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Dynamical quantum phase transitions (DQPTs) are a powerful concept of probing far-from-equilibrium
criticality in quantum many-body systems. With the strong ongoing experimental drive to quantum simulate
lattice gauge theories, it becomes important to investigate DQPTs in these models in order to better understand
their far-from-equilibrium properties. In this work, we use infinite matrix product state techniques to study
DQPTs in spin-S U (1) quantum link models. Although we are able to reproduce literature results directly
connecting DQPTs to a sign change in the dynamical order parameter in the case of § = 1/2 for quenches
starting in a vacuum initial state, we find that for different quench protocols or different values of the link spin
length S > 1/2 this direct connection is no longer present. In particular, we find that there is an abundance
of different types of DQPTs not directly associated with any sign change of the order parameter. Our findings
indicate that DQPTs are fundamentally different between the Wilson-Kogut-Susskind limit and its representation

through the quantum link formalism.
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I. INTRODUCTION

The field of far-from-equilibrium quantum many-body
physics currently finds itself in a remarkable era of active
quantum-simulation efforts seeking to realize ever more ex-
otic phenomena with no true counterpart in equilibrium [1-5].
Naturally, such efforts align with the ultimate quest for
possible dynamical quantum universality classes, for which
various concepts of dynamical phase transitions have been
proposed [6-10].

A prominent type of these, most frequently referred to as
dynamical quantum phase transitions (DQPTSs), constitute an
intuitive connection to thermal phase transitions [11-14], and
have been investigated in several quantum simulation plat-
forms over the past few years [15-20]. The essence of DQPTs
lies in viewing the return probability amplitude—overlap of
the time-evolved wave function with its initial state—as a
boundary partition function, with complexified evolution time
standing for the inverse temperature [12]. The negative loga-
rithm of this quantity normalized by volume, called the return
rate, is then the dynamical analog of the thermal free energy.
Similarly to a thermal phase transition that occurs at a critical
temperature where the thermal free energy (or any derivative
thereof) exhibits a nonanalyticity, a DQPT arises at a critical
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time at which the return rate is nonanalytic (see Sec. II for
more details, and Ref. [7] for an extensive review).

DQPTs have been demonstrated as a useful tool to ex-
tract far-from-equilibrium critical exponents [21-27], and
as a probe of the quasiparticles of target models [28-30].
Though initially discovered in one-dimensional integrable
free-fermionic models [12,31,32], they have since been shown
to be ubiquitous in many-body systems, arising in noninte-
grable [33-37], higher-dimensional [38—42], and mean-field
models [43-45].

Recently, DQPTs have also been studied in gauge theo-
ries [46,47], a class of quantum many-body models describing
the interactions between dynamical matter and gauge fields
through local constraints enforced by the underlying gauge
symmetries [48-50]. Lattice gauge theories (LGTs) have
recently been at the center of a number of impressive
quantum-simulation experiments [51-61], and there is great
interest in advancing these setups to quantum simulate more
complex gauge theories [62-68]. Though initially a tool to
address nonperturbative regimes in high-energy physics [49],
LGTs have proven to be formidable venues for the real-
ization of exotic far-from-equilibrium phenomena pertinent
to condensed matter physics. Prominent examples include
the ergodicity-breaking paradigms of disorder-free localiza-
tion [69,70] and quantum many-body scars [53,71-73] that
carry deep connections to fundamental questions on the ther-
malization of isolated quantum systems and the eigenstate
thermalization hypothesis [74—80].

©2022 American Physical Society


https://orcid.org/0000-0003-0244-4337
https://orcid.org/0000-0002-0414-1754
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.245110&domain=pdf&date_stamp=2022-12-08
https://doi.org/10.1103/PhysRevB.106.245110

MAARTEN VAN DAMME et al.

PHYSICAL REVIEW B 106, 245110 (2022)

In this light, it is important to further investigate DQPTs in
LGTs, and, in particular, variations thereof that are pertinent
to realizations in quantum simulators. In this vein, the paradig-
matic (1 4+ 1)-dimensional [(1 + 1)-D] spin-S U (1) quantum
link model (QLM) stands out [58,60,61]. It is a lattice ver-
sion of the Schwinger model from quantum electrodynamics
where the gauge fields of infinite-dimensional Hilbert space
in the latter are represented by spin-S operators of a finite-
dimensional Hilbert space that is amenable for experimental
implementations [62,81]. Indeed, large-scale experimental re-
alizations of the spin-1/2 U(1) QLM have recently been
implemented to directly observe gauge invariance [60] and
thermalization dynamics [61]. In Ref. [47], it has been shown
for quenches starting in a vacuum state of the spin-1/2 U (1)
QLM and ending across the critical point that DQPTs exhibit
a one-to-one connection to the order parameter changing sign.
Such a connection was first found in the XXZ chain for
quenches starting in the symmetry-broken phase and ending
across the critical point [13].

In this work, we numerically simulate the quench dynamics
in spin-S U (1) QLMs using the infinite matrix product state
technique (iMPS) based on the time-dependent variational
principle (TDVP) [82-86], which works directly in the limit of
infinite system size. This allows us to reliably detect DQPTs
and classify their type by studying the corresponding matrix
product state (MPS) transfer matrices [87,88]. We find that the
physics of DQPTs is richer than what was found in Ref. [47]
by considering different quenches at S = 1/2, and any non-
trivial quench at larger S. We find three main types of DQPTs,
and their connection to a change of sign in the order parameter
is shown not to be present in general.

The rest of the paper is organized as follows: In Sec. II,
we will give a brief overview of DQPTs, their calculation in
iMPS, and a glossary involving the new terms we introduce in
this work. In Sec. III, we discuss the spin-S U (1) QLM. We
present our numerical results for different quench protocols
and values of the link spin length S in Sec. IV. We conclude
and provide an outlook in Sec. V. The Appendix includes
numerical convergence results.

II. DYNAMICAL QUANTUM PHASE TRANSITIONS

The seminal work of Heyl et al. [12] pointed out that
the return probability amplitude (Y| (1)) = (Wole ™! |Y)
is a boundary partition function with complexified time
it representing inverse temperature. As such, the quantity
—2L~'In [(o|¥ ())| can be considered as a dynamical ana-
log of the thermal free energy when the system of size L is
prepared in the initial state |1{) and subsequently quenched
by the Hamiltonian A. In the thermodynamic limit L — oo,
this dynamical free energy can exhibit nonanalytic behavior
at critical evolution times t. Nonanalyticities in the return rate
have been dubbed DQPTs [7-9].

A slightly modified formulation of the return rate can
be defined when the initial state resides in a degenerate
ground-state manifold [37], as is the case in all the scenarios
considered below in Sec. IV. Assume we prepare our system
in one of two doubly degenerate ground states in the Z,
symmetry-broken (ordered) phase of some initial Hamiltonian
Hy. Let us call these ground states |1pgt), which correspond

to a positive or negative order parameter, respectively, and
suppose that the system is initialized in |1[/5'_ ). Upon quenching
with a final Hamiltonian H, we can then write

r(t) = min{A{ (1), A7 (1)}, (1a)
1
GES —Lll)ffolo I In [ (¥ [ ()7, (1b)
.1 _
AL@) = —Lliﬂgo I In | (g [ ()7, )

where the total return rate (1a) is the minimum of the primary
return rate (1b) onto the initial state |1p; ) and the secondary
return rate (1c) onto the other degenerate ground state |/, ) of
H,. The subscript of Xf(t) will become clear in the context of
iMPS, which we elucidate in the following.

A. Calculation in infinite matrix product states

In iMPS, the physical quantum transfer matrix that one ob-
tains from a path-integral formulation of the return probability
amplitude (I/fg[h/f(t)) is approximated by the MPS transfer
matrix 7(¢) [87]. One can then define the rate-function
branches [88]

AE(r) = —2InleX ()], )

where sff (1) are the eigenvalues of 7*(¢) in descending order:
le=()] > eX(t)] = - -+ > |e5(t)], where D is the MPS bond
dimension. Thus, the (primary or secondary) return rate )Lli(t)
is determined by the dominant eigenvalue eft (t) of T%(t), and
the following relation always holds: )»li(t) < kf(l) <0 K
A5 ().

Furthermore, we can now see that different types of DQPTs
can arise in our framework (see Fig. 1), which we will define
in the following.

B. Glossary

Manifold DQPTs are nonanalyticities appearing at a crit-
ical time 7. in r(¢) due to intersections between Af(t) and
AL (@), e, r(t) = )\T(tc) = A} (t.). These are not related to
level crossings in the spectra of the MPS transfer matrices.
A manifold DQPT indicates a shift in the dominant overlap
the wave function makes with either degenerate ground state
of the initial Hamiltonian, hence the nomenclature as it only
involves the ground-state manifold.

Branch DQPTs are nonanalyticities appearing in r(t)
at critical times ¢, where the two lowest rate-function
branches intersect: r(f.) = A{(t;) = A5(t.), where A{(%.) =
min{)\f(tc), A (t)}. These DQPTs are a direct result of level
crossings in the spectrum of the MPS transfer matrix 7%(¢)
between its two largest eigenvalues £{(¢) and &5(¢) at ¢..
This manifests as an intersection between A{(z) and A5 ()
at the critical time .. When o = 4+ we shall refer to such
a nonanalyticity in r(¢) as a primary branch DQPT, while
when o = — we shall refer to it as a secondary branch DQPT,
corresponding to the dominant component return rate in which
the nonanalyticity occurs. The nomenclature is due to the fact
that these DQPTs are a direct result of branch crossings.

It is worth noting that the eigenvalues of the transfer matrix
are continuous, so any clear discontinuity should be due to a
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FIG. 1. Illustration of DQPT behavior in the quench dynamics
of spin-S U (1) QLMs. The Z, symmetry-broken phase of the latter
hosts two doubly degenerate ground states, |,") and |¢;). Starting
in |y,") and quenching across the equilibrium quantum critical point,
rich dynamical criticality arises in the total return rate r(¢) (1a) as the
system explores the Hilbert space in the wake of the quench. When
r(t) switches from the primary return rate A} (r) (1b) onto | ) to the
secondary return rate A, (t) (1c) onto [v,") or vice versa, a manifold
DQPT appears at a critical time 7, when r(z.) = Af (t.) = A7 (%)
Furthermore, DQPTs can also appear in the form of nonanalyticities
in r(z) that are not related to a switch between A} (¢) and A7 (¢). Such
a branch DQPT occurs at critical times #. when r(t,) = A{(t.) =
25(t.), where A% (t.) = min {A](z.), A (t.)} and AS(¢) is the second
rate-function branch; see Sec. II A for details.

level crossing. One can then worry that we are not observing
nonanalyticities without having infinite time resolution, de-
spite the very small time-steps we use (see Sec. IV). However,
such an extremely close abrupt level repulsion would have to
be very finely tuned, while our results are fairly robust to small
changes in the Hamiltonian.

Figure 1 provides a schematic illustration of manifold and
branch DQPTs as they arise during the quench dynamics.

C. Color and line-style conventions

It is worth discussing the color and line-style conven-
tions we use in our figures in Sec. IV below. The primary
rate-function branches A, (¢) are solid lines, while the sec-
ondary rate-function branches A, (¢) are dotted lines. The first
branch-rate function A{ () is denoted in gray, while the second
branch-rate function Af (¢) is denoted in green.

III. SPIN-S U (1) QUANTUM LINK MODEL

The (1+ 1)-D spin-S U(1) QLM is described by the
Hamiltonian [62,81,89-91]

— At A —
8516 + H.c.)

L J
i=3 @

2
W, K°a,., 2
+ E j + T(sj’j'H) i| 3)

This is a lattice version of (1 + 1)-D quantum electrody-
namics (QED) where the gauge field is represented by the
spin-S operator si i+1 at the link between matter sites j and
j+ 1. Upon a Jordan -Wigner transformation, the fermionic

matter creation and annihilation operators are represented by
the Pauli matrices 6 at matter site j. Additionally, we have
employed a particle-hole transformation [89]. The matter oc-
cupation at site j is given by the operator 7; = (cr + 1)/2.
The mass of the matter field is given by u, and the electric-
field coupling strength is «. The energy scale is set by J = 1
throughout the paper.

The principal property of Eq. (3) is the gauge symmetry
generated by the discrete operator

Gy =D/ (A +55_ ; +5 50) )

which can be viewed as a discretized version of Gauss’s law,
imposing a local constraint on the electric-field configura-
tion at the two links neighboring a matter site depending on
the matter occupation at it. The gauge symmetry of Eq. (3)
is encoded in the commutation relations [H,G;] =0, V,.
Throughout this work, we will work in the “physical” sector
of Gauss’s law: Gj|¢) =0, Vj.

Although it is a lattice version of QED with gauge fields
represented by spin-S operators, Eq. (3) has been shown to
achieve the quantum field theory limit of QED at finite a
and relatively small S both in [92-95] and out of equilib-
rium [96]. Large-scale quantum simulations of Eq. (3) at S =
1/2 have also recently been performed for a mass ramp [60]
and to probe thermalization dynamics in the wake of a global
quench [61].

IV. QUENCH DYNAMICS

We will now present our main numerical results obtained
from iMPS. For our most stringent calculations, we find
within the considered evolution times that good convergence
is achieved with a time step of 0.001/J and a maximal bond
dimension of Dy,,x = 550; see the Appendix. We are inter-
ested in two key quantities, the return rate defined in Eq. (1a)
and the order parameter (electric flux)

1 & .
) = 7 Y (=T WO Ly (), 5)

j=1

where [y (1)) = e~ |y ).

A. Quench from a Z, symmetry-broken product state

Let us first consider quenches starting in a Z;
symmetry-broken product state. In terms of the spin-§
U (1) QLM, this entails preparing the system in one of two
doubly degenerate ground states of Eq. (3) at u — oo for
half-integer S or © — —oo for integer S, with real « # 0. In
terms of the eigenvalues n; and s’ ;| of the matter occupation
i1j and electric-field §% % j+1 operators, respectively, the two-site
two-link unit cell representatlons of these product states
are then |nj, j,/+1’”1+17 j+1,1+2) |0, +1/2,0, —1/2)
for half-integer S and |nj, Sjljﬂ’ My, sj‘+1,j+2> =
[1,0,1, —1) for integer S. Let us denote the latter
as |1//J ), in which we prepare our system at ¢ <O0.
The other degenerate product ground state [y;) is
then |n;, sjljﬂ’ Mjti, sj’+1,j+2> =10,-1/2,0,4+1/2) for
half-integer S and |nj’sj',j+1’nj+1’sj‘+l,j+2> =11,—-1,1,0)
for integer S. In the case of half-integer S, |1p0i> represent the
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degenerate vacua of the U(1) QLM at nonzero «, while for
integer S they are the degenerate charge-proliferated product
states.

At t =0, we quench the initial state |y) with A of
Eq. (3) at u = £0.655J/[6a+/S(S + 1)] (positive sign for
half-integer S and negative for integer S) and « = 0.1+/J,
which ensures that the quench is across the equilibrium quan-
tum critical point for all considered values of S. Henceforth,
we shall set a = 1 in all our calculations.

Let us first focus on the case of S = 1/2, where we repeat
the same quench employed in Ref. [47]. The corresponding
quench dynamics of the total return rate (1a), its component
return rates (1b) and (1c¢), their second rate-function branches,
and the order parameter (5) are shown in Fig. 2(a). In full
agreement with Ref. [47], we find within the evolution times
accessible in iMPS that the return rate (1a), depicted in blue,
exhibits only manifold DQPTs that are directly connected to
the order parameter (depicted in red) changing sign.

Interestingly, the primary return rate A} (r) (1b) (solid gray
curve) itself hosts branch DQPTs at half the frequency of
the total return rate r(¢), where these branch DQPTs are the
result of its intersection with A;(t) (solid green line). In other
words, if we merely use )»f(t) as the total return rate rather
than r(¢), as is done in many works, then we will also see a
direct connection between the emerging (branch rather than
manifold) DQPTs and the order-parameter zeros, whereby
one such DQPT corresponds to two order-parameter zeros. As
such, it does not matter in this case whether the return rate is
defined through the dominant branch or manifold; there will
always be a direct connection between the resulting DQPTs
and the order-parameter zeros.

The question that posits itself here is whether this behavior
is special to S = 1/2 or the particular quench protocol em-
ployed. As we will show in the following, we find numerically
that this behavior is present only for the case of S = 1/2
and a quench from a vacuum initial state across the critical
point. Let us now employ the same quench protocol but for
the case of S =1, the corresponding quench dynamics of
which are shown in Fig. 2(b). Here we see that the total
return rate r(¢), displayed in blue, has one manifold DQPT,
and three aperiodic secondary branch DQPTs, with only one
order-parameter zero during the evolution times we can access
in iMPS. The three secondary branch DQPTs in r(¢) appear
at times ¢ when r(t) = A; (t) = A5 (t) < Af (¢), where A] (1)
is depicted with a dotted gray line, and A; (t) with a dotted
green line. This picture is fundamentally different from that
of the corresponding case for S = 1/2, albeit one can still
argue that there is a single manifold DQPT appearing in r(t)
along with a single zero of the order parameter, and so maybe
there is still a direct connection between manifold DQPTs and
order-parameter zeros.

To check this hypothesis, we consider the same quench
protocol for § = 3/2, with the corresponding dynamics shown
in Fig. 2(c). We find that this hypothesis no longer holds,
and there is no direct connection between manifold DQPTSs
and order-parameter zeros. In the accessible time evolu-
tion window, we can count at least nine aperiodic manifold
DQPTs in r(¢t) while there is only a single order-parameter
zero. Moreover, the nonanalytic behavior of r(f) is even
richer than in previous cases, with primary branch DQPTs

5 a 0.3
0.4 H i ( )
0.4
0.3+
(),37
S s
= ol W
0-2 0.2
0.1r 0.1
()0 0
0.6 0.5
0.5+ X10.4
04r (),37
S s
= 0.3+ Y
0.2
0.2+
o 0.1
()0 0
0.5
0.6 +
0.5¢ 0.4
04r ().37
S 128,718 132 134 136 g
~ 0.3F \ Vo W
j’ \J ; 40.2
0.2} J /
0.26 — - ;
s S=32 J oa o1
0.1¢ :;:uu iw;@
0 ‘ “’:‘5 S1tI9g ‘ ‘ ‘ 11.8 n.xn}; 0
0 2 4 6 ¢y 8 10 12 14

FIG. 2. Dynamics of the total return rate (1a) (blue), which is the
minimum of the primary (1b) and secondary (1c) return rates (solid
and dotted gray curves, respectively) and the order parameter (5)
(red) for quenches starting in a Z, symmetry-broken product state,
which is one of two doubly degenerate ground states of the spin-S
U(1) QLM (3) at k = 0.14/7 and u — +o0 (positive sign for half-
integer S, negative for integer S). The solid (dotted) green curves
designate the second primary (secondary) rate-function branch; see
Sec. IIB. (a) For the case of S = 1/2, periodic manifold DQPTs
correspond directly to order-parameter zeros occurring at roughly the
same period, in full agreement with the conclusions of Ref. [47]. (b,c)
For S > 1/2, this direct connection is no longer present, and many
aperiodic manifold and branch DQPTs (see Sec. II B for definition)
appear in r(¢) even when there is only a single order-parameter zero
in the accessible time-evolution window.

at times t where r(t) = A]L(t) = )J(t) < Ay () and sec-
ondary branch DQPTs at times ¢ where r(t) =1, (1) =
A5 (1) < Af@).
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As such, we have shown that employing the quench proto-
col of Ref. [47] gives rise to a connection between manifold
DQPTs and order-parameter zeros only for the case of S =
1/2, while for S > 1/2 the dynamical critical behavior is
much richer, with a plethora of both manifold and branch
DQPTs that show no direct connection to order-parameter
ZEeros.

B. Quench from finite x to —u

Let us now consider a different quench protocol, where the
initial state is chosen as one of the two degenerate ground
states of Eq. (3) at u = +£J (positive sign for half-integer S,
negative for integer ), from which the system is quenched
with Eq. (3) at u© = FJ (negative sign for half-integer S,
positive for integer S). The electric-field coupling strength is
always set to k = 0.1+/J. The motivation behind this quench
is that a sign change in the fermion mass can be interpreted as
a change in the topological angle 6 by 7, which has relevance
in (3 + 1)-D quantum chromodynamics [46,96-99]. Similarly
to the quench protocol employed in Sec. IV A, the quench
here also crosses the equilibrium quantum critical point of
the spin-S U (1) QLM from a Z, symmetry-broken phase to
a Z,-symmetric phase for all values of S that we consider in
the following.

It is interesting to see if changing the quench protocol from
that employed in Sec. IV A will alter the picture for S = 1/2
of a direct connection between manifold DQPTs and order-
parameter zeros. As such, we look at the resulting dynamics in
the spin-1/2 U (1) QLM in the wake of quenching from p = J
to u = —J, shown in Fig. 3(a). We readily see a breakdown of
this picture, with a plethora of manifold DQPTs (at least 25) in
r(t) occurring over the evolution times we can access in iMPS,
during which only six order-parameter zeros appear. In fact,
focusing on the evolution times displayed in the largest inset
of Fig. 3(a), we find nine manifold DQPTs in r(¢) and only
three order-parameter zeros. In addition to manifold DQPTs,
we also find over the whole accessible time evolution both
primary and secondary branch DQPTs in 7(¢) (see insets). In
contrast to Fig. 2(a), the manifold DQPTs do not occur at a
fixed frequency, nor do the order-parameter zeros.

We consider the same quench but for S = 3/2 in Fig. 3(b).
Once again, we see a myriad of manifold DQPTs (at least
24) in the evolution times accessed in iMPS, along with five
secondary branch DQPTs, while the order parameter changes
sign only once. The manifold DQPTs also do not occur at a
fixed period in time. It is interesting to note that the order-
parameter zero occurs at t ~ 26.643/J, but already at much
earlier times (see long inset) we see the return rate r(¢) show-
ing somewhat regular manifold DQPTs in its evolution over
that early temporal range, without any corresponding zeros in
the order parameter during or close to these times. This again
indicates that there is no direct connection between DQPTs
and order-parameter zeros in general.

Turning to integer S, we now consider the quench from
uw=—J to u=2J, which is also from the Z, symmetry-
broken phase to the Z,-symmetric phase of Eq. (3). As before,
x = 0.14/J. The corresponding quench dynamics for § = 1
are displayed in Fig. 4(a). In the evolution times accessed
by iMPS, we find eighteen aperiodic manifold DQPTs, along

0.35
0.4
0.3}
0.25 0.3
<02\ =
& oW
0151 0.2—
0.1H
041 0.1
Sou U S 0425

FIG. 3. Quench dynamics of the return rate (1a) and order param-
eter (5) for the U (1) QLM with half-integer (a) S = 1/2 and (b) § =
3/2 in the wake of a quench from 1 = J to u = —J at k = 0.1/J.
As before, this quench is from the Z, symmetry-broken phase to the
Z,-symmetric phase of Eq. (3) for the case of half-integer S. In both
cases, there is no direct connection between manifold DQPTs and
order-parameter zeros, where we get a plethora of aperiodic manifold
DQPTs and several branch DQPTs, but only a few order-parameter
zeros within the accessible evolution times.

with five secondary branch DQPTs, while only two order-
parameter zeros exist in the same time interval. On the other
hand, we see no zeros of the order parameter in the accessible
times for the case of § = 2 shown in Fig. 4(b), but there are 23
aperiodic manifold DQPTs and three primary branch DQPTs.
Even though we expect that at longer evolution times not
accessible in our codes the order parameter may still change
sign, our numerical results strongly suggest that there is no
direct link between DQPTs and the order-parameter zeros.

It is interesting to note that the dynamics of the spin-S U (1)
QLM after a quench from u to —u has been shown to con-
verge to the Wilson-Kogut-Susskind (WKS) limit already at
small values of the link spin length S 2> 2 [96]. Furthermore,
at small values of the electric-field coupling strength « like we
consider here, the dynamics is qualitatively the same between
half-integer and integer S. This is because a small « will
not sufficiently suppress quantum fluctuations, thereby not
allowing the structure of the spin-S operator to be resolved.
As a consequence, the conclusions we obtain in this work for
the larger values of S are indicative of DQPT behavior in the
WKS limit, suggesting that the direct connection of manifold
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FIG. 4. Quench dynamics of the return rate (1a) and order pa-
rameter (5) for the U (1) QLM with integer (a) S = 1 and (b) S = 2
in the wake of a quench from = —J to u = J at k = 0.14/J. As
before, this quench is from the Z, symmetry-broken phase to the
Z,-symmetric phase of Eq. (3) for the case of integer S. In both
cases, there is no direct connection between manifold DQPTs and
order-parameter zeros, where we get a plethora of aperiodic manifold
DQPTs and several branch DQPTs, but only a few (or no) order-
parameter zeros within the accessible evolution times.

DQPTs to order-parameter zeros may not extend itself to the
quantum field theory limit of the spin-S U (1) QLM.

Also worth noting is the similarity in our conclusion to
DQPT behavior in other many-body systems, such as quantum
Ising models. Various works on DQPTs in quantum Ising
chains with exponentially decaying interactions [29] and two-
dimensional quantum Ising models [41] show that the direct
connection between DQPTSs and order-parameter zeros occur
only for large quenches from the symmetry-broken phase to
somewhere deep in the symmetric phase, where the resulting
DQPTs and order-parameter zeros also share the same period.
However, for smaller quenches, aperiodic DQPT behavior
arises, even when the order parameter itself shows periodic
zeros, or none at all [36].

V. CONCLUSION AND OUTLOOK

In summary, we have performed numerical simulations of
quench dynamics in the spin-S U(1) quantum link model
using the infinite matrix product state technique based on
the time-dependent variational principle. We have shown that,
for generic quenches from the Z, symmetry-broken phase
to the Z,-symmetric phase of this model, there is no direct

connection between DQPTs and the order-parameter zeros
in general, regardless of the value of S. Even when start-
ing in product states of the Z, symmetry-broken phase and
quenching across the equilibrium quantum critical point, only
the case of § = 1/2 shows a direct connection between the
occurrence of a DQPT and a sign change in the order param-
eter in agreement with Ref. [47], but for S > 1/2 this direct
connection is no longer present.

We have shown the existence of two main types of DQPTs
in this process. The first is manifold DQPTs, which are the
ones occurring at critical times when the total return rate
switches between its two component (primary and secondary)
return rates onto each of the two degenerate ground states,
one of which is the initial state of our system. Manifold
DQPTs show a direct connection to order-parameter zeros in
the case of S = 1/2 for a quench from a vacuum initial state
across the critical point. The other main type of DQPTs in
this work are the branch DQPTs, which are nonanalyticities
in the dominant (i.e., lower) component return rate. These are
classified into primary branch DQPTs when these nonanalyt-
icities occur in the component (primary) return rate onto the
initial state, and secondary branch DQPTs when they occur in
the component (secondary) return rate onto the second degen-
erate ground state. In contrast to their manifold counterparts,
branch DQPTs are the direct result of level crossings in the
corresponding matrix product state transfer matrix.

Relevant to recent work on the convergence of the spin-S
U (1) quantum link model to the Wilson-Kogut-Susskind limit
already at small values of § 2 2, we have argued that our re-
sults strongly indicate that DQPT behavior in the lattice-QED
limit will in general not show a direct connection between
DQPTs and order-parameter zeros for quenches from the
symmetry-broken phase across the critical point.

0.6 :
(a) =Dy = 500
Dmax = 550
0.4+ ]
=
~
0.2 g J
0 I I I
0 5 7 10 15
0.5 > 500
0.4 f(b) Dinax = 550H
—=0.3+r i
N _
w020 ,
0.1 ]
0 I I I
0 5 +J 10 15

FIG. 5. Convergence analysis of the (a) return rate and (b) elec-
tric flux of Fig. 2(c), which involves a quench of the initial state
I¥;") (physical vacuum) with the Hamiltonian H of Eq. (3) at
u = 0.655J/[6/S(S + 1)], with § =3/2, and ¥ = 0.14/7. We see
excellent convergence at a maximal bond dimension of D, = 550.
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Given recent experimental advances in the observation of
DQPTs [15,16] and quench dynamics of U (1) quantum link
models [61], our work provides a blueprint for future exper-
iments on the dynamical critical behavior of lattice gauge
theories.
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APPENDIX: CONVERGENCE OF NUMERICAL RESULTS

Here we provide convergence plots for the most stringent
numerical calculation in this work, namely that of Fig. 2(c).
These are provided in Figs. 5(a) and 5(b) for the return rate
and the electric flux, respectively. As can be seen, the re-
sults are fully converged for the maximal bond dimension
Dimax = 550.
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