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ABSTRACT

Distinguishing two objects or point sources located closer than the Rayleigh distance is impossible in conventional microscopy.
Understandably, the task becomes increasingly harder with a growing number of particles placed in close proximity. It has been recently
demonstrated that subwavelength nanoparticles in closely packed clusters can be counted by AI-enabled analysis of the diffraction patterns of
coherent light scattered by the cluster. Here, we show that deep learning analysis can return the actual positions of nanoparticles in the clus-
ter. The Pearson correlation coefficient between the ground truth and reconstructed positions of nanoparticles exceeds 0.7 for clusters of ten
nanoparticles and 0.8 for clusters of two nanoparticles of 0.16k in diameter, even if they are separated by distances below the Rayleigh resolu-
tion limit of 0.68k, corresponding to a lens with numerical aperture NA¼ 0.9.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0194393

Imaging, localization, and retrieval of the number of subwave-
length objects closely packed, although extremely challenging, are
problems that are very often encountered in applications, such as envi-
ronmental monitoring,1 semiconductor optical inspection,2 materials,3

and biomedical analysis.4 This problem cannot be tackled by conven-
tional microscopy, which is bound by the Abbe–Rayleigh diffraction
limit to a resolution of about half the wavelength of the incident light.
Improved resolution can be obtained by using optical techniques such
as PALM and STED, which work with photoactivated labels5–7 or
near-field methods,8,9 which require contact with the sample and are,
therefore, unsuitable in many instances because of their complexity
and invasiveness.10

It was recently reported that deep learning-enabled analysis of
single-shot diffraction patterns of coherent light scattered by subwave-
length objects can be used to obtain unlabeled super-resolution optical
metrology11,12 and to correctly predict the number of nano-objects in

clusters of subwavelength objects.13 Here, we show that AI-
empowered analysis of the optical diffraction patterns of closely packed
subwavelength nanoholes, using a neural network trained on similar
a priori known objects, allows us to retrieve their positions, even when
the nanoholes are touching.

We conducted numerical experiments using a coherent plane
wave illumination (k¼ 633 nm) of clusters of subwavelength nano-
holes with a diameter of k/6.33 perforated in an opaque film, randomly
placed within a 2.2 k � 2.2 k area. We image the diffraction patterns
created by the nanoholes clusters at a distance, H¼ 1 k, away from the
sample, over a 22 k� 22 k field of view, accounting for the numerical
aperture, NA¼ 0.9, of a real imaging system [Fig. 1(a)]. Pairs of the
far-field diffraction pattern and the corresponding position map of
nanoholes in the cluster were used to train a modified U-Net encoder–
decoder convolutional neural network. U-Net is a convolutional neural
network (CNN) architecture specifically designed for semantic image
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segmentation,14 i.e., categorizing each pixel in an image into a class or
object, which continues to generate widespread interest and has found
application in medical imaging15 and optical microscopy.16 The net-
work has a U-shaped architecture consisting of an encoder, or
dimension-reducing path, followed by a decoder or dimension-
increasing path, with a symmetric design that reduces the risk of infor-
mation loss during the encoding and decoding processes.17 The
encoder path captures and condenses information of inputs at multiple
levels of abstraction through convolutional and pooling layers, as in
traditional CNNs.18 The decoder path, instead, uses transposed convo-
lutions to recover the dimension, conditioned by skip connections
from the correspondingly encoded information at the same level. This
approach enables the network to produce precise segmentation masks
and effectively addresses the vanishing gradient problem.19 This phe-
nomenon, where the network loses its capacity to capture long-term
dependencies, is mitigated through this design. To promote efficient
information propagation and resolve the category imbalance challenge
in the particle localization problem (i.e., the small fraction of nanoholes
with respect to the background), we modify the U-Net by introducing
a residual architecture20 with multiple deep convolutional layers and
novel hybrid loss function that combines binary cross-entropy loss
and a class-balanced loss (details are in the supplementary material
Secs. 1–5). The trained network is then able to retrieve the positions of
the particle in the cluster from previously unseen diffraction patterns
[Fig. 1(b)].

Each sample contains up to 10 nanoholes that may form clusters
with an inter-particle distance smaller than the Rayleigh limit of reso-
lution of a conventional microscope, 0.61 k/NA. We define the sizes of
the sub-Rayleigh clusters by counting the number of nanoholes whose
inter-particle distance is smaller than the Rayleigh limit [Fig. 2(a)] and
characterize each sample by the largest sub-Rayleigh cluster size within

the 2.2 k� 2.2 k area. It shall be noted how, often, not only pairs but
all particles fall within the Rayleigh distance [e.g., nanoholes A, B, and
C in Fig. 2(a)]. The groundtruth maps used to supervise the network
are binary images of 512� 512 pixels size (corresponding to an area of
2.5 k� 2.5 k), where white pixels (value¼ 1) represent the nanoholes
and black pixels (value¼ 0) represent the Cr film [second column in
Fig. 2(b)]. The corresponding diffraction patterns were generated plot-
ting the total electric field intensity profiles calculated by finite-differ-
ence-time-domain (FDTD) full Maxwell solver (supplementary
material Sec. 6), at a distance of 1 k from the sample surface, over a
field of view of 22 k� 22 k [first column in Fig. 2(b)]. Figure 2(b)
shows that the light propagating through the nanoholes generated very
rich interference patterns in the diffraction maps, thus making it very
difficult to correlate with a specific number and distribution of nano-
holes on the sample. Nonetheless, the trained network can not only
retrieve the number and positions of the nanoholes in the clusters but
also return 512� 512 pixels images [third column in Fig. 2(b)], where
the sizes of the nanoholes match well those of the groundtruth and,
therefore, can be regarded as a form of super-resolution imaging.

A total of 11700 samples and corresponding diffraction patterns
were generated for the numerical experiment, of which 7200 were used
for training, 1800 for validation, and 2700 for testing (supplementary
material Sec. 7). We use the Pearson correlation coefficient21 between
the predicted and ground truth images to evaluate the accuracy of
image reconstruction of our technique,

rxy ¼
Xn

i¼1
xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
xi � �xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
yi � �yð Þ2

q ; (1)

where n is the sample size and xi and yi are the individual sample
points in our reconstructed image and ground truth image,

FIG. 1. (a) Schematic of the numerical experiment. Clusters of subwavelength nanoholes with diameters of k/6.33, placed within a 2.2 k� 2.2 k area in a 100 nm-thick chro-
mium film, are illuminated by a plane wave with wavelength¼ 633 nm. The diffraction pattern of the scattered light intensity, at a distance, H¼ 1k, is recorded with a numerical
aperture, NA¼ 0.9. (b) Pairs of diffraction patterns and corresponding position maps of the nanoholes (ground truths) are used to train a modified U-Net, encoder–decoder con-
volutional neural network, which will then be able to retrieve the positions of nanoholes from single-shot unknown diffraction patterns.
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respectively, indexed with i, �x ¼ 1
n

Pn
i¼1 xi (the sample mean), and

analogously for �y .
Figure 3(a) shows that the accuracy exceeds 0.81 for samples with

the sub-Rayleigh cluster index of 3 and remains as high as 0.71 for
samples containing ten nanoholes within the same sub-Rayleigh clus-
ter, which is an indication of the trained network’s robustness against
the size of sub-Rayleigh clusters. The decrement of the image recon-
struction accuracy with the increasing size of sub-Rayleigh clusters can
be justified by the increase in the complexity of the interference
patterns.

To explore further our technique and test its resilience against the
problem of closely paced particles, we tested its performance with an

example of two closely spaced nanoholes. In this case, we use 800 dif-
fraction patterns of two k/6.33 nanoholes with center-to-center separa-
tion decreasing from 0.677 k (Rayleigh distance) to 0.158 k (touching)
as a test. The Pearson correlation coefficient calculated in Fig. 3(b)
shows that the two nanoholes could be resolved with an accuracy
higher than 0.8 across almost the entire range of sub-Rayleigh distan-
ces, with a slight drop to 0.75 in the only case of touching nanoholes.

In conclusion, we report on a far-field, single-shot super-
resolution optical technique based on the deep learning of the light dif-
fracted on the clusters of subwavelength particles. It allows retrieving
maps showing the number, positions, and sizes of the nanoparticles in
the cluster and, therefore, constitutes a form of imaging. Our technique

FIG. 2. (a) A group of nanoholes is identified as a sub-Rayleigh cluster if each nanohole in the cluster has at least one neighboring nanohole within Rayleigh distance, 0.61
k/NA. The binary map shown here contains a sub-Rayleigh cluster of three nanoholes (A)–(C) and a cluster of four nanoholes (D)–(G). The circles represent the Rayleigh
region of each nanohole. Nanoholes (A)–(C) and nanoholes (D)–(F) all fall within the Rayleigh distance. (b) Diffraction patterns (first column), groundtruth (second column), and
prediction (third column) images of three samples where the size of the largest Rayleigh cluster (yellow dashed circle) increases from 5 (first row) to 7 (second row) and 10
(third row).

FIG. 3. (a) Pearson correlation coefficient between the predicted and ground truth images as a function of the sub-Rayleigh cluster size. Insets: examples of groundtruth (left)
and prediction (right) images for samples with the largest sub-Rayleigh cluster size of 4 (lower left) and 8 (upper right) nanoholes. (b) Pearson correlation coefficient between
the predicted and ground truth images for the typical Rayleigh diffraction case, two closely spaced nanoholes of decreasing center-to-center distance.
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is scalable to different wavelengths and film materials as long as the
film material is opaque for the wavelength. The image reconstruction
accuracy measured as the correlation coefficient between the ground
truth and reconstructed maps of the nanoparticles depends on the
number of nanoparticles in the largest cluster of sub-Rayleigh spaced
particles and varies from 0.82 to 0.71 when the cluster size increases
from 2 to 10. In addition, we showed that the technique resolves nano-
holes separated significantly smaller than the Rayleigh distance.

See the supplementary material for details on the network (archi-
tecture, optimization objectives, hyperparameters, and tailored objec-
tive functions) and the dataset distribution used for training,
numerical simulations, and performance with noise.
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