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region

by Savvas Pitsinigkos

The theory of Quantum Chromodynamics presents a rich phase structure. However,
while the low temperature and intermediate density region is a key piece in
understanding the physics of neutron stars, it is also elusive from ab-initio methods
and experiments. In this thesis we discuss two different models that explore the phase
diagram of Quantum Chromodynamics.

In the first part we construct a model for dense matter based on low-density
nuclear matter properties that exhibits a chiral phase transition and includes
strangeness through hyperonic degrees of freedom. Along with empirical constraints
from nuclear matter we require that at asymptotically large densities the chirally
restored phase contains strangeness and the speed of sound approaches the conformal
limit, resulting in a high-density phase that resembles deconfined quark matter.
Additionally, the model is required to reproduce sufficiently massive compact stars.
We also find that for the allowed parameter range strangeness does not appear in the
chirally broken phase and that the chiral transition is of first order.

In the second part we employ a simpler version of this model to discuss the
competition between isotropic and anisotropic phases. Assuming isotropy, the model
exhibits a chiral phase transition which is a crossover. This observation crucially
depends on the presence of the nucleonic vacuum contribution, an important addition
to this model. Allowing for an anisotropic phase in the form of a chiral density wave
can disrupt the smooth crossover. We identify the regions in the parameter space of
the model where a chiral density wave is energetically preferred. A high-density
re-appearance of the chiral density wave demonstrating unphysical behavior, is
avoided by a suitable renormalization scheme. We find that, within our model, the
chiral density wave is only realized for baryon densities of at least about 6 times
nuclear saturation density.

As an introduction, the necessary tools and concepts are presented. In the end,
possible extensions of this work are discussed.

http://www.southampton.ac.uk
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1

Chapter 1

Introduction

How does matter behave when compressed to the extreme? What is the composition

of a neutron star? Is there a way that we can find answers here on Earth? These are the

questions that I will try to tackle in this thesis. We will mainly be concerned about the

thermodynamics of Quantum Chromodynamics, which is the theory that holds a

great portion of the answers to the questions we asked.

We shall begin with reviewing some basics of the theory. We will discuss the

symmetries and symmetry breaking patterns. Then, a brief recap of the ideas of Chiral

Effective field theory is presented. We then turn to the phase diagram of Quantum

Chromodynamics and the open questions that still remain. We will continue by

presenting our approach to answer these open questions and also similar approaches

employing phenomenological models. At the end of the introduction we will discuss

some special cases of inhomogeneous phases, and at last give some background in

neutron star physics. In Chapter 2 we present a nucleon-meson model that includes

strangeness via hyperons and attempts to paint a simplified picture of the phase

structure of strong interactions. In Chapter 3 a simpler model is employed to shed

new light over the possibility of a certain inhomogeneous phase is the ground state of

the nuclear medium. Finally, we conclude the thesis by drawing some conclusions

from our results, and also providing some outlook.

Note that, unless otherwise stated, we will be working in units where

c = h̄ = kB = 1. Also, the work presented in Chapters 2 and 3 has been taken from

publications that were completed during my doctoral candidacy [1, 2].
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1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory that describes the strong interactions

between quarks and gluons. These are the constituents of all hadrons, but quarks and

gluons have very different properties from hadrons. Whatever these differences may

be, QCD is the underlying theory describing the strong force, and so in principle the

full hadron spectrum with its properties and interactions should be subject to the rules

of that theory. Let us start by writing down the Lagrangian of the theory

L = −1
4

Gµν
a Ga

µν + ∑
α

ψ̄α
j (i /Djk − mαδjk)ψ

α
k , (1.1)

where the quark fields ψα
j have N f flavors α = u, d, . . . and 3 colors j = 1, 2, 3 and also

the gluons Aa
µ have a color index a = 1, . . . 8. Moreover,

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν, (1.2)

is the gluon field strength tensor, g is a coupling constant and f abc are the structure

constants of SU(3). The covariant derivative matrix with color indices j, k is

Djk
µ =

(︄
I jk
3 ∂µ + igAa

µ

λ
jk
a

2

)︄
, (1.3)

with λa (a = 1 to 8) being the SU(3) generators (Gell-Mann matrices). This is the

simple theory that in principle describes the comparatively complex structure of QCD

that we will discuss in the next chapters. However, calculating the said structure from

first principles is not a small feat.

One of the main reasons for this difficulty is the strong coupling phenomenon of

color confinement. To discuss it, think of QCD as an effective low-energy theory, only

applicable up to some cutoff Λ, from where on another “full theory” extends it.

Theories that are renormalizable (like QCD) have no regard about their ultraviolet

completion (beyond the scale Λ). This means that they boil down to an effective

description where all of their details are encoded to a finite set of free parameters that

are measurable at some low energy scale E. The renormalization procedure describes

how one can integrate the effects of the theory in the scales between (E, Λ) and encode

them in the coupling “constants” of the effective theory, which now depend on E.
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FIGURE 1.1: Energy dependence of the effective coupling (αs ∝ g) in QCD. For every
energy scale a suitable renormalization scale must be chosen for the theory (Q = E).

Figure taken from [5]

Having in mind the coupling constant g from (1.3) in particular, say we want to

calculate how it is affected by the change of the energy scale E. This is encoded in the

beta-function, which for QCD to 1-loop accuracy is

βQCD = E
∂g
∂E

= −
(︃

11 −
2N f

3

)︃
g3

16π2 +O(g5). (1.4)

The negative pre-factor (for the physical case of N f = 6) hints that the coupling

strength g becomes smaller as the energy at which we evaluate our effective theory

increases. Following this trend, we expect that at very high E, the coupling constant

reduces to very small values, resulting to a theory of approximately free quarks and

gluons (asymptotic freedom [3, 4]). This is demonstrated in Fig. 1.1, In this regime the

usual field theoretic perturbative methods can be applied.

On the contrary, moving to lower E, the coupling is expected to increase to the

point that the theory becomes strongly coupled and non-perturbative effects

dominate. One such effect is the confinement of quarks and gluons within color-less

hadrons. Hadrons are the relevant degrees of freedom in the QCD vacuum.
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1.1.1 Symmetries of QCD

We will now discuss some important symmetries of the theory. The first one is the

invariance of the Lagrangian with respect to non-abelian gauge transformations,

which is the color symmetry. A transformation of a quark spinor can be written as

ψ → eiλaθa(x)ψ, (1.5)

and the invariance is achieved by the corresponding transformation of the gluon field

Aa
µ → Aa

µ + Dµθa(x). (1.6)

The conserved charge corresponding to this symmetry is the color charge.

There are also invariances of the Lagrangian with regard to global

transformations. To discuss them consider the following. In QCD we observe 6 quark

flavors, where their mass spectrum spans 5 orders of magnitude. We can differentiate

3 “heavy” (c, b, t) and 3 “light” (u, d, s) flavors, where former ones having masses in

excess of 1 GeV and the latter ones have masses smaller than 100 MeV. We want to

discuss the symmetries of the theory in the limit of vanishing light quark mass, the

chiral limit. For this purpose let us introduce the projection operators

PR =
1 + γ5

2
, PL =

1 − γ5

2
, (1.7)

which can be used to split the spinors to their left-handed and right-handed

components

ψR/L ≡ PR/Lψ, ψ = ψL + ψR. (1.8)

We can now write the QCD Lagrangian in zero light quark mass limit

L = −1
4

Gµν
a Ga

µν + ∑
α=heavy

ψ̄α
j (i /Djk − mαδjk)ψ

α
k + ∑

α=light
ψ̄α

j i /Djkψα
k . (1.9)

The latter term can be written as

∑
α=light

ψ̄α
j i /Djkψα

k = ∑
α=light

(︂
ψ̄α

j,Li /Djkψα
k,L + ψ̄α

j,Ri /Djkψα
k,R

)︂
. (1.10)
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In this form it is clear that the flavor symmetry group of the theory appears to be

U(3)L × U(3)R, (1.11)

that is symmetry with respect to rotations in the 3 dimensional “light” flavor space,

independently for left and right handed spinors, i.e.

ψR → eiϕa
Rλa ψR, ψL → eiϕa

Lλa ψL, (1.12)

where now λ0 = I3. Since U(N) ∼= SU(N)× U(1), this group can be decomposed to

SU(3)L × SU(3)R × U(1)B × U(1)A. (1.13)

The first two components, SU(3)L × SU(3)R form the chiral symmetry group. The

remaining components are the vector U(1)B which contains transformations of the

form

ψ → eiθψ, (1.14)

and axial-vector1U(1)A containing transformations

ψ → eiθγ5
ψ. (1.15)

The conserved charge for U(1)B is the baryon number.

Regarding U(1)A, the story is more subtle. While such a transformation appears

to be an invariance of the lagrangian, the symmetry is broken on a quantum level.

That is, if one tries to calculate loop corrections2 to the axial current, they find that is is

actually not conserved. The calculation (to 1-loop) yields

∂µ Jµ
0,A = −

g2N f

16π2 Ga
µνG̃µν

a . (1.16)

As a result, the symmetry group of QCD in the chiral limit is

SU(3)L × SU(3)R × U(1)B × U(1)A. (1.17)

1The names come from the parity transformations of the corresponding conserved charges.
2Specifically the so-called triangle diagrams.
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Another noteworthy approximate symmetry arises when one considers QCD

with only two quarks, (say u and d), where they have the same mass. In this case we

discover an extra SU(2) symmetry, the isospin symmetry. An isospin transformation

can be written as ⎛⎝u

d

⎞⎠→ eiθaτa

⎛⎝u

d

⎞⎠ , (1.18)

where τa are the Pauli matrices.

Finally, let us discuss about a theory related to QCD, pure Yang-Mills. Pure

Yang-Mills theory is also constructed upon an SU(Nc) symmetry, and for Nc = 3 it is

the free gluon sector of QCD

LYM = −1
4

Gµν
a Ga

µν. (1.19)

However, QCD theory is not the same theory as pure Yang-Mills. In the infinite quark

mass limit, where quark states are never populated and all quark propagators in

diagrams are infinitely suppressed, QCD calculations should converge to those in

Yang-Mills.

We are specifically interested on the center symmetry of Yang-Mills. That is

symmetry with respect to transformations generated by the center of SU(3), the

subgroup of elements that commute with all elements of the group. This manifests in

an Euclidean space where the “time” dimension τ is periodic, which is the finite

temperature framework that thermal field theory employs. There is a quantity that

spontaneously breaks center symmetry when it dynamically acquires a non-zero

value. That is the Polyakov loop.

Let’s first define a Wilson line as the path ordered exponential3

wi f = P̂ exp
(︃

i
∫︂ x⃗ f ,τf

x⃗i ,τi

Aµdxµ

)︃
, (1.20)

for some path (∆x⃗, ∆τ). Then, the Polyakov loop is defined as the trace of a Wilson

line along a straight path in the imaginary τ direction

Φ(x⃗) =
1
3

Tr
[︃

T̂ exp
(︃

i
∫︂ β

0
dτ A0(x⃗, τ)

)︃]︃
, (1.21)

3Path ordering P̂ is a generalization of time ordering T̂ where operators are ordered with respect to the
parameter that parametrizes the path.
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where β = 1/T is the length of the compact “time” dimension. The usefulness of the

Polyakov loop is that it quantifies the free energy cost ∆F to add a static color source

(an infinitely heavy quark ) in the system (subtracting the mass contribution itself)

|Φ(x⃗)| = e−∆F β. (1.22)

From the above relation it is evident that the when the energy cost is 0 then the

Polyakov loop is 1, but as ∆F → ∞ the value of the loop vanishes. The Polyakov loop

is an order parameter for color confinement in Yang-Mills theory. When it vanishes,

the ground state of the system is “center symmetric” and it is infinitely expensive to

add color charge to the system (color confinement). Conversely, when |Φ(x⃗)| = 1 then

the center symmetry is spontaneously broken, and there is no free energy cost

associated with the addition of color charges.

The benefit of examining pure Yang-Mills theory is that it provides a well-defined

order parameter for confinement. Whether this is transferable to real QCD is not an

easy question to answer.

After this discussion where we considered close relatives of QCD, we must not

forget where we started from. Quarks are neither infinitely massive nor massless. The

physical reality we observe lies somewhere in the middle. Quarks have finite, distinct

masses. This has the following implications for QCD:

• Isospin symmetry is explicitly broken due to the u and d mass splitting.

However, the mass splitting is in the order of MeV so the symmetry breaking

implications should be small.

• Center symmetry is explicitly broken, this time by the non infinite value of the

quark masses, and it is unclear whether it is a good order parameter for the color

confinement observed in QCD.

• Chiral symmetry is explicitly broken by the non-zero u, d and s quark masses.

Again, the symmetry breaking is small so we expect the symmetry to be a

reasonable approximation.

Finally, the chiral symmetry is also spontaneously broken in the QCD vacuum.

This is a physical observation that cannot be seen directly in the lagrangian. The QCD
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vacuum assumes a non zero chiral condensate value ⟨ψ̄ψ⟩, which is a condensate of

quark-antiquark pairs. The non-zero chiral condensate is responsible for the relatively

large mass of the confined states like the nucleon mN ≈ 1 GeV. Moving away from the

QCD vacuum, the chiral condensate (approximately) vanishes as we move towards

the (approximate chirally symmetric) quark phase of QCD. This establishes an

apparent connection between chiral symmetry and center symmetry. Center

symmetry breaking separates colored from uncolored phases and chiral symmetry

breaking separates heavy baryons from light quarks. Either may be used to signify the

quark-hadron transition, but we have to remember that the Polyakov loop and the

chiral condensate are a “strict” order parameter at different limit scenarios of QCD.

We also know from the Goldstone Theorem [6–10] that when a global continuous

symmetry is spontaneously broken we get a number of massless Goldstone bosons

that is equal to the amount of generators of the broken symmetry. In this case, if we

treat the quarks as having non-zero but equal masses mu = md = ms, we find that the

symmetry breaking pattern is

SU(3)L × SU(3)R → SU(3)L+R. (1.23)

That means that the theory is still invariant under simultaneous rotations of the left

and right handed components. Since SU(3) has 8 generators, the spontaneous

symmetry breaking gives rise to 8 Goldstone modes. These Goldstone modes are the

pseudoscalar octet, written in Eq. (A.2a). They are not massless due to the finite quark

mass and thus the small explicit chiral symmetry breaking.

In the above we have used the word “small” and “large” somewhat loosely when

referring to masses and deviations from symmetry. We need an energy scale Λχ to

compare it with, and this will be provided section 1.1.2.

In other cases condensates that manifest in the ground state of the system may

spontaneously break additional symmetries of the theory. These can be a condensate

of fermion pairs in fermionic superfluids that breaks U(1)B (baryon number

conservation), or even an inhomogeneous condensate that spontaneously breaks

Poincaré symmetry.
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1.1.2 Chiral effective field theory

Chiral effective field theory (ChEFT) is an effective description of QCD. It is a

framework that approximates low energy QCD in a controlled manner, i.e.

calculations can (in principle) be made up to the required precision. The description is

built around the lowest mass hadrons, which are the pions. Their mass set the “soft”

scale of the theory Q = mπ ≈ 140 MeV. The “hard” scale Λχ of the theory, where extra

degrees of freedom appear, is set by the lightest vector mesons ρ and ω with

mρ,ω ≈ 775 MeV. The scale is chosen to be Λχ ≈ 1 GeV and it is called the chiral

symmetry breaking scale.

To construct the effective theory we want to write the most general Lagrangian

that is consistent with the symmetries and symmetry breaking patterns of low energy

QCD. The relevant degrees of freedom are pions and nucleons. It is convenient to

decompose the lagrangian as

LChEFT = Lππ + LπN + LNN + . . . , (1.24)

where Lππ contains only pion terms, LπN pion-nucleon interactions and LNN two

nucleon interactions. The ellipsis stands for extra terms that include higher number of

nucleons and pions, encoding many-body interactions. The idea is that, given a small

parameter λ, we can write an expansion for these terms that makes sense to be

truncated at some order of the small parameter. The scale separation gives us natural

choice of

λ =
Q

Λχ
. (1.25)

Now, it is also convenient to introduce the pions via the SU(2) flavor matrix

U = exp
(︃

iτ · π

fπ

)︃
. (1.26)

We can now work out and write the leading order contribution. We have

LLO
ππ =

f 2
π

4
Tr
[︂
∂µU∂µU† + m2

π(U + U†)
]︂

. (1.27)

The first term is chirally invariant, but the second explicitly breaks chiral symmetry.

The magnitude of the explicit breaking is chosen such that it reproduces the correct
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FIGURE 1.2: Diagrams contributing to the 2,3 and 4 nucleon interaction at different
orders. At higher orders in the chiral expansion, many body interactions emerge nat-

urally. Image taken from [11].

pion mass. We have thus ensured that we have broken chiral symmetry only “as much

as” it is broken in QCD.

We will not write the leading order terms in LπN and LNN here, but a more

detailed description is provided in [11]. The takeaway is that the theory is able to

provide a systematic way to approximate the QCD interaction between the relevant

degrees of freedom in the low energy regime, given that the external momenta Q are

small with regard to the chiral symmetry breaking scale Λχ. A pictorial representation

of how the expansion parameter is enforcing a hierarchy on the Feynman diagrams

describing the nuclear interaction can be seen in Fig. 1.2. A finite number of diagrams

contribute to a given order in Q/Λχ.

While very useful, the applicability of ChEFT is limited to densities close to

nuclear saturation density. Trying to go beyond quickly breaks the assumption about

the smallness of λ and introduces great uncertainty to the predictions. However, we

will later use ChEFT as “inspiration” to set up phenomenological models.
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FIGURE 1.3: A plausible assumption for the form of the QCD phase diagram. The blue
line is a first order chiral phase transition boundary, while red lines separate distinct
phases within the quark and hadronic phases. Critical points are labeled A and B. The

shaded region is there to remind us that the exact structure is unclear.

1.1.3 A phase diagram for Quantum Chromodynamics

A phase diagram for QCD can be seen in Fig. 1.3. It broadly sketches the proposed

phase structure of the ground state of QCD, at different baryon chemical potentials µB

and temperatures T. This is not “The” phase diagram for QCD as several questions

remain unanswered. The marked phases and phase transitions are just a reasonable

proposition of how the true phase diagram could be. Let us now review the features

of this phase diagram.

A natural place to start is our everyday experience. But where is that exactly in

the phase diagram? What is the scale on each axis? To answer that, we will look at the

lightest particle in the QCD vacuum. That is the neutral pion, with a mass of about 135

MeV. Postulating that this is a relevant mass scale for QCD, we can translate it to

temperature units dividing with Boltzmann’s constant kB ≈ 8.617 · 10−5 MeV/K,

which gives us ≈ 1.57 · 1012 K. This is a strong hint that our everyday experience and

most phenomena on Earth are at effectively 0 temperature, compared to the QCD

scale.

What about the baryon chemical potential scale? The energy (per baryon) to

create a nucleon pair in an empty system is the rest mass of the neutron itself

mn ≈ 940MeV, plus the interaction energy per baryon EB ≈ −16 MeV. That means

that only for values larger than mn + EB we have baryons spontaneously populating

the medium. The mass of the nucleon sets a rough scale for the creation of baryonic
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matter around 1 GeV, and since we do not observe spontaneous creation of nucleons,

it is safe to assume that the baryon chemical potential we experience is nowhere near

that value. The only baryons that we observe in the vacuum are bound in the nuclei of

atoms, forming a dilute atomic gas. Let’s accept that our experience is consistent with

a µB value of 0.

The main theoretical question that we are trying to answer is about the nature of

the quark-hadron transition. We see that QCD in the vacuum is strongly coupled and

confined in hadrons, and we know that asymptotically it is a theory of free quarks and

gluons. What we want to understand is what happens in between, i.e. how to find the

ground state of QCD in the middle of the phase diagram. Where do we need to draw

lines between different phases, and what phases are these?

How do we probe different regions of the phase diagram then? Let’s say we only

want to explore the T direction for now, staying at µB = 0. It is possible to numerically

calculate QCD observables on the computer by discretizing the theory on an

Euclidean lattice. Lattice QCD is non-perturbative and hence applicable even at strong

coupling. Using lattice QCD it has been demonstrated that the deconfinement

transition is an analytic crossover [12, 13], accompanied by a chiral phase transition at

the same critical temperature TC ≈ 156 MeV [14].

However, it is not currently possible to use lattice QCD to extend the calculations

on the µB direction. That is because of the notorious sign problem [15, 16] that

prohibits the use of lattice methods for systems with a finite fermion density. This is

the time to turn to experiments. While heavy-ion collision programs have been

successful in probing the small µB, high T region of the phase diagram [17–20], there

has been also an effort to extend their reach to larger µB as well. In these experiments

two nuclei collide and can temporarily create a hot quark-gluon plasma. The

experiments in CERN and RHIC have only found a crossover transition so far, but

only probe very low µB. Currently, the BES experiment [21, 22] by the STAR

collaboration in RHIC is attempting to extend the search to even higher µB. One hopes

to find evidence of a first order phase transition boundary, or the terminating critical

point associated with a second order transition (point A in Fig. 1.3) [23].

Nevertheless, the existence of such a critical point, along with a first order phase

transition boundary is hypothesized [24, 25]. This is reflected by the blue line on



1.1. Quantum Chromodynamics 13

Fig. 1.3. It marks the chiral phase transition separating the hadronic and quark phases.

It is drawn to extend all the way to zero T. But this may not be the case. There is the

proposition of quark-hadron continuity [26] suggesting that there is only a crossover

transition between nuclear and quark phases. This idea is backed by the fact that there

is no strict symmetry breaking for the chiral symmetry since it is explicitly broken by

the non-zero quark masses. So it is plausible that the line stops at an extra critical

point (not shown), or that it is never there altogether.

The issue is that this region of intermediate µB and low T is computationally

difficult to tackle. The sign problem is severe for high µB, and the temperature is too

low to be probed by heavy-ions. But there is a physical system that contains matter in

a state corresponding to this region of the phase diagram. That is Neutron stars, and

their micro-physics are governed by dense, low temperature QCD. We will discuss

how they provide insight to this diagram in 1.4.2.

What we can try to do is approach this regime from different directions. Starting

at low µB and zero T, we find ourselves in the QCD vacuum. Increasing µB we reach

the point of the liquid-gas transition [27, 28]. At this point the ground state shifts from

a hadron gas with approximately zero density to a uniform nuclear medium of

density n0 ≈ 0.15 MeV/fm3 [29]. This is nuclear matter at its saturation density, which

is the density of the nuclear medium within nuclei. This density region is accessible to

Earth experiments which enable us to measure properties of QCD matter. These are

quantities like the binding energy EB [30], incompressibility K [31], symmetry energy

S [32] and slope parameter of the symmetry energy L [33]. By increasing T while

following the liquid-gas transition line, we find ourselves in another critical endpoint.

For higher T the transition becomes a crossover.

Extending our predictions to significantly higher densities is very difficult. We are

facing a strongly coupled system of nucleons that needs to be described in a dedicated

framework. We will show how we attack this problem by employing

phenomenological models in 1.2.

Despite the strong coupling, non perturbative calculations of the neutron pairing

gap have shown that nucleons are paired in the ground state of the system for low

temperatures[34–36]. At higher T the pairing gap closes and superfluidity is lost.
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Different forms of superfluidity are also possible [37]. This is an indication that the

ground state of the system might be significantly more complicated.

Skipping the troubling region altogether, we turn to very large µB. We know that

QCD is asymptotically free, and thus when µB ≫ Λχ we will get to that limit.

Asymptotic freedom enables us to employ perturbative methods around the free

quark-gluon system. In this setting, the one gluon exchange interaction provides the

attractive interaction component necessary to form quark Cooper pairs. The

quark-quark condensate cannot be color-less and hence spontaneously breaks the

SU(3)c symmetry. Due to the perturbative nature of this limit, it can be shown that the

ground state of the theory is the Color-Flavor locked (CFL) phase [38]. In this phase all

3 light quarks of all 3 colors pair with one another. The “locked” part of the name

comes from the fact that the CFL phase is symmetric only under simultaneous

transformations of flavor and color

SU(3)L × SU(3)R × SU(3)c × U(1)B → SU(3)L+R+c. (1.28)

As we move towards lower µB, the mass difference between the s and u, d quarks

becomes more important. This imposes a stress on the pairing pattern and tends to

disrupt it. Other candidate superconducting quark phases might become preferred.

One example is the 2SC phase where the u and d quarks of only 2 colors pair [39].

Another one is the Fulde–Ferrell–Larkin–Ovchinnikov phase [40, 41] (FFLO) where

the diquark condensate is inhomogeneous. There are many possibilities to be explored

([42] and references therein) and us entering in the strong coupling regime of QCD

means that we can only be sure about the asymptotic result of the stability of CFL.

Again, for sufficiently high temperatures, the quark pairing gap closes and

superconductivity is lost.

Finally, it is necessary to stress that this phase diagram is not “all there is”. We

could escape the 2D plane (µB, T) and ask how does the phase structure of QCD

change when we move in a new direction. One important such direction is that of the

isospin chemical potential µI which introduces an isospin charge in the system. This is

a crucial direction for neutron star physics, where matter is highly isospin asymmetric

(many more neutrons than protons). Nuclei on the contrary, even heavy ones, have a

very comparable number of protons and neutrons, and so the isospin charge of the
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system is small. One may also argue that neutron stars spin and have large magnetic

fields. While in the context of heavy ion collisions it may be an interesting question to

ask “what is the ground state of the QCD medium under extreme rotation Ω or

magnetic field B?”, it turns out that neutron stars are not as “extreme”. Their typical Ω

and B values are typically very small in the QCD scale. However, there are scenarios

where this claim possibly needs to be reevaluated, namely magnetars [43] and heavily

turbulent regions in neutron star mergers [44].

The importance of the nature of the chiral phase transition is beyond the

academic interest of the completeness of the phase diagram. If the quark-hadron

transition is of first order, this has implications not only for the thermodynamics of the

system, but for the dynamical evolution of it as well. Imagine that a supernova

explosion gives birth to a neutron star that has a large enough central density to

surpass the critical density of a first order quark-hadron transition. That does not

mean that the core will immediately contain quark matter. The hadronic system will

exist in a false vacuum for a while, trapped by the potential barrier set by the first

order phase structure. This meta-stable state will eventually decay to the true vacuum

via bubble nucleation. Bubbles of the true vacuum appear and grow in the meta-stable

phase, until the full volume of the system is in the true vacuum. In order to

phenomenologically describe this procedure we need to determine an important

parameter: the surface tension associated with an interface between the two phases. In

order to calculate it we need a model that contains the chiral phase transition itself,

like the ones used in Chapters 2 and 3.

1.2 Phenomenology

We have already hinted that the low temperature and intermediate density region is

one of the most elusive ones as there are no first principle approaches that can be

applied. This is why we employ some phenomenological model to try and tackle this

problem. To put together an appropriate model we need to consider the relevant

degrees of freedom, the symmetries of the theory and well established experimental

results. However, we will not be as rigorous as ChEFT is, since we are aiming for a

wider range of applicability. What we are sacrificing in the process though is the well

defined “error bars” that ChEFT provides. As a result our analysis has the purpose to
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explore the qualitative possibilities that might be realizable in QCD, rather than to

make a strict quantitative prediction.

1.2.1 The Walecka model

The Walecka model [45] is a simple microscopic model that attempts to describe

nuclear matter at high densities. It is in principle a very simplistic way to model

nuclear matter, but is a nice paradigm that demonstrates the basic ingredients of

phenomenological models. The lagrangian of the model is written as

L = ∑
j=n,p

ψ̄j(iγ
µ∂µ − mN + µjγ

0)ψj +
1
2
(∂µσ∂µσ − m2

σσ2)− 1
4

ωµνωµν +
1
2

m2
ωωµωµ

+ ∑
j=n,p

ψ̄j(gσσ + gωγµωµ)ψj, (1.29)

where ωµν = ∂µων − ∂νωµ and mN , µj are the nucleon mass and chemical potential.

This model describes protons and neutrons interacting via meson exchange,

particularly the scalar σ and the vector ω mesons. They are coupled to the baryons

through Yukawa-type terms. The meson masses are mω ≈ 782 MeV and mσ ≈ 500

MeV.

Since we will explore the system at different densities, we will use the

grand-canonical ensemble where the chemical potential is part of the description of

the thermodynamic system. The Grand Potential (or free energy) Ω is given by

Ω = E − ∑
j

µjNj − TS, (1.30)

where E is the energy of the system, Nj is the particle number, S is the entropy and T is

the temperature. This expression can be written in terms of intensive quantities if we

divide by the system volume V

Ω
V

= −P = ϵ − ∑ µjnj − Ts, (1.31)

where ϵ = E/V is the energy density, nj = Nj/V is the number density and s = S/V

is the entropy density.
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The partition function Z and the free energy Ω of the system are related through

Ω = −T ln Z. (1.32)

To compute the partition function one needs to calculate the functional integral

Z =
∫︂

∑
j
Dψ̄jDψjDσDω exp

∫︂
X
L, (1.33)

where we have denoted (in the imaginary time formalism t → iτ, β = 1
T )

∫︂
X
≡
∫︂ β

0
dτ
∫︂

d3x. (1.34)

In principle one calculates the functional integral and finds the free energy. However,

when the Lagrangian contains interactions it is very hard to solve the integral. This is

where the first approximation is employed. That is the mean field approximation, in

which the meson fields are written as the sum of some space independent condensate

plus fluctuations

σ → σ̄ + σ, (1.35)

ωµ → ω̄0δ0µ + ωµ, (1.36)

and then the fluctuations are neglected. Note that for the case of the vector meson we

assumed that only the zero component ω0 condenses. In doing so, the meson field

condensates act as medium contributions to the nucleon chemical potential and mass.

The mean field Lagrangian is written as

L = ∑
j=n,p

ψ̄j(iγ
µ∂µ − m∗

N + µ∗
j γ0)ψj +

1
2

∂µσ̄∂µσ̄ − 1
2

m2
σσ̄2 − 1

4
ω̄µνω̄µν +

1
2

m2
ωω̄2

0, (1.37)

where

m∗
N ≡ mN − gσσ̄, µ∗

j ≡ µj − gωω̄0. (1.38)

The mean field approach is simplifying our task when considering the bosonic

integration, but there are cases where this is not enough. In order to integrate the

fermionic part and due to the coupling with the meson condensates, it is assumed that

there is no spatial dependence of the latter. However, after the fermionic integration,
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we re-introduce the space dependence in the resulting free energy by hand. This is the

Thomas-Fermi approximation, and is valid when the condensates vary slowly in

space.

Now we are ready to perform the functional integration of the free fermionic part

(since we neglected fluctuations, the mesonic part decouples from the fermions,

modulo the modified parameters m∗
N and µ∗)

Z = exp
[︃

V
T

(︃
−1

2
m2

σσ̄2 +
1
2

m2
ωω̄2

0

)︃]︃
×

×
∫︂

Dψ̄Dψ exp

[︄∫︂
X

∑
j=n,p

ψ̄j(iγ
µ∂µ − m∗

N + µ∗
j γ0)ψj

]︄
. (1.39)

The functional integration returns

Z = exp
[︃

V
T

(︃
−1

2
m2

σσ̄2 +
1
2

m2
ωω̄2

0

)︃]︃
· Det

[︄
G−1

n (k)G−1
p (k)

T2

]︄
, (1.40)

where the determinant is taken over the Dirac space and over all of the momenta, and

G−1 is the inverse nucleon propagator:

G−1
j (k) = −γµkµ − γ0µ∗

j + m∗
N . (1.41)

The system pressure is proportional to the logarithm of the partition function as seen

in Eq. 1.32. Then by using that for a diagonalizable matrix A

log Det (A) = Tr (log A) , (1.42)

we can calculate the logarithm of the determinant as a sum over Matsubara

frequencies.

Performing the Matsubara sum and taking the thermodynamic limit we get the

system pressure

P = −Ω
V

=
T
V

ln Z =

(︃
−1

2
m2

σσ̄2 +
1
2

m2
ωω̄2

0

)︃
+ PN , (1.43)
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where PN is the pressure of the nucleons

PN ≡ 2 ∑
j

∫︂ d3k
(2π)3

[︂
Ek + T ln

(︂
1 + e−(Ek−µ∗

j )/T
)︂
+ T ln

(︂
1 + e−(Ek+µ∗

j )/T
)︂]︂

, (1.44)

with

Ek =
√︂

k2 + m∗2
N . (1.45)

The factor of 2 in (1.44) accounts for the 2 spins, and the two logarithm terms

account for particles and anti-particles. It is often the case that the vacuum

contribution Ek is omitted, being considered a small contribution with no qualitative

significance. However, as we will later see in Chapter 3 this is not always true, and in

some cases this sea contribution is important. For now, we will drop it (no-sea

approximation), but we will come back to it later.

We will now take the limit T → 0. The antiparticle contribution to the pressure

will vanish, and the particle pressure will pick up Θ-functions ensuring that there is a

finite baryon pressure only if the chemical potential exceeds the Fermi energy. The

nucleon pressure

PN
T→0−−→ pn(µ

∗
n, m∗

N) + pp(µ
∗
p, m∗

N), (1.46)

where p(µ, m) is the individual fermion species pressure,

p(µ, m) ≡ Θ(µ − m)

8π2

[︃(︃
2
3

k3
F − m2kF

)︃
µ + m4 ln

kF + µ

m

]︃
(1.47)

with

EF = µ∗ =
√︂

k2
F + m∗2

N . (1.48)

We have now worked out how the zero temperature pressure of a system is given

as a function of the meson condensates and fermion chemical potentials. This system

includes fermions (n, p) interacting with scalar and vector mesons (σ, ω). In our

works we include more fermion or meson species, but the procedure is essentially the

same.
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1.2.2 Our approach

We will dedicate a little time to point out some differences of our approach presented

in Chapters 2 and 3 compared to the Walecka model.

The most crucial one is the fact that in the Walecka model there is an explicit

constant mass term in the Lagrangian. The effective nucleon mass receives a

contribution from the σ meson condensate, but chiral symmetry is explicitly broken by

the constant term. On the contrary, in our approach we will not write a lagrangian

mass term. The condensate of the σ field is playing the role of the chiral condensate,

which dynamically generates the full nucleon mass. At the same time this means that

when the σ condensate vanishes, the nucleons in our model become effectively

massless, spontaneously “restoring chiral symmetry”. The quotation marks are used

because in our model as well chiral symmetry is explicitly broken, but with a small

magnitude, consistent with that of QCD. Hence, the restoration of chiral symmetry is

only approximate.

Another important difference is that in Chapter 2 we will require that the system

is beta equilibrated and charge neutral, with the scope of applying our results to

neutron stars. This means that our system will no longer have equal numbers of

protons and neutrons, and it will acquire a net isospin charge nI . It is then important

to add ρ to the model, the iso-triplet vector meson that mediates isospin interactions.

Other choices that are different in our models include the addition of self

interactions for the scalar and vector mesons, extra degrees of freedom containing

strangeness and allowing for an anisotropic chiral condensate.

1.2.3 The Nambu-Jona-Lasinio model.

While we only considered nucleons and mesons in the phenomenological description,

this is not the only possibility. We have, so far, used degrees of freedom that are

relevant on the low density side of the chiral transition. What if we now try to obtain a

complementary phenomenological description using quarks?

The Nambu-Jona-Lasinio (NJL) model has not been historically a quark model. It

was a model for interacting nucleons as well [7, 8]. However, it has been later
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FIGURE 1.4: The phase diagram for the two flavor NJL model in the chiral limit with
0 net isospin. The line for G(S)

V applies to the model written in (1.49). The solid line
marks a phase transition from a chirally broken (small T, µq) to a chirally restored
phase (at large T, µq). The phase transition line has a critical endpoint at a finite tem-

perature. Plot taken from [46]

re-interpreted as a model for quark interactions. The term “NJL model” actually

describes a family of models that feature a four fermion contact interaction term. Such

an example would be

LNJL = ψ̄(i/∂ − m + µqγ0)ψ + GS
[︁
(ψ̄ψ)2 + (ψ̄iτ⃗γ5ψ)2]︁ , (1.49)

where ψ is a two flavor, three color quark spinor, GS is the coupling strength and µq is

the quark chemical potential (equal for the two flavors, assuming isospin symmetric

matter). In this model the quarks ψ acquire a dynamical mass

M = m − 2GS⟨ψ̄ψ⟩, (1.50)

which receives a contribution from a quark-antiquark condensate, i.e. the chiral

condensate. This is what enables the model to exhibit spontaneous chiral symmetry

breaking as well. A vanishing chiral condensate at large quark chemical potential µq

corresponds to small effective masses for the quarks and (approximately) restored

chiral symmetry, while a non-zero value (which occurs at small µq) corresponds to

heavy quarks and spontaneous breaking of chiral symmetry. The chiral phase

transition line is shown in Fig. 1.4 as an example.
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This approach is complementary to the one we are going to observe in our model.

In NJL we have quarks undergoing a chiral phase transition, while in our model it is

nucleons that do so. The two models paint a picture on the opposite sides of the

canvas that is the chiral phase transition.

1.2.4 Quark-meson model

A much more similar construction to the Walecka model would be a quark-meson

model. We keep the idea of using mesons to mediate the nuclear interaction, but now

the degrees of freedom are quarks. We can write down a lagrangian for such a model

as

LQM = ψ̄
[︁
i/∂ + g(σ + iτ⃗ · π⃗γ5 + µqγ0)

]︁
ψ +

1
2
(∂µσ)2 +

1
2
(∂µπ⃗)2 + U(σ2 + π⃗2), (1.51)

where the three pion fields are included in π⃗, ψ is again a two flavor, three color quark

spinor, and µq is again the quark chemical potential. There is also some meson

self-interaction potential that, in the simplest form, can be something like

U(ϕ) =
m2

2
ϕ +

λ

4
ϕ2, ϕ = (σ2 + π⃗2). (1.52)

The condensate of the σ field here is also interpreted as the chiral condensate, and it

will provide a dynamical mass to the quarks that spontaneously breaks chiral

symmetry. The similarities with the models that we use is evident if we compare LQM

with, let’s say Eq.(3.2), (3.3) and (3.5).

Finally, it is also possible that one stitches together two phenomenological models

into one, specifically a quark model and a nucleon model. The attempt here is to use

in each phase a model with the correct degrees of freedom. This fused model might

achieve that, but it loses all the information around the chiral phase transition. In such

a model it is impossible to calculate the location of the chiral phase transition or the

surface tension. They need to be an extra input to the model a free parameter. Another

attempt would be to use a single model that contains explicitly both nucleon and

quark degrees of freedom, and switches dynamically between one another [47, 48].

The caveat is that one has to be careful when counting the baryons in the system, as

nucleons or as quarks.
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1.3 Inhomogeneous phases

The consideration of an inhomogeneous phase in dense matter is an effort to make

any discussion about the ground state of nuclear matter more realistic. Restricting

ourselves to homogeneous phases only, we significantly simplify calculations, but at

the same time we strip ourselves from an enormous breadth of alternative plausible

scenarios. The purpose of this section is to discuss such scenarios.

1.3.1 Mixed phases

Consider an infinite nucleonic system of constant temperature and uniform baryon

density, which is also locally charge neutral due to the presence of electrons. Moreover,

let the system sit at a critical chemical potential µ∗
B where a first order phase transition

takes place. Now, flip half of the system to the phase beyond the phase transition.

Since the system is sitting at the critical chemical potential, one may naively expect

that there would be a sharp interface separating the two phases. However, such a

discontinuity will come at a great energy cost and it would probably be smoothed out,

creating an extended domain wall where thermodynamic quantities would smoothly

change. The energy surplus from such a configuration, compared to the energy of the

whole system containing only 1 phase, is the surface tension Σ between the two

phases. But there might be even more complexity in the real case.

By relaxing the local charge neutrality condition to a global one, we allow for

locally electrically charged phases to exist, while the total charge of the system

remains zero. Under this new condition, we may be able to construct a new, preferred

phase which combines both phases on the two sides of the phase transition. This mixed

phase is made up from oppositely charged phases with phase A occupying a volume

fraction χ and phase B the remaining 1 − χ. Such a situation is depicted at Fig. 1.5

The existence of a first order phase transition is crucial, since on that critical

chemical potential µcrit
B both phases are equally preferred (energetically) and have

equal pressures. That means they can co-exist. However, it is not given that this

co-existence can be extended over a finite range in µB. It is necessary that the free

energy of each phase at µcrit
B is lowered by introducing net opposite charges, while the
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FIGURE 1.5: Schematic representation of a situation where the mixed phase has a
lower free energy than the constituent pure phases. It is crucial that at the intersection
the slope of the the two curves is of opposite sign, signifying the oppositely charged
phases. The electron chemical potential µe provides a new “dimension” along which

the free energy is reduced.

pressure remains equal

ΩA = ΩB. (1.53)

Then, we can adjust χ from 0 to 1, keeping the condition (1.53), and smoothly

interpolate between the 2 pure phases A and B with out mixed phase.

In order to decipher whether such a construction is preferred, the free energy of

the mixed phase needs to be compared with that of the competing pure phase, for

each µB. However, there are two extra energy contributions that we need to take into

account when calculating the free energy of the mixed phase. First, there is the

Coulomb interaction between the two oppositely charged phases, that depends on

their spatial configuration [49]. Second, whatever that configuration might be, the

sharp interfaces are again smoothed out by domain walls, introducing an associated

surface tension energy cost. The ground state configuration of the two phases

comprising the mixed phase is the shape that minimizes these additional energy

contributions. It may resemble different “pasta phases” like gnocchi, spaghetti or

lasagna [50].

1.3.2 Inhomogeneous condensates

A different kind of inhomogeneity is possible. Unlike the mixed phases, where an

inhomogeneous configuration arises from a construction involving only homogeneous
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phases, there is the possibility that the ground state of the system displays some

inherent inhomogeneity. We already mentioned a superfluid phase that contains an

inhomogeneous diquark condensate. In the context of the chiral phase transition, we

would like to know whether the associated order parameter, the chiral condensate,

additionally breaks symmetries of the Poincaré group in the ground state.

Such configurations have been extensively studied in quark models [51–63] and

less so in nucleon models [64–67], and are expected to appear in the region of the

chiral phase transition smoothing a first order discontinuity. However, we show in

Chapter 2 that the first order jump is not necessary, and that such a phase can arise

and disrupt a smooth crossover.

The phase that we later explore is the Chiral Density Wave (CDW), which is a

sinusoidal modulation with wavenumber |q⃗| for the scalar σ ∝ ⟨ψ̄ψ⟩ and pseudoscalar

π3 ∝ ⟨ψ̄γ5ψ⟩ components of the chiral condensate

σ(x⃗) = ϕ cos(2q⃗ · x⃗), π3(x⃗) = ϕ sin(2q⃗ · x⃗). (1.54)

Even though this configuration seems inhomogeneous, all observables of the system

turn out to be homogeneous. Hence, such a phase is just anisotropic, by the

spontaneous breaking of rotational symmetry that manifests when the system picks

some arbitrary direction for the wave-vector q⃗.

There are also some truly inhomogeneous candidate phases. Some examples are a

simple 1D modulation only in the σ direction [52], the solitonic solution for the mass

function M(x) [68]

M(x) = ∆ ν
sn(∆x|ν)cn(∆x|ν)

dn(∆x|ν) , (1.55)

with sn, cn and dn being the Jacobi elliptic functions, or higher dimensional

modulations of the form

σ(x, y) = ϕ cos(qxx) cos(qyy). (1.56)

In any case, for a given system one in principle has to calculate and compare the

free energy of every possible configuration to find the true ground state, or result to
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some sort of stability analysis to prove that they have indeed found the state of least

energy. This is not what we will do, as our goal will be different.

1.4 Neutron stars

Neutron stars are born in supernova explosions when the remnant’s mass is

approximately between 1.4 M⊙ and 3 M⊙ [69]. The iron core of the dying star

collapses and reaches densities above the nuclear saturation density, where the notion

of individual nuclei is lost. After the violent explosion the remnant is very hot, with a

temperature significant even for the QCD scale, reaching tens of MeV. However, the

neutron star cools very fast via neutrino emission due to the direct URCA process. We

can write the direct (modified) URCA process as

B(+N) → B′(+N) + ℓ+ ν̄ℓ, B(+N) + ℓ → B′(+N) + νℓ, (1.57)

where baryon B decays to baryon B′ via the absorption (emission) of a lepton ℓ and its

(anti-)neutrino. The modified URCA also needs a spectator nucleon N for kinetic

reasons. The direct URCA process dominates the neutron star cooling but it is only

possible at high densities i.e. in the core of the star, where the proton fraction is large

enough. At low densities only the modified URCA contributes, which is slower in

comparison. As a result of neutrino emission, the star becomes cold on the QCD scale

in a few years [70], reaching a temperature of hundreds of eV. The emission of X-rays

from the neutron star surface is another mechanism that contributes to neutron star

cooling, but is only dominating at later times.

1.4.1 Composition

The details of the inner structure of a neutron star are unclear. The outer crust is still

made from atomic nuclei, mainly iron ions [71], arranged on a lattice, surrounded by

an electron gas that ensures the system remains charge neutral. This structure has a

density that is much smaller than nuclear saturation density, and in our language can

be described by a vacuum-nuclear matter mixed phase. Diving deeper in the crust the

lattice spacing decreases, and nuclei start getting richer in neutrons. At some point,
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the excess neutrons start dripping from the nuclei, forming a neutron gas around the

neutron rich ion lattice. This is the boundary between the inner and outer crust.

Moreover, neutrons start to pair and the neutron gas develops a superfluid

component.

In the inner crust the superfluid component is still existent, and is responsible for

the observed pulsar glitches [72] i.e. the sudden spin-up of the neutron star during its

spinning down lifetime. Superfluid vortices form and pin on lattice sites, storing

angular momentum. While they form and equilibrate, the spin-down of the whole

system breaks this equilibrium which ultimately un-pins a number of vortices and

moves them outwards, abruptly transferring their momentum to the crust [73].

Going deeper into the inner crust, the separation between the individual nuclei

becomes so small that they start fusing into different pasta phases. This is due to the

comparable contribution of the nuclear force and the Coulomb interaction at the small

length scales of the system. Again, in our language, this is a “nuclear matter - neutron

gas with a superfluid component” mixed phase. At even larger densities the pasta

phases “melt” into a uniform medium of neutrons, protons and electrons, which

marks the transition to the core.

In the work that I will present we are not including a crust description. The stars

that we will construct do not contain a “nuclear matter-vacuum” mixed phase or a

superfluid component.

The composition of the core is already taking us to uncharted territory. First

principle methods still apply below about 2 n0 [74] so we expect that the outer core is

mostly comprised of neutrons with a small fraction of protons and electrons. At even

larger densities muons appear, and even more exotic degrees of freedom are expected

to be energetically preferred. The “opening” of a new Fermi sphere (let’s say of some

hyperon) comes with a smaller energy cost that adding another neutron with a very

high Fermi energy. But such an onset is expected to come with a softening of the

equation of state, which leads to a prediction of a maximum neutron star mass that is

inconsistent with observations. This is the well known “hyperon puzzle”. [75]

Finally, there is a possibility that the neutron star core probes densities that are

beyond the chiral phase transition, and that quark matter appears. Unfortunately, the
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FIGURE 1.6: Possible equations of state consistent with ChEFT and perturbative ex-
pansions of QCD (light blue bands at both ends). Different colors correspond to differ-
ent maximal values of the speed of sound squared. Equations of state are selected by
interpolating between the two light blue regions and classified based on their maximal

sound speed. Image taken from [77].

density is only expected to be about 8n0 [76], which is still in the strong coupling

regime of QCD. Even if there is quark matter in the center of the neutron star core, it is

strongly coupled and accessible only to phenomenological models. The composition

of the core is something we explore with our model in Chapter 2.

1.4.2 Mass and radius

Since neutron stars are the only physical laboratories probing cold and dense matter,

we want to know what kinds of information we can extract from them and what to

require that our models reproduce. In our work we focus on the equation of state and

the resulting mass-radius curve.

We model the neutron star as a zero temperature fluid governed by an equation

of state, i.e. a relation between the pressure P and the energy density ϵ of the fluid

P(ϵ). The derivation of this equation depends on the microscopic properties of the

system and the model that is used to perform them. There are model agnostic

approaches as well [77] that may be quantitatively more precise, but lack the

microscopic description of matter. Such an example is given in Fig. 1.6
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In order to build a star out of a given equation of state we need to employ General

Relativity. Specifically we want to know what is the spherically symmetric solution of

the Einstein equations

Rµν −
1
2

R gµν = Tµν, (1.58)

where

Tµν = (P + ϵ)uµuν + Pgµν, (1.59)

is the stress energy tensor of an ideal fluid. In our approach we ignore rotation and

only consider static compact stars. The equations boil down to

∂M(r)
∂r

= 4πr2ϵ, (1.60)

∂P(r)
∂r

= −G
[ϵ(r) + P(r)]

[︁
M(r) + 4πP(r)r3]︁

r [r − 2GM(r)]
, (1.61)

where M(r) is the mass profile of the star and G is the gravitational constant. These

are the Tolman-Oppenheimer-Volkoff (TOV) equations. These are 2 equations that

contain 3 unknown functions, ϵ, P and M. The equation of state closes the system and

makes it possible to determine the mass profile of a star. The equations are solved by

picking a central pressure value as boundary condition P(0) = P0 and then integrating

until the “surface” of the star at r = R (or more precisely the end of the outer core)

where P(R) = 0. This procedure yields the pressure and mass profiles of the star from

which we can calculate the total star mass Mtot. If we also used some microscopic

model to calculate the equation of state, we also derive the profile of all quantities in

our model. Finally, by picking different P0 as initial conditions we are able to draw a

curve in the R − Mtot plane, the Mass-Radius curve. Such plots can be seen in Fig. 2.6.

Each mass-radius curve predicts a maximum mass star that has to be consistent

with current experimental constraints. The stricter ones today come from the pulsar

PSR J0952–0607 with a mass of about 2.35M⊙ [78, 79]. Any model that fails to produce

maximum mass stars of at least as much is incompatible with observations. Moreover,

each model in turn predicts that any object with a mass larger than the maximum

mass is bound to collapse to a black hole.

There are more observables than the mass and radius that have been discussed

here. Recently, due to the development of gravitational wave astronomy, it has been

possible to infer the tidal deformability of a neutron star from the gravitational signal
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emitted during the inspiral phase of a binary compact star system. This measurement

has a sensitive dependence on the radius of the star and the elastic properties of the

crust. Since in our description we will not include a crust, we do not expect that our

model reproduces such predictions accurately. Nevertheless, the goal of the project

was not to create a detailed model of the neutron star, but to use the maximum star

mass as an extra constraint for the equation of state. Since the contribution of the crust

to the total mass would not be significant, including it is not crucial for our purpose.
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Chapter 2

Strange Quark Matter from a

baryonic approach

2.1 Introduction

The work presented in this chapter has already been published in [1].

In this chapter, we are interested in the chiral phase transition at zero temperature

and large, but not asymptotically large, baryon chemical potentials. We shall employ a

relatively simple phenomenological model to explore this region of the phase

diagram. Even giving up the rigor of the underlying fundamental theory, it is a

challenge to account for both quark matter and hadronic matter within a single

approach. Using a single model is beneficial if one wants to have a prediction about

the critical chemical potential at which the chiral phase transition occurs. While this

transition point is a prediction of a unified approach, it is essentially a model

parameter if two separate descriptions of hadronic and quark matter are glued

together. Another advantage is that the single model enables the calculation of the

surface tension (if the transition is of first order), for which the full potential,

connecting both local minima, needs to be known.1. In particular, one needs

information on the barrier, which is directly related to the surface tension. The reason

for that lies in the fact that, given the effective potential, one can resort to the full

1Even though there is a well-known systematic procedure to build an effective potential from the
matching of pressures obtained from different models, it requires extra information that is usually not
available, which results in more free parameters and uncertainties [80–82].
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power of semiclassical methods, perturbing the system around classical solutions

instead of trivial vacua (see e.g. Refs. [83, 84]). Such classical solutions probe the entire

structure of the potential, including the different phases it allows.

The majority of studies of hybrid stars – compact stars with a quark matter core

and a nuclear mantle – employ two separate descriptions for the two phases, see for

instance Refs. [85–93]. A few unified approaches do exist in the literature. One

example is to start from a Lagrangian that contains both baryonic and quark degrees

of freedom [47, 48], another is a holographic approach where baryonic and quark

phases are realized in a consistent way [94–96]. Here we pursue a very simple idea,

already put forward in Refs. [49, 97]: we start from a Lagrangian with only baryonic

degrees of freedom, where the masses are entirely generated through the chiral

condensate, similar to the extended linear sigma model employed in Refs. [67, 98].

This allows us to observe a chiral phase transition and a (approximately) chirally

symmetric phase at high densities with very small baryonic masses. This is in contrast

to similar models of the Walecka type [45, 99–102], which can only be used to describe

chirally broken matter. Our study extends the model of Refs. [49, 97, 103, 104] to

include strangeness via hyperonic degrees of freedom, which gives rise to a more

realistic picture of the chirally restored phase, resembling “strange quark matter” in

various aspects that will be discussed in detail. In particular for neutron star

conditions this is an essential improvement since without strangeness the model does

not have any degrees of freedom that carry both baryon number and negative electric

charge. This is relevant due to the neutrality constraint and can also be expected to

alter the screening effects at the interfaces of mixed phases, and thus our study

provides a framework to improve the study of “chiral pasta” [49].

By including hyperons we do not necessarily change the baryonic phase of the

model. Whether actual hyperons appear is decided dynamically. They may be

disfavored before the chiral phase transition, and we shall see that they indeed only

appear for values of the model parameters that are in conflict with astrophysical data

of compact stars. However, the hyperonic degrees of freedom do play a role in the

chirally restored phase and we shall see that parameter regions allowed by empirical

constraints do also allow for strangeness in the chirally restored phase for all chemical

potentials above the chiral phase transition. It is in this sense that we speak of strange

quark matter from a baryonic approach, having in mind that there are no quark
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degrees of freedom in our model and that we should not expect to reproduce all

known properties of weakly interacting, three-flavor quark matter at asymptotically

large densities. Instead, our model provides a prediction for chirally restored matter

close to the chiral phase transition, relevant for compact stars, with properties very

different from simple extrapolations of weakly-coupled quark matter.

We shall keep most of the approximations used in the non-strange version of the

model [49, 97], i.e. our evaluation will be in the mean-field and no-sea approximations

at zero temperature, and we shall neglect Cooper pairing that is expected to occur in

nuclear matter [105] and quark matter [42]. As in Refs. [49, 97], we should keep in

mind that our description of dense matter is based on extrapolating a model

constructed mainly to reproduce low-density properties of nuclear matter. We shall

restrict ourselves to thermodynamic properties and homogeneous phases, within the

constraints of equilibrium with respect to the weak interactions and local electric

charge neutrality. The main idea of this work is to set up the model and explore its

parameter space in order to identify regions in which it reproduces basic properties of

symmetric nuclear matter at saturation, basic properties of strange quark matter at

asymptotically large densities and is able to reproduce compact stars with a mass of at

least about 2.1 solar masses, meeting the constraint set by the heaviest known compact

star [106, 107]. In doing so, we can e.g. constrain to a very narrow range the poorly

known slope parameter of the symmetry energy, L ≃ (88 − 92)MeV. Our study thus

lays the ground for future studies for instance of the quark-hadron mixed phase or the

chiral density wave [61, 67, 108] in the vicinity of the chiral phase transition.

The chapter is organized as follows. We set up the model in Sec. 2.2, including the

underlying Lagrangian and the resulting Euler-Lagrange equations. Some guidance

and insight for the setup is gained from an SU(3) symmetric approach, which we

review in Appendix A. In Sec. 2.3 we discuss carefully the matching procedure of our

parameters and identify the freedom in the parameter choices left by experimental

uncertainties, mainly in the strangeness sector. Our main results are presented and

discussed in Sec. 2.4, which we have divided into a subsection on a few selected

parameters sets, Sec. 2.4.1, and a more general survey of the parameter space, Sec.

2.4.2, where we draw some parameter-independent conclusions. We give a summary

and an outlook in Sec. 2.5.
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2.2 Setup

2.2.1 Lagrangian

The hadronic part of our Lagrangian is composed of baryonic and mesonic

contributions and baryon-meson interactions,

L = LB + LM + LI . (2.1)

The baryonic part is

LB = ∑
i

ψ̄i(iγ
µ∂µ + γ0µi)ψi , (2.2)

where ψ̄i = ψ†
i γ0 and the sum is over the baryon octet, i = n, p, Σ0, Σ−, Σ+, Λ, Ξ0, Ξ−.

We have not included any explicit mass terms, all baryon masses will be generated

dynamically by the chiral condensate. Since in QCD chiral symmetry is only

approximate, adding small explicit masses does not violate general principles, and

this was indeed done in comparable approaches [109]. For simplicity, and to avoid

additional parameters, we shall account for explicit chiral symmetry breaking only in

the meson potential and the choice of the baryon-meson coupling constants. The

Lagrangian formally contains a chemical potential for each of the 8 baryon species, but

in (three-flavor) QCD there are only three independent chemical potentials, associated

with baryon number, isospin, and strangeness. In terms of these chemical potentials,

µi = µB + IiµI + SiµS , (2.3)

where Ii is the third component of the isospin and Si is the strangeness of the baryons,

such that explicitly

µn/p = µB ± µI , (2.4a)

µΣ± = µB ∓ 2µI − µS , (2.4b)

µΛ = µΣ0 = µB − µS , (2.4c)

µΞ−/Ξ0 = µB ± µI − 2µS . (2.4d)
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The number of independent chemical potentials is further reduced by the conditions

of equilibrium with respect to the weak interactions and electric charge neutrality. We

require the leptonic process p + e → n + νe to be in equilibrium with the inverse

reaction n → p + e + ν̄e, and the same for the non-leptonic processes n + n ↔ p + Σ−.

Other weak reactions involving hyperons exist but their equilibration does not yield

independent conditions for our chemical potentials. We shall assume that neutrinos

have mean free paths larger than the size of the system, such that we may set the

neutrino chemical potential to zero. This is a good assumption for neutron stars unless

the temperature is larger than about a few MeV, which is only the case in the very

early stages of their evolution and in merger processes. At zero temperature, weak

equilibrium directly translates into simple conditions for the chemical potentials,

µp + µe = µn, and 2µn = µp + µΣ− . As a result, we can express µB, µI , µS in terms of

neutron and electron chemical potentials,

µB = µn −
µe

2
, µI =

µe

2
, µS = −µe

2
. (2.5)

The mesonic part of the Lagrangian contains the scalar meson σ and the vector

mesons ωµ, ρ
µ
0 , ϕµ,

LM =
1
2

∂µσ∂µσ − U(σ)− 1
4

ωµνωµν − 1
4

ϕµνϕµν − 1
4

ρ0
µνρ

µν
0 +

m2
ω

2
ωµωµ

+
m2

ϕ

2
ϕµϕµ +

m2
ρ

2
ρ0

µρ
µ
0 +

d
4
(ωµωµ + ρ0

µρ
µ
0 + ϕµϕµ)2 , (2.6)

where ωµν = ∂µων − ∂νωµ and analogously for ϕµν and ρ0
µν. This Lagrangian can be

viewed as a subset of the Lagrangian containing the full scalar, pseudoscalar, and

vector meson nonets [110], only keeping the fields that we assume to condense in the

medium given by the baryons. This is justified by the mean-field approximation,

where the fluctuations of the meson fields are neglected. For instance, the

pseudoscalar nonet is completely omitted here because we assume none of these fields

to condense. It is only indirectly used by fitting one of the parameters of the potential

U to the pion mass. Moreover, in the scalar sector, the fields corresponding to the 0

and 8 direction with regard to the commonly used generators of U(3) are usually

rotated to give a non-strange scalar field σ and a strange field ζ. This is explained

more explicitly in Appendix A, where we briefly review the more systematic approach
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using the full mesonic and baryonic multiplets. Here, in the main part, we omit the ζ

field (and condensate) for simplicity. This is comparable to the approximation used in

Walecka-like models, where the excitations of the scalar fields (not their condensates)

are fundamental degrees of freedom of the Lagrangian. In this case, the strangeness

sector, i.e., the excitation of the ζ, is sometimes omitted as well for phenomenological

reasons [93, 111]. The potential for the remaining scalar meson is chosen to be the

same as in the two-flavor version of this model [49, 97, 103, 104],

U(σ) =
4

∑
n=1

an

n!
(σ2 − f 2

π)
n

2n − ϵ(σ − fπ) , (2.7)

with parameters a1, a2, a3, a4, ϵ and the pion decay constant fπ ≃ 92.4 MeV.

Temporarily including pion fluctuations, we fit a1 = m2
π to reproduce the vacuum

mass of the pion mπ = 139 MeV, and requiring the vacuum value of the chiral

condensate to be ⟨σ⟩ = fπ, we obtain ϵ = m2
π fπ. For the vector meson masses in Eq.

(2.6) we will use mω = 782 MeV, mϕ = 1020 MeV, mρ = 775 MeV. We have included a

quartic meson coupling term [48, 112–114] with coupling constant d ≥ 0, which will

play an important role for our results. The structure of this term is a particular choice

within the more general quartic term based on a chiral approach, see appendix A and

in particular Eq. (A.7).

The baryon-meson interactions are given by

LI = −∑
i

ψ̄i(giσσ + giωγµωµ + giργµρ0
µ + giϕγµϕµ)ψi . (2.8)

As dictated by the chiral SU(3) approach, the coupling constants within each isospin

multiplet are related, see appendix A, and will be denoted by

gNx ≡ gnx = gpx , gΣx ≡ gΣ0x = gΣ±x , gΞx ≡ gΞ0x = gΞ−x , (2.9)

for x = σ, ω, ϕ, and

gNρ ≡ gnρ = −gpρ , gΣρ ≡ gΣ+ρ = −gΣ−ρ , gΞρ ≡ gΞ0ρ = −gΞ−ρ , (2.10)

while gΣ0ρ = gΛρ = 0. The coupling constants giσ between the baryons and the scalar

field are fixed by their vacuum masses. At mean-field level, and using that in the
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vacuum ⟨σ⟩ = fπ, the baryonic vacuum masses are mi = giσ fπ. Using

mN ≡ mn/p ≃ 939 MeV, mΛ ≃ 1115 MeV, mΣ±/Σ0 ≃ 1190 MeV, mΞ−/Ξ0 ≃ 1315 MeV,

this fixes the coupling constants giσ. Fixing the couplings between the baryons and the

vector mesons is more complicated. It is possible to derive the coupling terms from a

SU(3) invariant approach, see appendix A. We shall use the resulting constraints for

some of the hyperonic couplings, combined with a phenomenological approach for

the nucleonic couplings, as we shall explain in Sec. 2.3.

2.2.2 Free energy and stationarity equations

We allow the scalar meson field and the temporal components of the vector meson

fields to condense and denote the corresponding condensates by

σ ≡ ⟨σ⟩ , ω ≡ ⟨ω0⟩ , ρ ≡ ⟨ρ0
0⟩ , ϕ ≡ ⟨ϕ0⟩ . (2.11)

They are assumed to be homogeneous in space, and we neglect all mesonic

fluctuations. This allows us to write down an effective “mean-field Lagrangian”,

L = ∑
i

ψ̄i(iγ
µ∂µ + γ0µ∗

i − Mi)ψi − U(σ)− V(ω, ρ, ϕ) , (2.12)

with the vector meson potential

V(ω, ρ, ϕ) = −1
2
(m2

ωω2 + m2
ρρ2 + m2

ϕϕ2)− d
4
(ω2 + ρ2 + ϕ2)2 , (2.13)

the effective chemical potentials

µ∗
n/p = µn/p − gNωω − gNϕϕ ∓ gNρρ , (2.14a)

µ∗
Σ0 = µΣ0 − gΣωω − gΣϕϕ , (2.14b)

µ∗
Σ± = µΣ± − gΣωω − gΣϕϕ ∓ gΣρρ , (2.14c)

µ∗
Λ = µΛ − gΛωω − gΛϕϕ , (2.14d)

µ∗
Ξ0/Ξ− = µΞ0/Ξ− − gΞωω − gΞϕϕ ∓ gΞρρ , (2.14e)
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and the effective, medium-dependent masses

Mn/p = gNσσ , MΣ0/Σ± = gΣσσ , MΛ = gΛσσ , MΞ0/Ξ− = gΞσσ . (2.15)

As often done in comparable phenomenological models, we shall omit the

(renormalized) vacuum contribution (“no-sea approximation”). The idea is that this

contribution would only yield a quantitative change and since the entire approach is

of phenomenological nature there is not much to be gained from the inclusion of this

contribution, given that the parameters of the model will be fitted within this

approximation to low-energy nuclear matter properties. (There are cases, however,

where the vacuum part makes a qualitative difference, for instance in the case of a

background magnetic field [98, 115–117].) We shall also restrict ourselves to zero

temperature. Then, the free energy density becomes

Ω = −∑
i

p(µ∗
i , Mi) + U(σ) + V(ω, ρ, ϕ)− p(µe, me)− p(µµ, mµ) , (2.16)

where the pressure of each fermion species is given by the function

p(µ, M) =
Θ(µ − m)

8π2

[︃(︃
2
3

k3
F − m2kF

)︃
µ + m4 ln

kF + µ

m

]︃
, (2.17)

with the Fermi momentum

kF =
√︂

µ2 − m2 . (2.18)

In Eq. (2.16) we have added the leptonic contribution, with electron and muon

chemical potentials µe, µµ, and their masses me = 0.511 MeV and mµ = 106 MeV.

Weak equilibrium requires µe = µµ, for instance through the processes e → µ + ν̄µ + νe

and µ → e + ν̄e + νµ. We define the following general expressions for the scalar

density and the fermionic number density,

nsc(µ, m) ≡ − ∂p
∂m

= Θ(µ − m)
m

2π2

(︃
kFµ − m2 ln

kF + µ

m

)︃
, (2.19a)

n(µ, m) ≡ ∂p
∂µ

= Θ(µ − m)
k3

F
3π2 . (2.19b)
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Then, the Euler-Lagrange equations can be written as

0 =
∂Ω
∂σ

=
∂U
∂σ

+ ∑
i

giσnsc,i , (2.20a)

0 =
∂Ω
∂ω

=
∂V
∂ω

+ ∑
i

giωni , (2.20b)

0 =
∂Ω
∂ρ

=
∂V
∂ρ

+ ∑
i

giρni , (2.20c)

0 =
∂Ω
∂ϕ

=
∂V
∂ϕ

+ ∑
i

giϕni , (2.20d)

where nsc,i ≡ nsc(µ∗
i , Mi) and ni ≡ n(µ∗

i , Mi). Additionally, we need the constraint

from local electric charge neutrality, which reads

0 =
∂Ω
∂µe

= −np − nΣ+ + nΣ− + nΞ− + ne + nµ . (2.21)

For the equation of state we shall need the energy density

ϵ = −P + µene + µµnµ + µBnB + µSnS + µInI = −P + µnnB , (2.22)

where P = −Ω is the pressure, where, in the second step, we have used the chemical

potentials (2.5) and the charge neutrality condition (2.21), and where baryon,

strangeness, and isospin number densities are

nB = ∑
i

ni , nS = ∑
i

Sini , nI = ∑
i

Iini . (2.23)

2.2.3 Speed of sound

We require that our model reproduces the speed of sound of asymptotically dense

cold QCD, such that our chirally restored phase shares this property with realistic

quark matter. At asymptotically large densities the speed of sound squared c2
s of QCD

goes to the conformal limit 1/3, since in this limit µB is much larger than the QCD

scale and, due to asymptotic freedom, also much larger than the constituent quark

masses. Therefore, the baryon density is that of a free gas of fermions, nB ∝ µ3
B, which

yields c2
s = 1/3, independent of the proportionality constant, as can be easily checked
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from the definition

c2
s =

∂P
∂ϵ

=
nB

µB

(︃
dnB

dµB

)︃−1

. (2.24)

Here, the first expression is valid in general, i.e., also for nonzero temperatures, in

which case the derivative with respect to ϵ is taken at fixed entropy per particle. The

second expression is valid at zero temperature; see for instance appendix E of Ref. [94]

for a derivation of the general expression in terms of derivatives with respect to the

chemical potential and temperature.

To discuss the speed of sound in our model, let us for illustrative purposes in this

section only consider isospin-symmetric nuclear matter without strangeness, i.e. we

ignore hyperons for now and the only nonzero meson condensates are σ and ω. Also

ignoring neutrality and a possible lepton contribution, the only relevant equations are

Eqs. (2.20a) and (2.20b), which have to be solved for σ and ω and which we write as

0 = f1(σ, ω, µB) ≡
∂U
∂σ

+ 2gNσnsc(µ
∗
B, M) , (2.25a)

0 = f2(σ, ω, µB) ≡ ω(m2
ω + dω2)− gNωnB , (2.25b)

with M = gNσσ, µ∗
B = µB − gNωω. For the speed of sound we need the derivative

dnB

dµB
=

∂nB

∂µB
+

∂nB

∂σ

∂σ

∂µB
+

∂nB

∂ω

∂ω

∂µB
. (2.26)

The explicit derivatives of nB are easily obtained, but σ and ω are only given implicitly

by Eqs. (2.25) (there is no analytical solution even in this simplified scenario). We can,

however, compute the relevant derivatives in terms of σ and ω via

(︃
∂σ

∂µB
,

∂ω

∂µB

)︃
= −

(︃
∂ f1

∂µB
,

∂ f2

∂µB

)︃⎛⎜⎜⎝
∂ f1

∂σ

∂ f2

∂σ

∂ f1

∂ω

∂ f2

∂ω

⎞⎟⎟⎠
−1

. (2.27)

Inserting all this into the definition of the speed of sound yields after some algebra

c2
s =

1
3

k2
F

µBµ∗
B

⎡⎢⎢⎢⎣
2kFµ∗

B
π2 +

3
M

∂U
∂M

− ∂2U
∂M2

2k3
F

π2µ∗
B
+

3
M

∂U
∂M

− ∂2U
∂M2

+
2g2

NωkFµ∗
B

π2(m2
ω + 3dω2)

⎤⎥⎥⎥⎦ , (2.28)
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where k2
F = (µ∗

B)
2 − M2. This relatively compact expression is valid for all densities,

but still requires solving equations (2.25) numerically for an explicit evaluation. In this

section we are only interested in the asymptotic limit, which can be evaluated

analytically. One observes that taking the limit µB → ∞ does not commute with the

limit d → 0. If we first send d → 0, the solutions of Eq. (2.25) become for large µB

d = 0 : σ ≃
(︃

2g2
Nωπ

3m2
ω

)︃2/3 fπm2
π

g2
Nσµ2/3

B

, ω ≃ µB

gNω
−
(︃

3π2m2
ωµB

2g5
Nω

)︃1/3

. (2.29)

The subleading term in ω is needed to obtain the leading behavior for µ∗
B. Since for

µB → ∞ we have kF ≃ µ∗
B, the first term in the square brackets in Eq. (2.28) approaches

1. It is therefore subleading and the asymptotic speed of sound is given by the second

term in the square brackets. With the relations (2.29) we find c2
s = 1. Therefore, if the

quartic self-interactions are switched off in the Lagrangian, d = 0, the speed of sound

approaches the speed of light at asymptotically large µB.

On the other hand, if we first take the limit µB → ∞ at nonzero d we find for the

leading terms of the solution of Eqs. (2.25)

σ ≃
[︄

1 +
(︃

2g4
Nω

3π2d

)︃1/3]︄2
fπm2

ππ2

gNσµ2
B

, ω ≃
[︄

1 +
(︃

3π2d
2g4

Nω

)︃1/3
]︄−1

µB

gNω
. (2.30)

Again, the first term in the square brackets in Eq. (2.28) becomes 1, but this time it is of

the same order as the second term, and both terms together give the asymptotic result

c2
s = 1/3 for all d > 0, a conclusion also reached for a similar model in Ref. [118]. This

shows that only in the presence of a quartic vector meson self-coupling our model

reproduces the asymptotic speed of sound of QCD.

These observations also suggest that by choosing a sufficiently small but nonzero

d, the speed of sound becomes arbitrarily close to 1 at intermediate densities. The

reason is that the behavior of the condensates (2.29) also holds in a regime where µB is

large compared to all other energy scales while the dimensionless parameter dµ2
B/m2

ω

is small, see Eqs. (2.25b) and (2.28). For any nonzero d, of course, the behavior (2.30)

eventually takes over as µB is increased and the speed of sound approaches 1/3

asymptotically. This can be confirmed numerically, as well as the fact that these

asymptotic limits derived here remain valid in the more complicated scenario

including strangeness and the neutrality constraint.
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2.3 Parameter choices

Our strategy for fixing the parameters of the Lagrangian is to fit as many as possible to

empirical vacuum and low-density quantities, and explore the parameter space of the

remaining ones to understand the qualitative behavior of the model, in particular with

respect to the chiral phase transition and the onset of strangeness. We have already

used vacuum properties to fix ϵ, a1, mω, mϕ, mρ, gNσ, gΛσ, gΣσ, gΞσ. We assume that the

nucleons do not couple to the hidden strangeness meson, gNϕ = 0 [109, 119, 120]. It

remains to choose values for, first, a2, a3, a4, d, gNω, gNρ, and, second, the couplings of

the hyperons to the vector mesons gΛω, gΣω, gΞω, gΛϕ, gΣϕ, gΞϕ, gΣρ, gΞρ. Let us discuss

these two groups of parameters separately.

2.3.1 Saturation properties

We relate the 6 parameters a2, a3, a4, d, gNω, gNρ to 6 properties of isospin-symmetric

nuclear matter at saturation: we use the well-known binding energy EB = −16.3 MeV

and saturation density n0 = 0.153 fm−3, and also work with a definite symmetry

energy S = 32 MeV, following the empirical estimates S ≃ (30.2 − 33.7)MeV

[121, 122] (see, however, Ref. [33], which predicts a somewhat larger value based on

measurements of the neutron skin thickness by the PREX collaboration [123]). The

incompressibility at saturation is less well known, K ≃ (200 − 300)MeV. In our main

results we shall employ the value K = 250 MeV. We have checked that our results do

not change much under variations of K in the empirically allowed range. There is

much more sensitivity to the effective nucleon mass at saturation, M0, and the slope L

of the symmetry energy with respect to density changes away from saturation. For

later, we shall keep in mind an empirical range of M0 ≃ (0.7 − 0.8)mN [124–129].

Estimates for the slope of the symmetry energy range from L ≃ (40 − 60)MeV

[130–132] to more recent values using the result of the PREX experiment [123],

indicating that larger values might be favored, L ≃ (70 − 140)MeV [33]; for a recent

overview of the various estimates for L see Ref. [133].

To set up the relation between the model parameters and the saturation

properties, we denote the chemical potential at the onset of isospin-symmetric

(non-strange) baryonic matter by µ0 = 922.7 MeV, and the effective baryon chemical
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potential by µ∗
0 = µ∗

n = µ∗
p =

√︂
k2

F + M2
0, where the Fermi momentum can be

expressed in terms of the saturation density via n0 = 2k3
F/(3π2), which yields

kF ≃ 260 MeV. In the absence of hyperons, baryon and isospin densities are

nB = nn + np and nI = nn − np, respectively. In symmetric nuclear matter, where

nI = 0, the stationarity equations (2.20) give ρ = ϕ = 0, while ω obeys the cubic

equation

gNωn0 = m2
ωω + dω3 , (2.31)

whose relevant solution we write as

ω0 =
gNωn0

m2
ω

f (x0) , (2.32)

with

f (x) ≡ 3
2x

1 − (
√

1 + x2 − x)2/3

(
√

1 + x2 − x)1/3
, x0 ≡ 3

√
3d gNωn0

2m3
ω

. (2.33)

With limx→0 f (x) = 1 we recover the case without quartic vector meson interactions,

d = 0. We also need the definitions of incompressibility, symmetry energy, and slope

of the symmetry energy,

K = 9nB
∂µB

∂nB
, S =

nB

2
∂µI

∂nI
, L = 3nB

∂S
∂nB

, (2.34)

where K is evaluated for symmetric nuclear matter, the derivative in S is taken at fixed

nB and evaluated at nI = 0, and the derivative in L is taken at fixed nI = 0.

Putting all of this together, we obtain the following six conditions for the model

parameters:

g2
Nω =

m2
ω

2n0
(µ0 − µ∗

0)

[︄
1 +

√︄
1 +

4dn0(µ0 − µ∗
0)

m4
ω

]︄
, (2.35a)

g2
Nρ =

3π2m2
ρ

k3
F

(︃
S − k2

F
6µ∗

0

)︃(︄
1 +

dω2
0

m2
ρ

)︄
, (2.35b)

L =
3g2

Nρn0

2(m2
ρ + dω2

0)

[︄
1 − 2d n0gNωω0

(m2
ρ + dω2

0)(m2
ω + 3dω2

0)

]︄
+

k2
F

3µ∗
0

(︃
1 − K

6µ∗
0

)︃

+
g2

Nωn0k2
F

2m2
ωµ∗2

0
[ f (x0) + x0 f ′(x0)] , (2.35c)
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K =
3k2

F
µ∗

0
− 6k3

F
π2

(︃
M0

µ∗
0

)︃2 [︃ 1
g2

Nσ

∂2U
∂σ2 +

2
π2

∫︂ kF

0

dk k4

(k2 + M2
0)

3/2

]︃−1

+
6k3

F
π2

g2
Nω

m2
ω

[ f (x0) + x0 f ′(x0)] , (2.35d)

0 =
m2

ω

2
ω2

0 +
d
4

ω4
0 − U(σ) +

1
4π2

[︃(︃
2
3

k3
F − M2

0kF

)︃
µ∗

0 + M4
0 ln

kF + µ∗
0

M0

]︃
, (2.35e)

0 =
∂U
∂σ

+
gNσ M0

π2

(︃
kFµ∗

0 − M2
0 ln

kF + µ∗
0

M0

)︃
. (2.35f)

Here, the first relation is obtained from inserting the relation µ∗
0 = µ0 − gNωω0, which

follows from Eq. (2.14a), into Eq. (2.31); the next relations are obtained by computing

S, L, and K from their definitions (2.34); finally, we have the condition that the

pressure at saturation be identical to the pressure of the vacuum, which in our

convention is zero, and the stationarity equation (2.20a) for σ, whose value is

σ = M0/gNσ at saturation.

For given L, S, K, M0, µ0, n0, Eqs. (2.35) can now be solved to obtain the model

parameters a2, a3, a4, gNω, gNρ, d. For the practical calculation it is useful to note that

(2.35a), (2.35b), (2.35c) do not depend on a2, a3, a4 (which only enter through the

meson potential U), such that they can be solved separately for gNω, gNρ, d. The results

are then used to solve Eqs. (2.35d), (2.35e), (2.35f) for a2, a3, a4. If the quartic coupling

is set to zero, d = 0, Eqs. (2.35a) and (2.35b) can be used to obtain gNω and gNρ, and

the coupled equations (2.35d), (2.35e), (2.35f), are used to fix a2, a3, a4, while L can only

be computed afterwards, i.e., in this case there is no freedom in the parameter set to

reproduce a given value for L.

Interestingly, Eqs. (2.35) can be used to compute a window in the M0-L plane for a

given value for K. From Eqs. (2.35a) and (2.35b) we see that in order for g2
Nω and g2

Nρ

to be positive we need

kF

√︄(︃
kF

6S

)︃2

− 1 < M0 <
√︂

µ2
0 − k2

F . (2.36)

We can also compute the limits of L for d = 0 and d → ∞, which gives the range

S +
k2

F(3µ0 − K)
18µ∗2

0
< L <

3g2
Nρn0

2m2
ρ

+
k2

F
3µ∗

0

(︃
1 − K

6µ∗
0

)︃
+

g2
Nωn0k2

F
2m2

ωµ∗2
0

, (2.37)
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FIGURE 2.1: Allowed window (red curves) of the model in the M0-L plane bounded
by the limits (2.36) and (2.37), solely derived from known saturation properties of sym-
metric nuclear matter. Here we have set K = 250 MeV, which we will use throughout
this chapter. The thin black curves are lines of constant d, d = 10, 102, 103, 104 from
right to left. The grey horizontal band indicates the empirically favored range for M0,
which results in a predicted range L ≃ (47− 93)MeV, shown by the red vertical band.

where the lower (upper) limit comes from d → ∞ (d = 0). We have considered the

possibility of negative d, but have not found any physically sensible solutions, in most

cases indicated by a superluminal speed of sound combined with the solutions of the

stationarity equations turning complex at large densities, see also Refs. [118, 134]. The

resulting window in the M0-L plane is shown in Fig. 2.1 for K = 250 MeV (with all

other saturation properties as given above). If we apply the realistic window

M0 ≃ (0.7 − 0.8)mN we see that this already constrains the range for the slope of the

symmetry energy to L ≃ (47 − 93)MeV, as indicated by the shaded bands in the

figure.

2.3.2 Couplings between hyperons and vector mesons

The choice for the hyperon couplings gΛω, gΣω, gΞω, gΛϕ, gΣϕ, gΞϕ, gΣρ, gΞρ is much less

constrained by experimental data. Here our strategy is to combine phenomenological

constraints with the relations given by the chiral approach of appendix A, while

leaving one degree of freedom to be varied to probe the dependence of our results on

different choices of the hyperon couplings. The connection between the coupling

constants and (potential) experimental data is made by the hyperon potential depths.

The potential depth U(j)
i of a single hyperon i in a medium of baryon species j at

arbitrary baryon density nB is computed as follows. We assume isospin-symmetric

media, such that np = nn for j = N, nΣ+ = nΣ0 = nΣ− for j = Σ, and nΞ0 = nΞ− for
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j = Ξ. As a consequence, ρ = 0 in each case, and the Fermi momentum kF is related to

the baryon density by

nB =
sk3

F
3π2 , (2.38)

where s is a degeneracy factor, s = 2, 1, 3, 2 for baryonic media N, Λ, Σ, Ξ, respectively.

The single-baryon energy E(j)
k,i of baryon i in a medium of baryon j obeys the relation

E(j)
k,i − µi =

√︂
k2 + (M(j)

i )2 − µ
∗(j)
i , (2.39)

where M(j)
i is the medium-dependent mass of baryon i and µ

∗(j)
i is its effective

chemical potential, containing the actual chemical potential µi and the

medium-dependent condensates, see Eq. (2.14). The potential is given by the

minimum of the single-baryon energy E(j)
k=0,i minus the vacuum mass mi,

U(j)
i = M(j)

i − µ
∗(j)
i + µi − mi = giσ(σ

(j) − fπ) + giωω(j) + giϕϕ(j) , (2.40)

where, in the second step, we have expressed the vacuum mass in terms of the

vacuum value of the chiral condensate, mi = giσ fπ. The medium-dependent mass and

effective chemical potential have been written in terms of the meson condensates in

the medium of baryon j, which have to be computed numerically with the help of the

stationarity equations at the given baryon density nB (2.38). For our purposes, Eq.

(2.40) is only needed for the hyperon potentials in a medium of nucleons at saturation

density. In this case ϕ = 0, and using gNσσ(N) = M0, gNσ fπ = mN we can write

U(N)
i =

giσ

gNσ
(M0 − mN) + giωω0 , (2.41)

where ω(N) = ω0 is the value of the condensate at saturation (2.32). We thus have

three relations, i = Σ, Λ, Ξ, to relate three hyperon potentials to the hyperon-omega

coupling constants.

In all our results we shall use the value

U(N)
Λ = −30 MeV , (2.42)

as suggested by experimental data [135, 136] and adopted in comparable models

[111, 137, 138]. The potentials for Σ and Ξ are less well known experimentally, with
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chiral effective theory suggesting U(N)
Ξ to have a relatively small absolute value with

either sign possible and U(N)
Σ more likely to be positive [139, 140]. For simplicity, we

shall assume the values of both potentials to be identical,

U ≡ U(N)
Σ = U(N)

Ξ , (2.43)

and vary U within a reasonable range. We shall see that within this simplistic

approach we will have to choose in particular U(N)
Σ to be different from what is

usually adopted. Due to the large uncertainties in our knowledge of these potentials

this may not seem too unreasonable. Moreover, empirical constraints drive our choice

to more attractive potentials compared to the most common values in the literature,

such that one might expect hyperons to be unusually favored in our results. However,

we shall see that for the parameter sets that meet astrophysical constraints strangeness

does not occur in the chirally broken phase. Therefore, even if the hyperon potentials

we choose are different from their value in nature, we do not have hyperons with

unphysical properties in our system. The hyperon coupling constants then rather

characterize the interactions in the chirally restored phase (i.e., of “strange quark

matter”), for which no direct experimental information is available and where

astrophysical data are our best source for constraints, forcing us to somewhat stretch

the usual regime for the hyperon potentials.

After choosing a value of U , Eqs. (2.41), (2.42), (2.43) fix the ω coupling constants

gΣω, gΛω, gΞω. This leaves the coupling constants gΛϕ, gΣϕ, gΞϕ, gΣρ, gΞρ, which we

compute from the chiral relations (A.12) (ignoring the relations in that equation for

gΣω, gΛω, gΞω).

2.4 Results

We present and discuss our results as follows. First, in Sec. 2.4.1 we choose four

parameter sets in order to demonstrate qualitatively different scenarios with respect to

the chiral phase transition and the onset of strangeness that our model can produce.

At this point, we do not yet discard parameter regions disfavored by astrophysical

data. The reason is that it is instructive to see that different scenarios can be realized in

principle, keeping in mind that our model is of phenomenological nature. Therefore, a
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gNω gNρ gΛω gΣω gΞω a2 a3[MeV−2] a4[MeV−4] M0/mN L[MeV] Figs. 2.2 – 2.6

10.23 4.138 14.53 14.59 16.39 44.69 2.917·10−4 5.071·10−5 0.72 89.91 black
8.196 4.297 12.35 12.03 13.63 55.15 -7.465·10−3 9.553·10−5 0.8 86.24 red
6.610 4.379 10.86 10.17 11.65 73.15 3.120·10−2 2.865·10−4 0.85 84.66 blue
3.291 4.477 9.371 7.155 8.738 465.5 3.643 1.305·10−2 0.92 83.14 green

TABLE 2.1: Parameter sets used in Sec. 2.4.1, Figs. 2.2 – 2.6. We have included the
resulting values for the Dirac mass at saturation M0 and the slope parameter L, while
K = 250 MeV in all four cases. The parameters ϵ, a1, mω, mϕ, mρ, gNσ, gΛσ, gΣσ,
gΞσ are the same in all cases and fixed by vacuum properties as explained in Sec. 2.2.
Moreover, in all four cases d = 21, and the hyperon couplings listed here are chosen to
give U = −50 MeV. The remaining hyperon-meson couplings gΛϕ, gΣϕ, gΞϕ, gΣρ, gΞρ

are determined by the chiral relations (A.12) in each case separately.

scenario realized in the present version of the model that appears to be excluded by

data may be allowed in an improved version of the model, or in a different

phenomenological model – or in QCD. Then, second, in Sec. 2.4.2, we do discuss the

empirical and astrophysical constraints systematically, which will lead to conclusions

independent of the particular parameter choices.

2.4.1 Selected parameter sets

We start with the four parameter sets specified in Table 2.1. They all give a potential

U = −50 MeV for the Σ and Ξ, and the quartic meson self-coupling constant is fixed to

d = 21. As mentioned above, we also keep the incompressibility at saturation fixed to

K = 250 MeV. The parameter sets are then obtained by varying the Dirac mass at

saturation from low (approximately the lower end of the empirically allowed range)

to high (somewhat larger than the empirically allowed maximum). The slope

parameter L then adjusts accordingly (varying, however, only by a few percent for the

given choices). Note that a4 turns out to be positive in all four cases as it should be

since this ensures a bounded vacuum potential for σ.

2.4.1.1 Chiral transition and onset of strangeness

In Fig. 2.2 we show the effective nucleon mass MN ≡ Mn/p as a function of the neutron

chemical potential, obtained by solving the stationarity equations (2.20) together with

the neutrality constraint (2.21) numerically for σ, ω, ϕ, ρ, µe at given µn (and T = 0).

Since all baryon masses are proportional to the chiral condensate σ (multiplied by a

coupling constant to reproduce the vacuum masses), the effective hyperon masses
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FIGURE 2.2: Effective nucleon mass as a function of the neutron chemical potential
for the four parameter sets given in Table 2.1. Solid lines correspond to stable phases,
while the dashed segments are metastable (MN decreasing with µn) or unstable (MN
increasing with µn). The open squares mark the onset of strangeness, and the dots
mark the phase transition within the baryonic phase (upper left and both lower panels)
and the chiral phase transition (both upper panels and lower left). In the bottom right

panel the chiral transition has become a (steep) crossover.

follow the same behavior. The figure shows all branches of the solution, including the

unstable and metastable ones. In all cases, there is an approximately chirally

symmetric phase at large chemical potentials, where the baryon masses are very small.

In three of the four cases shown here, the chirally restored phase is reached via a

first-order phase transition. The location of the phase transition has to be determined

from the free energy, i.e., by inserting the solutions of the stationarity equations back

into the free energy density (2.16). An example is shown in Fig. 2.3, corresponding to

the lower left panel in Fig. 2.2. Determining the state with the lowest free energy at

each µn allows us to identify the stable branches, shown as solid curves in Fig. 2.2.

Besides the very prominent chiral phase transition, Fig. 2.3 also shows a much

weaker first-order phase transition at relatively low densities within the chirally

broken phase. This phase transition can be understood as a “remnant” of the

first-order onset of isospin-symmetric nuclear matter. In that case, the free energy is

multi-valued at the onset, and moving towards more neutron-rich matter tends to
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FIGURE 2.3: Free energy density as a function of the neutron chemical potential for
the third case (blue) of Fig. 2.2. The large three-valued region is the spinodal region
of the first-order chiral phase transition, while the zoom-in shows a (weak) first-order

transition within the chirally broken phase.

diminish this multivaluedness, i.e., decrease the spinodal region. This happens

gradually, and thus, even in the neutron-rich environment obtained here by the

conditions of weak equilibrium and charge neutrality, it is possible that the spinodal

region survives. This is the case in three of the four cases in Fig. 2.2, as indicated by

the dots that mark the effective nucleon mass on either side of the transition. In

contrast to the chiral transition, the curves of stable and unstable phases in the vicinity

of this transition are not distinguishable by naked eye on the given scale.

Fig. 2.2 also indicates the onset of strangeness (open squares). We see that there

are qualitatively different cases with respect to that onset (and demonstrating these

differences is one main motivation for our choice of parameter sets): in the two upper

panels, the onset of strangeness occurs in the metastable or unstable regime. This

implies that the baryonic phase does not contain any hyperons, while strangeness

appears immediately after the chiral transition, i.e. the transition is from nuclear

matter to “strange quark matter”. Showing the possibility of this scenario within a

model based on baryonic degrees of freedom has been one of the main goals of this

work (and we shall see below that astrophysical constraints favor this case). The

precise location of the strangeness onset within the metastable/unstable regime is

irrelevant for the stable, homogeneous phases discussed here. However, it would be

interesting for future studies to see how this location affects the properties of
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inhomogeneous phases, such as a mixed phase, which does know about the behavior

of the model away from the stable branches. In the lower left panel of Fig. 2.2,

strangeness occurs already in the baryonic phase. Therefore, in this case the sequence

of phases is nuclear matter → hyperonic matter → chirally restored matter with

strangeness. Finally, the lower right panel shows yet another qualitatively different

behavior, namely a chiral crossover. In this case, strangeness occurs deeply in the

baryonic regime (judging from the effective nucleon mass, which is about 800 MeV at

that point). Then, there is a continuous transition to the phase with light degrees of

freedom. It is striking that, first, this transition is still relatively “sharp”. It is difficult

to distinguish it by naked eye from a weak first-order transition. And, second, this

sharp transition occurs at extremely large chemical potentials, much larger than in the

interior of neutron stars. We have not found any parameter set with reasonable

low-density properties that shows a significantly smoother crossover or a significantly

smaller transition density. (Judging from the results of the non-strange,

isospin-symmetric version of our model [97], a much larger incompressibility, far

beyond the physical range, is needed for such a scenario.) Nevertheless, it is

interesting that our model allows for the possibility of a crossover, which is

conceivable within QCD and corresponding model equations of state have been

constructed [141, 142], although this question becomes more subtle in the presence of

Cooper pairing [26, 143–145].

While the onset of strangeness marked in Fig. 2.2 refers to the first strange degree

of freedom, Fig. 2.4 shows all individual particle fractions as functions of density. We

have distinguished non-strange baryons from hyperons and leptons by the color of

the curves to facilitate the interpretation. Since the horizontal axis represents density,

there are disallowed regions due to the first-order phase transitions. There are

metastable and unstable branches in these regions which we have omitted since they

are not very instructive. Also, the disallowed regions can be populated by

inhomogeneous mixed phases, which we are ignoring in this chapter. We see that the

lower critical density of the chiral phase transition varies greatly between the different

parameter sets, occurring as early as nB ≃ 0.4 n0 in the upper left panel. We have also

marked the maximal central densities reached in compact stars for each case by an

arrow. These densities lie somewhere in the range nB ∼ (7 − 10) n0, a somewhat large

number compared to most comparable phenomenological models.
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FIGURE 2.4: Density fractions as a function of baryon density (normalized to the sat-
uration density of symmetric nuclear matter n0) for the four cases of Fig. 2.2, show-
ing non-strange baryons (red), strange baryons (blue) and leptons (black). First-order
transitions appear in the form of a gap in the horizontal direction since the density
is discontinuous. Cusps arise from the onset of baryonic species. The arrow on the
horizontal axis marks the central density of the most massive star possible for each

parameter set.

The figure also shows that the most prevalent strange degree of freedom in all

four cases is the Σ−, which is the lightest non-leptonic degree of freedom with

negative electric charge. We also see that in the cases with a first-order chiral phase

transition the density fractions of the strange degrees of freedom decrease as the

density is increased. This is perhaps somewhat unexpected, at least having in mind

the following simple picture of quark matter: At intermediate densities we expect the

constituent mass of the strange quark to be larger than that of the up and down

quarks. At ultra-high densities, due to asymptotic freedom, the quark masses

approach the current mass limit, whose scale becomes negligible compared to the

chemical potential. As a consequence, one might expect the strangeness content to

increase as one moves to higher densities, although the strong-coupling nature of the

problem at intermediate densities does not allow a firm first-principles prediction for

this behavior. What is firmly predicted by QCD, however, is that three-flavor quark

matter becomes flavor symmetric at asymptotically large densities. Our results in Fig.

2.4 show two interesting properties of asymptotically dense matter. First, a nonzero

amount of strangeness survives asymptotically. The parameter sets are chosen
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FIGURE 2.5: Speed of sound squared as a function of the neutron chemical potential
for the four cases of Fig. 2.2, showing only the stable branches. Colors correspond to
the colors of Fig. 2.2, i.e. the Dirac mass at saturation increases from black to red to
blue to green. The large discontinuities in the black, red, and blue curves indicate the
chiral phase transition, while the green curve has a chiral crossover, as the zoom-in
proves. The arrows mark the chemical potentials in the center of the most massive
star of each case, and the horizontal dashed line marks the conformal value, c2

s = 1/3,
that is attained asymptotically by all curves.

deliberately to ensure this property, and we shall discuss in the subsequent section

that this is not the case for all parameter choices. Second, our asymptotic matter is

clearly not flavor symmetric, i.e., the up, down, and strange content of our baryonic

degrees of freedom is not equal. We show in Appendix B that there are choices of the

hyperon-meson coupling constants that lead to asymptotic flavor symmetry (while

keeping the saturation properties of symmetric nuclear matter fixed). This would be

desirable in our context since this would make our chirally restored matter even more

similar to actual QCD quark matter. However, we have not found parameter sets that

at the same time produce sufficiently heavy neutron stars, and thus here, in the main

part, we do not work with the parameter constraints derived in Appendix B.

2.4.1.2 Speed of sound and mass-radius curves

We show the speed of sound squared c2
s for the four parameter sets of the previous

subsection in Fig. 2.5. This figure contains various interesting aspects. First, we see

that all curves approach the conformal limit c2
s = 1/3, as already suggested by the

analytical calculation in Sec. 2.2.3. While that calculation was performed for
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symmetric nuclear matter without strangeness, here we see that the conformal limit is

also assumed asymptotically in the electrically neutral, beta-equilibrated case

including strange matter. As pointed out in Sec. 2.2.3, the nonzero value of the vector

meson self-coupling d is crucial for this behavior. Second, the zoom-in shows that the

lower right panels of Figs. 2.2 and 2.4 indeed contain a smooth chiral crossover: the

speed of sound – containing a second derivative of the free energy – is continuous and

smooth.

Third, and perhaps most importantly, let us comment on the behavior of the

speed of sound in the intermediate density regime, relevant for neutron star matter. It

is striking that in the cases of a first-order chiral transition the speed of sound increases

through the discontinuity as we move towards large densities. Even in the case of the

crossover this tendency is retained; through the sharp crossover the speed of sound is

increased from just below to just above the conformal limit. (We have checked that

there are parameter sets where c2
s > 1/3 before the sharp crossover, i.e., this is not a

generic feature). The large speed of sound in our chirally restored phase is somewhat

surprising if we have in mind perturbative QCD, which predicts c2
s < 1/3 where it is

applicable. We should emphasize that our model is not asymptotically free. Even

though the conformal limit is approached asymptotically, interactions still play a role

in this limit. Therefore, we cannot expect to reproduce this prediction of perturbative

QCD. At intermediate densities, QCD is strongly coupled and we have no

first-principle results for the speed of sound of quark matter. Therefore, our result is

not in any contradiction with QCD. Another reason to expect a smaller speed of sound

in the chirally restored phase might be the increase in degrees of freedom as we cross

the phase transition. While this tends to soften the equation of state, i.e., to decrease

the speed of sound, there are at least two opposing effects that, in our model, turn out

to dominate the behavior. Namely, the near-masslessness of the degrees of freedom in

the chirally restored phase should indeed contribute to an increase of the speed of

sound, and, of course, the form of the interactions plays an important role, which is

not easy to disentangle from the other effects. A speed of sound of quark matter above

the conformal limit has also been observed in resummed perturbation theory [146]

and in the color-flavor locked phase [147]. In fact, it has been shown that no exotic

degrees of freedom are necessary in order to generate a speed of sound that surpasses

its asymptotic conformal limit. Rather, a peak in the speed of sound of homogeneous
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FIGURE 2.6: Mass-radius curves of quark stars (curves reaching back to the origin),
hybrid stars (dashed), and neutron stars for the four cases of Fig. 2.2. The shaded
bands mark the stars containing strangeness. Only the upper left panel is in accor-
dance with the heaviest known neutron star. (Radius constraints must be ignored here
since we have not included a crust, which would change radii, but not the maximal
masses, significantly.) The lower right panel corresponds to a parameter set with a

chiral crossover and thus only has a single class of stars.

matter naturally emerges in the transition from a phase with broken chiral symmetry

to one with a gapped Fermi surface [148].

The speed of sound is a measure for the stiffness of matter, and we expect stiff

matter to give rise to large neutron star masses. This connection is borne out in the

mass-radius curves shown in Fig. 2.6. They are computed by inserting the equation of

state P(ϵ), with pressure P = −Ω and energy density ϵ from Eqs. (2.16) and (2.22),

into the so-called Tolman-Oppenheimer-Volkoff equations [149–151], which describe a

static, spherically symmetric matter configuration in general relativity. By choosing

the central pressure as a boundary condition and solving the differential equations

numerically one obtains the mass and radius of the star. Varying the central pressure

generates a mass-radius curve, representing all possible stars for a given equation of

state.

In Fig. 2.6 we show three different classes of stars, which are best explained with
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the help of the free energy in Fig. 2.3: “neutron stars”, i.e., stars made entirely of

baryonic matter, probe the chirally broken branch of our solution. Their maximal

central pressure is given by the phase transition point (µn ≃ 1.4 GeV in Fig. 2.3) if only

stable baryonic matter is considered. In the mass-radius plots we have traced the

neutron star branch beyond the transition point into the spinodal region, following the

(now metastable) chirally broken solution. Importantly, this spinodal region ends at

some point, which corresponds to the end points of the neutron star curves in Fig. 2.6.

In an approach using different models for quark and hadronic matter the metastable

branch would continue to arbitrarily large densities and no prediction for the

endpoint in the mass-radius curve can be made. This metastable neutron star segment

can be of astrophysical relevance since it is made of two-flavor nuclear matter (entirely

in the upper left panel and for a large part in the upper right panel). Therefore, it is

conceivable that it survives for non-microscopic times since the conversion to strange

quark matter would require the injection of strangelets.

If we follow the thermodynamically stable branches through the phase transition,

we branch off of the neutron star curve by following the chirally restored branch. We

obtain hybrid stars, shown by the dashed curves in Fig. 2.6, i.e., stars with a chirally

broken mantle and a chirally restored core. This gives rise to the possibility of “twin

stars”, stable stars with the same mass but different radii [152]. Twins both having

thermodynamically stable matter – one neutron star, one hybrid star – are (barely)

realized in the upper right panel. However, our results also suggest the existence of

twins where one star is made of metastable hadronic matter and its hybrid twin

containing a strange quark matter core (upper panels). In all mass-radius plots we

have included segments that are expected to be unstable with respect to radial

oscillations of the star [127, 153]. Therefore, for instance, the lower left panel does not

allow for twin stars because the entire hybrid branch is expected to be unstable.

We also show the mass-radius curves of “quark stars” made entirely out of

chirally restored matter in our model. To this end, we follow the chirally restored

solution in Fig. 2.3 backwards until the pressure (and thus the free energy density) is

zero. In the three cases considered here where this construction is possible, this

includes a metastable segment of the solution, towards low densities, similar to the

metastable neutron stars just discussed, where the metastable matter sits at high

densities. There are parameter regions where the metastable segment does not reach
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back to zero pressure, which results in quark matter only appearing in hybrid stars,

and not also in a separate branch of quark stars. There are also parameter regions

where the chirally restored branch is stable all the way down to zero pressure, which

we can interpret as a realization of the strange quark matter hypothesis [154, 155]. We

shall come back to this possibility – and identify the region in the parameter space

where it is realized – in the subsequent section.

In the calculation of the mass-radius curves we have not included any mixed

phase at the chiral phase transition. A mixed phase layer in the star would smoothen

the cusp-like transition from the neutron star branch to the hybrid star branch, but

otherwise is not expected to change the results significantly. Moreover, we have not

included a crust but rather used the homogeneous phases of our model down to the

lowest densities. This simplification has a large effect on the radii of the stars. A crust

would generate a much larger layer of matter with an average density below

saturation density and can be expected to correct the radii to much larger values (see

for instance Ref. [156]), with the exception of the quark stars, where only a small crust

is expected (see for instance Ref. [157]). Importantly, however, the inclusion of a crust

and its precise properties are not expected to change the maximal mass of the given

dense matter equation of state [156]. Therefore, the radii in Fig. 2.6 should not be

taken too seriously, and we should thus not attempt to compare these results to the

latest data for neutron star radii, and neither to constraints for the tidal deformability,

which is strongly influenced by the radius of the star. However, the maximal mass of

our mass-radius curves can be taken seriously. As a consequence, we see that only the

upper left panel corresponds to an equation of state allowed by the existence of a

2.1-solar mass star [106, 107]. In particular, the scenario with the chiral crossover

(lower right panel) gives rise to very low masses and thus is in contradiction with

astrophysical data. These observations reflect the behavior of the speed of sound in

Fig. 2.5: heavy stars are possible for large speeds of sound, and the largest mass is

obtained for the case with the earliest chiral phase transition such that the stiff chirally

restored phase constitutes a large volume fraction of the heaviest stars. This is in line

with recent discussions suggesting the necessity for a non-monotonic behavior of the

speed of sound in order to meet astrophysical constraints [77, 158, 159]. While in

many approaches, either purely baryonic or in connection with a separate quark

matter model, the maximum of the speed of sound is reached in the baryonic phase it
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FIGURE 2.7: Upper panels: Distinct regions in the M0-L and M0-d planes for K =
250 MeV and U = −50 MeV. “s” (“/s”) labels regions with (without) strangeness at
asymptotic densities, “N” (“Q”) labels regions where nuclear matter (quark matter)
is preferred at zero pressure. In the shaded triangular region maximal masses of (hy-
brid) stars of more than 2.1 solar masses are reached, in addition to having asymptotic
strangeness and nuclear matter being stable at zero pressure. In the right panel, the
dashed-dotted (almost horizontal) curve divides the region where hyperons appear
before the chiral transition (towards large M0) from the region where strangeness only
appears in the chirally restored phase (towards small M0). Above the dotted line the
chiral transition is a crossover. The grey shaded band in both panels is the empiri-
cally preferred regime for M0, and the thin horizontal dashed line in the right panel
marks the upper limit of M0 according to Fig. 2.1. The asterisks correspond to the pa-
rameter choices in Figs. 2.2 – 2.6 (in the left panel only two of them lie in the shown
range). Lower panels: Blue lines as in the upper panels, now with added curves for

U = −30 MeV (green) and U = −70 MeV (red).

has also been argued that this behavior may be generated by the so-called quarkyonic

phase [160]. In contrast, our results suggest that the peak of the speed of sound may

well appear in the quark matter phase, while the baryonic phase exhibits sound

speeds below the conformal limit.

2.4.2 Parameter-independent conclusions

We have seen that our model allows for qualitatively different scenarios regarding the

chiral phase transition, with different thermodynamic properties and different

properties of compact stars. We now intend to determine the region in parameter
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space where our model is useful and realistic. For simplicity we keep the

incompressibility at saturation fixed to K = 250 MeV, and vary the Dirac mass at

saturation M0, the slope parameter L, and the hyperon potential U . We present our

results in the M0-L plane, making the connection to Fig. 2.1. It is useful to consider

also the M0-d plane for an alternative representation. For a given pair (M0, d) one can

always compute the more physical pair (M0, L).

Our results are shown in Fig. 2.7. Let us first focus on the upper panels, which are

obtained with the choice U = −50 MeV, to explain and interpret the various curves.

• Asymptotic strangeness. For our main goal to describe strange quark matter with

our chirally restored phase we need to check in which cases there is strangeness

at asymptotically large densities. (As we have seen in Fig. 2.4, if strangeness

survives asymptotically, it tends to be present right after the phase transition as

well.) The line in the parameter space that separates the region with asymptotic

strangeness from the one without can be calculated with the help of an

expansion similar to the asymptotic expansion employed in Appendix B. The

ansatz for the solution of the stationarity equations used in this appendix led to

conditions for the coupling constants, guaranteeing flavor-symmetric asymptotic

strangeness. The weaker condition of the existence of asymptotic strangeness is

found by the ansatz ρ ≃ ρ∞µn, µe ≃ µe,∞µn and all other condensates as in Eq.

(B.2). This ansatz leads to a set of stationarity equations for the coefficients of the

leading-order terms ω∞, ρ∞, ϕ∞, µe,∞, which can easily be solved numerically.

Then, for instance at a fixed d, we can determine the value of M0 at which a

strange degree of freedom first sets in asymptotically, and repeating the

procedure for many values of d gives a curve in the M0-d plane and thus also in

the M0-L plane, shown as a blue solid curve, where regions with and without

asymptotic strangeness are labeled by “s” and “/s”.

• Stability of nuclear matter at zero pressure. If our chirally restored phase is favored

at zero pressure, it prevails for all nonzero densities and the main purpose of the

model, to develop a unified approach in the vicinity of the quark-hadron

transition, is not realized. Therefore we need to identify the parameter region in

which nuclear matter is the favored phase at zero pressure. We can compute the

line that bounds this region by computing the points in the M0-d plane at which
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chirally restored, zero-pressure matter sits exactly at µn = mN , where the

second-order onset of charge neutral, beta-equilibrated nuclear matter occurs. If

it sits at larger µn, as in Fig. 2.3 and all parameter sets of Sec. 2.4.1, there is a

chiral transition and we denote this case in Fig. 2.7 by “N”; if it sits at lower µn

there is no chiral transition and we denote this case by “Q” since it suggests that

quark matter is absolutely stable. Together with the criterion for asymptotic

strangeness we find four regions: sN, sQ, /sN, /sQ. (The M0-L plane additionally

has the region of negative d, which we do not consider.) For our purpose, the sN

region – asymptotic strangeness and absolutely stable nuclear matter – is the most

relevant.

• Realistic neutron stars. On the blue dashed curve the maximal mass of a hybrid

star is exactly 2.1 M⊙, heavier stars are sitting to the right (upper left panel) or

below (upper right panel) this curve. We have restricted this curve to the sN

region and only indicated that it also extends into the the sQ region (where there

are no hybrid stars, i.e. the maximal mass is reached by a quark star) and into

the /sN region. The resulting window in the sN region containing stars with

maximal masses compatible with astrophysical data is shaded in blue. One of

the four parameter sets of Sec. 2.4.1, indicated by asterisks, lies in that region. We

see that the shaded region is compatible with the empirical constraints for M0, and that

it defines a remarkably narrow range in L. As a measure for the largest possible

mass of the star inside the triangular region we have also computed the mass at

the tip of the triangle opposite of the dashed curve and found M ≃ 2.28 M⊙, i.e.

if a star with a larger mass than that value was measured, our shaded region

would disappear. [For the two additional parameter sets in the lower panels,

these values are M ≃ 2.36 M⊙ (green) and M ≃ 2.23 M⊙ (red).]

• Appearance of hyperons. Parameter choices above the dashed-dotted curve in the

upper right panel lead to the appearance of hyperons. More precisely, to plot

this curve we have for each d determined the M0 at which we first see the

appearance of (any) strange degrees of freedom just below the chiral phase

transition, i.e., at the lower density of the density jump. We find that hyperons

only appear for very large values of M0. Although the boundaries of the grey

band M0 ≃ (0.7 − 0.8)mN should not be taken as sharp constraints, it is unlikely

that M0 assumes such a large value. Perhaps more importantly, hyperons only
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appear in a region where the maximal masses of compact stars are well below

two solar masses. This observation puts our results into the context of the

“hyperon puzzle” [75]: while hyperons are expected to appear at sufficiently

large chemical potentials they tend to soften the equation of state and thus

render large masses of neutron stars impossible. This is exactly what our model

shows, and, importantly, within the same model a solution is suggested, namely

the appearance of a stiff chirally restored phase before a potential hyperon onset, allowing

for sufficiently heavy hybrid stars.

• Crossover. The dotted line at even larger M0 marks the change from a first-order

chiral transition to a crossover. In other words, below that line there is a

multivalued solution of the stationarity equations at high densities, and for each

d we have determined the M0 where the solution turns into a single-valued

curve. As already suggested by Fig. 2.6, the scenario of a chiral crossover is –

within our model – incompatible with realistic maximal masses of compact stars.

In the lower two panels of Fig. 2.7 we have added the curves for two different

values of the hyperon potential, U = −30 MeV and U = −70 MeV. To avoid too much

cluttering we do not show the hyperon onset and crossover lines for these cases, but

we have checked that they are also above the grey band, i.e., in an empirically

unfavored region. In the lower right panel we see that the line separating absolutely

stable nuclear matter from the region where the strange quark matter hypothesis is

realized (i.e., “N” from “Q”) looks qualitatively different for larger (less negative)

hyperon potentials. This gives rise to a second, disconnected sN region, which,

however, is disfavored due its incompatibility with the empirical constraints for M0.

We also observe that for less negative values the shaded area leaves the grey band.

Sufficiently heavy stars still exist in the grey band, but not in conjunction with

asymptotic strangeness, which tends to disappear if U is made less negative or even

positive. As we mentioned at the end of Sec. 2.3.2, in the realistic parameter regime

the hyperon potentials are effectively only relevant for the chirally restored phase,

fixing the interactions between light degrees of freedom because actual hyperons do

not appear in this parameter regime. If, on the other hand, we go to even more

negative U , the triangular region itself becomes smaller and smaller as it moves to

larger values of M0 and smaller L. As a consequence, the most important conclusion

from the lower plots is that the prediction for the value of L is not altered much by
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allowing the hyperon potential to vary. The lower left panel suggests that

independently of the value of the hyperon potential the allowed region of L turns out to be

L ≃ (88 − 92)MeV. This is a remarkably narrow range, which can be expected to

become somewhat larger by exhausting the remaining uncertainties in the

incompressibility K and the symmetry energy S.

2.5 Summary

We have discussed cold and dense matter undergoing a chiral phase transition within

a nucleon-meson model. The main idea has been to include strange baryonic degrees

of freedom in the Lagrangian, not necessarily to account for hyperons, which may or

may not be favored, but to create a chirally restored phase that resembles strange

quark matter. We have pointed out that it is possible to choose the parameters of the

model such that flavor-symmetric matter is obtained at ultra-high densities, as

expected from asymptotically dense three-flavor quark matter in QCD. However, in

this parameter regime the model does not produce compact stars with masses that

meet the astrophysical constraints. Therefore, we have mainly explored a parameter

region which is not flavor-symmetric asymptotically, but still has nonzero strangeness

for large densities and a speed of sound that approaches the conformal limit, as

expected from QCD.

Within this parameter region, we have shown that qualitatively different

scenarios are possible regarding the chiral phase transition (first order vs. crossover)

and the onset of strangeness (within the baryonic phase as hyperons vs. only in the

chirally restored phase). Requiring the model to produce compact stars of at least 2.1

solar masses and the correct saturation properties of symmetric nuclear matter

disfavors a chiral crossover and the appearance of hyperons. The heaviest stars in the

model turn out to be hybrid stars, which can be traced back to a large speed of sound

in the chirally restored phase, which peaks just after the chiral phase transition.

Furthermore, putting together low-density and astrophysical constraints we have

shown that the poorly known slope parameter of the symmetry energy is narrowed

down to about L ≃ (88 − 92)MeV. Due to the phenomenological nature of the model

and the simplifications we have made, these numbers should of course be taken with

some care.
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The main motivation for developing this setup was to provide a unified approach

for both quark and hadron phases which enables us to consistently compute

properties of matter in the vicinity of the chiral phase transition, such as the surface

tension, the free energy of a mixed phase, or the possible existence of an

inhomogeneous chiral condensate, for instance in the form of a chiral density wave

(which we deal with in Chapter 3). Especially in view of the significance of (global)

electric charge neutrality in a neutron star, the inclusion of strangeness has been a step

forward because starting with non-strange baryonic degrees of freedom leaves us with

no negative charge carriers (except for leptons) in the chirally symmetric phase. These

applications of the model are thus natural directions for the future.
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Chapter 3

Chiral crossover vs chiral density

wave in nuclear matter

3.1 Introduction

The work presented in this chapter has already been published in [2].

In the previous chapter we developed a model with the goal to obtain a

qualitatively accurate representation of the chiral phase transition, with the aim to

calculate quantities associated with it. In this chapter the goal is to investigate the

viability of an anisotropic phase (namely the Chiral Density Wave) as the ground state

of the system in this region. Due to the more complicated nature of the problem we

drop some of the features that we introduced in the previous iteration of the model,

namely the strangeness sector and the neutron star conditions. We restrict ourselves to

neutron/proton matter only and impose isospin symmetry. However, we include

something that proves to be a significant contribution to the dynamics of the system:

the Dirac sea contribution. It is a step forward in the sense that it reinforces the

theoretical foundations of our model.

3.1.1 Background and motivation

Thermodynamic phases that break rotational and/or translational invariance are

ubiquitous in condensed-matter systems and are expected to play an important role in
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the phase diagram of Quantum Chromodynamics (QCD). Cold and dense matter

governed by QCD can be found inside neutron stars and thus the properties of

anisotropic or crystalline phases are important for the understanding of astrophysical

data. Neutron stars rotate and contain strong magnetic fields, effects that tend to

stabilize anisotropic structures on a microscopic level. But, even without any external

fields, cold and dense matter is prone to developing spatial structures, typically

because a condensation mechanism becomes “stressed”. A non-uniform state can then

be stabilized as a result of competing effects, finding a balance between keeping the

kinetic energy cost small while sustaining a gain from condensation energy. In cold

and dense quark matter, a mismatch in Fermi momenta due to the nonzero strange

quark mass puts a stress on the uniform quark/quark pairing, resulting in anisotropic

or crystalline Cooper pair condensates [42, 161, 162]. Here we will be concerned with

the possibility of an anisotropic chiral condensate. In this case, the baryon chemical

potential itself imposes a stress on the condensation mechanism because chiral

condensation is based on quark/anti-quark pairing. Throughout this work we will

ignore the possibility of Cooper pairing for simplicity and consider systems without

magnetic field or rotation.

Since the anisotropic state is an intermediate phase between chirally broken and

(approximately) chirally restored phases, we expect a spatially varying chiral

condensate in the vicinity of the chiral transition1. Chiral (and deconfinement)

transitions are strong-coupling phenomena and cannot be described with perturbative

methods. Moreover, in the region of cold and dense matter, even brute-force methods

on the lattice are currently inapplicable. Therefore, for now, this regime of QCD is

inaccessible from first principles. The discussion of the chiral transition in cold and

dense matter is thus mostly limited to phenomenological models, including the study

of inhomogeneous phases in its vicinity. The vast majority of these studies have been

performed in models based on quark degrees of freedom, such as the

Nambu–Jona-Lasinio (NJL) or quark-meson model [51–63]. These models are, at best,

suitable for the high-density side of the chiral transition. However, the relevant

degrees of freedom on the low-density side, where chiral symmetry is spontaneously

broken, are nucleons. Therefore, these models only yield a toy version of the chirally

1It is conceivable that an anisotropic or inhomogeneous chiral condensate persists up to asymptotically
large densities – then in the form of quark/quark-hole pairing. However, in QCD this requires a large
number of colors [163, 164].



3.1. Introduction 67

broken phase of cold and dense QCD. Ideally, a model should account for both quark

and nuclear matter. This is a very challenging task, even on the less rigorous level of

phenomenological models. Attempts include models where quark and nucleon

degrees of freedom are combined in the Lagrangian [165] and models based on the

gauge-gravity duality, where both confined and deconfined phases arise naturally but

which are different from real-world QCD in other aspects [94–96].

3.1.2 Model and main idea

Here, we employ a nucleon-meson model [104], which offers a complementary

perspective to NJL and quark-meson models: In this approach, the low-density side

does contain the correct degrees of freedom (and we can choose the model parameters

to reproduce properties of nuclear matter at saturation). On the other hand, we have

to live with a toy version of quark matter. One of the main ideas is that, if combined,

the two complementary approaches can give solid predictions for QCD, at least on a

qualitative level. Importantly, our model does have a chiral limit, and thus knows

about the concept of a chiral phase transition. The reason is that the nucleon mass is

generated fully dynamically, in contrast to widely used models for dense nuclear

matter that contain a mass parameter in the Lagrangian, such as the Walecka model

and its variants [45, 99, 102, 166]. The model we employ was already used in the

context of the chiral transition, for instance to compute the surface tension of the

interface between the two phases [97], and strangeness was included to account for a

somewhat more realistic description of the chirally symmetric phase [1]. It was also

used to construct mixed phases under neutron star conditions [49]. A mixed phase is

another example of a spatially inhomogeneous structure, with spatial regions, for

instance bubbles, of one phase immersed in the background of another phase. In the

context of the quark-hadron transition, the possibility of mixed phases is closely

related to a first-order transition in the presence of a local charge neutrality constraint

and the relaxation of this constraint to global neutrality. In this chapter, we restrict

ourselves to isospin-symmetric nuclear matter without any neutrality condition,

where these mixed phases play no role.

Instead, we will allow for an anisotropic chiral condensate, which oscillates

between scalar and pseudoscalar components along a certain, spontaneously chosen,
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direction in position space – this is commonly referred to as a chiral density wave

(CDW)2. The CDW has been used as an ansatz for the chiral condensate in numerous

studies because of its simplicity. In particular, it does not break translational

invariance for any observable. More complicated structures have been discussed, for

instance spatial variations in the scalar component only [52, 63], variants of the chiral

density wave [168], higher-dimensional lattice structures [169, 170], all reviewed in

Ref. [171], and the possibility of a quantum spin liquid [172]. It is not the purpose of

our study to compare these different inhomogeneous phases, hence we need to keep

in mind that our CDW phase may itself be unstable with respect to a phase that does

break translational invariance.

3.1.3 Main novelties

The chiral density wave in nuclear matter was already analyzed in Refs. [64–66],

employing a model similar to ours, and in Refs. [67, 168], where an extended linear

sigma model was used, describing nucleons in a parity doublet and, in Ref. [67],

including an additional scalar field. All these works ignore the vacuum contribution

of the nucleons (the “Dirac sea”), and we will argue that this contribution makes an

important difference. This difference is important not only if a CDW is included. (In

Ref. [98] it was argued that the Dirac sea is crucial in the presence of a magnetic field.)

Even for the isotropic case, the location and nature of the chiral phase transition is

corrected significantly by the vacuum contribution, as already pointed out in the

model we use here [173]. In models with quark degrees of freedom, on the other hand,

the Dirac sea was included together with the CDW, at least in some of the above

mentioned works, see for instance Refs. [55, 59]. Implementing this contribution for

the first time into a study of the CDW in nuclear matter gives us a more realistic

picture. Moreover, we carefully discuss the renormalization needed for the Dirac sea

and point out that a suitable renormalization procedure avoids artifacts at high

density seen previously in NJL and quark-meson approaches [54, 55]. Additionally,

we will show how the CDW is affected by a quartic self-coupling of the vector meson

2Other names for the CDW exist in the literature, such as “axial wave condensation”, “dual chiral den-
sity wave”, or “chiral spiral”. The analogue in quark/quark pairing (as opposed to quark/anti-quark
pairing in the chiral condensate) is referred to as the single plane wave Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) state. The CDW is also conceptually the same as a superfluid with nonzero superflow in a fixed
direction, described by a complex scalar field whose phase varies along this direction (which can be visu-
alized as a spiral) [167].
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[100], which was not taken into account in Refs. [64–67, 168], but which has recently

been explored to account for realistic neutron stars [48, 174]. We also ask whether a

CDW is favored in a system which – in the absence of anisotropic phases – shows a

smooth chiral crossover. As we shall see, the crossover is an unavoidable consequence

of our model if the Dirac sea is included, and thus we are “forced” to work in this

scenario, which is a viable possibility in QCD [141]. And we shall see that an

anisotropic chiral condensate can indeed introduce phase transitions in an otherwise

smooth crossover. This is not unlike the Bose-Einstein

condensation/Bardeen-Cooper-Schrieffer crossover [167], which can also be disrupted

by phase transitions if there is a mismatch in Fermi momenta for the two fermion

species that form pairs [175, 176].

3.1.4 Structure of the chapter

This chapter is organized as follows. In Sec. 3.2 we introduce our model of

isospin-symmetric nuclear matter and incorporate the CDW, see Secs. 3.2.1 and 3.2.2.

Then, in Secs. 3.2.3 and 3.2.4 we derive the free energy and set up the stationarity

equations, including the Dirac sea contribution, which requires renormalization,

explained in detail in Appendix C. We explain our procedure for fitting the model

parameters in Sec. 3.2.5. Our main results are presented in Sec. 3.3, starting from the

effect of the vacuum terms on the isotropic scenario in Sec. 3.3.1. The CDW is studied

in Sec. 3.3.2 for a specific parameter set, before we present a more global view of the

parameter space in Sec. 3.3.3. We compare our results to previous approaches in the

literature regarding the treatment of the Dirac sea in Sec. 3.3.4, before we give a

summary and an outlook in Sec. 3.4.

3.2 Model and ansatz

3.2.1 Lagrangian

Our model is based on a Lagrangian containing baryonic, mesonic, and interaction

terms [1, 49, 97, 104, 173],

L = Lbar + Lmes + Lint . (3.1)
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The baryonic part is

Lbar = ψ̄(iγµ∂µ + γ0µ)ψ , (3.2)

where the nucleon spinor contains neutrons and protons, ψ = (ψn, ψp), and µ is the

baryon chemical potential. Throughout this chapter, we will restrict ourselves to

isospin-symmetric nuclear matter, where neutrons and protons are degenerate and in

particular have the same chemical potential, µn = µp ≡ µ. The Lagrangian does not

include a nucleonic mass parameter, the nucleon mass will be generated dynamically

by spontaneous chiral symmetry breaking. The mesonic part is

Lmes =
1
2

∂µσ∂µσ +
1
4

Tr[∂µπ∂µπ]− 1
4

ωµνωµν +
m2

ω

2
ωµωµ +

d
4
(︁
ωµωµ

)︁2 −U (σ, π) ,

(3.3)

where π = πaτa with the Pauli matrices τa is the pion field, where ωµν ≡ ∂µων − ∂νωµ,

where mω = 782 MeV is the vector meson mass, and where d > 0 is the

(dimensionless) self-coupling constant of the vector meson. The potential for the

sigma and pion fields takes the form

U (σ, π) =
4

∑
n=1

an

n!
(σ2 + πaπa − f 2

π)
n

2n − ϵ(σ − fπ) , (3.4)

with parameters a1, a2, a3, a4, ϵ, and the pion decay constant fπ = 93 MeV. The

potential incorporates a (small) explicit chiral symmetry breaking through the

parameter ϵ, which is proportional to the pion mass. For ϵ = 0 the Lagrangian is

invariant under chiral transformations. Finally, baryons and mesons are assumed to

interact via the Yukawa interaction

Lint = −ψ̄
[︁
gσ(σ + iγ5π) + gωγµωµ

]︁
ψ , (3.5)

with coupling constants gσ and gω.

3.2.2 Ansatz and mean-field approximation

In the simplest situation, only the fields σ and ω0 develop expectation values. We

separate them from the fluctuations, σ → ϕ + σ, ω0 → ω + ω0, where ϕ ≡ ⟨σ⟩,

ω ≡ ⟨ω0⟩ are density-dependent (and in general also temperature-dependent)

condensates. If we assume isotropy, ϕ and ω are constant in space. In our more
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general – anisotropic – ansatz we keep the vector meson condensate ω spatially

constant and introduce a spatial modulation in the sector of scalar and pseudoscalar

condensates in the form of a CDW,

σ = ϕ cos(2q⃗ · x⃗), π3 = ϕ sin(2q⃗ · x⃗) . (3.6)

Here, the wave vector q⃗ breaks rotational invariance spontaneously, and its modulus q

as well as the condensate ϕ have to be determined dynamically. We have set any

charged pion condensate to zero; its competition and possible coexistence with the

CDW is worth exploring in systems with isospin asymmetry [59, 64]. It is useful to

work with transformed fermionic fields according to

ψ → e−iγ5τ3 q⃗·x⃗ψ . (3.7)

Using this transformation and neglecting the mesonic fluctuations, we can write the

“mean-field Lagrangian” as

Lmf = ψ̄(iγµ∂µ + γ0µ∗ − M + γ5q⃗ · γ⃗ τ3)ψ +
m2

ω

2
ω2 +

d
4

ω4 − U − ∆U , (3.8)

where we have introduced the effective nucleon mass,

M = gσϕ , (3.9)

and the effective chemical potential,

µ∗ = µ − gωω . (3.10)

The mesonic vacuum potential is written as a sum of isotropic and q-dependent

contributions,

U ≡ U(ϕ) ≡
4

∑
n=1

an

n!
(ϕ2 − f 2

π)
n

2n − ϵ(ϕ − fπ) , ∆U ≡ ∆U(ϕ, q) ≡ 2ϕ2q2 + (1 − δ0q) ϵϕ .

(3.11)

The form of the q-dependent part deserves a comment. First of all, the term 2ϕ2q2

originates from the kinetic term in Eq. (3.3) and corresponds to a kinetic energy cost of

creating an axial current from the mesonic sector. Next, we notice that the explicit

symmetry breaking term in the potential (3.4) retains a spatial dependence that cannot



72 Chapter 3. Chiral crossover vs chiral density wave in nuclear matter

be transformed away by the fermionic transformation (3.7). This spatial dependence is

easy to understand: Even without the presence of nucleons the CDW ansatz (3.6) is

only a solution to the Euler-Lagrange equations for σ and π3 in the chiral limit ϵ = 0;

in that case, the solution traces a circle in the σ-π3 plane. An explicit symmetry

breaking term ϵ > 0 “tilts” the vacuum potential and the solution will no longer be

circular; the condensate will “wobble” along the spatial direction parallel to q⃗ rather

than smoothly follow a regular spiral3. This effect is ignored by working with the

simple CDW ansatz, and we will minimize the spatially averaged free energy with

respect to ϕ and q⃗ rather than attempting to work with the spatially nontrivial solution

of the Euler-Lagrange equation. (Let alone attempting to find a self-consistent solution

in the presence of the nucleons.) For convenience, we already introduce the spatial

averaging on the level of the mean-field Lagrangian. After separating the q⃗ = 0

contribution, this amounts to replacing

ϵϕ[1 − cos(2q⃗ · x⃗)] → ϵϕ

V

∫︂
d3 x⃗ [1 − cos(2q⃗ · x⃗)] = ϵϕ

[︃
1 −

sin(qLq)

qLq

]︃
→ ϵϕ , (3.12)

where V is the volume of the system and Lq its length in the direction of q⃗. In the last

step, we have taken Lq → ∞ at fixed nonzero wave number q to obtain the

contribution to ∆U given in Eq. (3.11). We see that the result does not depend on q; in

particular, taking the limit q → 0 now does not change the contribution. If, on the

other hand, we are interested in the isotropic case, we first let q → 0 and then take the

thermodynamic limit Lq → ∞, in which case the contribution (3.12) vanishes. This

q → 0 discontinuity results in the prefactor 1 − δ0q in Eq. (3.11). It implies that it is

energetically more costly by a finite amount to have an infinitesimally small winding

per unit length (i.e., wavelength going to infinity) compared to the constant

zero-winding solution. Again, this is a consequence of the explicit symmetry breaking

and our use of the CDW ansatz; the discontinuity is absent in the chiral limit ϵ = 0.

3We have solved the Euler-Lagrange equations for σ and π3 numerically in the absence of nucleons –
but with “tilt” – and found that for small ϵ the solution resembles the “shifted CDW” of Ref. [168], but
assumes more irregular shapes as ϵ is increased.
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3.2.3 Free energy

The (yet to be renormalized) free energy from the Lagrangian (3.8) is

Ω = Ωbar −
m2

ω

2
ω2 − d

4
ω4 + U + ∆U , (3.13)

with the baryonic contribution Ωbar, which is derived as follows.

We first observe that the nucleonic sector of the mean-field Lagrangian (3.8) is

formally equivalent to a Lagrangian of free fermions. The thermodynamics can thus

be straightforwardly computed without further approximations. To this end, we need

to compute the fermionic spectrum in the presence of the CDW. We first identify the

inverse nucleon propagator in momentum space,

S−1(K) = −γµKµ + M − µ∗γ0 + q⃗ · γ⃗γ5τ3 , (3.14)

where K = (k0, k⃗), and k0 = −iωn with the fermionic Matsubara frequencies

ωn = (2n + 1)πT, where T is the temperature and n ∈ Z. The poles of the propagator

S(K) are given by the zeros of the determinant of S−1(K), which can be factorized as

follows,

det S−1 = [(k0 + µ∗)
2 − (E+

k )
2]2 [(k0 + µ∗)

2 − (E−
k )

2]2 , (3.15)

with the single-nucleon energies

E±
k =

√︄(︃√︂
k2
ℓ + M2 ± q

)︃2

+ k2
⊥ . (3.16)

Here we have introduced longitudinal and transverse components of the

single-particle momentum k⃗ with respect to the direction of the CDW, k⃗ℓ = q̂ q̂ · k⃗,

k⃗⊥ = k⃗ − q̂ q̂ · k⃗. We see from Eq. (3.16) that the wave vector q⃗ introduces two different

dispersion relations which would otherwise be degenerate. In our model, the

dispersions have a very simple analytical form despite the presence of the CDW. This

will be particularly useful for the regularization of the vacuum contribution, which

can be done analytically. This is in contrast to the extended linear sigma model of Ref.

[67], where the dispersions are complicated solutions of a quartic polynomial.
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Now, following the standard procedure of thermal field theory, we can compute

the free energy density from the logarithm of the partition function. After performing

the sum over Matsubara frequencies, we obtain the baryonic contribution

Ωbar = −2 ∑
e=±

∑
s=±

∫︂ d3k⃗
(2π)3

{︃
Es

k
2

+ T ln
[︂
1 + e−(Es

k−eµ∗)/T
]︂}︃

, (3.17)

where the prefactor 2 indicates the degeneracy of neutrons and protons. The free

energy density Ω does not depend on space and thus all thermodynamic quantities

will be homogeneous as well. This reflects the fact that translation symmetry is

unbroken by the CDW – at least in the chiral limit and within our approximation also

in the presence of a nonzero pion mass. Of course, Ω does depend on the vector q⃗ and

thus the anisotropy does show up in physical observables.

In all our results we restrict ourselves to zero temperature. In this case, with

µ∗ > 0, there is no anti-particle matter, i.e., the logarithm is only nonzero for e = +1.

We obtain

Ωbar = −2(Pvac + Pmat) , (3.18)

with the (divergent) vacuum pressure of a single fermionic degree of freedom,

Pvac ≡
1

2π2 ∑
s=±

∫︂ ∞

0
dkℓ

∫︂ ∞

0
dk⊥k⊥Es

k , (3.19)

and the corresponding (finite) matter part,

Pmat ≡
1

2π2 ∑
s=±

∫︂ ∞

0
dkℓ

∫︂ ∞

0
dk⊥k⊥(µ∗ − Es

k)Θ(µ∗ − Es
k) . (3.20)

We have written the momentum integral in cylindrical coordinates and employed

invariance of the integrand under kℓ → −kℓ.
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The double integral in the matter part can be evaluated analytically. After some

tedious algebra due to the step function one can write the result as

Pmat =
Θ(µ∗ − q − M)

16π2

{︃
M2[M2 + 4q(q − µ∗)] ln

µ∗ − q + k−
M

+
k−
3
[2(µ2

∗ − q2)(µ∗ − q)− M2(5µ∗ − 13q)]
}︃

+
Θ(µ∗ + q − M)

16π2

{︃
M2[M2 + 4q(q + µ∗)] ln

µ∗ + q + k+
M

+
k+
3
[2(µ2

∗ − q2)(µ∗ + q)− M2(5µ∗ + 13q)]
}︃

+
Θ(q − µ∗ − M)

16π2

{︃
M2[M2 + 4q(q − µ∗)] ln

q − µ∗ + k−
M

− k−
3
[2(µ2

∗ − q2)(µ∗ − q)− M2(5µ∗ − 13q)]
}︃

−Θ(q − M)

8π2

[︄
M2(M2 + 4q2) ln

q +
√︁

q2 − M2

M

−
√︁

q2 − M2

3
q(2q2 + 13M2)

]︄
, (3.21)

where we have abbreviated

k± ≡
√︂
(µ∗ ± q)2 − M2 . (3.22)

As a check, one finds for q = 0,

Pmat =
Θ(µ∗ − M)

8π2

[︃
µ∗kF

(︃
2
3

k2
F − M2

)︃
+ M4 ln

µ∗ + kF

M

]︃
, (3.23)

where kF =
√︁

µ2
∗ − M2 is the Fermi momentum. This is the zero-temperature pressure

of a non-interacting fermion gas with chemical potential µ∗ and fermion mass M.

Moreover, for M = 0 we find

Pmat =
µ4
∗

12π2 , (3.24)

which is the pressure of massless fermions. In particular, the wave number q has

dropped out. This is expected since any modulation is irrelevant if the amplitude, here

M, is zero.
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The Dirac sea contribution Pvac has to be treated more carefully. We explain all

details in Appendix C and proceed here with a short summary and the final result for

the renormalized free energy. We first employ proper time regularization to identify

the divergent contributions, which we can express in terms of a proper time cutoff Λ

and a renormalization scale ℓ. Then, we renormalize our model by introducing the

renormalized field ϕr and renormalized parameters fπ,r, gσ,r, an,r, ϵr. They are related

to the bare quantities of the original Lagrangian by counterterms δan and a field

rescaling factor Z for the sigma and pion fields. The divergent parts of δan and Z are

fixed to cancel the divergences of Pvac. The q = 0 part of the Dirac sea is uniquely

determined by our fit of the model parameters to properties of nuclear matter, and no

dependence on the choice of the finite parts of δan, Z, and on the scale ℓ is left. The

q-dependent part, however, is less straightforward, and we keep the scale ℓ in the

following results to discuss our choice for it carefully. Dropping for notational

convenience the subscript r from the renormalized quantities, the calculation in

Appendix C yields

Ω = −2Pmat −
m2

ω

2
ω2 − d

4
ω4 + Ũ + ∆Ũ . (3.25)

The renormalized Dirac sea contribution is absorbed in the modified contributions to

the meson potential,

Ũ ≡ Ũ(ϕ) ≡ U(ϕ) +
m4

N
96π2 (1 − 8φ2 − 12φ4 ln φ2 + 8φ6 − φ8) , (3.26a)

∆Ũ ≡ ∆Ũ(ϕ, q) ≡ ∆U(ϕ, q)− q2M2

2π2 ln
M2

ℓ2 − q4

2π2 F(y) , (3.26b)

where

φ ≡ ϕ

fπ
=

M
mN

, (3.27)

with the nucleon mass in the vacuum mN = 939 MeV, and

F(y) ≡ 1
3
+ Θ(1 − y)

[︄
−
√︂

1 − y2 2 + 13y2

6
+ 2y2

(︃
1 +

y2

4

)︃
ln

1 +
√︁

1 − y2

y

]︄
, (3.28)

with

y ≡ M
q

. (3.29)

The terms in Ũ generated by the nucleonic Dirac sea are of order
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(ϕ2 − f 2
π)

5 ∼ (φ2 − 1)5 and higher. The reason is that we fit all coefficients in front of

(φ2 − 1)n with n ≤ 4 to reproduce physical quantities, and thus the corrections by the

Dirac sea to the terms up to order (φ2 − 1)4 are absorbed by the fit.

The q-dependent contribution of the Dirac sea in ∆Ũ contains the renormalization

scale ℓ. Let us discuss two limits that will serve us to choose ℓ. Firstly, in the vacuum,

where ω = Pmat = 0, ϕ = fπ (i.e., M = mN), we find in the chiral limit, where ϵ = 0,

vacuum: Ω = 2 f 2
πq2

(︃
1 − g2

σ

4π2 ln
m2

N
ℓ2

)︃
− q4

6π2 , (3.30)

where we have assumed q < mN , such that the step function in Eq. (3.28) vanishes.

Secondly, in the limit of large q, with all other quantities kept finite, we have

large q: Ω =
q2M2

2π2

(︃
2 +

4π2

g2
σ

− ln
4q2

ℓ2

)︃
+O(q0) . (3.31)

[F(y) contributes to the logarithm and the matter part reduces to the limit (3.24) and

thus is subleading.] We now require that for small q in the vacuum Ω = 2 f 2
πq2 +O(q4)

[55, 177] and that the free energy be bounded from below as q → ∞. Consequently, a

natural, albeit not unique, choice is

ℓ =
√︂

m2
N + (2q)2 . (3.32)

The q-dependence is crucial to avoid the unboundedness of the free energy, which was

identified as a problem in previous works in similar models [55, 177]. Since q will be

determined dynamically as we vary the chemical potential, the scale ℓ depends on the

medium. This is typical for perturbative calculations in renormalizable theories such

as QCD, if applied to nonzero temperatures and/or densities [178–180]. At the end of

Sec. 3.3.3, we shall further discuss the choice (3.32) by comparing our results to the

ones obtained with ℓ = mN , where Ω is unbounded from below.
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3.2.4 Stationarity equations

The thermodynamically stable phases are determined by minimizing the renormalized

free energy with respect to the condensates ϕ, ω, and the wave number q,

∂Ω
∂ϕ

=
∂Ω
∂ω

=
∂Ω
∂q

= 0 . (3.33)

All derivatives are taken with the two other dynamical quantities, the chemical

potential, and the scale ℓ kept fixed. The minimization with respect to q is equivalent

to requiring the total axial current to vanish; for a nonzero q this means that there will

be counter-propagating currents from the mesonic and the baryonic sectors which

cancel each other. More explicitly, the stationarity equations (3.33) read

gσns = −Ũ′
(ϕ)− 4q2ϕ

[︃
1 − g2

σ

4π2

(︃
1 + ln

M2

ℓ2

)︃]︃
− (1 − δ0q)ϵ +

gσq3

2π2 F′(y), (3.34a)

gωnB = m2
ωω + dω3 , (3.34b)

j = −4qϕ2
(︃

1 − g2
σ

4π2 ln
M2

ℓ2

)︃
+

q3

2π2 [4F(y)− yF′(y)] , (3.34c)

where we have introduced the scalar density ns, the baryon density nB, and the

contribution to the axial current from the baryons j,

ns = −2
∂Pmat

∂M
, nB = 2

∂Pmat

∂µ
, j = −2

∂Pmat

∂q
. (3.35)

These quantities are computed straightforwardly from the expression (3.21). For

completeness, and for a brief discussion of their limits, we present their explicit

expressions in Appendix C.3.

3.2.5 Fitting parameters

Since we fit our parameters to vacuum properties and the properties of nuclear matter

in the absence of the CDW, the matching procedure is very similar to our previous

works within the same model [1, 49, 97]. Due to empirical uncertainties and in order

to explore all qualitatively different scenarios of the model, we shall not simply work

with a single parameter set but explore the parameter space of the model within and
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somewhat beyond these uncertainties. It is therefore useful to explain the details of

our parameter fitting.

We first fit gσ from the vacuum mass of the nucleon, mN = gσ fπ, where we have

used that in the vacuum ϕ = fπ. Next, we compute the pion and sigma masses by

temporarily reinstating mesonic fluctuations about the q = 0 vacuum. This can be

done for instance by replacing ϕ2 → ( fπ + σ)2 + π2 in the potential Ũ from Eq. (3.26a)

and expanding in the fluctuations σ and π. The coefficients in front of the quadratic

terms π2/2, σ2/2 yield the masses squared,

m2
π =

Ũ′
( fπ) + ϵ

fπ
= a1 , m2

σ = Ũ′′
( fπ) = m2

π + f 2
πa2 . (3.36)

The first relation is used to fix a1 from the pion mass mπ. In our results, we shall

consider both the chiral limit mπ = 0 and the physical case mπ = 139 MeV. Requiring

that ϕ = fπ satisfy (3.34a) in the vacuum then gives ϵ = fπm2
π. Due to the very

uncertain (and not uniquely defined) physical value of mσ we shall not use the second

relation to fix a2, but use this relation to compute mσ once a2 is fixed from other

constraints, which is useful for a comparison to other models.

The remaining parameters are gω, a2, a3, a4, and d. We relate them to the

following properties of isospin-symmetric nuclear matter at saturation: the binding

energy EB = −16.3 MeV, leading to a chemical potential for the baryon onset

µ0 ≡ mN + EB = 922.7 MeV, the baryon density n0 = 0.153 fm−3, the effective Dirac

mass M0 ≃ (0.7 − 0.8)mN , and the incompressibility K ≃ (200 − 300)MeV. Following

Ref. [1], we denote the solution of Eq. (3.34b) at nB = n0 by

ω0 =
gωn0

m2
ω

f (x0) , (3.37)

with

f (x) ≡ 3
2x

1 − (
√

1 + x2 − x)2/3

(
√

1 + x2 − x)1/3
, x0 ≡ 3

√
3d gωn0

2m3
ω

. (3.38)

The effective chemical potential at saturation is µ∗
0 = µ0 − gωω0. Inserting this into Eq.

(3.34b) gives a quadratic equation for g2
ω with the relevant solution

g2
ω =

m2
ω

2n0
(µ0 − µ∗

0)

[︄
1 +

√︄
1 +

4dn0(µ0 − µ∗
0)

m4
ω

]︄
. (3.39)
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Since the effective chemical potential can also be written as µ∗
0 =

√︂
k2

F + M2
0 with the

Fermi momentum at saturation kF = (3π2n0/2)1/3, Eq. (3.39) is a relation between the

model parameters gω and d, all other quantities being physical parameters whose

values can be inserted later. We see that at µ0 = µ∗
0 the coupling gω vanishes, which

translates into an upper bound for M0,

M0 <
√︂

µ2
0 − k2

F ≃ 0.943 mN . (3.40)

For the remaining parameters a2, a3, a4 we set up the following three coupled

equations: the definition of the incompressibility K (see for instance Ref. [49] for

bringing the definition into the form used here), the free energy of saturated nuclear

matter being equal to that of the vacuum (here 0), and the stationarity equation for ϕ

(3.34a),

0 = Ũ′′
(ϕ) +

g2
σ

π2

(︃
k3

F + 3kF M2
0

µ∗
0

− 3M2
0 ln

µ∗
0 + kF

M0

)︃

+

6g2
σk3

F
π2

(︃
M0

µ∗
0

)︃2

K − 6k3
F

π2
g2

ω

m2
ω

[ f (x0) + x0 f ′(x0)]−
3k2

F
µ∗

0

, (3.41a)

0 =
m2

ω

2
ω2

0 +
d
4

ω4
0 − Ũ(ϕ) +

1
4π2

[︃(︃
2
3

k3
F − M2

0kF

)︃
µ∗

0 + M4
0 ln

kF + µ∗
0

M0

]︃
, (3.41b)

0 = Ũ′
(ϕ) +

gσ M0

π2

(︃
kFµ∗

0 − M2
0 ln

kF + µ∗
0

M0

)︃
, (3.41c)

where the potential Ũ and its derivatives are evaluated at saturation, ϕ = M0/gσ. The

parameters a2, a3, a4 only appear in Ũ and its derivatives. Hence, despite their tedious

look, Eqs. (3.41) form a simple system of linear equations for these parameters. As a

consequence, we can derive elementary (but very lengthy) analytical expressions for

a2, a3, a4 purely in terms of physical quantities and the model parameter d.

In our results we shall consider different values of the quartic vector meson

coupling d while keeping the aforementioned properties of symmetric nuclear matter

at saturation fixed. In order to translate this coupling constant into a more physical

quantity, we temporarily consider isospin-asymmetric matter with a Yukawa coupling

gρ between the nucleons and the rho meson. This allows us to relate our parameters to
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the symmetry energy S ≃ (30 − 34)MeV and the “slope parameter” L, which

characterizes the change of the symmetry energy under variation of the baryon

number. For the exact definitions of S and L see for instance Ref. [1], from which we

also quote the relevant relations

g2
ρ =

3π2m2
ω

k3
F

(︃
S − k2

F
6µ∗

0

)︃(︃
1 +

dω2
0

m2
ω

)︃
, (3.42a)

L =
3g2

ρn0

2(m2
ρ + dω2

0)

[︄
1 − 2d n0gωω0

(m2
ρ + dω2

0)(m2
ω + 3dω2

0)

]︄
+

k2
F

3µ∗
0

(︃
1 − K

6µ∗
0

)︃

+
g2

ωn0k2
F

2m2
ωµ∗2

0
[ f (x0) + x0 f ′(x0)] , (3.42b)

with the rho meson mass mρ ≃ 776 MeV. We shall work with S = 32 MeV, such that

these equations give us a map between d and L if all other model parameters are fixed.

The value of L is poorly known, with experimental data indicating a range

L ≃ (40 − 140)MeV [33, 123, 130–133], which is not violated for any d considered in

this work.

We summarize our fitting procedure as follows: mω and gσ are fixed in all cases

we consider, and the value of mπ fixes a1 and ϵ; then, the parameters gω, a2, a3, a4, d are

determined from µ0, n0, M0, K, L, where µ0, n0 are always taken to assume their

well-known values, while we will explore the dependence on the less well known

M0, K, L.

3.3 Results

3.3.1 Isotropic matter: absence of first-order transition due to Dirac sea

To lay the ground for the discussion of the CDW we first focus on the isotropic case

q = 0. For given M0, K, and d we can solve the stationarity equations (3.34a), (3.34b)

for ϕ, ω as functions of µ and insert the result back into Eq. (3.25) to compute the

corresponding free energy. [The stationarity equation (3.34c) is trivially solved by

q = 0.] Here, in the isotropic case, the results do not depend on the renormalization

scale ℓ. The result for the effective baryon mass M is shown in the left panel of Fig. 3.1,

where we have included four cases: with/without Dirac sea and zero/physical pion
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mass. The specific values for the model parameters needed to compute these results

are given in Table D.1 in Appendix D. We see that in the no-sea approximation the

chiral transition is of first order, for either value of the pion mass. The critical chemical

potential of the first-order chiral transition is determined by finding the point where

the free energies of chirally broken and chirally restored matter are equal. Including

the Dirac sea renders the transition second order (chiral limit) or turns it into a

crossover (physical pion mass), and moves it to significantly larger values of µ, in

accordance with Ref. [173].

Does this observation depend on the specific parameter choice? This question is

addressed in the right panel of Fig. 3.1, where we explore the behavior of the chiral

phase transition as a function of the parameter M0. In this plot we restrict ourselves to

the chiral limit to avoid any crossovers, which are difficult to display due to the

absence of a well-defined critical chemical potential. For any M0 we adjust the model

parameters such that K = 250 MeV is held fixed (as well as all other properties of

symmetric nuclear matter discussed in Sec. 3.2.5). We see that in the no-sea

approximation there is a region of small M0 – in fact covering a large part of the

physically most likely values of M0 – where there is a direct transition from the

vacuum to chirally symmetric matter. This means chirally symmetric matter is stable

at zero pressure, which is reminiscent of the strange quark matter hypothesis

[154, 155]. This interpretation is somewhat far fetched in the current approach but

becomes more sensible if strangeness is included, where indeed this behavior persists

[1]. In an intermediate range of M0 we observe a baryon onset from the vacuum to

nuclear matter, followed by a first-order chiral transition. This is the scenario of the

left panel. Then, for even larger values of M0 the chiral transition becomes second

order (and moves to extremely large µ) even in the no-sea approximation. In the

presence of the Dirac sea, the behavior is qualitatively the same for all values of M0:

The first-order baryon onset at µ = µ0 is followed by a second-order chiral transition,

shown by the black dashed curves. Even a large mesonic self-coupling d = 104 does

not change this conclusion. We have also varied the incompressibility K within the

empirically preferred regime (not shown in the plot) and never found a first-order

transition when the Dirac sea is included.

What does this imply for the case of a physical pion mass? The left panel of Fig.

3.1 shows how the second-order transition becomes a crossover if the pion mass is
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FIGURE 3.1: Effect of the nucleonic vacuum contribution (“Dirac sea”) on the chiral
phase transition. Left panel: Effective nucleon mass M as a function of the baryon
chemical potential µ with (black) and without (red) Dirac sea. Solid lines represent
stable phases, while dashed lines indicate metastable or unstable solutions. For each
color we display the chiral limit (curve connects to the M = 0 solution) and the phys-
ical case (curve asymptotes to M = 0). First-order transitions are marked by solid
vertical lines. The baryon onset (small vertical lines at µ = µ0) is the same in all cases
by construction. The parameters for this panel are M0 = 0.82 mN , K = 250 MeV,
d = 0. Right panel: Phase transitions in the chiral limit upon variation of M0, keep-
ing K = 250 MeV, for d = 0 (with and without Dirac sea) and d = 104 (for the case
with Dirac sea). Colors as in the left panel; solid (dashed) lines are first- (second-) or-
der transitions between vacuum, nuclear matter (NM) and the chirally restored phase
(χS). In the case with Dirac sea, the baryon onset occurs at µ = µ0 for all M0 and d

(solid black line, partly covered by the red line).

switched on. Therefore, the result of the right panel indicates that in the presence of a

physical pion mass the chiral transition is always a crossover (assuming isotropy).

This is the basis on which we now investigate the CDW.

3.3.2 CDW solution

We will now stick to the full calculation that takes into account the Dirac sea and only

comment on the differences to the no-sea approximation in Sec. 3.3.4. To find q > 0

solutions to the stationarity equations (3.34) it is useful to start with the chiral limit. In

this case, the CDW branch can connect continuously to the isotropic solution. The first

possibility to connect is with the q = 0 nuclear matter branch. The chemical potential

where the CDW attaches to this branch can be computed from the q → 0 limit of Eq.

(3.34c),

ℓ exp
(︃

2π2

g2
σ

)︃
= M + Θ(µ∗ − M)(µ∗ − M +

√︂
µ2
∗ − M2) , (3.43)

where M and ω (hidden in µ∗) are computed from Eqs. (3.34a) and (3.34b) with q = 0.

This equation describes the appearance of the CDW via the infinite-wavelength limit
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FIGURE 3.2: Effective nucleon mass M (left), wave number q (middle), and free energy
of the CDW phase minus that of the thermodynamically stable isotropic phase ∆Ω
(right), for the chiral limit (black) and the physical pion mass (blue), as functions of the
baryon chemical potential µ. The parameters used are M0 = 0.81mN , K = 250 MeV,
d = 104. The arrow indicates the chiral phase transition in the chiral limit (in the chiral
limit, ∆Ω is measured relative to the chirally broken phase to the left of the arrow and
relative to the chirally restored phase to the right of the arrow). The dashed lines in
the left panel are the q = 0 curves, including the baryon onset shown as a vertical
solid line, while the three markers in the middle panel indicate the points for which

we show the nucleonic Fermi surfaces in Fig. 3.3.

at finite amplitude of the chiral condensate. Secondly, the CDW can connect

continuously to the chiral solution M = 0. The corresponding q and µ can be

computed from the M → 0 limit of Eqs. (3.34a) and (3.34c), see also Appendix C.3,

π2

g2
σ

Ũ′′
(0) + µ2

∗ − µ∗q ln
⃓⃓⃓⃓
µ∗ + q
µ∗ − q

⃓⃓⃓⃓
= q2

(︃
ln

4|µ2
∗ − q2|
ℓ2 − 2 − 4π2

g2
σ

)︃
, (3.44a)

−µ∗q
2

ln
⃓⃓⃓⃓
µ∗ + q
µ∗ − q

⃓⃓⃓⃓
= q2

(︃
ln

4|µ2
∗ − q2|
ℓ2 − 1 − 4π2

g2
σ

)︃
, (3.44b)

where ω (hidden in µ∗) is computed from Eq. (3.34b) at M = 0. These equations

describe the appearance of the chiral condensate from the zero-amplitude limit with a

finite CDW wavelength. Both Eqs. (3.43) and (3.44) connect the CDW to phases of

nonzero baryon density. There is a third option for the CDW branch to end, namely in

a q ̸= 0 vacuum. These exotic vacua, in which the chiral condensate is anisotropic and

the nucleons only contribute through the Dirac sea, but not via a nonzero density, play

no role for the actual phase structure, as they are thermodynamically disfavored.

We start by discussing the CDW for a specific parameter set with fixed values of

M0, K, d, and the scale ℓ given by Eq. (3.32). Again, for the precise model parameters

used here, see Table D.1 in Appendix D. The numerical solutions are shown in Figs.

3.2 and 3.3. The main observations are as follows.

• Chiral limit. The black curves in Fig. 3.2 show that the second-order isotropic
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FIGURE 3.3: Fermi surfaces µ∗ = E+
k (red) and µ∗ = E−

k (black) in the plane of longi-
tudinal and transverse momentum components with respect to q⃗, such that the actual
2-dimensional Fermi surfaces are obtained by rotation around the k⊥ = 0 axis. The
three plots correspond to three different chemical potentials, as indicated in the mid-
dle panel of Fig. 3.2, and are calculated with the physical pion mass (and M0, K, d as

in Fig. 3.2).

chiral phase transition is replaced by two transitions at µ ≃ 0.96 GeV and

µ ≃ 1.43 GeV between which the CDW is energetically favored. The lower end

of this region is a nonzero-amplitude, infinite-wavelength transition as

described by Eq. (3.43), while the upper end of this region is a zero-amplitude,

finite-wavelength transition as described by Eqs. (3.44). The values of the

effective mass M (left panel of Fig. 3.2) show that a CDW develops in nuclear

matter, and as we move towards larger µ the effective mass decreases such that

we observe a CDW in almost chirally symmetric matter.

• Effect of explicit chiral symmetry breaking. The left panel (see zoom-in) and the

right panel of Fig. 3.2 show that in the case of a physical pion mass the CDW

solution does not connect continuously to the isotropic branch. This is due to the

term ϵϕ in ∆U (3.11), whose origin is explained below that equation. In

particular, the CDW solution admits M → 0 even if mπ is nonzero, although it

becomes energetically disfavored at a nonzero M. As a consequence, the CDW

region is now bounded by two first-order transitions and has shrunk, but not

disappeared completely. The CDW exists although, in the absence of anisotropic

phases, the chiral transition is a crossover, i.e., the crossover is disrupted by two

phase transitions that break (entrance to the CDW) and restore (exit from the

CDW) rotational symmetry.

• Fermi surfaces. In Fig. 3.3 we show the Fermi surfaces of the two fermion states

s = ± given by the dispersion relations (3.16). For each dispersion, all states in

momentum space (kℓ, k⃗⊥) are filled up to the Fermi surface defined by µ∗ = Es
k,

as indicated by the step function in Eq. (3.20). For given q, M these Fermi
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surfaces can easily be computed, and Fig. 3.3 shows them for 3 different

chemical potentials, using the physical pion mass. The chemical potentials in the

middle and right panels correspond to the two ends of the CDW region. More

exotic topologies are possible – disappearance of one of the Fermi surfaces (red)

and split of the (black) Fermi surface into two disconnected regions – but not

realized here. Even though the Fermi surfaces are symmetric under kℓ → −kℓ,

there is a nonzero axial current in the vertical direction, to counterbalance that of

the mesonic sector. The reason is that the two s = ± states contribute with

opposite sign to that current, at least for q < M, as the integral in the first line of

Eq. (C.29) shows. Therefore, for q = 0, where red and black lines would be

exactly on top of each other, no net fermionic current exists, while a net current

starts to form for q > 0 when the two Fermi surfaces no longer coincide. The

case q > M (realized in the right panel) is more complicated, because in this case

the s = − state has different regions in momentum space which contribute to the

axial current with different sign, which again can be seen from the integrand in

Eq. (C.29).

3.3.3 Locating the CDW in the parameter space

Having discussed the details of a specific parameter choice, we now turn to a more

systematic exploration of the parameter space of the model. This is necessary due to

the large empirical uncertainties in particular of the quantities M0, K, and L.

Moreover, we have to keep in mind that our model is of phenomenological nature and

we can, at best, make qualitative predictions and suggestions for QCD. Therefore,

even regions at the edges or beyond the empirically allowed regions, which appear

unlikely to be realized from the point of view of our model, may contain interesting

features that are possibly relevant for QCD.

The zero-temperature phase structure in the plane spanned by µ and the model

parameter M0 is shown in Fig. 3.4. Let us first discuss the chiral limit (left panel) and

focus on the parameters K = 250 MeV, d = 50 (black curves). There are 3 qualitatively

different scenarios.
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FIGURE 3.4: Left panel: Zero-temperature phases in the chiral limit as the model param-
eter M0 is varied, with fixed K = 250 MeV, d = 104 (NM – isotropic nuclear matter, χS
– isotropic chirally restored phase, CDW – chiral density wave). Black solid (dashed)
lines are first (second) order phase transitions. The magenta grid indicates the varia-
tion of the triple point A for K = 200, 250, 300 MeV (right to left) and d = 0, 101,2,3,4,5,6

(top to bottom). The triple point B is always at the same µ and varies in M0 by less than
0.5% as K and d are varied within the range given by the magenta grid. Right panel:
Same as left panel, but now for the physical pion mass. The pale black lines are copied
from the left panel for reference. Three additional curves (red, blue, green) are shown
for three different values of d. The markers on the curves indicate the baryon densities
nB = (6, 8, . . . , 20)n0 (from low to high µ) on the isotropic side of the first-order phase

transition.

(i) For sufficiently small effective masses at saturation, M0 ≲ 0.71mN , the chiral

transition is unaffected by the CDW, there is a second-order transition between

isotropic nuclear matter and the isotropic chirally restored phase.

(ii) For 0.71 ≲ M0/mN ≲ 0.90 we find the scenario from Fig. 3.2: There is a finite

CDW region covering the would-be isotropic chiral transition.

(iii) As we approach the point B in the figure, the transition from isotropic nuclear

matter to the CDW approaches the nuclear matter onset at µ0. For M0 beyond

that point, M0 ≳ 0.90mN , the model predicts a direct transition from the vacuum

to the CDW. This transition occurs at an M0-dependent critical chemical

potential µ < µ0, although on the scale of the plot the corresponding curve is

indistinguishable from a horizontal line. Since we know that symmetric nuclear

matter at saturation is isotropic, this appears to be an unphysical regime of our

model. However, we need to keep in mind that the chiral limit of the left panel is

unphysical anyway; and indeed, the right panel shows that this unphysical

behavior is gone for the case of a physical pion mass.
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How does the CDW region change as we vary the incompressibility K and the

meson coupling d? As a measure for the importance of the CDW we consider the

range in M0 between the points A and B, read off of the magenta grid (the point B is

essentially constant under the variations considered here). We vary K within its

empirically most likely range K ≃ (200 − 300)MeV and the quartic meson coupling

d = 0 − 106. For a connection to real-world quantities it is useful to translate the value

of d into the resulting slope parameter of the symmetry energy L and also consider the

corresponding sigma mass mσ. This translation is shown in Fig. D.1 in Appendix D.

We read off for instance that for K = 250 MeV and tracking the location of point A as

d = 0 − 106, we obtain a range of L ≃ (87 − 52)MeV and mσ ≃ (720 − 830)MeV. The

magenta grid thus illustrates for instance that the CDW becomes more important for

increasing K or increasing d (decreasing L). Fig. D.1 also relates the model parameters

to the leading-order behavior of the potential Ũ(ϕ) for large ϕ. This is interesting

because it checks the boundedness of the potential. Although there is no obvious

artifact in our results if the potential is unbounded it is useful to point out that this

does occur for small values of d and not too large values of M0, see left panel of Fig.

D.1. Unboundedness of the scalar potential after including the Dirac sea was also

observed in quark-meson models [55, 181]; there, however, affecting the entire

parameter space due to the different form of the tree-level potential.

The right panel of Fig. 3.4 shows the case of a physical pion mass. Let us first

compare the pale black curves (chiral limit, taken from the left panel) with the bold

black curve (physical pion mass). First of all, we see that the second-order chiral phase

transition line between the isotropic NM and χS phases disappears as the pion mass is

switched on. This indicates that there is no strict distinction between nuclear matter

and the chirally restored phase and a crossover is realized, as already discussed in Sec.

3.3.1. The CDW region is bounded by a first-order transition and it has retreated

significantly compared to the second-order lines. This is in accordance with the

observation of Fig. 3.2, where we have seen that the explicit chiral symmetry breaking

tends to disfavor the CDW. With the most likely empirical range M0 = (0.7 − 0.8)mN

in mind, we see from the black curve that the CDW may just about be realized, if M0 is

on the upper end of this range. Again, it is useful to consult Fig. D.1 to get an idea of

the corresponding values of L and mσ. For instance, for M0 = 0.81mN (the case used in

Sec. 3.3.2) we have L ≃ 54 MeV and mσ ≃ 1.1 GeV, which is in tension with the
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empirically expected value of the sigma mass if the sigma is identified with the

f0(500). The curves for different vector meson couplings (red, green blue) show that

the CDW becomes more relevant for larger d, as already anticipated from the chiral

limit in the left panel. Larger values of d correspond to smaller L, well within

experimental boundaries (perhaps even closer to the real-world value, judging from

the distribution of experimental results), but also to larger values of the sigma mass.

Additionally, the plot indicates that the CDW can only appear at large baryon

densities (markers on the CDW transition curves). The lowest possible densities are

about nB ∼ 6n0, and these are only realized for large, perhaps unrealistically large,

M0. (Recall that M0 has an upper bound (3.40), slightly above the scale shown here; as

this bound is approached, gω goes to zero, which decreases the sensitivity of the

results on ω and thus on d.) More realistic values of M0 require increased values of d,

leading to even higher baryon densities for the CDW onset. We have checked that

large d generally induce high densities at moderate values of the chemical potential.

These large number susceptibilities suggest that the parameter regions where our

model predicts a CDW produce soft equations of state. Therefore, it is possible that in

these parameter regions the model predicts maximum masses of neutron stars

incompatible with astrophysical observations. This remains to be verified by

computing the mass-radius curve under neutron star conditions, going beyond the

isospin-symmetric scenario considered here.

3.3.4 Comparison with different approaches to the Dirac sea

Finally, let us compare our findings with two different treatments of the Dirac sea:

firstly, in the left panel of Fig. 3.5, the use of a different renormalization scale and,

secondly, in the right panel, neglecting the Dirac sea partially or altogether. Both

comparisons are useful to relate our work to previous studies and are relevant to

future improvements in different models.

In Refs. [54, 55] it was pointed out that in the NJL model and in particular the

renormalizable quark-meson model, there is a curious behavior at large chemical

potentials if the Dirac sea is taken into account: Depending on the parameters of the

model, a re-entrance to the CDW phase can occur and this CDW “island” ends at an

unphysical boundary. Here, “unphysical” means that the CDW solution turns around
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FIGURE 3.5: Comparison of our results to other approaches regarding the nucleonic
vacuum contribution, in the plane of the model parameter M0 and the chemical po-
tential µ. In both panels K = 250 MeV, while d = 104 (left) d = 50 (right). Left
panel: Results for the choice of the scale ℓ = mN , leading to an unbounded free energy
(green), compared to our choice in Eq. (3.32) (black, copied from the right panel of Fig.
3.4). Pale lines in both colors correspond to the chiral limit, bold lines to the physical
pion mass. The inset shows the unphysical behavior in the free energy difference to
the isotropic phase ∆Ω for the unbounded case. The dotted lines (pale and bold lines
essentially on top of each other) correspond to the point where ∆Ω is minimal. Right
panel: Effect of the Dirac sea in the chiral limit. The full calculation (“all sea”) is shown
in black. The red curves are obtained by dropping the q = 0 contributions to the Dirac
sea (“q sea”). If the entire Dirac sea contribution is dropped (“no sea”) the only transi-
tion is from the vacuum directly to the CDW phase (blue line), and the CDW persists
for arbitrarily large µ. In this panel, the two cases that include the Dirac sea are com-
puted with the renormalization scale from Eq. (3.32) (this choice is only relevant for
the CDW-χS transitions, where q > 0). In both panels, solid (dashed) lines are first

(second) order phase transitions.

and continues back to smaller chemical potentials at a point where it is the favored

phase. This predicts an unphysical jump in the free energy from the CDW to the

chirally restored phase, see inset in the left panel of Fig. 3.5. This panel demonstrates

that we find exactly the same behavior if the renormalization scale is chosen to be

ℓ = mN rather than choosing the q-dependent scale (3.32): For ℓ = mN (green curves)

there are various different scenarios, depending on the value of the model parameter

M0, but in each case the CDW phase has an upper unphysical boundary (dotted line)

as just described. (At very large M0 there is no CDW region at all for a physical pion

mass and ℓ = mN .)

It is not surprising that the renormalization scale plays a crucial role here: Our

choice, as argued at the end of Sec. 3.2.3, was motivated by avoiding unboundedness

of the free energy in the q-direction. This unboundedness, in turn, was identified as a

problem in Refs. [55, 177] (but not fixed by a suitable renormalization scheme), and it

was realized in Ref. [55] that the unboundedness contributes to the unphysical
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behavior, here shown by the green curves. Due to the close similarity between the

quark-meson model and our nucleon-meson model, our results suggest that the same

renormalization procedure can remove the artifact in the quark-meson model.

As mentioned already in Sec. 3.2.3, the scale ℓ can be chosen differently while still

maintaining a bounded free energy. For instance, we can generalize

ℓ =
√︂

m2
N + (2cq)2, with a numerical factor c, which has a lower limit

c = 1/ exp(1 + 2π2/g2
σ) ≃ 0.30 if boundedness is required and, as c → 0, connects our

results continuously to the case ℓ = mN . In this work, we do, for definiteness, not

further explore the dependence of our results with respect to such variations. It

should therefore be kept in mind that the phase boundaries of the CDW phase acquire

some uncertainty in our scheme, which becomes larger for larger values of q

(corresponding to large µ), and which may be alleviated by more elaborate

approximations beyond the mean-field approach.

Turning to the second aspect of this section, we now compare our results to the

no-sea approximation, which was used in all previous works on the CDW in nucleonic

models. This comparison is done in the right panel of Fig. 3.5. For convenience, we

perform this comparison in the chiral limit because in this case all transitions are

clearly visible as phase transition lines, crossovers being excluded. We distinguish two

different approximations. The red curves are obtained by dropping only the q = 0 sea

contribution. This amounts to setting Ũ = U, i.e., dropping the difference between Ũ

and U in Eq. (3.26a), but keeping all terms in ∆Ũ (3.26b). This approximation, labeled

by “q sea” in Fig. 3.5, is reminiscent of the one used in Ref. [98], where rotational

symmetry is broken by an external magnetic field B instead of the CDW and it was

argued that the B-dependent vacuum contribution contains all important physics,

while the B = 0 vacuum contribution can be ignored without changing the results

qualitatively. We have already seen that if we are interested in the chiral phase

transition (which was not relevant in Ref. [98]), already the isotropic calculation is

affected by the Dirac sea, turning the first-order chiral transition into a crossover.

Nevertheless, in Fig. 3.5 we see that the q-sea approximation reproduces many of

the features of the full result. In contrast, if the entire sea contribution is omitted,

Ũ = U and ∆Ũ = ∆U, the result changes dramatically (blue curve). In that case, the

behavior is qualitatively the same for all values of M0: there is a first-order transition
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from the vacuum to the CDW, and the CDW persists for all values of the chemical

potential, i.e., all isotropic phases with nonzero baryon number are gone. If we repeat

the calculation for a physical pion mass (not shown in the plot) we find a parameter

region, 0.87 ≲ M0/mN ≲ 0.93, where the blue line moves above the baryon onset at

µ = µ0, opening up a pocket of isotropic nuclear matter. This is the scenario (vacuum

→ nuclear matter → CDW) found in Ref. [67] in a similar model within the no-sea

approximation, investigating only one specific parameter set. With our more global

view of the parameter space we conclude that the no-sea approximation vastly

overestimates the importance of the CDW, while the q-sea approximation is much

closer to the full result, which takes into account the entire nucleonic vacuum

contribution.

3.4 Summary

We have employed a nucleon-meson model to improve earlier studies on the

possibility of an anisotropic chiral condensate in dense, isospin-symmetric nuclear

matter. The model is based on nucleonic degrees of freedom which interact via meson

exchange. Importantly, the fermion masses are generated dynamically such that the

model can be used to study the chiral phase transition. In our ansatz for the

anisotropic chiral condensate we have restricted ourselves to the CDW, which does

not break translational invariance. We have worked at zero temperature and in the

mean-field approximation.

An important part of our study has been the nucleonic vacuum contribution. We

have argued that this contribution is already crucial in the isotropic scenario: it turns

the first-order chiral transition into a crossover. As a consequence, our main results

concern the question whether the CDW disrupts the smooth transition from nuclear

matter to approximately chirally restored matter. We have found that this is indeed

possible and have discussed the dependence of the CDW region on the model

parameters. By studying the chiral limit as well as the case of a physical pion mass, we

have shown that the CDW tends to be disfavored by explicit chiral symmetry

breaking. Independent of the choice of the parameters, we have found that within our

model the CDW can only appear at large baryon densities, nB ≳ 6n0. It is realized
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somewhere at the edges of and beyond the parameter regime empirically allowed by

nuclear saturation properties.

On a more theoretical note, we have discussed a renormalization scheme, and in

particular a certain choice of the renormalization scale, which fixes a problem pointed

out in similar models based on quark degrees of freedom. Within our scheme, there is

no re-entrance and/or unphysical behavior of the CDW at ultra-high densities and it

would be interesting to apply our scheme – possibly in modified or further improved

form – also to different phenomenological or effective models that describe the CDW

or related non-uniform phases.
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Chapter 4

Conclusion and Outlook

In our work, we have set up two variations of a nucleon meson model. The aim of the

first was to explore whether the properties of the chirally restored phase of the model

could be tuned to recreate quark matter properties, while at the same time to be able

to accommodate neutron stars consistent with current observational constraints. We

achieved to set up such a scenario, and used our model to draw conclusions about the

chiral phase transition. First, the model predicts that the chiral phase transition is of

first order at vanishing temperature. Moreover, the location of the transition is

preferred to be at relatively small µB, so that neutron stars can have a large and stiff

chirally restored inner core. Such a configuration might be crucial to explain the

heavier compact objects that we can see today (that are not black holes). Second, we

pointed out that the hyperon onset is delayed up until after the chiral phase transition.

In the context of the “hyperon puzzle”, one could avoid the softening of the equation

of state by an early transition to a stiff, chirally restored phase, without ever

introducing baryons beyond the nucleons in the system. Could this also be happening

in QCD? Finally, in view of the small region that our model restricts the slope

parameter L, one may wonder whether an extensive survey of different

phenomenological models could provide some indication about the value of this or of

other poorly constrained properties of dense matter.

In our second work we restricted ourselves to isospin symmetric matter and

removed the hyperons from the model. However, we included the Dirac sea

contribution of the nucleons, which had a significant impact on the nature of the phase
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transition, converting it to a crossover. This sheds a new light on the importance of the

Dirac sea, and directly questions the no-sea approximation in similar models. The

quark-hadron continuity proposal is also rekindled here, since there is no strict

separation between our chirally restored and broken phase. Another takeaway is that

maybe inhomogeneous phases should not only be considered in the vicinity of phase

transitions, since even the (relatively “fast”) smooth crossover is disrupted by the

appearance of the CDW. Finally, it is very likely that the CDW will not appear within

neutron stars. Even though we have not performed calculations enforcing the

beta-equilibrium and charge neutrality conditions, we do not expect them to

significantly alter this conclusion. The density that CDW has an onset is very high if

we stay within the empirical range of the physical parameters.

The qualitatively significant contribution of the sea term discussed in Chapter 3

has implications for the further development of the ideas presented in Chapter 2.

First, it will be useful to explore what is the effect of beta equilibrium, charge

neutrality and hyperon onset in the stability of the CDW. Second, due to the

disappearance of the first order phase transition, a softening is expected in the

equation of state. Consequently, the parameter region where the existence of heavy

enough compact stars is predicted will be shifted. These are points to consider if one

wants to answer whether a layer of the CDW is possible to form within the neutron

star core. In this context one may also study the competition or possible coexistence of

the CDW with quark-hadron mixed phases, which become conceivable due to the

presence of a second chemical potential associated with electric charge. Combining

and extending ideas in the two works, it would be interesting to include the strange

component of the chiral condensate ζ ∝ ⟨s̄s⟩. Not only would this more accurately

represent the chiral condensate in the model, but it would enable us to explore the

possibility of a “strangeness” CDW instead of, or along with the ordinary CDW. One

could also consider an improved ansatz for the anisotropic chiral condensate, possibly

comparing it with different inhomogeneous structures.

So far, we have also restricted ourselves to zero temperature, and extensions to

finite temperatures, desirably going beyond the mean-field approximation, would be

interesting and relevant for applications to the mergers of compact stars in the

presence of a quark-hadron transition [182, 183].



97

Another direction is trying to perform these calculations in alternative

nucleon-meson models. That could be including strange baryonic degrees of freedom

(and their chiral partners) into the extended linear sigma model of Refs. [67, 184, 185],

along the lines of Ref. [1] or [186]. The CDW has been studied in this model [67], but

without the effect of the Dirac sea.

We have also noted that the ground state of QCD at sufficiently low temperatures

is expected to have a superfluid component, possibly on both sides of the chiral phase

transition. However, in our model we have not included such a construction. It is

conceivable to include Cooper pairing, both in the chirally broken and the chirally

restored phases, and it would be interesting to see whether a version of the

color-flavor locked phase at high densities [38, 42] can be constructed. It would then

be possible to compute for instance the surface tension in the presence of Cooper

pairing consistently within a single model. Or, considering the case of a crossover, the

model might be able to provide a realization of the quark-hadron continuity in the

sense suggested by Ref. [26].

Observable signatures of an inhomogeneous phase can come from the modified

transport properties, even if equilibrium properties like the equation of state are only

weakly affected. Bulk viscosity in particular, can be important for neutron star merger

simulations, since it introduces energy dissipation. In the presence of an

inhomogeneous phase, bulk viscosity is modified, as the phase space of the particles is

getting deformed. If this modification is significant, it can alter the conclusions of

analyses like [187]. When simulating a merger, it is necessary to answer whether the

bulk viscosity generated in the presence of an inhomogeneous phase, dampens

density oscillations in a timescale relevant for the simulation. Such an effect may also

have a significant impact on the energy dissipation during the inspiral, via tidal

heating.

Another interesting question is “how would a realistic CDW phase look when it

forms within a star?” The usual, simplistic picture is that of a uniform phase.

However, given how the system evolves to create this phase, this is not a very

probable picture. As the neutron star cools down we expect it to go through a phase

transition from a homogeneous to the CDW phase. Assuming that there is no

preferred direction, each point in space is going to transition to the CDW phase, with
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the wave-vector of the modulation aligned along a random direction. As a result, the

full volume of the space will be divided into randomly aligned domains, similar to the

demagnetized phase of a ferromagnetic material. It would be interesting to calculate

the typical size of these domains, as well as the possibility of alignment under the

influence of a magnetic field or rotation.

Finally, our setup can be used for studying a possible quarkyonic phase, which

has been predicted to occur in QCD at a large number of colors Nc and may survive

for Nc = 3 [188]. This phase was for instance constructed in a model that includes

both quark and hadronic degrees of freedom [189] (besides other approaches

[96, 160, 190]). It would be interesting to see whether our more unified approach

might be able to show a transition from baryonic through quarkyonic to quark matter.
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Appendix A

Chiral setup

In this appendix we review the foundations of our model within the framework of an

SU(3)× SU(3) chiral approach. This discussion makes explicit which mesonic

degrees of freedom we have omitted and which assumptions we have made for the

structure of the interaction terms, which is useful to keep in mind for potential

extensions in the future. It also provides relations between the baryon-meson

coupling constants, some of which we employ in the main part, besides guidance from

phenomenology to fix them. Our baryonic degrees of freedom are usually

parametrized in the baryon octet as

B =

⎛⎜⎜⎜⎜⎜⎜⎝

Σ0
√

2
+

Λ√
6

Σ+ p

Σ− − Σ0
√

2
+

Λ√
6

n

Ξ− Ξ0 −
√︃

2
3

Λ

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.1)

and the kinetic part of the baryonic Lagrangian can be written as Tr[B̄iγµ∂µB]. The

scalar and pseudoscalar meson nonets are summarized in the field

Φ = S + iP = Ta(σa + iπa), where Ta = λa/2 for a = 0, . . . , 8, with the Gell-Mann
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matrices λa for a = 1, . . . , 8 and λ0 =
√

2/3 1. This is usually reparametrized as

S = Taσa =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a0
0√
2
+

σ8√
6
+

σ0√
3

a+0 κ+

a−0 − a0
0√
2
+

σ8√
6
+

σ0√
3

κ0

κ− κ̄0 −
√︃

2
3

σ8 +
σ0√

3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A.2a)

P = Taπa =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

π0
√

2
+

π8√
6
+

π0√
3

π+ K+

π− − π0
√

2
+

π8√
6
+

π0√
3

K0

K− K̄0 −
√︃

2
3

π8 +
π0√

3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A.2b)

One may now construct the potential up to a given order in Φ systematically. For

instance, up to fourth order [110],

U(Φ) = m2Tr[Φ†Φ] + λ1(Tr[Φ†Φ])2 + λ2Tr[(Φ†Φ)2]−

c(det Φ† + det Φ)− Tr[H(Φ† + Φ)] , (A.3)

with parameters m2, λ1, λ2 for the quadratic and quartic contributions, c for the chiral

anomaly term and a matrix H for a small explicit symmetry breaking. In the scalar

sector, one can trade σ0 and σ8 for non-strange and strange scalar fields by the

transformation ⎛⎝ σ

ζ

⎞⎠ =
1√
3

⎛⎝ √
2 1

1 −
√

2

⎞⎠⎛⎝ σ0

σ8

⎞⎠ . (A.4)

Omitting all other scalar fields results in S = 1
2 diag(σ, σ,

√
2ζ). As explained in the

main text we further simplify this by omitting the scalar field ζ. The pseudoscalar

nonet P is not directly relevant because we assume none of these fields to condense,

and our mean-field approach ignores the fluctuations. It is only indirectly used by

fitting one of the parameters of the meson potential (2.7) to the pion mass. Our

potential thus effectively only depends on σ, which is a drastic simplification of the

full potential (A.3). However, we have included terms of higher order than 4 in σ, to

make the connection with the previous (non-strange) version of our baryon-meson

model [49, 97].
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The vector meson nonet can be parametrized as

Vµ = Taωa
µ =

1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ρ0
µ√
2
+

ωµ√
2

ρ+µ K∗+
µ

ρ−µ −
ρ0

µ√
2
+

ωµ√
2

K∗0
µ

K∗−
µ K̄∗0

µ ϕµ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A.5)

where ωµ and ϕµ are defined by the same transformation as used in Eq. (A.4) for the

scalar mesons, ⎛⎜⎝ ωµ

ϕµ

⎞⎟⎠ =
1√
3

⎛⎜⎝
√

2 1

1 −
√

2

⎞⎟⎠
⎛⎜⎝ ω0

µ

ω8
µ

⎞⎟⎠ . (A.6)

Keeping only the fields ωµ, ϕµ, ρ0
µ, the matrix Vµ becomes diagonal, and we can write

down the two quartic structures

d1(Tr[VµVµ])2 + d2Tr[(VµVµ)2] =
d1

4
(ωµωµ + ρ0

µρ
µ
0 + ϕµϕµ)2

+
d2

8

[︂
(ωµωµ)2 + (ρ0

µρ
µ
0 )

2 + 6ωµωµρ0
νρν

0

]︂
. (A.7)

In the main text we work for simplicity with d2 = 0 (and denote d = d1). For a more

complete study of vector meson self-interactions in a chiral approach, including

axial-vector mesons and derivative interactions with three meson fields, see for

instance Refs. [191, 192].

Next, let us discuss the baryon-meson interactions. For the scalar sector, and

temporarily including the ζ field, the chirally invariant structures are

A1Tr[B̄SB] + A2Tr[B̄BS] + A3Tr[B̄B]Tr[S]

= gNσ(n̄σn + p̄σp) + gNζ(n̄ζn + p̄ζ p) + gΣσ(Σ̄
0
σΣ0 + Σ̄+

σΣ+ + Σ̄−
σΣ−)

+gΣζ(Σ̄
0
ζΣ0 + Σ̄+

ζΣ+ + Σ̄−
ζΣ−)

+gΛσΛ̄σΛ + gΛζΛ̄ζΛ + gΞσ(Ξ̄
0
σΞ0 + Ξ̄−

σΞ−) + gΞζ(Ξ̄
0
ζΞ0 + Ξ̄−

ζΞ−) . (A.8)

We have introduced 8 coupling constants, which all are linear combinations the 3

independent parameters A1, A2, A3. Therefore, one can choose 3 independent
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couplings, and the chiral structure fixes the other 5. In our approximation, where we

omit the ζ, we have 4 coupling constants and thus, if we wanted to respect the

structure given by chiral symmetry, we can choose three of them freely, say gNσ, gΣσ,

gΛσ. For the remaining coupling constant this yields the constraint

gΞσ =
3gΛσ − 2gNσ + gΣσ

2
. (A.9)

In the main part we fix all four coupling constants separately with the help of the

vacuum masses, such that this relation is (slightly) violated in our phenomenological

approach: with gNσ = 10.16, gΛσ = 12.07, gΣσ = 12.88, the relation (A.9) would yield

gΞσ = 14.38, while our fit gives gΞσ = 14.23.

Finally, for the interactions with the vector mesons, keeping only the fields ω, ρ0,

and ϕ, we find the structure

C1Tr[B̄γµVµB] + C2Tr[B̄γµBVµ] + C3Tr[B̄γµB]Tr[Vµ]

= gNω(n̄γµωµn + p̄γµωµ p) + gNϕ(n̄γµϕµn + p̄γµϕµ p) + gNρ(n̄γµρ0
µn − p̄γµρ0

µ p)

+gΣω(Σ̄
0
γµωµΣ0 + Σ̄+

γµωµΣ+ + Σ̄−
γµωµΣ−)

+gΣϕ(Σ̄
0
γµϕµΣ0 + Σ̄+

γµϕµΣ+ + Σ̄−
γµϕµΣ−)

+gΣρ(Σ̄
+

γµρ0
µΣ+ − Σ̄−

γµρ0
µΣ−) + gΛωΛ̄γµωµΛ + gΛϕΛ̄γµϕµΛ

+gΞω(Ξ̄
0
γµωµΞ0 + Ξ̄−

γµωµΞ−) + gΞϕ(Ξ̄
0
γµϕµΞ0 + Ξ̄−

γµϕµΞ−)

+gΞρ(Ξ̄
0
γµρ0

µΞ0 − Ξ̄−
γµρ0

µΞ−) . (A.10)

Here, the 11 couplings are linear combinations of the 3 independent coefficients

C1, C2, C3. Equivalently, we may write C1, C2, C3 in terms of 3 coupling constants, say

the 3 nucleonic couplings gNω, gNϕ, gNρ, and express the remaining 8 hyperonic
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couplings as

gΣω =
gNω +

√
2gNϕ − gNρ

2
, gΛω =

5gNω +
√

2gNϕ + 3gNρ

6
,

gΞω =
gNω +

√
2gNϕ + gNρ

2
,

gΣρ =
gNω −

√
2gNϕ − gNρ

2
, gΞρ =

gNω −
√

2gNϕ + gNρ

2
,

gΣϕ =
gNω + gNρ√

2
, gΛϕ =

√
2gNω + 4gNϕ − 3

√
2gNρ

6
,

gΞϕ =
gNω − gNρ√

2
. (A.11)

A particular choice for the independent coupling constants is gNϕ = 0 and

gNρ = − gNω

3 . This yields the following relations,

gΣω = gΛω = 2gΞω =
2
3

gNω , gΣρ = 2gΞρ = −2gNρ ,

gΣϕ = gΛϕ =
gΞϕ

2
=

√
2

3
gNω . (A.12)

These relations are often employed in the literature, see for instance Ref. [111] and

references therein (our sign convention for the ρ and ϕ couplings is different

compared to that reference). Also following the literature, we then fit gNω and gNρ to

reproduce saturation properties of nuclear matter, as explained in the main text. This

violates the relation gNρ = − gNω

3 . Since this relation was used to derive Eqs. (A.12) this

procedure also violates the original chiral relations (A.11). Furthermore, we relate the

ω couplings to the hyperon potential depths, ignoring the first relation of Eq. (A.12).

For example, for one of the parameter sets used in Sec. 2.4.1 we have gNω = 10.23,

gNρ = 4.14. With the first line of Eqs. (A.11) this would yield gΣω = 3.05, gΛω = 10.6,

gΞω = 7.1, while the fit to the hyperon potential U = −50 MeV (used for all parameter

sets in Sec. 2.4.1) gives the larger couplings gΣω = 14.6, gΛω = 14.5, gΞω = 16.4, see

also Table D.1. For the ρ and ϕ couplings we employ the relations in Eqs. (A.12).
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Appendix B

Asymptotic flavor symmetry

In asymptotically dense three-flavor QCD, quark matter with equal numbers of up,

down, and strange quarks is electrically neutral and beta-equilibrated. In this

appendix we ask whether our model can reproduce this symmetric situation, i.e.,

whether there is a certain choice of parameters such that our chirally restored phase

shares this property with actual quark matter. To this end, we first define the up,

down, and strange number densities according to the flavor content of the baryons,

nu = nn + 2np + nΣ0 + 2nΣ+ + nΛ + nΞ0 , (B.1a)

nd = 2nn + np + nΣ0 + 2nΣ− + nΛ + nΞ− , (B.1b)

ns = nΣ+ + nΣ− + nΣ0 + nΛ + 2(nΞ− + nΞ0) . (B.1c)

The condition nu = nd together with the neutrality condition (2.21) yields ne + nµ = 0.

The solution of the stationarity equations thus has to be consistent with µe going to

zero asymptotically. As an ansatz let us assume the following asymptotic behaviors

for µn → ∞,

µe ≃
µe,∞

µn
, σ ≃ σ∞

µ2
n

, ω ≃ ω∞µn , ϕ ≃ ϕ∞µn , ρ ≃ ρ∞

µn
, (B.2)

with coefficients µe,∞, σ∞, ω∞, ϕ∞, ρ∞ constant in the neutron chemical potential. We

shall see that this ansatz indeed leads to a valid solution of the stationarity equations,

which can also be confirmed numerically. In the neutrality equation (2.21), the only
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solution 1 solution 2 solution 3

gΣϕ gNϕ + a(gNω − gΣω) gNϕ + a(gNω − gΣω)
a2 + 1

4a
gΛω − a2 − 3

4a
gΣω

gΛϕ gNϕ + a(gNω − gΛω)
gΛω

a
−3a2 − 1

4a
gΛω +

3(a2 + 1)
4a

gΣω

gΞϕ −3a2 − 1
a2 + 1

gNϕ − 2a
a2 − 1
a2 + 1

gNω + a
3gΣω + gΛω

2
− 5a2 − 2

2(a2 + 1)
gNϕ − a

3a2 − 4
2(a2 + 1)

gNω +
3a
2

gΣω − a2 − 1
a2 + 1

gNϕ +
2a

a2 + 1
gNω

gΞω
4a

a2 + 1
gNϕ +

3a2 − 1
a2 + 1

gNω − 3gΣω + gΛω

2
7a

2(a2 + 1)
gNϕ +

5a2 − 2
2(a2 + 1)

gNω − 3
2

gΣω
2a

a2 + 1
gNϕ +

a2 − 1
a2 + 1

gNω

TABLE B.1: Three sets of conditions for the baryon-meson coupling constants, each
leading to equal number densities of the three flavors at asymptotic densities for any
value of the constant a, reproducing the behavior of asymptotically dense three-flavor
QCD. Since none of the solutions seems to allow for sufficiently heavy stars they are

not employed in the main part of the thesis.

leading-order contributions proportional to µ3
n come from np and nΞ− . Since the mass

terms are of higher order due to σ behaving like 1/µ2
n, this yields the asymptotic

condition µ∗
p = µ∗

Ξ− . Since the ρ condensate also vanishes asymptotically on account of

the ansatz (B.2), this immediately gives the relation

ω∞ =
gΞϕ − gNϕ

gNω − gΞω
ϕ∞ . (B.3)

Now, Eqs. (2.20b) and (2.20d) have leading-order contributions proportional to µ3
n

which depend only on ω∞ and ϕ∞ (and none of the other coefficients of the ansatz

(B.2)). Together with Eq. (B.3) these are three conditions for the two variables ω∞ and

ϕ∞. Thus, in order for (B.2) to be a valid solution we require (2.20b) and (2.20d) to give

the same condition. This can be translated into conditions for the coupling constants

as follows: we insert Eq. (B.3) into the leading-order contribution of Eqs. (2.20b) and

(2.20d) to eliminate ω∞. Then, we require the four coefficients of the powers ϕ0
∞, ϕ1

∞,

ϕ2
∞, ϕ3

∞ of the two equations to be identical up to a constant, say a, to find four

conditions for the coupling constants. In fact, there are three possible solutions, i.e.,

three sets of four conditions, which we show in Table B.1. As a consistency check, one

can ask whether we recover the chiral relations (A.11), which we would expect to

reproduce flavor-symmetric matter. Indeed, solution 1 with a =
√

2 is satisfied by the

chiral relations (A.11). The inverse is obviously not true: even within solution 1, since

it consists of only four conditions, there are choices for the coupling constants that

obey solution 1 but not the chiral relations (A.11) (in particular, if we allow for

arbitrary values of a). The solutions can be used to compute the corresponding ϕ∞ and

ω∞. The results are not very instructive, but we have checked that they agree with the
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numerical evaluation. Similarly, one can consider the subleading contributions in µn

to the stationarity equations to compute σ∞, µe,∞, ρ∞, but, again, we refrain from

showing these results explicitly. The main observation is that there exist choices of the

coupling constants, given by the solutions in the table, for which at asymptotically

large densities nu = nd = ns, with the flavor densities defined in Eq. (B.1). However,

we have not found a parameter set within the constraints of Table B.1 which

simultaneously fulfills all empirical constraints. Therefore, in the main text we content

ourselves with employing parameter sets that do produce asymptotic strangeness, but

not in a fraction of 1/3.
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Appendix C

Computing the Dirac sea

contribution

C.1 Regularization

In order to regularize the divergent part of the baryonic pressure Pvac (3.19) we

employ proper time regularization. First, we use

1
xa =

1
Γ(a)

∫︂ ∞

0
dτ τa−1e−τx (C.1)

to rewrite Es
k from Eq. (3.16), setting a = −1/2, x = (

√︂
k2
ℓ + M2 + sq)2 + k2

⊥. We can

then perform the k⊥ integration to obtain

Pvac = − 1
4π5/2

∫︂ ∞

0

dτ

τ5/2

∫︂ ∞

0
dkℓ e−τ(k2

ℓ+M2+q2) cosh 2qτ
√︂

k2
ℓ + M2 . (C.2)

Next, after inserting the series expansion

cosh x =
∞

∑
n=0

x2n

(2n)!
, (C.3)

we can perform the kℓ integral to obtain

Pvac =
∞

∑
n=0

∫︂ ∞

0

τ2ndτ

τ5/2 Pn , (C.4)
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where

Pn ≡ − M
8π2

(2qM)2n

(2n)!
e−τ(M2+q2)Ψ

(︃
1
2

,
3
2
+ n, τM2

)︃
, (C.5)

with the confluent hypergeometric function of the second kind Ψ(a, b, z).

For small τ we have

τ2n

τ5/2 Ψ
(︃

1
2

,
3
2
+ n, τM2

)︃
∝ τn−3 . (C.6)

Therefore, the τ integral is finite for n ≥ 3. For n = 0, 1, 2 we replace the lower

boundary by a cutoff 1/Λ2 to compute

2

∑
n=0

∫︂ ∞

1/Λ2

τ2ndτ

τ5/2 Pn = − Λ4

16π2 +
Λ2M2

8π2 +
M4

16π2

(︃
γ − 3

2
+ ln

M2 + q2

Λ2

)︃

+
q2M2

4π2

(︃
γ + ln

M2 + q2

Λ2

)︃

+
q4

96π2
3 − 8y2 − 25y4 − 6y6

(1 + y2)2 +O
(︃

1
Λ2

)︃
, (C.7)

where γ ≃ 0.577 is the Euler-Mascheroni constant and we have used the abbreviation

y as defined in Eq. (3.29).

For the terms n ≥ 3 it is easier to go back to the original expression (C.2), insert

the series (C.3), and then first perform the τ integral. With the new integration

variables k′ℓ = kℓ/q, τ′ = q2τ, abbreviating

κ2 ≡ k′2ℓ + y2 , (C.8)
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and dropping the primes again for convenience, we compute

− q4

4π5/2

∫︂ ∞

0
dkℓ

∞

∑
n=3

(2κ)2n

(2n)!

∫︂ ∞

0

τ2ndτ

τ5/2 e−τ(κ2+1)

= − q4

4π5/2

∫︂ ∞

0
dkℓ

∞

∑
n=3

Γ(2n − 3/2)
(2n)!

√
π

(2κ)2n

(κ2 + 1)2n−3/2

= − q4

6π2

∫︂ ∞

0
dkℓ

[︃
(1 + κ)3 + |1 − κ|3 − 3κ4 + 12κ2(1 + κ2)2 + 8(1 + κ2)4

4(1 + κ2)5/2

]︃

= −
(︃

M4

16π2 +
q2M2

4π2

)︃
ln

M2 + q2

M2 +
q4

96π2
5 + 24y2 + 33y4 + 6y6

(1 + y2)2

+
q4Θ(1 − y)

4π2

[︄
−
√︂

1 − y2 2 + 13y2

6
+ 2y2

(︃
1 +

y2

4

)︃
ln

1 +
√︁

1 − y2

y

]︄
. (C.9)

Adding the results (C.7) and (C.9), we obtain the compact expression

Pvac = − Λ4

16π2 +
Λ2M2

8π2 +
M4

16π2

(︃
γ − 3

2
+ ln

M2

Λ2

)︃

+
q2M2

4π2

(︃
γ + ln

M2

Λ2

)︃
+

q4

4π2 F(y) +O
(︃

1
Λ2

)︃
, (C.10)

with F(y) defined in Eq. (3.28).

C.2 Renormalization

Removing the divergences in Eq. (C.10) requires renormalization. To this end, we first

introduce a renormalization scale ℓ and drop the terms of order 1/Λ2 and higher to

rewrite Eq. (C.10) as

−2Pvac =
Λ4

8π2 − Λ2M2

4π2 −
(︃

M4

8π2 +
q2M2

2π2

)︃(︃
γ − 3

2
+ ln

ℓ2

Λ2

)︃

− M4

8π2 ln
M2

ℓ2 − q2M2

2π2

(︃
ln

M2

ℓ2 +
3
2

)︃
− q4

2π2 F(y) .

(C.11)

We have also reinstated the isospin degeneracy factor 2 and a minus sign to obtain the

total vacuum contribution from neutrons and protons to the free energy, cf. Eq. (3.18).
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Next, we interpret the following fields and parameters in the Lagrangian as bare

quantities, related to the corresponding renormalized quantities via

ϕ = Z1/2ϕr , fπ = Z1/2 fπ,r , gσ =
gσ,r

Z1/2 , an =
an,r + f 4−2n

π,r δan

Zn , ϵ =
ϵr

Z1/2 ,

(C.12)

where we have introduced the dimensionless field rescaling factor Z and the

dimensionless counterterms δan. The rescaling of ϕ follows from rescaling

σ = Z1/2σr, πa = Z1/2πa,r in the original Lagrangian. The remaining fields and

parameters of the Lagrangian are assumed to be already in their renormalized form.

Therefore, the only terms in the mean-field Lagrangian (3.8) affected by the

renormalization (C.12) are

U + ∆U =
4

∑
n=1

an,r + f 4−2n
π,r δan

n!
(ϕ2

r − f 2
π,r)

n

2n − ϵr(ϕr − fπ,r) + 2Zϕ2
r q2 + (1 − δ0q)ϵrϕr

= (U + ∆U)r + f 4
π,r

[︃(︃
−δa1

2
+

δa2

8
− δa3

48
+

δa4

384

)︃

+

(︃
δa1

2
− δa2

4
+

δa3

16
− δa4

96

)︃
φ2 +

(︃
δa2

8
− δa3

16
+

δa4

64

)︃
φ4

+

(︃
δa3

48
− δa4

96

)︃
φ6 +

δa4

348
φ8
]︃
+ 2(Z − 1)ϕ2

r q2 , (C.13)

where (U + ∆U)r is given by U and ∆U from Eq. (3.11) with ϕ, fπ, an, ϵ replaced by

their renormalized versions, and where φ is defined in Eq. (3.27).

We observe from Eq. (C.11) that we need to cancel divergent terms in Pvac

proportional to M2, M4, and q2M2. Since M and q are dynamical quantities that

depend on the medium, this cancelation has to be done order by order with the help

of the counterterms in Eq. (C.13). To make the cancelation explicit we divide the

counterterms and the field rescaling into divergent and finite parts,

δan = δaΛ
n + δaf

n , Z = ZΛ + Zf . (C.14)
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The divergent terms proportional to M2 and M4 are then canceled (and no new

divergences introduced) by the choice

δaΛ
1 =

g4
σ,r

2π2

(︃
Λ2

m2
N
+ ln

ℓ2

Λ2 + γ − 3
2

)︃
, δaΛ

2 =
g4

σ,r

π2

(︃
ln

ℓ2

Λ2 + γ − 3
2

)︃
,

δaΛ
3 = δaΛ

4 = 0 , (C.15)

while the divergent term proportional to q2M2 is canceled by

ZΛ =
g2

σ,r

4π2

(︃
ln

ℓ2

Λ2 + γ − 3
2

)︃
. (C.16)

Besides the divergent terms, the vacuum contribution (C.11) also contains finite

logarithmic terms, with prefactors M4 and q2M2. Let us start with the logarithmic

term with prefactor M4. We combine this contribution with the finite part of the

counterterms δaf
n. While for the identification of the divergent parts of the

counterterms we applied an expansion in φ (C.13), we now expand about the vacuum,

i.e., in φ2 − 1, to write

4

∑
n=1

an,r + f 4−2n
π,r δaf

n

n!
(ϕ2

r − f 2
π,r)

n

2n − M4

8π2 ln
M2

ℓ2

= − m4
N

8π2 ln
m2

N
ℓ2 +

4

∑
n=1

An

n!
(φ2 − 1)n

2n +
m4

N
4π2

∞

∑
n=5

(−1)n(φ2 − 1)n

n(n − 1)(n − 2)
, (C.17)

where

A1 ≡ f 2
π,ra1,r + f 4

π,r

[︄
δaf

1 −
g4

σ,r

4π2

(︃
1 + 2 ln

m2
N
ℓ2

)︃]︄
,

A2 ≡ f 4
π,ra2,r + f 4

π,r

[︄
δaf

2 −
g4

σ,r

2π2

(︃
3 + 2 ln

m2
N
ℓ2

)︃]︄
,

A3 ≡ f 6
π,ra3,r + f 4

π,r

(︄
δaf

3 −
2g4

σ,r

π2

)︄
, A4 ≡ f 8

π,ra4,r + f 4
π,r

(︄
δaf

4 +
4g4

σ,r

π2

)︄
.(C.18)

The new coefficients An entirely encode the form of the scalar potential and they will

be fixed to physical properties of the vacuum and saturated nuclear matter. As a

consequence, the choice of the renormalization scale and the finite counterterms is

irrelevant here; for any particular choice of ℓ and δaf
n the coefficients an,r can be
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readjusted to reproduce the desired values for An. This implies that the form of the

original mesonic potential, which contains terms (φ2 − 1)n for n = 1, 2, 3, 4, is not

altered by the renormalization scheme, although the coefficients of these terms will

assume different values due to the Dirac sea. The reason is the presence of the

higher-order terms (φ2 − 1)n for n ≥ 5, given by the last term in Eq. (C.17). They do

not depend on any free parameters and cannot be eliminated by any choice of the

renormalization scale or the counterterms. We can rewrite this infinite sum in the

closed form

m4
N

4π2

∞

∑
n=5

(−1)n(φ2 − 1)n

n(n − 1)(n − 2)
=

m4
N

96π2 (1 − 8φ2 − 12φ4 ln φ2 + 8φ6 − φ8) . (C.19)

Next, we consider the logarithmic term with a q-dependent prefactor in Eq. (C.11).

Combining this term with the finite part of the field rescaling from Eq. (C.13), we write

2(Zf − 1)ϕ2
r q2 − q2M2

2π2

(︃
ln

M2

ℓ2 +
3
2

)︃
= −q2M2

2π2 ln
M2

ℓ2 , (C.20)

where we have set

Zf = 1 +
3g2

σ,r

8π2 . (C.21)

This choice leaves a renormalization scale dependence, in contrast to the case of the

q-independent contribution. As we discuss in the main text, this renormalization scale

dependence gives us an important freedom to eliminate unphysical properties of our

effective potential.

Putting everything together, we can write

−2Pvac + U + ∆U =
Λ4

8π2 − Λ2m2
N

4π2 − m4
N

8π2

(︃
ln

m2
N

Λ2 − 3
2
+ γ

)︃
+ Ũ + ∆Ũ , (C.22)
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where we have absorbed the effects from the nucleonic Dirac sea into a new effective

potential, given by

Ũ =
4

∑
n=1

An

n!
(φ2 − 1)n

2n − ϵr(ϕr − fπ,r)

+
m2

N
96π2 (1 − 8φ2 − 12φ4 ln φ2 + 8φ6 − φ8) , (C.23a)

∆Ũ = 2ϕ2
r q2

(︄
1 −

g2
σ,r

4π2 ln
M2

ℓ2

)︄
− q4

2π2 F(y) + (1 − δ0q)ϵrϕr . (C.23b)

As for the original potential, we have separated the q-dependent part ∆Ũ such that the

potential reduces to Ũ for q = 0. Dropping the irrelevant (divergent, but constant)

terms in Eq. (C.22), denoting the renormalized quantities for simplicity without the

subscript r and renaming An/ f 2n
π → an, we arrive at the result (3.25) given in the main

text.

C.3 Matter contributions to densities and axial current

In this appendix we present the explicit expressions for the matter contributions to the

stationarity equations (3.34). The baryon density from a single nucleonic degree of

freedom is

∂Pmat

∂µ
=

1
2π2 ∑

s=±

∫︂ ∞

0
dkℓ

∫︂ ∞

0
dk⊥k⊥Θ(µ∗ − Es

k)

= −Θ(µ∗ − q − M)

4π2

{︃
M2q ln

µ∗ − q + k−
M

+
k−
3
[2(M2 − µ2

∗) + q(q + µ∗)]

}︃

+
Θ(µ∗ + q − M)

4π2

{︃
M2q ln

µ∗ + q + k+
M

− k+
3
[2(M2 − µ2

∗) + q(q − µ∗)]

}︃

−Θ(q − µ∗ − M)

4π2

{︃
M2q ln

q − µ∗ + k−
M

− k−
3
[2(M2 − µ2

∗) + q(q + µ∗)]

}︃
,

(C.24)

with k± from Eq. (3.22). To obtain the baryon density nB in the stationarity equation

(3.34b) the result has to be multiplied by 2 due to the (degenerate) contributions from



116 Chapter C. Computing the Dirac sea contribution

neutrons and protons. One easily checks that one obtains the expected limits

∂Pmat

∂µ
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ(µ∗ − M)k3

F
3π2 for q = 0

µ3
∗

3π2 for M = 0

(C.25)

In particular, the density does not depend on q for zero fermion mass M = 0.

The scalar density is given by

−∂Pmat

∂M
=

1
2π2 ∑

s=±

∫︂ ∞

0
dkℓ

∫︂ ∞

0
dk⊥k⊥

M
Es

k

⎛⎝1 +
sq√︂

k2
ℓ + M2

⎞⎠Θ(µ − Es
k)

= −Θ(µ∗ − q − M)M
4π2

{︃
[M2 + 2q(q − µ∗)] ln

µ∗ − q + k−
M

− (µ∗ − 3q)k−

}︃

−Θ(µ∗ + q − M)M
4π2

{︃
[M2 + 2q(q + µ∗)] ln

µ∗ + q + k+
M

− (µ∗ + 3q)k+

}︃

−Θ(q − µ∗ − M)M
4π2

{︃
[M2 + 2q(q − µ∗)] ln

q − µ∗ + k−
M

+ (µ∗ − 3q)k−

}︃

+
Θ(q − M)M

2π2

[︄
(M2 + 2q2) ln

q +
√︁

q2 − M2

M
− 3q

√︂
q2 − M2

]︄
. (C.26)

In this case, we recover the well-known expression for q = 0,

−∂Pmat

∂M
=

Θ(µ∗ − M)M
2π2

(︃
µ∗kF − M2 ln

µ∗ + kF

M

)︃
, (C.27)

while for small M we find the expansion

−∂Pmat

∂M
=

M
2π2

(︃
µ2
∗ − µ∗q ln

⃓⃓⃓⃓
µ∗ + q
µ∗ − q

⃓⃓⃓⃓
− q2 ln

⃓⃓⃓⃓
µ2
∗

q2 − 1
⃓⃓⃓⃓)︃

+O(M3) , (C.28)

which confirms that Eq. (3.34a) is solved by M = 0 in the chiral limit ϵ = 0.
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Finally, the axial current from a single nucleonic degree of freedom is

− ∂Pmat

∂q
=

1
2π2 ∑

s=±
s
∫︂ ∞

0
dkℓ

∫︂ ∞

0
dk⊥k⊥

√︂
k2
ℓ + M2 + sq

Es
k

Θ(µ − Es
k)

=
Θ(µ∗ − q − M)

4π2

[︃
M2(µ∗ − 2q) ln

µ∗ − q + k−
M

− k−
3
(4M2 − µ2

∗ − µ∗q + 2q2)

]︃

−Θ(µ∗ + q − M)

4π2

[︃
M2(µ∗ + 2q) ln

µ∗ + q + k+
M

− k+
3
(4M2 − µ2

∗ + µ∗q + 2q2)

]︃

+
Θ(q − µ∗ − M)

4π2

[︃
M2(µ∗ − 2q) ln

q − µ∗ + k−
M

+
k−
3
(4M2 − µ2

∗ − µ∗q + 2q2)

]︃

+
Θ(q − M)

π2

[︄
M2q ln

q +
√︁

q2 − M2

M
−
√︁

q2 − M2

3
(2M2 + q2)

]︄
. (C.29)

The current is linear in q for small q,

−∂Pmat

∂q
= −q

Θ(µ∗ − M)M2

π2 ln
µ∗ + kF

M
+O(q2) , (C.30)

while it is quadratic in M for small M,

−∂Pmat

∂q
= − M2

2π2

(︃
µ∗
2

ln
⃓⃓⃓⃓
µ∗ + q
µ∗ − q

⃓⃓⃓⃓
+ q ln

⃓⃓⃓⃓
µ2
∗

q2 − 1
⃓⃓⃓⃓)︃

+O(M4) . (C.31)
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Appendix D

Model parameters

In this appendix we, firstly, present – for completeness and replicability – the model

parameters used for the specific cases discussed in Secs. 3.3.1 and 3.3.2, see Table D.1.

gω a2 a3[MeV−2] a4[MeV−4] d M0/mN L[MeV] mσ[MeV] mπ[MeV] sea

7.574 59.94 −9.427 × 10−3 1.188 × 10−4 0 0.82 87.3 708 0 –
7.574 57.75 −2.247 × 10−2 8.612 × 10−5 0 0.82 87.3 708 0 ✓
7.574 57.66 −8.892 × 10−3 1.178 × 10−4 0 0.82 87.3 707 139 –
7.574 55.48 −2.193 × 10−2 8.512 × 10−5 0 0.82 87.3 707 139 ✓

12.45 130.8 0.4333 7.850 × 10−4 104 0.81 53.8 1063 0 ✓
12.45 128.5 0.4338 7.840 × 10−4 104 0.81 53.8 1063 139 ✓

TABLE D.1: Parameter sets together with resulting physical quantities used for the left
panel of Fig. 3.1 (top four rows) and for Fig. 3.2 (bottom two rows). In all cases, K =
250 MeV, and the remaining vacuum and saturation properties not shown here are
fixed to their physical values. To compute L we always use a value for the symmetry
energy of S = 32 MeV. The last column indicates whether the Dirac sea is taken into

account or not, which is relevant for the parameter fit.

In our main results in Sec. 3.3.3, the parameters are varied continuously.

Therefore, secondly, we present the most relevant physical information about these

continuous parameter sets in Fig. D.1. This figure shows the slope parameter of the

symmetry energy L and the sigma mass mσ for different values of the vector meson

self-coupling and the incompressibility as a function of the effective nucleon mass at

saturation, computed from Eqs. (3.42b) and (3.36). Additionally, we show the

coefficient of the leading-order term of the effective potential for large chiral

condensates,

Ũ(ϕ) = a(8)ϕ
8 +O(ϕ6) , a(8) ≡

1
96

(︃
a4

4
− g4

σ

π2 f 4
π

)︃
. (D.1)
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The sign of a(8) indicates whether the potential is bounded from below for large ϕ. The

Dirac sea contribution is negative and thus tends to render the potential unbounded,

which is indeed the case for small vales of d and not too large values of M0, as the

figure demonstrates.

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0

2

4

6

8

M0/mN

a (
8)
[1
0-
6
M
eV

4
]

d=0

d=102

d=104

d=106

0.60 0.65 0.70 0.75 0.80 0.85 0.90
40

50

60

70

80

90

100

110

M0/mN

L
[M
eV

]

0.60 0.65 0.70 0.75 0.80 0.85 0.90

400

600

800

1000

1200

M0/mN

m
σ
[M
eV

]

FIGURE D.1: Leading-order coefficient of the effective potential a(8), slope parameter
of the symmetry energy L, and sigma mass mσ, as the effective nucleon mass at sat-
uration M0 is varied, with all other saturation properties kept fixed. In each panel,
the results for 4 different values of the vector meson self-coupling d are shown, corre-
sponding to the 4 values in the right panel of Fig. 3.4. The bands indicate the range
between K = 200 MeV (solid lines) and K = 300 MeV (dashed lines). All curves are
calculated with the physical pion mass. The chiral limit gives slightly different curves

but the differences would barely be visible on the scale of these plots.
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Vuorinen. Evidence for quark-matter cores in massive neutron stars. Nature

Phys., 16(9):907–910, 2020. .



128 REFERENCES

[78] Roger W Romani, D Kandel, Alexei V Filippenko, Thomas G Brink, and

WeiKang Zheng. Psr j0952- 0607: The fastest and heaviest known galactic

neutron star. The Astrophysical Journal Letters, 934(2):L17, 2022.

[79] Isaac Legred, Katerina Chatziioannou, Reed Essick, Sophia Han, and Philippe

Landry. Impact of the psr j 0740+ 6620 radius constraint on the properties of

high-density matter. Physical Review D, 104(6):063003, 2021.

[80] J. S. Langer and L. A. Turski. Hydrodynamic model of the condensation of a

vapor near its critical point. Phys. Rev. A, 8:3230–3243, Dec 1973. .

[81] L. A. Turski and J. S. Langer. Dynamics of a diffuse liquid-vapor interface. Phys.

Rev. A, 22:2189–2195, Nov 1980. .

[82] Laszlo P. Csernai and Joseph I. Kapusta. Nucleation of relativistic first order

phase transitions. Phys. Rev. D, 46:1379–1390, 1992. .

[83] Sidney R. Coleman. The Fate of the False Vacuum. 1. Semiclassical Theory. Phys.

Rev., D15:2929–2936, 1977. . [Erratum: D16, 1248 (1977)].

[84] Curtis G. Callan, Jr. and Sidney R. Coleman. The Fate of the False Vacuum. 2.

First Quantum Corrections. Phys. Rev. D, 16:1762–1768, 1977. .

[85] Mark G. Alford, Sophia Han, and Madappa Prakash. Generic conditions for

stable hybrid stars. Phys. Rev. D, 88(8):083013, 2013. .

[86] Jan-Erik Christian, Andreas Zacchi, and Jürgen Schaffner-Bielich. Signals in the

tidal deformability for phase transitions in compact stars with constraints from

GW170817. Phys. Rev., D99(2):023009, 2019. .
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cores. Mon. Not. Roy. Astron. Soc., 512(4):5110–5121, 2022. .

[94] Kazem Bitaghsir Fadafan, Farideh Kazemian, and Andreas Schmitt. Towards a

holographic quark-hadron continuity. JHEP, 03:183, 2019. .

[95] Takaaki Ishii, Matti Järvinen, and Govert Nijs. Cool baryon and quark matter in

holographic QCD. JHEP, 07:003, 2019. .

[96] Nicolas Kovensky and Andreas Schmitt. Holographic quarkyonic matter. JHEP,

09:112, 2020. .

[97] Eduardo S. Fraga, Maurı́cio Hippert, and Andreas Schmitt. Surface tension of

dense matter at the chiral phase transition. Phys. Rev. D, 99(1):014046, 2019. .

[98] Alexander Haber, Florian Preis, and Andreas Schmitt. Magnetic catalysis in

nuclear matter. Phys. Rev., D90(12):125036, 2014. .

[99] J. Boguta and A. R. Bodmer. Relativistic Calculation of Nuclear Matter and the

Nuclear Surface. Nucl. Phys. A, 292:413–428, 1977. .

[100] Y. Sugahara and H. Toki. Relativistic mean field theory for unstable nuclei with

nonlinear sigma and omega terms. Nucl. Phys. A, 579:557–572, 1994. .

[101] Jurgen Schaffner and Igor N. Mishustin. Hyperon rich matter in neutron stars.

Phys. Rev. C, 53:1416–1429, 1996. .

[102] Mark G. Alford and Alexander Haber. Strangeness-changing Rates and

Hyperonic Bulk Viscosity in Neutron Star Mergers. Phys. Rev. C, 103(4):045810,

2021. .



130 REFERENCES

[103] Matthias Drews, Thomas Hell, Bertram Klein, and Wolfram Weise.

Thermodynamic phases and mesonic fluctuations in a chiral nucleon-meson

model. Phys.Rev., D88(9):096011, 2013. .

[104] Matthias Drews and Wolfram Weise. From asymmetric nuclear matter to

neutron stars: a functional renormalization group study. Phys. Rev., C91(3):

035802, 2015. .

[105] Armen Sedrakian and John W. Clark. Superfluidity in nuclear systems and

neutron stars. Eur. Phys. J. A, 55(9):167, 2019. .

[106] H. T. Cromartie et al. Relativistic Shapiro delay measurements of an extremely

massive millisecond pulsar. Nature Astron., 4(1):72–76, 2020. .

[107] E. Fonseca et al. Refined Mass and Geometric Measurements of the High-mass

PSR J0740+6620. Astrophys. J. Lett., 915(1):L12, 2021. .

[108] J. Moreira, B. Hiller, W. Broniowski, A. A. Osipov, and A. H. Blin. Nonuniform

phases in a three-flavor Nambu-Jona-Lasinio model. Phys. Rev. D, 89(3):036009,

2014. .

[109] V. Dexheimer and S. Schramm. Proto-Neutron and Neutron Stars in a Chiral

SU(3) Model. Astrophys. J., 683:943–948, 2008. .

[110] Jonathan T. Lenaghan, Dirk H. Rischke, and Jurgen Schaffner-Bielich. Chiral

symmetry restoration at nonzero temperature in the SU(3)(r) x SU(3)(l) linear

sigma model. Phys. Rev. D, 62:085008, 2000. .

[111] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich. Hyperons and massive

neutron stars: the role of hyperon potentials. Nucl. Phys. A, 881:62–77, 2012. .

[112] A. R. Bodmer. Relativistic mean field theory of nuclei with a vector meson

selfinteraction. Nucl. Phys. A, 526:703–721, 1991. .

[113] C. J. Horowitz and J. Piekarewicz. Constraining URCA cooling of neutron stars

from the neutron radius of Pb-208. Phys. Rev. C, 66:055803, 2002. .

[114] Veronica Dexheimer, Rosana de Oliveira Gomes, Stefan Schramm, and Helena

Pais. What do we learn about vector interactions from GW170817? J. Phys. G, 46

(3):034002, 2019. .



REFERENCES 131

[115] Eduardo S. Fraga and Ana Julia Mizher. Chiral transition in a strong magnetic

background. Phys. Rev. D, 78:025016, 2008. .

[116] Ana Julia Mizher, M. N. Chernodub, and Eduardo S. Fraga. Phase diagram of

hot QCD in an external magnetic field: possible splitting of deconfinement and

chiral transitions. Phys. Rev. D, 82:105016, 2010. .
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