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Matter-free lattice gauge theories (LGTs) provide an ideal setting to understand confinement to
deconfinement transitions at finite temperatures, which is typically due to the spontaneous breakdown (at
large temperatures) of the center symmetry associated with the gauge group. Close to the transition, the
relevant degrees of freedom (Polyakov loop) transform under these center symmetries, and the effective
theory depends on only the Polyakov loop and its fluctuations. As shown first by Svetitsky and Yaffe, and
subsequently verified numerically, for the U(1) LGT in (2 + 1) dimensions, the transition is in the 2D XY
universality class, while for the Z, LGT, it is in the 2D Ising universality class. We extend this classic
scenario by adding higher charged matter fields and show that the critical exponents y and v can change
continuously as a coupling is varied, while their ratio is fixed to the 2D Ising value. While such weak
universality is well known for spin models, we demonstrate this for LGTs for the first time. Using an
efficient cluster algorithm, we show that the finite temperature phase transition of the U(1) quantum link

LGT in the spin S = ! representation is in the 2D XY universality class, as expected. On the addition of

2

Q = 42e charges distributed thermally, we demonstrate the occurrence of weak universality.

DOI: 10.1103/PhysRevLett.130.071901

Introduction.—Phases of matter at extreme temperature,
pressure, and density often challenge our conventional
notions and stimulate extensive research, both experimen-
tally and theoretically. Of particular relevance are the
physics of the early Universe and the interior of neutron
stars. Both scenarios are expected to have a microscopic
description through quantum chromodynamics (QCD), a
field theory of quarks and gluons [1-4]. As a strongly
interacting quantum field theory (QFT), QCD confines
color-charge-carrying quarks and gluons into color singlet
bound states, rendering conventional perturbation tech-
niques unsuitable.

Lattice gauge theories (LGTs) are nonperturbative for-
mulation of QFTs, where Markov chain Monte Carlo
methods are used to compute physical observables, and
supply the most reliable insights about strong-interaction
physics [5]. The possibility of a thermal phase transition out
of the confined phase was explored first in pure gauge
theories. It is universally accepted that pure SU(3) gauge
theory has a first-order deconfinement phase transition
[6,7], while the SU(2) gauge theory has a second-order
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phase transition [8,9]. For QCD with physical quark
masses, there is only a crossover from the hadronic phase
to the deconfined quark gluon plasma phase [10,11].

The finite temperature phase transition in pure gauge
theories can be described using an effective field theory
(EFT). Svetitsky and Yaffe (SY) [12] used the insight that
the confinement to deconfinement transition in a pure
gauge theory is due to the spontaneous breakdown of
the global center symmetry of the gauge group to show that
the relevant degrees of freedom in the EFT are the Polyakov
loop (order parameter) and its fluctuations. Integrating out
all other degrees of freedom in the original gauge theory in
(d + 1) dimensions, they argued that the EFT corresponds
to a d-dimensional spin model. The confinement in the
original gauge theory ensures that the effective couplings in
the spin system are short ranged. Using universality, they
argued that the original gauge theory should share the same
transition as the effective spin model, if both theories have
continuous phase transitions. This SY scenario has been
verified in different numerical simulations [13—18] and is
widely regarded as a success of universality.

In this Letter, we report an extension of the SY approach
for (2 + 1)-dimensional U(1) lattice gauge theory in the
presence of higher charges +2e (where e denotes the
fundamental unit of charge, which we set to 1 henceforth),
using the quantum link gauge theory (QLGT) formulation.
QLGTs are generalizations of Wilson’s LGTs which are
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extensively used to investigate properties of gauge theories
numerically as well as with quantum simulators [19,20]. As
expected from the SY conjecture, the pure U(1) QLGT
undergoes a Berezinskii-Kosterlitz-Thouless (BKT) decon-
finement transition. Introduction of thermally generated 42
charges breaks the U(1) global center symmetry to a Z,
center symmetry and, thus, predicts a deconfinement
transition with 2D Z, critical exponents if the transition
is continuous. Instead, we demonstrate a continuous
transition with weak universality [21], characterized by
large values of critical exponents like y, v, and f, while
others like # and & defined directly at the critical point, as
well as the ratios of the critical exponents are fixed to the
2D Z, Ising model. Weak universality has been observed in
a variety of systems [22-30], however; we demonstrate this
at the deconfinement transition of a LGT for the first time
and extend the SY conjecture to include this possibility. We
perform extensive finite size scaling (FSS) studies on
lattices up to (512a)? (a denotes the lattice spacing) with
very small Trotter steps ¢/J ~ 0.05 (J denotes a micro-
scopic coupling) to demonstrate the BKT as well as the
weak universality scenario at the deconfinement transition
in the absence and presence of the =2 charges, respectively.

Model, simulations, and phase diagram.—The QLGTs
we consider use quantum spin S :% to represent gauge
fields on the links (x, /1) of a square lattice. The electric flux
operator E,; = S, ; takes two values +3, while the gauge
fields are the raising (lowering) operators of electric flux:

USZ = S;r_lg_). The Hamiltonian operator is the sum of

elementary plaquette terms:

H=-J) [(Un+UL)-aUn+UL?. (1)

where U = U, UxWﬁULa_ﬁ Ui.a- We set both the lattice

spacing and J to 1 henceforth. Figure 1(a) shows the setup
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FIG. 1. (a) Sketch of the lattice—the dashed and clear pla-
quettes denote the A and B sublattice, respectively. Q = £2e¢
charges are shown as red and blue circles, respectively. Plaquettes
can be nonflippable (shaded in green), especially when it has a
charge +2e at a corner, or flippable in the clockwise (red) or
anticlockwise (blue) sense. (b) The different Gauss law realiza-
tions: The first six have Q = 0, while the last two have Q = +2e
at the vertex.

~
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of the lattice. The electric fluxes are shown as directed
arrows. We note that U (U,) reverses the orientation of
the electric flux around the plaquette (clockwise to anti-
clockwise and vice versa), while all nonflippable plaquettes
are annihilated. The A term is akin to a potential energy,
counting the total number of flippable plaquettes. The
U(l) gauge symmetry is generated by the Gauss law
operator G, =) ;(E,; — Ec_;;) and commutes with
the Hamiltonian: [G,, H| = 0. The physical states in the
vacuum sector satisfy G,|w) = 0 (six allowed states for
each vertex of the square lattice) for all sites x. The
presence of Q = +2 extends the Gauss law to also include
G.|p) = £2|¢). Imposing periodic boundary conditions,
only states with zero total charge are allowed. Figure 1(b)
shows all the allowed configurations (six with O, = 0, one
each with Q, =2 and Q, = —2) in our model (with equal
weights). A detailed discussion about the symmetries is
given in Supplemental Material (Sec. A) [31]. At finite
temperature 7 = 1/f, the equilibrium properties can be
obtained from the partition function Z = Tr[e?#Pg],
where Pg = [[,${66(G,) +8(G, —2) +8(G, +2)} is
the projection to Gauss’ law allowed states.

While the charges Q = £2 do not have a kinetic energy
term in the Hamiltonian, they are generated and become
mobile due to thermal fluctuations. The Q = 42 charges
can be regarded as an example of annealed disorder [32],
where these impurities are in thermal equilibrium with the
rest of the system. As is expected of a confining theory, at
T = 0, the charges are high-energy states and, thus, do not
appear. However, close to the deconfinement phase tran-
sition (when 7'~ AJ ~ M, where M is the rest mass of the
charges), the charges are thermally generated and affect the
critical properties of the system as we demonstrate later. In
Supplemental Material (Sec. A) [31], we show how the
presence of Q = £2 charges gives rise to an effective Z,
Gauss’ law for the theory.

In Fig. 2, we sketch a finite temperature phase diagram of
the model with and without the charges. The quantum

~
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FIG. 2. The T — A phase diagram: At T = 0, there are two
confined phases (C1 and C2) separated by a weak first-order
phase transition. Beyond A = 1, the staggered phase is encoun-
tered. At high T, there is a pure U(1) liquid, or a Z, liquid
where Q = 42 charges exist. We study the finite temperature
phase diagram here. The dashed lines indicate possible phase
boundaries.
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phase transition in 4 (at 7 = 0) revealed two distinct
crystalline confined phases (C1 and C2) separated by a
weak first-order phase transition at 4, ~ —0.36 [33,34]. The
phases can be understood via a two-component magneti-
zation [measured, respectively, on sublattice A and B; see
Fig. 1(a)]. In phase C1 both sublattices order (spontane-
ously breaking the lattice translation and charge conjuga-
tion), while for phase C2 only one of the sublattices order
(breaking lattice translations). On raising the temperature,
these symmetries are restored accompanied with the
spontaneous breakdown of the U(1) global center sym-
metry, and SY analysis suggests a BKT phase transition.
With the charges Q = 42 in the ensemble, the quantum
phase transition remains unchanged, while the thermal
transition is modified. The charges break the U(1) center
symmetry to a Z, subgroup, leading one to naively expect a
continuous transition with 2D Z, critical exponents.
However, the thermal transition now displays properties
associated with weak universality. We concentrate on a
region of 1 away from A, such that our results are not
influenced by the properties near the quantum phase
transition.

We study the model using a cluster quantum
Monte Carlo (QMC) algorithm, applied to the (Kramers-
Wannier) dualized version of the model [35] on a lattice
with L (L7) number of points in the spatial (temporal)
direction. The dualized model comprises of the height
variables 448 at the center of the A and B sublattices (see
Fig. 1) and can be mapped to the fluxes E, ;. The algorithm
builds clusters on 448, which are then flipped and update
the E, ; efficiently. A comparison of the QMC results
(working with #4-8), in both the absence and presence of
Q = £2 charges, with exact diagonalization results
(working with E, ;) on small lattices is shown in
Supplemental Material (Sec. C) [31]. Working in the
Hamiltonian approach, it is nontrivial to measure the
Polyakov loop directly. Instead, we consider the sublattice
magnetizations

where X = A, B (2)

1
My =—>)Y n¥h¥,
X LT;

and X denotes the dual sites. The phase factors 75 capture
the ordering of the hX corresponding to the flippability of
the plaquettes. In Supplemental Material (Sec. B) [31], we
show that (M, Mpg) serve as order parameters for the
deconfinement transition. For FSS studies, we use total and
connected susceptibilities:

fo =y ). o = 535~ (M) )

where M? =Yy, 3(M%), V = L?, and § = eLy. Three
different Binder cumulants were also used to estimate the
critical exponents:

I M) _ (M)
i D
4
sz:%—j—‘zxj<%x>2 (4)

Finite temperature transition and FSS.—The FSS
hypothesis for the order parameter predicts that the
Binder cumulants are universal at the critical point [36—
38]. We use this feature to show that the theory with and
without the charges has different thermal behavior. In the
left panel in Fig. 3 [the pure U(1) theory], the Binder Q,
curves for different lattice sizes L collapse on each other at
high 7', while they differ in the low-T phase. This is the
expected behavior for an XY universality, where a critical
phase goes into a massive phase through the BKT tran-
sition. The right panel shows Q; for the U(1) theory with
charges Q = £2 for different L, which cross each other at
p. ~0.815. We will postpone a detailed study of the BKT
phase transition to a future publication [39], since it
establishes the conventional wisdom, and concentrate here
solely on the other transition.

We extract the critical temperature 7. = 1/, from
crossing points of the curves of three different observables
:L"%, Q,, and Q,,). Figure 4 (top panel) shows
YL vs B for L =64,...,512 and Ly = 24. In this
analysis, we fixed y/v =7/4, the value for 2D, Z,
universality class. We will derive this independently later,
and fitting for the ratio y/v only increases the uncertainties
without any gain. Moreover, we need very precise estimates
of f. to compute v. Using a second-order polynomial
interpolation to extract the crossing points of lattices
(L,2L), we observe a surprisingly flat behavior for

Y‘i L1 10

L 64 10.9
L=128
L=160
L=192}0.8
L=256
L=320
L=38410.7
¢ L=448
L=512

0.8 0.78 0.80 0.82 0.84

0.6 0.7
B B

FIG. 3. The Binder cumulant Q; for the U(1) QLGT without
(left) and with (right) the charges Q = +2. The former displays a
2D XY scenario (critical high-7 and gapped low-T phase), while
the latter exhibits a 2D Ising scenario (gapped high-7" and low-T)
phases as one would expect from the SY analysis. We demon-
strate weak universality for the latter case.
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FIG. 4. Top: The critical temperature f. of the theory with
charges is estimated by the crossing of y,. for different L. Inset:
Estimates of f. using Q; and Q,, yield consistent results.
Bottom: Plot of y .., Vs p for various L shows a peak, whose
scaling with L (inset) is used to extract y/v. The vertical line
denotes /..

estimates of f5.(L) from y,, as a function of 1/L, as shown
in the inset. Estimates of . were also extracted from the
crossing points of Q; and Q,, curves. As shown in the
inset, those estimates have larger finite size corrections
but yield the same f. for L > 100. Therefore, we quote the
value of f.(L — oo, Ly = 24) by fitting a constant to the
p. estimates from y,, and report it in Table I for different
Ly values and three different A = —1.0, —0.9, —0.8 values.

We turn to the estimate of the critical exponents. The
scaling of the peak of ¥conn» Xconn.max (L) = bLIY = bL*™
can be reliably used to extract  (and, thus, also y/v). This
quantity is shown (in a semilog scale) in Fig. 4 (bottom
panel) vs g, with the vertical line indicating S, in the
thermodynamic limit. The inset shows a power law fit to the
1/L dependence of y .., from which # is extracted and
reported for all our lattices and A values in Table L

TABLE 1. Estimates of f., , and v for different values of Ly

and A.

Ly Pe n v(01)  v(0x) v(Ow)
A=-1.0

24 0.814279(14)  0.2472(9) 1.35(2) 1.38(1) 1.38(2)

16 0.813783(15) 0.2479(9) 1.32(4) 1.34(2) 1.34(4)

8 0.811129(14) 0.2489(8) 1.33(3) 1.31(2) 1.34(3)

4 0.801059(12) 0.2509(8)  1.29(1) 1.31(1) 1.29(2)

2 0.767685(10)  0.2497(7)  1.19(1) 1.20(1) 1.20(1)
A=-09

24 0.885292(17) 0.2550 (18) 1.45(3) 1.47(4) 1.45(3)
A=-0.8

24 0968 196(26) 0.2511 (10) 1.64(9) 1.68(4) 1.64(8)

Our numerical estimates of # for different L and A are
consistent with the 2D Z, universality class. The largest
deviation is only at the 3¢ level for Ly =24 and 4 = —1,
while most values are consistent with 7 :i within 1lo.
Moreover, this is also consistent with weak universality,
where deviation from the critical exponent ratios is not
observed.

Weak universality.—The next step to substantiate our
claim involves the accurate computation of v independ-
ently, for which we use all three Binder ratios. We employ
the well-known result [38,40] that for a dimensionless
phenomenological coupling R(f3, L), the slope at .. direc-
tly yields the exponent v, [0R(L)/dp)|;, =aL'/*(1+bL™).
For large lattices (or for large w), plotting the derivative (at
P.) vs L in a log-log scale enables us to compute 1/v from
the slope. The crucial requirement here is the very precise
estimate of f,., which we have already described.
Performing this analysis using all three Binder ratios gives
us consistent estimates of v. The particular analysis for Q,,,
for Ly =24 and three different A = —1.0,-0.9,-0.8 is
shown in Fig. 5. To obtain the derivatives, we first fit the
Binder ratios around S, to second-order polynomials and
then take the derivative analytically with respect to 5. Note
that since the Binder ratios are all O(1) numbers and have a
smooth behavior around f,., the polynomial fit is free of any
systematic errors. Statistical errors are computed using
bootstrapping samples from the entire dataset. While the
data are sufficiently accurate to extract reliable estimates of
v, we are unable to estimate w reliably. However, it is clear
from the figure that the slopes of the curve (horizon-
tally and vertically displaced for better visibility) are

fher
N 1.6 1.6
1.5
||
I . 1.4 1.2
A
< —1.0 =0.9 -0.8
~
S A 0.8
sl
&
= — A=—1 los
— A=—09
— A=-08 0.0
4 5 6
log(L)

FIG. 5. Extraction of v from the slope of derivative of Q,, at f3...
The fits were done for L =32,...,512 for A=-1, L=
96,...,320 for A=-0.9, and L =40,...,320 for 1= -0.8.
The three curves correspond to different 4 which are vertically
and horizontally displaced for better visibility. The inset shows
the change of v with 4.
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significantly different from the 2D Z, universality class
value of v = 1. Instead, we witness significantly large
values of v as extracted from the coupling Q,,: 1.38(1) for
A=-1.0, 1.47(4) for A = —-0.9, and 1.68(4) for A = —0.9.
These values are collected in Table I, along with the
corresponding estimates from the Q; and Q,,. We note
that all three estimates of v at a fixed A agree with each other
and increase monotonically with A. In particular, the inset in
Fig. 5 displays this variation clearly. Not only are these
values of v anomalously large, but they also vary smoothly
with the microscopic coupling. Both these features are
hallmarks of weak universality.

An intriguing question is the reason for the occurrence of
weak universality. According to the theory of renormaliza-
tion group, a marginal operator [32,41,42] is needed to
generate a line of fixed points with continuously varying
critical exponents. In Supplemental Material (Sec. D) [31],
we show the behavior of (Q?) (normalized with the
volume) as a function of f at 1 = —1,-0.9,—0.8. A small
yet nonzero ((Q?) ~ 0.03, where (Q?),.x = 1 as T — o)
critical density of charges in the vicinity of f,. suggests that
charged operators play a nontrivial role in deciding such an
operator.

Conclusions and outlook.—In this Letter, we demon-
strated that the presence of charges can give rise to the
phenomenon of weak universality at the thermal phase
transition in a pure gauge theory, using the example of a
(2 + 1)-dimensional U(1) QLGT. The Binder cumulant
across the phase transition (Fig. 3) illustrates the difference.
Using y. (L) and the Binder ratios, we located . very
accurately and then used the scaling of y.onnmax(L) to
compute 7, which is compatible with the 2D Z, value, as
expected from universality arguments. Finally, using three
Binder ratios, we demonstrate that the individual exponents
v (and y) have anomalously large values compared to the
2D Z, value and vary smoothly as a function of the
microscopic coupling A. These three pieces of evidence
conclusively show that weak universality is relevant
for this thermal transition instead of the usual universality
scenario.

Our results open some very intriguing directions for
further research. A close examination of the charge and the
electric flux distribution at B, could provide a better
understanding of a possible marginal operator, which
can be included in an effective field theory description
[39]. It is also interesting to follow the thermal transition to
more negative values of 4 to explore whether it reaches the
2D Z, limit. Finally, exploring the phase diagram where
three phases (C1, C2, and KT or Z, liquid) meet is an
exciting project for the future. The prospect that this model
could be realized in near-term quantum simulator setups
makes these results potentially interesting [43,44]. Whether
such weak universality occurs for other gauge theories is an
open question.
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