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Abstract: Particle counting is of critical importance for

nanotechnology, environmental monitoring, pharmaceuti-

cal, food and semiconductor industries. Here we introduce

a super-resolution single-shot optical method for counting

and mapping positions of subwavelength particles on a sur-

face. The method is based on the deep learning analysis

of the intensity profile of the coherent light scattered on

the group of particles. In a proof of principle experiment,

we demonstrated particle counting accuracies of more than

90%. We also demonstrate that the particle locations can

be mapped on a 4 × 4 grid with a nearly perfect accuracy

(16-pixel binary imaging of the particle ensemble). Both

the retrieval of number of particles and their mapping is

achieved with super-resolution: accuracies are similar for

setswith closely located optically unresolvable particles and

sets with sparsely located particles. As the method does not

require fluorescent labelling of the particles, is resilient to
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small variations of particle sizes, can be adopted to counting

various types of nanoparticulates and high rates, it can find

applications in numerous particles counting tasks in nan-

otechnology, life sciences and beyond.

Keywords: nanoparticle counting; nanoparticle imaging;

sub-Rayleigh counting.

1 Introduction

Particle counting is of crucial importance for many indus-

tries. Production of semiconductor circuits and optical com-

ponents require high purity gases and liquids for chemical

etching, deposition, oxidation, doping, mask removal and

polishing, critical cleaning and rinsing steps in many nan-

otechnology processes while contaminations impact yield

and throughput. Life science applications, pharmaceutical

and biotechmanufacturing, medical devices, cosmetics pro-

duction, and food processing necessitate strict control of

particulate and microbial aerosol burden to reduce the risk

of contamination to products. In applications including oil,

fuels, hydraulic fluids, counting of particles is important to

avoid failure of bearings, pumps and seals. Painting auto-

mobiles in clean environments reduces the need to rework

defects in paint finishes.

In industrial environments, particle counting is com-

monly based on detecting light blocking or scattering by

particles in the flow of liquid or gas [1]. For more quantita-

tive measurements, direct counting of particles by human

operators or sophisticated software from the images of

particle groups taken by either optical or scanning elec-

tron microscope (SEM) is used routinely. Methods such

as PALM and STED work with photoactivated particles

and can resolve the particles beyond the Rayleigh limit

[2, 3], however are slow and require sophisticated and

complex imaging equipment. Recent advances include the

use of convolutional neural network to classify isolated

nanoparticles [4].
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In this paper, we report an optical method for counting

and localizing subwavelength particles on a 4 × 4 grid that

is principally different from previously reported methods.

It is based on the analysis of the intensity profile of the

scattering pattern created by the particles. It is a simple,

non-invasive, single-shot technique that nevertheless allows

counting closely placed subwavelength particles. The tech-

nique counts particles that are smaller than the diffraction

limit of resolution of optical microscopes and are spaced by

less than the Rayleigh distance at which particles are not

individually resolved. In contrast to the traditional methods

of solving the inverse scattering problemusingnumerical or

heuristic methods in which careful choice of regularization

based on extensive domain knowledge is needed [5–8], our

technique depends on the artificial intelligence analysis of

light diffracted on the particles in the form of deep learning.

Recently, it was shown that a well-trained neural network

can be used as an efficient tool for solving the Fredholm

integral equations to which the inverse scattering problem

can be reduced [9, 10]. The neural network approach to

the analysis of scattered light has already been used in

far-field low-dimensional optical metrology with resolution

exceeding one percent of optical wavelength [11] and far

beyond [12]. In contrast to metrology, counting and map-

ping is a more complex, higher-dimension task of finding

the number and positions of several particles in a group

retrieved from a single-shot intensity diffraction pattern of

coherent light illuminating it. The retrieval is performed

by an artificial neural network trained on a large number

of particle groups of a priori known configurations. In the

proof-of principle experiments, we counted and localized

subwavelength holes in a metal film.

2 Super-resolved counting of

subwavelength nanoparticles

The experiments described below were performed using a

transmission optical microscope with a total magnification

of ×300 and coherent laser illumination at the wavelength
of 𝜆 = 633 nm (He–Ne laser). The diffraction patterns cre-

ated by a group of subwavelength holes were imaged at a

distance H = 2𝜆 from the sample by a lens with numeri-

cal aperture NA = 0.9 (Figure 1a). Using focused ion beam

milling we have manufactured 12,000 unique sets of holes

in a 50 nm thick chromium film. Each set contained up to

10 holes randomly located in the area of 3.2𝜆 × 3.2𝜆 in size

(field of view). To achieve closer proximity to the real-life

conditions where particles could have a variation of sizes,

the holes’ diameters were chosen randomly to be either

𝜆/2.6 or 𝜆/3.2. From the set of 12,000 different groups of

holes, 70% were used for the neural network training and

validation while the remaining 30% of the sets, yet unseen

by the neural network were used to evaluate the accuracy

of counting.

Figure 1: Counting and localization of subwavelength nanoparticles from their diffraction pattern. (a) Optical schematic of the technique; (b) examples

of three different elements of the training set each containing a SEM image of holes in a thin chromium film on a 3.2𝜆 × 3.2𝜆 field of view, a

corresponding topography map and a diffraction pattern are shown. The light and dark blue dots indicate the position of holes with diameters 𝜆/2.6

and 𝜆/3.2 correspondingly; (c) when presented with an unseen diffraction pattern, the trained convolutional neural network is able to retrieve the

number of the holes in the field of view and map them on a 4 × 4 grid (indicated by the dashed lines).
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We define the error of particle counting as 𝜀 =
|
|n

′ − n||∕n, where n′ is the number of particles in the group
counted optically and n is the factual number of particles

in the group. The accuracy of counting for an individual

counting event will then be defined as 𝛼 = 1− 𝜀. Its aver-

age value ⟨𝛼(n)⟩ represents accuracy of counting for an

ensemble of particle groups containing n particles each.

Naturally, accuracy of counting depends on the distribution

of particleswithin thefield of view. Sparsely distributed par-

ticles shall be easier to count. Particles located closer than

the Rayleigh distance between their centers r = 0.61𝜆∕NA,
where NA is the numerical aperture of the imaging lens, are

not resolvable by a conventional microscope. They shall be

more difficult, or impossible to count from a conventional

image. To judge if our technique provides super-resolution,

i.e. can count closely spaced particles, it is important to

know what fraction of particles in the group is located

within the Rayleigh distance. To quantify the ability to count

closely located particles we calculate the average accuracy

of super-resolved counting ⟨𝛼(n, f )⟩ as accuracy of counting

in the groups where the fraction f of neighboring particles

locatedwithin the Rayleigh distance is larger than f . Results

on accuracy of counting derived from examining 3600 ran-

dom samples are presented in Figure 2.

From Figure 2, it is evident that the accuracy of count-

ing depends on n, the number of particles in the group

and f , the proportion of particles located closely, within the

Rayleigh distance. Absence of particles ⟨𝛼(0, 0)⟩ = 0.99 and

presence of only one particle ⟨𝛼(1, 0)⟩ = 0.93 are detected

Figure 2: Counting subdiffraction particles. Accuracy of counting

⟨𝛼(n, f )⟩ is presented as a function of number of particles n and least

fraction f of neighbouring particles located within the Rayleigh distance

in the group.

with high accuracy. If the particles are all spaced more

than by Rayleigh distance, i.e. f = 0, with an increase of the

number of particles from n = 2 to n = 9, the accuracy grad-

ually increases from ⟨𝛼(2, 0)⟩ = 0.902 to ⟨𝛼(9, 0)⟩ = 0.947,

and falls a little to ⟨𝛼(4, 0)⟩ = 0.934 for n = 10 particles in

the group.What we found quite unexpected is that accuracy

reduces insignificantly with increased fraction of particles

f that are closely spaced particles in the group, within the

Rayleigh distance. In our experiment, the holes can be as

close as 0.38𝜆 for a pair of smallest particles and as close

as 0.31𝜆 for a pair of the largest non-overlapping holes, but

they are still countable with accuracy between 0.93 and

0.94. For instance, ⟨𝛼(9, 0)⟩= 0.947 falls only to ⟨𝛼(9, 0.8)⟩=
0.939 when at least 80% of particles in the group are spaced

within the Rayleigh distance of r = 0.68𝜆. We observed that

the overall intensity of the image does not significantly

depend on the number of particles and therefore the net-

work could not learn the number of particles from intensity

of the images. We therefore argue that our technique allows

high accuracy super-resolved counting of subwavelength

particles far exceeding what is possible with a conventional

microscope.

3 Mapping of nanoparticles on a

4× 4 grid

Besides super-resolved counting of subwavelength parti-

cles, we have demonstrated the ability to identify these

particles’ positions on a 4 × 4 grid. This is to say that we

demonstrated 16-pixel binary imaging of the particle ensem-

ble. The 3.2λ × 3.2λ field of view with a 4 × 4 grid has a

pixel 0.79λ × 0.79λ in size, which for the lens used in the

experiment is only 16% larger than the Rayleigh distance of

0.68𝜆. Here, from 12,000 different groups we used 70% for

training and validation of the neural network and 30% to

test accuracy of localization.

A particle belongs to a certain pixel if its centre is

within the pixel perimeter. All pixels are numbered by index

i. To quantify accuracy of identification of the particle posi-

tions on the grid, we calculated 𝜁 = K′∕K where K′ is the

number of pixels with correctly identified number of parti-

cles and K is the total number of pixels (K = 16 in the case

of 4 × 4 grid). The more representative, weighted accuracy

of positioning 𝜁𝑤 = 1

K

∑i=K
i=1 𝜌i(m

′,m) is the ratio between the

cumulative recognition weights 𝜌i(m
′,m) for all pixels of

the image over the total number of pixels, where m′ is the

number of particles in the pixel counted optically and m is

the factual number of particles in the pixel. Here 𝜌i(m
′,m)

is calculated accordingly to Table 1, which accounts to how

well the number of particles is counted in individual pixels.
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Table 1:Weight coefficient 𝜌(m′,m) is a measure, of how accurately the number of particles in each pixel is retrieved.

m
′, the number of particles in the pixel counted optically

0 1 2 3 4

m, the factual number of particles

0 1 0 0 0 0

1 0 1 1/2 1/3 1/4

2 0 1/2 1 2/3 2/4

3 0 1/3 2/3 1 3/4

4 0 1/4 2/4 3/4 1

To quantify the super-solution capability of the technique,

we evaluated 𝜁 s, theweighted accuracy of positioning calcu-

lated only for the pixels that contain particles locatedwithin

the Rayleigh distance. Typical examples of retrieval of par-

ticle position in a single group are presented in Figure 3.

The ensemble average values of ⟨𝜁⟩, ⟨𝜁𝑤⟩ and

⟨𝜁 s⟩ calculated for the ensample of 3600 particles are

presented on Figure 4. In the groups containing only one

or two particles, positions of the particles in the pixel grid

can be identified with nearly perfect accuracy. Uncertainty

over the particle positions accumulates with the group size:

⟨𝜁⟩, ⟨𝜁𝑤⟩ slowly decay with increased number of particles

in the group reaching the level of 0.65 for 10 particles in the

group. Importantly, close proximity of the particles (located

within the Rayleigh distance) does not reduce the accuracy

of positioning. This is witnessed by a comparison of ⟨𝜁 s⟩

and ⟨𝜁⟩, ⟨𝜁𝑤⟩ curves, confirming that mapping of particle

positions is achieved with super-resolution.

Figure 3: Evaluating accuracy of mapping particles on a grid. (a–c) Three typical example of particle distributions in the field of view on a 4 × 4 grid.

The light and dark blue dots indicate position of holes with diameters 𝜆/2.6 and 𝜆/3.2 correspondingly. Particles within the red-dashed ellipses have

neighbours located closer than the Rayleigh distance; (d–f) optical retrieved particle locations. Grey and yellow filling indicates pixels with correctly

and incorrectly retrieved number of particles, respectively; (g–i) accuracy of identifying particle positions 𝜁 ; (j–l) weighted accuracy of positioning 𝜁𝑤;

(m–o) weighted accuracy of positioning 𝜁 s, only for the pixels containing closely located particles.
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Figure 4: Accuracy of mapping particles for groups of different sizes. (a) Ensemble average accuracy of positioning, ⟨𝜁⟩, (b) ensemble average

weighted accuracy of positioning ⟨𝜁
𝑤
⟩; (c) ensemble average weighted accuracy of positioning calculated only for the pixels, containing particles

located within the Rayleigh distance, ⟨𝜁 s⟩.

4 Conclusions

In this work, we have introduced a non-invasive single-

shot super-resolved optical method for counting and map-

ping positions of subwavelength particles on a 4 × 4 grid

from their scattering patterns. Although the method has

been demonstrated in a proof-of-principle experiment with

“negative” particles, subwavelength holes in opaque screen,

we argue that it is suitable for “positive” particles in par-

ticular with polarization contrast or total internal reflec-

tion microscopy modes suppressing the background light.

In practical applications of the technique, for particles of

known shape, training of the network for the deep learning

process used in counting and localization of the particles

can be achieved with computer-generated sets comprising

of a large number of random groups and corresponding

computed scattering patterns. We therefore argue that the

technique can be used on a large class of nanoparticles

of known shape that are not countable from their optical

images because of their small sizes and close proximity.

Moreover, the single-shot nature of the techniques shall

allow a high-speed counting which is limited only by the

frame rate of image sensor, which currently reaches hun-

dreds of millions of frames per second.
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Appendix A

A.1 Artificial neural network

In the Super-resolved counting of subwavelength nanopar-

ticles section of the main text, the diffraction images of the

nanoholes normalized to an average mean of 0 and stan-

dard deviation of 1 and nanoholes counts labels are used

to train a 34 convolutional Residual network. The neural

network is trained using Pytorch libraries. Default Residual

network design rules: filter kernel size of 3× 3, shortcut con-

nection every bi-adjacent layers, batch-normalization after

each convolutional layer, followed by activation function,

and downsampling directly by a convolutional layer with

a stride of 2 after every 6 convolutional layers are imple-

mented. The network ends with a global average pooling

layer, a 512 neurons fully connected layer and 1 nanoholes

counts output. ReLU activation is used in the convolu-

tional blocks. After the 1 neuron output, we include a non-

trainable integer rounding layer to obtain the nanoholes

counts. The weights of the network is pretrained with

ImageNet database. A mini-batch size of 128 is used and

we used Adam optimization with default initialization and

decoupled weight decay regularization. The learning rate

is adjusted with a pre-defined step decay schedule by a

factor of 0.8. We use mean absolute error between the

correct nanoholes count and measured nanoholes count as
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the regression loss function. The network is trained for 500

epochs. Network at epochs with the lowest mean absolute

error in the validation set is used to measure nanoholes in

the test set.

In the mapping of nanoparticles on a 4 × 4 grid of the

main text, we adapt the artificial neural network output

to retrieve the number of nanoholes in a 4 × 4 array. The

convolutional Residual blocks are kept the same while we

connect a 2 layer deep fully connected layers [512–128 neu-

rons] followed by the 4× 4 neurons output. ReLU activation

is used in the fully connected layers and Linear activation

is used before the output. Similar with the counting task, we

include a non-trainable layer to obtain the nanoholes counts

in each grid. The training initialization and optimization

settings are kept the same.
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