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Abstract: The aviation industry currently faces several challenges in inspecting and di-
agnosing aircraft structures. Current aircraft inspection methods still need to be fully
automated, making early detection and precise sizing of defects difficult. Researchers have
expressed concerns about current aircraft inspections, citing safety, maintenance costs, and
reliability issues. The next generation of aircraft inspection leverages semi-autonomous and
fully autonomous systems integrating robotic technologies with advanced Non-Destructive
Testing (NDT) methods. Active Thermography (AT) is an example of an NDT method
widely used for non-invasive aircraft inspection to detect surface and near-surface defects,
such as delamination, debonding, corrosion, impact damage, and cracks. It is suitable
for both metallic and non-metallic materials and does not require a coupling agent or
direct contact with the test piece, minimising contamination. Visual inspection using an
RGB camera is another well-known non-contact NDT method capable of detecting surface
defects. A newer option for NDT in aircraft maintenance is 3D scanning, which uses
laser or LiDAR (Light Detection and Ranging) technologies. This method offers several
advantages, including non-contact operation, high accuracy, and rapid data collection.
It is effective across various materials and shapes, enabling the creation of detailed 3D
models. An alternative approach to laser and LiDAR technologies is photogrammetry.
Photogrammetry is cost-effective in comparison with laser and LiDAR technologies. It can
acquire high-resolution texture and colour information, which is especially important in
the field of maintenance inspection. In this proposed approach, an automated vision-based
damage evaluation system will be developed capable of detecting and characterising de-
fects in metallic and composite aircraft specimens by analysing 3D data acquired using an
RGB camera and a IRT camera through photogrammetry. Such a combined approach is
expected to improve defect detection accuracy, reduce aircraft downtime and operational
costs, improve reliability and safety and minimise human error.

Keywords: aircraft inspection; defect detection; thermography; visual inspection; defect
estimation; photogrammetry; machine-learning; NDT; composites; metallic
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1. Introduction
1.1. Structure of the Article

The structure of this article is divided into five chapters. It begins with an introduction
to the topic, followed by an overview of common methods and techniques for detecting
defects in aircraft structures. The discussion chapter highlights this work’s potential
contributions to the field and concludes with suggestions for future research on automating
aircraft inspections.

Section 1: Introduction—This chapter introduces the challenges of inspecting aircraft
structures and explains the importance of automation. It highlights the need to improve
safety and efficiency and reduce operating and maintenance costs.
Section 2: Materials and Methods—This chapter analyses the tools, methods, and tech-
niques used, such as thermography, visual, and 3D scanning. It also explores common
materials used in the aviation industry, including strengths and limitations, as well as the
most common types of defects that appear during inspection. Special attention is given to
how artificial intelligence could support these processes to enhance accuracy and reliability.
Section 3: Discussion—This chapter emphasises the intellectual contributions of this re-
search and its potential impact on the aviation industry, the non-destructive testing (NDT)
field, and academia.
Section 4: Conclusions—This chapter summarises the findings, highlighting the value of
automated inspection. It stresses the importance of integrating AI with advanced tools to
enhance outcomes and reduce human errors.
Section 5: Future Directions—This section looks ahead, discussing the scientific aim and
the specific objectives this work is willing to address.

1.2. Aircraft Structures and Defect Locations

Aircraft structures are engineered to withstand high aerodynamic loads, temperature
variations, and operational stress. The primary structural components, as illustrated in
Figure 1, include:

• Fuselage: The main body of the aircraft, housing passengers, crew, and cargo.
• Wings: Provide lift and house fuel tanks and control surfaces.
• Empennage (Tail Section): Ensures stability and control through the horizontal and

vertical stabilisers.
• Landing Gear: Supports the aircraft during takeoff, landing, and taxiing.
• Jet Engines: Generate thrust for propulsion.

Over time, these structures are exposed to various mechanical, environmental, and
operational stressors, leading to material degradation and defects.

Aircraft materials are primarily metallic (e.g., aluminium, titanium) and composite
(e.g., carbon fibre-reinforced polymers, honeycomb structures). As shown in Figure 1, each
material type is prone to specific defects based on its composition and operational function.

• Metallic Defects

# Fuselage: Fatigue cracks, corrosion, pores, and material inclusions.
# Doors and Structural Joints: Welding issues, foreign inclusions, and adhesive failures.
# Landing Gear: Overload, wear, and creep due to repeated impact forces.

• Composite Defects

# Wings: Delamination, fibre/matrix cracking, and impact damage.
# Tail (Vertical/Horizontal Stabilisers): Honeycomb cell wall damage, core crushing,
and skin-to-core debonding.
# Jet Engines: Thermal stress cracking due to high-temperature exposure.
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The early detection of these defects is critical to maintaining aircraft safety, perfor-
mance, and lifespan.
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Effective maintenance strategies are essential, given the financial impact of aircraft
downtime and structural repairs. Non-Destructive Testing (NDT) and AI-based inspection
techniques are increasingly being adopted to reduce operational costs, optimise mainte-
nance schedules, and enhance defect detection accuracy.

1.3. Aircraft Maintenance and Cost Analysis

Aircraft maintenance is crucial in ensuring aircraft reliability, safety, and durability in
the aviation industry. In 2022, IATA [2] published a comprehensive report on maintenance
cost data. Thirty-one airlines contributed to this report; more specifically, 32,070 aircraft
were analysed. The total amount the airlines spent on Maintenance, Repair and Overhaul
(MRO) was $76.8 Billion, representing approximately 10.9% of the total airline operational
costs ($722 Billion). Another interesting observation from this report was the Global
MRO Spend Forecast from 2019 to 2033. Airlines tend to invest more and more money
yearly to improve maintenance. Cranfield University [3] estimated the economic impact
of an aircraft being out of service due to unscheduled maintenance. The estimated daily
losses are approximately £200,000 ($250,560 (calculated using an approximate exchange
rate of 1 GBP = 1.253 USD)). This calculation is based on reasonable average estimates,
for example, a narrow-body aircraft with 200 passengers, assuming it makes eight daily
journeys, and each ticket costs £100 ($125.28). The total losses will be £160,000 ($200,448).
Similarly, for a wide-body aircraft with 350 passengers, assuming it makes one journey, and
each ticket costs £800 ($1002.24), the total losses will be £280,000 ($350,784). Additionally,
Cazzato et al. [4] highlighted the importance of a fully operational aircraft. A 747-cargo
liner at Cargolux Airlines S.A. can be in the air for 19 h/day. In other words, an aircraft on
the ground produces costs instead of income.
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1.4. Human Factor in Aircraft Maintenance

Aircraft maintenance is a complex process, and errors can cause flight delays, cancella-
tions, or, in some cases, incidents and accidents. Over the years, airlines have introduced
new technologies to improve maintenance; however, the human factor still plays a crucial
role in overall maintenance performance. Some examples of accidents due to human factors
are presented below:

• In June 1990, British Airways Flight 5390 had an accident. The left cockpit windscreen
was blown out, and the pilot was partially ejected through the open window. After
investigation, they found that 84 out of the 90 bolts that fixed the windscreen were
smaller in diameter. Due to a staff shortage during maintenance, the shift maintenance
manager tried to help by fixing them himself. However, he never checked the mainte-
nance manual, resulting in the incorrect bolt type being used to fix the windscreen [5].

• In 2003, a Raytheon (Beechcraft) 1900D aircraft lost control shortly after takeoff, leading
to a crash caused by improper rigging of the elevator control system [6].

• In 2018, Southwest Airlines Flight 1380’s engine failed due to a fractured fan
blade. Metal fatigue was the leading cause, and debris was inserted into the en-
gine, resulting in a loss of power. The pilots tried an emergency landing; however,
one passenger died [7].

• On 15 January 2023, Yeti Airlines Flight 691, was conducting a scheduled domestic
flight from Kathmandu to Pokhara International Airport with 68 passengers and
4 crew members. During the final approach to Runway, the aircraft experienced a dual
propeller feathering event, leading to a loss of thrust and subsequent aerodynamic stall.
The flight crew inadvertently moved the condition levers to the feathered position,
preventing thrust recovery. The aircraft crashed near the Seti River gorge, resulting
in the fatalities of all 72 individuals on board. The Aircraft Accident Investigation
Commission (AAIC) of Nepal identified high workload, human error, inadequate
technical training, and non-compliance with SOPs as contributing factors. Nine safety
recommendations were issued to improve crew training, approach procedures, and
regulatory oversight to prevent similar incidents in the future [8].

• On 6 December 2023, a Qantas Airbus A380 underwent a scheduled three-day mainte-
nance check at Los Angeles International Airport. During a borescope inspection of
the left outboard engine, a 1.25 m nylon turning tool was inadvertently left inside the
engine. Despite multiple post-maintenance inspections, the tool remained undetected,
and the aircraft was released to service on 8 December 2023. Over the next month,
the aircraft completed 34 flights totalling 293.74 h before the tool was discovered
during a subsequent maintenance check on 1 January 2024. The Australian Transport
Safety Bureau (ATSB) investigation revealed failures in tool accountability procedures,
including the lack of a formal lost tool search before releasing the aircraft to service.
In response, Qantas Engineering revised its tool control policies, emphasising stricter
compliance to prevent similar occurrences in the future [9].

The Corporate Aircraft Association (CCA) published a paper [10] in 2016 on Aircraft
Maintenance Incident Analysis. The paper highlighted various error types in large aircraft
maintenance. Approximately 72% of the reported events involved installation errors
and failure to follow specific instructions for task completion. A broader analysis of the
associated factors causing installation errors (834) showed that poor inspection was the
main factor in many cases, including 223 events in total (please refer to Figure 2).
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Figure 2. Installation Error and Associated Factors [10].

1.5. Aircraft Maintenance Categories

Olaganathan et al. [5] explained how aircraft maintenance can be categorised into
two distinct types: Hangar Maintenance (H.M.) and Line Maintenance (L.M.). H.M. is
scheduled for extensive maintenance in a hangar that requires specialised facilities and
equipment. H.M. usually takes days or months, and multiple engineers from different
areas of expertise work together in some cases simultaneously to perform activities like
overhauls, checks, structural repairs, and modifications or upgrades. One of the challenges
is the time pressure, as the aircraft must be delivered without any delays to avoid extra
losses. Another challenge can be the working conditions, as, in many cases, there are
temperature, lighting and noise restrictions. On the other hand, Line Maintenance (L.M.)
ensures the aircraft’s airworthiness and refers to essential routine maintenance tasks that
must be performed daily between flights. These tasks can be performed at the airport gate
and mainly involve inspections, minor repairs, and light troubleshooting. If L.M. cannot
resolve the issue, H.M. will take over.

In a detailed study of aircraft maintenance personnel’s work hours, the Civil Aviation
Authority (CAA) highlighted the critical issue of a shortage of licenced engineers and their
excessive working hours, which can raise safety concerns. The proposed solution is for the
maintenance organisation to implement 24 h shifts, either in three 8 h shifts or two 12 h
shifts [11]. As explained earlier, both cases can be stressful and challenging.

The Federal Aviation Administration (FAA) obliges airlines to prepare a manda-
tory maintenance programme called the Continuous Airworthiness Maintenance Pro-
gram (CAMP). This process covers day-to-day and detailed inspections called “checks”.
From lighter to most thorough, there are four levels of checks: A, B, C, and D [12].
Saltoglu et al. [13] provided a summary table (Figure 3) of all four checks, including
a brief description, the location, and the frequency/duration for each, arranged in order of
increasing complexity.
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Aircraft maintenance can be further classified into two sub-categories: airframe and
engine maintenance. Airframe maintenance focused on electronic systems is referred to as
non-structural, while maintenance addressing defects in the structural components, such
as fuselage panels, is known as structural airframe maintenance [14].

This research is oriented toward structural airframe maintenance, focusing on Hangar
Maintenance checks C and D and improving inspection procedures.

1.6. Manual Inspection

As described earlier, aircraft maintenance, specifically aircraft inspection, is vital,
as safety is a top priority in the aviation industry. There are two types of aircraft in-
spection: visual inspection and non-destructive inspection. Most aviation maintenance
inspections—90%—are visual [15]. Papa et al. [16] explained that General Visual Inspection
(GVI) is a technical term used in the aerospace sector. This manual process is executed by
experienced maintenance engineers using raw human senses like vision, touch, hearing,
and smell. Maintenance Steering Group-3 (MSG-3) defines GVI as a “Visual examination
of an interior or exterior area, installation or assembly to detect obvious damage, failure or irregu-
larity, made from within touching distance and under normally available lighting condition such
as daylight, hangar lighting, flashlight or drop-light” [16]. A more detailed analysis of the
visual inspection of aircraft was published by the Federal Aviation Administration (FAA)
in 1997 [17]. There are four main reasons to perform an aircraft visual inspection:

1. To assess the overall condition of the airframe and components;
2. Defects such as dents, delamination, cracks, and corrosion should be detected early

before they reach a critical size;
3. To detect manufacturing defects, in-service defects as well as unplanned defects;
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4. Finally, evidence of defects is to be collected to support information about the
aircraft’s condition.

Depending on the type of check, the certified maintenance engineers walk around
the aircraft to perform a casual visual inspection or focus on a specific area or system
for an in-depth investigation. They usually use supporting inspection tools and equip-
ment like flashlights, magnifiers, and mirrors. In cases where the inspection area is not
reachable, cherry pickers, scissor lifters, ladders, or scaffolding can be used [18]. As
Jovančević et al. [19] described, aircraft surface inspection is one of the most crucial mainte-
nance tasks for detecting defects such as cracks, scratches, and dents. However, as his study
mentioned, it is very challenging for a human operator to perform without supporting
inspection tools. The main reason is the size of the defect, which can be hard or, in some
cases, not visible to the naked eye. Low-angle light using a flashlight is a well-known
technique quality engineers use to detect defects. Next, the area of interest is demarcated
with a marker pen for further examination. The engineer can estimate the defect’s size and
depth using a dial gauge. The probe moves across the defective area until it contacts the
surface. A few disadvantages of this approach include the level of experience of the person
performing the measurement and the inability to accurately measure defects larger than
the diameter of the dial indicator.

In addition to the previous point, Reyno et al. [20] introduced the ruler and the
high-resolution electronic indicator as supporting inspection equipment for dent depth
measurement. Multiple manual readings and recordings were required for precision,
making it time-consuming, especially with large areas with many dents. Furthermore, data
analysis was complex, and further time was required. A circle was drawn to estimate the
dent area, with the longest length used to measure the dent’s diameter. Measurements
varied depending on the inspector’s interpretation, and multiple measurements were
required for confirmation. In a recent study, Samarathunga et al. [21] presented a new
thermography inspection method. Maintenance engineers conducted inspections with
manually operated thermography cameras by reaching the designated areas of the aircraft
using cranes and jacks. The proposed new methodology was promising; however, the
manual process above was time-consuming, raised safety concerns, and depended on the
inspector’s skills. Cazzato et al. [4] proposed an alternative, safer, cost and time-effective
approach using unmanned aerial vehicles (UAVs) based on non-destructive inspection to
provide a remote visual assessment.

In summarising the drawbacks of manual visual inspection, the most common issues
include the accessibility of the area being inspected, environmental conditions like weather
and lighting, inadequate reporting, and human-related factors, all of which can lead to
unreliable and inaccurate results. Further analysing the lighting conditions, the Illuminating
Engineers Society (IES) [22] suggested direct, focused lighting for inspection checks inside
a hangar. More specifically, for a space approximately 10 × 6 square metres and 4 m high,
800–1100 lux per square metre is required. A high-reflectance wall and floor are essential
for the correct and uniform light distribution. As commonly understood, these conditions
are only sometimes the case, making the General Visual Inspection even more challenging.

On the other hand, the human factor is also critical, with poor training, failure to
follow the proper procedure, and time pressure playing significant roles [23,24]. To in-
corporate quantitative insights into this literature review, Hobbs et al. [25] reported that
nearly 48% of maintenance aircraft inspection failures were attributed to skill-based errors.
Contributing factors include insufficient training, a shortage of skilled workers, the absence
of appropriate equipment, and unclear maintenance and operating procedures, all of which
contribute to human error.
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In conclusion, manual visual inspection is questionable, and the introduction of
automated visual inspection systems is vital to improving the performance of monitoring
an aircraft’s structure. In the same direction, Dalton et al. [26] explained the key benefits of
an automated aircraft inspection system, highlighting the increase in flight safety, reduction
in operating and maintenance costs, and improvement in the aircraft’s reliability.

1.7. Automated Inspection and Robotic Systems

In recent years, industrial and academic researchers have contributed to advancing
the next generation of aircraft inspection by proposing automated or semi-automated
approaches that utilise various technologies such as vortex robots, unmanned aerial vehicles
(UAVs), wheeled mobile robots, and robotic arms.

A notable example of a mobile platform is the Air-Cobot wheeled mobile robot,
developed by Jovančević et al. [19] in 2017. This system developed a 3D point cloud
inspection system capable of detecting and characterising defects on the fuselage of a real
Airbus A320 aeroplane. The data were collected with the Artec Eva 3D scanner mounted on
the Air-Cobot wheeled mobile robot. Particular attention should be given to the Air-Cobot
wheeled mobile robot, which stands out due to its unique combination of Non-Destructive
Testing (NDT), Autonomous Navigation, and Human–Robot Interaction (HRI) capabilities.
The robot was equipped with a 3D scanner and a PTZ camera for NDT purposes. It
could safely navigate autonomously around aircraft, avoiding obstacles. Additionally,
the robot was adaptive, meaning it could learn from human interactions and improve its
efficiency over time [27–31]. As previously mentioned, the inspection process was fully
automated, following a pre-defined trajectory to detect defects such as dents and scratches.
Novel techniques were also employed to accurately measure the defects’ size, depth and
orientation. The system’s performance was compared against ground truth measurements
using high-precision measuring equipment [19].

Expanding on robotised inspection platforms, Toman et al. [32] developed a prototype
vortex adhesion-based robotic system for automated aircraft inspections in real-world
environments. Unlike wheeled mobile robots operating on flat surfaces, this solution
could move across curved and inclined aircraft structures, such as fuselages and wings.
The robot was built for hangar and field conditions, addressing challenges like surface
accessibility and environmental variability. Its integration of an eddy current testing (ECT)
probe allowed it to detect cracks and corrosion in metallic aircraft components. A key
advantage of this system was its modular design. Through laboratory and field testing, the
system proved capable of accurately identifying defects, demonstrating the potential of
robotic automation in aircraft maintenance.

Another robotized system was introduced by Reyno et al. [20], who proposed a 3D
scanning system capable of detecting surface damages during semi-automated aircraft
inspections. Specifically, this technology could inspect in-service honeycomb sandwich
panels and accurately detect and characterise dents. This promising approach could
estimate dent depth with a false error rate within 0.04 ± 0.06 mm. The preferred point
cloud acquisition system was the FARO® (Lake Mary, FL, USA) Edge 3D scanning system,
consisting of a FARO Laser Line Probe and SmartArm (Toronto, ON, Canada) technology.

Samarathunga et al. [21] adopted a slightly different approach, utilising a “vortex”
wall-climbing robot integrated with a heat pump as a stimulation source and an infrared
sensor for real-time temperature acquisition. This setup was used to inspect aircraft
honeycomb composite structures and detect the presence of water. The inspection was
conducted remotely via Bluetooth, and the processed thermal images were validated
against those captured by a Fluke thermal camera. The study concluded that the method
was sufficiently reliable for detecting water ingress.
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Unmanned aerial vehicles (UAVs) are increasingly being recognised for their poten-
tial to automate and enhance the process of visual aircraft inspection. In the late 2010s,
companies like Blue Bear and Createc, with their RISER project, along with Airbus and its
Aircam programme, started focusing on developing automated UAV systems for aircraft
inspections [33]. In 2016, Donecle developed its own autonomous UAV [34], offering visual
inspection of the exterior of an aircraft. In that direction, Papa et al. [16] conducted research
on developing an autonomous UAV equipped with a high-definition camera to inspect
aluminium panels, including various defects, such as lightning strikes and hail damage.
The UAV was outfitted with multiple distance and trajectory sensors to maintain an optimal
distance from the aircraft and to avoid obstacles. Data transmission between the UAV
and a PC-based ground station was facilitated through a Wi-Fi link, and a graphical user
interface (GUI) was developed in MATLAB/LabVIEW for data processing and presenta-
tion. While this was a preliminary design, initial tests demonstrated promising results in
defect detection. However, further refinements in fully autonomous trajectory planning are
needed. The RC EYE One Xtreme was selected as the micro-UAV for this project, featuring
a weight of only 260 g, a payload capacity of 150 g, and a typical flight time of 10 min. The
author also highlighted several advantages of using drone-based GVI. First, this approach
could be cost-effective and time-efficient compared to conventional visual inspection meth-
ods. Significantly reducing the aircraft’s maintenance time in the hangar by accelerating
visual checks. Additionally, UAVs could safely access hard-to-reach areas, eliminating
operator health risks. Defect detection accuracy could be increased by comparing the
acquired images with a database containing thousands of previously captured images.
Moreover, various data types could be gathered by integrating non-destructive sensors,
such as thermal cameras and ultrasound probes.

In 2024, Plastropoulos et al. [35], in collaboration with TUI’s airline maintenance team,
introduced a drone-based General Visual Inspection (GVI) system. They used a Parrot Anafi
drone, which featured a camera mounted on an integrated gimbal, to inspect the surface
of a TUI aircraft within a hangar. The data collected was used to train a machine learning
model to detect and classify five distinct types of defects automatically. Additionally,
they developed a size estimation algorithm to assess the identified defects. The primary
objective was to detect dents, and the model demonstrated a precision of 71% with an Area
Under the Curve (AUC) of 0.69.

2. Methods and Materials
Aircraft maintenance relies on a combination of Non-Destructive Testing (NDT) tech-

niques, machine learning approaches, and advanced defect characterisation methods to
ensure aerospace materials’ structural integrity and safety. This section provides a compre-
hensive overview of the methodologies used for damage detection, defect classification,
and size and depth estimation in metallic and composite aircraft structures.

Non-Destructive Testing (NDT) techniques play a crucial role in identifying structural
defects without compromising the integrity of the material. Various ultrasonic, radio-
graphic, thermographic, and eddy current-based inspection methods are commonly used
to detect subsurface anomalies, corrosion, and material degradation in aerospace compo-
nents. These techniques allow for accurate and efficient defect characterisation, reducing
the need for invasive inspections.

In parallel, machine learning-based approaches have emerged as a powerful tool for
automating defect detection and classification. Convolutional Neural Networks (CNNs),
Support Vector Machines (SVMs), Mask R-CNN, and ensemble models have significantly
improved crack detection, corrosion assessment, and defect segmentation. These AI-
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driven techniques leverage large datasets, sensor fusion, and deep learning architectures to
enhance aircraft maintenance precision, recall, and defect localisation.

The materials used in aircraft construction, including aluminium alloys, titanium,
carbon fibre-reinforced polymers (CFRPs), and hybrid composites, each present unique fail-
ure mechanisms such as fatigue cracks, delamination, fibre-matrix separation, and impact
damage. Understanding the behaviour of these materials under operational conditions is
essential for implementing effective maintenance strategies.

Additionally, size and depth estimation techniques provide critical information for
quantifying defect severity. Methods such as structured light 3D scanning, thermographic
imaging, and ultrasonic depth profiling enable precise measurement of defect dimensions,
allowing engineers to assess structural integrity and predict failure risks.

This section thoroughly explores these methodologies, highlighting their applications,
limitations, and advancements in aviation maintenance and health monitoring.

2.1. Non-Destructive Testing (NDT) Techniques

Non-Destructive Testing (NDT) techniques are widely applied across multiple indus-
tries beyond aviation, including civil engineering, infrastructure monitoring, and cultural
heritage preservation. A notable example of their successful application is demonstrated in
the rehabilitation of the Holy Aedicule of the Holy Sepulchre [36]. This study highlighted
how a combination of NDT methods—such as Infrared Thermography (IRT), Ground
Penetrating Radar (GPR), Ultrasonic Testing (UT), and Digital Microscopy—was employed
to assess the preservation state of a historical monument, monitor ongoing rehabilitation
works, and evaluate the compatibility of conservation materials and interventions. These
techniques were instrumental in detecting defects, monitoring structural integrity, and
providing real-time feedback for decision-making throughout the restoration process.

Selecting the most appropriate non-destructive testing technique is crucial. Each
technology meets different needs; therefore, the comparison Table 1 below is essential for
understanding the applicability of each method, highlighting the advantages, limitations,
and types of aircraft defects that can be detected.

Table 1. Comparison of the most common non-destructive testing techniques in aircraft inspection.

Reference Technology Test Object Advantages Limitations Suitable Type of Defect to
Be Detected

[37–39] X-ray Internal Defects

Not limited by material
and geometry; most

sensitive to volumetric
defects

Defect depth
limitations; strict

installation and safety
requirements; high cost

Porosity or Voids
Debonding

Foreign Bodies

[37–39] Ultrasonic Surface and Internal
Defects

Sensitive to defects and
quick results

Difficult to detect small,
thin and complex parts;

coupling agent and
direct contact with the
specimen is required

Porosity or Voids
Delamination

Debonding
Foreign Bodies

Cracks

[37–39] Magnetic Particle Surface and
Near-Surface Defects

Higher sensitivity than
ultrasonic or

radiographic when
testing surface defects

Limited to
Ferromagnetic material;
difficult to measure the

defect depth

Cracks

[37–39] Penetrant Surface opening
defect

The operation is simple,
and the sensitivity is high

Only surface-opening
defects can be detected Surface-opening defects

[37–39] Eddy Current Surface and
Near-Surface Defects

Highly automated
system; time-saving; no

couplant required

Limited to conductive
material; easy to give a

false display
Cracks

[37–39] Acoustic Emission Surface and Internal
Defects

Effective for active
defects

Having issues with the
defect size and shape

aspects

Porosity or Voids
Delamination

Debonding
Foreign Bodies

Cracks
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Table 1. Cont.

Reference Technology Test Object Advantages Limitations Suitable Type of Defect to
Be Detected

[37–39]
Infrared

Thermography
(IRT)

Surface and
Near-Surface Defects

Suitable with metallic
and non-metallic

materials; no
contamination or contact

of the test piece

The detection depth is
not deep enough;

Delamination
Debonding
Corrosion

Impact Damage
Cracks

[19,20,40] 3D Scanning—
Laser/LiDAR Surface Defects

High accuracy;
non-contact Inspection;
quick data acquisition;
detailed 3D mapping;

suitable for a wide range
of materials

and geometries

Surface-only detection;
reflectivity issues; high

equipment cost;
environmental

sensitivity

Dents
Surface wear

Surface deformation
Corrosion

X-ray [37–39] technology is a widely utilised non-invasive testing method due to its
versatility in inspecting objects regardless of their material or geometry, combined with
its high sensitivity to detecting volumetric defects. However, it has several limitations,
including strict installation and safety requirements, difficulty measuring defect depth,
and high installation costs. X-ray effectively detects internal defects such as porosity,
voids, debonding, and foreign bodies. Reun et al. [41] recently introduced an X-ray robotic
system designed to evaluate the condition of aeronautical parts. The system featured two
industrial robots mounted on 5 m tracks, each equipped with X-ray computed tomography
(CT) devices. The purpose was to inspect aeronautical composite components for potential
defects, such as porosity and inclusions, that might have developed during manufacturing
or while in service. This method showed significant promise for using robotised X-ray
tomography to detect volumetric defects. However, the accuracy of robot positioning
was critical to achieving reliable results. Specifically, the source and detector should be
moved simultaneously and precisely on both sides to ensure accurate reconstruction, as
any positioning errors could negatively affect the imaging quality.

Ultrasonic [37–39] approaches such as Phased Array Ultrasonic Testing (PAUT), Time-
of-Flight Diffraction (TOFD), Pulse-Echo Testing, Guided Wave Testing, and Immersion
Testing can be used in aircraft inspection to detect both surface and internal defects. Several
advantages of these methods include high sensitivity to defects, quick results, and accu-
rate defect localisation. However, some limitations exist in detecting minor defects and
inspecting thin parts with complex geometries. Additionally, a coupling agent is always
necessary, and direct contact with the specimen is required. These technologies can detect
porosity or voids, delamination, debonding, foreign bodies, and cracks. Zhang et al. [42]
made a significant effort to develop an autonomous UAV system integrated with a 5 MHz,
dual-crystal ultrasonic transducer to inspect large aluminium plates of varying thicknesses,
including those with simulated defects. The ultrasonic transducer was held in a spring-
loaded mounting structure to ensure consistent contact force while transmitting ultrasonic
acoustic energy through the coupling gel. The UAV ultrasonic system could autonomously
inspect and measure thickness at predefined locations on the surface. A comparison be-
tween manual ultrasonic inspection and the UAV-based autonomous ultrasonic inspection
revealed that the signal amplitude from the autonomous inspection was much weaker.
Positioning errors for the UAV were under 87.1 mm, and alignment errors were less than 5
degrees. These issues were caused by factors such as aerodynamic effects near the surface,
the ultrasound probe’s sensitivity to angular misalignment, and the overloading of the
UAV payload.

Magnetic Particle Inspection (MPI) [37–39] is a non-destructive testing (NDT) tech-
nique that is particularly effective for detecting surface and near-surface discontinuities,
such as cracks, in ferromagnetic materials. This method stands out because of its high
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sensitivity to surface imperfections, allowing for more precise detection of surface-breaking
defects than other methods like ultrasonic and radiographic testing. MPI is ideal for sce-
narios where identifying even minor surface defects is critical to maintaining structural
integrity and safety. However, the technique is limited to ferromagnetic materials—such
as iron, nickel, cobalt, and certain alloys—because only these materials can be effectively
magnetised to create the magnetic fields needed for the inspection. As a result, MPI cannot
be used on non-ferromagnetic materials like aluminium, copper, or austenitic stainless steel,
which restricts its use to specific types of materials. Kikechi et al. [43] conducted a study
to examine the performance of four non-destructive testing (NDT) methods in detecting
structural defects in an in-service aircraft’s landing gear components and engines. The
study involved a certified maintenance engineer who used and compared visual testing, ul-
trasonic inspection, radiography, and magnetic particle inspection to assess each method’s
accuracy, reliability, and sensitivity. Focusing on the magnetic particle technique, the author
outlined the methodology of magnetic particle testing, as illustrated in Figure 4a.
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Suppose there is a defect, such as a crack, a leakage field is created, which attracts mag-
netic particles and produces a distinct cluster as an indication. Figure 4b is a representative
example of a flux leakage from surface and near-surface discontinuities. For near-surface
defects, the accumulation of particles is less pronounced, leading to a weaker and less
defined indication. The results of this study indicated that the most effective inspection
technique was visual inspection using a borescope system, which could detect defects
ranging from 1.6 mm to 2.5 mm. In contrast, Magnetic Particle Inspection (MPI) was more
sensitive to detecting larger defects, between 4.0 mm and 12.6 mm, located on or just below
the surface of ferrous material specimens.

Penetrant [37–39] testing is an easy-to-use, highly sensitive inspection method that is
particularly effective at detecting surface-opening defects. While the technique is simple to
use and effectively identifies surface anomalies, it is restricted to detecting only those defects
that are exposed on the surface, lacking the ability to detect subsurface or near-surface
defects. Malandrakis et al. [45] aimed to develop an automated penetrant inspection system
using a commercial UAV equipped with a wide-field-of-view camera and an ultraviolet
torch to inspect wing panels by flying pre-defined trajectories. Traditional manual penetrant
flow inspections are typically time-consuming, taking 1 to 4 h, depending on the object’s
size. This study introduced an automated, cost-effective, and time-efficient solution for
real-time image processing. The proposed non-destructive inspection system detected
defects of various sizes, ranging from 2.54 mm to 12.7 mm. The findings indicated that
post-processing could enhance reliability, though it would add approximately 2 min to the
process. Additionally, further development of the computer vision algorithms was needed
to improve the automatic classification and size estimation of defects.
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Eddy Current [37–39] is a non-invasive inspection technology based on conductivity,
designed to detect surface and near-surface defects. It is highly automated and time-
efficient, making it a capable choice for certain applications. A great advantage of this
method is that it does not require a couplant between the inspection system and the
object. Nevertheless, it is restricted to conductive materials and may sometimes provide
inconsistent results, leading to potential confusion. The most common type of defect that
Eddy Current can effectively detect is a crack. In 2024, Lysenko et al. [46] evaluated Eddy
Current Array (ECA) technology, focusing on aircraft specimens with artificially induced
defects of various types, orientations, and sizes to simulate real-world conditions. The study
aimed to assess how effective, sensitive, and reliable this technology was in detecting and
characterising surface and subsurface defects in aircraft structures. The author also analysed
the key factors impacting the performance of this technology, including advantages and
limitations. A 360 mm by 120 mm aluminium alloy 31T5 (AD31T5) specimen was fabricated
for the experiments, featuring multiple circular defects with varying cluster densities, each
with a depth of 4 mm and a diameter of 0.5 mm. This alloy is widely used in the aviation
construction industry. A key focus of the study was to assess the ability of ECA technology
to detect small defects. For the experiment, the researchers used the Olympus Omniscan
MX eddy current flaw detector with a matrix-type eddy current sensor. Due to its flexibility,
this sensor could be attached to multiple geometry surfaces, flat or with curves. The results
showed that the system could detect clusters of holes; however, it was challenging to
detect single holes with such a small diameter of 0.5 mm. Careful calibration of the system,
particularly by adjusting sensitivity levels, was crucial to enhance the visibility of defects.
This process was challenging, as increasing sensitivity introduced more noise, leading to
false positives. In other words, the system mistakenly identified non-defective areas as
defective due to the added noise.

Acoustic Emission (AE) [37–39] is a highly effective inspection technology capable
of detecting a wide range of defects, including porosity, voids, delamination, debonding,
foreign bodies, and cracks. It can identify both surface and internal defects, with particular
effectiveness in monitoring active defects. However, AE has limitations, such as difficulty
measuring the size and shape of detected defects. Holford et al. [47] analysed the key bene-
fits and limitations of using acoustic emission technology as a structural health monitoring
system. Subsequently, they recommended an automated AE monitoring system capable of
detecting fatigue fractures in noisy environments and complex structures, such as aircraft’s
metallic landing gear components. Starting with the advantages, AE technology could be
highly capable of continuously inspecting large structures without limitations on defect size.
However, some of the mentioned limitations included difficulties in signal characterisation
and location accuracy due to complex geometries and background noise. To understand the
complexity of this process, the author presented the image below to show the relationship
between the source mechanism and digitised signal. The wave propagation path from
the source to the sensor could affect the digitised signal. As presented in Figure 5, the
type of material and geometry, the coupling method, the sensor itself, and the acquisition
hardware could all impact the final result. Changing any of those factors could change the
form of the recorded signal compared to the source signal.

In addition, data analysis in AE technology is often complex, requiring considerable
operator interpretation and time. A full-scale steel A320 landing gear component was
subjected to fatigue loading, with multiple AE sensors carefully placed to monitor it. A
fracture initiation was automatically detected after 49,000 fatigue cycles, well before the
final failure, as confirmed by a dye penetrant inspection. The fracture’s location was
determined within 10 mm of its actual position.



Appl. Sci. 2025, 15, 3584 14 of 42Appl. Sci. 2025, 15, x FOR PEER REVIEW 14 of 45 
 

 

Figure 5. Graphical representation of the AE transfer function [47]. 

In addition, data analysis in AE technology is often complex, requiring considerable 
operator interpretation and time. A full-scale steel A320 landing gear component was sub-
jected to fatigue loading, with multiple AE sensors carefully placed to monitor it. A frac-
ture initiation was automatically detected after 49,000 fatigue cycles, well before the final 
failure, as confirmed by a dye penetrant inspection. The fracture’s location was deter-
mined within 10 mm of its actual position. 

Infrared Thermography (IRT) [37–39] is a widely used, non-invasive aircraft inspec-
tion technology capable of detecting surface and near-surface defects, including delami-
nation, debonding, corrosion, impact damage, and cracks. It is suitable for metallic and 
non-metallic materials and requires neither a coupling agent nor direct contact with the 
test piece, minimising contamination. However, one of its primary limitations is the rela-
tively shallow detection depth compared to other inspection techniques discussed earlier. 
As described by Sfarra et al. [48] infrared thermography (IRT) is primarily classified into 
“passive” and “active” thermography. Passive IRT does not require an external energy 
source and is typically used when the object being inspected has a significant temperature 
difference from its surrounding environment. This method is particularly useful for ap-
plications involving cyclic loading, as the heat generated during these cycles allows for 
monitoring temperature variations over time with an infrared (IR) camera. A notable ex-
ample of passive thermography is the work by Montesano et al. [49], who used this tech-
nology to study the fatigue behaviour of carbon fibre-reinforced polymer composites 
through infrared imaging. On the other hand, Active IRT relies on external excitation 
sources to create a temperature difference between damaged and undamaged regions of 
the material being tested. In aerospace applications, the most commonly used active IRT 
methods based on optical radiation principles include Pulsed Thermography (PT), Lock-
In Thermography (LIT), Step-Heating Thermography (SHT), Long-Push Thermography 
(LPT), Frequency Modulated Thermography (FMT), Laser-spot Thermography (LST), and 
Laser-line Thermography (LLT) [39]. Table 2 provides a detailed summary of each 
method, outlining the type of external optical heat source, heating duration, penetration 
depth, primary applications, and the types of defects in aircraft that each method is best 
suited to detect. 

Alhammad et al. [50] introduced multi-label classification algorithms designed to 
predict multiple factors simultaneously from thermal images gathered through active 
thermography, specifically Pulsed Thermography (PT). A total of 24,000 thermal images 
were captured under various conditions using different geometrically shaped composite 
material specimens, which were then used to train machine learning models for classifi-
cation. The measurement system included an X6900 FLIR (Teledyne FLIR LLC, Wilson-
ville, OR, USA) infrared camera equipped with an InSb-CCD Matrix Sensor, two Fx60 
(Balcar, France) photographic flashes that generated a heat flux for a duration of 2 milli-
seconds, a control unit to synchronise data acquisition with pulse generation and a data 
processing unit (Figure 6). 

Source Material Geometry Couplant Sensor System Signal

Figure 5. Graphical representation of the AE transfer function [47].

Infrared Thermography (IRT) [37–39] is a widely used, non-invasive aircraft inspection
technology capable of detecting surface and near-surface defects, including delamination,
debonding, corrosion, impact damage, and cracks. It is suitable for metallic and non-
metallic materials and requires neither a coupling agent nor direct contact with the test piece,
minimising contamination. However, one of its primary limitations is the relatively shallow
detection depth compared to other inspection techniques discussed earlier. As described
by Sfarra et al. [48] infrared thermography (IRT) is primarily classified into “passive” and
“active” thermography. Passive IRT does not require an external energy source and is
typically used when the object being inspected has a significant temperature difference
from its surrounding environment. This method is particularly useful for applications
involving cyclic loading, as the heat generated during these cycles allows for monitoring
temperature variations over time with an infrared (IR) camera. A notable example of passive
thermography is the work by Montesano et al. [49], who used this technology to study the
fatigue behaviour of carbon fibre-reinforced polymer composites through infrared imaging.
On the other hand, Active IRT relies on external excitation sources to create a temperature
difference between damaged and undamaged regions of the material being tested. In
aerospace applications, the most commonly used active IRT methods based on optical
radiation principles include Pulsed Thermography (PT), Lock-In Thermography (LIT), Step-
Heating Thermography (SHT), Long-Push Thermography (LPT), Frequency Modulated
Thermography (FMT), Laser-spot Thermography (LST), and Laser-line Thermography
(LLT) [39]. Table 2 provides a detailed summary of each method, outlining the type of
external optical heat source, heating duration, penetration depth, primary applications,
and the types of defects in aircraft that each method is best suited to detect.

Alhammad et al. [50] introduced multi-label classification algorithms designed to
predict multiple factors simultaneously from thermal images gathered through active
thermography, specifically Pulsed Thermography (PT). A total of 24,000 thermal images
were captured under various conditions using different geometrically shaped composite
material specimens, which were then used to train machine learning models for classifica-
tion. The measurement system included an X6900 FLIR (Teledyne FLIR LLC, Wilsonville,
OR, USA) infrared camera equipped with an InSb-CCD Matrix Sensor, two Fx60 (Balcar,
France) photographic flashes that generated a heat flux for a duration of 2 milliseconds, a
control unit to synchronise data acquisition with pulse generation and a data processing
unit (Figure 6).

The evaluation results showed that the proposed methods performed well in making
accurate predictions. The findings suggested that the approaches used, like the RF MLC
model (Random Forest multi-label classification) and the use of statistical features in the
dataset, were very promising options for classifying a comparative investigation for the
non-destructive testing of honeycomb structures by holographic interferometry thermal
images of composite materials.
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Table 2. Comparison table of most common methods used in optically stimulated active thermogra-
phy in the aerospace industry [39].

Method Heat Source Heating Duration Depth of Penetration Primary Application Suitable Aircraft Defect

PT High-energy
flash/laser Short, intense pulse Shallow to medium Surface and

near-surface defects
Surface cracks, delamination,

impact damage

LIT Modulated
laser/halogen lamp Modulated, periodic Medium Deeper subsurface

defects
Fatigue cracks, corrosion,

bonding defects

SHT Infrared
lamps/heaters

Gradual, continuous
heating Medium to deep Subsurface and deep

defects
Delamination, deep

cracks, corrosion

LPT Continuous
lamp/laser Extended duration Deep Deeper subsurface

defects
Corrosion, internal

cracks, delamination

FMT
Frequency-

modulated energy
source

Variable frequency
pulses Medium to deep Subsurface defect

detection Delamination, debonding, cracks

LST Focused laser spot Focused, short pulse
on a spot Shallow Localised defect

detection Localised cracks, impact damage

LLT Laser line Focused, continuous
line heating Medium Defect detection

along a line
Cracks, corrosion along

structural lines
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A newer option for non-destructive testing (NDT) in aircraft maintenance is 3D scan-
ning [19,20,40], which uses laser or LiDAR (Light Detection and Ranging) technologies.
This method effectively detects surface defects like dents, wear, deformation, and corrosion.
Its benefits include being non-contact, highly accurate, and fast in collecting data. It also
works well with different materials and shapes, producing detailed 3D models. However, it
is limited to detecting surface defects, the equipment can be expensive, and environmental
factors like reflections can affect the results. Three-dimensional technology has already
been applied across many industries, improving medical diagnosis [51,52], aiding in the
preservation of historical assets [53], supporting maintenance in manufacturing [54], en-
riching STEM education [55] and benefiting numerous other fields. Three-dimensional
laser scanning involves using a laser beam to precisely capture the shape and geometry of
a real-world object in digital form [56]. Three-dimensional laser scanners precisely capture
the size and shape of real-world objects, generating point clouds of data to create detailed
three-dimensional digital models. This method is especially accurate for inspecting and
measuring curved surfaces, providing a more comprehensive description than conventional
measurement techniques [57]. Three-dimensional LiDAR (Light Detection and Ranging)
scanning uses pulsed laser beams to measure distances by calculating the time it takes for
the light to bounce back from an object. This creates a detailed point cloud, producing a
three-dimensional digital map of the environment [58]. Table 3 highlights the key distinc-
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tions between laser scanning and LiDAR scanning, focusing on aspects such as purpose,
method, applicability, range, accuracy, and data output.

Table 3. Critical differences between laser scanning and LiDAR scanning [59,60].

Aspect Laser Scanning LiDAR Scanning

Purpose High-precision scanning of objects or
structures to create detailed 3D models

Large-scale mapping and environmental
scanning using distance measurement

Method
Uses a laser beam to measure reflected
light and capture an object’s shape
and dimensions

It uses pulsed laser beams to measure the time
it takes for light to reflect and return, creating
3D maps

Best For Capturing small to medium-sized objects
in great detail

Mapping large areas and scanning
complex environments

Typical
Applications

Manufacturing, architecture, reverse
engineering, 3D modelling of surfaces

Topography, forestry, urban planning,
autonomous vehicles

Range Short to medium range (up to
several metres) Long range (hundreds of metres to kilometres)

Accuracy Extremely high, capturing fine
surface details

High, but typically less detailed than
laser scanning

Data Output Point clouds representing detailed
object surfaces Point clouds representing wide-area 3D maps

Thulasy et al. [40] used the FARO Focus 3D X130 laser scanner (FARO Technologies,
Inc., Lake Mary, FL, USA) in a research project aimed at developing 3D scanning technology
capable of inspecting an entire Su-30MKM aircraft (Irkut Corporation, Irkutsk, Russia)
and its components. The key innovation of this research was the creation of relevant
3D models to assist the maintenance team in enhancing aircraft maintenance operations
and supporting reverse engineering processes. Three-dimensional laser scanning could
achieve high acquisition speeds, ranging from hundreds to tens of thousands of data points
per second, making it an ideal approach for inspection tasks. As a result, a complete
scan could be accomplished in a matter of hours or days, depending on the object’s size.
The maintenance engineers scanned the aircraft from six angles, merging and aligning
the resulting point clouds to create a comprehensive 3D model. The study concluded
that 3D scanning could be beneficial for assessing damages with sub-millimetre accuracy.
Notably, the Royal Malaysian Air Force used this technology to develop an Illustrated Parts
Catalogue (IPC) for the Su-30MKM aircraft and its components.

An alternative approach to 3D scanning, compared to laser or LiDAR technologies, is
photogrammetry. This method involves capturing 2D images from multiple angles and
using 3D computer vision software to reconstruct a 3D model of the object. Below are the
key benefits of using photogrammetry compared to laser and LiDAR scanning:

• Cost-Effectiveness: A good-quality camera and image-processing software are the two
essential tools required to scan and reconstruct the 3D model compared to expensive
specialised laser and LiDAR equipment [61];

• Detailed Texture Information: A critical advantage of photogrammetry is its ability
to acquire high-resolution texture and colour information, which is especially impor-
tant in the field of maintenance inspection where detailed textures and geometric
information are so important [62];

• Versatility and Large-Area Coverage: Photogrammetry can be used for both large-scale
and small-scale objects without concerns about geometry, texture, distance from the
camera, or the speed of image capture. The use of drones for photogrammetry can be
a great combination to capture large areas for mapping efficiently [63].

On the other hand, photogrammetry loses precision compared to laser and LiDAR
technologies, particularly with fine geometries [62]. Moreover, photogrammetry relies on
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environmental conditions such as weather and lighting, contrasting with LiDAR, which
can operate in low light or darkness [63]. Photogrammetry has already been successfully
used in fields like forensic science [64], civil infrastructure [65], and archaeology [66].
To the best of my knowledge, no specific study has directly explored the application of
photogrammetry for aircraft defect inspection.

A notable example of this technology comes from NASA [67], where photogrammetry
was combined with small, unmanned aircraft systems (sUAS) to inspect both the interior
and exterior of the AEDC National Full-Scale Aerodynamics Complex (NFAC) wind tunnel
facilities at NASA Ames Research Centre. The primary objective of this system was to
detect both existing and missing fasteners, as well as to precisely determine their real-world
locations in 3D space. This methodology involved object detection algorithms to identify
and highlight fasteners and missing fasteners using bounding boxes and photogrammetry
to map the detected objects and establish the 3D locations of these defects. Deep learning
methods and, more specifically, convolutional neural networks (ResNet18 Mask R-CNN)
were the preferred computer vision approaches to detect image defects. A big challenge
was the size of the objects to be detected, as most were smaller than 128 × 128 pixels. On
the other hand, Pix4D was used to process the set of 2D images to generate the 3D point
cloud. In terms of 3D localisation, the researchers used the following algorithm:

1. Creation of a 3D Point Cloud: A 3D point cloud was generated to represent the spatial
structure of the environment or objects.

2. Key Point Verification in 2D Images: Each key point in the 2D image was checked to
determine if it falls within the bounding box representing part of an object. If it does,
this key point was associated with that object.

3. Grouping of Key Points Across Multiple Images: When the same key point was visible
in multiple images or on different parts of the object, these key points were grouped
together, creating a “set” of similar detections.

4. Estimation of 3D Locations: Once key points were grouped, their 3D spatial positions
were analysed to estimate the location of each object.

5. Application of Mean Shift Clustering for Precision: To refine the estimated location
of each object, mean shift clustering was applied. This technique identified areas
with high concentrations of key points, indicating the most probable 3D location of
the object.

6. Confirmation of Object Position through Maxima Identification: Areas where key
points densely cluster (known as maxima) provide high confidence that an object is
located within that specific 3D space.

The researchers used frame-mAP and video-mAP metrics to evaluate the results
quantitatively. The system detected existing fasteners with a frame-mAP of 92.1% and
missing fasteners with a frame-mAP of 31%. At the video level, the method achieved an
average precision of 86.4% for existing fasteners and 0% for missing fasteners. The low
performance in detecting missing fasteners was primarily due to their small size, which
the model was unable to detect, as well as the limited and inadequate dataset available for
training the model.

Particular attention should be given to the most commonly used open-source pho-
togrammetric software solutions, including COLMAP, OpenMVG + OpenMVS, and Alice-
Vision. While these solutions are generally reliable and robust, they may, in some cases,
produce results that lack completeness and accuracy. In this context, Stathopoulou et al. [68]
conducted a comprehensive review and evaluation to compare these three open-source
image-based 3D reconstruction pipelines, assessing their reliability and performance on
large and extensive datasets.
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Table 4 compares the capabilities of the three 3D reconstruction pipelines: COLMAP,
OpenMVG, and AliceVision. These tools follow similar steps in the 3D reconstruction
process; however, each one has unique features.

Table 4. Architecture and key features of open-source image-based 3D reconstruction pipelines
analysed in [68].

COLMAP OpenMVG AliceVision

Key point extraction SIFT [69] SIFT [69]
AKAZE [70]

SIFT [69]
AKAZE [70]

Key point matching

Exhaustive, Sequential,
Vocabulary Tree [71]

Spatial [72]
Transitive [72]

Brute Force, ANN [73]
Cascade Hashing [74]

ANN [73]
Cascade Hashing [74]

Geometric verification
4 points homography [75]
5 points relative pose [76]
7–8 points F-matrix [75]

4 points homography [75]
5 points relative pose [76]
7–8 points F-matrix [75]

4 points homography [75]
5 points relative pose [76]
7–8 points F-matrix [75]

homography growing [77]

Incremental bundle (image
resection and triangulation)

P3P [78]
+ DLT, EPnP [79]

+ DLT

P3P [78]
+ DLT, EPnP [79]

+ DLT
PnP [78]
+ DLT

Global bundle adjustment CERES [80] CERES [80] CERES [80]

Dense point cloud generation Patch-based stereo [81] Patch-based stereo [82] Semi Global Matching [83]

1. Key Point Extraction: All three tools use the SIFT algorithm to detect key points in
images. Additionally, AliceVision supports AKAZE, providing flexibility for different
types of image features.

2. Key Point Matching: This step aligns similar points between images. COLMAP
offers a variety of methods, including exhaustive, sequential, vocabulary tree, spatial
matching, and a transitive option. OpenMVG uses brute force and approximate
nearest neighbour (ANN) matching, while AliceVision relies on ANN and cascade
hashing for faster matching.

3. Geometric Verification: All tools support verifying geometric relationships using
homography estimation (using 4 points), relative pose estimation (using 5 points),
and fundamental matrix estimation (using 7–8 points). AliceVision also includes an
additional homography growing method for a more robust verification.

4. Incremental Bundle Adjustment: In the image resection and triangulation phase,
COLMAP and OpenMVG both use P3P, DLT, and EPNP algorithms. AliceVision
simplifies this step with just PnP and DLT, which are standard approaches for pose
estimation and triangulation.

5. Global Bundle Adjustment: All three tools use the CERES solver to optimise the 3D
model by adjusting camera poses and point positions.

6. Dense Point Cloud Generation: COLMAP and OpenMVG both use a patch-based
stereo method to generate a dense point cloud. AliceVision, however, uses semi-global
matching, a different approach that balances detail and processing speed.

The study [68] primarily examined image orientation (SfM) and dense reconstruction
(MVS) result using indicators like the number of successfully oriented images, reprojection
error, and cloud-to-cloud (C2C) distance to ground truth data. COLMAP showed the best
overall performance across multiple datasets, especially when using exhaustive matching.
It consistently managed to orient a high number of images and kept RMS reprojection
errors low, highlighting its reliability in both image orientation and dense reconstruction.
OpenMVG, particularly when combined with OpenMVS for dense reconstruction, also
performed well, achieving similar reprojection accuracy and completeness, especially on
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datasets like 3DOMcity. This makes OpenMVG + OpenMVS a strong option for tasks
focused on dense reconstruction. AliceVision showed effective results in certain scenarios
but had some difficulty delivering consistent performance across diverse datasets. In some
cases, it oriented fewer images and had higher reprojection errors compared to COLMAP
and OpenMVG. While AliceVision works well in specific situations, it currently lacks the
flexibility and robustness that COLMAP and OpenMVG provide, which makes it less
suitable for more complex or large-scale projects.

2.2. Learning-Based Approaches

Machine learning is essential in modernising aircraft maintenance by making defect
detection faster and more accurate. By examining patterns in images, these methods im-
prove inspection speed and reliability, helping reduce human mistakes and increase safety.
Machine learning techniques have also been successfully applied in various fields beyond
aviation, demonstrating their adaptability and effectiveness in complex inspection tasks.

A notable example is their application in cultural heritage preservation, as highlighted
in a recent study [84] on the automated detection of rising dampness in historical ma-
sonries. This research integrated deep learning with Infrared Thermography (IRT) to
identify moisture-related deterioration in historical structures, such as the Holy Aedicule
of the Holy Sepulchre and the Msma’a historical building. Using a combination of the
PSPNet image segmentation model with a ResNet-50 backbone, the study achieved high
accuracy (0.93) and Intersection over Union (IoU) (0.89) despite working with a relatively
small dataset. The results underscored the potential of AI-driven models in enhancing
the precision of non-destructive testing while ensuring cost-effective and non-intrusive
monitoring. The successful implementation of machine learning in this field further rein-
forces its transformative role in improving inspection processes across different industries,
including aviation.

Table 5 provides a snapshot of various machine-learning approaches used in aircraft
inspection. Each row presents a specific study and details key components: feature ex-
traction, classifier, ROI selection, data processing, performance metrics, type of defect,
environment and libraries, and dataset. The feature extraction section covers techniques
like CNNs, which help highlight important image details related to defects. Classifier
choices include models like SVMs and neural networks for classifying and detecting faults.
ROI selection shows how methods target defect-prone areas to focus computational power
where it matters most. Data processing improves image clarity and balances datasets, while
performance metrics like accuracy and recall show how effective each approach is. The type
of defect points out the specific issues each study aims to detect, from cracks to corrosion.
Environment and libraries list the software and tools that make these methods possible,
like MATLAB or TensorFlow. Finally, dataset details describe the data used, including
image size, resolution, and balance. In the following sections, we will examine how these
studies enhance aircraft inspection, discussing strengths, challenges, and their impact
on maintenance.
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Table 5. Summary table—Architecture and key features of machine learning inspection algorithms in the aviation industry.

Author Year Feature
Extractor Classifier Selection of ROI Performance Metrics Type of Defect Data

Processing
Environment/
Libraries Dataset

Congqing Wang
[85]

2016 ❖ Angular second
moment, Contrast,
Correlation
Entropy
❖ Echo height
Echo time.
❖ Gray level
co-occurrence
matrix (GLCM)

Multi-class
Support Vector
Machine (SVM),
optimised with a
Genetic Algorithm
(GA)

N/A ❖ Recognition accuracy
of 93.3%
❖ Time Consuming (s) =
61.35342

❖ cracks ❖ Data fusion
❖ GA was
employed to
optimise the SVM
model

❖ MATLAB
R2008a

❖ 150 images
# 30 normal images
# 60 crack images
# 30 corrosion images
# 30 brunt images

Touba
Malekzadeh
[86]

2017 CNN
pre-trained on
ImageNet:
AlexNet [87] and
VGG-F [88]

SVM with a linear
kernel

SURF Interest
Point
Extractor [89]

❖ Accuracy = 0.96
❖ Sensitivity = 0.96
❖ Specificity = 0.96
❖ Processing Time = 15 s

❖ Defect/No
Defect

❖ Binary mask
❖ Data-level
balancing method
❖ A low-pass
Gaussian filter

❖ MAT-
LAB/MatConvNet
[90]

❖ Unbalance
❖ JPEG format
❖ RGB
❖ 3888 × 5184
resolution

Julien
Miranda [91]

2019 ResNet50
(fine-tuned)

Hybrid approach
combining CNN
with Prototypical
Networks for
few-shot learning

N/A ❖ Precision = 0.97
❖ Recall = 0.77
❖ AP = 0.79

❖ Lightning burns
❖ Paint defects
❖ Rivet
❖ Rivet rash
❖ Screw
❖ Screw rash

❖ Data
augmentation and
few-shot learning
for rare defects

❖ Python, using
libraries for CNN
and few-shot
learning

❖ UAV-acquired
high-resolution images
❖ 15; 000 samples
❖ The dataset is highly
imbalanced

Julien
Miranda [33]

2019 CNN with models
like SSD (Single
Shot Detector) and
YOLO (You Only
Look Once)

Generative
Adversarial
Network (GAN)
to create prior
patterns for
matching detected
screws

Manually
identified as
Zones of Interest
(ZOIs) focused on
screws

❖ Precision > 95%
❖ Recall > 95%

❖ Missing or loose
screws on the
aircraft fuselage

❖ Depth maps
❖ GANs

❖ Not specified ❖ Acquired using a UAV
with precise laser
positioning technology

Soufiane Bouarfa
[92]

2020 Mask R-CNN N/A N/A ❖ Precision = 69%
❖ Recall = 57%

Dents ❖ Data
Augmentation

❖ Annotation =
VGG Image
Annotator [93]
❖ Python +
Python packages:
{numpy, Scipy,
Pillow, Cython,
Matplotlib,
Scikit-image,
tensorflow >=
1.3.0, keras >=
2.0.8,
Opencv-python,
H5py, Imgaug,
IPython}
IDE = MS VS2017

❖ COCO data
❖ The photos were taken
from the Abu Dhabi
Polytechnic hangar
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Table 5. Cont.

Author Year Feature
Extractor Classifier Selection of ROI Performance Metrics Type of Defect Data

Processing
Environment/
Libraries Dataset

Ivan Ren [94] 2020 Pre-trained CNNs:
VGG,
GoogLeNet, and
ResNet with 18,
34, and 50 layers

3 CNN base
learners
(ResNet18,
GoogLeNet, and
VGG11_bn)
Homogeneous
(three ResNet18
models),
Dimensionally
diverse (ResNet18,
ResNet34,
ResNet50), and
Structurally
diverse (ResNet18,
GoogLeNet,
VGG11_bn)

An ROI of 672 ×
448 pixels was
manually selected
and then divided
into smaller 224 ×
224 images

3x ResNet18
❖ mean accuracy: 99.8%,
❖ mean precision:
99.61%,
❖ mean F1 score: 99.7%,
❖ mean recall: 100%.
❖ The stacked ensemble
models outperformed
individual base models
in all key metrics,
including precision,
accuracy, recall, and F1
score.

❖ cracks
❖ corrosion
❖ scratches
❖ gouges

❖ Data
augmentation
❖ A cross-entropy
loss function
❖ Stochastic
gradient descent
(SGD) with
momentum was
used for
optimisation, with
an early stopping
strategy to prevent
overfitting.

❖ The models
were implemented
in PyTorch, with
logistic regression
trained in
scikit-learn.

❖ Collected from
borescope inspections of
aircraft propeller blades
❖ Balanced dataset of
600 images (300 with
defect and 300
defect-free).

Nicolas P.
Avdelidis [95]

2022 Pretrained CNN:
DenseNet201

Ensemble of CNN
models
(EfficientNetB1,
EfficientNetB5,
EfficientNetB4,
DenseNet169)

Manual cropping
with Python script

❖ DenseNet201 achieved
an accuracy of 81.82%.
❖ For defect
classification, specific
defects were classified
with up to 100%
accuracy

❖ Missing or
Damaged Exterior
Paint and Primer
❖ Dents
❖ Reinforcing
Patch Repairs
❖ Nicks/
Scratches/Gouges
❖ Blend/Rework
Repairs
❖ Lighting Strike
Damage
❖ Lighting Strike
Fast Repairs

❖ Cropping
❖ Grayscale
conversion
❖ Data
augmentation
❖ Transfer
learning
❖ Early stopping
and reduced
learning rates
were used to
optimise the
models.

❖ TensorFlow ❖ Custom dataset with
1059 images (576 with
defects, 483 without
defects).
❖ Captured using a UAV
with a Sony RX0 II
camera
❖ 4800 × 3200 pixel
resolution images in
RGB.
❖ Imbalanced dataset

Meng DING [96] 2022 ResNet-50
backbone,
pre-trained on
ImageNet

Improved Mask
Scoring R-CNN
framework. A
new classifier
head with four
convolutional
layers and a fully
connected layer

A Region Proposal
Network (RPN)
identifies Regions
of Interest (ROIs)
automatically

❖ Significant
improvements over
Mask R-CNN and Mask
Scoring R-CNN, with a
21% increase in
segmentation precision
and a 19.59% increase in
pixel-level accuracy
❖ Average Precision,
Bounding Box of 64.8%
❖ APM (Average
Precision, Mask) of
62.7%

❖ Paint
detachment
❖ Surface
scratches

❖ Convolutional
Block Attention
Module (CBAM)
to enhance
significant
features
❖ A feature fusion
module for
multiscale
representation.
❖ Data
augmentation

❖ Python 3.6.10,
❖ Utilising the
Mask Scoring
R-CNN
❖ Labelme
software

❖ Custom dataset of 276
images of A320 and B737
aircraft skin defects
❖ 960 × 720 resolution
❖ The images capture
defects on the fuselage,
wings, and tail
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Table 5. Cont.

Author Year Feature
Extractor Classifier Selection of ROI Performance Metrics Type of Defect Data

Processing
Environment/
Libraries Dataset

Benedict
E. Jaeger [97]

2022 CNN architecture:
ResNet-18

The ResNet-18
CNN was adapted
for binary
classification
(crack or no crack)

For the SIM, 64 ×
64-pixel patches
were cropped
from specific
regions in the
larger images

❖ LIM achieved an
F2-score of 0.60 on
validation
❖ SIM attained 0.85

❖ cracks in
turbine blades

❖ Data
augmentation
❖ Stratified k-fold
cross-validation
❖ Oversampling
❖ Focal loss
❖ Two
configurations: a
large image model
(LIM) and a small
image model
(SIM)

❖ Fastai
❖ PyTorch

❖ Thermographic
images
❖ Class imbalance (crack
and crack-free).
❖ LIM used 512 × 640
images (600 crack-free,
52 with cracks), and SIM
used 64 × 64 patches
derived from these
images

Xueyan Oh [98] 2024 A PoseNet,
adapted with an
Xception
backbone
Trained on
ImageNet

Not available The model
operated on
images captured
from quadrants
defined around
the aircraft to
localise each scan
image

❖ Median localisation
error under 0.24 m
❖ Angular error below
2◦

Focused on the
spatial localisation
of visual
inspection images
on the aircraft’s
surface

❖ Synthetic
images are
generated with
domain
randomisation

❖ TensorFlow ❖ 4000 synthetic images
# 700 validation and
# 300 test images.
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Wang et al. [85] (2016) proposed a multi-source sensor approach for aircraft skin crack
inspection using a Support Vector Machine (SVM) classifier optimised with a Genetic
Algorithm (GA). The system integrated image and ultrasonic sensors to capture surface
and subsurface crack features. Image features, such as angular second moment, con-
trast, correlation, and entropy, were extracted using the Gray Level Co-occurrence Matrix
(GLCM), while ultrasonic features included echo height and echo time, offering depth and
internal structure information. A mobile inspection platform with suction cups enabled
stable, precise data collection. The GA optimised the SVM by selecting optimal parameters
(penalty factor C and kernel parameter σ), improving accuracy to 93.3%, compared to 88.9%
with SVM alone and 71.5% with single sensor methods. This dual-sensor fusion approach
improved crack detection accuracy, overcoming challenges of low resolution and human
error in traditional visual inspections. Implemented in MATLAB, the system demonstrated
robustness and adaptability for various defect types, providing a reliable framework for
enhanced aircraft maintenance and safety inspections.

In 2017, Malekzadeh et al. [86] proposed an automated aircraft fuselage defect de-
tection system using Deep Neural Networks (DNNs), specifically CNNs pre-trained on
ImageNet (AlexNet and VGG-F). This system combined a VGG-F model as a feature ex-
tractor with a linear SVM classifier, achieving high performance in defect detection with
96% accuracy, sensitivity, and specificity. The SURF Interest Point Extractor focused on
regions of interest (ROI), resulting in a 6× speed-up by only evaluating selected patches.
The system processed a 20-megapixel image in 15 s, operating in MATLAB with the Mat-
ConvNet library. The dataset consisted of high-resolution RGB images in JPEG format,
with data-level balancing through oversampling and undersampling and a binary mask
to represent defects. A low-pass Gaussian filter addressed noise in unwashed fuselage
images, enhancing defect detection accuracy. This method demonstrated a viable approach
to automated, high-accuracy fuselage inspection for aviation maintenance.

Miranda et al. [91] (2019) developed a hybrid model for aircraft defect classification
using a combination of ResNet50 CNN and Prototypical Networks to address the extreme
class imbalance in UAV-acquired images. This method was designed for detecting various
fuselage defects, such as lightning burns, rivet rash, screw rash and paint defects. The
model utilised data augmentation and few-shot learning to improve classification accuracy,
achieving a precision of 0.97 and recall of 0.77 for rare defects. The study found that,
depending on the class and sample size, different machine-learning approaches were
suitable, leading to a combined model that applies CNNs to common classes and few-
shot learning to rare ones. Implemented in Python with high-resolution UAV images, the
approach showed that hybrid models effectively balance performance for both common
and underrepresented categories.

In another similar research project, Miranda et al. [33] (2019) presented a UAV-based
system for inspecting aircraft exterior screws using advanced computer vision. The UAV
employed precise laser-based localisation to position itself relative to the aircraft without
GPS, ensuring accurate inspections indoors and outdoors. A CNN with SSD and YOLO
models detected screws and identified missing or defective ones. Regions of Interest (ROIs)
were selected manually and refined with Generative Adversarial Networks (GANs) and
depth maps to enhance pattern matching under various lighting conditions. A 3D model
of the aircraft guided the UAV’s navigation and camera alignment. Detected screws were
matched with expected patterns using a bipartite graph, improving accuracy by referencing
a 3D Digital Mock-Up (DMU) of the aircraft. The system achieved over 95% precision and
recall, identifying critical defects. For loose screw detection, it analysed screw alignment
changes by comparing screw slots with red operator markings.
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In 2020, Bouarfa et al. [92] explored automated aircraft maintenance using Mask R-
CNN for dent detection. Mask R-CNN’s instance segmentation capability enabled precise
pixel-level detection, crucial for non-uniform dent shapes. The model, trained with data-
augmented images and pre-trained COCO weights, achieved an average precision of 54%
and recall of 46%. After additional training, precision increased to 69% and recall to 57%.
Photos were sourced from the Abu Dhabi Polytechnic hangar and annotated using VGG
Image Annotator. Implemented in Python with libraries like TensorFlow and Keras, this
study faced limitations, including a small and varied dataset, which impacted model
accuracy. Environmental factors, such as lighting and reflections, also affected detection
performance, leading to false positives with elements like rivets and raindrops.

Ren et al. [94] (2020) developed a stacked ensemble model for surface defect detection
in aircraft visual inspections. This approach combined three CNN architectures—ResNet18,
GoogLeNet, and VGG11_bn—as base learners with a logistic regression meta-learner. The
ensemble enhanced classification accuracy by leveraging error diversity among different
CNN models, achieving 99.8% accuracy and 100% recall in defect detection, outperforming
single-model frameworks. Defects examined included aircraft surface cracks, corrosion,
scratches, and gouges. Images were sourced from borescope inspections, and a central re-
gion of 672 × 448 pixels was selected to reduce distortion and lighting issues. Implemented
in PyTorch, the model used data augmentation and cross-entropy loss with stochastic
gradient descent. This ensemble approach demonstrated improved reliability in automated
defect detection, which is crucial for safety-critical systems like aircraft propellers.

In 2022, Avdelidis et al. [95] developed a two-step defect recognition and classifica-
tion process using deep learning to automate aircraft inspections conducted with UAVs.
The system used a DenseNet201 CNN model for defect detection and an ensemble of
EfficientNetB1, EfficientNetB5, EfficientNetB4, and DenseNet169 CNN models for defect
classification. The ensemble approach was designed to handle a range of defect types,
including missing paint, dents, lightning strike damage, and patch repairs, achieving up to
100% accuracy in specific classes (e.g., paint damage and dents) and an overall defect detec-
tion accuracy of 81.82%. A custom dataset of high-resolution images (4800 × 3200 pixels)
captured in a maintenance hangar was used, with a semi-automated Python script for
selecting regions of interest (ROI) by cropping relevant areas, followed by grayscale conver-
sion to reduce colour dependency. The system was implemented in TensorFlow, utilising
transfer learning and data augmentation to mitigate the limitations of a small, imbalanced
dataset. Despite these limitations, the approach demonstrated a promising framework for
UAV-based defect detection, with high accuracy in detecting and classifying defects critical
for aircraft safety.

Ding et al. [96] (2022) proposed an automated pixel-level defect detection method for
aircraft skin based on an enhanced Mask Scoring R-CNN. The model integrated a Convo-
lutional Block Attention Module (CBAM) and a feature fusion module to refine feature
representation alongside a new classifier head with four convolutional layers. An ablation
study showed that the classifier head improved the most, boosting segmentation precision
by 12.5% and pixel-level accuracy by 16.98%. The system was tested on a custom dataset
of 276 images with aircraft skin defects, achieving 27.66% higher bounding box precision
and 20.49% better segmentation precision compared to Mask R-CNN. Additionally, the
approach demonstrated robustness in handling low-contrast defects, producing smoother
and more accurate segmentation boundaries. This method outperformed existing models,
showing its effectiveness in precise and reliable defect detection, which is essential for
automated aircraft inspection tasks.

In 2022, Jaeger et al. [97] introduced a deep-learning approach to enhance crack
detection in turbine blades using infrared induction thermography. Their method cap-
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tured both surface and sub-surface cracks, providing an automated, contact-free solution
compared to traditional inspection techniques. The model used ResNet-18 in two configu-
rations: a Large Image Model (LIM) on full-size images and a Small Image Model (SIM)
on 64 × 64 cropped patches. SIM focused on high-crack-density areas and achieved an
F2-score of 0.85, outperforming LIM’s 0.60. To address challenges like data imbalance and
small crack size, the authors applied focal loss, oversampling, and data augmentation. The
system, implemented with fastai and PyTorch on an NVIDIA RTX 2080 Ti GPU, increased
inspection accuracy and efficiency, supporting inspectors in identifying critical turbine
blade defects.

Oh et al. [98] (2024) proposed a CNN-based approach for camera pose estimation
and image localisation in aircraft inspections. The method used a customised PoseNet
model with an Xception backbone. It was fine-tuned on synthetic images generated from
a 3D aircraft model. A geometric loss component leveraged the fixed structure of the
aircraft to improve accuracy. Tested on real Airbus A320 images, the system achieved
localisation errors under 0.24 m and orientation errors below 2◦. It operated without
external infrastructure or contact with the aircraft, making it suitable for airport use.
Domain randomisation varies textures and lighting in synthetic images, enhancing real-
world performance. The workflow included camera initialisation, path planning, and image
localisation. This approach supported precise, efficient inspections under time constraints
in airports.

2.3. Material Selection

In 2022, IATA’s Airline Maintenance Cost Executive Commentary provided insights
into global Maintenance, Repair, and Overhaul (MRO) spending by aircraft segment [2].
The chart below (Figure 7) shows that most spending in 2022 was directed toward engine
and airframe maintenance. Forecasts for 2032 suggest a similar spending pattern, with a
slight increase in engine maintenance costs. This reflects the critical focus on engine and
airframe upkeep for safe and efficient aircraft operation.
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In the aerospace industry, materials have always played a crucial role in reducing
weight, enhancing performance, and improving fuel efficiency. The primary aim is to lower
costs while maintaining safety. In this context, Zhang et al. [99] published a paper outlining
the material requirements for designing aircraft structures and engines, highlighting the
advantages and challenges of current materials, and introducing future trends in aerospace
materials. The earliest airframe materials were wooden, with the first flight occurring in
1903. In 1927, aluminium-based alloys dominated aircraft structures for the next 80 years.
However, this trend shifted with the rise in composite materials. Figure 8 below illustrates
material trends in Boeing aircraft over the years, showing a rapid increase in composite
materials and a decrease in aluminium alloys, especially in the Boeing 787.
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A similar trend, documented by Muller et al. [101], included data on Airbus aircraft,
which have also adopted this shift. As illustrated in Figure 9, in the new generation of
Airbus models, there is a notable increase in composite materials and a reduction in alu-
minium alloys, comprising more than 53% of the Airbus A350. However, aluminium-based
alloys continue to play a crucial role in airframe structures and engines due to their cost-
effectiveness, ease of manufacturing and their well-known mechanical behaviour. Addition-
ally, these alloys can undergo heat treatment and endure relatively high-stress levels [99].

Several key factors have driven the development of new aircraft materials, such as
composite materials, over the past two decades. Increasing payload capacity and extending
flight range are top priorities. Improving fuel efficiency and prolonging service life are also
essential goals. Reducing the overall weight of the aircraft is critical. Ultimately, these efforts
aim to lower operating costs, making modern aircraft more economical and efficient [99].
Before diving into specifics, it is important to define composite materials. Composites
are materials made from two or more distinct components that, when combined, offer
enhanced properties that the individual materials cannot achieve on their own [102].

Many researchers, including Wong et al. [103] highlighted the benefits of using com-
posite materials in contrast with conventional metallic counterparts. A few examples are
weight efficiency, low maintenance, design flexibility and integrity, corrosion resistance and
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a lifespan of approximately 28 years. Composite materials are extensively used throughout
the aircraft airframe. In the Airbus A380 (Figure 10), for example, composites are incorpo-
rated into the centre wing box, horizontal and vertical tailplanes, outer flaps, as well as
the unpressurised fuselage and rear pressure bulkhead. These materials also hold great
promise for engine components, contributing to further weight reduction and improved
performance. The primary types of composites include ceramic matrix, metal matrix, and
polymer matrix composites. Of these, polymer matrix composites (PMCs) are the most
widely used. Notably, in Boeing 777 and 787 aircraft, PMCs account for up to 50% of
their weight, primarily as carbon fibre-reinforced polymers (CFRP). PMCs can be further
classified into two subcategories: thermoplastics and thermosets [99].
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The Table 6 below outlines the key material requirements for various aircraft compo-
nents based on the specific loads and conditions they encounter. The wing, for example,
experiences bending forces during flight and additional stresses during take-off and landing.
To endure these forces, materials used for the wing must have high tensile and compressive
strength, with options including 2024 aluminium alloy and carbon fibre-reinforced polymer
composites. The fuselage faces high cabin pressure and shear loads, requiring materials
with strong tensile and shear properties, such as aluminium alloys. For high-temperature
areas like the exhaust nozzle and aircraft brakes, materials need high heat resistance, with
ceramic matrix composites and carbon fibre-reinforced silicon carbide often used. Lastly,
control surfaces such as ailerons, flaps, and landing-gear doors require materials with a
high strength-to-weight ratio, where both thermoset and thermoplastic polymer matrix
composites are effective choices [99].

Table 6. Material requirements and example materials for key aircraft components [99].

Component Applied Loads/Conditions Material Requirements Example Materials

Wing Subjected to bending during
flight; additional loads during
taxiing, take-off, and landing;
compression on the upper
surface and tension on the lower
surface during flight

High tensile and compressive
strength

2024 Al-based alloy: Moderate
yield strength (324 MPa), good
fracture toughness (37 MPa m1/2),
high elongation (21%);
Polymer Matrix Composites (PMC)
such as CFRP: High strength
(3450–4830 MPa), elastic modulus
(224–241 GPa), high-temperature
resistance (290–345 ◦C)

Fuselage Exposed to high cabin pressure
and shear loads

High tensile and shear strength 2024 Al-based alloy: Used for
moderate yield strength and
durability

Exhaust Nozzle Exposed to high temperatures High-temperature capability Ceramic Matrix Composites
(CMC)

Aircraft Brakes Subjected to extremely high
temperatures (up to 1200 ◦C
under emergency conditions)

High-temperature resistance Carbon fibre-reinforced silicon
carbide

Ailerons, Flaps,
Landing-Gear, Doors

High specific strength and
specific modulus needed

Lightweight with high
strength-to-weight ratio

Polymer Matrix Composites
(PMC): Both thermoset and
thermoplastic PMCs

2.4. Type of Defects

This section examines the two most widely used materials in aircraft manufacturing:
metallic and composite materials. It explores various types of defects associated with these
materials, as investigated by other researchers in the field. The focus is on how these defects
impact aircraft maintenance and the methods used to inspect and characterise them.

The Table 7 below summarises typical types of defects found during the manufacturing
process or during in-service in aerospace materials, divided into metallic and composite
categories. Metallic materials often suffer from issues like fatigue, corrosion, and wear,
which weaken their structure. In contrast, composite materials are more sensitive to
problems such as delamination, fibre cracking, and impact damage, which affect their
layered and bonded nature. This breakdown shows the unique damage challenges faced
by each material type.

The table above corresponds to the image below, providing a detailed view of the
shape, location, and unique attributes of each defect. This illustration showcases typical ma-
terial defects found in both composite and metallic structures. Figure 11a represents defects
in composite materials, such as impact damage, delamination, porosity, and fibre/matrix
cracking. Figure 11b shows a jet engine turbine blade with thermal cracks and delamination
between ceramic coatings and CFRP layers. Figure 11c displays honeycomb panel defects,
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including core crushing, water ingress, and skin-to-core debonding. Finally, Figure 11d
illustrates common issues in metallic components, like voids, corrosion, material inclusions,
and both parallel and perpendicular cracks. Together, these diagrams provide a clear visual
overview of defect types in aerospace materials.

Table 7. Common Types of Damage in Metallic and Composite Aerospace Materials [105].
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Material

Metallic Composite
❖ Fatigue cracks ❖ Disbonds

❖ Pores and voids ❖ Delamination

❖ Corrosion ❖ Foreign Inclusion

❖ Material inclusions ❖ Fibre/Matrix Cracking

❖ Welded sheets without metal diffusion ❖ Honeycomb cell wall damage

❖ Overload ❖ Porosity

❖ Wear ❖ Thermal stress cracking

❖ Creep ❖ Fatigue

❖ Impact damage and BVID

❖ Water ingress

❖ Absence of adhesive

❖ Skin-to-core debonding

❖ Core crushing
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The following sections will analyse three representative examples of fabricated spec-
imens with artificially induced defects to simulate real-world scenarios. Each example
includes details on the material type, geometry, defect fabrication methods, and inspection
techniques used by researchers.
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Lysenko et al. [46] prepared an AD31T5 aluminium alloy specimen with dimensions
of 360 mm in length, 120 mm in width, and 5 mm in thickness. The sample included
artificial circular defects arranged in various cluster densities, sizes, and configurations. The
Figure 12 below shows the specimen, detailing the number of holes and their actual depth
values. AD31T5 aluminium alloy is commonly used in the aviation industry for aircraft
frames, support structures, and interior fittings due to its strength and corrosion resistance.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 30 of 45 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. (a) Illustration of typical material defects for composite structures; (b) jet engine turbine 
blades; (c) honeycomb panels; (d) metallic aircraft and spacecraft components [39]. 

The following sections will analyse three representative examples of fabricated 
specimens with artificially induced defects to simulate real-world scenarios. Each example 
includes details on the material type, geometry, defect fabrication methods, and 
inspection techniques used by researchers. 

Lysenko et al. [46] prepared an AD31T5 aluminium alloy specimen with dimensions 
of 360 mm in length, 120 mm in width, and 5 mm in thickness. The sample included 
artificial circular defects arranged in various cluster densities, sizes, and configurations. 
The figure 12 below shows the specimen, detailing the number of holes and their actual 
depth values. AD31T5 aluminium alloy is commonly used in the aviation industry for 
aircraft frames, support structures, and interior fittings due to its strength and corrosion 
resistance. 

 

Figure 12. Sample made of AD31T5 alloy [46]. 
Figure 12. Sample made of AD31T5 alloy [46].

In another study, Zhang et al. [42] employed an autonomous UAV-based ultrasonic
system to inspect an aluminium specimen. The researchers created a 1000 mm × 1000 mm
× 15 mm aluminium sample with twenty-five flat-bottom holes of various diameters and
depths to simulate sub-surface defects.

In the study by Reyno et al. [20], two types of honeycomb sandwich aircraft panels—a
flat panel and a curved panel—were fabricated to assess surface damage using 3D scanning
technology. These panels were constructed with specific materials: the flat panel utilised Al
7075-T6 for the top face sheet, Al 5052 for the core, and epoxy/fibreglass for the bottom face
sheet. On the other hand, the curved panel used Al 2024-T3 for both the top and bottom
face sheets, with Al 5052 as the core. Each panel featured a heat-resistant epoxy adhesive for
structural integrity. Figure 13a,b display images of the flat and curved panels, respectively,
illustrating the setup for dent inspection and the panel geometry. This experiment aimed
to simulate real-world damage scenarios and evaluate the precision and reliability of 3D
scanning as a non-destructive inspection method.
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2.5. Size and Depth Estimation Techniques

Accurately measuring the depth, width, and length of detected defects in the aviation
industry is a complex process. Manual tools, as discussed earlier, have limitations in
precision and consistency. Automating this process improves reliability, consistency, and
safety. The following section analyses three examples of depth measurement techniques
researchers used for various aircraft defects. Additionally, two examples will demonstrate
methods to estimate the width and length of detected defects.

As described by Reyno et al. [20] the 3D scanning process was employed to measure
dent depths on damaged aircraft panels by comparing the actual panel surface (represented
as a 3D point cloud) with an approximated undamaged surface. As illustrated in Figure 14,
this undamaged surface was digitally recreated using undisturbed regions of the panel.
The comparison was performed using deviation analysis, which calculated dent depths as
the perpendicular distance between the two surfaces.
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The analysis generated a colour map that clearly indicated the extent and depth of the
dents. The method demonstrated reliable accuracy, with a maximum deviation of ±0.06
mm for flat panels and ±0.05 mm for curved panels. These results matched closely with
measurements taken using traditional manual depth gauges but required significantly less
inspection time. Additionally, the method was capable of supporting the detection of Barely
Visible Impact Damage (BVID), a critical threshold in aviation maintenance standards.

In another similar study, Jovančević et al. [19] used the above approach to estimate
the defect’s depth. As shown in Figure 15, the process started by identifying undamaged
surface areas. These regions acted as a reference for recreating the original geometry.
A Weighted Least Squares (WLS) method was used to fit a smooth quadratic surface to
these points, creating the ideal reference surface. The defect depth was then calculated by
measuring the vertical difference between the ideal surface and the damaged surface. This
difference, ∆z, followed the formula:

|∆z| =
∣∣∣zPideal − zPoriginal

∣∣∣ (1)

A colour-coded map highlighted depth variations across the surface. The method
achieved high accuracy, with less than 10% error compared to standard measurements.

Another way to estimate the pixel depth is to use photogrammetry and, more specifi-
cally, specialised software such as Meshroom [106] using the AliceVision framework, which
applies a step-by-step process to calculate pixel depth in a scene. It starts by confirming the
positions and angles of cameras using a method called Structure-from-Motion (SfM). This
ensures that at least two images of the same area are available for comparison. The next step
involves measuring pixel similarities across images using a technique known as Zero-Mean
Normalized Cross-Correlation (ZNCC). These measurements help form an initial depth
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map that combines local and global data for accuracy. The depth map is then refined by
increasing its resolution and fine-tuning depth values through computational adjustments.
To remove inaccuracies, the system aligns depth variations with visible features in the
images, such as edges. The result is a detailed depth map, which can be visualised in both
2D and 3D.
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In a recent paper, Plastropoulos et al. [35] developed a method to measure defects on
aircraft surfaces using UAVs equipped with cameras and LiDAR. It started by capturing
images with calibrated camera settings, including focal length, sensor dimensions, and
LiDAR-measured distances. Grayscale conversion and Gaussian blurring reduced noise in
the images. The method then applied Canny edge detection to identify edges, followed by
dilation and erosion operations to refine contours. Pixel distances within defect contours
were calculated for measurements like width and height. To convert these pixel dimensions
into real-world measurements, the technique relied on similar triangle geometry (please
refer to Figure 16).
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The calculations involved key parameters like the focal length (f ), sensor width (sen-
sorw), image width (imagew), and the distance between the camera and the defect (D).
Real-world defect width (W) was derived as:

W = w × D
f

(2)
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For more advanced measurements, the method used effective focal length (EFL). It
related pixel dimensions to real-world size as:

de f ectw =
D·dA·sensorw

f ·imagew
=

D·dA
EFL

, where EFL =
f ·imagew
sensorw

(3)

Lab tests confirmed high accuracy, but field conditions like reflective surfaces and
non-perpendicular imaging introduced challenges. Despite these, the approach provided a
reliable framework for automated defect measurement with potential refinements.

Reyno et al. [20] as illustrated in Figure 17, measured the dent depth and also analysed
the dent length and area through a step-by-step process. They performed a deviation
analysis in Design X software with the colour bar set to a solid colour. This created a colour
map that outlined the dent perimeter. Deviations beyond a set tolerance appeared in a single
colour, such as dark blue, making them easy to identify. The team converted the colour
map into an 8-bit grayscale image using ImageJ software. They noted that sharpening or
despeckling could reduce noise but did not apply these in their study. For curved surfaces,
they used the Design X Normal To Function to adjust the 3D CAD surface. This ensured
that the map aligned perpendicularly with the viewer for accurate measurements. Based
on dimensional data from Design X, they defined a unit scale in pixels per millimetre and
calculated dent parameters, including area and maximum length, in ImageJ. This method
provided accurate measurements for simple and complex dents on flat and curved panels,
offering a detailed view of the damage.
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3. Discussion
The comparative evaluation of non-destructive testing (NDT) technologies presented

in Table 8 was systematically derived from the literature review conducted in the previ-
ous sections. This assessment was based on predefined performance criteria, including
defect detection accuracy, consistency, ease of use, acquisition speed, portability, and cost-
effectiveness. The data for this comparative analysis were extracted from multiple sources,
including empirical studies, experimental evaluations, and industry reports, ensuring a
balanced and evidence-based comparison of the technologies.

Each parameter in the table weighs one, indicating the presence of a given charac-
teristic for the NDT methods. Including one value for a specific parameter signifies that
the technology effectively meets the corresponding performance criterion. This uniform
scoring approach ensures objectivity in comparing the strengths and limitations of each
method without introducing weighted biases. The most suitable NDT techniques for auto-
mated aircraft inspection were identified by analysing these parameters collectively. The
results of this comparative analysis highlight that Infrared Thermography (IRT) combined
with Photogrammetry emerges as the most suitable NDT technique for the objectives of
this research.
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Table 8. Proposed parameters to evaluate the performance of non-destructive technologies (‘X’ indicates that the corresponding NDT technology meets the described
criteria. Blank spaces indicate that the technology is not suitable for the given parameter).

Criteria Sub-Criteria Parameters

NDT Technologies

X-Ray Ultrasonic Magnetic
Particle Penetrant Eddy Current Acoustic

Emission IRT

3D Scanning

Laser LiDAR
Photogrammetry

(RGB)

Capability Surface defects Cracks
Surface-
Opening
Corrosion
Impact
Damage
Dents
Surface Wear
Surface
Deformation

X X
X

X X X

X
X

X

X
X
X

X

X
X
X

X

X
X
X

Near-surface
defects

Cracks
Debonding
Corrosion
Impact
Damage
Delamination

X
X
X

X

X X X
X

X

X
X
X
X
X

Non-Contact
Inspection

No-coupling
agent required

X
Requires a
coupling

medium (gel,
water, or oil)

Requires
magnetic ink or

powder
application

Requires liquid
penetrant and

developer
application

Requires probe
contact with
the material

Needs direct
contact with
the structure

X X X X

Performance
under different
environments

Efficiency
under different
finishes

High defect
detection
capability
under different
materials

X
Metals,

composites,
ceramics

X
Metals,

composites,
some plastics

Only
ferromagnetic

materials

Only materials
with smooth

surfaces

Conductive
materials only

X
Metals,

composites,
some ceramics

X
Metals,

composites,
plastics

X
Most materials Most solid

structures

X
All visible
materials

Consistency Repeatability X X
Manual

application
only

Depends on
surface

preparation,
dwell time,

and lighting

X
Depends on

sensor
placement and

background
noise

Environmental
factors

X X X

Sensitivity High defect
detection
accuracy

X X X X X X X X X X

High coverage
range Requires

multiple
exposures

Requires
manual

scanning

Only works in
localised areas

Requires
individual
component
inspection

Limited to
small probe

areas

X X
Moderate

coverage range

X X
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Table 8. Cont.

Criteria Sub-Criteria Parameters

NDT Technologies

X-Ray Ultrasonic Magnetic
Particle Penetrant Eddy Current Acoustic

Emission IRT

3D Scanning

Laser LiDAR
Photogrammetry

(RGB)

Ease of use Ease of data
collection

Portability
Heavy

equipment,
shielding is

required

X X X X X X X X X

Ease of use
Ease of data
collection

Minimum
safety
requirements

Radiation
hazard requires
shielding and
legal permits

X X
Uses chemicals

that require
proper

ventilation

X X X X X X

Ease of data
analysis

Minimum
complexity of
data analysis

Requires
trained

personnel to
interpret
images

X X X X
Complex

waveform
analysis

requires signal
processing and

pattern
recognition

X X X X

Cost Data collection
cost

Low
equipment and
software cost

Requires
expensive

equipment,
protective

shielding, and
specialised

software

Advanced
phased-array
systems cost

more

X X X
Interpretation
software can

add cost

It needs
multiple

sensors and
advanced

signal-
processing
software

X
High-precision

versions are
costly

X
More

expensive than
photogramme-

try

X

Speed Data collection
speed

High
acquisition
speed

Requires
exposure time
+ processing

time

Single-probe
scanning takes

time

X
Requires dwell

time for the
penetrant to

seep into
defects

X X X
Scanning large
surfaces takes

time

X X

Speed Data analysis
speed

Data analysis is
quick and
efficient

Requires image
processing,

defect
interpretation,

and expert
review

X X X X
Requires signal
processing and

pattern
analysis

X
Requires point

cloud
processing

Large datasets
require

software
processing

Post-
processing
takes time

TOTAL SCORE 5 11 9 6 10 10 18 11 13 14
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This research has the potential to make significant intellectual contributions to the
field of aircraft inspection by advancing automated methods for structural evaluation. An
essential contribution is developing a novel inspection system that combines 2D RGB and
infrared thermal images with their corresponding 3D models, using photogrammetry to
detect surface and near-surface defects in both metallic and composite aircraft materials.
This non-contact approach improves defect detection accuracy compared to traditional
methods and reduces aircraft downtime and operational costs. Additionally, integrating
photogrammetry with infrared thermal and RGB cameras expands the capabilities of non-
destructive testing (NDT) techniques, enabling comprehensive 3D reconstructions and
more detailed analyses of defect characteristics. To the best of my knowledge, this is the
first application of combining advanced cameras with photogrammetry for 3D inspection in
the aviation industry. However, similar technology has been successfully used in fields like
forensic science, civil infrastructure, and archaeology. Furthermore, many researchers have
encountered challenges with unbalanced datasets during machine learning model training
due to the absence of open-source datasets containing aircraft defects and the difficulty of
accessing aircraft specimens because of intellectual property restrictions and protections
enforced by OEMs. Using synthetic images generated from 3D models, combined with
real images, offers a valuable solution to these challenges. Finally, integrating all these
technologies into a single graphical user interface (GUI) makes the solution user-friendly
and accessible to operators without requiring expertise in the field.

The findings from this research could have important potential impacts on both the
aviation and machine learning industries. In aviation, this approach can offer a more
accurate, efficient, and non-invasive method for detecting defects in aircraft materials,
which could drastically reduce maintenance costs and aircraft downtime. It can also
improve reliability and safety and minimise human error. While this research focuses on
smaller-scale aircraft specimens, demonstrating the effectiveness of this technology opens
the door to scaling up. Using a UAV system instead of a robotic arm, aircraft maintenance
companies can extend these inspection methods to larger aircraft components. For the
machine learning industry, an open-source dataset that consists of 2D images and 3D models
will be available to other researchers and individuals for further use. Moreover, utilising
both real and synthetic data addresses the common challenge of unbalanced datasets,
improving the accuracy and robustness of defect detection algorithms. The GUI and all
the developed libraries will also be open-source and available through GitHub. Finally,
the sophisticated machine learning techniques will be more accessible to the research and
aviation community, encouraging further innovation.

Automated Non-Destructive Testing (NDT) methods, such as Infrared Thermography
(IRT) and Photogrammetry, offer advantages. However, implementing these technologies
in real-world applications comes with challenges. One major obstacle is cost, as high-
resolution IRT cameras, photogrammetry tools, and advanced processing software require
a significant initial investment. Integrating automated NDT systems into existing mainte-
nance workflows can also be complex due to compatibility issues with industry standards
and regulatory requirements. Another challenge is training personnel since shifting from
traditional NDT methods to automated systems requires expertise in image analysis, defect
identification, and software operation. Without proper training, inspection accuracy could
suffer. Regular maintenance, including sensor calibration, software updates, and system
adjustments, is also necessary to keep the equipment running reliably.

Several strategies can help address these challenges. A cost–benefit analysis can
demonstrate how automated NDT systems save money over time by speeding up inspec-
tions and minimising aircraft downtime. Modular system designs could make imple-
mentation easier by allowing gradual upgrades instead of requiring a significant upfront
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investment. To bridge the skills gap, collaboration between industry and academia can pro-
vide training programmes and certification courses for NDT professionals. Online learning
platforms and augmented reality (AR) tools can further support remote learning. Lastly,
predictive maintenance strategies, such as AI-based condition monitoring, can enhance
system reliability and reduce unexpected failures. These solutions can make automated
NDT technologies more practical, improving efficiency and safety in aviation.

Overall, this work advances current NDT practices and sets new standards that can be
applied to improve industrial inspection processes.

4. Conclusions
The increasing demand for automated aircraft inspection and maintenance has led to

significant advancements in Non-Destructive Testing (NDT) techniques, machine learning-
based defect detection, and automated defect characterisation. This review investigated
the latest research developments, emphasising how deep learning, advanced sensor fusion,
and real-time automation transform aircraft maintenance practices.

Recent studies demonstrate that AI-driven inspection systems achieve higher accuracy,
improved defect classification, and reduced inspection time, mainly through hybrid models,
transfer learning, and sensor fusion techniques. Advances in robotics, UAV-based inspec-
tion, and deep-learning-enhanced thermography have further improved the efficiency and
reliability of damage assessment in metallic and composite aircraft structures. However,
challenges remain in areas such as data limitations, environmental factors affecting imaging
accuracy, and the need for standardised defect detection datasets.

Future research should focus on expanding high-quality datasets, integrating real-
time AI-powered analysis, and improving explainability in deep learning models to en-
hance trust in automated inspections. Developing self-adaptive defect monitoring systems
could further streamline predictive maintenance and aircraft structural health monitor-
ing. The aviation industry is progressing toward more efficient, reliable, and scalable
aircraft maintenance solutions by bridging the gap between AI, advanced imaging, and
aerospace engineering.

5. Future Directions
This research aims to develop an automated vision-based damage evaluation system

capable of detecting and characterising defects in metallic and composite aircraft specimens
by analysing 3D data acquired using both an RGB camera and an infrared thermal camera
through photogrammetry.

The respective scientific objectives of the research are:

1. To develop a dataset comprising at least 1000 real and 500 synthetic images derived
from the 3D model, ensuring it adheres to deep learning standards for accuracy,
diversity, and quality.

2. To train and develop a machine learning model capable of detecting and classifying
the most common defects for each material, achieving a minimum precision of 80%, a
recall of 70%, and an F1 score of at least 0.75.

3. To address the challenges an unbalanced dataset poses and enhance the model’s
performance by at least 5% by applying advanced imaging techniques.

4. To develop a defect measurement tool capable of estimating the size and depth of the
detected defect with an error rate below 10%.
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