), the optimization problem can be rewritten as

min .
γ,g1,...,gu

γ

s.t. hH
u gu ≥ 1, ∀u

hH
u gj ≤ γ, j ̸= u. (10)

Note that when gj belongs to the null-space of the matrix
Hj = [h1,h2, . . .hj−1,hj+1, . . . ,hu]

H ∈ C(U−1)×NNT ,
i.e. imposing the constraint hH

u gj = 0 for u ̸= j, one can
achieve the ZF solutions subject to the constraint on the
number of users, i.e., U ≤ NNT . This results in complete
interference cancellation, i.e., γ = 0. This necessitates the
design of a robust beamformer that minimizes the worst-
case MUI for every channel. Therefore, the optimization
problem of designing the robust beamformer that minimizes
the worst-case MUI while satisfying the QoS constraints can
be formulated as

min .
γ,g1,...,gU

γ

s.t. hH
u gu ≥ 1, ∀u

hH
u gj ≤ γ, j ̸= u

∀hu ∈ Eu, ∀u. (11)

Observe that although the above problem is convex, solving
it remains computationally challenging due to the presence
of an infinite number of constraints pertaining to the el-
lipsoidal uncertainty region. Interestingly, one can convert
these numerous constraints into a finite set of constraints by
following the seminal results of [42]. Thus, the optimization
problem (11) can be recast as the following convex second-
order cone program to jointly design the robust FD-TPC for
all the users in the mmWave cell-free system
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min .
γ,g1,...,gU

γ

s. t. gH
u ĥu −

∥∥QH
u gu

∥∥
2
≥ 1, ∀u

gH
j ĥu +

∥∥QH
u gj

∥∥
2
≤ γ, j ̸= u. (12)

One can note that the optimization problem above is convex
and tractable, hence it can be effectively solved using
commonly available tools such as CVX [45]. Note that
the optimization problem focuses on minimizing the worst-
case MUI, which indirectly regulates the transmit power
without explicitly including a power normalization factor.
This ensures that the TPCs gBB,u designed operate within
practical power limits. Next, we describe the BL-based HBF
design procedure, which decomposes the FD-TPC obtained
into its RF and BB constituents.

The state-of-the-art BL method can now be invoked
for designing the hybrid TPCs via splitting the FD-TPC
attained into its RF and BB constituents, as described in
our previously published work [33]. Algorithm 1 presents
the step-by-step procedure of the BL-based technique for
designing the hybrid TPC.

Algorithm 1: BL-based robust hybrid TPC design

1 Input: Stacked optimal FD TPC matrix Gopt,
dictionary matrix DT , RFCs NNRF, approximation
error variance ψ2

e , stopping parameters τ and kmax;

2 Initialization: δ̂(0)i = 1, ∀1 ≤ i ≤ S → ∆̂
(0)

= IS .
Set counter k = 0 and ∆(−1) = 0;

3 while
(∥∥∥δ̂(k) − δ̂

(u−1)
∥∥∥2 > ϵ andu < umax

)
do

4 E-step: Evaluate the a posteriori covariance and
mean

∆(k) =

(
1

ψ2
e

GH
T GT +

(
∆̂

(u−1)
)−1

)−1

G̃
(k)
BB =

1

ψ2
e

Ψ(k)GH
T Gopt

M-step: Compute the estimate of
hyperparameter

for i = 1, . . . , S

δ̂
(k)
i = Ψ

(k)
(i,i) +

1

U

U∑
j=1

∣∣∣G̃BB,n(i, j)
∣∣∣2

end
5 end
6 Output: Obtain G∗

BB and G∗
RF.

IV. BL-BASED H-RDBF FOR CELL-FREE MMWAVE
MIMO SYSTEMS

This section designs the cooperative robust downlink
HBF (H-RDBF) for mmWave cell-free systems considering
multiple antennas at each user. Note that [33] considers
the availability of perfect knowledge of CSI, which renders
the beamformer in cooperative cell-free networks feasible.

However, the proposed robust beamformer design in this
work is significantly more challenging due to the imperfect
channel knowledge. We employed eigenvector perturbation
theory to obtain the robust beamformers. Each user estimates
the downlink MIMO channel with the aid of the reference
signals/pilots, and then feeds back the CSI to the BS
using codebook-based channel feedback [46]. However, the
channel feedback overhead grows linearly with the number
of TAs, a challenge that becomes particularly significant in
mmWave cell-free systems. For instance, in a scenario of
NT = 256 TAs and NR = 64 RAs, the channel matrix
consists of 256 × 64 = 16384 complex coefficients. The
feedback of these channel weights requires quantization,
typically using a codebook having 2B entries, where B is
the number of bits per coefficient. Therefore, using B = 5
bits per coefficient would require 81920 bits for all the
coefficients. A larger codebook improves the beamforming
accuracy but increases the feedback overhead proportionally,
hence potentially requiring hundreds of thousands of bits per
feedback interval. However, one can exploit the schemes
proposed in [47], [48] for low-feedback channel estima-
tion. Furthermore, leveraging the sparse nature of mmWave
MIMO channels, where only a few multipath components
dominate, compressive sensing techniques effectively reduce
the channel dimensionality, hence minimizing feedback re-
quirements [49], [50]. The true CSI of the uth UE with
ellipsoidal uncertainty can be written as

Hu = Ĥu +QuÃu,

where Ãu = [ãu,1, ãu,2, . . . , ãu,NNT
] and ∥ãu,l∥2 ≤ 1, 1 ≤

l ≤ NNT , incorporates the CSI error. The matrix HH
u Hu,

according to the uncertainty model, can be formulated as

HH
u Hu =

(
Ĥu +QuÃu

)H (
Ĥu +QuÃu

)
= ĤH

u Ĥu +Au, (13)

where Au = ĤH
u QuÃu+ÃH

u QH
u Ĥu+(QuÃu)

HQuÃu ∈
CNNT×NNT denotes the effective uncertainty matrix for
user u. Next, we employ the eigenvector perturbation theory
(EPT) of [51] to incorporate the CSI uncertainty in the
principal eigenvector vu,1 of the matrix HH

u Hu for the
design of the robust TPC for cooperative mmWave MIMO
cell-free systems, as shown next.
Lemma 1 : Let v̂u,1 denotes the eigenvector of ĤH

u Ĥu.
The perturbed principle eigenvector vu,1 of HH

u Hu can be
formulated as

vu,1 = v̂u,1 +

NNT∑
i=2

ρu,i1v̂u,i

(λ̂u,1 − λ̂u,i)
(14)

where ρu,ij = v̂H
u,iAuv̂u,j and λ̂u,i = σ̂2

u,i. Furthermore,
σ̂u,i represents the ith singular value of the matrix Ĥu.
Proof : Shown in Appendix A.
Thus, from the given result, we have

vu,1 = v̂u,1 + Juρu, (15)
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where

ρu = [ρ′u,21, ρ
′
u,31, . . . , ρ

′
u,NNT 1]

T ∈ C(NNT−1)×1,

ρ′u,l1 = ρu,l1/(λ̂u,1 − λ̂u,l),

Ju = [v̂u,2, v̂u,3, . . . , v̂u,NNT
] ∈ CNNT×(NNT−1).

Next, in Lemma 2, we characterize the magnitude ∥ρu∥2 of
the perturbation vector ρu.

Lemma 2: The norm of the vector ρu, associated with
the eigenvector vu,1 corresponding to the largest eigenvalue
of the matrix Hu, is upper bounded as

∥ρu∥2 ≤

(
σ̃u

λ̂u,1 − λ̂u,2

)
︸ ︷︷ ︸

ϵρu

, (16)

where σ̃u represents the dominant singular value of Au.
Proof : Shown in Appendix B.
Therefore, the optimal robust TPC g̃1 for the first UE can

be designed by solving the following relaxed optimization
problem

min.
g̃1

∥g̃1∥2

s.t. min .
∥ρ1∥2≤ϵρ1

g̃H
1 (v̂1,1 + J1ρ1) ≥ 1, (17)

where the quantity A1 represents the uncertainty matrix
associated with UE 1. Upon simplifying the constraint, the
robust TPC design problem can be recast as the SOCP shown
below

min.
g̃1

∥g̃1∥2

s.t. g̃H
1 v̂1,1 − ϵρ1

∥∥JH
1 g̃1

∥∥
2
≥ 1. (18)

Note that the robust TPCs obtained as the solution to the
above optimization problem are equivalent to the optimal
successive minimum variance hybrid beamformer (OSHB)
TPC [33], except for a scaling factor. The proof of this is
provided next.
Theorem 1 : The optimal beamformer, denoted as g̃∗

1 , in
the beamformer design problem (18) is proportional to the
estimate of the vector v̂1,1 as g̃∗

1 = κv̂1,1., where κ denotes
the constant of proportionality chosen suitably.
Proof : Shown in Appendix C.
Therefore, the optimal TPC g̃∗

1 corresponding to UE 1
can be determined by performing the singular value decom-
position (SVD) of the matrix Ĥ1. In general, the uth UE
will experience interference from the u − 1 UEs scheduled
before. The interference from the previously scheduled users
at the uth user can be minimized by employing the OSHB
scheme described in [33]. Towards this, let g̃∗

u and wu

denote the optimal TPCs and receive combiners (RCs) for
the uth UE. Employing the framework in [33], the TPCs and
RCs designed for interference cancellation are determined as

g̃∗
u = M̂⊥

u−1ν̃
∗
u and w∗

u = (R−(1/2)
υu

)
H
w̃∗

u,

respectively, where ν̃∗
u and w̃∗

u represent the dominant
right and left singular vectors, respectively, of the matrix
R

−(1/2)
υu ĤuM̂

⊥
u−1. Furthermore, Rυu represents the covari-

ance matrix of the quantity υu =
∑u−1

i=1 ĤuM̂
⊥
u−1νisi+ñu,

and it is given as

Rυu
=

u−1∑
i=1

Ĥugi

(
E
[
|si|2

])
gH
i ĤH

u + E
[
nun

H
u

]
=

u−1∑
i=1

Ĥu

(
M̂⊥

i−1νiν
H
i

(
M̂⊥

i−1

)H)
ĤH

u + σ2
n.

(19)

The matrix M̂⊥
u−1, which denotes the estimates of M⊥

u−1,
represents the basis orthonormal to the null space of the
matrix M̂u−1 ∈ CNNT×(NNT−u+1)

M̂u−1 =

[(
wH

1 Ĥ1

)T
, . . . ,

(
wH

u−1Ĥu−1

)T]T
. (20)

Once again, one can now invoke the BL-based framework as
explained in Section III to obtain the RF and BB TPC/RC.
Next, we describe the robust hybrid beamformer designed
for the uplink of cell-free mmWave MIMO networks.

V. HYBRID ROBUST UPLINK HYBRID BEAMFORMING
(H-RUBF)

This section develops our robust cooperative hybrid TPC
design of the mmWave cell-free uplink for U users and N
APs. For the uplink scenario, the assumption of imperfect
CSI introduces additional challenges in mitigating the degra-
dation of the signal-to-interference-plus-noise ratio (SINR)
caused by channel estimation errors. In contrast to the uplink
beamforming framework in [33], which assumes accurate
channel knowledge, this work employs a MCF framework to
design H-RUBF. The nth AP has NT RAs and NRF RFCs,
whereas the uth UE is equipped with Nu TAs and URF

RFCs. The uplink signal y ∈ CNNT×1 received by all the
APs can be expressed as

z =
U∑

u=1

H̃uvuxu + n =

U∑
u=1

f̃uxu + n, (21)

where H̃u =
[
H̃H

u,1, H̃
H
u,2, . . . , H̃

H
u,N

]H
∈ CNNT×Nu and

vu represent the concatenated channel matrix of user u
at the CU and the dominant right singular vector of the
matrix H̃u, respectively. Note that the CU estimates the
channel of all the UEs, which corresponds to the matrix.
Subsequently, the CU utilizes this information for calculating
the optimal transmit beamformer weights, which are then
fed back to the users. The CU feeds back the beamforming
vectors to the users either by relying on quantized feed-
back. For example, if the codebook contains 2B distinct
beamforming vectors, then B bits are needed to represent
each beamforming vector. A large codebook enhances the
beamforming gain but requires a high number of bits,
which in turn increases the overhead. Furthermore, the
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optimal receive beamformer w̃u ∈ CNNT×1 can be obtained
as the minimum variance distortionless response (MVDR)
beamformer formulated as C−1

z f̃u/f̃
H
u C−1

z f̃u, where we
have Cz =

∑U
u=1 f̃uf̃

H
u + σ2

ηINNT
and f̃u = H̃uvu. Let

Cu ∈ CNNT×NNT denote a symmetric PSD matrix that
models the CSI uncertainty in the vectors f̌u,∀u. Therefore,
the estimates, f̌u, 1 ≤ u ≤ U , in the presence of CSI errors
can be modeled as falling within an uncertainty ellipsoid
given by Eu = {f̃u|(f̃u − f̌u)

HP−1
u (f̃u − f̌u) ≤ 1}.

Let F̃ = [f̃1, f̃2, . . . , f̃U ] ∈ CNNT×U represent the con-
catenated beamformer matrix. Note that one can formulate
an MCF problem by employing the beamformers F̌ =
[f̌1, f̌2, . . . , f̌u], CSI error ellipsoids Eu, 1 ≤ u ≤ U , and the
covariance matrix Cz to determine the robust beamformer.
The MCF framework evaluates the maximum likelihood
estimate of the beamformers, while taking into account
the constraints based on the uncertainty ellipsoids and the
covariance matrix. Subsequently, the robust beamformers
found closely approximate the actual ones, hence reducing
the SINR erosion attributed to the imperfect CSI. Therefore,
the MCF optimization problem of obtaining the robust
uplink beamformer matrix F̌∗ can be formulated as

max
F̃,σ̃2≥0

log
∣∣∣F̃F̃H + σ̃2INNT

∣∣∣
s.t. Ĉy ⪰ F̃F̃H + σ̃2INNT

(f̃u − f̌u)
HP−1

u (f̃u − f̌u) ≤ 1, 1 ≤ u ≤ U. (22)

One can approximate the above optimization problem of
designing the robust uplink beamformer by the following
convex problem [52]

max
F̃,σ̃2≥0

2ℜ
{
Tr
{
F̂HC−1

y,0F̃
}}

+ σ̃2Tr
{
C−1

y,0

}
s.t.

[
Ĉy − σ̃2INNT

F̃

F̃H Iu

]
⪰ 0

(f̃u − f̌u)
HP−1

u (f̃u − f̌u) ≤ 1, 1 ≤ u ≤ U, (23)

where we have Cy,0 = F̌F̌H + σ2
0INNT

, and σ2
0 represents

the initial estimate of the noise variance. Furthermore, it
is interesting to note that the optimization problem (23)
is convex in nature, hence easily solvable using widely
available tools, such as [45].

Next, we summarize the complexity analysis of H-RDBF
and H-RUBF design schemes. Note that the optimization
problem in (12) can be efficiently solved using second-
order cone programming (SOCP) at a complexity order of
O
(
(UNNT )

3
)

, while the optimization problem in (23)
can be efficiently solved using SOCP at a complexity of
O
(
(NNT )

3
+ (UNNT )

2
)

[52] for designing the beam-
formers of all the UEs.

VI. SIMULATION RESULTS

This section provides our simulation results for char-
acterizing the performance of the proposed robust hybrid
beamformer schemes in the presence of imperfect CSI for
both DL and UL scenarios. In our simulations, we consider

TABLE IV: Simulation parameters of System-I and System-
II profiles of a cooperative cell-free mmWave MIMO system

Parameter System-I System-II
# of APs (N) 2 4
# of users (U) 4 8
# of TAs (NT ) 32 64
# of RAs (Nu) 4 8
# of RFCs at APs (NRF) 4 8
# of RFCs at users (NRF) 2 4

a network comprised of N = {2, 4} APs and U = {4, 8}
users that are uniformly distributed in a square area of
size 200 × 200 m2. The inter-AP distance is 40m. Each
AP and user has NT = {32, 64} TAs and Nu = {4, 8}
RAs, respectively. The mmWave MIMO channel Hu,m

corresponding to uth user and nth AP has L = 6 multipath
components, and the multipath gains βl

u,m are generated as
CN (0, 1). It is assumed that the impact of large-scale fading
has been fully mitigated through effective power control
at each APs. Consequently, this study focuses exclusively
on the influence of small-scale fading, consistent with the
approach adopted in [26], [53], [54]. Note that the range
of error radius ϵ spans from 0.5 to 1.4. The value of ϵ = 0
corresponds to the perfect CSI scenario, while large values of
ϵ indicate large error in the CSI. For our BL-based TPC/RC
design, the stopping parameters are set to kmax = 50 and
τ = 10−6. To model the ellipsoid CSI errors, we consider
Cu = ϵ2INNT

, 1 ≤ u ≤ U for both DL and UL systems. We
assume that all transmitters have the same transmit power
P , and the signal-to-noise ratio (SNR) is defined as P

σ2
n

.
Table IV shows the detailed parameters considered in our
simulations.

A. Robust downlink hybrid beamforming

Fig. 2a plots the capacity versus the error radius for the
DL of the cell-free mmWave MISO System-I and System-
II of Table IV. The figure illustrates that the worst-case
MISO RDBF design approaches the performance of the ide-
alized system having perfect CSI (PCSI). Furthermore, the
proposed scheme performs better than the CSI uncertainty
agnostic (UA) beamformer. This is due to the fact that the
CSI-UA scheme fails to incorporate the uncertainty in the
channel matrix, while designing the beamformer. Fig. 2b
compares the capacity versus the signal-to-noise ratio (SNR)
of the proposed MISO RDBF scheme to that of the perfect
CSI and CSI-UA beamformers where the latter ignores the
CSI uncertainty while designing the TPCs. Observe that
the performance of RDBF approaches that of the perfect
CSI scenario, demonstrating the efficacy of the proposed
robust TPC schemes. Furthermore, one can note that the BL-
based hybrid RDBF having notably fewer RFCs (NRF = 4)
and (NRF = 8) for System-I and System-II, respectively,
performs similarly to that of the FDBF with (NRF = 32)
and (NRF = 6) for System-I and System-II, respectively.
This is due to the fact that the mmWave MIMO channel has
a substantially reduced number of multipath components, a
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Fig. 2: MISO downlink considering System-I and System-II parameters: (a) Capacity versus error radius (ϵ) for SNR =
10dB. (b) Capacity versus SNR for error radius ϵ = 0.6.
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Fig. 3: MIMO downlink performance considering System-I and System-II parameters: (a) Capacity versus error radius (ϵ)
for SNR = 10dB. (b) Capacity versus SNR for error radius ϵ = 0.6.

characteristic beneficially exploited by our BL-based hybrid
transceiver design. Consequently, a tight approximation of
the ideal FDBF can be achieved using only a small number
of T-ARVs.

Next, we consider the performance of our robust TPC
design conceived for a MIMO downlink scenario in cell-
free mmWave networks. Once again, Fig. 3a illustrates the
performance of the proposed RDBF schemes along with
those of the other schemes for different values of the
uncertainty error radius and SNR = 10dB. Observe that
the capacity of the proposed RDBF scheme decreases upon
increasing the CSI uncertainty error radius ϵ. However, the
proposed RDBF design still achieves a performance similar

to that of the [33], when perfect CSI is available at the
CU. Fig. 3b plots the capacity versus SNR of the proposed
scheme along with that of other scenarios having an error
radius of ϵ = 1 for System-I and System-II. It is interesting
to note that an increase in the number of TAs at each AP
leads to a capacity enhancement. This can be attributed to
the fact that the proposed BL-based hybrid design is capable
of efficiently exploiting the resultant enhanced array gain.

The capacity versus the number of APs in our cell-free
mmWave MIMO DL system is investigated in Fig. 4. It is
evident from the figure that with the increase in the number
of APs, the capacity increases. This indicates that harnessing
a large number of APs in cell-free MIMO DL systems has
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the potential of significantly improving the capacity. Once
again, an increase in the number of TAs at each AP enhances
the capacity of the system.

B. Robust uplink hybrid beamforming

Fig. 5a characterizes the capacity versus the error radius
of the proposed robust beamformer in the uplink of our
mmWave cell-free MIMO system. Observe that the MCF
technique-based RUBF design performs similarly to the
perfect CSI scenario. Furthermore, there is a significant
performance gap between the MCF-based RUBF and the
robust Capon beamformer (RCBF) [43] at high SNRs. This
is due to the better interference cancellation capability of the
MCF technique. Fig. 5b illustrates the capacity versus SNR
plot of the cell-free uplink for ϵ = 0.6. It can be seen that
the performance of the BL-based hybrid RUBF is close to
the idealized scenario associated with perfect CSI, and also
closely matches the performance of the ideal FD design.

VII. SUMMARY AND CONCLUSIONS

Robust cooperative hybrid beamformers and combiners
were designed for the DL and UL of mmWave cell-free net-
works. Initially, a novel two-step framework was developed
for obtaining the low-complexity robust hybrid beamformer
considering single-antenna users. A robust FD beamformer
was obtained in the first step, which minimizes the worst-
case interference in the presence of CSI uncertainty. Next,
a BL-based hybrid TPC design framework was employed to
factorize the FD TPC into its RF and baseband TPCs. Sub-
sequently, eigenvector perturbation theory was employed to
design robust hybrid TPCs for the cell-free mmWave MIMO
downlink, while an MCF-based cooperative robust hybrid
beamformer was designed for the uplink. The proposed
cooperative robust hybrid TPC design techniques exhibit
a notable performance enhancement in cell-free mmWave
MIMO networks. It was also seen that the H-RDBF results
in a closed-form solution and is equivalent to the successive
minimum variance hybrid beamformer. Furthermore, the

proposed robust HBF designs have a reduced complexity and
the capability to accommodate more users simultaneously
compared to other approaches. This makes them highly
appropriate for real-world deployment in cell-free mmWave
MIMO networks. APPENDIX A

LEMMA 1:
Proof: The imperfect channel of the uth UE can be

expressed as HH
u Hu = ĤH

u Ĥu + ϵAu, where ϵAu denotes
the uncertainty in the CSI. One can observe that as ϵ → 0,
we have ĤH

u Ĥu → HH
u Hu.

Let λ̂u,i and λu,i, 1 ≤ i ≤ NNT , denote the eigenvalues
of the matrix ĤH

u Ĥu and HH
u Hu, respectively. Following

the EPT, the true dominant eigenvalue λu,i, 1 ≤ i ≤ NNT

can be expressed as

λu,1 = λ̂u,1 + xu,1ϵ+ xu,1ϵ
2 + · · · , (24)

where xu,i represents the error factor due to the matrix
Au. Once again, note that as ϵ → 0, the eigenvalue
obeys λ̂u,1 → λu,1 and

∣∣∣λ̂u,1 − λu,1

∣∣∣ = O(ϵ). Since
(HH

u Hu)vu,1 = λu,1vu,1, one can also express the principal
eigenvector as the convergent power series [51],

vu,1 = v̂u,1 + ϵbu,1 + ϵ2bu,2 + · · · , (25)

where bu,i represents the error vector due to the matrix
Au. Note that the eigenvectors {v̂u,i}NNT

i=1 form a basis for
the NNT -dimensional complex space, therefore, each of the
vector bu,i can be expressed as the span of the basis vectors
{v̂u,i}NNT

i=1 as

bu,i =

NNT∑
j=1

ωu,jiv̂u,j , (26)

where ωu,ji ∈ R denotes the real scalar quantities. Next,
substituting the value of bu,i into (25), the true principal
eigenvector vu,1 can be rewritten as

vu,1 = v̂u,1 + ϵ

NNT∑
j=1

ωu,j1v̂u,j + ϵ2
NNT∑
j=1

ωu,j2v̂u,j + · · · .

(27)

The vector vu,1 can be further rewritten as

vu,1 = (1 + ϵωu,11 + ϵ2ωu,12 + · · · )v̂u,1 + (ϵωu,21 + ϵ2ωu,22

+ · · · )v̂u,2 + · · ·+ (ϵωu,NNT 1 + ϵ2ωu,NNT 2 + · · · )v̂u,NNT
.

(28)

Subsequently, one can obtain the relationship between the
true and the perturbed principal eigenvectors after normal-
izing the expression in (28) as

vu,1 = v̂u,1 + (ϵtu,21 + ϵ2tu,22 + · · · )v̂u,2 + · · ·
+(ϵtu,NNT 1 + ϵ2tu,NNT 2 + · · · )v̂u,NNT

, (29)

where tu,ji ∈ R represents the scalars quantities. Therefore,
the first-order perturbed principal eigenvector and eigenvalue
can be determined as

vu,1 = v̂u,1 + ϵ

NNT∑
i=2

tu,i1v̂u,i, (30)
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Fig. 5: MIMO Uplink performance considering System-I and System-II parameters: (a) Capacity versus error radius (ϵ)
for SNR = 10dB. (b) Capacity versus SNR for error radius ϵ = 0.6.

λu,1 = λ̂u,1 + xu,1ϵ,

respectively. Thus, one can reformulate the expression for
(HH

u Hu)vu,1 = λu,1vu,1 as

(ĤH
u Ĥu + ϵAu)

(
v̂u,1 + ϵ

NNT∑
i=2

tu,i1v̂u,i

)

= (λ̂u,1 + xu,1ϵ)

(
v̂u,1 + ϵ

NNT∑
i=2

tu,i1v̂u,i

)
. (31)

By setting the first-order error terms in (31), one can obtain
the expression

NNT∑
i=2

tu,i1(Ĥ
H
u Ĥu)v̂u,i +Auv̂u,i = xu,1v̂u,i

+λ̂u,1

(
NNT∑
i=2

tu,i1v̂u,i

)
, (32)

which can be further simplified as

NNT∑
i=2

tu,i1(λ̂u,i − λ̂u,1)v̂u,i +Auv̂u,1 = xu,1v̂u,1, (33)

Note that v̂T
u,1v̂u,i = 0, i ̸= 1, since the eigenvectors

corresponding to distinct eigenvalues of a symmetric matrix
are orthonormal. Therefore, upon multiplying both sides of
(33) with v̂T

u,1, we obtain

NNT∑
i=2

tu,i1(λ̂u,i − λ̂u,1)v̂u,iv̂
T
u,j +Auv̂u,1v̂

T
u,i

= xu,1v̂u,1v̂
T
u,1, (34)

and the above expression reduces to tu,j1 =
ρu,j1

(λ̂u,1−λ̂u,j)
,

where ρu,ji = v̂T
u,jAuv̂u,i. Substituting the expression for

ρu,ji in (29), with ϵ = 1, which implies that HH
u Hu =

ĤH
u Ĥu +Au as in (24), the true principal eigenvector vu,1

can be expressed as,

vu,1 = v̂u,1 +

NNT∑
i=2

ρu,i1v̂u,i

(λ̂u,1 − λ̂u,i)
. (35)

APPENDIX B

Proof of Lemma 2: The magnitude of the perturbation
vector ρu for the principle eigenvector vu,1 corresponding
to the matrix HH

u Hu can be determined using eigenvector
perturbation theory [51] as

∥ρu∥
2
2 =

NNT∑
j=2

(
1

λ̂u,1 − λ̂u,j

)2 ∥∥v̂H
u,jAuv̂u,1

∥∥2
2

≤ 1

(λ̂u,1 − λ̂u,2)2

NNT∑
j=2

(
v̂H
u,jAuv̂u,1v̂

H
u,1 (Au)

H
v̂u,j

)

≤ 1

(λ̂u,1 − λ̂u,2)2
Tr

Auv̂u,1v̂
H
u,1 (Au)

H

×
NNT∑
j=2

v̂u,jv̂
H
u,j + v̂u,1v̂

H
u,1︸ ︷︷ ︸∑NNT

j=1 v̂u,j v̂H
u,j=I


≤ σ̃2

u

(λ̂u,1 − λ̂u,2)2
. (36)
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Note that the second inequality holds due to the ordered
nature of the eigenvalues, i.e., 1/λ̂u,1 < 1/λ̂u,2 < · · · <
1/λ̂u,NNT

. The third inequality follows due to the fol-
lowing facts. First, the quantity Tr(Auv̂u,1v̂

H
u,1Au

H) =

v̂H
u,1Au

HAuv̂u,1 is maximum when v̂u,1 is the right singu-
lar vector of Au corresponding to the largest singular value
σ̃u of the matrix Au. The maximum value can be determined
as the square of the singular value σ̃u.

APPENDIX C

Proof of Theorem 1: Following the framework described
in [42], the solution to the SOCP optimization problem
in (18) for designing the robust TPC can be obtained as
g̃∗
1 = −µ(I+µQ1)

−1v̂1,1, where µ represents the Lagrange
multiplier, and the matrix Q1 is given as

Q1 = ϵ2ρ1
J1J

H
1 − v̂1,1v̂

H
1,1. (37)

One can further simplify the expression for Q1 by substitut-
ing the expression for J1 in (15) as Q1 = Ṽ1Σ1Ṽ

H
1 , where

the matrices Ṽ1 and Σ1 are defined as

Ṽ1 = [v̂1,1, v̂1,2, . . . , v̂1,NNT
], (38)

Σ1 = diag

−1, ϵ2ρ1
, . . . , ϵ2ρ1︸ ︷︷ ︸

NNT−1 times

 , (39)

respectively. Thus, one can employ the properties of the
unitary matrix V̂1 and the eigenvectors to further simplify
the TPC vector g̃∗

1 as

g̃∗
1 = −µ

(
I+ µV̂1Σ1V̂

H
1

)−1

v̂1,1

= −µ
(
V̂−1

1

)H
(I+ µΣ1)

−1
V̂−1

1 v̂1,1

= −µV̂1(I+ µΣ1)
−1

V̂H
1 v̂1,1

=
µ

µ− 1
v̂1,1. (40)

APPENDIX D

Let the objective function in (22) be represented as

f
(
F̃, σ̃2

)
= log

∣∣∣F̃F̃H + σ̃2INNT

∣∣∣ . (41)

The Taylor approximation of above function can be written
as

f
(
F̃, σ̃2

)
≈ f

(
F̃0, σ̃

2
0

)
+
∂f
(
F̃0, σ̃

2
0

)
∂σ̃2

(σ̃2 − σ2
0)

+ Tr


∂f

(
F̃0, σ̃

2
0

)
∂ℜ{F̃}

T

ℜ{F̃− F̃0}


+Tr


∂f

(
F̃0, σ̃

2
0

)
∂ℑ{F̃}

T

ℑ{F̃− F̃0}

 .(42)

One can employ the complex derivative theory [55] to obtain
the partial derivatives as

∂f
(
F̃, σ̃2

)
∂ℜ{F̃}

= 2ℜ

∂f
(
F̃, σ̃2

)
∂F̃

 ,

∂f
(
F̃, σ̃2

)
∂ℑ{F̃}

= 2ℑ

∂f
(
F̃, σ̃2

)
∂F̃

 . (43)

Upon substituting (43) in (42), we have

f
(
F̃, σ̃2

)
≈ f

(
F̃0, σ̃

2
0

)
+
∂f
(
F̃0, σ̃

2
0

)
∂σ̃2

(σ̃2 − σ2
0)

+ 2ℜ

Tr


∂f

(
F̃0, σ̃

2
0

)
∂ℜ{F̃}

H

ℜ
{
F̃− F̃0

}
 .

For a matrix-valued positive definite differentiable function
L (x), we can write [56]

log |L (x)|
∂x

= Tr

{
L−1 (x)

∂L (x)

∂x

}
. (44)

Therefore, the partial derivatives with respect to σ2 and F̃
can be written as

∂f
(
F̃, σ̃2

)
∂σ̃2

= Tr

{(
F̃F̃H + σ̃2INNT

)−1
}
,

∂f
(
F̃, σ̃2

)
∂F̃∗

=
(
F̃F̃H + σ̃2INNT

)−1

F̃. (45)

Hence, the approximated objective function in (42) can be
reformulated as

f
(
F̃, σ̃2

)
≈ f

(
F̃0, σ̃

2
0

)
+Tr

{
C−1

y,0

}
(σ̃2 − σ2

0)

+ 2ℜ
{
Tr
{
F̃H

0 C−1
y,0

(
F̃− F̃0

)}}
, (46)

where Cy,0 = F̃0F̃
H
0 + σ̃2

0INNT
. We dropped the constant

terms from the objective function in the optimization prob-
lem. The constraint Ĉy ⪰ F̃F̃H + σ̃2INNT

in (22) can be
written as [56]

Ĉy ⪰ F̃F̃H + σ̃2INNT
⇐⇒

[
Ĉy − σ̃2INNT

F̃

F̃H Iu

]
⪰ 0.
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