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In this work we focus on computing the conformal dimensionsDðjL; jRÞ of local fields that transform in
an irreducible representation of SUð2Þ × SUð2Þ labeled with ðjL; jRÞ at theOð4ÞWilson-Fisher fixed point
using the Monte Carlo method. In the large charge expansion, among the sectors with a fixed large value of
j ¼ maxðjL; jRÞ, the leading sector has jjL − jRj ¼ 0 and the subleading one has jjL − jRj ¼ 1. Since
Monte Carlo calculations at large j become challenging in the traditional lattice formulation of the Oð4Þ
model, a qubit regularized Oð4Þ lattice model was used recently to compute Dðj; jÞ. Here we extend those
calculations to the subleading sector. Our Monte Carlo results in the range 2 ≤ j ≤ 20 fit well to the
expected large j expansion Dðj; j − 1Þ −Dðj; jÞ ∼ λ0 þ λ1=2=

ffiffi
j

p þ λ1=jþ λ3=2=j3=2, but we have to
assume that at least one of the purely quantum mechanical contributions λ0 or λ1 is nonzero. Assuming
λ0 ¼ 0 as conjectured recently, we find λ1=2 ≈ 2.1ð1Þ, λ1 ≈ 2.3ð2Þ, and λ3=2 ≈ 1.2ð2Þ.

DOI: 10.1103/PhysRevD.105.L031507

I. INTRODUCTION

There has been a resurrection of interest in conformal field
theories in recent years, especially due to the success of the
bootstrap approach in certain problems [1,2]. It has also
become clear that conformal field theories simplify in sectors
with either large spin [3] or large global charge [4]. Due to
these developments the field has seen a renaissance with
several new results over the past few years [5–15]. A recent
review of the above progress can be found in Refs. [16,17].
An interesting quantity in conformal field theory is the

conformal dimension of local fields that transform accord-
ing to some representation of the symmetries of the theory.
In this work we focus on global symmetries and study
CFTs that emerge in three-dimensionalOðNÞmodels at the
Wilson-Fisher fixed point. Recent work [4] showed that in
these theories the conformal dimension DðQÞ of local
fields that transform under the representation with chargeQ
satisfy a large charge expansion of the form

DðQÞ ¼
ffiffiffiffiffiffi
Q3

4π

r �
c3=2 þ

4π

Q
c1=2 þOð1=Q2Þ

�
þ c0; ð1Þ

where c3=2 and c1=2 are low-energy constants that need to
be determined nonperturbatively, while c0 ≈ −0.094 can be

determined analytically [18,19]. We can compute DðQÞ
through the power law decay of the Euclidean correlation
function between local source OQ and sink ŌQ fields that
transform under a specific representation of the global
symmetry group with charge Q and are separated by a
distance x. This correlation function is expected to decay as
jxj−2DQ . Nonperturbative Monte Carlo calculations con-
firming these predictions for the case of the Oð2Þ model,
where the global charges Q are represented by integers,
have also been performed, and it was discovered that in this
case c3=2 ¼ 1.195ð10Þ and c1=2 ¼ 0.075ð10Þ [20]. These
calculations were later extended to the Oð4Þ model where
the local fields transform in some representation of the
Oð4Þ symmetry. We can classify them according to the
irreducible representations of SULð2Þ × SURð2Þ labeled
with charges ðjL; jRÞ where jL; jR ¼ 0; 1=2; 1; 3=2;….
The leading sector [i.e., the sector with the minimum value
of DðjL; jRÞ] is the one with jjL − jRj ¼ 0. In this sector, if
we define j ¼ jL ¼ jR and Q ¼ 2j, then Dðj; jÞ is also
given by Eq. (1). Monte Carlo calculations give c3=2 ¼
1.068ð4Þ and c1=2 ¼ 0.083ð3Þ [21], and with these two
leading coefficients, Eq. (1) predicts the conformal dimen-
sions even at Q ¼ 1 within a few percent.
How well does the large charge expansion predict the

conformal dimensions in the subleading sector, where
jjL−jRj¼1? The first two leading coefficients of
Dðj; j − 1Þ in the large charge expansion are expected to
be the same as Dðj; jÞ and given by Eq. (1) [22].
The coefficient c0 has also been conjectured to be the
same, but in our work we assume the possibility that it is
different for reasons discussed below. This implies that
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Δ̃ðjÞ¼Dðj;j−1Þ−Dðj;jÞ will have a large charge expan-
sion of the form

Δ̃ðjÞ ¼ λ0 þ
λ1=2
j1=2

þ λ1
j
þ λ3=2

j3=2
þO

�
1

j2

�
: ð2Þ

The coefficients of fractional powers of j like λ1=2 and λ3=2
are new Wilson coefficients, similar to c3=2 and c1=2 in
Eq. (1), that cannot, in principle, be determined within the
large charge effective field theory [22]. Their origin is
essentially classical with corrections coming from quantum
fluctuations. On the other hand, we also include coeffi-
cients of integer powers of j like λ0 and λ1, which can arise
from purely quantum mechanical effects [similar to c0 in
Eq. (1)] and can, in principle, be calculable analyti-
cally [23].
The spin of the leading conformal field in the ðj; jÞ sector

is different from the ðj; j − 1Þ sector. Such differences were
first observed in [24] and later clarified in the context of
Oð4Þ in [25,26]. Given this difference between the ðj; jÞ
and the ðj; j − 1Þ sectors, it seems possible that λ0 does not
vanish. However, it has been conjectured that λ0 ¼ 0 since
it is difficult to imagine a calculation that could distinguish
between Dðj; jÞ and Dðj; j − 1Þ in the large j limit [27].
What about λ1? As far as we can tell there has been no
discussion of it in the literature. In order to understand if λ0
and λ1 can be nonzero and to estimate λ1=2 and λ3=2, we
design a Monte Carlo method to compute Δ̃ðjÞ as a
function of j. We fit our results in the range 1 ≤ j ≤ 20
to the general form given in Eq. (2) and try to estimate the
various λi’s numerically.

II. QUBIT REGULARIZED O(4) MODEL

In order to construct a Monte Carlo method to compute
Δ̃ðjÞ it is useful to understand how the SULð2Þ × SURð2Þ
symmetry is manifest in our lattice model, which is the
same as the one used in Ref. [21]. For this purpose it is
helpful to view our model as strongly coupled lattice
quantum electrodynamics (QED) constructed with stag-
gered fermions [28]. When gauge fields are integrated out
exactly, the microscopic degrees of freedom are made up of
bosons with fermionic constituents. These bosons naturally
have a built-in hardcore interaction, and hence the Hilbert
space on each lattice site is finite dimensional. Such
bosonic lattice field models with a finite dimensional
Hilbert space, that reproduce a continuum quantum field
theory, can be referred to as a qubit regularized model of the
continuum quantum field theory [29]. Other examples of
qubit regularized models for studying continuum quantum
field theories withOðNÞ symmetries have been constructed
recently [30,31].
The lattice action of our qubit regularized Oð4Þ model

can be written using four Grassmann valued lattice fields
ψ1;k, ψ2;k, ψ̄1;k, ψ̄2;k at each lattice site k≡ ðr; τÞ on a cubic

lattice, where we distinguish between the two-dimensional
spatial coordinate r and the Euclidean temporal coordinate
τ. The Euclidean action of our model is given by [21]

Sðψ ; ψ̄Þ ¼ −
X
hk;k0i

TrðMkMk0 Þ −
U
2

X
k

DetðMkÞ; ð3Þ

where ðMkÞa;b ¼ ψa;kψ̄b;k is a 2 × 2 matrix defined at each
lattice site k. The symbol hk; k0i refers to neighboring sites
k and k0. The partition function is defined as usual through
the Grassmann integral

Z ¼
Z Y

a;k

½dψ̄a;kdψa;k�e−Sðψ ;ψ̄Þ: ð4Þ

It is easy to verify that the action is invariant under the
SULð2Þ × SURð2Þ transformations given byMk → LMkR†

when k∈evensites, and Mk→RMkL†, when k∈oddsites.
Here we assume L and R are 2 × 2 matrices, each of which
is an element of the SUð2Þ group. This means ðψ1;k;ψ2;kÞ
on even sites and ð−iψ̄2;k; iψ̄1;kÞ on odd sites transform as
SULð2Þ doublets, while they are singlets of SURð2Þ. The
same fields on the opposite parity sites transform as SURð2Þ
doublets and SULð2Þ singlets. When U ¼ 0, the theory has
an additional Uð1Þ symmetry: ψa;x → eiθψa;x and ψ̄a;x →
eiθψ̄a;x for the odd sites, and ψa;x → e−iθψa;x and ψ̄a;x →
e−iθψ̄a;x on the even sites. The U-term, therefore, mimics
the anomalous axial symmetry of the action in quantum
chromodynamics (QCD) [28]. For this reason the terms in
the partition function that arise due to a nonzero value of U
were referred to as instantons in the earlier work. It is
known that instantons are known to break the anomalous
axial symmetry in QCD. In the more recent view point of
qubit regularization, the instantons can be viewed as simply
the local Fock vacuum states [30].
It is possible to perform the Grassmann integrations in

Eq. (4) exactly and rewrite the partition as a sum over
worldline configurations of pions and instantons [28]. One
then obtains Z ¼ P

½l�UNI , where ½l� is a configuration of
worldlines, which is a collection of closed oriented loops,
each of which can be in one of two colors, red or green. In
addition, there are isolated sites which do not belong to the
worldlines and are referred to as instantons. Note that NI is
the total number of instantons in the configuration.
An illustration of a worldline configuration on a two-
dimensional lattice is shown in Fig. 1. In an earlier work,
we solved our lattice model using this worldline approach
and showed that at the critical coupling of Uc ≈ 1.655394
we can reproduce the critical scaling of the Wilson-Fisher
fixed point at long distances [21].

III. LEADING CHARGE SECTORS

Our goal is to compute the conformal dimensions
DðjL; jRÞ of field operators that transform in some
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irreducible representation ðjL; jRÞ of the SULð2Þ × SURð2Þ
group at the critical point. We can accomplish this by
computing the correlation function

CjL;jR ¼ hŌjL;jROjL;jRi

¼ 1

Z

Z Y
a;k

½dψ̄a;kdψa;k�e−Sðψ ;ψ̄ÞŌjL;jROjL;jR ; ð5Þ

where OjL;jR and ŌjL;jR are the source and sink terms
constructed with Grassmann valued fields that transform in
the irreducible representation ðjL; jRÞ. In our work, the
source will be located at the temporal slice τ ¼ 0, while
the sink will be at the temporal slice τ ¼ L=2. Thus, at the
critical point, we expect CjL;jR ¼ AjL;jRL

−2DðjL;jRÞ for
sufficiently large values of L.
In order to construct OjL;jR and ŌjL;jR that transform

under the irreducible representation ðjL; jRÞ, let us denote
jðjL;mLÞ; ðjR;mRÞi as the ð2jL þ 1Þð2jR þ 1Þ dimen-
sional orthonormal basis that spans the irreducible
representation space of ðjL; jRÞ. Here − jL ≤ mL ≤ jL
and −jR ≤ mR ≤ jR. We can label the fields that
transform according to this irreducible representation as
OjðjL;mLÞ;ðjR;mRÞi. For the sink terms, it is natural to choose
fields that transform in the conjugate representation
hðjL;mLÞ; ðjR;mRÞj. We can label these sink fields as
ŌhðjL;mLÞ;ðjR;mRÞj. While we can choose any of these fields
as source and sink terms in the ðjL; jRÞ representation, we
find that choosing mL ¼ jL and mR ¼ jR will be the most
convenient choice for numerical work.
Based on the transformation property of Mk it is easy to

see that the four local fermion bilinear lattice fields
iψ1;kψ̄1;k, −iψ2;kψ̄2;k, −iψ1;kψ̄2;k, −iψ2;kψ̄1;k transform

under the ð1=2; 1=2Þ (vector) representation of Oð4Þ.
However, the fields transform differently on even and
odd sites. The exact mapping is given in Table I. Given
the source fields we can construct the sink fields through
the conjugate representation. This is given in Table II.
Using the information in Tables I and II we can identify
each worldline in Fig. 1 as a vector particle carrying an
appropriate charge. For example, we can identify the
sources and sinks of red worldlines as Rk ¼ −iψ1;kψ̄2;k

and R̄k ¼ −iψ2;kψ̄1;k on all sites. On the other hand, the
sources and sinks of green worldlines depend on the parity
of the sites. The green source is given by Gk ¼ iψ1;kψ̄1;k on
even sites, and Gk ¼ −iψ2;kψ̄2;k on odd sites. This is
reversed for the sink of green lines. We have Ḡk ¼
−iψ2;kψ̄2;k on even sites, and Ḡk ¼ iψ1;kψ̄1;k on odd sites.
In order to construct sources of more general irreducible

representations, we use the tensor product of the vector
representation of local fields distributed over several spatial
lattice sites on the time slice τ ¼ 0. The same sites on the
time slice τ ¼ L=2 are used to construct the sinks. Let us
first construct sources and sinks that transform in the
representation ðj; jÞ, which we refer to as the leading
sector. We know we can construct the basis state
jðj; jÞ; ðj; jÞi as a tensor product of 2j states of the form
jð1=2; 1=2Þ; ð1=2; 1=2Þi. The source Ojð1=2;1=2Þ;ð1=2;1=2Þi can
also be constructed in the same way, placing 2j local
sources of red worldlines on nearby sites on a spatial lattice.
In our work we choose these lattice sites k labeled as
1; 2;…; 2j around the origin as shown in Fig. 2. Hence one
of the possible sources in the ðj; jÞ representation is then
given by Ojðj;jÞ;ðj;jÞi ¼ R1R2…R2j, while the correspond-
ing sink is given by Ōhðj;jÞ;ðj;jÞj ¼ R̄1R̄2…R̄2j. Here the

FIG. 1. Illustration of an Oð4Þ worldline configuration in 1þ 1
dimensions with NI ¼ 12 instantons (blue dots). The weight of
the configuration is U12. Each loop is an oriented loop represent-
ing a red worldline or a green worldline.

TABLE I. Local fermion bilinear fields transform according to
the vector representation of Oð4Þ. This table gives the explicit
realization of each component at the lattice site k. As can be seen,
the realization can depend on whether the site is even or odd.

Local field Even site Odd site

Ojð1=2;1=2Þ;ð1=2;1=2Þi −iψ1;kψ̄2;k −iψ1;kψ̄2;k

Ojð1=2;−1=2Þ;ð1=2;−1=2Þi iψ2;kψ̄1;k iψ2;kψ̄1;k

Ojð1=2;1=2Þ;ð1=2;−1=2Þi iψ1;kψ̄1;k −iψ2;kψ̄2;k

Ojð1=2;−1=2Þ;ð1=2;1=2Þi −iψ2;kψ̄2;k iψ1;kψ̄1;k

TABLE II. Relationship between source and sink fields on a
local site.

Sink Source

Ōhð1=2;1=2Þ;ð1=2;1=2Þj = −Ojð1=2;−1=2Þ;ð1=2;−1=2Þi
Ōhð1=2;−1=2Þ;ð1=2;−1=2Þj = −Ojð1=2;1=2Þ;ð1=2;1=2Þi
Ōhð1=2;1=2Þ;ð1=2;−1=2Þj = Ojð1=2;−1=2Þ;ð1=2;1=2Þi
Ōhð1=2;−1=2Þ;ð1=2;1=2Þj = Ojð1=2;1=2Þ;ð1=2;−1=2Þi
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sites chosen for both source and sink are the same spatial
sites on the τ ¼ 0; L=2 time slice. These sources and sinks
can be used to compute the correlation function
Cj;j ¼ hŌhðj;jÞ;ðj;jÞjOjðj;jÞ;ðj;jÞii, and in order to obtain
Dðj; jÞ one can use the relation Cj;j ∼ Aj;jL−2Dðj;jÞ for
large values of L. In the actual worm algorithm, one in
fact computes the ratio Rj ¼ Cj;j=Cj−1;j−1 and fits it to the
form ðAj;j=Aj−1;j−1ÞL−2Δj to compute Δj ¼ Dðj; jÞ −
Dðj − 1; j − 1Þ for each value of j. From these differences
and setting Dð0; 0Þ ¼ 1 one can compute Dðj; jÞ. Our
results from [21] are tabulated in Table III for reference.

IV. SUBLEADING SECTOR

In this work we extend our earlier results in the leading
sector and compute the conformal dimensions of the
subleading sector, Dðj; j − 1Þ for j ≥ 1. For this we need
to construct source and sink operators that transform in the
representation ðj; j − 1Þ. We know we can construct the
state jj; j; j − 1; j − 1i by applying the lowering operator
J−R to the jj; j; j; ji and then constructing orthogonal states
in the tensor product space. This procedure naturally leads
to 2j − 1 orthonormal states, which we can label with an
additional index M ¼ 1; 2…; ð2j − 1Þ. Translating this to

the construction of sources, we now introduce the source
Ol ¼ R1R2…Gl…R2j where the red source on one lattice
site l is replaced by a green source where l ¼ 1; 2…; 2j.
Similarly, we introduce the corresponding sinks as
Ōl ¼ R̄1R̄2…Ḡl…R̄2j. We can then argue that

Ojðj;jÞ;ðj;j−1Þi ¼
1ffiffiffiffiffi
2j

p
X2j
l¼1

Ol; ð6Þ

where the right-hand side is a sum over the 2j source terms
we introduced above. Note that there are 2j − 1 sources
orthogonal to Eq. (6), which we can label with M ¼
1; 2.::; 2j − 1 as before. These will naturally transform in
the ðj; j − 1Þ representation. Explicitly these sources are
given by

OM
jðj;jÞ;ðj−1;j−1Þi ¼

1ffiffiffiffiffi
2j

p
X2j
l¼1

ei2πðl−1ÞM=ð2jÞOl: ð7Þ

We can similarly define the corresponding 2j − 1 sinks as

ŌM
hðj;jÞ;ðj−1;j−1Þj ¼

1ffiffiffiffiffi
2j

p
X2j
l¼1

e−i2πðl−1ÞM=ð2jÞŌl: ð8Þ

Since all 2j − 1 sources and sinks transform under the same
irreducible representation ðj; j − 1Þ, any combination of
them can be used in Eq. (5) to extract Dðj; j − 1Þ. Let us
define the correlation matrix

CMM0
j;j−1 ¼ hŌM

hðj;jÞ;ðj−1;j−1ÞjO
M0
jðj;jÞ;ðj−1;j−1Þii ð9Þ

where we expect CMM0
j;j−1 ∼ AMM0

j;j−1L
−2Dðj;j−1Þ for large values

of L. Practically it is more convenient to compute the
average of the trace of this correlation matrix, which can be
simplified to the form

Cj;j−1 ¼
X
l

�
1

2j
hŌlOli−

1

2jð2j−1Þ
X
l0≠l

hŌlOl0 i
�
: ð10Þ

Note that we also expect Cj;j−1 ∼ Aj;j−1L−2Dðj;j−1Þ.
As in the leading sector, in the worldline algorithm it is

much easier to compute the ratio R̃j ¼ Cj;j−1=Cj;j. For this
one constructs a worldline Monte Carlo method to generate
configurations with 2j red sources and sinks that contribute
to Cj;j. In every configuration of this ensemble, we then
imagine flipping each of the 2j sources located at the sites
l ¼ 1; 2…; 2j to a green source. The worldline of the green
source then naturally travels through the lattice to a sink at
some location l0. Then we compute the contribution to R̃j

from that configuration using Eq. (10), which means we add
1=2j ifl ¼ l0, or subtract the value 1=ð2jð2j − 1ÞÞ ifl ≠ l0
for every value of l. Averaging this contribution over the

12
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4 6

7

8

910

11

12

13514

1516
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19

20

0

FIG. 2. Arrangement of local sources of red worldlines we used
to create a source in the ðj; jÞ representation. The site labeled 0 is
the origin and is left empty. Depending on j the sources are
placed on the sites marked k ¼ 1; 2…2j. The first 20 sites used in
our calculations up to j ¼ 10 are shown.

TABLE III. Results for the conformal dimensions Dðj; jÞ up to
j ¼ 5 computed using worldline Monte Carlo methods in [21].

j Dðj; jÞ j Dðj; jÞ
1=2 0.515(3) 1 1.185(4)
3=2 1.989(5) 2 2.915(6)
5=2 3.945(6) 3 5.069(7)
7=2 6.284(8) 4 7.575(9)
9=2 8.949(10) 5 10.386(11)
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ensemble of configurations generated by the worldline
algorithm gives us the ratio R̃j, which is expected to scale

as ðAj=Aj−1ÞL−2Δ̃j where Δ̃j ¼ Dðj; j − 1Þ −Dðj; jÞ.
Using the values of Dðj; jÞ we compute Dðj; j − 1Þ.

V. RESULTS

We have performed a series of Monte Carlo calculations
for 1 ≤ j ≤ 10 in increments of 1=2, and for j ¼ 20. For
runs till j ¼ 10, the lattice sizes ranged from L ¼ 32 up to
L ¼ 160. At j ¼ 20 we have extended our calculations up
to lattice sizes of L ¼ 256. For each value of j we always
found that our data fit well to the expected form
Cj;j−1=Cj;j ∼ L−2Δ̃j for sufficiently large values of L. As
examples, fits for j ¼ 1, 5, 10, and 20 are illustrated in
Fig. 3. From the figure, we observe that as j increases, the
range of lattice sizes where a simple power law emerges
changes to larger L values. The details of our fits are
tabulated in Table IV.
Having obtained the values of Δ̃j for various values of j,

we try to extract the coefficients λi’s in Eq. (2), assuming
that we can neglect Oð1=j2Þ terms in the range of j values
we have studied. We try several fits, as shown in Table V, to
understand if the purely quantum terms λ0 and λ1 vanish or
not. First, we note that our data for the entire range of j
values fit well to the form Eq. (2), if we assume all four
coefficients are nonzero (first row in Table V). On the other
hand, if we drop both quantum terms the fit becomes quite
bad (second row in Table V) suggesting that the quantum
terms are important. In fact, the presence of any one of the
two quantum terms is sufficient to bring down the χ2=DOF
considerably. For example, setting λ1 ¼ 0, we can get an
excellent fit if we just drop the j ¼ 1 data (fifth row in
Table V). On the other hand, setting λ ¼ 0 and dropping
both j ¼ 1, 1.5 makes the fit acceptable (sixth row in

Table V). If we drop both quantum terms (i.e., set
λ0 ¼ λ1 ¼ 0) we can only get a good fit in the range
j ¼ 8–20. In fact, this fit (shown as a dotted line in Fig. 4),
seems unreliable as the curve deviates significantly for
j < 8. For comparison the other good fits are also shown
in Fig. 4.
Our fits clearly imply that dropping both quantum terms

is not a good approximation unless the form of our fits [i.e.,
Eq. (2) without the quantum terms] is only valid beyond the

FIG. 3. Worldline Monte Carlo results for the ratio R̃j as a
function of L for various values of j. The solid lines show the fits
given in Table IV.

TABLE IV. Results of the fit of R̃j shown in Fig. 3 to the form
ðAj=Aj−1ÞL−2Δ̃j . The range of L values used in the fit is given in
the second column. We observe that as j increases this range
needs to involve larger lattice sizes for a good fit.

j L-range Aj;j−1=Aj;j Δ̃ðjÞ χ2=DOF

1 24–128 5.87(25) 0.813(6) 1.11
3=2 24–128 2.50(11) 0.750(6) 0.62
2 24–96 2.13(06) 0.722(4) 0.26
5=2 32–96 1.75(08) 0.685(6) 1.28
3 32–96 1.54(08) 0.659(7) 0.93
7=2 32–96 1.35(05) 0.633(5) 0.38
4 32–96 1.18(04) 0.607(4) 0.40
9=2 40–160 1.05(04) 0.586(5) 0.94
5 40–160 0.94(04) 0.566(5) 0.89
11=2 48–160 0.90(03) 0.555(4) 0.66
6 48–160 0.83(03) 0.541(5) 1.40
13=2 64–160 0.75(04) 0.525(7) 1.11
7 64–160 0.71(03) 0.513(5) 1.18
15=2 64–160 0.69(04) 0.506(6) 1.45
8 64–160 0.60(03) 0.486(5) 0.77
17=2 64–160 0.61(03) 0.484(5) 0.83
9 80–160 0.53(04) 0.467(8) 0.98
19=2 80–160 0.53(03) 0.463(7) 0.47
10 80–160 0.50(02) 0.454(5) 0.63
20 96–256 0.28(01) 0.367(3) 0.65

TABLE V. Fits of Δ̃j to the functional form given in Eq. (2). We
first consider the whole range of j in the first four rows. While
including all four coefficients as fitting parameters gives an
excellent fit, setting the two purely quantum mechanical terms
λ0 ¼ λ1 ¼ 0 makes the fit quite bad. Including even one of them
is sufficient to improve the fit considerably. Setting two of
the fitting parameters to zero is only possible by shrinking the
allowed region of j considerably, which we believe makes the
fitting procedure unreliable.

j range λ0 λ1=2 λ1 λ3=2 χ2=DOF

1–20 0.07(2) 1.5(1) −1.0ð2Þ 0.3(1) 0.6
1–20 0 1.42(1) 0 −0.69ð1Þ 48
1–20 0 1.96(2) −1.83ð6Þ 0.69(5) 1.8
1–20 0.16(1) 0.98(2) 0 −0.34ð2Þ 2.3
1.5–20 0.13(1) 1.07(2) 0 −0.47ð3Þ 0.3
2–20 0 2.06(3) −2.27ð14Þ 1.14(13) 1.1
8–20 0 1.81(2) 0 −3.5ð2Þ 1.1
8–20 0 2.09(4) −2.02ð13Þ 0 0.6
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range of j’s studied here. On the other hand, our data are
consistent with the conjecture that λ0 ¼ 0, if we allow for
λ1 ≠ 0 (see the dot-dashed line in Fig. 4, which only
deviates at j ¼ 1, 1.5). Unfortunately we cannot rule out
λ0 ≠ 0, but our results show that it is small, if at all present.

VI. CONCLUSIONS

In this work we have constructed a Monte Carlo method
to compute the subleading conformal dimensions in the
large charge expansion at the Oð4Þ Wilson-Fisher fixed
point. We used this method to compute Δ̃j for several
values of j in the range 1 ≤ j ≤ 20. While our results are
consistent with the general predictions of the expansion
given in Eq. (2), we cannot rule out the possibility that Δ̃j

approaches a nonzero constant λ0 in the large j limit.
However, our data are consistent with the conjecture in the
literature (see Ref. [22]) that λ0 ¼ 0, but then we need
λ1 ≠ 0. Assuming this to be true, we can estimate the three
leading terms in the expansion to be λ1=2 ≈ 2.1ð1Þ,
λ1 ≈ 2.3ð2Þ, and λ3=2 ≈ 1.2ð2Þ. We hope our work will
motivate a better analytic understanding of the purely
quantum terms λ0 and λ1. This could guide Monte Carlo
calculations for j ≫ 20, which require much larger com-
putational resources.

ACKNOWLEDGMENTS

We thank D. Orlando and S. Reffert for extensive
discussions and collaborating with us in the past. We also
thank S. Hellerman for useful discussions about this work.
The material presented here is based upon work supported
by the U.S. Department of Energy, Office of Science,
Nuclear Physics program under Award No. DE-FG02-
05ER41368.

[1] S. Rychkov, EPFL Lectures on Conformal Field Theory in
D>=3 Dimensions, Springer Briefs in Physics (Springer,
New York, 2016), 10.1007/978-3-319-43626-5.

[2] D. Simmons-Duffin, in Theoretical Advanced Study Insti-
tute in Elementary Particle Physics: New Frontiers in Fields
and Strings (World Scientific, Singapore, 2017), pp. 1–74,
10.1142/9789813149441_0001.

[3] Z. Komargodski and A. Zhiboedov, J. High Energy Phys. 11
(2013) 140.

[4] S. Hellerman, D. Orlando, S. Reffert, and M. Watanabe,
J. High Energy Phys. 12 (2015) 071.

[5] A. Kaviraj, K. Sen, and A. Sinha, J. High Energy Phys. 11
(2015) 083.

[6] A. Kaviraj, K. Sen, and A. Sinha, J. High Energy Phys. 07
(2015) 026.

[7] L. F. Alday, Phys. Rev. Lett. 119, 111601 (2017).
[8] R. Gopakumar, A. Kaviraj, K. Sen, and A. Sinha, Phys. Rev.

Lett. 118, 081601 (2017).
[9] P. Dey, K. Ghosh, and A. Sinha, J. High Energy Phys. 01

(2018) 152.
[10] S. Caron-Huot, J. High Energy Phys. 09 (2017) 078.
[11] S. Hellerman and S. Maeda, J. High Energy Phys. 12 (2017)

135.

[12] S. Hellerman, S. Maeda, and M. Watanabe, J. High Energy
Phys. 10 (2017) 089.

[13] D. Jafferis, B. Mukhametzhanov, and A. Zhiboedov, J. High
Energy Phys. 05 (2018) 043.

[14] L. Alvarez-Gaume, D. Orlando, and S. Reffert, J. High
Energy Phys. 12 (2019) 142.

[15] D. Orlando, S. Reffert, and F. Sannino, Phys. Rev. D 101,
065018 (2020).

[16] D. Poland, S. Rychkov, and A. Vichi, Rev. Mod. Phys. 91,
015002 (2019).

[17] N. Dondi, I. Kalogerakis, D. Orlando, and S. Reffert, J. High
Energy Phys. 05 (2021) 035.

[18] A. Monin, Phys. Rev. D 94, 085013 (2016).
[19] A. de la Fuente, J. High Energy Phys. 08 (2018) 041.
[20] D. Banerjee, S. Chandrasekharan, and D. Orlando, Phys.

Rev. Lett. 120, 061603 (2018).
[21] D. Banerjee, S. Chandrasekharan, D. Orlando, and S.

Reffert, Phys. Rev. Lett. 123, 051603 (2019).
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