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Strangeness and anisotropic phases in dense nuclear matter in the chiral transition

region

by Savvas Pitsinigkos

The theory of Quantum Chromodynamics presents a rich phase structure. However,
while the low temperature and intermediate density region is a key piece in
understanding the physics of neutron stars, it is also elusive from ab-initio methods
and experiments. In this thesis we discuss two different models that explore the phase
diagram of Quantum Chromodynamics.

In the first part we construct a model for dense matter based on low-density
nuclear matter properties that exhibits a chiral phase transition and includes
strangeness through hyperonic degrees of freedom. Along with empirical constraints
from nuclear matter we require that at asymptotically large densities the chirally
restored phase contains strangeness and the speed of sound approaches the conformal
limit, resulting in a high-density phase that resembles deconfined quark matter.
Additionally, the model is required to reproduce sufficiently massive compact stars.
We also find that for the allowed parameter range strangeness does not appear in the
chirally broken phase and that the chiral transition is of first order.

In the second part we employ a simpler version of this model to discuss the
competition between isotropic and anisotropic phases. Assuming isotropy, the model
exhibits a chiral phase transition which is a crossover. This observation crucially
depends on the presence of the nucleonic vacuum contribution, an important addition
to this model. Allowing for an anisotropic phase in the form of a chiral density wave
can disrupt the smooth crossover. We identify the regions in the parameter space of
the model where a chiral density wave is energetically preferred. A high-density
re-appearance of the chiral density wave demonstrating unphysical behavior, is
avoided by a suitable renormalization scheme. We find that, within our model, the
chiral density wave is only realized for baryon densities of at least about 6 times
nuclear saturation density.

As an introduction, the necessary tools and concepts are presented. In the end,
possible extensions of this work are discussed.


http://www.southampton.ac.uk
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Chapter 1

Introduction

How does matter behave when compressed to the extreme? What is the composition
of a neutron star? Is there a way that we can find answers here on Earth? These are the
questions that I will try to tackle in this thesis. We will mainly be concerned about the
thermodynamics of Quantum Chromodynamics, which is the theory that holds a

great portion of the answers to the questions we asked.

We shall begin with reviewing some basics of the theory. We will discuss the
symmetries and symmetry breaking patterns. Then, a brief recap of the ideas of Chiral
Effective field theory is presented. We then turn to the phase diagram of Quantum
Chromodynamics and the open questions that still remain. We will continue by
presenting our approach to answer these open questions and also similar approaches
employing phenomenological models. At the end of the introduction we will discuss
some special cases of inhomogeneous phases, and at last give some background in
neutron star physics. In Chapter 2 we present a nucleon-meson model that includes
strangeness via hyperons and attempts to paint a simplified picture of the phase
structure of strong interactions. In Chapter 3 a simpler model is employed to shed
new light over the possibility of a certain inhomogeneous phase is the ground state of
the nuclear medium. Finally, we conclude the thesis by drawing some conclusions

from our results, and also providing some outlook.

Note that, unless otherwise stated, we will be working in units where
c = h = kg = 1. Also, the work presented in Chapters 2 and 3 has been taken from

publications that were completed during my doctoral candidacy [1, 2].
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1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory that describes the strong interactions
between quarks and gluons. These are the constituents of all hadrons, but quarks and
gluons have very different properties from hadrons. Whatever these differences may
be, QCD is the underlying theory describing the strong force, and so in principle the
full hadron spectrum with its properties and interactions should be subject to the rules

of that theory. Let us start by writing down the Lagrangian of the theory
1 _
L= =Gy Gy + )05 (ijic — m* i)y, (1.1)
o

where the quark fields tp;?‘ have N f flavors « = u, d, ... and 3 colors j = 1,2,3 and also

the gluons A; have a color index a = 1, ...8. Moreover,
Gl = 0, AL — 0, Al — gf AL AL, (1.2)

is the gluon field strength tensor, g is a coupling constant and f* are the structure

constants of SU(3). The covariant derivative matrix with color indices j, k is
ik
1 ik a
D) = (I:]3 0y + 1gA;12”> , (1.3)

with A, (a = 1 to 8) being the SU(3) generators (Gell-Mann matrices). This is the
simple theory that in principle describes the comparatively complex structure of QCD
that we will discuss in the next chapters. However, calculating the said structure from

tirst principles is not a small feat.

One of the main reasons for this difficulty is the strong coupling phenomenon of
color confinement. To discuss it, think of QCD as an effective low-energy theory, only
applicable up to some cutoff A, from where on another “full theory” extends it.
Theories that are renormalizable (like QCD) have no regard about their ultraviolet
completion (beyond the scale A). This means that they boil down to an effective
description where all of their details are encoded to a finite set of free parameters that
are measurable at some low energy scale E. The renormalization procedure describes
how one can integrate the effects of the theory in the scales between (E, A) and encode

them in the coupling “constants” of the effective theory, which now depend on E.
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FIGURE 1.1: Energy dependence of the effective coupling («; = g) in QCD. For every
energy scale a suitable renormalization scale must be chosen for the theory (Q = E).
Figure taken from [5]

Having in mind the coupling constant g from (1.3) in particular, say we want to
calculate how it is affected by the change of the energy scale E. This is encoded in the

beta-function, which for QCD to 1-loop accuracy is

5 N 3
Bocp = E% —_ (11 _ 3f> 1§n2 +O(). (1.4)

The negative pre-factor (for the physical case of Ny = 6) hints that the coupling
strength ¢ becomes smaller as the energy at which we evaluate our effective theory
increases. Following this trend, we expect that at very high E, the coupling constant
reduces to very small values, resulting to a theory of approximately free quarks and
gluons (asymptotic freedom [3, 4]). This is demonstrated in Fig. 1.1, In this regime the

usual field theoretic perturbative methods can be applied.

On the contrary, moving to lower E, the coupling is expected to increase to the
point that the theory becomes strongly coupled and non-perturbative effects
dominate. One such effect is the confinement of quarks and gluons within color-less

hadrons. Hadrons are the relevant degrees of freedom in the QCD vacuum.



4 Chapter 1. Introduction

1.1.1 Symmetries of QCD

We will now discuss some important symmetries of the theory. The first one is the
invariance of the Lagrangian with respect to non-abelian gauge transformations,

which is the color symmetry. A transformation of a quark spinor can be written as
P — e Wy, (1.5)
and the invariance is achieved by the corresponding transformation of the gluon field
Ay — Ay + Duo®(x). (1.6)

The conserved charge corresponding to this symmetry is the color charge.

There are also invariances of the Lagrangian with regard to global
transformations. To discuss them consider the following. In QCD we observe 6 quark
flavors, where their mass spectrum spans 5 orders of magnitude. We can differentiate
3 “heavy” (c, b, t) and 3 “light” (u, d, s) flavors, where former ones having masses in
excess of 1 GeV and the latter ones have masses smaller than 100 MeV. We want to
discuss the symmetries of the theory in the limit of vanishing light quark mass, the

chiral limit. For this purpose let us introduce the projection operators

L+7s L—7s
Pr = P = 1.7
R 2 7 L 2 7 ( )
which can be used to split the spinors to their left-handed and right-handed
components
Yr/L = PryLy, ¢ =+ ¢r. (1.8)
We can now write the QCD Lagrangian in zero light quark mass limit
1 —a _,y
L= _1cg‘vcgv + ) PP — m )i + Z PliDjpi. (1.9)
a=heavy a=light
The latter term can be written as
Y wiyt = Y (#iDuh + FaiDadiz) - (1.10)

a=light a=light
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In this form it is clear that the flavor symmetry group of the theory appears to be
U@L x UB)r, (1.11)

that is symmetry with respect to rotations in the 3 dimensional “light” flavor space,

independently for left and right handed spinors, i.e.

1,DR — €i¢%/\“lI)R, l/JL — ei(Pi/\”l[JL, (112)

~

where now Ay = I5. Since U(N) = SU(N) x U(1), this group can be decomposed to
SU(3)1 x SU(3)r x U(1)p x U(1) 4. (1.13)

The first two components, SU(3); x SU(3)r form the chiral symmetry group. The
remaining components are the vector U(1)p which contains transformations of the
form

¥ — ey, (1.14)

and axial-vector!U(1) 4 containing transformations
P — ey, (1.15)

The conserved charge for U(1)p is the baryon number.

Regarding U(1) 4, the story is more subtle. While such a transformation appears
to be an invariance of the lagrangian, the symmetry is broken on a quantum level.
That is, if one tries to calculate loop corrections? to the axial current, they find that is is

actually not conserved. The calculation (to 1-loop) yields

2
g°N ~
Iulba = g GGl (1.16)

H

As a result, the symmetry group of QCD in the chiral limit is

SU(3)L x SU(3)g x U(1)p x U(1) 4. (1.17)

IThe names come from the parity transformations of the corresponding conserved charges.
2Specifically the so-called triangle diagrams.
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Another noteworthy approximate symmetry arises when one considers QCD
with only two quarks, (say u# and d), where they have the same mass. In this case we
discover an extra SU(2) symmetry, the isospin symmetry. An isospin transformation

can be written as

N (1.18)

where T, are the Pauli matrices.

Finally, let us discuss about a theory related to QCD, pure Yang-Mills. Pure
Yang-Mills theory is also constructed upon an SU(N,) symmetry, and for N. = 3 itis

the free gluon sector of QCD

1
Lym = —ZGZ;”wa. (1.19)

However, QCD theory is not the same theory as pure Yang-Mills. In the infinite quark
mass limit, where quark states are never populated and all quark propagators in
diagrams are infinitely suppressed, QCD calculations should converge to those in

Yang-Mills.

We are specifically interested on the center symmetry of Yang-Mills. That is
symmetry with respect to transformations generated by the center of SU(3), the
subgroup of elements that commute with all elements of the group. This manifests in
an Euclidean space where the “time” dimension 7 is periodic, which is the finite
temperature framework that thermal field theory employs. There is a quantity that
spontaneously breaks center symmetry when it dynamically acquires a non-zero

value. That is the Polyakov loop.

Let’s first define a Wilson line as the path ordered exponential®

Xf,T
wif = Pexp <z[ f{ ! Aydx”> , (1.20)

Xi,Ti

for some path (AX, AT). Then, the Polyakov loop is defined as the trace of a Wilson

line along a straight path in the imaginary 7 direction

D(F) = %Tr [Texp <i /Oﬁ dt Ao(%, r)ﬂ , (1.21)

3Path ordering P is a generalization of time ordering T where operators are ordered with respect to the
parameter that parametrizes the path.
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where B = 1/T is the length of the compact “time” dimension. The usefulness of the
Polyakov loop is that it quantifies the free energy cost AF to add a static color source

(an infinitely heavy quark ) in the system (subtracting the mass contribution itself)
|D(%)| = e 2FP. (1.22)

From the above relation it is evident that the when the energy cost is 0 then the
Polyakov loop is 1, but as AF — oo the value of the loop vanishes. The Polyakov loop
is an order parameter for color confinement in Yang-Mills theory. When it vanishes,
the ground state of the system is “center symmetric” and it is infinitely expensive to
add color charge to the system (color confinement). Conversely, when |®(X)| = 1 then
the center symmetry is spontaneously broken, and there is no free energy cost

associated with the addition of color charges.

The benefit of examining pure Yang-Mills theory is that it provides a well-defined
order parameter for confinement. Whether this is transferable to real QCD is not an

easy question to answer.

After this discussion where we considered close relatives of QCD, we must not
forget where we started from. Quarks are neither infinitely massive nor massless. The
physical reality we observe lies somewhere in the middle. Quarks have finite, distinct

masses. This has the following implications for QCD:

¢ Isospin symmetry is explicitly broken due to the # and 4 mass splitting.
However, the mass splitting is in the order of MeV so the symmetry breaking

implications should be small.

¢ Center symmetry is explicitly broken, this time by the non infinite value of the
quark masses, and it is unclear whether it is a good order parameter for the color

confinement observed in QCD.

¢ Chiral symmetry is explicitly broken by the non-zero u, d and s quark masses.
Again, the symmetry breaking is small so we expect the symmetry to be a

reasonable approximation.

Finally, the chiral symmetry is also spontaneously broken in the QCD vacuum.

This is a physical observation that cannot be seen directly in the lagrangian. The QCD
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vacuum assumes a non zero chiral condensate value (1), which is a condensate of
quark-antiquark pairs. The non-zero chiral condensate is responsible for the relatively
large mass of the confined states like the nucleon my ~ 1 GeV. Moving away from the
QCD vacuum, the chiral condensate (approximately) vanishes as we move towards
the (approximate chirally symmetric) quark phase of QCD. This establishes an
apparent connection between chiral symmetry and center symmetry. Center
symmetry breaking separates colored from uncolored phases and chiral symmetry
breaking separates heavy baryons from light quarks. Either may be used to signify the
quark-hadron transition, but we have to remember that the Polyakov loop and the

chiral condensate are a “strict” order parameter at different limit scenarios of QCD.

We also know from the Goldstone Theorem [6-10] that when a global continuous
symmetry is spontaneously broken we get a number of massless Goldstone bosons
that is equal to the amount of generators of the broken symmetry. In this case, if we
treat the quarks as having non-zero but equal masses m, = m; = ms, we find that the

symmetry breaking pattern is

SU(3)L X SU(3)R — SU(3)L+R. (123)

That means that the theory is still invariant under simultaneous rotations of the left
and right handed components. Since SU(3) has 8 generators, the spontaneous
symmetry breaking gives rise to 8 Goldstone modes. These Goldstone modes are the
pseudoscalar octet, written in Eq. (A.2a). They are not massless due to the finite quark

mass and thus the small explicit chiral symmetry breaking.

In the above we have used the word “small” and “large” somewhat loosely when
referring to masses and deviations from symmetry. We need an energy scale A, to

compare it with, and this will be provided section 1.1.2.

In other cases condensates that manifest in the ground state of the system may
spontaneously break additional symmetries of the theory. These can be a condensate
of fermion pairs in fermionic superfluids that breaks U(1)p (baryon number
conservation), or even an inhomogeneous condensate that spontaneously breaks

Poincaré symmetry.
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1.1.2 Chiral effective field theory

Chiral effective field theory (ChEFT) is an effective description of QCD. It is a
framework that approximates low energy QCD in a controlled manner, i.e.
calculations can (in principle) be made up to the required precision. The description is
built around the lowest mass hadrons, which are the pions. Their mass set the “soft”
scale of the theory Q = m, ~ 140 MeV. The “hard” scale A, of the theory, where extra
degrees of freedom appear, is set by the lightest vector mesons p and w with

My = 775 MeV. The scale is chosen to be Ay ~ 1 GeV and it is called the chiral

symmetry breaking scale.

To construct the effective theory we want to write the most general Lagrangian
that is consistent with the symmetries and symmetry breaking patterns of low energy
QCD. The relevant degrees of freedom are pions and nucleons. It is convenient to

decompose the lagrangian as

EChEFT - Enn + ﬁ;-[]\] + ENN + ey (124)

where £, contains only pion terms, £,y pion-nucleon interactions and Lxny two
nucleon interactions. The ellipsis stands for extra terms that include higher number of
nucleons and pions, encoding many-body interactions. The idea is that, given a small
parameter A, we can write an expansion for these terms that makes sense to be

truncated at some order of the small parameter. The scale separation gives us natural

choice of
Q
A= —=. 1.25
™ (125)
Now, it is also convenient to introduce the pions via the SU(2) flavor matrix
U =exp (lT. 7'[> . (1.26)
fr
We can now work out and write the leading order contribution. We have
o _ f; uppt 2 t
L5 = Ty [ayua Ut +m2(U+U )} . (1.27)

The first term is chirally invariant, but the second explicitly breaks chiral symmetry.

The magnitude of the explicit breaking is chosen such that it reproduces the correct
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FIGURE 1.2: Diagrams contributing to the 2,3 and 4 nucleon interaction at different
orders. At higher orders in the chiral expansion, many body interactions emerge nat-
urally. Image taken from [11].

pion mass. We have thus ensured that we have broken chiral symmetry only “as much

as” it is broken in QCD.

We will not write the leading order terms in £,y and Ly here, but a more
detailed description is provided in [11]. The takeaway is that the theory is able to
provide a systematic way to approximate the QCD interaction between the relevant
degrees of freedom in the low energy regime, given that the external momenta Q are
small with regard to the chiral symmetry breaking scale A,. A pictorial representation
of how the expansion parameter is enforcing a hierarchy on the Feynman diagrams
describing the nuclear interaction can be seen in Fig. 1.2. A finite number of diagrams

contribute to a given order in Q/A,.

While very useful, the applicability of ChEFT is limited to densities close to
nuclear saturation density. Trying to go beyond quickly breaks the assumption about
the smallness of A and introduces great uncertainty to the predictions. However, we

will later use ChEFT as “inspiration” to set up phenomenological models.
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FIGURE 1.3: A plausible assumption for the form of the QCD phase diagram. The blue

line is a first order chiral phase transition boundary, while red lines separate distinct

phases within the quark and hadronic phases. Critical points are labeled A and B. The
shaded region is there to remind us that the exact structure is unclear.

1.1.3 A phase diagram for Quantum Chromodynamics

A phase diagram for QCD can be seen in Fig. 1.3. It broadly sketches the proposed
phase structure of the ground state of QCD, at different baryon chemical potentials yp
and temperatures T. This is not “The” phase diagram for QCD as several questions
remain unanswered. The marked phases and phase transitions are just a reasonable
proposition of how the true phase diagram could be. Let us now review the features

of this phase diagram.

A natural place to start is our everyday experience. But where is that exactly in
the phase diagram? What is the scale on each axis? To answer that, we will look at the
lightest particle in the QCD vacuum. That is the neutral pion, with a mass of about 135
MeV. Postulating that this is a relevant mass scale for QCD, we can translate it to
temperature units dividing with Boltzmann’s constant kg ~ 8.617 - 107" MeV/K,
which gives us &~ 1.57 - 10!2 K. This is a strong hint that our everyday experience and
most phenomena on Earth are at effectively 0 temperature, compared to the QCD

scale.

What about the baryon chemical potential scale? The energy (per baryon) to
create a nucleon pair in an empty system is the rest mass of the neutron itself
my ~ 940MeV, plus the interaction energy per baryon Eg ~ —16 MeV. That means
that only for values larger than m, + Eg we have baryons spontaneously populating

the medium. The mass of the nucleon sets a rough scale for the creation of baryonic
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matter around 1 GeV, and since we do not observe spontaneous creation of nucleons,
it is safe to assume that the baryon chemical potential we experience is nowhere near
that value. The only baryons that we observe in the vacuum are bound in the nuclei of
atoms, forming a dilute atomic gas. Let’s accept that our experience is consistent with

a yup value of 0.

The main theoretical question that we are trying to answer is about the nature of
the quark-hadron transition. We see that QCD in the vacuum is strongly coupled and
confined in hadrons, and we know that asymptotically it is a theory of free quarks and
gluons. What we want to understand is what happens in between, i.e. how to find the
ground state of QCD in the middle of the phase diagram. Where do we need to draw

lines between different phases, and what phases are these?

How do we probe different regions of the phase diagram then? Let’s say we only
want to explore the T direction for now, staying at ug = 0. It is possible to numerically
calculate QCD observables on the computer by discretizing the theory on an
Euclidean lattice. Lattice QCD is non-perturbative and hence applicable even at strong
coupling. Using lattice QCD it has been demonstrated that the deconfinement
transition is an analytic crossover [12, 13], accompanied by a chiral phase transition at

the same critical temperature Tc ~ 156 MeV [14].

However, it is not currently possible to use lattice QCD to extend the calculations
on the yp direction. That is because of the notorious sign problem [15, 16] that
prohibits the use of lattice methods for systems with a finite fermion density. This is
the time to turn to experiments. While heavy-ion collision programs have been
successful in probing the small up, high T region of the phase diagram [17-20], there
has been also an effort to extend their reach to larger jip as well. In these experiments
two nuclei collide and can temporarily create a hot quark-gluon plasma. The
experiments in CERN and RHIC have only found a crossover transition so far, but
only probe very low up. Currently, the BES experiment [21, 22] by the STAR
collaboration in RHIC is attempting to extend the search to even higher yg. One hopes
to find evidence of a first order phase transition boundary, or the terminating critical

point associated with a second order transition (point A in Fig. 1.3) [23].

Nevertheless, the existence of such a critical point, along with a first order phase

transition boundary is hypothesized [24, 25]. This is reflected by the blue line on
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Fig. 1.3. It marks the chiral phase transition separating the hadronic and quark phases.
It is drawn to extend all the way to zero T. But this may not be the case. There is the
proposition of quark-hadron continuity [26] suggesting that there is only a crossover
transition between nuclear and quark phases. This idea is backed by the fact that there
is no strict symmetry breaking for the chiral symmetry since it is explicitly broken by
the non-zero quark masses. So it is plausible that the line stops at an extra critical

point (not shown), or that it is never there altogether.

The issue is that this region of intermediate yp and low T is computationally
difficult to tackle. The sign problem is severe for high yp, and the temperature is too
low to be probed by heavy-ions. But there is a physical system that contains matter in
a state corresponding to this region of the phase diagram. That is Neutron stars, and
their micro-physics are governed by dense, low temperature QCD. We will discuss

how they provide insight to this diagram in 1.4.2.

What we can try to do is approach this regime from different directions. Starting
atlow up and zero T, we find ourselves in the QCD vacuum. Increasing yp we reach
the point of the liquid-gas transition [27, 28]. At this point the ground state shifts from
a hadron gas with approximately zero density to a uniform nuclear medium of
density 19 ~ 0.15MeV/fm?® [29]. This is nuclear matter at its saturation density, which
is the density of the nuclear medium within nuclei. This density region is accessible to
Earth experiments which enable us to measure properties of QCD matter. These are
quantities like the binding energy Ep [30], incompressibility K [31], symmetry energy
S [32] and slope parameter of the symmetry energy L [33]. By increasing T while
following the liquid-gas transition line, we find ourselves in another critical endpoint.

For higher T the transition becomes a crossover.

Extending our predictions to significantly higher densities is very difficult. We are
facing a strongly coupled system of nucleons that needs to be described in a dedicated
framework. We will show how we attack this problem by employing

phenomenological models in 1.2.

Despite the strong coupling, non perturbative calculations of the neutron pairing
gap have shown that nucleons are paired in the ground state of the system for low

temperatures[34-36]. At higher T the pairing gap closes and superfluidity is lost.
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Different forms of superfluidity are also possible [37]. This is an indication that the

ground state of the system might be significantly more complicated.

Skipping the troubling region altogether, we turn to very large yp. We know that
QCD is asymptotically free, and thus when up > A, we will get to that limit.
Asymptotic freedom enables us to employ perturbative methods around the free
quark-gluon system. In this setting, the one gluon exchange interaction provides the
attractive interaction component necessary to form quark Cooper pairs. The
quark-quark condensate cannot be color-less and hence spontaneously breaks the
SU(3), symmetry. Due to the perturbative nature of this limit, it can be shown that the
ground state of the theory is the Color-Flavor locked (CFL) phase [38]. In this phase all
3 light quarks of all 3 colors pair with one another. The “locked” part of the name
comes from the fact that the CFL phase is symmetric only under simultaneous

transformations of flavor and color

SU(3)L x SU(3)g x SU(3)e x U(1)5 — SU(3) 4 Roe- (1.28)

As we move towards lower jp, the mass difference between the s and u, d quarks
becomes more important. This imposes a stress on the pairing pattern and tends to
disrupt it. Other candidate superconducting quark phases might become preferred.
One example is the 25C phase where the 1 and d quarks of only 2 colors pair [39].
Another one is the Fulde-Ferrell-Larkin-Ovchinnikov phase [40, 41] (FFLO) where
the diquark condensate is inhomogeneous. There are many possibilities to be explored
([42] and references therein) and us entering in the strong coupling regime of QCD
means that we can only be sure about the asymptotic result of the stability of CFL.
Again, for sufficiently high temperatures, the quark pairing gap closes and

superconductivity is lost.

Finally, it is necessary to stress that this phase diagram is not “all there is”. We
could escape the 2D plane (up, T) and ask how does the phase structure of QCD
change when we move in a new direction. One important such direction is that of the
isospin chemical potential 3 which introduces an isospin charge in the system. This is
a crucial direction for neutron star physics, where matter is highly isospin asymmetric
(many more neutrons than protons). Nuclei on the contrary, even heavy ones, have a

very comparable number of protons and neutrons, and so the isospin charge of the
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system is small. One may also argue that neutron stars spin and have large magnetic
tields. While in the context of heavy ion collisions it may be an interesting question to
ask “what is the ground state of the QCD medium under extreme rotation () or
magnetic field B?”, it turns out that neutron stars are not as “extreme”. Their typical ()
and B values are typically very small in the QCD scale. However, there are scenarios
where this claim possibly needs to be reevaluated, namely magnetars [43] and heavily

turbulent regions in neutron star mergers [44].

The importance of the nature of the chiral phase transition is beyond the
academic interest of the completeness of the phase diagram. If the quark-hadron
transition is of first order, this has implications not only for the thermodynamics of the
system, but for the dynamical evolution of it as well. Imagine that a supernova
explosion gives birth to a neutron star that has a large enough central density to
surpass the critical density of a first order quark-hadron transition. That does not
mean that the core will immediately contain quark matter. The hadronic system will
exist in a false vacuum for a while, trapped by the potential barrier set by the first
order phase structure. This meta-stable state will eventually decay to the true vacuum
via bubble nucleation. Bubbles of the true vacuum appear and grow in the meta-stable
phase, until the full volume of the system is in the true vacuum. In order to
phenomenologically describe this procedure we need to determine an important
parameter: the surface tension associated with an interface between the two phases. In
order to calculate it we need a model that contains the chiral phase transition itself,

like the ones used in Chapters 2 and 3.

1.2 Phenomenology

We have already hinted that the low temperature and intermediate density region is
one of the most elusive ones as there are no first principle approaches that can be
applied. This is why we employ some phenomenological model to try and tackle this
problem. To put together an appropriate model we need to consider the relevant
degrees of freedom, the symmetries of the theory and well established experimental
results. However, we will not be as rigorous as ChEFT is, since we are aiming for a
wider range of applicability. What we are sacrificing in the process though is the well

defined “error bars” that ChEFT provides. As a result our analysis has the purpose to
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explore the qualitative possibilities that might be realizable in QCD, rather than to

make a strict quantitative prediction.

1.2.1 The Walecka model

The Walecka model [45] is a simple microscopic model that attempts to describe
nuclear matter at high densities. It is in principle a very simplistic way to model
nuclear matter, but is a nice paradigm that demonstrates the basic ingredients of

phenomenological models. The lagrangian of the model is written as

- . 1 1 1
L= Z, VJ]'(Z’Y”E)H —my + :”]"70)1/)]‘ + i(a‘u(]'a}‘g' — mgoz) _ leww;w Em(zu . u
]:n,p ((7 (()

+ ) $(800 + 8w Wy )y, (1.29)
J=n.p

where w,, = d,wy — dywy, and my, p; are the nucleon mass and chemical potential.
This model describes protons and neutrons interacting via meson exchange,
particularly the scalar o and the vector w mesons. They are coupled to the baryons
through Yukawa-type terms. The meson masses are m,, ~ 782 MeV and m, ~ 500

MeV.

Since we will explore the system at different densities, we will use the
grand-canonical ensemble where the chemical potential is part of the description of

the thermodynamic system. The Grand Potential (or free energy) () is given by

Q=E-) uN;—TS, (1.30)
i
where E is the energy of the system, N; is the particle number, S is the entropy and T is
the temperature. This expression can be written in terms of intensive quantities if we

divide by the system volume V

Q
v = —P=€e¢— Zy]-nj —Ts, (1.31)

where € = E/V is the energy density, n; = N;/V is the number density and s = S/V

is the entropy density.
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The partition function Z and the free energy () of the system are related through
QO=-TinZ (1.32)

To compute the partition function one needs to calculate the functional integral
7= / ]ZDJ) Dy;DoDw exp /X L, (1.33)

where we have denoted (in the imaginary time formalism t — it, = 1)

/X = /O e / B, (1.34)

In principle one calculates the functional integral and finds the free energy. However,
when the Lagrangian contains interactions it is very hard to solve the integral. This is
where the first approximation is employed. That is the mean field approximation, in

which the meson fields are written as the sum of some space independent condensate

plus fluctuations

oo T+o, (1.35)

and then the fluctuations are neglected. Note that for the case of the vector meson we
assumed that only the zero component wy condenses. In doing so, the meson field

condensates act as medium contributions to the nucleon chemical potential and mass.

The mean field Lagrangian is written as

1
Q" + Emg,a;g, (1.37)

=~ =

= . * * 1. - 1 =
L= Z P (i7" — my + 1i7° )y + Eéyaa”a - Em?,az —
j=np
where

my = my — o0, pt]* = }j — 8w@o- (1.38)

The mean field approach is simplifying our task when considering the bosonic
integration, but there are cases where this is not enough. In order to integrate the
fermionic part and due to the coupling with the meson condensates, it is assumed that

there is no spatial dependence of the latter. However, after the fermionic integration,
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we re-introduce the space dependence in the resulting free energy by hand. This is the
Thomas-Fermi approximation, and is valid when the condensates vary slowly in

space.

Now we are ready to perform the functional integration of the free fermionic part
(since we neglected fluctuations, the mesonic part decouples from the fermions,

modulo the modified parameters m3}; and p*)

x /'DLZ?DIP exp [/X ¥ i o, —mi + y;ffyo)guj] . (1.39)

J=mp

The functional integration returns

= (1.40)

G, k)G, (k
Z = exp D{ <—;m(2,c'72 + ;maw%ﬂ - Det n()p()] ,

where the determinant is taken over the Dirac space and over all of the momenta, and

G~ ! is the inverse nucleon propagator:
Gj’l(k) = -k, — 'yoy}k + my. (1.41)

The system pressure is proportional to the logarithm of the partition function as seen

in Eq. 1.32. Then by using that for a diagonalizable matrix A
logDet (A) = Tr (log A), (1.42)

we can calculate the logarithm of the determinant as a sum over Matsubara

frequencies.

Performing the Matsubara sum and taking the thermodynamic limit we get the

system pressure

1 1
P=—"=_InZ= <_2m§(rz + 2m§,@%) + Py, (1.43)
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where Py is the pressure of the nucleons

Py = 22/ (;l:; [Ek 4 TIn (1 + e*(Ek*”f*)/T) ™ (1 i e*<Ek“‘7)/T)] . (1.44)
7

Ep = \/k2 + m32. (1.45)

The factor of 2 in (1.44) accounts for the 2 spins, and the two logarithm terms
account for particles and anti-particles. It is often the case that the vacuum
contribution E is omitted, being considered a small contribution with no qualitative
significance. However, as we will later see in Chapter 3 this is not always true, and in
some cases this sea contribution is important. For now, we will drop it (no-sea

approximation), but we will come back to it later.

We will now take the limit T — 0. The antiparticle contribution to the pressure
will vanish, and the particle pressure will pick up ©-functions ensuring that there is a
finite baryon pressure only if the chemical potential exceeds the Fermi energy. The

nucleon pressure

T 0 % * * %
Py — pu(pn,my) + pp (i, my), (1.46)
where p(p, m) is the individual fermion species pressure,

O(u—m 2 kr +
p(u,m) = W&rz) KSk% — mzkp> p+miin qu (1.47)

with

Ep = p* = \/k2 + m32. (1.48)

We have now worked out how the zero temperature pressure of a system is given
as a function of the meson condensates and fermion chemical potentials. This system
includes fermions (1, p) interacting with scalar and vector mesons (¢, w). In our
works we include more fermion or meson species, but the procedure is essentially the

same.
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1.2.2 Our approach

We will dedicate a little time to point out some differences of our approach presented

in Chapters 2 and 3 compared to the Walecka model.

The most crucial one is the fact that in the Walecka model there is an explicit
constant mass term in the Lagrangian. The effective nucleon mass receives a
contribution from the ¢ meson condensate, but chiral symmetry is explicitly broken by
the constant term. On the contrary, in our approach we will not write a lagrangian
mass term. The condensate of the ¢ field is playing the role of the chiral condensate,
which dynamically generates the full nucleon mass. At the same time this means that
when the ¢ condensate vanishes, the nucleons in our model become effectively
massless, spontaneously “restoring chiral symmetry”. The quotation marks are used
because in our model as well chiral symmetry is explicitly broken, but with a small
magnitude, consistent with that of QCD. Hence, the restoration of chiral symmetry is

only approximate.

Another important difference is that in Chapter 2 we will require that the system
is beta equilibrated and charge neutral, with the scope of applying our results to
neutron stars. This means that our system will no longer have equal numbers of
protons and neutrons, and it will acquire a net isospin charge ;. It is then important

to add p to the model, the iso-triplet vector meson that mediates isospin interactions.

Other choices that are different in our models include the addition of self
interactions for the scalar and vector mesons, extra degrees of freedom containing

strangeness and allowing for an anisotropic chiral condensate.

1.2.3 The Nambu-Jona-Lasinio model.

While we only considered nucleons and mesons in the phenomenological description,
this is not the only possibility. We have, so far, used degrees of freedom that are
relevant on the low density side of the chiral transition. What if we now try to obtain a

complementary phenomenological description using quarks?

The Nambu-Jona-Lasinio (NJL) model has not been historically a quark model. It

was a model for interacting nucleons as well [7, 8]. However, it has been later
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FIGURE 1.4: The phase diagram for the two flavor NJL model in the chiral limit with
0 net isospin. The line for G‘(/S ) applies to the model written in (1.49). The solid line
marks a phase transition from a chirally broken (small T, j4) to a chirally restored

phase (at large T, y14). The phase transition line has a critical endpoint at a finite tem-
perature. Plot taken from [46]

re-interpreted as a model for quark interactions. The term “NJL model” actually

describes a family of models that feature a four fermion contact interaction term. Such
an example would be

Lagr = P(id — m+ pgy° ) + Gs [(§9)* + (Pitysp)?], (1.49)

where ¢ is a two flavor, three color quark spinor, G is the coupling strength and p is
the quark chemical potential (equal for the two flavors, assuming isospin symmetric

matter). In this model the quarks ¢ acquire a dynamical mass

M = m — 2G5 (), (1.50)

which receives a contribution from a quark-antiquark condensate, i.e. the chiral
condensate. This is what enables the model to exhibit spontaneous chiral symmetry
breaking as well. A vanishing chiral condensate at large quark chemical potential y,
corresponds to small effective masses for the quarks and (approximately) restored
chiral symmetry, while a non-zero value (which occurs at small y,) corresponds to

heavy quarks and spontaneous breaking of chiral symmetry. The chiral phase

transition line is shown in Fig. 1.4 as an example.
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This approach is complementary to the one we are going to observe in our model.
In NJL we have quarks undergoing a chiral phase transition, while in our model it is
nucleons that do so. The two models paint a picture on the opposite sides of the

canvas that is the chiral phase transition.

1.2.4 Quark-meson model

A much more similar construction to the Walecka model would be a quark-meson
model. We keep the idea of using mesons to mediate the nuclear interaction, but now
the degrees of freedom are quarks. We can write down a lagrangian for such a model
as
. S 1 1. . -
Lom =P [id +g(0 +iT - 7ys +g7")] 9 + 5(9u0)” + (0,7 + U(0” + %), (L51)
where the three pion fields are included in 7, i is again a two flavor, three color quark

spinor, and y, is again the quark chemical potential. There is also some meson

self-interaction potential that, in the simplest form, can be something like
m? Ao 2, =2
U(g) = 59+ 39 ¢=(+7). (1.52)

The condensate of the ¢ field here is also interpreted as the chiral condensate, and it
will provide a dynamical mass to the quarks that spontaneously breaks chiral
symmetry. The similarities with the models that we use is evident if we compare Lqwm

with, let’s say Eq.(3.2), (3.3) and (3.5).

Finally, it is also possible that one stitches together two phenomenological models
into one, specifically a quark model and a nucleon model. The attempt here is to use
in each phase a model with the correct degrees of freedom. This fused model might
achieve that, but it loses all the information around the chiral phase transition. In such
a model it is impossible to calculate the location of the chiral phase transition or the
surface tension. They need to be an extra input to the model a free parameter. Another
attempt would be to use a single model that contains explicitly both nucleon and
quark degrees of freedom, and switches dynamically between one another [47, 48].
The caveat is that one has to be careful when counting the baryons in the system, as

nucleons or as quarks.
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1.3 Inhomogeneous phases

The consideration of an inhomogeneous phase in dense matter is an effort to make
any discussion about the ground state of nuclear matter more realistic. Restricting
ourselves to homogeneous phases only, we significantly simplify calculations, but at
the same time we strip ourselves from an enormous breadth of alternative plausible

scenarios. The purpose of this section is to discuss such scenarios.

1.3.1 Mixed phases

Consider an infinite nucleonic system of constant temperature and uniform baryon
density, which is also locally charge neutral due to the presence of electrons. Moreover,
let the system sit at a critical chemical potential i where a first order phase transition
takes place. Now, flip half of the system to the phase beyond the phase transition.
Since the system is sitting at the critical chemical potential, one may naively expect
that there would be a sharp interface separating the two phases. However, such a
discontinuity will come at a great energy cost and it would probably be smoothed out,
creating an extended domain wall where thermodynamic quantities would smoothly
change. The energy surplus from such a configuration, compared to the energy of the
whole system containing only 1 phase, is the surface tension X between the two

phases. But there might be even more complexity in the real case.

By relaxing the local charge neutrality condition to a global one, we allow for
locally electrically charged phases to exist, while the total charge of the system
remains zero. Under this new condition, we may be able to construct a new, preferred
phase which combines both phases on the two sides of the phase transition. This mixed
phase is made up from oppositely charged phases with phase A occupying a volume

fraction x and phase B the remaining 1 — x. Such a situation is depicted at Fig. 1.5

The existence of a first order phase transition is crucial, since on that critical
chemical potential #$'* both phases are equally preferred (energetically) and have
equal pressures. That means they can co-exist. However, it is not given that this
co-existence can be extended over a finite range in yp. It is necessary that the free

energy of each phase at ;" is lowered by introducing net opposite charges, while the
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Phase 1

/ Mixed Phase \

FIGURE 1.5: Schematic representation of a situation where the mixed phase has a

lower free energy than the constituent pure phases. It is crucial that at the intersection

the slope of the the two curves is of opposite sign, signifying the oppositely charged

phases. The electron chemical potential y, provides a new “dimension” along which
the free energy is reduced.

pressure remains equal

Q4 = Q5. (1.53)

Then, we can adjust x from 0 to 1, keeping the condition (1.53), and smoothly

interpolate between the 2 pure phases A and B with out mixed phase.

In order to decipher whether such a construction is preferred, the free energy of
the mixed phase needs to be compared with that of the competing pure phase, for
each pp. However, there are two extra energy contributions that we need to take into
account when calculating the free energy of the mixed phase. First, there is the
Coulomb interaction between the two oppositely charged phases, that depends on
their spatial configuration [49]. Second, whatever that configuration might be, the
sharp interfaces are again smoothed out by domain walls, introducing an associated
surface tension energy cost. The ground state configuration of the two phases
comprising the mixed phase is the shape that minimizes these additional energy
contributions. It may resemble different “pasta phases” like gnocchi, spaghetti or

lasagna [50].

1.3.2 Inhomogeneous condensates

A different kind of inhomogeneity is possible. Unlike the mixed phases, where an

inhomogeneous configuration arises from a construction involving only homogeneous
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phases, there is the possibility that the ground state of the system displays some
inherent inhomogeneity. We already mentioned a superfluid phase that contains an
inhomogeneous diquark condensate. In the context of the chiral phase transition, we
would like to know whether the associated order parameter, the chiral condensate,

additionally breaks symmetries of the Poincaré group in the ground state.

Such configurations have been extensively studied in quark models [51-63] and
less so in nucleon models [64-67], and are expected to appear in the region of the
chiral phase transition smoothing a first order discontinuity. However, we show in
Chapter 2 that the first order jump is not necessary, and that such a phase can arise

and disrupt a smooth crossover.

The phase that we later explore is the Chiral Density Wave (CDW), which is a
sinusoidal modulation with wavenumber || for the scalar o « () and pseudoscalar

73 o (Pp°1h) components of the chiral condensate
o(X) = ¢pcos(24-X), m3(X) = ¢sin(24-X). (1.54)

Even though this configuration seems inhomogeneous, all observables of the system
turn out to be homogeneous. Hence, such a phase is just anisotropic, by the
spontaneous breaking of rotational symmetry that manifests when the system picks

some arbitrary direction for the wave-vector .

There are also some truly inhomogeneous candidate phases. Some examples are a
simple 1D modulation only in the ¢ direction [52], the solitonic solution for the mass

function M(x) [68]
sn(Ax|v)en(Ax|v)

M(x) = Av dn(Ax[v) , (1.55)
with sn, cn and dn being the Jacobi elliptic functions, or higher dimensional
modulations of the form

o(x,y) = ¢ cos(qxx) cos(qyy). (1.56)

In any case, for a given system one in principle has to calculate and compare the

free energy of every possible configuration to find the true ground state, or result to
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some sort of stability analysis to prove that they have indeed found the state of least

energy. This is not what we will do, as our goal will be different.

1.4 Neutron stars

Neutron stars are born in supernova explosions when the remnant’s mass is
approximately between 1.4 M, and 3 M, [69]. The iron core of the dying star
collapses and reaches densities above the nuclear saturation density, where the notion
of individual nuclei is lost. After the violent explosion the remnant is very hot, with a
temperature significant even for the QCD scale, reaching tens of MeV. However, the
neutron star cools very fast via neutrino emission due to the direct URCA process. We

can write the direct (modified) URCA process as

B(+N) = B'(+N)+{¢+1v;, B(+N)+/{— B'(+N)+v, (1.57)

where baryon B decays to baryon B’ via the absorption (emission) of a lepton ¢ and its
(anti-)neutrino. The modified URCA also needs a spectator nucleon N for kinetic
reasons. The direct URCA process dominates the neutron star cooling but it is only
possible at high densities i.e. in the core of the star, where the proton fraction is large
enough. At low densities only the modified URCA contributes, which is slower in
comparison. As a result of neutrino emission, the star becomes cold on the QCD scale
in a few years [70], reaching a temperature of hundreds of eV. The emission of X-rays
from the neutron star surface is another mechanism that contributes to neutron star

cooling, but is only dominating at later times.

1.4.1 Composition

The details of the inner structure of a neutron star are unclear. The outer crust is still
made from atomic nuclei, mainly iron ions [71], arranged on a lattice, surrounded by
an electron gas that ensures the system remains charge neutral. This structure has a
density that is much smaller than nuclear saturation density, and in our language can
be described by a vacuum-nuclear matter mixed phase. Diving deeper in the crust the

lattice spacing decreases, and nuclei start getting richer in neutrons. At some point,
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the excess neutrons start dripping from the nuclei, forming a neutron gas around the
neutron rich ion lattice. This is the boundary between the inner and outer crust.
Moreover, neutrons start to pair and the neutron gas develops a superfluid

component.

In the inner crust the superfluid component is still existent, and is responsible for
the observed pulsar glitches [72] i.e. the sudden spin-up of the neutron star during its
spinning down lifetime. Superfluid vortices form and pin on lattice sites, storing
angular momentum. While they form and equilibrate, the spin-down of the whole
system breaks this equilibrium which ultimately un-pins a number of vortices and

moves them outwards, abruptly transferring their momentum to the crust [73].

Going deeper into the inner crust, the separation between the individual nuclei
becomes so small that they start fusing into different pasta phases. This is due to the
comparable contribution of the nuclear force and the Coulomb interaction at the small
length scales of the system. Again, in our language, this is a “nuclear matter - neutron
gas with a superfluid component” mixed phase. At even larger densities the pasta
phases “melt” into a uniform medium of neutrons, protons and electrons, which

marks the transition to the core.

In the work that I will present we are not including a crust description. The stars
that we will construct do not contain a “nuclear matter-vacuum” mixed phase or a

superfluid component.

The composition of the core is already taking us to uncharted territory. First
principle methods still apply below about 2 1 [74] so we expect that the outer core is
mostly comprised of neutrons with a small fraction of protons and electrons. At even
larger densities muons appear, and even more exotic degrees of freedom are expected
to be energetically preferred. The “opening” of a new Fermi sphere (let’s say of some
hyperon) comes with a smaller energy cost that adding another neutron with a very
high Fermi energy. But such an onset is expected to come with a softening of the
equation of state, which leads to a prediction of a maximum neutron star mass that is

inconsistent with observations. This is the well known “hyperon puzzle”. [75]

Finally, there is a possibility that the neutron star core probes densities that are

beyond the chiral phase transition, and that quark matter appears. Unfortunately, the
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FIGURE 1.6: Possible equations of state consistent with ChEFT and perturbative ex-

pansions of QCD (light blue bands at both ends). Different colors correspond to differ-

ent maximal values of the speed of sound squared. Equations of state are selected by

interpolating between the two light blue regions and classified based on their maximal
sound speed. Image taken from [77].

density is only expected to be about 8n¢ [76], which is still in the strong coupling
regime of QCD. Even if there is quark matter in the center of the neutron star core, it is
strongly coupled and accessible only to phenomenological models. The composition

of the core is something we explore with our model in Chapter 2.

1.4.2 Mass and radius

Since neutron stars are the only physical laboratories probing cold and dense matter,
we want to know what kinds of information we can extract from them and what to
require that our models reproduce. In our work we focus on the equation of state and

the resulting mass-radius curve.

We model the neutron star as a zero temperature fluid governed by an equation
of state, i.e. a relation between the pressure P and the energy density € of the fluid
P(€). The derivation of this equation depends on the microscopic properties of the
system and the model that is used to perform them. There are model agnostic
approaches as well [77] that may be quantitatively more precise, but lack the

microscopic description of matter. Such an example is given in Fig. 1.6
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In order to build a star out of a given equation of state we need to employ General
Relativity. Specifically we want to know what is the spherically symmetric solution of
the Einstein equations

1
R}w - ER 8w = Ly, (158)

where

™ = (P + €e)utu” + Pg, (1.59)

is the stress energy tensor of an ideal fluid. In our approach we ignore rotation and

only consider static compact stars. The equations boil down to

az\gr(r) = 4711, (1.60)
oP(r) le(r) + P(r)] [M(r) + 47tP(r)r]
o -G r[r—2GM(r)] ’ (1.61)

where M(r) is the mass profile of the star and G is the gravitational constant. These
are the Tolman-Oppenheimer-Volkoff (TOV) equations. These are 2 equations that
contain 3 unknown functions, €, P and M. The equation of state closes the system and
makes it possible to determine the mass profile of a star. The equations are solved by
picking a central pressure value as boundary condition P(0) = Py and then integrating
until the “surface” of the star at ¥ = R (or more precisely the end of the outer core)
where P(R) = 0. This procedure yields the pressure and mass profiles of the star from
which we can calculate the total star mass M. If we also used some microscopic
model to calculate the equation of state, we also derive the profile of all quantities in
our model. Finally, by picking different Py as initial conditions we are able to draw a

curve in the R — Mt plane, the Mass-Radius curve. Such plots can be seen in Fig. 2.6.

Each mass-radius curve predicts a maximum mass star that has to be consistent
with current experimental constraints. The stricter ones today come from the pulsar
PSR J0952-0607 with a mass of about 2.35M, [78, 79]. Any model that fails to produce
maximum mass stars of at least as much is incompatible with observations. Moreover,
each model in turn predicts that any object with a mass larger than the maximum

mass is bound to collapse to a black hole.

There are more observables than the mass and radius that have been discussed
here. Recently, due to the development of gravitational wave astronomy, it has been

possible to infer the tidal deformability of a neutron star from the gravitational signal
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emitted during the inspiral phase of a binary compact star system. This measurement
has a sensitive dependence on the radius of the star and the elastic properties of the
crust. Since in our description we will not include a crust, we do not expect that our
model reproduces such predictions accurately. Nevertheless, the goal of the project
was not to create a detailed model of the neutron star, but to use the maximum star
mass as an extra constraint for the equation of state. Since the contribution of the crust

to the total mass would not be significant, including it is not crucial for our purpose.
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Chapter 2

Strange Quark Matter from a

baryonic approach

2.1 Introduction

The work presented in this chapter has already been published in [1].

In this chapter, we are interested in the chiral phase transition at zero temperature
and large, but not asymptotically large, baryon chemical potentials. We shall employ a
relatively simple phenomenological model to explore this region of the phase
diagram. Even giving up the rigor of the underlying fundamental theory, it is a
challenge to account for both quark matter and hadronic matter within a single
approach. Using a single model is beneficial if one wants to have a prediction about
the critical chemical potential at which the chiral phase transition occurs. While this
transition point is a prediction of a unified approach, it is essentially a model
parameter if two separate descriptions of hadronic and quark matter are glued
together. Another advantage is that the single model enables the calculation of the
surface tension (if the transition is of first order), for which the full potential,
connecting both local minima, needs to be known.!. In particular, one needs
information on the barrier, which is directly related to the surface tension. The reason

for that lies in the fact that, given the effective potential, one can resort to the full

1Even though there is a well-known systematic procedure to build an effective potential from the
matching of pressures obtained from different models, it requires extra information that is usually not
available, which results in more free parameters and uncertainties [80-82].
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power of semiclassical methods, perturbing the system around classical solutions
instead of trivial vacua (see e.g. Refs. [83, 84]). Such classical solutions probe the entire

structure of the potential, including the different phases it allows.

The majority of studies of hybrid stars — compact stars with a quark matter core
and a nuclear mantle — employ two separate descriptions for the two phases, see for
instance Refs. [85-93]. A few unified approaches do exist in the literature. One
example is to start from a Lagrangian that contains both baryonic and quark degrees
of freedom [47, 48], another is a holographic approach where baryonic and quark
phases are realized in a consistent way [94-96]. Here we pursue a very simple idea,
already put forward in Refs. [49, 97]: we start from a Lagrangian with only baryonic
degrees of freedom, where the masses are entirely generated through the chiral
condensate, similar to the extended linear sigma model employed in Refs. [67, 98].
This allows us to observe a chiral phase transition and a (approximately) chirally
symmetric phase at high densities with very small baryonic masses. This is in contrast
to similar models of the Walecka type [45, 99-102], which can only be used to describe
chirally broken matter. Our study extends the model of Refs. [49, 97, 103, 104] to
include strangeness via hyperonic degrees of freedom, which gives rise to a more
realistic picture of the chirally restored phase, resembling “strange quark matter” in
various aspects that will be discussed in detail. In particular for neutron star
conditions this is an essential improvement since without strangeness the model does
not have any degrees of freedom that carry both baryon number and negative electric
charge. This is relevant due to the neutrality constraint and can also be expected to
alter the screening effects at the interfaces of mixed phases, and thus our study

provides a framework to improve the study of “chiral pasta” [49].

By including hyperons we do not necessarily change the baryonic phase of the
model. Whether actual hyperons appear is decided dynamically. They may be
disfavored before the chiral phase transition, and we shall see that they indeed only
appear for values of the model parameters that are in conflict with astrophysical data
of compact stars. However, the hyperonic degrees of freedom do play a role in the
chirally restored phase and we shall see that parameter regions allowed by empirical
constraints do also allow for strangeness in the chirally restored phase for all chemical
potentials above the chiral phase transition. It is in this sense that we speak of strange

quark matter from a baryonic approach, having in mind that there are no quark
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degrees of freedom in our model and that we should not expect to reproduce all
known properties of weakly interacting, three-flavor quark matter at asymptotically
large densities. Instead, our model provides a prediction for chirally restored matter
close to the chiral phase transition, relevant for compact stars, with properties very

different from simple extrapolations of weakly-coupled quark matter.

We shall keep most of the approximations used in the non-strange version of the
model [49, 97], i.e. our evaluation will be in the mean-field and no-sea approximations
at zero temperature, and we shall neglect Cooper pairing that is expected to occur in
nuclear matter [105] and quark matter [42]. As in Refs. [49, 97], we should keep in
mind that our description of dense matter is based on extrapolating a model
constructed mainly to reproduce low-density properties of nuclear matter. We shall
restrict ourselves to thermodynamic properties and homogeneous phases, within the
constraints of equilibrium with respect to the weak interactions and local electric
charge neutrality. The main idea of this work is to set up the model and explore its
parameter space in order to identify regions in which it reproduces basic properties of
symmetric nuclear matter at saturation, basic properties of strange quark matter at
asymptotically large densities and is able to reproduce compact stars with a mass of at
least about 2.1 solar masses, meeting the constraint set by the heaviest known compact
star [106, 107]. In doing so, we can e.g. constrain to a very narrow range the poorly
known slope parameter of the symmetry energy, L ~ (88 — 92) MeV. Our study thus
lays the ground for future studies for instance of the quark-hadron mixed phase or the

chiral density wave [61, 67, 108] in the vicinity of the chiral phase transition.

The chapter is organized as follows. We set up the model in Sec. 2.2, including the
underlying Lagrangian and the resulting Euler-Lagrange equations. Some guidance
and insight for the setup is gained from an SU(3) symmetric approach, which we
review in Appendix A. In Sec. 2.3 we discuss carefully the matching procedure of our
parameters and identify the freedom in the parameter choices left by experimental
uncertainties, mainly in the strangeness sector. Our main results are presented and
discussed in Sec. 2.4, which we have divided into a subsection on a few selected
parameters sets, Sec. 2.4.1, and a more general survey of the parameter space, Sec.
2.4.2, where we draw some parameter-independent conclusions. We give a summary

and an outlook in Sec. 2.5.
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2.2 Setup

2.21 Lagrangian

The hadronic part of our Lagrangian is composed of baryonic and mesonic

contributions and baryon-meson interactions,

L=Lp+LpMm+L). (2.1)
The baryonic part is
Lg =Y §(iv" 3y + 1 mi) i, (2.2)
i
where 9, = 7" and the sum is over the baryon octet, i = n,p, X%, £, ", A, B0, E™.

We have not included any explicit mass terms, all baryon masses will be generated
dynamically by the chiral condensate. Since in QCD chiral symmetry is only
approximate, adding small explicit masses does not violate general principles, and
this was indeed done in comparable approaches [109]. For simplicity, and to avoid
additional parameters, we shall account for explicit chiral symmetry breaking only in
the meson potential and the choice of the baryon-meson coupling constants. The
Lagrangian formally contains a chemical potential for each of the 8 baryon species, but
in (three-flavor) QCD there are only three independent chemical potentials, associated

with baryon number, isospin, and strangeness. In terms of these chemical potentials,

ui = pp+ Lipr + Sips, (2.3)

where J; is the third component of the isospin and S; is the strangeness of the baryons,

such that explicitly
Pu/p = MBEHI, (2.4a)
Ps+ = MUBTF2ur— s, (2.4b)
HA = Hsgo = HB—Hs, (2.4¢)

Mg-yz0 = MBE M1 —2Hs. (2.4d)
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The number of independent chemical potentials is further reduced by the conditions
of equilibrium with respect to the weak interactions and electric charge neutrality. We
require the leptonic process p + e — 1 + 1, to be in equilibrium with the inverse
reaction n — p + e + 7., and the same for the non-leptonic processes n +n <> p + X"
Other weak reactions involving hyperons exist but their equilibration does not yield
independent conditions for our chemical potentials. We shall assume that neutrinos
have mean free paths larger than the size of the system, such that we may set the
neutrino chemical potential to zero. This is a good assumption for neutron stars unless
the temperature is larger than about a few MeV, which is only the case in the very
early stages of their evolution and in merger processes. At zero temperature, weak
equilibrium directly translates into simple conditions for the chemical potentials,
Hp + te = pn, and 2py, = pp + py-. As aresult, we can express g, iy, s in terms of
neutron and electron chemical potentials,

ygzun—%, m:%, VSZ—%- (2.5)
The mesonic part of the Lagrangian contains the scalar meson ¢ and the vector

mesons w#, pg , P,

[ AU NEE DDV SIS SRR L
M = 50,00"0 — (0’)—1www —E(PW(P ~ 2P0 +7wya)
"2 "2 J
+ o+ L ool + 3 (! + o0y + 9u)’, (2.6)

where Wy = aua)v — ava and analogously for Puv and ng- This Lagrangian can be
viewed as a subset of the Lagrangian containing the full scalar, pseudoscalar, and
vector meson nonets [110], only keeping the fields that we assume to condense in the
medium given by the baryons. This is justified by the mean-field approximation,
where the fluctuations of the meson fields are neglected. For instance, the
pseudoscalar nonet is completely omitted here because we assume none of these fields
to condense. It is only indirectly used by fitting one of the parameters of the potential
U to the pion mass. Moreover, in the scalar sector, the fields corresponding to the 0
and 8 direction with regard to the commonly used generators of U(3) are usually
rotated to give a non-strange scalar field ¢ and a strange field . This is explained

more explicitly in Appendix A, where we briefly review the more systematic approach
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using the full mesonic and baryonic multiplets. Here, in the main part, we omit the
field (and condensate) for simplicity. This is comparable to the approximation used in
Walecka-like models, where the excitations of the scalar fields (not their condensates)
are fundamental degrees of freedom of the Lagrangian. In this case, the strangeness
sector, i.e., the excitation of the (, is sometimes omitted as well for phenomenological
reasons [93, 111]. The potential for the remaining scalar meson is chosen to be the
same as in the two-flavor version of this model [49, 97, 103, 104],

Ue) = Y (S (o fo), 27)

n=1

with parameters a1, ay, a3, a4, € and the pion decay constant f,; >~ 92.4 MeV.
Temporarily including pion fluctuations, we fit a; = m? to reproduce the vacuum
mass of the pion m,; = 139 MeV, and requiring the vacuum value of the chiral
condensate to be (0) = f, we obtain € = m% fr. For the vector meson masses in Eq.
(2.6) we will use m,, = 782MeV, my = 1020 MeV, m, = 775MeV. We have included a
quartic meson coupling term [48, 112-114] with coupling constant d > 0, which will
play an important role for our results. The structure of this term is a particular choice
within the more general quartic term based on a chiral approach, see appendix A and

in particular Eq. (A.7).

The baryon-meson interactions are given by
Lr = =Y $:(8io0 + giwY wy + 80" 0h + LipY" b ) i (2.8)
1

As dictated by the chiral SU(3) approach, the coupling constants within each isospin

multiplet are related, see appendix A, and will be denoted by
SNx = nx = Spxs 8rx = 8y0y = §xtx, 82x = 8m0y = §E-x/ (2.9)
forx =0, w, ¢, and
SNp = Snp = —Spp» 8rp =8s+p = —85 - 88p = 8z0p = —8=—p,  (2.10)

while gyo, = gap = 0. The coupling constants g, between the baryons and the scalar

field are fixed by their vacuum masses. At mean-field level, and using that in the
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vacuum (0) = fr, the baryonic vacuum masses are m; = giyfr. Using

MmN = My, =~ 939MeV, mp ~ 1115MeV, myg= /50 = 1190 MeV, mg- /z0 =~ 1315MeV,
this fixes the coupling constants g;,. Fixing the couplings between the baryons and the
vector mesons is more complicated. It is possible to derive the coupling terms from a
SU(3) invariant approach, see appendix A. We shall use the resulting constraints for
some of the hyperonic couplings, combined with a phenomenological approach for

the nucleonic couplings, as we shall explain in Sec. 2.3.

2.2.2 Free energy and stationarity equations

We allow the scalar meson field and the temporal components of the vector meson

tields to condense and denote the corresponding condensates by

c={(0), w=(wo), p={0d), ¢={do)- (2.11)

They are assumed to be homogeneous in space, and we neglect all mesonic

fluctuations. This allows us to write down an effective “mean-field Lagrangian”,
L=Y (9" + 9 u; — M)y — U(0) = V(w,p0,9), (2.12)
i
with the vector meson potential

1 d
V(w,p,§) = =5 (mew® + 0% +mgg®) — 2 (w0 +0% + 9%, (219)

the effective chemical potentials

Hap = Hu/p = SNw@ — §NgP F ENoP (2.14a)
Hyo = Hyo — 85w — 8, (2.14b)
Pse = Pzt — 8rwW — &rpd F §xp0, (2.14c)

A = HA— 8rwW — 8npd, (2.14d)

Heoyz- = Moz — §EwW — 8apP F §app (2.14e)
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and the effective, medium-dependent masses
Myu/p = 8No0, Mso/ss = 8500, MA =8A00, Mgz = 8240 - (2.15)

As often done in comparable phenomenological models, we shall omit the
(renormalized) vacuum contribution (“no-sea approximation”). The idea is that this
contribution would only yield a quantitative change and since the entire approach is
of phenomenological nature there is not much to be gained from the inclusion of this
contribution, given that the parameters of the model will be fitted within this
approximation to low-energy nuclear matter properties. (There are cases, however,
where the vacuum part makes a qualitative difference, for instance in the case of a
background magnetic field [98, 115-117].) We shall also restrict ourselves to zero

temperature. Then, the free energy density becomes

Q==Y p(pi, Mi) + U(0) + V(w,p,¢) = p(pe, me) = Py, my), (2.16)

where the pressure of each fermion species is given by the function

O(u—m) [(2 kr+p
p(u, M) = —e [(31@; — mzkp> 1+ mt In=——1, (2.17)

with the Fermi momentum
kp = \/yu? —m?. (2.18)

In Eq. (2.16) we have added the leptonic contribution, with electron and muon
chemical potentials pi, p;,, and their masses m, = 0.511 MeV and m, = 106 MeV.
Weak equilibrium requires y, = i, for instance through the processes e — p + v, + v,
and p — e + ¥, + v, We define the following general expressions for the scalar

density and the fermionic number density,

_ 9 _ _ m ooy ket
nse(p,m) = —= =0(p—m) 7 (kpy m*In m) , (2.19a)
op K3
n(p,m) = o =0O(u— m)ﬁ (2.19b)
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Then, the Euler-Lagrange equations can be written as

0 = aa? = %(LTI + ;gignsc,i, (2.20a)
0 = 32 = ?,Z + ;giwni, (2.20b)
0 = %(p) = aax; + ZZ; SipMi, (2.20¢)
0 = %{; = 2; + Zl; SipMi , (2.20d)

where ng.; = ns.(pf, M;) and n; = n(uf, M;). Additionally, we need the constraint
from local electric charge neutrality, which reads

0=~

—np — Mg+ +Ny- +Ng- +1e + 1y (2.21)
For the equation of state we shall need the energy density
€ = —P + pene + pyny + upnp + psns + pmy = —P + uyng, (2.22)

where P = —() is the pressure, where, in the second step, we have used the chemical
potentials (2.5) and the charge neutrality condition (2.21), and where baryon,

strangeness, and isospin number densities are

np = Zni, ng = ZSiTli, ny = ZIﬂ’li . (223)
i i i

2.2.3 Speed of sound

We require that our model reproduces the speed of sound of asymptotically dense
cold QCD, such that our chirally restored phase shares this property with realistic
quark matter. At asymptotically large densities the speed of sound squared c2 of QCD
goes to the conformal limit 1/3, since in this limit yp is much larger than the QCD
scale and, due to asymptotic freedom, also much larger than the constituent quark
masses. Therefore, the baryon density is that of a free gas of fermions, np o p3, which

yields c¢? = 1/3, independent of the proportionality constant, as can be easily checked
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from the definition

oP n dn -1
2 B B
CG == — | 7/ . 2.24
oe UB (d}l3> ( )

Here, the first expression is valid in general, i.e., also for nonzero temperatures, in
which case the derivative with respect to € is taken at fixed entropy per particle. The
second expression is valid at zero temperature; see for instance appendix E of Ref. [94]
for a derivation of the general expression in terms of derivatives with respect to the

chemical potential and temperature.

To discuss the speed of sound in our model, let us for illustrative purposes in this
section only consider isospin-symmetric nuclear matter without strangeness, i.e. we
ignore hyperons for now and the only nonzero meson condensates are ¢ and w. Also
ignoring neutrality and a possible lepton contribution, the only relevant equations are

Egs. (2.20a) and (2.20b), which have to be solved for ¢ and w and which we write as

au .
0 = fl (U/ w, "MB) = % + ngU'nSC(,uB/ M) ’ (2.25a)
0 = fao,w, up) = w(mg, +dw?) — gnwis, (2.25b)

with M = gno0, up = up — gnww. For the speed of sound we need the derivative

dng _ dnp | ong 90 | dnp 0w (2.26)
dup Oup 0o dup  Odw Jup
The explicit derivatives of np are easily obtained, but ¢ and w are only given implicitly

by Egs. (2.25) (there is no analytical solution even in this simplified scenario). We can,

however, compute the relevant derivatives in terms of ¢ and w via

fv 92\
(w,&v):_(aﬁ,afz> oo 9r | (2.27)
oup’ dus oup’ oug i 9f

Jdw Jw

Inserting all this into the definition of the speed of sound yields after some algebra

2kpply 39U U
2 1k | T2 T MoM oM, 28Nuke 228)
ST 3upuy | 268 30U o*U | mE(md +3dw?) |’ '

w2y MM aM?
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where k% = (u})? — M2. This relatively compact expression is valid for all densities,
but still requires solving equations (2.25) numerically for an explicit evaluation. In this
section we are only interested in the asymptotic limit, which can be evaluated
analytically. One observes that taking the limit yp — co does not commute with the

limit d — 0. If we first send d — 0, the solutions of Eq. (2.25) become for large 3z

2/3 1/3
d=0: o~ (BT _famn M (3 (2.29)
e - 312 2 ,2/37 w = 205 : :
w SNoHB ENw ENw

The subleading term in w is needed to obtain the leading behavior for uj. Since for

up — oo we have kr ~ pjp, the first term in the square brackets in Eq. (2.28) approaches
1. It is therefore subleading and the asymptotic speed of sound is given by the second
term in the square brackets. With the relations (2.29) we find ¢ = 1. Therefore, if the
quartic self-interactions are switched off in the Lagrangian, d = 0, the speed of sound

approaches the speed of light at asymptotically large yp.

On the other hand, if we first take the limit yp — co at nonzero d we find for the

leading terms of the solution of Egs. (2.25)

1/372
o~ 1+<2g%\rw> ] fnm%nzl w ~

Zg;l\lw ENw

-1
3m2d\ '’ 1B
3124 gNay% 1+ ( > —_—. (2.30)

Again, the first term in the square brackets in Eq. (2.28) becomes 1, but this time it is of
the same order as the second term, and both terms together give the asymptotic result
¢z =1/3foralld > 0, a conclusion also reached for a similar model in Ref. [118]. This

shows that only in the presence of a quartic vector meson self-coupling our model

reproduces the asymptotic speed of sound of QCD.

These observations also suggest that by choosing a sufficiently small but nonzero
d, the speed of sound becomes arbitrarily close to 1 at intermediate densities. The
reason is that the behavior of the condensates (2.29) also holds in a regime where yp is
large compared to all other energy scales while the dimensionless parameter du3 /m?,
is small, see Egs. (2.25b) and (2.28). For any nonzero d, of course, the behavior (2.30)
eventually takes over as yp is increased and the speed of sound approaches 1/3
asymptotically. This can be confirmed numerically, as well as the fact that these
asymptotic limits derived here remain valid in the more complicated scenario

including strangeness and the neutrality constraint.
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2.3 Parameter choices

Our strategy for fixing the parameters of the Lagrangian is to fit as many as possible to
empirical vacuum and low-density quantities, and explore the parameter space of the
remaining ones to understand the qualitative behavior of the model, in particular with
respect to the chiral phase transition and the onset of strangeness. We have already
used vacuum properties to fix €, a1, mw, My, Mp, §No, §A0s §50, §20- We assume that the
nucleons do not couple to the hidden strangeness meson, gng = 0 [109, 119, 120]. It
remains to choose values for, first, a, a3, a4,d, gNw, SNps and, second, the couplings of
the hyperons to the vector mesons SAwr 8 wr 8Ewr SApr 8%pr 8Epr 8307 §Zp- Let us discuss

these two groups of parameters separately.

2.3.1 Saturation properties

We relate the 6 parameters ay, a3, a4, d, gnw, §Np t0 6 properties of isospin-symmetric
nuclear matter at saturation: we use the well-known binding energy Eg = —16.3MeV
and saturation density 19 = 0.153 fm >, and also work with a definite symmetry
energy S = 32 MeV, following the empirical estimates S ~ (30.2 — 33.7) MeV

[121, 122] (see, however, Ref. [33], which predicts a somewhat larger value based on
measurements of the neutron skin thickness by the PREX collaboration [123]). The
incompressibility at saturation is less well known, K ~ (200 — 300) MeV. In our main
results we shall employ the value K = 250 MeV. We have checked that our results do
not change much under variations of K in the empirically allowed range. There is
much more sensitivity to the effective nucleon mass at saturation, My, and the slope L
of the symmetry energy with respect to density changes away from saturation. For
later, we shall keep in mind an empirical range of My >~ (0.7 — 0.8)m [124-129].
Estimates for the slope of the symmetry energy range from L ~ (40 — 60) MeV
[130-132] to more recent values using the result of the PREX experiment [123],
indicating that larger values might be favored, L ~ (70 — 140) MeV [33]; for a recent

overview of the various estimates for L see Ref. [133].

To set up the relation between the model parameters and the saturation
properties, we denote the chemical potential at the onset of isospin-symmetric

(non-strange) baryonic matter by pp = 922.7 MeV, and the effective baryon chemical
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potential by pg = p;, = p, = 4 / k% + M3, where the Fermi momentum can be
expressed in terms of the saturation density via ny = 2k3/(37%), which yields

kr ~ 260MeV. In the absence of hyperons, baryon and isospin densities are

ng = ny +n, and n; = n, — ny, respectively. In symmetric nuclear matter, where
n; = 0, the stationarity equations (2.20) give p = ¢ = 0, while w obeys the cubic
equation

SNwlo = miw +dw?, (2.31)

whose relevant solution we write as

wo =N ¢y, (2.32)
mw
with

flx) = (2.33)

31— (V14+a2- x)?/3 = 3v/3d gNwho
2x (V1+aZ—x)l/s 0= Tomd

With lim,_,o f(x) = 1 we recover the case without quartic vector meson interactions,

d = 0. We also need the definitions of incompressibility, symmetry energy, and slope

of the symmetry energy,

Opis _ nBopr _ o, 95
Bai’lB P S = 2 ai’l[ P L = 37138”3 P (234)

where K is evaluated for symmetric nuclear matter, the derivative in S is taken at fixed

ng and evaluated at n; = 0, and the derivative in L is taken at fixed n; = 0.

Putting all of this together, we obtain the following six conditions for the model

parameters:
2 *
’ omg, . ddng(po — ug)
MNw = 20 (o — o) |1+ \/1 + —mﬁ, , (2.35a)
3m*m3 k2 dw?
2 P F 0
_ 5_ > 14 , (2.35b)
ENp K ( 61 < n2
[ — 3g%\]pn0 . 2d NI NwWo k% (1 _ K >
N 2(m2 + dwg) (m3 + dw§) (m?, 4 3dwg) 3ug 61,
2 2
ganOkF !
ey - , 2.35
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Here, the first relation is obtained from inserting the relation y; = po — gnwwo, which
follows from Eq. (2.14a), into Eq. (2.31); the next relations are obtained by computing
S, L, and K from their definitions (2.34); finally, we have the condition that the
pressure at saturation be identical to the pressure of the vacuum, which in our
convention is zero, and the stationarity equation (2.20a) for ¢, whose value is

o = My/gne at saturation.

For given L, S, K, My, 1o, no, Egs. (2.35) can now be solved to obtain the model
parameters a,, as, 44, §Nw, §Np, d- For the practical calculation it is useful to note that
(2.35a), (2.35b), (2.35¢) do not depend on ay, a3, a4 (Which only enter through the
meson potential U), such that they can be solved separately for gnw, gnp, d. The results
are then used to solve Egs. (2.35d), (2.35e), (2.35f) for ay, a3, a4. If the quartic coupling
is set to zero, d = 0, Egs. (2.35a) and (2.35b) can be used to obtain gn. and gnp, and
the coupled equations (2.35d), (2.35e), (2.35f), are used to fix ay, a3, a4, while L can only
be computed afterwards, i.e., in this case there is no freedom in the parameter set to

reproduce a given value for L.

Interestingly, Egs. (2.35) can be used to compute a window in the My-L plane for a

given value for K. From Egs. (2.35a) and (2.35b) we see that in order for g%, and g%\]p

[ (ke\?
kr <6S> —1 < My < \/ud—k2. (2.36)

We can also compute the limits of L for d = 0 and d — oo, which gives the range

to be positive we need

2
k%(3]10—K) L 3ngn0 n k% <1 K > g%\]wnok% (2.37)

<L < - ,
1832 2my  3ug 6p; ) 2m2us?
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FIGURE 2.1: Allowed window (red curves) of the model in the My-L plane bounded
by the limits (2.36) and (2.37), solely derived from known saturation properties of sym-
metric nuclear matter. Here we have set K = 250 MeV, which we will use throughout
this chapter. The thin black curves are lines of constant d, d = 10, 102,103, 10* from
right to left. The grey horizontal band indicates the empirically favored range for My,
which results in a predicted range L ~ (47 — 93) MeV, shown by the red vertical band.

where the lower (upper) limit comes from d — co (d = 0). We have considered the
possibility of negative d, but have not found any physically sensible solutions, in most
cases indicated by a superluminal speed of sound combined with the solutions of the
stationarity equations turning complex at large densities, see also Refs. [118, 134]. The
resulting window in the My-L plane is shown in Fig. 2.1 for K = 250 MeV (with all
other saturation properties as given above). If we apply the realistic window

My ~ (0.7 — 0.8)my we see that this already constrains the range for the slope of the
symmetry energy to L ~ (47 — 93) MeV, as indicated by the shaded bands in the

tigure.

2.3.2 Couplings between hyperons and vector mesons

The choice for the hyperon couplings gaw, 85w, 85w SApr 85ps 8Eps 850, §5p 1S much less
constrained by experimental data. Here our strategy is to combine phenomenological
constraints with the relations given by the chiral approach of appendix A, while
leaving one degree of freedom to be varied to probe the dependence of our results on
different choices of the hyperon couplings. The connection between the coupling
constants and (potential) experimental data is made by the hyperon potential depths.
The potential depth Ul.(j ) of a single hyperon i in a medium of baryon species j at
arbitrary baryon density np is computed as follows. We assume isospin-symmetric

media, such that n, = n, for j = N, ng+ = nyo = ny- for j = ¥, and ng = ng- for
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j = &. As a consequence, p = 0 in each case, and the Fermi momentum kr is related to

the baryon density by
sk

np

where s is a degeneracy factor, s = 2,1, 3, 2 for baryonic media N, A, %, E, respectively.

()

The single-baryon energy E;’; of baryon i in a medium of baryon j obeys the relation

EQ) —pi= YR+ (7 = 2:39)

where M I-U ) is the medium-dependent mass of baryon i and yj(j ) is its effective

chemical potential, containing the actual chemical potential y; and the

medium-dependent condensates, see Eq. (2.14). The potential is given by the
()

minimum of the single-baryon energy E,”, ; minus the vacuum mass m;,

u? = MY — 12D 4 —my = g0 (09 — fr) + giww? + gippW), (2.40)

1 1

where, in the second step, we have expressed the vacuum mass in terms of the
vacuum value of the chiral condensate, m; = g;, f». The medium-dependent mass and
effective chemical potential have been written in terms of the meson condensates in
the medium of baryon j, which have to be computed numerically with the help of the
stationarity equations at the given baryon density np (2.38). For our purposes, Eq.

(2.40) is only needed for the hyperon potentials in a medium of nucleons at saturation

density. In this case ¢ = 0, and using gN{,(T(N ) = My, SNo fn = MmN We can write
LIZ.(N) = 8ig (Mo — mN) + ZiwWo, (2.41)
INo
where wN) = wy is the value of the condensate at saturation (2.32). We thus have

three relations, i = X, A, E, to relate three hyperon potentials to the hyperon-omega

coupling constants.

In all our results we shall use the value
uy = —30Mev, (2.42)

as suggested by experimental data [135, 136] and adopted in comparable models

[111, 137, 138]. The potentials for 2 and E are less well known experimentally, with
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chiral effective theory suggesting ulv

either sign possible and UéN) more likely to be positive [139, 140]. For simplicity, we

to have a relatively small absolute value with

shall assume the values of both potentials to be identical,

|
—
Z

u=ud = (2.43)

and vary U within a reasonable range. We shall see that within this simplistic
approach we will have to choose in particular UéN) to be different from what is
usually adopted. Due to the large uncertainties in our knowledge of these potentials
this may not seem too unreasonable. Moreover, empirical constraints drive our choice
to more attractive potentials compared to the most common values in the literature,
such that one might expect hyperons to be unusually favored in our results. However,
we shall see that for the parameter sets that meet astrophysical constraints strangeness
does not occur in the chirally broken phase. Therefore, even if the hyperon potentials
we choose are different from their value in nature, we do not have hyperons with
unphysical properties in our system. The hyperon coupling constants then rather
characterize the interactions in the chirally restored phase (i.e., of “strange quark
matter”), for which no direct experimental information is available and where

astrophysical data are our best source for constraints, forcing us to somewhat stretch

the usual regime for the hyperon potentials.

After choosing a value of U/, Egs. (2.41), (2.42), (2.43) fix the w coupling constants
§rws §Aws §Ew- This leaves the coupling constants gag, §x¢, 824, 850, §5p, Which we
compute from the chiral relations (A.12) (ignoring the relations in that equation for

85w SAwr §5w)-

2.4 Results

We present and discuss our results as follows. First, in Sec. 2.4.1 we choose four
parameter sets in order to demonstrate qualitatively different scenarios with respect to
the chiral phase transition and the onset of strangeness that our model can produce.
At this point, we do not yet discard parameter regions disfavored by astrophysical
data. The reason is that it is instructive to see that different scenarios can be realized in

principle, keeping in mind that our model is of phenomenological nature. Therefore, a
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[ sve | 8vp | 8aw | Smo | 8m0 | a2 | a3[MeVT'] | a[MeV ]

‘ Mo/my ‘ L[MeV] H Figs. 2.2 - 2.6 H

1023 | 4.138 | 1453 | 1459 | 16.39 | 44.69 | 2917-10 % | 5.071-10°° 0.72 89.91 black
8196 | 4.297 | 12.35 | 12.03 | 13.63 | 55.15 | -7.465-10°° | 9.553-10° 0.8 86.24 red

6.610 | 4.379 | 10.86 | 10.17 | 11.65 | 73.15 | 3.120-10~2 | 2.865-10 % 0.85 84.66 blue
3291 | 4.477 | 9371 | 7.155 | 8.738 | 4655 3.643 1.305-10 2 0.92 83.14 green

TABLE 2.1: Parameter sets used in Sec. 2.4.1, Figs. 2.2 — 2.6. We have included the

resulting values for the Dirac mass at saturation My and the slope parameter L, while

K = 250MeV in all four cases. The parameters €, ay,mw, Mg, Mp, ENo» §Aor 8S0r

=, are the same in all cases and fixed by vacuum properties as explained in Sec. 2.2.

Moreover, in all four cases d = 21, and the hyperon couplings listed here are chosen to

give Y = —50MeV. The remaining hyperon-meson couplings ga¢, §5¢, $=¢, 850, 85p
are determined by the chiral relations (A.12) in each case separately.

scenario realized in the present version of the model that appears to be excluded by
data may be allowed in an improved version of the model, or in a different
phenomenological model — or in QCD. Then, second, in Sec. 2.4.2, we do discuss the
empirical and astrophysical constraints systematically, which will lead to conclusions

independent of the particular parameter choices.

241 Selected parameter sets

We start with the four parameter sets specified in Table 2.1. They all give a potential

U = —50MeV for the X and E, and the quartic meson self-coupling constant is fixed to
d = 21. As mentioned above, we also keep the incompressibility at saturation fixed to
K = 250 MeV. The parameter sets are then obtained by varying the Dirac mass at
saturation from low (approximately the lower end of the empirically allowed range)
to high (somewhat larger than the empirically allowed maximum). The slope
parameter L then adjusts accordingly (varying, however, only by a few percent for the
given choices). Note that a4 turns out to be positive in all four cases as it should be

since this ensures a bounded vacuum potential for ¢

2.4.1.1 Chiral transition and onset of strangeness

In Fig. 2.2 we show the effective nucleon mass My = M,,/;, as a function of the neutron
chemical potential, obtained by solving the stationarity equations (2.20) together with
the neutrality constraint (2.21) numerically for o, w, ¢, p, p. at given p, (and T = 0).
Since all baryon masses are proportional to the chiral condensate ¢ (multiplied by a

coupling constant to reproduce the vacuum masses), the effective hyperon masses
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FIGURE 2.2: Effective nucleon mass as a function of the neutron chemical potential

for the four parameter sets given in Table 2.1. Solid lines correspond to stable phases,

while the dashed segments are metastable (My decreasing with y;;) or unstable (My

increasing with ;). The open squares mark the onset of strangeness, and the dots

mark the phase transition within the baryonic phase (upper left and both lower panels)

and the chiral phase transition (both upper panels and lower left). In the bottom right
panel the chiral transition has become a (steep) crossover.

follow the same behavior. The figure shows all branches of the solution, including the
unstable and metastable ones. In all cases, there is an approximately chirally
symmetric phase at large chemical potentials, where the baryon masses are very small.
In three of the four cases shown here, the chirally restored phase is reached via a
first-order phase transition. The location of the phase transition has to be determined
from the free energy, i.e., by inserting the solutions of the stationarity equations back
into the free energy density (2.16). An example is shown in Fig. 2.3, corresponding to
the lower left panel in Fig. 2.2. Determining the state with the lowest free energy at

each p, allows us to identify the stable branches, shown as solid curves in Fig. 2.2.

Besides the very prominent chiral phase transition, Fig. 2.3 also shows a much
weaker first-order phase transition at relatively low densities within the chirally
broken phase. This phase transition can be understood as a “remnant” of the
tirst-order onset of isospin-symmetric nuclear matter. In that case, the free energy is

multi-valued at the onset, and moving towards more neutron-rich matter tends to
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FIGURE 2.3: Free energy density as a function of the neutron chemical potential for

the third case (blue) of Fig. 2.2. The large three-valued region is the spinodal region

of the first-order chiral phase transition, while the zoom-in shows a (weak) first-order
transition within the chirally broken phase.

diminish this multivaluedness, i.e., decrease the spinodal region. This happens
gradually, and thus, even in the neutron-rich environment obtained here by the
conditions of weak equilibrium and charge neutrality, it is possible that the spinodal
region survives. This is the case in three of the four cases in Fig. 2.2, as indicated by
the dots that mark the effective nucleon mass on either side of the transition. In
contrast to the chiral transition, the curves of stable and unstable phases in the vicinity

of this transition are not distinguishable by naked eye on the given scale.

Fig. 2.2 also indicates the onset of strangeness (open squares). We see that there
are qualitatively different cases with respect to that onset (and demonstrating these
differences is one main motivation for our choice of parameter sets): in the two upper
panels, the onset of strangeness occurs in the metastable or unstable regime. This
implies that the baryonic phase does not contain any hyperons, while strangeness
appears immediately after the chiral transition, i.e. the transition is from nuclear
matter to “strange quark matter”. Showing the possibility of this scenario within a
model based on baryonic degrees of freedom has been one of the main goals of this
work (and we shall see below that astrophysical constraints favor this case). The
precise location of the strangeness onset within the metastable /unstable regime is
irrelevant for the stable, homogeneous phases discussed here. However, it would be

interesting for future studies to see how this location affects the properties of
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inhomogeneous phases, such as a mixed phase, which does know about the behavior
of the model away from the stable branches. In the lower left panel of Fig. 2.2,
strangeness occurs already in the baryonic phase. Therefore, in this case the sequence
of phases is nuclear matter — hyperonic matter — chirally restored matter with
strangeness. Finally, the lower right panel shows yet another qualitatively different
behavior, namely a chiral crossover. In this case, strangeness occurs deeply in the
baryonic regime (judging from the effective nucleon mass, which is about 800 MeV at
that point). Then, there is a continuous transition to the phase with light degrees of
freedom. It is striking that, first, this transition is still relatively “sharp”. It is difficult
to distinguish it by naked eye from a weak first-order transition. And, second, this
sharp transition occurs at extremely large chemical potentials, much larger than in the
interior of neutron stars. We have not found any parameter set with reasonable
low-density properties that shows a significantly smoother crossover or a significantly
smaller transition density. (Judging from the results of the non-strange,
isospin-symmetric version of our model [97], a much larger incompressibility, far
beyond the physical range, is needed for such a scenario.) Nevertheless, it is
interesting that our model allows for the possibility of a crossover, which is
conceivable within QCD and corresponding model equations of state have been
constructed [141, 142], although this question becomes more subtle in the presence of

Cooper pairing [26, 143-145].

While the onset of strangeness marked in Fig. 2.2 refers to the first strange degree
of freedom, Fig. 2.4 shows all individual particle fractions as functions of density. We
have distinguished non-strange baryons from hyperons and leptons by the color of
the curves to facilitate the interpretation. Since the horizontal axis represents density,
there are disallowed regions due to the first-order phase transitions. There are
metastable and unstable branches in these regions which we have omitted since they
are not very instructive. Also, the disallowed regions can be populated by
inhomogeneous mixed phases, which we are ignoring in this chapter. We see that the
lower critical density of the chiral phase transition varies greatly between the different
parameter sets, occurring as early as ng ~ 0.4 ng in the upper left panel. We have also
marked the maximal central densities reached in compact stars for each case by an
arrow. These densities lie somewhere in the range np ~ (7 — 10) 1y, a somewhat large

number compared to most comparable phenomenological models.
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FIGURE 2.4: Density fractions as a function of baryon density (normalized to the sat-

uration density of symmetric nuclear matter ng) for the four cases of Fig. 2.2, show-

ing non-strange baryons (red), strange baryons (blue) and leptons (black). First-order

transitions appear in the form of a gap in the horizontal direction since the density

is discontinuous. Cusps arise from the onset of baryonic species. The arrow on the

horizontal axis marks the central density of the most massive star possible for each
parameter set.

The figure also shows that the most prevalent strange degree of freedom in all
four cases is the 7, which is the lightest non-leptonic degree of freedom with
negative electric charge. We also see that in the cases with a first-order chiral phase
transition the density fractions of the strange degrees of freedom decrease as the
density is increased. This is perhaps somewhat unexpected, at least having in mind
the following simple picture of quark matter: At intermediate densities we expect the
constituent mass of the strange quark to be larger than that of the up and down
quarks. At ultra-high densities, due to asymptotic freedom, the quark masses
approach the current mass limit, whose scale becomes negligible compared to the
chemical potential. As a consequence, one might expect the strangeness content to
increase as one moves to higher densities, although the strong-coupling nature of the
problem at intermediate densities does not allow a firm first-principles prediction for
this behavior. What is firmly predicted by QCD, however, is that three-flavor quark
matter becomes flavor symmetric at asymptotically large densities. Our results in Fig.
2.4 show two interesting properties of asymptotically dense matter. First, a nonzero

amount of strangeness survives asymptotically. The parameter sets are chosen
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FIGURE 2.5: Speed of sound squared as a function of the neutron chemical potential
for the four cases of Fig. 2.2, showing only the stable branches. Colors correspond to
the colors of Fig. 2.2, i.e. the Dirac mass at saturation increases from black to red to
blue to green. The large discontinuities in the black, red, and blue curves indicate the
chiral phase transition, while the green curve has a chiral crossover, as the zoom-in
proves. The arrows mark the chemical potentials in the center of the most massive
star of each case, and the horizontal dashed line marks the conformal value, cZ = 1/3,
that is attained asymptotically by all curves.

deliberately to ensure this property, and we shall discuss in the subsequent section
that this is not the case for all parameter choices. Second, our asymptotic matter is
clearly not flavor symmetric, i.e., the up, down, and strange content of our baryonic
degrees of freedom is not equal. We show in Appendix B that there are choices of the
hyperon-meson coupling constants that lead to asymptotic flavor symmetry (while
keeping the saturation properties of symmetric nuclear matter fixed). This would be
desirable in our context since this would make our chirally restored matter even more
similar to actual QCD quark matter. However, we have not found parameter sets that
at the same time produce sufficiently heavy neutron stars, and thus here, in the main

part, we do not work with the parameter constraints derived in Appendix B.

24.1.2 Speed of sound and mass-radius curves

We show the speed of sound squared c? for the four parameter sets of the previous
subsection in Fig. 2.5. This figure contains various interesting aspects. First, we see
that all curves approach the conformal limit ¢ = 1/3, as already suggested by the

analytical calculation in Sec. 2.2.3. While that calculation was performed for
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symmetric nuclear matter without strangeness, here we see that the conformal limit is
also assumed asymptotically in the electrically neutral, beta-equilibrated case
including strange matter. As pointed out in Sec. 2.2.3, the nonzero value of the vector
meson self-coupling d is crucial for this behavior. Second, the zoom-in shows that the
lower right panels of Figs. 2.2 and 2.4 indeed contain a smooth chiral crossover: the
speed of sound — containing a second derivative of the free energy — is continuous and

smooth.

Third, and perhaps most importantly, let us comment on the behavior of the
speed of sound in the intermediate density regime, relevant for neutron star matter. It
is striking that in the cases of a first-order chiral transition the speed of sound increases
through the discontinuity as we move towards large densities. Even in the case of the
crossover this tendency is retained; through the sharp crossover the speed of sound is
increased from just below to just above the conformal limit. (We have checked that
there are parameter sets where ¢? > 1/3 before the sharp crossover, i.e., this is not a
generic feature). The large speed of sound in our chirally restored phase is somewhat
surprising if we have in mind perturbative QCD, which predicts C? < 1/3 where it is
applicable. We should emphasize that our model is not asymptotically free. Even
though the conformal limit is approached asymptotically, interactions still play a role
in this limit. Therefore, we cannot expect to reproduce this prediction of perturbative
QCD. At intermediate densities, QCD is strongly coupled and we have no
tirst-principle results for the speed of sound of quark matter. Therefore, our result is
not in any contradiction with QCD. Another reason to expect a smaller speed of sound
in the chirally restored phase might be the increase in degrees of freedom as we cross
the phase transition. While this tends to soften the equation of state, i.e., to decrease
the speed of sound, there are at least two opposing effects that, in our model, turn out
to dominate the behavior. Namely, the near-masslessness of the degrees of freedom in
the chirally restored phase should indeed contribute to an increase of the speed of
sound, and, of course, the form of the interactions plays an important role, which is
not easy to disentangle from the other effects. A speed of sound of quark matter above
the conformal limit has also been observed in resummed perturbation theory [146]
and in the color-flavor locked phase [147]. In fact, it has been shown that no exotic
degrees of freedom are necessary in order to generate a speed of sound that surpasses

its asymptotic conformal limit. Rather, a peak in the speed of sound of homogeneous
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FIGURE 2.6: Mass-radius curves of quark stars (curves reaching back to the origin),

hybrid stars (dashed), and neutron stars for the four cases of Fig. 2.2. The shaded

bands mark the stars containing strangeness. Only the upper left panel is in accor-

dance with the heaviest known neutron star. (Radius constraints must be ignored here

since we have not included a crust, which would change radii, but not the maximal

masses, significantly.) The lower right panel corresponds to a parameter set with a
chiral crossover and thus only has a single class of stars.

matter naturally emerges in the transition from a phase with broken chiral symmetry

to one with a gapped Fermi surface [148].

The speed of sound is a measure for the stiffness of matter, and we expect stiff
matter to give rise to large neutron star masses. This connection is borne out in the
mass-radius curves shown in Fig. 2.6. They are computed by inserting the equation of
state P(e), with pressure P = —() and energy density € from Egs. (2.16) and (2.22),
into the so-called Tolman-Oppenheimer-Volkoff equations [149-151], which describe a
static, spherically symmetric matter configuration in general relativity. By choosing
the central pressure as a boundary condition and solving the differential equations
numerically one obtains the mass and radius of the star. Varying the central pressure
generates a mass-radius curve, representing all possible stars for a given equation of

state.

In Fig. 2.6 we show three different classes of stars, which are best explained with
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the help of the free energy in Fig. 2.3: “neutron stars”, i.e., stars made entirely of
baryonic matter, probe the chirally broken branch of our solution. Their maximal
central pressure is given by the phase transition point (i, >~ 1.4 GeV in Fig. 2.3) if only
stable baryonic matter is considered. In the mass-radius plots we have traced the
neutron star branch beyond the transition point into the spinodal region, following the
(now metastable) chirally broken solution. Importantly, this spinodal region ends at
some point, which corresponds to the end points of the neutron star curves in Fig. 2.6.
In an approach using different models for quark and hadronic matter the metastable
branch would continue to arbitrarily large densities and no prediction for the
endpoint in the mass-radius curve can be made. This metastable neutron star segment
can be of astrophysical relevance since it is made of two-flavor nuclear matter (entirely
in the upper left panel and for a large part in the upper right panel). Therefore, it is
conceivable that it survives for non-microscopic times since the conversion to strange

quark matter would require the injection of strangelets.

If we follow the thermodynamically stable branches through the phase transition,
we branch off of the neutron star curve by following the chirally restored branch. We
obtain hybrid stars, shown by the dashed curves in Fig. 2.6, i.e., stars with a chirally
broken mantle and a chirally restored core. This gives rise to the possibility of “twin
stars”, stable stars with the same mass but different radii [152]. Twins both having
thermodynamically stable matter — one neutron star, one hybrid star — are (barely)
realized in the upper right panel. However, our results also suggest the existence of
twins where one star is made of metastable hadronic matter and its hybrid twin
containing a strange quark matter core (upper panels). In all mass-radius plots we
have included segments that are expected to be unstable with respect to radial
oscillations of the star [127, 153]. Therefore, for instance, the lower left panel does not

allow for twin stars because the entire hybrid branch is expected to be unstable.

We also show the mass-radius curves of “quark stars” made entirely out of
chirally restored matter in our model. To this end, we follow the chirally restored
solution in Fig. 2.3 backwards until the pressure (and thus the free energy density) is
zero. In the three cases considered here where this construction is possible, this
includes a metastable segment of the solution, towards low densities, similar to the
metastable neutron stars just discussed, where the metastable matter sits at high

densities. There are parameter regions where the metastable segment does not reach



24. Results 57

back to zero pressure, which results in quark matter only appearing in hybrid stars,
and not also in a separate branch of quark stars. There are also parameter regions
where the chirally restored branch is stable all the way down to zero pressure, which
we can interpret as a realization of the strange quark matter hypothesis [154, 155]. We
shall come back to this possibility — and identify the region in the parameter space

where it is realized — in the subsequent section.

In the calculation of the mass-radius curves we have not included any mixed
phase at the chiral phase transition. A mixed phase layer in the star would smoothen
the cusp-like transition from the neutron star branch to the hybrid star branch, but
otherwise is not expected to change the results significantly. Moreover, we have not
included a crust but rather used the homogeneous phases of our model down to the
lowest densities. This simplification has a large effect on the radii of the stars. A crust
would generate a much larger layer of matter with an average density below
saturation density and can be expected to correct the radii to much larger values (see
for instance Ref. [156]), with the exception of the quark stars, where only a small crust
is expected (see for instance Ref. [157]). Importantly, however, the inclusion of a crust
and its precise properties are not expected to change the maximal mass of the given
dense matter equation of state [156]. Therefore, the radii in Fig. 2.6 should not be
taken too seriously, and we should thus not attempt to compare these results to the
latest data for neutron star radii, and neither to constraints for the tidal deformability,
which is strongly influenced by the radius of the star. However, the maximal mass of
our mass-radius curves can be taken seriously. As a consequence, we see that only the
upper left panel corresponds to an equation of state allowed by the existence of a
2.1-solar mass star [106, 107]. In particular, the scenario with the chiral crossover
(lower right panel) gives rise to very low masses and thus is in contradiction with
astrophysical data. These observations reflect the behavior of the speed of sound in
Fig. 2.5: heavy stars are possible for large speeds of sound, and the largest mass is
obtained for the case with the earliest chiral phase transition such that the stiff chirally
restored phase constitutes a large volume fraction of the heaviest stars. This is in line
with recent discussions suggesting the necessity for a non-monotonic behavior of the
speed of sound in order to meet astrophysical constraints [77, 158, 159]. While in
many approaches, either purely baryonic or in connection with a separate quark

matter model, the maximum of the speed of sound is reached in the baryonic phase it
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FIGURE 2.7: Upper panels: Distinct regions in the My-L and My-d planes for K =
250MeV and U = —50MeV. “s” (“¢”) labels regions with (without) strangeness at
asymptotic densities, “N” (“Q”) labels regions where nuclear matter (quark matter)
is preferred at zero pressure. In the shaded triangular region maximal masses of (hy-
brid) stars of more than 2.1 solar masses are reached, in addition to having asymptotic
strangeness and nuclear matter being stable at zero pressure. In the right panel, the
dashed-dotted (almost horizontal) curve divides the region where hyperons appear
before the chiral transition (towards large My) from the region where strangeness only
appears in the chirally restored phase (towards small Mj). Above the dotted line the
chiral transition is a crossover. The grey shaded band in both panels is the empiri-
cally preferred regime for My, and the thin horizontal dashed line in the right panel
marks the upper limit of My according to Fig. 2.1. The asterisks correspond to the pa-
rameter choices in Figs. 2.2 — 2.6 (in the left panel only two of them lie in the shown
range). Lower panels: Blue lines as in the upper panels, now with added curves for
U = —30MeV (green) and U = —70MeV (red).

has also been argued that this behavior may be generated by the so-called quarkyonic
phase [160]. In contrast, our results suggest that the peak of the speed of sound may
well appear in the quark matter phase, while the baryonic phase exhibits sound

speeds below the conformal limit.

2.4.2 Parameter-independent conclusions

We have seen that our model allows for qualitatively different scenarios regarding the
chiral phase transition, with different thermodynamic properties and different

properties of compact stars. We now intend to determine the region in parameter
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space where our model is useful and realistic. For simplicity we keep the

incompressibility at saturation fixed to K = 250 MeV, and vary the Dirac mass at

saturation My, the slope parameter L, and the hyperon potential /. We present our

results in the My-L plane, making the connection to Fig. 2.1. It is useful to consider

also the My-d plane for an alternative representation. For a given pair (M, d) one can

always compute the more physical pair (Mo, L).

Our results are shown in Fig. 2.7. Let us first focus on the upper panels, which are

obtained with the choice i/ = —50MeV, to explain and interpret the various curves.

* Asymptotic strangeness. For our main goal to describe strange quark matter with
our chirally restored phase we need to check in which cases there is strangeness
at asymptotically large densities. (As we have seen in Fig. 2.4, if strangeness
survives asymptotically, it tends to be present right after the phase transition as
well.) The line in the parameter space that separates the region with asymptotic
strangeness from the one without can be calculated with the help of an
expansion similar to the asymptotic expansion employed in Appendix B. The
ansatz for the solution of the stationarity equations used in this appendix led to
conditions for the coupling constants, guaranteeing flavor-symmetric asymptotic
strangeness. The weaker condition of the existence of asymptotic strangeness is
found by the ansatz p ~ peopin, He ™ Meopn and all other condensates as in Eq.
(B.2). This ansatz leads to a set of stationarity equations for the coefficients of the
leading-order terms Weo, Poo, Poo, He,c0, Which can easily be solved numerically.
Then, for instance at a fixed d, we can determine the value of M at which a
strange degree of freedom first sets in asymptotically, and repeating the
procedure for many values of d gives a curve in the My-d plane and thus also in
the My-L plane, shown as a blue solid curve, where regions with and without

asymptotic strangeness are labeled by “s” and “g”.

Stability of nuclear matter at zero pressure. If our chirally restored phase is favored
at zero pressure, it prevails for all nonzero densities and the main purpose of the
model, to develop a unified approach in the vicinity of the quark-hadron
transition, is not realized. Therefore we need to identify the parameter region in
which nuclear matter is the favored phase at zero pressure. We can compute the

line that bounds this region by computing the points in the My-d plane at which
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chirally restored, zero-pressure matter sits exactly at y,, = my, where the
second-order onset of charge neutral, beta-equilibrated nuclear matter occurs. If
it sits at larger y,,, as in Fig. 2.3 and all parameter sets of Sec. 2.4.1, there is a
chiral transition and we denote this case in Fig. 2.7 by “N”; if it sits at lower p,
there is no chiral transition and we denote this case by “Q” since it suggests that
quark matter is absolutely stable. Together with the criterion for asymptotic
strangeness we find four regions: sN, sQ, ¢N, ¢Q. (The My-L plane additionally
has the region of negative d, which we do not consider.) For our purpose, the sN
region — asymptotic strangeness and absolutely stable nuclear matter — is the most

relevant.

Realistic neutron stars. On the blue dashed curve the maximal mass of a hybrid
star is exactly 2.1 M, heavier stars are sitting to the right (upper left panel) or
below (upper right panel) this curve. We have restricted this curve to the sN
region and only indicated that it also extends into the the sQ region (where there
are no hybrid stars, i.e. the maximal mass is reached by a quark star) and into
the gN region. The resulting window in the sN region containing stars with
maximal masses compatible with astrophysical data is shaded in blue. One of
the four parameter sets of Sec. 2.4.1, indicated by asterisks, lies in that region. We
see that the shaded region is compatible with the empirical constraints for Mo, and that
it defines a remarkably narrow range in L. As a measure for the largest possible
mass of the star inside the triangular region we have also computed the mass at
the tip of the triangle opposite of the dashed curve and found M ~ 2.28 M, i.e.
if a star with a larger mass than that value was measured, our shaded region
would disappear. [For the two additional parameter sets in the lower panels,

these values are M ~ 2.36 M, (green) and M ~ 2.23 M, (red).]

Appearance of hyperons. Parameter choices above the dashed-dotted curve in the
upper right panel lead to the appearance of hyperons. More precisely, to plot
this curve we have for each d determined the M, at which we first see the
appearance of (any) strange degrees of freedom just below the chiral phase
transition, i.e., at the lower density of the density jump. We find that hyperons
only appear for very large values of M. Although the boundaries of the grey
band My ~ (0.7 — 0.8)my should not be taken as sharp constraints, it is unlikely

that My assumes such a large value. Perhaps more importantly, hyperons only
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appear in a region where the maximal masses of compact stars are well below
two solar masses. This observation puts our results into the context of the
“hyperon puzzle” [75]: while hyperons are expected to appear at sufficiently
large chemical potentials they tend to soften the equation of state and thus
render large masses of neutron stars impossible. This is exactly what our model
shows, and, importantly, within the same model a solution is suggested, namely
the appearance of a stiff chirally restored phase before a potential hyperon onset, allowing

for sufficiently heavy hybrid stars.

¢ Crossover. The dotted line at even larger My marks the change from a first-order
chiral transition to a crossover. In other words, below that line there is a
multivalued solution of the stationarity equations at high densities, and for each
d we have determined the M, where the solution turns into a single-valued
curve. As already suggested by Fig. 2.6, the scenario of a chiral crossover is —

within our model — incompatible with realistic maximal masses of compact stars.

In the lower two panels of Fig. 2.7 we have added the curves for two different
values of the hyperon potential, f = —30MeV and &/ = —70MeV. To avoid too much
cluttering we do not show the hyperon onset and crossover lines for these cases, but
we have checked that they are also above the grey band, i.e., in an empirically
unfavored region. In the lower right panel we see that the line separating absolutely
stable nuclear matter from the region where the strange quark matter hypothesis is
realized (i.e., “N” from “Q”) looks qualitatively different for larger (less negative)
hyperon potentials. This gives rise to a second, disconnected sN region, which,
however, is disfavored due its incompatibility with the empirical constraints for M.
We also observe that for less negative values the shaded area leaves the grey band.
Sufficiently heavy stars still exist in the grey band, but not in conjunction with
asymptotic strangeness, which tends to disappear if {/ is made less negative or even
positive. As we mentioned at the end of Sec. 2.3.2, in the realistic parameter regime
the hyperon potentials are effectively only relevant for the chirally restored phase,
fixing the interactions between light degrees of freedom because actual hyperons do
not appear in this parameter regime. If, on the other hand, we go to even more
negative U, the triangular region itself becomes smaller and smaller as it moves to
larger values of My and smaller L. As a consequence, the most important conclusion

from the lower plots is that the prediction for the value of L is not altered much by
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allowing the hyperon potential to vary. The lower left panel suggests that
independently of the value of the hyperon potential the allowed region of L turns out to be
L ~ (88 — 92) MeV. This is a remarkably narrow range, which can be expected to
become somewhat larger by exhausting the remaining uncertainties in the

incompressibility K and the symmetry energy S.

2.5 Summary

We have discussed cold and dense matter undergoing a chiral phase transition within
a nucleon-meson model. The main idea has been to include strange baryonic degrees
of freedom in the Lagrangian, not necessarily to account for hyperons, which may or
may not be favored, but to create a chirally restored phase that resembles strange
quark matter. We have pointed out that it is possible to choose the parameters of the
model such that flavor-symmetric matter is obtained at ultra-high densities, as
expected from asymptotically dense three-flavor quark matter in QCD. However, in
this parameter regime the model does not produce compact stars with masses that
meet the astrophysical constraints. Therefore, we have mainly explored a parameter
region which is not flavor-symmetric asymptotically, but still has nonzero strangeness
for large densities and a speed of sound that approaches the conformal limit, as

expected from QCD.

Within this parameter region, we have shown that qualitatively different
scenarios are possible regarding the chiral phase transition (first order vs. crossover)
and the onset of strangeness (within the baryonic phase as hyperons vs. only in the
chirally restored phase). Requiring the model to produce compact stars of at least 2.1
solar masses and the correct saturation properties of symmetric nuclear matter
disfavors a chiral crossover and the appearance of hyperons. The heaviest stars in the
model turn out to be hybrid stars, which can be traced back to a large speed of sound
in the chirally restored phase, which peaks just after the chiral phase transition.
Furthermore, putting together low-density and astrophysical constraints we have
shown that the poorly known slope parameter of the symmetry energy is narrowed
down to about L ~ (88 — 92) MeV. Due to the phenomenological nature of the model
and the simplifications we have made, these numbers should of course be taken with

some care.
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The main motivation for developing this setup was to provide a unified approach
for both quark and hadron phases which enables us to consistently compute
properties of matter in the vicinity of the chiral phase transition, such as the surface
tension, the free energy of a mixed phase, or the possible existence of an
inhomogeneous chiral condensate, for instance in the form of a chiral density wave
(which we deal with in Chapter 3). Especially in view of the significance of (global)
electric charge neutrality in a neutron star, the inclusion of strangeness has been a step
forward because starting with non-strange baryonic degrees of freedom leaves us with
no negative charge carriers (except for leptons) in the chirally symmetric phase. These

applications of the model are thus natural directions for the future.
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Chapter 3

Chiral crossover vs chiral density

wave in nuclear matter

3.1 Introduction

The work presented in this chapter has already been published in [2].

In the previous chapter we developed a model with the goal to obtain a
qualitatively accurate representation of the chiral phase transition, with the aim to
calculate quantities associated with it. In this chapter the goal is to investigate the
viability of an anisotropic phase (namely the Chiral Density Wave) as the ground state
of the system in this region. Due to the more complicated nature of the problem we
drop some of the features that we introduced in the previous iteration of the model,
namely the strangeness sector and the neutron star conditions. We restrict ourselves to
neutron/proton matter only and impose isospin symmetry. However, we include
something that proves to be a significant contribution to the dynamics of the system:
the Dirac sea contribution. It is a step forward in the sense that it reinforces the

theoretical foundations of our model.

3.1.1 Background and motivation

Thermodynamic phases that break rotational and/or translational invariance are

ubiquitous in condensed-matter systems and are expected to play an important role in
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the phase diagram of Quantum Chromodynamics (QCD). Cold and dense matter
governed by QCD can be found inside neutron stars and thus the properties of
anisotropic or crystalline phases are important for the understanding of astrophysical
data. Neutron stars rotate and contain strong magnetic fields, effects that tend to
stabilize anisotropic structures on a microscopic level. But, even without any external
tields, cold and dense matter is prone to developing spatial structures, typically
because a condensation mechanism becomes “stressed”. A non-uniform state can then
be stabilized as a result of competing effects, finding a balance between keeping the
kinetic energy cost small while sustaining a gain from condensation energy. In cold
and dense quark matter, a mismatch in Fermi momenta due to the nonzero strange
quark mass puts a stress on the uniform quark/quark pairing, resulting in anisotropic
or crystalline Cooper pair condensates [42, 161, 162]. Here we will be concerned with
the possibility of an anisotropic chiral condensate. In this case, the baryon chemical
potential itself imposes a stress on the condensation mechanism because chiral
condensation is based on quark/anti-quark pairing. Throughout this work we will
ignore the possibility of Cooper pairing for simplicity and consider systems without

magnetic field or rotation.

Since the anisotropic state is an intermediate phase between chirally broken and
(approximately) chirally restored phases, we expect a spatially varying chiral
condensate in the vicinity of the chiral transition!. Chiral (and deconfinement)
transitions are strong-coupling phenomena and cannot be described with perturbative
methods. Moreover, in the region of cold and dense matter, even brute-force methods
on the lattice are currently inapplicable. Therefore, for now, this regime of QCD is
inaccessible from first principles. The discussion of the chiral transition in cold and
dense matter is thus mostly limited to phenomenological models, including the study
of inhomogeneous phases in its vicinity. The vast majority of these studies have been
performed in models based on quark degrees of freedom, such as the
Nambu-Jona-Lasinio (N]JL) or quark-meson model [51-63]. These models are, at best,
suitable for the high-density side of the chiral transition. However, the relevant
degrees of freedom on the low-density side, where chiral symmetry is spontaneously

broken, are nucleons. Therefore, these models only yield a toy version of the chirally

!t is conceivable that an anisotropic or inhomogeneous chiral condensate persists up to asymptotically
large densities — then in the form of quark/quark-hole pairing. However, in QCD this requires a large
number of colors [163, 164].
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broken phase of cold and dense QCD. Ideally, a model should account for both quark
and nuclear matter. This is a very challenging task, even on the less rigorous level of
phenomenological models. Attempts include models where quark and nucleon
degrees of freedom are combined in the Lagrangian [165] and models based on the
gauge-gravity duality, where both confined and deconfined phases arise naturally but

which are different from real-world QCD in other aspects [94-96].

3.1.2 Model and main idea

Here, we employ a nucleon-meson model [104], which offers a complementary
perspective to NJL and quark-meson models: In this approach, the low-density side
does contain the correct degrees of freedom (and we can choose the model parameters
to reproduce properties of nuclear matter at saturation). On the other hand, we have
to live with a toy version of quark matter. One of the main ideas is that, if combined,
the two complementary approaches can give solid predictions for QCD, at least on a
qualitative level. Importantly, our model does have a chiral limit, and thus knows
about the concept of a chiral phase transition. The reason is that the nucleon mass is
generated fully dynamically, in contrast to widely used models for dense nuclear
matter that contain a mass parameter in the Lagrangian, such as the Walecka model
and its variants [45, 99, 102, 166]. The model we employ was already used in the
context of the chiral transition, for instance to compute the surface tension of the
interface between the two phases [97], and strangeness was included to account for a
somewhat more realistic description of the chirally symmetric phase [1]. It was also
used to construct mixed phases under neutron star conditions [49]. A mixed phase is
another example of a spatially inhomogeneous structure, with spatial regions, for
instance bubbles, of one phase immersed in the background of another phase. In the
context of the quark-hadron transition, the possibility of mixed phases is closely
related to a first-order transition in the presence of a local charge neutrality constraint
and the relaxation of this constraint to global neutrality. In this chapter, we restrict
ourselves to isospin-symmetric nuclear matter without any neutrality condition,

where these mixed phases play no role.

Instead, we will allow for an anisotropic chiral condensate, which oscillates

between scalar and pseudoscalar components along a certain, spontaneously chosen,



68 Chapter 3. Chiral crossover vs chiral density wave in nuclear matter

direction in position space — this is commonly referred to as a chiral density wave
(CDW)2. The CDW has been used as an ansatz for the chiral condensate in numerous
studies because of its simplicity. In particular, it does not break translational
invariance for any observable. More complicated structures have been discussed, for
instance spatial variations in the scalar component only [52, 63], variants of the chiral
density wave [168], higher-dimensional lattice structures [169, 170], all reviewed in
Ref. [171], and the possibility of a quantum spin liquid [172]. It is not the purpose of
our study to compare these different inhomogeneous phases, hence we need to keep
in mind that our CDW phase may itself be unstable with respect to a phase that does

break translational invariance.

3.1.3 Main novelties

The chiral density wave in nuclear matter was already analyzed in Refs. [64-66],
employing a model similar to ours, and in Refs. [67, 168], where an extended linear
sigma model was used, describing nucleons in a parity doublet and, in Ref. [67],
including an additional scalar field. All these works ignore the vacuum contribution
of the nucleons (the “Dirac sea”), and we will argue that this contribution makes an
important difference. This difference is important not only if a CDW is included. (In
Ref. [98] it was argued that the Dirac sea is crucial in the presence of a magnetic field.)
Even for the isotropic case, the location and nature of the chiral phase transition is
corrected significantly by the vacuum contribution, as already pointed out in the
model we use here [173]. In models with quark degrees of freedom, on the other hand,
the Dirac sea was included together with the CDW, at least in some of the above
mentioned works, see for instance Refs. [55, 59]. Implementing this contribution for
the first time into a study of the CDW in nuclear matter gives us a more realistic
picture. Moreover, we carefully discuss the renormalization needed for the Dirac sea
and point out that a suitable renormalization procedure avoids artifacts at high
density seen previously in NJL and quark-meson approaches [54, 55]. Additionally,

we will show how the CDW is affected by a quartic self-coupling of the vector meson

20ther names for the CDW exist in the literature, such as “axial wave condensation”, “dual chiral den-
sity wave”, or “chiral spiral”. The analogue in quark/quark pairing (as opposed to quark/anti-quark
pairing in the chiral condensate) is referred to as the single plane wave Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) state. The CDW is also conceptually the same as a superfluid with nonzero superflow in a fixed
direction, described by a complex scalar field whose phase varies along this direction (which can be visu-
alized as a spiral) [167].
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[100], which was not taken into account in Refs. [64—67, 168], but which has recently
been explored to account for realistic neutron stars [48, 174]. We also ask whether a
CDW is favored in a system which — in the absence of anisotropic phases — shows a
smooth chiral crossover. As we shall see, the crossover is an unavoidable consequence
of our model if the Dirac sea is included, and thus we are “forced” to work in this
scenario, which is a viable possibility in QCD [141]. And we shall see that an
anisotropic chiral condensate can indeed introduce phase transitions in an otherwise
smooth crossover. This is not unlike the Bose-Einstein
condensation/Bardeen-Cooper-Schrieffer crossover [167], which can also be disrupted
by phase transitions if there is a mismatch in Fermi momenta for the two fermion

species that form pairs [175, 176].

3.1.4 Structure of the chapter

This chapter is organized as follows. In Sec. 3.2 we introduce our model of
isospin-symmetric nuclear matter and incorporate the CDW, see Secs. 3.2.1 and 3.2.2.
Then, in Secs. 3.2.3 and 3.2.4 we derive the free energy and set up the stationarity
equations, including the Dirac sea contribution, which requires renormalization,
explained in detail in Appendix C. We explain our procedure for fitting the model
parameters in Sec. 3.2.5. Our main results are presented in Sec. 3.3, starting from the
effect of the vacuum terms on the isotropic scenario in Sec. 3.3.1. The CDW is studied
in Sec. 3.3.2 for a specific parameter set, before we present a more global view of the
parameter space in Sec. 3.3.3. We compare our results to previous approaches in the
literature regarding the treatment of the Dirac sea in Sec. 3.3.4, before we give a

summary and an outlook in Sec. 3.4.

3.2 Model and ansatz

3.2.1 Lagrangian

Our model is based on a Lagrangian containing baryonic, mesonic, and interaction
terms [1, 49,97, 104, 173],
L = Lyar + Limes + Lint - (3.1)
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The baryonic part is
Loar = (v + 1), (32)

where the nucleon spinor contains neutrons and protons, i = (1., §,), and i is the
baryon chemical potential. Throughout this chapter, we will restrict ourselves to
isospin-symmetric nuclear matter, where neutrons and protons are degenerate and in
particular have the same chemical potential, 1, = i, = p. The Lagrangian does not
include a nucleonic mass parameter, the nucleon mass will be generated dynamically

by spontaneous chiral symmetry breaking. The mesonic part is

1 pey o L 3 1 w y Mo wo 4 12
Lones = 58,,(78 o+ ZTr[aHrfa | — 19w + Fwywh + 1 (W) =U(o, ),

2
(3.3)
where 71 = 71,7, with the Pauli matrices T, is the pion field, where w,, = d,w, — dywy,
where m,, = 782 MeV is the vector meson mass, and where d > 0 is the
(dimensionless) self-coupling constant of the vector meson. The potential for the
sigma and pion fields takes the form
an (02 4 7aTta — f2)" .

4
Ui, )=y, N (0= fn), (34)

n=1

with parameters a1, as, a3, a4, €, and the pion decay constant f; = 93 MeV. The
potential incorporates a (small) explicit chiral symmetry breaking through the
parameter €, which is proportional to the pion mass. For € = 0 the Lagrangian is
invariant under chiral transformations. Finally, baryons and mesons are assumed to

interact via the Yukawa interaction

Lint = =P [go(0 +i7° ) + g wu] ¥, (3.5)

with coupling constants g, and g.,.

3.2.2 Ansatz and mean-field approximation

In the simplest situation, only the fields o and w® develop expectation values. We
separate them from the fluctuations, o — ¢ + o, w® = w4 W, where ¢ = (o),
w = (V) are density-dependent (and in general also temperature-dependent)

condensates. If we assume isotropy, ¢ and w are constant in space. In our more
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general — anisotropic — ansatz we keep the vector meson condensate w spatially
constant and introduce a spatial modulation in the sector of scalar and pseudoscalar

condensates in the form of a CDW,
o =¢cos(24-%), m3=¢sin(2§-X). (3.6)

Here, the wave vector § breaks rotational invariance spontaneously, and its modulus g
as well as the condensate ¢ have to be determined dynamically. We have set any
charged pion condensate to zero; its competition and possible coexistence with the
CDW is worth exploring in systems with isospin asymmetry [59, 64]. It is useful to

work with transformed fermionic fields according to
P — e DIy (3.7)

Using this transformation and neglecting the mesonic fluctuations, we can write the

“mean-field Lagrangian” as

2
Ling = Plinud" + 91 = M+9°F - F13)9 + %wz + Zw‘* —u-ad, (38)

where we have introduced the effective nucleon mass,

M= gs¢, (3.9)

and the effective chemical potential,

e = P — oW - (3.10)

The mesonic vacuum potential is written as a sum of isotropic and g-dependent

contributions,

_ _ v @ (¢*— fR)" - — o2 2
u=u(g) =y, I (g fr), MU= AU, q) = 2078 + (1 dog) 9.
(3.11)
The form of the g-dependent part deserves a comment. First of all, the term 2¢?4>
originates from the kinetic term in Eq. (3.3) and corresponds to a kinetic energy cost of
creating an axial current from the mesonic sector. Next, we notice that the explicit

symmetry breaking term in the potential (3.4) retains a spatial dependence that cannot
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be transformed away by the fermionic transformation (3.7). This spatial dependence is
easy to understand: Even without the presence of nucleons the CDW ansatz (3.6) is
only a solution to the Euler-Lagrange equations for ¢ and 7r3 in the chiral limit € = 0;
in that case, the solution traces a circle in the o-713 plane. An explicit symmetry
breaking term € > 0 “tilts” the vacuum potential and the solution will no longer be
circular; the condensate will “wobble” along the spatial direction parallel to § rather
than smoothly follow a regular spiral®. This effect is ignored by working with the
simple CDW ansatz, and we will minimize the spatially averaged free energy with
respect to ¢ and 4 rather than attempting to work with the spatially nontrivial solution
of the Euler-Lagrange equation. (Let alone attempting to find a self-consistent solution
in the presence of the nucleons.) For convenience, we already introduce the spatial
averaging on the level of the mean-field Lagrangian. After separating the § = 0
contribution, this amounts to replacing

sin(qLy)

ep[1 — cos(24 - X)) — % /d%? [1—cos(2§-X)] = e¢ [1 T

} —ep, (312

where V is the volume of the system and L, its length in the direction of §. In the last
step, we have taken Ly — oo at fixed nonzero wave number g to obtain the
contribution to AU given in Eq. (3.11). We see that the result does not depend on g; in
particular, taking the limit § — 0 now does not change the contribution. If, on the
other hand, we are interested in the isotropic case, we first let § — 0 and then take the
thermodynamic limit L; — oo, in which case the contribution (3.12) vanishes. This

g — 0 discontinuity results in the prefactor 1 — dy,; in Eq. (3.11). It implies that it is
energetically more costly by a finite amount to have an infinitesimally small winding
per unit length (i.e., wavelength going to infinity) compared to the constant
zero-winding solution. Again, this is a consequence of the explicit symmetry breaking

and our use of the CDW ansatz; the discontinuity is absent in the chiral limit € = 0.

3We have solved the Euler-Lagrange equations for o and 713 numerically in the absence of nucleons —
but with “tilt” — and found that for small € the solution resembles the “shifted CDW” of Ref. [168], but
assumes more irregular shapes as € is increased.
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3.2.3 Free energy

The (yet to be renormalized) free energy from the Lagrangian (3.8) is

2 d
Q=0 — %aﬂ -t HU+AU, (3.13)

with the baryonic contribution (),,,, which is derived as follows.

We first observe that the nucleonic sector of the mean-field Lagrangian (3.8) is
formally equivalent to a Lagrangian of free fermions. The thermodynamics can thus
be straightforwardly computed without further approximations. To this end, we need
to compute the fermionic spectrum in the presence of the CDW. We first identify the

inverse nucleon propagator in momentum space,
STHK) = ="Ky + M — i’ +4 - 7713, (3.14)

where K = (ko, E), and ko = —iw, with the fermionic Matsubara frequencies

wy, = (2n+1)7T, where T is the temperature and n € Z. The poles of the propagator
S(K) are given by the zeros of the determinant of S~!(K), which can be factorized as
follows,

det ST = [(ko + p.)? = (Ef ) [(ko + p)? — (E)?P2, (3.15)

with the single-nucleon energies

2
Eki:\/<\/k%+Mziq) + K2 (3.16)

Here we have introduced longitudinal and transverse components of the

single-particle momentum k with respect to the direction of the CDW, ke = qq- k,

ki =k —§4-k. We see from Eq. (3.16) that the wave vector 7 introduces two different
dispersion relations which would otherwise be degenerate. In our model, the
dispersions have a very simple analytical form despite the presence of the CDW. This
will be particularly useful for the regularization of the vacuum contribution, which
can be done analytically. This is in contrast to the extended linear sigma model of Ref.

[67], where the dispersions are complicated solutions of a quartic polynomial.
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Now, following the standard procedure of thermal field theory, we can compute
the free energy density from the logarithm of the partition function. After performing

the sum over Matsubara frequencies, we obtain the baryonic contribution

Opar=—-2Y. ¥ / & {E’i +Tln [1 +e‘(Ei‘6V*)/T} } (3.17)
e=%4s=+ (27‘[)3 2

where the prefactor 2 indicates the degeneracy of neutrons and protons. The free
energy density () does not depend on space and thus all thermodynamic quantities
will be homogeneous as well. This reflects the fact that translation symmetry is
unbroken by the CDW - at least in the chiral limit and within our approximation also
in the presence of a nonzero pion mass. Of course, (2 does depend on the vector § and

thus the anisotropy does show up in physical observables.

In all our results we restrict ourselves to zero temperature. In this case, with
i« > 0, there is no anti-particle matter, i.e., the logarithm is only nonzero for e = +1.

We obtain
Qbar = _2(Pvac + Pmat) ’ (3.18)
with the (divergent) vacuum pressure of a single fermionic degree of freedom,

Pvac

1 [o0] [o0]
ﬁ;ﬂ: /0 dk, /0 dk k, ES, (3.19)
and the corresponding (finite) matter part,
— 1 00 * S S
Prat =57 1. / dkg/ dk k., (1 — E)O (i, — EY) . (3.20)
= s=1J0 0

We have written the momentum integral in cylindrical coordinates and employed

invariance of the integrand under k, — —k;.
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The double integral in the matter part can be evaluated analytically. After some

tedious algebra due to the step function one can write the result as

O(uy —g—M «— g+ k_
Proat = (]/l 167['1[2 ) {MZ[M2+4E](Q—‘M*)]1HHX/I
k_
5 202 = ) — )~ M (5.~ 13)] |
O(p« +9—M) 2112 P+ q+ky
+ o M?*[M +4q(q+y*)]ln7M

208 - )+ ) - M2Gp +130)] )

+ O~ = M) {MZ[M2 +4g(q — )i T T ”Xf =

K202 - @) - ) - Mo - 130)] )

_ /A2 _ 2

2 _
VM oy 13M2)] , (3.21)

where we have abbreviated

ke = /(e £9)2 - M2, (3.22)

As a check, one finds for g = 0,

Oy — M 2 .tk
Prat = (”&TZ) [y*kp (Bk% — Mz) + M* ln% , (3.23)

where kr = /2 — M? is the Fermi momentum. This is the zero-temperature pressure
of a non-interacting fermion gas with chemical potential s, and fermion mass M.
Moreover, for M = 0 we find

l’l4
Prat = 1272 (324)

which is the pressure of massless fermions. In particular, the wave number g has
dropped out. This is expected since any modulation is irrelevant if the amplitude, here

M, is zero.
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The Dirac sea contribution Py, has to be treated more carefully. We explain all
details in Appendix C and proceed here with a short summary and the final result for
the renormalized free energy. We first employ proper time regularization to identify
the divergent contributions, which we can express in terms of a proper time cutoff A
and a renormalization scale /. Then, we renormalize our model by introducing the
renormalized field ¢, and renormalized parameters f ,, o+, anr, €;. They are related
to the bare quantities of the original Lagrangian by counterterms da,, and a field
rescaling factor Z for the sigma and pion fields. The divergent parts of da, and Z are
tixed to cancel the divergences of Pyac. The g = 0 part of the Dirac sea is uniquely
determined by our fit of the model parameters to properties of nuclear matter, and no
dependence on the choice of the finite parts of da,, Z, and on the scale ¢ is left. The
g-dependent part, however, is less straightforward, and we keep the scale £ in the
following results to discuss our choice for it carefully. Dropping for notational
convenience the subscript r from the renormalized quantities, the calculation in

Appendix C yields

m2

d N 3
QO = —2Ppat — 7%2 — Zw‘* +U+AU. (3.25)

The renormalized Dirac sea contribution is absorbed in the modified contributions to

the meson potential,

- ~ m
U = Up) =U(e)+ 967I¥2 (1-8¢* —12¢*Ing* +8¢° — ¢°),  (3.26a)
B B 2M2 M2 4
AU = AU(gq) = AU(¢q) - T3 In T — S5 F(y), (3.26b)
where
_¢_M
P= = (3.27)

with the nucleon mass in the vacuum my = 939 MeV, and

1 2 + 13y? 2 14+ 4/1—y2
Fly)=3+0(1-y) [—Ml—;ﬂw + 217 (1+y> 1n+yy] , (3.28)

4

(3.29)

The terms in U generated by the nucleonic Dirac sea are of order
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(¢* — f2)° ~ (¢* — 1)° and higher. The reason is that we fit all coefficients in front of

2

(¢~ — 1)" with n < 4 to reproduce physical quantities, and thus the corrections by the

Dirac sea to the terms up to order (¢? — 1)* are absorbed by the fit.

The g-dependent contribution of the Dirac sea in AU contains the renormalization
scale /. Let us discuss two limits that will serve us to choose /. Firstly, in the vacuum,
where w = Ppat =0, ¢ = fr (i.e., M = my), we find in the chiral limit, where € = 0,

g my\ g
vacuum: Q= 2f24 ( % In gZ) ~ a2 (3.30)

where we have assumed g < my;, such that the step function in Eq. (3.28) vanishes.

Secondly, in the limit of large g, with all other quantities kept finite, we have

2012 2 2
large ¢: =1 M ( A 49

2+ P —In 3 ) +0(4°). (3.31)
[F(y) contributes to the logarithm and the matter part reduces to the limit (3.24) and
thus is subleading.] We now require that for small g in the vacuum Q = 2f24% + O(q*)
[55, 177] and that the free energy be bounded from below as g — co. Consequently, a

natural, albeit not unique, choice is
0= \/m% + (29)%. (3.32)

The g-dependence is crucial to avoid the unboundedness of the free energy, which was
identified as a problem in previous works in similar models [55, 177]. Since g will be
determined dynamically as we vary the chemical potential, the scale ¢ depends on the
medium. This is typical for perturbative calculations in renormalizable theories such
as QCD, if applied to nonzero temperatures and/or densities [178-180]. At the end of
Sec. 3.3.3, we shall further discuss the choice (3.32) by comparing our results to the

ones obtained with ¢ = my, where () is unbounded from below.
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3.2.4 Stationarity equations

The thermodynamically stable phases are determined by minimizing the renormalized

free energy with respect to the condensates ¢, w, and the wave number g,

0 _ 0 90 (333)
op Jdw  9q

All derivatives are taken with the two other dynamical quantities, the chemical
potential, and the scale ¢ kept fixed. The minimization with respect to g is equivalent
to requiring the total axial current to vanish; for a nonzero g this means that there will

be counter-propagating currents from the mesonic and the baryonic sectors which

cancel each other. More explicitly, the stationarity equations (3.33) read

8 M? 8of’
gons = —U'(9p)—4q 4{ <1+ln€2)} — (1= dog)e + 2‘;2 F'(y), (3.34a)
Swhp = mﬁ,w—kdaﬂ, (3.34b)
. go I M2\ o
jo= —49 7 ) T 324 —yF )], (3.340)

where we have introduced the scalar density 7, the baryon density ng, and the

contribution to the axial current from the baryons j,

zaprnat _ zaprnat . _zapmat ‘

M ng = o j= 3 (3.35)

ns = —

These quantities are computed straightforwardly from the expression (3.21). For
completeness, and for a brief discussion of their limits, we present their explicit

expressions in Appendix C.3.

3.2.5 Fitting parameters

Since we fit our parameters to vacuum properties and the properties of nuclear matter
in the absence of the CDW, the matching procedure is very similar to our previous
works within the same model [1, 49, 97]. Due to empirical uncertainties and in order
to explore all qualitatively different scenarios of the model, we shall not simply work

with a single parameter set but explore the parameter space of the model within and
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somewhat beyond these uncertainties. It is therefore useful to explain the details of

our parameter fitting.

We first fit g, from the vacuum mass of the nucleon, my = go fr, where we have
used that in the vacuum ¢ = f,. Next, we compute the pion and sigma masses by
temporarily reinstating mesonic fluctuations about the g = 0 vacuum. This can be
done for instance by replacing ¢* — (fr + )% + 7 in the potential I from Eq. (3.26a)
and expanding in the fluctuations ¢ and 7. The coefficients in front of the quadratic

terms 712 /2, 0%/2 yield the masses squared,

2 _ Hl(fﬁ)+€

m% 3 =, m: = I:I"(fn) = m> + f2a;. (3.36)

The first relation is used to fix a; from the pion mass 1. In our results, we shall
consider both the chiral limit m, = 0 and the physical case m,; = 139 MeV. Requiring
that ¢ = f satisfy (3.34a) in the vacuum then gives € = f,m?%. Due to the very
uncertain (and not uniquely defined) physical value of m, we shall not use the second
relation to fix a;, but use this relation to compute m, once a; is fixed from other

constraints, which is useful for a comparison to other models.

The remaining parameters are g, a2, a3, a4, and d. We relate them to the
following properties of isospin-symmetric nuclear matter at saturation: the binding
energy Egp = —16.3 MeV, leading to a chemical potential for the baryon onset
Ho = my + Ep = 922.7 MeV, the baryon density ny = 0.153 fm 3, the effective Dirac
mass My ~ (0.7 — 0.8)my, and the incompressibility K ~ (200 — 300) MeV. Following
Ref. [1], we denote the solution of Eq. (3.34b) at ng = ng by

wo = g;;?o f(xo), (3.37)

w

with
f(x) = 31-(V1+a2-xP  3V3dgum
T2 (VixZ—xis 0T omd

The effective chemical potential at saturation is yj = o — gwwo. Inserting this into Eq.

(3.38)

(3.34b) gives a quadratic equation for g2, with the relevant solution

1+\/1+4d”°(“°_”5)] . (3.39)

4
mg

_"iu( — )
S = e (MO = 15
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Since the effective chemical potential can also be written as pf; = {/k% + M3 with the
Fermi momentum at saturation kr = (37t%19/2)'/3, Eq. (3.39) is a relation between the
model parameters g, and d, all other quantities being physical parameters whose
values can be inserted later. We see that at 9 = i the coupling g, vanishes, which

translates into an upper bound for M),

Mo < /13 — K3 ~0.943 my . (3.40)

For the remaining parameters a5, a3, a4 we set up the following three coupled
equations: the definition of the incompressibility K (see for instance Ref. [49] for
bringing the definition into the form used here), the free energy of saturated nuclear
matter being equal to that of the vacuum (here 0), and the stationarity equation for ¢

(3.34a),

~ 2 k3+3kFM2 ]’l*+kP
0 = 0" +g”(F°—3M21n 0 )
@) gs Ho 0 My
62k} <M0>2
T\ Wy
, 3.41
PR T .
— 5 T o 0 0 0)] — ¥
7'[2 mﬁ, VO
m d ~ 1 [/2 . kr +
0 = 2‘“w§+4w§—u(cp)+4nz[(J%—M%kp) o+ MjIn MVO , (3.41b)
_ 7 goMo % . kr+ud
0 = U(p)+ 07[2 (kF.”o_MolnMo , (3.41¢)

where the potential I and its derivatives are evaluated at saturation, ¢ = My/g,. The
parameters a,, a3, a4 only appear in U and its derivatives. Hence, despite their tedious
look, Egs. (3.41) form a simple system of linear equations for these parameters. As a
consequence, we can derive elementary (but very lengthy) analytical expressions for

ay, a3, a4 purely in terms of physical quantities and the model parameter 4.

In our results we shall consider different values of the quartic vector meson
coupling d while keeping the aforementioned properties of symmetric nuclear matter
at saturation fixed. In order to translate this coupling constant into a more physical
quantity, we temporarily consider isospin-asymmetric matter with a Yukawa coupling

gp between the nucleons and the rho meson. This allows us to relate our parameters to
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the symmetry energy S ~ (30 — 34) MeV and the “slope parameter” L, which
characterizes the change of the symmetry energy under variation of the baryon
number. For the exact definitions of S and L see for instance Ref. [1], from which we

also quote the relevant relations

372m? k2 dw?
2 w F 0
= 5— 1+—°, 3.42
= T () (4 5) @iz
Lo B&m | 2d gt 5 (1_ K)
2(m2 + dewg) (m3 + dw§) (m2, 4 3dwg) 3ug 61
2 2
STk [1(x0) + xof
7 Lf (x0) +xof"(x0)], (3.42b)
2m2, pu?

with the rho meson mass m, ~ 776 MeV. We shall work with S = 32 MeV, such that
these equations give us a map between d and L if all other model parameters are fixed.
The value of L is poorly known, with experimental data indicating a range

L ~ (40 — 140) MeV [33, 123, 130-133], which is not violated for any d considered in

this work.

We summarize our fitting procedure as follows: m,, and g, are fixed in all cases
we consider, and the value of m fixes a; and €; then, the parameters g, a2, a3, a4, d are
determined from po, no, Mo, K, L, where jio, ngy are always taken to assume their
well-known values, while we will explore the dependence on the less well known

Mo, K, L.

3.3 Results

3.3.1 Isotropic matter: absence of first-order transition due to Dirac sea

To lay the ground for the discussion of the CDW we first focus on the isotropic case

q = 0. For given M), K, and d we can solve the stationarity equations (3.34a), (3.34b)
for ¢, w as functions of y and insert the result back into Eq. (3.25) to compute the
corresponding free energy. [The stationarity equation (3.34c) is trivially solved by

g = 0.] Here, in the isotropic case, the results do not depend on the renormalization
scale /. The result for the effective baryon mass M is shown in the left panel of Fig. 3.1,

where we have included four cases: with/without Dirac sea and zero/physical pion
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mass. The specific values for the model parameters needed to compute these results
are given in Table D.1 in Appendix D. We see that in the no-sea approximation the
chiral transition is of first order, for either value of the pion mass. The critical chemical
potential of the first-order chiral transition is determined by finding the point where
the free energies of chirally broken and chirally restored matter are equal. Including
the Dirac sea renders the transition second order (chiral limit) or turns it into a
crossover (physical pion mass), and moves it to significantly larger values of y, in

accordance with Ref. [173].

Does this observation depend on the specific parameter choice? This question is
addressed in the right panel of Fig. 3.1, where we explore the behavior of the chiral
phase transition as a function of the parameter M. In this plot we restrict ourselves to
the chiral limit to avoid any crossovers, which are difficult to display due to the
absence of a well-defined critical chemical potential. For any M, we adjust the model
parameters such that K = 250 MeV is held fixed (as well as all other properties of
symmetric nuclear matter discussed in Sec. 3.2.5). We see that in the no-sea
approximation there is a region of small My — in fact covering a large part of the
physically most likely values of My — where there is a direct transition from the
vacuum to chirally symmetric matter. This means chirally symmetric matter is stable
at zero pressure, which is reminiscent of the strange quark matter hypothesis
[154, 155]. This interpretation is somewhat far fetched in the current approach but
becomes more sensible if strangeness is included, where indeed this behavior persists
[1]. In an intermediate range of My we observe a baryon onset from the vacuum to
nuclear matter, followed by a first-order chiral transition. This is the scenario of the
left panel. Then, for even larger values of My the chiral transition becomes second
order (and moves to extremely large y1) even in the no-sea approximation. In the
presence of the Dirac sea, the behavior is qualitatively the same for all values of My:
The first-order baryon onset at 4 = pg is followed by a second-order chiral transition,
shown by the black dashed curves. Even a large mesonic self-coupling d = 10* does
not change this conclusion. We have also varied the incompressibility K within the
empirically preferred regime (not shown in the plot) and never found a first-order

transition when the Dirac sea is included.

What does this imply for the case of a physical pion mass? The left panel of Fig.

3.1 shows how the second-order transition becomes a crossover if the pion mass is
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FIGURE 3.1: Effect of the nucleonic vacuum contribution (“Dirac sea”) on the chiral
phase transition. Left panel: Effective nucleon mass M as a function of the baryon
chemical potential # with (black) and without (red) Dirac sea. Solid lines represent
stable phases, while dashed lines indicate metastable or unstable solutions. For each
color we display the chiral limit (curve connects to the M = 0 solution) and the phys-
ical case (curve asymptotes to M = 0). First-order transitions are marked by solid
vertical lines. The baryon onset (small vertical lines at # = p¢) is the same in all cases
by construction. The parameters for this panel are My = 0.82my, K = 250MeV,
d = 0. Right panel: Phase transitions in the chiral limit upon variation of My, keep-
ing K = 250MeV, for d = 0 (with and without Dirac sea) and d = 10* (for the case
with Dirac sea). Colors as in the left panel; solid (dashed) lines are first- (second-) or-
der transitions between vacuum, nuclear matter (NM) and the chirally restored phase
(xS). In the case with Dirac sea, the baryon onset occurs at y = g for all My and d
(solid black line, partly covered by the red line).

switched on. Therefore, the result of the right panel indicates that in the presence of a
physical pion mass the chiral transition is always a crossover (assuming isotropy).

This is the basis on which we now investigate the CDW.

3.3.2 CDW solution

We will now stick to the full calculation that takes into account the Dirac sea and only
comment on the differences to the no-sea approximation in Sec. 3.3.4. To find 4 > 0
solutions to the stationarity equations (3.34) it is useful to start with the chiral limit. In
this case, the CDW branch can connect continuously to the isotropic solution. The first
possibility to connect is with the 4 = 0 nuclear matter branch. The chemical potential
where the CDW attaches to this branch can be computed from the g — 0 limit of Eq.
(3.340),

272
ex <>:M+® e — M) (e — M+ \/p2 — M2), (3.43)
Pl (1 ) (u p )

g

where M and w (hidden in ) are computed from Egs. (3.34a) and (3.34b) with g = 0.

This equation describes the appearance of the CDW via the infinite-wavelength limit
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FIGURE 3.2: Effective nucleon mass M (left), wave number g (middle), and free energy
of the CDW phase minus that of the thermodynamically stable isotropic phase AQ)
(right), for the chiral limit (black) and the physical pion mass (blue), as functions of the
baryon chemical potential pr. The parameters used are My = 0.81my, K = 250 MeV,
d = 10*. The arrow indicates the chiral phase transition in the chiral limit (in the chiral
limit, AC) is measured relative to the chirally broken phase to the left of the arrow and
relative to the chirally restored phase to the right of the arrow). The dashed lines in
the left panel are the 4 = 0 curves, including the baryon onset shown as a vertical
solid line, while the three markers in the middle panel indicate the points for which
we show the nucleonic Fermi surfaces in Fig. 3.3.

at finite amplitude of the chiral condensate. Secondly, the CDW can connect
continuously to the chiral solution M = 0. The corresponding g and p can be

computed from the M — 0 limit of Egs. (3.34a) and (3.34c), see also Appendix C.3,

2 2 2 2
T~ 2 V*"“J‘ 2( 4 s — g% 47T>
—0"0) + 42 — pgln |1 = In—= 41 5 2 ) (344a
) (0) + p — paq - q 7 o2 (3.44a)
R Y AN | e A
> ln‘y* _q‘ = q <ln 7 1 —g% ,  (3.44b)

where w (hidden in y.) is computed from Eq. (3.34b) at M = 0. These equations
describe the appearance of the chiral condensate from the zero-amplitude limit with a
finite CDW wavelength. Both Egs. (3.43) and (3.44) connect the CDW to phases of
nonzero baryon density. There is a third option for the CDW branch to end, namely in
a q # 0 vacuum. These exotic vacua, in which the chiral condensate is anisotropic and
the nucleons only contribute through the Dirac sea, but not via a nonzero density, play

no role for the actual phase structure, as they are thermodynamically disfavored.

We start by discussing the CDW for a specific parameter set with fixed values of
Moy, K, d, and the scale ¢ given by Eq. (3.32). Again, for the precise model parameters
used here, see Table D.1 in Appendix D. The numerical solutions are shown in Figs.

3.2 and 3.3. The main observations are as follows.

o Chiral limit. The black curves in Fig. 3.2 show that the second-order isotropic
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FIGURE 3.3: Fermi surfaces y, = Elj (red) and . = E (black) in the plane of longi-

tudinal and transverse momentum components with respect to §, such that the actual

2-dimensional Fermi surfaces are obtained by rotation around the k; = 0 axis. The

three plots correspond to three different chemical potentials, as indicated in the mid-

dle panel of Fig. 3.2, and are calculated with the physical pion mass (and My, K, d as
in Fig. 3.2).

chiral phase transition is replaced by two transitions at  ~ 0.96 GeV and

i ~ 1.43 GeV between which the CDW is energetically favored. The lower end
of this region is a nonzero-amplitude, infinite-wavelength transition as
described by Eq. (3.43), while the upper end of this region is a zero-amplitude,
finite-wavelength transition as described by Egs. (3.44). The values of the
effective mass M (left panel of Fig. 3.2) show that a CDW develops in nuclear
matter, and as we move towards larger y the effective mass decreases such that

we observe a CDW in almost chirally symmetric matter.

e Effect of explicit chiral symmetry breaking. The left panel (see zoom-in) and the

right panel of Fig. 3.2 show that in the case of a physical pion mass the CDW
solution does not connect continuously to the isotropic branch. This is due to the
term e¢ in AU (3.11), whose origin is explained below that equation. In
particular, the CDW solution admits M — 0 even if m, is nonzero, although it
becomes energetically disfavored at a nonzero M. As a consequence, the CDW
region is now bounded by two first-order transitions and has shrunk, but not
disappeared completely. The CDW exists although, in the absence of anisotropic
phases, the chiral transition is a crossover, i.e., the crossover is disrupted by two
phase transitions that break (entrance to the CDW) and restore (exit from the

CDW) rotational symmetry.

® Fermi surfaces. In Fig. 3.3 we show the Fermi surfaces of the two fermion states

s = * given by the dispersion relations (3.16). For each dispersion, all states in
momentum space (kg, k., ) are filled up to the Fermi surface defined by p. = E,

as indicated by the step function in Eq. (3.20). For given g, M these Fermi
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surfaces can easily be computed, and Fig. 3.3 shows them for 3 different
chemical potentials, using the physical pion mass. The chemical potentials in the
middle and right panels correspond to the two ends of the CDW region. More
exotic topologies are possible — disappearance of one of the Fermi surfaces (red)
and split of the (black) Fermi surface into two disconnected regions — but not
realized here. Even though the Fermi surfaces are symmetric under k, — —ky,
there is a nonzero axial current in the vertical direction, to counterbalance that of
the mesonic sector. The reason is that the two s = =+ states contribute with
opposite sign to that current, at least for g < M, as the integral in the first line of
Eq. (C.29) shows. Therefore, for g = 0, where red and black lines would be
exactly on top of each other, no net fermionic current exists, while a net current
starts to form for 4 > 0 when the two Fermi surfaces no longer coincide. The
case g > M (realized in the right panel) is more complicated, because in this case
the s = — state has different regions in momentum space which contribute to the
axial current with different sign, which again can be seen from the integrand in

Eq. (C.29).

3.3.3 Locating the CDW in the parameter space

Having discussed the details of a specific parameter choice, we now turn to a more
systematic exploration of the parameter space of the model. This is necessary due to
the large empirical uncertainties in particular of the quantities My, K, and L.
Moreover, we have to keep in mind that our model is of phenomenological nature and
we can, at best, make qualitative predictions and suggestions for QCD. Therefore,
even regions at the edges or beyond the empirically allowed regions, which appear
unlikely to be realized from the point of view of our model, may contain interesting

features that are possibly relevant for QCD.

The zero-temperature phase structure in the plane spanned by y and the model
parameter M)y is shown in Fig. 3.4. Let us first discuss the chiral limit (left panel) and
focus on the parameters K = 250 MeV, d = 50 (black curves). There are 3 qualitatively

different scenarios.
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FIGURE 3.4: Left panel: Zero-temperature phases in the chiral limit as the model param-
eter M is varied, with fixed K = 250 MeV, d = 10* (NM — isotropic nuclear matter, xS
— isotropic chirally restored phase, CDW - chiral density wave). Black solid (dashed)
lines are first (second) order phase transitions. The magenta grid indicates the varia-
tion of the triple point A for K = 200,250,300 MeV (right to left) and d = 0, 1013456
(top to bottom). The triple point B is always at the same y and varies in M by less than
0.5% as K and d are varied within the range given by the magenta grid. Right panel:
Same as left panel, but now for the physical pion mass. The pale black lines are copied
from the left panel for reference. Three additional curves (red, blue, green) are shown
for three different values of d. The markers on the curves indicate the baryon densities
ng = (6,8,...,20)ng (from low to high u) on the isotropic side of the first-order phase
transition.

(i) For sufficiently small effective masses at saturation, My < 0.71my;, the chiral
transition is unaffected by the CDW, there is a second-order transition between

isotropic nuclear matter and the isotropic chirally restored phase.

(ii) For 0.71 < Mp/mn S 0.90 we find the scenario from Fig. 3.2: There is a finite

CDW region covering the would-be isotropic chiral transition.

(iii) As we approach the point B in the figure, the transition from isotropic nuclear
matter to the CDW approaches the nuclear matter onset at y9. For My beyond
that point, My 2 0.90my;, the model predicts a direct transition from the vacuum
to the CDW. This transition occurs at an My-dependent critical chemical
potential y < p, although on the scale of the plot the corresponding curve is
indistinguishable from a horizontal line. Since we know that symmetric nuclear
matter at saturation is isotropic, this appears to be an unphysical regime of our
model. However, we need to keep in mind that the chiral limit of the left panel is
unphysical anyway; and indeed, the right panel shows that this unphysical

behavior is gone for the case of a physical pion mass.
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How does the CDW region change as we vary the incompressibility K and the
meson coupling d? As a measure for the importance of the CDW we consider the
range in My between the points A and B, read off of the magenta grid (the point B is
essentially constant under the variations considered here). We vary K within its
empirically most likely range K ~ (200 — 300) MeV and the quartic meson coupling
d = 0 — 10°. For a connection to real-world quantities it is useful to translate the value
of d into the resulting slope parameter of the symmetry energy L and also consider the
corresponding sigma mass . This translation is shown in Fig. D.1 in Appendix D.
We read off for instance that for K = 250 MeV and tracking the location of point A as
d = 0 — 10°, we obtain a range of L ~ (87 — 52) MeV and m, ~ (720 — 830) MeV. The
magenta grid thus illustrates for instance that the CDW becomes more important for
increasing K or increasing d (decreasing L). Fig. D.1 also relates the model parameters
to the leading-order behavior of the potential U(¢) for large ¢. This is interesting
because it checks the boundedness of the potential. Although there is no obvious
artifact in our results if the potential is unbounded it is useful to point out that this
does occur for small values of d and not too large values of M), see left panel of Fig.
D.1. Unboundedness of the scalar potential after including the Dirac sea was also
observed in quark-meson models [55, 181]; there, however, affecting the entire

parameter space due to the different form of the tree-level potential.

The right panel of Fig. 3.4 shows the case of a physical pion mass. Let us first
compare the pale black curves (chiral limit, taken from the left panel) with the bold
black curve (physical pion mass). First of all, we see that the second-order chiral phase
transition line between the isotropic NM and xS phases disappears as the pion mass is
switched on. This indicates that there is no strict distinction between nuclear matter
and the chirally restored phase and a crossover is realized, as already discussed in Sec.
3.3.1. The CDW region is bounded by a first-order transition and it has retreated
significantly compared to the second-order lines. This is in accordance with the
observation of Fig. 3.2, where we have seen that the explicit chiral symmetry breaking
tends to disfavor the CDW. With the most likely empirical range My = (0.7 — 0.8)my
in mind, we see from the black curve that the CDW may just about be realized, if My is
on the upper end of this range. Again, it is useful to consult Fig. D.1 to get an idea of
the corresponding values of L and m,. For instance, for My = 0.81my (the case used in

Sec. 3.3.2) we have L ~ 54 MeV and m, ~ 1.1 GeV, which is in tension with the
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empirically expected value of the sigma mass if the sigma is identified with the
f0(500). The curves for different vector meson couplings (red, green blue) show that
the CDW becomes more relevant for larger d, as already anticipated from the chiral
limit in the left panel. Larger values of d correspond to smaller L, well within
experimental boundaries (perhaps even closer to the real-world value, judging from

the distribution of experimental results), but also to larger values of the sigma mass.

Additionally, the plot indicates that the CDW can only appear at large baryon
densities (markers on the CDW transition curves). The lowest possible densities are
about ng ~ 619, and these are only realized for large, perhaps unrealistically large,
M. (Recall that My has an upper bound (3.40), slightly above the scale shown here; as
this bound is approached, g., goes to zero, which decreases the sensitivity of the
results on w and thus on d.) More realistic values of M require increased values of d,
leading to even higher baryon densities for the CDW onset. We have checked that
large d generally induce high densities at moderate values of the chemical potential.
These large number susceptibilities suggest that the parameter regions where our
model predicts a CDW produce soft equations of state. Therefore, it is possible that in
these parameter regions the model predicts maximum masses of neutron stars
incompatible with astrophysical observations. This remains to be verified by
computing the mass-radius curve under neutron star conditions, going beyond the

isospin-symmetric scenario considered here.

3.3.4 Comparison with different approaches to the Dirac sea

Finally, let us compare our findings with two different treatments of the Dirac sea:
tirstly, in the left panel of Fig. 3.5, the use of a different renormalization scale and,
secondly, in the right panel, neglecting the Dirac sea partially or altogether. Both
comparisons are useful to relate our work to previous studies and are relevant to

future improvements in different models.

In Refs. [54, 55] it was pointed out that in the NJL model and in particular the
renormalizable quark-meson model, there is a curious behavior at large chemical
potentials if the Dirac sea is taken into account: Depending on the parameters of the
model, a re-entrance to the CDW phase can occur and this CDW “island” ends at an

unphysical boundary. Here, “unphysical” means that the CDW solution turns around
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FIGURE 3.5: Comparison of our results to other approaches regarding the nucleonic
vacuum contribution, in the plane of the model parameter My and the chemical po-
tential . In both panels K = 250MeV, while d = 10* (left) d = 50 (right). Left
panel: Results for the choice of the scale ¢ = my;, leading to an unbounded free energy
(green), compared to our choice in Eq. (3.32) (black, copied from the right panel of Fig.
3.4). Pale lines in both colors correspond to the chiral limit, bold lines to the physical
pion mass. The inset shows the unphysical behavior in the free energy difference to
the isotropic phase AQ) for the unbounded case. The dotted lines (pale and bold lines
essentially on top of each other) correspond to the point where AQ) is minimal. Right
panel: Effect of the Dirac sea in the chiral limit. The full calculation (“all sea”) is shown
in black. The red curves are obtained by dropping the g = 0 contributions to the Dirac
sea (“q sea”). If the entire Dirac sea contribution is dropped (“no sea”) the only transi-
tion is from the vacuum directly to the CDW phase (blue line), and the CDW persists
for arbitrarily large p. In this panel, the two cases that include the Dirac sea are com-
puted with the renormalization scale from Eq. (3.32) (this choice is only relevant for
the CDW-xS transitions, where g > 0). In both panels, solid (dashed) lines are first
(second) order phase transitions.

and continues back to smaller chemical potentials at a point where it is the favored
phase. This predicts an unphysical jump in the free energy from the CDW to the
chirally restored phase, see inset in the left panel of Fig. 3.5. This panel demonstrates
that we find exactly the same behavior if the renormalization scale is chosen to be

¢ = my rather than choosing the g-dependent scale (3.32): For ¢ = my (green curves)
there are various different scenarios, depending on the value of the model parameter
Moy, but in each case the CDW phase has an upper unphysical boundary (dotted line)
as just described. (At very large My there is no CDW region at all for a physical pion

mass and ¢ = my.)

It is not surprising that the renormalization scale plays a crucial role here: Our
choice, as argued at the end of Sec. 3.2.3, was motivated by avoiding unboundedness
of the free energy in the g-direction. This unboundedness, in turn, was identified as a
problem in Refs. [55, 177] (but not fixed by a suitable renormalization scheme), and it

was realized in Ref. [55] that the unboundedness contributes to the unphysical
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behavior, here shown by the green curves. Due to the close similarity between the
quark-meson model and our nucleon-meson model, our results suggest that the same

renormalization procedure can remove the artifact in the quark-meson model.

As mentioned already in Sec. 3.2.3, the scale ¢ can be chosen differently while still
maintaining a bounded free energy. For instance, we can generalize
! = m%\] + (2¢q)?, with a numerical factor ¢, which has a lower limit
¢ =1/exp(1+27%/g%) ~ 0.30 if boundedness is required and, as ¢ — 0, connects our
results continuously to the case ¢ = my. In this work, we do, for definiteness, not
further explore the dependence of our results with respect to such variations. It
should therefore be kept in mind that the phase boundaries of the CDW phase acquire
some uncertainty in our scheme, which becomes larger for larger values of g
(corresponding to large y), and which may be alleviated by more elaborate

approximations beyond the mean-field approach.

Turning to the second aspect of this section, we now compare our results to the
no-sea approximation, which was used in all previous works on the CDW in nucleonic
models. This comparison is done in the right panel of Fig. 3.5. For convenience, we
perform this comparison in the chiral limit because in this case all transitions are
clearly visible as phase transition lines, crossovers being excluded. We distinguish two
different approximations. The red curves are obtained by dropping only the 4 = 0 sea
contribution. This amounts to setting U = U, i.e., dropping the difference between U
and U in Eq. (3.26a), but keeping all terms in AU (3.26b). This approximation, labeled
by “q sea” in Fig. 3.5, is reminiscent of the one used in Ref. [98], where rotational
symmetry is broken by an external magnetic field B instead of the CDW and it was
argued that the B-dependent vacuum contribution contains all important physics,
while the B = 0 vacuum contribution can be ignored without changing the results
qualitatively. We have already seen that if we are interested in the chiral phase
transition (which was not relevant in Ref. [98]), already the isotropic calculation is

affected by the Dirac sea, turning the first-order chiral transition into a crossover.

Nevertheless, in Fig. 3.5 we see that the g-sea approximation reproduces many of
the features of the full result. In contrast, if the entire sea contribution is omitted,
U = U and AU = AU, the result changes dramatically (blue curve). In that case, the

behavior is qualitatively the same for all values of My: there is a first-order transition
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from the vacuum to the CDW, and the CDW persists for all values of the chemical
potential, i.e., all isotropic phases with nonzero baryon number are gone. If we repeat
the calculation for a physical pion mass (not shown in the plot) we find a parameter
region, 0.87 < My/my < 0.93, where the blue line moves above the baryon onset at

1 = po, opening up a pocket of isotropic nuclear matter. This is the scenario (vacuum
— nuclear matter — CDW) found in Ref. [67] in a similar model within the no-sea
approximation, investigating only one specific parameter set. With our more global
view of the parameter space we conclude that the no-sea approximation vastly
overestimates the importance of the CDW, while the g-sea approximation is much
closer to the full result, which takes into account the entire nucleonic vacuum

contribution.

3.4 Summary

We have employed a nucleon-meson model to improve earlier studies on the
possibility of an anisotropic chiral condensate in dense, isospin-symmetric nuclear
matter. The model is based on nucleonic degrees of freedom which interact via meson
exchange. Importantly, the fermion masses are generated dynamically such that the
model can be used to study the chiral phase transition. In our ansatz for the
anisotropic chiral condensate we have restricted ourselves to the CDW, which does
not break translational invariance. We have worked at zero temperature and in the

mean-field approximation.

An important part of our study has been the nucleonic vacuum contribution. We
have argued that this contribution is already crucial in the isotropic scenario: it turns
the first-order chiral transition into a crossover. As a consequence, our main results
concern the question whether the CDW disrupts the smooth transition from nuclear
matter to approximately chirally restored matter. We have found that this is indeed
possible and have discussed the dependence of the CDW region on the model
parameters. By studying the chiral limit as well as the case of a physical pion mass, we
have shown that the CDW tends to be disfavored by explicit chiral symmetry
breaking. Independent of the choice of the parameters, we have found that within our

model the CDW can only appear at large baryon densities, ng 2 6n9. It is realized
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somewhere at the edges of and beyond the parameter regime empirically allowed by

nuclear saturation properties.

On a more theoretical note, we have discussed a renormalization scheme, and in
particular a certain choice of the renormalization scale, which fixes a problem pointed
out in similar models based on quark degrees of freedom. Within our scheme, there is
no re-entrance and/or unphysical behavior of the CDW at ultra-high densities and it
would be interesting to apply our scheme — possibly in modified or further improved
form — also to different phenomenological or effective models that describe the CDW

or related non-uniform phases.
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Chapter 4

Conclusion and Outlook

In our work, we have set up two variations of a nucleon meson model. The aim of the
first was to explore whether the properties of the chirally restored phase of the model
could be tuned to recreate quark matter properties, while at the same time to be able
to accommodate neutron stars consistent with current observational constraints. We
achieved to set up such a scenario, and used our model to draw conclusions about the
chiral phase transition. First, the model predicts that the chiral phase transition is of
first order at vanishing temperature. Moreover, the location of the transition is
preferred to be at relatively small pg, so that neutron stars can have a large and stiff
chirally restored inner core. Such a configuration might be crucial to explain the
heavier compact objects that we can see today (that are not black holes). Second, we
pointed out that the hyperon onset is delayed up until after the chiral phase transition.
In the context of the “hyperon puzzle”, one could avoid the softening of the equation
of state by an early transition to a stiff, chirally restored phase, without ever
introducing baryons beyond the nucleons in the system. Could this also be happening
in QCD? Finally, in view of the small region that our model restricts the slope
parameter L, one may wonder whether an extensive survey of different
phenomenological models could provide some indication about the value of this or of

other poorly constrained properties of dense matter.

In our second work we restricted ourselves to isospin symmetric matter and
removed the hyperons from the model. However, we included the Dirac sea

contribution of the nucleons, which had a significant impact on the nature of the phase
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transition, converting it to a crossover. This sheds a new light on the importance of the
Dirac sea, and directly questions the no-sea approximation in similar models. The
quark-hadron continuity proposal is also rekindled here, since there is no strict
separation between our chirally restored and broken phase. Another takeaway is that
maybe inhomogeneous phases should not only be considered in the vicinity of phase
transitions, since even the (relatively “fast”) smooth crossover is disrupted by the
appearance of the CDW. Finally, it is very likely that the CDW will not appear within
neutron stars. Even though we have not performed calculations enforcing the
beta-equilibrium and charge neutrality conditions, we do not expect them to
significantly alter this conclusion. The density that CDW has an onset is very high if

we stay within the empirical range of the physical parameters.

The qualitatively significant contribution of the sea term discussed in Chapter 3
has implications for the further development of the ideas presented in Chapter 2.
First, it will be useful to explore what is the effect of beta equilibrium, charge
neutrality and hyperon onset in the stability of the CDW. Second, due to the
disappearance of the first order phase transition, a softening is expected in the
equation of state. Consequently, the parameter region where the existence of heavy
enough compact stars is predicted will be shifted. These are points to consider if one
wants to answer whether a layer of the CDW is possible to form within the neutron
star core. In this context one may also study the competition or possible coexistence of
the CDW with quark-hadron mixed phases, which become conceivable due to the
presence of a second chemical potential associated with electric charge. Combining
and extending ideas in the two works, it would be interesting to include the strange
component of the chiral condensate  « (3s). Not only would this more accurately
represent the chiral condensate in the model, but it would enable us to explore the
possibility of a “strangeness” CDW instead of, or along with the ordinary CDW. One
could also consider an improved ansatz for the anisotropic chiral condensate, possibly

comparing it with different inhomogeneous structures.

So far, we have also restricted ourselves to zero temperature, and extensions to
finite temperatures, desirably going beyond the mean-field approximation, would be
interesting and relevant for applications to the mergers of compact stars in the

presence of a quark-hadron transition [182, 183].
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Another direction is trying to perform these calculations in alternative
nucleon-meson models. That could be including strange baryonic degrees of freedom
(and their chiral partners) into the extended linear sigma model of Refs. [67, 184, 185],
along the lines of Ref. [1] or [186]. The CDW has been studied in this model [67], but

without the effect of the Dirac sea.

We have also noted that the ground state of QCD at sufficiently low temperatures
is expected to have a superfluid component, possibly on both sides of the chiral phase
transition. However, in our model we have not included such a construction. It is
conceivable to include Cooper pairing, both in the chirally broken and the chirally
restored phases, and it would be interesting to see whether a version of the
color-flavor locked phase at high densities [38, 42] can be constructed. It would then
be possible to compute for instance the surface tension in the presence of Cooper
pairing consistently within a single model. Or, considering the case of a crossover, the
model might be able to provide a realization of the quark-hadron continuity in the

sense suggested by Ref. [26].

Observable signatures of an inhomogeneous phase can come from the modified
transport properties, even if equilibrium properties like the equation of state are only
weakly affected. Bulk viscosity in particular, can be important for neutron star merger
simulations, since it introduces energy dissipation. In the presence of an
inhomogeneous phase, bulk viscosity is modified, as the phase space of the particles is
getting deformed. If this modification is significant, it can alter the conclusions of
analyses like [187]. When simulating a merger, it is necessary to answer whether the
bulk viscosity generated in the presence of an inhomogeneous phase, dampens
density oscillations in a timescale relevant for the simulation. Such an effect may also
have a significant impact on the energy dissipation during the inspiral, via tidal

heating.

Another interesting question is “how would a realistic CDW phase look when it
forms within a star?” The usual, simplistic picture is that of a uniform phase.
However, given how the system evolves to create this phase, this is not a very
probable picture. As the neutron star cools down we expect it to go through a phase
transition from a homogeneous to the CDW phase. Assuming that there is no

preferred direction, each point in space is going to transition to the CDW phase, with
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the wave-vector of the modulation aligned along a random direction. As a result, the
full volume of the space will be divided into randomly aligned domains, similar to the
demagnetized phase of a ferromagnetic material. It would be interesting to calculate
the typical size of these domains, as well as the possibility of alignment under the

influence of a magnetic field or rotation.

Finally, our setup can be used for studying a possible quarkyonic phase, which
has been predicted to occur in QCD at a large number of colors N, and may survive
for N, = 3 [188]. This phase was for instance constructed in a model that includes
both quark and hadronic degrees of freedom [189] (besides other approaches
[96, 160, 190]). It would be interesting to see whether our more unified approach

might be able to show a transition from baryonic through quarkyonic to quark matter.
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Appendix A

Chiral setup

In this appendix we review the foundations of our model within the framework of an
SU(3) x SU(3) chiral approach. This discussion makes explicit which mesonic
degrees of freedom we have omitted and which assumptions we have made for the
structure of the interaction terms, which is useful to keep in mind for potential
extensions in the future. It also provides relations between the baryon-meson
coupling constants, some of which we employ in the main part, besides guidance from
phenomenology to fix them. Our baryonic degrees of freedom are usually

parametrized in the baryon octet as

>0 A

— 4+ — Z+

V2 V6 P

B— - XA (A1)
V2 V6 ' '
2
5 =0 —\/ZA

3

and the kinetic part of the baryonic Lagrangian can be written as Tr[Biy#9,B]. The
scalar and pseudoscalar meson nonets are summarized in the field

® =S+iP = T,(0, +im,), where T, = A, /2 fora =0,...,8, with the Gell-Mann



100 Chapter A. Chiral setup

matrices A, fora =1,...,8 and Ag = v/2/3 1. This is usually reparametrized as

a 0g 0o + xt

1 _ a s 00
S=Two, = — a -0 4 =4 i~ A2a
. 2
3% /3
LS ) - -
V2 V6 V3 .
1 _ 7T 7T 7To 0
P=T,t, = — s —_—t =+ — K A.2b
a’‘ta \/E \/E \/6 \/g ( )

— 2 7T0
K- RO _\/> 0
375

One may now construct the potential up to a given order in ® systematically. For

instance, up to fourth order [110],
U(D) = m’Tr[®T®] + A (Tr[@T D)) + A, Tr[(DTD)?] —
c(det®t + det®) — Tr[H (D' + @)], (A.3)

with parameters m2, A1, Ay for the quadratic and quartic contributions, ¢ for the chiral
anomaly term and a matrix H for a small explicit symmetry breaking. In the scalar

sector, one can trade 0y and oy for non-strange and strange scalar fields by the

o _L V2 1 09
(el -

Omitting all other scalar fields results in S = %diag(a, 0,v/2{). As explained in the

transformation

main text we further simplify this by omitting the scalar field {. The pseudoscalar
nonet P is not directly relevant because we assume none of these fields to condense,
and our mean-field approach ignores the fluctuations. It is only indirectly used by
fitting one of the parameters of the meson potential (2.7) to the pion mass. Our
potential thus effectively only depends on ¢, which is a drastic simplification of the
full potential (A.3). However, we have included terms of higher order than 4 in o, to
make the connection with the previous (non-strange) version of our baryon-meson

model [49, 97].
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The vector meson nonet can be parametrized as

0
Pu | Wy +
i K*t+
V2 V2 o g
1 ,02 Wy 0
V,=T,w" = — - - 4+ - K* , A5
U aWy \/E py \/E \ﬁ n ( )
£— =*0
KV Kﬂ ¢u

where w), and ¢, are defined by the same transformation as used in Eq. (A.4) for the

scalar mesons,

wy 1 V2 o1 wg "
P \/[7, 1 —\/ﬁ w

Keeping only the fields wy,, ¢, pg, the matrix V,, becomes diagonal, and we can write

down the two quartic structures
d
dy(Te[V, V)2 + dp Te[(V, V)] = Zl(wyw” + opph + Pup)?
—1—@[@0 wh)? + (0%00)? + 6w w”o”] (A7)
8 u pypo " PvPo | - .

In the main text we work for simplicity with d, = 0 (and denote d = d;). For a more
complete study of vector meson self-interactions in a chiral approach, including
axial-vector mesons and derivative interactions with three meson fields, see for

instance Refs. [191, 192].

Next, let us discuss the baryon-meson interactions. For the scalar sector, and

temporarily including the  field, the chirally invariant structures are
A1Tr[BSB| + A>Tr[BBS] + A3Tr[BB|Tr[S]
= gno(ion + pop) + gng (AT + pIp) + 50 (E20E0 + £7 08t + 70T )
e (B0 4 2Rt 4 27n)

0

@A ATA + g ALA + g2, (0B + 27 0E7) + g5 (E'E' + E7C27). (A8)

We have introduced 8 coupling constants, which all are linear combinations the 3

independent parameters Ay, Ay, Az. Therefore, one can choose 3 independent
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couplings, and the chiral structure fixes the other 5. In our approximation, where we
omit the {, we have 4 coupling constants and thus, if we wanted to respect the
structure given by chiral symmetry, we can choose three of them freely, say gno, 50,

gAc- For the remaining coupling constant this yields the constraint

3970 — 2 +
Qeo = SA gNU gZU‘ (A.9)

In the main part we fix all four coupling constants separately with the help of the

vacuum masses, such that this relation is (slightly) violated in our phenomenological

approach: with gny = 10.16, gry = 12.07, g5, = 12.88, the relation (A.9) would yield
=0 = 14.38, while our fit gives gz, = 14.23.

Finally, for the interactions with the vector mesons, keeping only the fields w, p°,

and ¢, we find the structure
CiTr[By"V,B] + CoTr[By"BV,,| + C3Tr[By"B]Tr[V,]
= gnw (Y wun + py'wup) + gnp (A" Punt + Py dup) + gno (A" opn — pr*)p)
+g2w(20'y"wyzo + 2w, + 2w, E7)
+85p(E Y 20 + £ Et 4 2R )
+8rp (NS — £ 005 T) + gawAr WA+ gapAv /s
+850 (B W, B0 + BTy w,E7) + gap (B9 ¢ B + By g E7)
+85p (B9 pJE0 — B y#p%E"). (A.10)

Here, the 11 couplings are linear combinations of the 3 independent coefficients
C1, G2, C3. Equivalently, we may write Cy, Cp, C3 in terms of 3 coupling constants, say

the 3 nucleonic couplings ¢nw, §N¢, §Np, and express the remaining 8 hyperonic
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couplings as

SNw \ﬁgz\hp — 8Np _ 5¢Nw + \ﬁgw +38Np

Isw = 2 Aw 6
8Nw + \/Equ; + 8Np
5w = s
2
_ 8Nw — \@quy — 8Np 8Nw — \@quy + &Np
gZP - s ng = s
2 2
s = S&Nw + &Np Thg = V28Nw +48ne — 3V28Np
P \/E 7 A¢p 6 ’
INw — & Np
By = ——". All
8= \6 ( )
A particular choice for the independent coupling constants is gy = 0 and
gNp = —352. This yields the following relations,
2
Srw = 8Aw = 285w = 38N 8xp = 2850 = —28Np .
3= V2
gy = 8SAp = 2¢ = 3 8Nw- (A12)

These relations are often employed in the literature, see for instance Ref. [111] and
references therein (our sign convention for the p and ¢ couplings is different
compared to that reference). Also following the literature, we then fit gn., and gn, to
reproduce saturation properties of nuclear matter, as explained in the main text. This
violates the relation gn, = — g%. Since this relation was used to derive Egs. (A.12) this
procedure also violates the original chiral relations (A.11). Furthermore, we relate the
w couplings to the hyperon potential depths, ignoring the first relation of Eq. (A.12).
For example, for one of the parameter sets used in Sec. 2.4.1 we have gy, = 10.23,
gNp = 4.14. With the first line of Egs. (A.11) this would yield gs, = 3.05, gaw = 10.6,
85w = 7.1, while the fit to the hyperon potential i/ = —50 MeV (used for all parameter
sets in Sec. 2.4.1) gives the larger couplings gs, = 14.6, grw = 14.5, gz, = 16.4, see
also Table D.1. For the p and ¢ couplings we employ the relations in Egs. (A.12).
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Appendix B

Asymptotic flavor symmetry

In asymptotically dense three-flavor QCD, quark matter with equal numbers of up,
down, and strange quarks is electrically neutral and beta-equilibrated. In this
appendix we ask whether our model can reproduce this symmetric situation, i.e.,
whether there is a certain choice of parameters such that our chirally restored phase
shares this property with actual quark matter. To this end, we first define the up,

down, and strange number densities according to the flavor content of the baryons,

Ny = Ny+2np,+nyo +2nzg+ +np + ngo, (B.1a)
ng = 2n,+np+ng +2ny- +np+ng-, (B.1b)
ng = Ng+ + Ny + nyo + np +2(ng- + ngo). (B.1c)

The condition 1, = n, together with the neutrality condition (2.21) yields n, + 1, = 0.
The solution of the stationarity equations thus has to be consistent with ., going to

zero asymptotically. As an ansatz let us assume the following asymptotic behaviors

for p, — oo,
I’le,oo (o poo
~ , o~ —, W ™ Weolly , ~ By, ~ 1l B.2
He i 02 H ¢ =~ Poopin Y i (B.2)

with coefficients e o, Too, Woo, Poo, Poo cONstant in the neutron chemical potential. We
shall see that this ansatz indeed leads to a valid solution of the stationarity equations,

which can also be confirmed numerically. In the neutrality equation (2.21), the only
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solution 1 solution 2 solution 3
a2 +1 a2 -3
gz 8N + a(§Nw — §xw) 8N + a(gNw — §sw) R Ry 4
3a% -1 3(a®+1
g/\qz gN¢ + a(gNw 7g/\w) g% 44 8Aw + ( 4 )ng
73»22—1 72au2—1 +a3gzw+g,\w B 522 — 2 7a3a2—4 +3£ a2 -1 N 2a

88 | Ty SN T Ay 8N 2 2@+ )N T Mgz pq)SNe T 8 21 18Ne T 8N

4q 322 -1 3¢50 + §Aw 7a 5a% — 2 3 2a a?—1
82w || 8Net a8 T T 22 1 SN T oz )N T g8 215Nt 8N

TABLE B.1: Three sets of conditions for the baryon-meson coupling constants, each

leading to equal number densities of the three flavors at asymptotic densities for any

value of the constant 4, reproducing the behavior of asymptotically dense three-flavor

QCD. Since none of the solutions seems to allow for sufficiently heavy stars they are
not employed in the main part of the thesis.

leading-order contributions proportional to 3 come from 11, and nz-. Since the mass
terms are of higher order due to ¢ behaving like 1/ 2, this yields the asymptotic
condition y,, = pz_. Since the p condensate also vanishes asymptotically on account of

the ansatz (B.2), this immediately gives the relation

_ 83¢p — 8Ng
INw — §Ew

Weo (B.3)

Poo -

Now, Egs. (2.20b) and (2.20d) have leading-order contributions proportional to y
which depend only on we and ¢« (and none of the other coefficients of the ansatz
(B.2)). Together with Eq. (B.3) these are three conditions for the two variables ws, and
¢oo. Thus, in order for (B.2) to be a valid solution we require (2.20b) and (2.20d) to give
the same condition. This can be translated into conditions for the coupling constants
as follows: we insert Eq. (B.3) into the leading-order contribution of Egs. (2.20b) and
(2.20d) to eliminate we. Then, we require the four coefficients of the powers ¢, ¢,
P2, ¢3, of the two equations to be identical up to a constant, say g, to find four
conditions for the coupling constants. In fact, there are three possible solutions, i.e.,
three sets of four conditions, which we show in Table B.1. As a consistency check, one
can ask whether we recover the chiral relations (A.11), which we would expect to
reproduce flavor-symmetric matter. Indeed, solution 1 with a = /2 is satisfied by the
chiral relations (A.11). The inverse is obviously not true: even within solution 1, since
it consists of only four conditions, there are choices for the coupling constants that
obey solution 1 but not the chiral relations (A.11) (in particular, if we allow for
arbitrary values of ). The solutions can be used to compute the corresponding ¢, and

We. The results are not very instructive, but we have checked that they agree with the
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numerical evaluation. Similarly, one can consider the subleading contributions in y,
to the stationarity equations to compute 0, He,c0, Poo, ut, again, we refrain from
showing these results explicitly. The main observation is that there exist choices of the
coupling constants, given by the solutions in the table, for which at asymptotically
large densities n, = n; = ns, with the flavor densities defined in Eq. (B.1). However,
we have not found a parameter set within the constraints of Table B.1 which
simultaneously fulfills all empirical constraints. Therefore, in the main text we content
ourselves with employing parameter sets that do produce asymptotic strangeness, but

not in a fraction of 1/3.






Appendix C

Computing the Dirac sea

contribution

C.1 Regularization

In order to regularize the divergent part of the baryonic pressure Py, (3.19) we

employ proper time regularization. First, we use

1 e}
= dr % 1le™™
I'(a) /0

109

(C.1)

to rewrite Ej from Eq. (3.16), setting a = —1/2, x = (1/k7 + M? 4 5q)? + k3 . We can

then perform the k| integration to obtain

1 )
Pvac = _W/O TS/Z / dk e (k2+M +a )COSh:Zq’L’\/k2 + M2,

Next, after inserting the series expansion

[eS) xzn
coshx = Z
n=0

we can perform the k; integral to obtain

2n d’L’

VaC_EO/ TS/Z n/

(C.2)

(C3)

(C.4)
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where

M (2qM)*" 13
P, = _W(én))!e (M%) ( 4, TM2> (C.5)

with the confluent hypergeometric function of the second kind ¥(a, b, z).

For small T we have

TZn 13 2 n—3
W‘P (2,2+n,TM > X T . (C6)

Therefore, the T integral is finite for n > 3. For n = 0, 1,2 we replace the lower

boundary by a cutoff 1/ A2 to compute

Z/ anT o A4 +A2M2+ M4 _§+lnM2+q2
/a2 Pu = 162 ' 8m2 ' 1672 2 A2
212 2 2
q-M M”+gq
+ 172 <7+1 A2 >
4 2 4 6
q* 3 —8y° —25y* — 6y 1
— 7
962 (1+y?)? +0 A2 )7 €7

where v ~ 0.577 is the Euler-Mascheroni constant and we have used the abbreviation

y as defined in Eq. (3.29).

For the terms n > 3 it is easier to go back to the original expression (C.2), insert
the series (C.3), and then first perform the 7 integral. With the new integration

variables k, = k; /g, T' = ¢*t, abbreviating

K2 = kP +y?, (C.8)
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and dropping the primes again for convenience, we compute
4 2n 2n
d ’ Z 2K © thdt efT(KZJrl)
4n5/ 2 Jo (2n)! T5/2

gt >, & T(2n—-3/2)  (2x)*"
/0 dké,; @n)ly7 (&2 +1)2n-3/2

:—L/oodkg l:(1+K)3+’1—K|3—

3t + 1262 (1 + x%)? + 8(1 + x2)*
672 Jo

4(1+x2)5/2

(M PMP n M? + g2 N q* 5+ 24y> +33y* + 6y°
1672~ 472 M? 96712 (1+y?)?

7'0(1 —y)

+ 4772

2 + 1312 y? 1 \/1—
_/1_yz+6y+2y2<1+ > + ] (C.9)

Adding the results (C.7) and (C.9), we obtain the compact expression

P S A2M2+ Mm* _an%z
vac 16772 8712 16772 2 A2
212 2 4
9*M MY, T 1
+ e (’y+ln AZ) +af)+0 <A2 , (C.10)

with F(y) defined in Eq. (3.28).

C.2 Renormalization

Removing the divergences in Eq. (C.10) requires renormalization. To this end, we first
introduce a renormalization scale ¢ and drop the terms of order 1/A? and higher to

rewrite Eq. (C.10) as

B A4 AZMZ M4 qZMZ 3 €2
“2Pac = 872  4m2  \8m2 + 2772 T lnﬁ
M4 MZ I]ZMZ MZ 3 q4
s E T om <1 =t )_ZHZF(y)

(C.11)

We have also reinstated the isospin degeneracy factor 2 and a minus sign to obtain the

total vacuum contribution from neutrons and protons to the free energy, cf. Eq. (3.18).
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Next, we interpret the following fields and parameters in the Lagrangian as bare

quantities, related to the corresponding renormalized quantities via

4—2n
0, Anr + fr, " Oy €
¢=2"2p, fu=7"fnr, o= Z;T/rz » = Zn"r reT er/z ’
(C.12)

where we have introduced the dimensionless field rescaling factor Z and the
dimensionless counterterms da,. The rescaling of ¢ follows from rescaling
=272, 1, =27V ZTIM in the original Lagrangian. The remaining fields and
parameters of the Lagrangian are assumed to be already in their renormalized form.
Therefore, the only terms in the mean-field Lagrangian (3.8) affected by the

renormalization (C.12) are

L an, + fr 2 0ay (¢F — f2,)"
Uu+au =) pr 5

n=1

— er(pr — frr) + 22707 + (1 — d0q)€rr

oa oa oa oa
_ 4 e T e A e
= (u+Au)r+me > T 5 " 13 +384>

(5111 ba, das (5a4) 2+<(5a2 (5a3+5a4> 4

2 4 16 96 8 16 64
oa3 _d0ag\ ¢, 004 g )22

where (U + AU), is given by U and AU from Eq. (3.11) with ¢, f, a,, € replaced by

their renormalized versions, and where ¢ is defined in Eq. (3.27).

We observe from Eq. (C.11) that we need to cancel divergent terms in Pyac
proportional to M2, M*, and ¢q>M?2. Since M and g are dynamical quantities that
depend on the medium, this cancelation has to be done order by order with the help
of the counterterms in Eq. (C.13). To make the cancelation explicit we divide the

counterterms and the field rescaling into divergent and finite parts,

ba, = dalr +oat, Z=27"+Z7% (C.14)
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The divergent terms proportional to M? and M* are then canceled (and no new

divergences introduced) by the choice

4 2 2 4 2
A gcf,r Ai g 3 A _ Sor g 3
day = o2 (mN +1In A2 +7- 2> day = o <1 A2 +7- 2
sa = dal =0, (C.15)

while the divergent term proportional to g*M? is canceled by

2 2
A _ 8oy 14 3
7t = 8y <1 - 2) (C.16)

Besides the divergent terms, the vacuum contribution (C.11) also contains finite
logarithmic terms, with prefactors M* and > M?. Let us start with the logarithmic
term with prefactor M*. We combine this contribution with the finite part of the
counterterms daf,. While for the identification of the divergent parts of the
counterterms we applied an expansion in ¢ (C.13), we now expand about the vacuum,

i.e., in qoz — 1, to write

ianr+fir2"5a (97 — f20)" M‘*1 M2

iy A @A i CUMe SUE e

gt T wn—1)(n—2)

where

_ ) .
m3,
A = f721,ra1,r +ff§/r oat — 8o,r <1 +21n> ,

_ . 2 _
Ay = fi,ral?’—}_f;}[,r (Sag_ig;; <3 2In €2> ’

6 4 ¢ 285 8 4 ¢ 48h
Az = fn,ra?)ﬂ’ + fn,r 5113 - 7_[2/ , A= fn,ra4,1’ + fn,r 5”4 7_[2/ (C.18)

The new coefficients A, entirely encode the form of the scalar potential and they will
be fixed to physical properties of the vacuum and saturated nuclear matter. As a
consequence, the choice of the renormalization scale and the finite counterterms is

irrelevant here; for any particular choice of ¢ and 5a£l the coefficients a, , can be
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readjusted to reproduce the desired values for A,. This implies that the form of the
original mesonic potential, which contains terms (go2 —1)"forn =1,2,3,4,is not
altered by the renormalization scheme, although the coefficients of these terms will
assume different values due to the Dirac sea. The reason is the presence of the
higher-order terms (¢? — 1)" for n > 5, given by the last term in Eq. (C.17). They do
not depend on any free parameters and cannot be eliminated by any choice of the
renormalization scale or the counterterms. We can rewrite this infinite sum in the

closed form

m4 o (_1)" 2_1 n m4
47?]2 Z;5 r(l(n )— (1?(71 — )2) - 967]?2 (1-8¢" —12¢*Ing* +89° — ¢°). (C.19)

Next, we consider the logarithmic term with a g-dependent prefactor in Eq. (C.11).

Combining this term with the finite part of the field rescaling from Eq. (C.13), we write

23 12 2 2 12 2
TR 7 OV A Vo
2(Z"—1)¢rq 52 <ln 2 +2) = 2 In 7 (C.20)
where we have set
f Sg%r,r
Z'=1+ S (C.21)

This choice leaves a renormalization scale dependence, in contrast to the case of the
g-independent contribution. As we discuss in the main text, this renormalization scale
dependence gives us an important freedom to eliminate unphysical properties of our

effective potential.

Putting everything together, we can write

—2Pc + U+ AU =

A4 _Azm%\,_ mi; n@ 3
872 4772 8772 A2 2
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where we have absorbed the effects from the nucleonic Dirac sea into a new effective

potential, given by

B 4 An 2_1n
u = Zn!(q)zﬂ)_er(cpr_fﬂ,r)

myy
o2 N_(1—8¢* —12¢*In ¢* + 8¢° — ¢°), (C.23a)

B o MZ 4
AT = 2¢$q2< g CIn £2>—2q7_[213(y)+(1—50q)er4>r. (C.23b)

As for the original potential, we have separated the g-dependent part AU such that the
potential reduces to U for ¢ = 0. Dropping the irrelevant (divergent, but constant)
terms in Eq. (C.22), denoting the renormalized quantities for simplicity without the
subscript r and renaming A,/ f%” — a,, we arrive at the result (3.25) given in the main

text.

C.3 Matter contributions to densities and axial current

In this appendix we present the explicit expressions for the matter contributions to the

stationarity equations (3.34). The baryon density from a single nucleonic degree of

freedom is
az;r;t - .5 X)) e [ deak @~ E)
= Ol M g AR Ko ) gt 4]
L O - M) {qum””f;k* - k3+[2(M2 —13) +q(q - V*)]}

O M) [ o gtk ko 2 2
e MPqIn ———r—— — == [2(M" — ) +q(q + )] ¢

(C.24)

with k4 from Eq. (3.22). To obtain the baryon density #p in the stationarity equation

(3.34b) the result has to be multiplied by 2 due to the (degenerate) contributions from
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neutrons and protons. One easily checks that one obtains the expected limits

aP (y3n2 B for g =0
mat (C.25)
ou 13
37_:2 for M=0
In particular, the density does not depend on g for zero fermion mass M = 0.
The scalar density is given by
0Pmat 1 /°° 00 M sq
_ _ dkg/ dk k| o [ 14+ ——— | ©(n — E})
oM 2m? s; 0 0 E; /12 4+ M2 ‘
_ O MM [ i e R
= i [M”+29(q — p)} In —— (s = 3q)k-
O(ps +9 — M)M s t+q+k
. 412 ) {[M2+2q(q+u*)]ln’wM+ - (u*+3v/)k+}

O MM [ _ 9= e+ k- _
i [M”+29(q — )l In ———— + (4= = 39)k-

(M? 4 2471 ‘”Vq L MZ] (C.26)

In this case, we recover the well-known expression for g = 0,

oM 272

IPmat _ O (s — M)M (y*kp I m;{h) , (C27)

while for small M we find the expansion

oP, mat M

~ M :27T2<],¢* H«gIn Het g

Px—4q

2
Z D +OM), (C.28)

‘qln

which confirms that Eq. (3.34a) is solved by M = 0 in the chiral limit e = 0.
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Finally, the axial current from a single nucleonic degree of freedom is

APt 1 o o \/ K2+ M2+ sq

- = Ws_zis/o dkg/o dk k. s (i — E)

- 2 ;qu_ M) [Mz(ﬂ* —2q) ln”*_;\Tk‘ - k3‘(4=M2 — = g+ 2072)}
— sz_ i [Mz(y* +2¢) In e TS +z:7/1+ S ]{;(4M2 — W g+ 2q2)}
el _45’;‘2_ M) [Mz(y* —2q)m I T ”;; S k3‘(41\/12 — 45— peg +2q2)}

O(-—M) |, o q+V/P-M /g M 2, 2
s [M gln i 3 (2M” +¢°) (C.29)
The current is linear in g for small g,
0Pmat _ @(V* - ]\/I)ZVI2 s + kr 2

g —q - In T 0(q7), (C.30)

while it is quadratic in M for small M,

Prat M (g |+ e 4

g __27't2<21n;4*—q +gqln ?—1 +O(M?). (C.31)
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Appendix D

Model parameters

In this appendix we, firstly, present — for completeness and replicability — the model

parameters used for the specific cases discussed in Secs. 3.3.1 and 3.3.2, see Table D.1.

H Sw \ a \ a3[MeV 2] \ a4 [MeV 1] \ d H Mo/ iy \ L[MeV] \ 1y [MeV] \ [MeV] \ sea
7574 [ 59.94 | —9.427 x 103 | 1.188 x 10~ * 0 0.82 87.3 708 0 -
7574 | 57.75 | —2.247x107% | 8.612 x 10~° 0 0.82 87.3 708 0 v
7574 | 5766 | —8.892x10° | 1178 x10~%* | 0 0.82 87.3 707 139 -
7574 | 5548 | —2193x 102 | 8512x10° | 0 0.82 87.3 707 139 v
1245 | 130.8 0.4333 7.850 x 10~% | 10% 0.81 53.8 1063 0 v
1245 | 1285 0.4338 7.840 x 10~% | 10% 0.81 53.8 1063 139 v

TABLE D.1: Parameter sets together with resulting physical quantities used for the left

panel of Fig. 3.1 (top four rows) and for Fig. 3.2 (bottom two rows). In all cases, K =

250MeV, and the remaining vacuum and saturation properties not shown here are

fixed to their physical values. To compute L we always use a value for the symmetry

energy of S = 32MeV. The last column indicates whether the Dirac sea is taken into
account or not, which is relevant for the parameter fit.

In our main results in Sec. 3.3.3, the parameters are varied continuously.
Therefore, secondly, we present the most relevant physical information about these
continuous parameter sets in Fig. D.1. This figure shows the slope parameter of the
symmetry energy L and the sigma mass m, for different values of the vector meson
self-coupling and the incompressibility as a function of the effective nucleon mass at
saturation, computed from Egs. (3.42b) and (3.36). Additionally, we show the
coefficient of the leading-order term of the effective potential for large chiral

condensates,

) 8 6 _ 1 (a4 8o
Up) = nt+OWS),  aw =55 (5 — 35 ) - D)
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The sign of a(g) indicates whether the potential is bounded from below for large ¢. The
Dirac sea contribution is negative and thus tends to render the potential unbounded,
which is indeed the case for small vales of 4 and not too large values of My, as the

figure demonstrates.

8

1200

1000 -

800 -~~~

L [MeV]

ag [10° MeV?]
mg [MeV]

060 065 070 075 0.80 0.85 0.90 0.60 065 0.70 075 0.80 0.85 0.90 0.60 065 070 075 0.80 0.85 0.90

Mo/my Mo/my Mo/my

FIGURE D.1: Leading-order coefficient of the effective potential ag), slope parameter
of the symmetry energy L, and sigma mass m,, as the effective nucleon mass at sat-
uration My is varied, with all other saturation properties kept fixed. In each panel,
the results for 4 different values of the vector meson self-coupling d are shown, corre-
sponding to the 4 values in the right panel of Fig. 3.4. The bands indicate the range
between K = 200MeV (solid lines) and K = 300 MeV (dashed lines). All curves are
calculated with the physical pion mass. The chiral limit gives slightly different curves
but the differences would barely be visible on the scale of these plots.
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