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Quantum tomography is one of the major challenges of large-scale quantum information research
due to the exponential time complexity. In this work, we experimentally demonstrate quantum
overlapping tomography [Phys. Rev. Lett. 124, 100401 (2020)], a scheme intent on characterizing
critical information of a many-body quantum system in logarithmic time complexity. By comparing
the measurement results of full state tomography and overlapping tomography, we show that over-
lapping tomography gives accurate information of the system with much fewer state measurements
than full state tomography.

As more interest and effort have been put into the re-
search of quantum information processing in recent years
[1, 2], there have been remarkable advances in construct-
ing and controlling large-scale quantum systems with a
series of physical systems, including but not limited to su-
perconducting circuits [3–5], linear optics [6, 7], ion trap
[8, 9], and ultracold atoms [10]. Although it has been re-
alistic to create and operate a large system with around
100 or even 1000 qubits [11, 12], it’s still a question how
to measure such many-body states and demonstrate the
correlation between any two parts of the system. Due
to the quantum nature of qubits, the information carried
by a qubit cannot be read out with one single measure-
ment [13]. Instead, one needs to perform multiple times
of measurement with multiple sets of basis on one quan-
tum state to reconstruct the density matrix representing
the state [14]. As the number of qubits in the system
goes up, the number of required measurements increases
exponentially [15], leading to an unacceptable time com-
plexity, which could overwhelm the stability of the sys-
tem for even a moderate scale. In fact, for a system with
just 10 qubits, a full state tomography (FST) has been
considerably hard [16]. Driven by this challenge, various
protocols have been raised to reduce the time complex-
ity. Some protocols offer advantages for certain quantum
states with special structures [17]. Some protocols can es-
timate an unknown state with higher efficiency, but they
require quantum non-demolition measurement, which re-
mains experimentally unavailable nowadays [18].

A more realistic idea is to retrieve limited but critical
information by reconstructing the reduced density matri-
ces of the small-scale subsystems of the huge-scale sys-
tem, with much fewer measurements. Although this kind
of ‘partial’ tomography doesn’t give a full picture of the
system, it is usually critical in application cases, such as
the research on long-range order in many-body systems
[19] and machine learning based on quantum neural net-

works [20]. However, even for this simplified task, the
time complexity still can be unacceptable. Supposing we
have a system of n qubits and hope to measure all the k-
qubit subsystems, there are

(
n
k

)
subsystems that need to

be measured. For small k relative to n, we have
(
n
k

)
∼ nk.

Thus, the time complexity is eO(k) ×nk because measur-
ing each k-qubit subsystem has a time complexity eO(k).
Even for a modest scale of n = 50 and k = 2, the to-
tal number of measurements will reach 10000N, where
N stands for the required number of measurements to
obtain a statistically significant result for each measure-
ment setting. This number has been too much for a real
experiment.

Quantum Overlapping Tomography (QOT) [21] is one
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FIG. 1. (a) 2-qubit quantum overlapping tomography of a
large-scale system. The whole system is divided into two
groups, red and blue, in different strategies. For each di-
viding strategy, the two groups are measured on a different
basis. (b) QOT dividing strategy for the n = 4, k = 2 case.
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protocol proposed by J. Cotler and F. Wilczek, which
makes use of the strong power of parallelism to simplify
this task. With the overlapping nature of quantummany-
body systems, QOT can reconstruct all

(
n
k

)
k-qubit sub-

systems in logarithmic time complexity ∼ eO(k) logk n
by reorganizing the measurement dataset. With this
scheme, for n = 50, k = 2, it’s possible to reconstruct
all the subsystems within less than 100N measurements,
which means an over 100 times boost.

Due to its fascinating advantage, QOT has been
attracting considerable attention from the community.
Some researchers have started to use this method in their
projects [22]. However, a general experimental scheme
of QOT and the performance comparison between QOT
and FST are still new topics to fill in. In this work,
we experimentally demonstrate QOT on a 4-photon po-
larization entanglement system powered by spontaneous
parametric down-conversion (SPDC). To apply the QOT
scheme originating from exact tomography [23], which is
not legitimate to use in experiments, into the experiment
scenario, we develop an algorithm to perform a Bayesian
mean estimation (BME) [24] to estimate the target states
with the measurement dataset, for both FST and QOT.
We compare the outcome of FST and QOT with a 4-
photon GHZ state. To make the results comparable, the
QOT estimation is performed with a subset of the mea-
surement dataset that the FST uses, instead of a sepa-
rate dataset. In addition, we generate a variation of GHZ

state and show that QOT is capable to characterize gen-
eral kinds of states.
In quantum information, any quantum state of a single

qubit can be demonstrated with a two-dimension density
matrix [23]

ρ̂ =
1

2

3∑
i=0

Siσ̂i, σ̂0 ≡
(
1 0
0 1

)
, σ̂1 ≡

(
0 1
1 0

)
,

σ̂2 ≡
(
0 −i
i 0

)
, σ̂3 ≡

(
1 0
0 −1

)
(1)

Si values can be given by Si = Tr {σ̂iρ̂}, which in-
dicates that it can be directly obtained with projective
measurements.
Similarly, a general multi-qubit system with n qubits

can be demonstrated with a density matrix with 2n di-
mensions.

ρ̂ =
1

2n

3∑
i1,i2,··· ,in=0

Si1,i2,··· ,in σ̂i1 ⊗ σ̂i2 ⊗ · · · σ̂in (2)

To reconstruct the density matrix, the main task of
a quantum full state tomography is to obtain all the
Si1,i2,··· ,in values. In theory, the values can be directly
calculated with the results of measurement through exact
tomography [23].

Si1,i2,··· ,in = (λ1Pϕi1
+ λ⊥1 Pϕ⊥

i1
)(λ2Pϕi2

+ λ⊥2 Pϕ⊥
i2
) · · · (λnPϕin

+ λ⊥nPϕ⊥
in
)

= (λ1λ2 · · ·λn)Pϕi1
ϕi2

···ϕin
+ (λ1λ2 · · ·λ⊥n )Pϕi1

ϕi2
···ϕ

i⊥n
+ · · ·+ (λ⊥1 λ

⊥
2 · · ·λ⊥n )Pϕ

i⊥1
ϕ
i⊥2

···ϕ
i⊥n

(3)

Here we note ϕij as the eigenstate with eigenvalue
λj = 1 and ϕ⊥ij with eigenvalue λ⊥j = −1.Pϕ⊥

ij

stands

for the probability. that jth qubit is in ϕ⊥ij , which can
be estimated with a finite number of measurements. For
the case of ij = 0, λjPϕ0

+λ⊥j Pϕ⊥
0
= 1, which means this

term would be “transparent” in the calculation.

For the whole system with n qubits, an array with 2n
detectors is deployed to measure all 2n eigenstates of ele-
ment density matrix σ̂i1 ⊗ σ̂i2 ⊗ · · · σ̂in at the same time,
with the measurement setting {i1, i2, · · · , in}. In princi-
ple, 4n settings are needed since each ij has 4 possible
values. However, for those settings with any ij = 0, the
Si1,i2,··· ,in can be directly calculated with the measure-
ment results by other settings with all ij = 0. Thus, in
practice, we need 3n settings to reconstruct the density
matrix of a system with n qubits.

Note that exact tomography is only usable with the
assumption that the observed probabilities are theoret-

ically perfect, which means the observation should be
with no errors and be conducted through an infinite en-
semble of states. In another word, Eq(3) is not valid for
any real measurement, otherwise, it would lead to phys-
ically insufficient results. A common practice to recon-
struct legitimate density matrices with real observation
results is statistical estimation methods, such as Max-
imum Likelihood Estimation (MLE) [25] and Bayesian
Mean Estimation (BME) [24, 26]. In this work, we de-
velop an algorithm based on Gibbs sampling [27] to per-
form a Bayesian Mean Estimation with the measurement
datasets for both FST and QOT.
Here we show how the QOT works in a k = 2 case.

Firstly, we describe the task as reconstructing all
(
n
k

)
2-

qubit reduced density matrices:

ρ̂{x1,x2} =
1

22

3∑
i1,i2=0

S
{x1,x2}
i1,i2

σ̂i1 ⊗ σ̂i2 (4)
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where {x1, x2} represents a 2-qubit subsystem of the

n-qubit system. To obtain the values of S
{x1,x2}
i1,i2

, Nor-
mally we need to pick all of the 2-qubit groups {x1, x2}
and measure them individually. For the n-qubit system,

there are n(n−1)
2 of such subsystems, and N × 32 = 9N

measurements need to be operated on each subsystem to
get a tomography of them, which gives an O(n2) time
complexity.

In QOT (Fig.1(a)) instead, we divide the n-qubit sys-
tem into 2 groups, by q = ⌈log2 n⌉ ways. The dividing
strategy should satisfy the requirement that for any sub-
system {x1, x2}, there is at least one divide where x1 and
x2 are in different groups.

A dividing example of n = 4 case is given in (Fig.1(b)).
The 4-qubit system {1, 2, 3, 4}, is divided in 2 different
ways noted as {{1, 2} , {3, 4}} and {{1, 3} , {2, 4}}. Then
we measure the system in two steps:

1. Measure all the qubits in X,Y,Z basis respectively,
which need 3N measurements in total.

2. For each divide out of the q divides, measure all
qubits in group 1 in one basis B1 ∈ {X,Y, Z} and
measure all qubits in group 2 in another different
basis B2. Thus, it takes 6 measurements for each
of the q divides, which is a total of 6qN .

So, we use 3+6q measurement basis sets in total, which
gives a logarithmic time complexity. With an ideal prob-
abilities dataset, density matrices ρ̂{x1,x2} can be recon-
structed by calculating the value

S
{x1,x2}
i1,i2

= (λ1Pϕi1
+ λ⊥1 Pϕ⊥

i1
)(λ2Pϕi2

+ λ⊥2 Pϕ⊥
i2
) (5)

This calculation relies on the same assumption as ex-
act tomography, so it is not valid for real measurements.
Proper estimation is also necessary to reconstruct legiti-
mate density matrices with the QOT dataset.

In our experiment, we build up a 4-qubit entangled
system and try to reconstruct the 2-qubit subsystems of
it [28]. If we operate FST on the 4-qubit system, we
need N × 34 = 81N measurements for the task. For the
subsystem reconstruction task that we have discussed,
N×

(
4
2

)
×32 = 54N measurements are required. However,

with QOT, only N × (3 + 6 log2 4) = 15N measurements
are required to reconstruct all the 2-qubit subsystems.

Fig.2 shows an overview of the experimental set-up for
generating and detecting a 4-photon GHZ state ψR

GHZ =
1√
2
(|HVHV ⟩ + eiθ|V HV H⟩). Following Jones Calculus

[33], the horizontal polarization |H⟩ and vertical polar-
ization |V ⟩ are defined as the eigenstates of Pauli matrix
σz. |L/R⟩ = 1√

2
(|H⟩± i|V ⟩), |D/A⟩ = 1√

2
(|H⟩± |V ⟩) are

the eigenstates for σy and σx respectively. We use wave-
plates and polarization beamsplitters to measure qubits
on a specific measurement basis. By detecting photons
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FIG. 2. Schematic of experimental set-up for generating 4-
photon entanglement, with the detectors labeled by order.
An ultrafast pulsed laser with the center wavelength of 390
nm, pulse duration of ∼100 fs, and repetition rate of 80 MHz
was deployed to pump two sets of interference-based beam-
like SPDC entanglement sources [29, 30]. The polarization-
entangled photon pairs go through a post-selection interfer-
ence to generate a 4-photon GHZ state, which is then mea-
sured by 8 single-photon detectors. To reduce the loss of
two-fold fidelity caused by time-space correlation [31, 32],
we applied narrow-band filters with λFWHM=3 nm and
λFWHM=10 nm to the signal and idler photons respectively.
The center wavelengths of both signal and idler photons are
780 nm. BBO: Barium Borate; PBS: polarization beam-
splitter; HWP: half-wave plate; QWP: quarter-wave plate

in both output modes of PBS, we measure all 16 proba-
bilities in parallel for one measurement basis set.

The two-fold coincidence counting rate can reach 100
kHz at pump power 550 mW, with a state fidelity F >
0.97. The singles count rates vary between 350 - 500
kHz with different channels, generating a 2-fold acciden-
tal rate around 2 kHz and a coincidence-to-accidental
ratio (CAR) around 50:1. The 4-fold accidental rate
is around 0.05 Hz. The single photon detecting effi-
ciency is between 20 − 25% with narrow-band filtering.
We recorded 4-fold coincidences (for 16 sets of measure-
ment basis spontaneously) for 300 s on each setting, with
the total coincidence counting rate over 16 sets of basis
around 10 Hz, with a CAR around 200:1. We performed
an FST on this state to reconstruct the 4-qubit density
matrix ρF . Comparing the tomography result with a
given pure state ρR = |ψR

GHZ⟩⟨ψR
GHZ |, the state fidelity

FM = (Tr

√√
ρRρF

√
ρR)2 =0.922±0.013 .

For the QOT case, we focus on the 2-qubit sub-
systems of the 4-qubit entangled state. Thus, firstly,
we obtain the density matrices of 2-qubit subsys-
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FIG. 3. (a) real and (b) imaginary part of density matrix of 2-
qubit subsystem ψF

2,3 obtained by 4-qubit full state tomogra-
phy (FST) (c) real and (d) imaginary part of density matrix of
2-qubit subsystem ψO

2,3 obtained by overlapping tomography.

(e) 2-qubit state fidelities of ψF
i1,i2/ψ

O
i1,i2 with (ψR

GHZ)i1,i2 and

(f) Von Newmann Entropy of subsystem ψF
i1,i2 and ψO

i1,i2 . For
(e-f), error bars show 95% confidence interval

tems ρFj1,j2 = Tri1,i2ρ
M , i1, i2 ∈ {1, 2, 3, 4} , {j1, j2} =

{1, 2, 3, 4} / {i1, i2} by calculating the partial trace. Then
we perform overlapping tomography on the same state,
reconstructing the density matrices ρOi1,i2 of 2-qubit sub-

systems. By comparing ρFi1,i2 and ρOi1,i2 in density matrix
visualization (Fig.3(a-d)) and state fidelity (Fig.3(e)), we
confirmed that QOT gives highly similar results to the
outcome from 4-qubit FST. The fidelity differences are
less than 0.01 within the margin of error, which displays
the similarities between density matrices estimated with
QOT and 4-qubit FST.

To further characterize the states in this case, we cal-
culated and compared the Von Neumann Entropy (VNE)
[34] S = −Tr(ρ · ln ρ) of ρFi1,i2 and ρOi1,i2 . For the 2-qubit

(a) (b)

FIG. 4. (a) State fidelity F (θ1, θ2) between 4-qubit state ψ′F

reconstructed via 4-qubit FST and reference state ψ′R(θ1, θ2),
F reached peak at θ1 = 175◦, θ2 = −27◦. (b) State fi-
delity F0,2(θ1, θ2) between 2-qubit subsystem ψ′

0,2 recon-
structed via overlapping tomography and reduced reference

state ψ′R
0,2(θ1, θ2). F0,2 reached peak at θ1 = 183◦, θ2 = −21◦.

subsystems of an ideal 4-qubit GHZ state, the quantum
state should be a mixed state consisting of two maxi-
mally entangled Bell states |Ψ⟩, and the VNE should
be S ≈ ln2 = 0.69. State or measurement error usu-
ally increases this value, which indicates the state is
more ‘mixed’ and less ‘entangled’. By comparing VNE
SO
i1,i2

and SO
i1,i2

(Fig.3(f)), we find that overlapping to-
mography gives overall similar results with the 4-qubit
FST. Though all differences between VNE results given
by QOT and 4-qubit FST are within the margin of er-
ror, for some subsystems, the VNE by QOT are visibly
smaller than that by FST. This may be due to the QOT
results being estimated with fewer sets of measurement
data than the 4-qubit FST, which reduces the influence
of inconsistency of measurements originating from envi-
ronment vibration and imperfect experiment operations.

Further, we use overlapping tomography to charac-
terize an alternative state ψ′. The reference state
wavefunction for this case is ψ′R = 1√

2
(|D′V D′′V ⟩ +

ei(θ1+θ2)|A′HA′′H⟩), where |D′⟩ = |H⟩ + eiθ1 |V ⟩, |A′⟩ =
|H⟩−eiθ1 |V ⟩, |D′′⟩ = |H⟩+eiθ2 |V ⟩, |A′′⟩ = |H⟩−eiθ2 |V ⟩.
We generated this state by setting HWP a and b in Fig.2
to θa = −22.5◦ and θb = −22.5◦. Similarly, we com-
pare the result of 4-qubit FST and QOT with density
matrices visualization [28]. This result shows QOT is
equally efficient for different multi-qubit states, indicat-
ing that QOT is a promising method to characterize com-
mon quantum states.

In the wavefunction of ψ′R, θ1 and θ2 are extra phases
introduced by the SPDC process, which can be esti-
mated by calculating the fidelity between the measure-
ment result and reference states. We estimated θ1 =
175◦, θ2 = −21◦ by comparing the 4-qubit density ma-
trix ρ′

F
obtained by 4-qubit FST with reference state

ρ′
R
(θ1, θ2) = |ψ′R(θ1, θ2)⟩⟨ψ′R(θ1, θ2)| (Fig.4(a)). We

also use the subsystems reconstructed via QOT to esti-
mate the state phase θ1, θ2 by comparing the density ma-
trices ρ′

O
i1,i2 with reference state ρ′

R
i1,i2(θ1θ2) (Fig.4(b)).

Though a difference exists between the two estimations,
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considering the small derivative of fidelity to both θs, the
results are reasonably close with each other as the dif-
ference between two estimations corresponds to less than
0.8% difference in state fidelity. Besides, since QOT takes
fewer measurements, system inconsistency affects QOT
less than FST, which may also contribute to the differ-
ence. This feature could be a significant advantage when
measuring large systems. This result shows that QOT
can be used to extract important state parameters with
a significantly reduced time complexity too.

To give a further demonstration of the advantage of
QOT, we perform QOT on a linear optical six-qubit sys-
tem [28]. In such a system, we managed to observe six-
photon coincidence events with a count rate of 0.05 Hz.
To perform a six-qubit FST, the state needs to be mea-
sured in 729 sets of basis. As 700 events are recorded for
each basis sets to get a reasonable witness, the whole FST
would take around 120 days, which is unacceptable given
the stability of optical set-ups. By contrast, with QOT,
we can reconstruct all 15 2-qubit subsystems with only
21 sets of basis and the measurement only take around
80 hours.

In summary, we performed quantum overlapping to-
mography to characterize 4-qubit GHZ states. By com-
paring the QOT results with FST results, we showed
that QOT is capable to reconstruct subsystems with a
given scale and extract important parameters of a 4-qubit
state, with a remarkably reduced number of measure-
ments. This scheme is directly applicable to quantum
states with a wider range of structures and larger scale,
which could be significant for the future development of
quantum information.
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dation through QEP grant (NRF2021-QEP2-01-P02,
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(MOE2016-T3-1-006 (S)).
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[13] K. Kraus, A. Böhm, J. Dollard, and W. Wootters, States,
effects, and operations: Fundamental notions of quantum
theory (1983).

[14] G. M. D’Ariano and P. Lo Presti, Quantum tomography
for measuring experimentally the matrix elements of an
arbitrary quantum operation, Phys. Rev. Lett. 86, 4195
(2001).

[15] R. O’Donnell and J. Wright, Efficient quantum tomogra-
phy, Proceedings of the forty-eighth annual ACM sym-
posium on Theory of Computing , 899 (2016).

[16] C. Song, K. Xu, W. Liu, C.-p. Yang, S.-B. Zheng,
H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang,

mailto:wbgao@ntu.edu.sg
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/PhysRevLett.127.180502
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1126/science.1231298
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1038/s41586-020-2910-8
https://doi.org/10.1126/science.aaz6801
https://doi.org/10.1126/science.aaz6801
https://books.google.com.sg/books?id=fRBBAQAAIAAJ
https://books.google.com.sg/books?id=fRBBAQAAIAAJ
https://books.google.com.sg/books?id=fRBBAQAAIAAJ
https://doi.org/10.1103/PhysRevLett.86.4195
https://doi.org/10.1103/PhysRevLett.86.4195
https://doi.org/10.1145/2897518.2897544
https://doi.org/10.1145/2897518.2897544


6

D. Xu, D. Zheng, X. Zhu, H. Wang, Y.-A. Chen, C.-Y.
Lu, S. Han, and J.-W. Pan, 10-qubit entanglement and
parallel logic operations with a superconducting circuit,
Phys. Rev. Lett. 119, 180511 (2017).

[17] B. P. Lanyon, C. Maier, M. Holzäpfel, T. Baumgratz,
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