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Abstract

The propagation of a low momentum heavy quark in a deconfined quark-gluon plasma can be understood 
in terms of a Langevin description. The momentum exchange with the plasma in thermal equilibrium can 
then be parametrized in terms of a single heavy quark momentum diffusion coefficient κ , which needs to 
be determined nonperturbatively. In this work, we study the temperature dependence of κ for a static quark 
in a gluonic plasma, with a particular emphasis on the temperature range of interest for heavy ion collision 
experiments.
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1. Introduction

The charm and the bottom quarks provide very important probes of the medium created in 
the relativistic heavy ion collision experiments. Since the masses of both of these quarks are 
much larger than the temperatures attained in RHIC and in LHC, one expects these quarks to be 
produced largely in the early pre-equilibrated state of the collision. Heavy quark probes therefore 
provide a window to look into the early stages of the fireball.

In particular, the nature of the interaction of the heavy quarks with the thermalized medium is 
different from that of the light quarks. For energetic jets, radiative energy loss via bremsstrahlung 
is expected to be the dominant energy loss mechanism. For heavy quarks, the radiative energy 
loss is suppressed in a cone of angle ∼ mQ/E [1]. For heavy quarks of moderate energy, E �
2mQ, elastic collision with thermal quarks and gluons is expected to be the dominant mechanism 
of energy loss [2,3].

Even if the kinetic energy of the heavy quark is O(T ), where T is the temperature of the 
fireball, its momentum will be much larger than the temperature. Its momentum is, therefore, 
changed very little in a single collision, and successive collisions can be treated as uncorrelated. 
Based on this picture, a Langevin description of the motion of the heavy quark in the medium 
has been proposed [4], [2,3]. v2, the elliptic flow parameter, can then be calculated in terms of 
the diffusion coefficient of the heavy quark in the medium. The diffusion coefficient has been 
calculated in perturbation theory [2,4]. While this formalism works quite well in explaining the 
experimental data for RAA and v2 of the D mesons (see [5] for a review), the diffusion coefficient 
required to explain the data is found to be at least an order of magnitude lower than the leading 
order (LO) perturbation theory (PT) result.

This is not a surprise per se, as the quark-gluon plasma is known to be very nonperturbative at 
not-too-high temperatures, and various transport coefficients have been estimated to have values 
very different from LOPT. However, this makes it important to have a nonperturbative estimate 
of the heavy quark diffusion coefficient. A field theoretic definition of the heavy quark diffusion 
coefficient at zero momentum, κ , to leading order of an 1/M expansion, was given in [6,7]. 
The next-to-leading order (NLO) calculation of the diffusion coefficient in perturbation theory 
[8] was found to change the LO result by nearly an order of magnitude at temperatures � 2Tc. 
The large change from LO to NLO indicates an inadequacy of perturbation theory in obtaining 
a reliable estimate for the diffusion coefficient in the temperature range of interest, and makes a 
nonperturbative estimate essential.

The first nonperturbative results for κ , using the formalism of [7] and numerical lattice QCD in 
the quenched approximation (i.e., gluonic plasma), supported a value of κ substantially different 
from LOPT and in the correct ballpark for HIC phenomenology [9]. Of course, the plasma created 
in experiments is not a gluonic plasma; but the fact that the quenched QCD result is of the right 
order of magnitude gave strong support for the Langevin description of the heavy quark energy 
loss. A first lattice study with light (though somewhat unphysically heavy) quarks has recently 
been performed, and indicates a rather large effect of thermal quarks [10]. While the effects of 
thermal quarks need to be explored more, for proper understanding of various systematics of the 
calculation, and detailed analysis of the parametric behavior of κ , studies in quenched QCD are 
still important. Some of these issues were addressed in Refs. [11–13]. In particular, Refs. [11,13]
conducted a study at 1.5 Tc, and explored various systematics in the numerical calculation of 
κ . The focus of Ref. [12] was a comparison with perturbation theory, and asymptotically high 
temperatures were explored. Meanwhile, a nonperturbative definition of the first correction to 
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the static limit was discussed in [14]. Nonperturbative estimates of this correction have recently 
been carried out [15,16].

In this work we have carried out a study of the static quark momentum diffusion coefficient κ
in the temperature range � 3.5Tc, following the formalism of [7]. The focus here is on studying 
the temperature dependence of κ in the temperature range of interest for the relativistic heavy ion 
collision experiments. We extend the temperature range studied in [9] to cover the entire tem-
perature range of interest to the heavy ion community, and also improve the analysis technique, 
following Refs. [11] and [15]. After explaining the formalism and our calculational techniques in 
Section 2 and Section 3, respectively, we present the results of our study in Section 4. Combined 
with the 1/M correction terms calculated in [15], we can get the results for momentum diffusion 
coefficients for the charm and the bottom in the plasma. We discuss these results in Section 5, 
where also results from phenomenological and other QCD based studies are discussed.

2. Langevin formalism and nonperturbative definition of the momentum diffusion 
coefficient κ

In this section, we outline the formalism underlying our study. We first define the Langevin 
formalism for the heavy quark energy loss, as described in [4], [2,3], and then give a nonpertur-
bative definition of the diffusion coefficient, following [6,7].

The heavy quark momentum is much larger than the system temperature T: even for a near-
thermalized heavy quark with kinetic energy ∼ T , its momentum pQ ∼ √

mQ T , where mQ is the 
heavy quark mass. Individual collisions with the medium constituents with energy ∼ T do not 
change the momentum of the heavy quark substantially if mQ � T . Therefore, the motion of the 
heavy quark is similar to a Brownian motion, and the force on it can be written as the sum of a 
drag term and a “white noise”, corresponding to uncorrelated random collisions:

dpi

dt
= −ηD pi + ξi(t), 〈ξi(t)ξj (t

′)〉 = κ δij δ(t − t ′). (1)

In general, the force-force correlation will depend on the momentum of the heavy quark, and can 
be expressed in terms of two diffusion coefficients κL(p) and κT (p), corresponding to directions 
parallel and perpendicular to the momentum, respectively. As p → 0, κL(p), κT (p) → κ . The 
momentum diffusion coefficient, κ , can be obtained from the correlation of the force term:

κ = 1

3

∞∫
−∞

dt
∑

i

〈ξi(t) ξi(0)〉. (2)

The drag coefficient, ηD , can be connected to the diffusion coefficient using standard fluctuation-
dissipation relations [17]:

ηD = κ

2mQT
. (3)

In the leading order in an expansion in 1
mQ

, the heavy quark interacts only with the color 
electric field of the plasma. Therefore the momentum diffusion coefficient κ can be obtained 
from the electric field correlation function [6,7]

GEE(τ) = −1

3

3∑ 〈
Tr
(
U(Lτ , τ ) gEi(τ, �x) U(τ,0) gEj (0, �x)

)〉
〈
Tr U(Lτ ,0)〉 · (4)
i=1

3
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Here U(τ1, τ2) is the gauge link in Euclidean time from τ1 to τ2 at spatial coordinate �x, E(τ, �x)

is the color electric field insertion at Euclidean time τ , Lτ = 1/T is the length of the Euclidean 
time direction, 〈...〉 indicates thermal averaging, and an average over the spatial coordinate �x is 
implied (see [7] for a formal derivation).

The spectral function, ρT (ω), for the force term is connected to GEE(τ) by the integral equa-
tion [17]

GEE(τ) =
∞∫

0

dω

π
ρT (ω)

coshω(τ − 1
2T

)

sinh ω
2T

· (5)

The momentum diffusion coefficient, κE , is then given by

κE = lim
ω→0

2T

ω
ρT (ω)· (6)

In this work we will use eq. (5), eq. (6) to calculate the momentum diffusion coefficient κE for 
moderately high temperatures T � 3.5Tc. In particular, we will be exploring the temperature 
dependence of κE/T 3.

Note that κE is the leading order estimate of κ in an 1
mQ

expansion. The O(m−1
Q ) correction 

has been explored [14]: one can write [18]

κ ≈ κE + 2

3
〈v2〉κB, (7)

where 〈v2〉 ≈ 3T
Mkin

is the thermal velocity squared, and Mkin is the kinetic mass, of the heavy 
quark. κB is the estimate of the diffusion coefficient one gets by replacing the electric fields with 
magnetic fields in eq. (5) and eq. (6). It has been calculated in Ref. [15] for the gluonic plasma.

3. Outline of the calculation

We calculated the electric field correlator GEE(τ), eq. (4), for gluonic plasma using lattice 
discretization and numerical Monte Carlo techniques. On the lattice, the electric field was dis-
cretized, following [7], as

Ei(�x, τ ) = Ui(�x, τ ) U4(�x + î, τ ) − U4(�x, τ ) Ui(�x, τ + 1) ·
Then the lattice discretized EE correlator takes the form

Gbare
EE

(τ ) = 1

V

∑
�x

Ci(τ + 1, �x) + Ci(τ − 1, �x) − 2Ci(τ, �x)∏Lτ

x4=0 U4(�x, x4)
(8)

where Ci(τ, �x) are Wilson lines at �x with a hook of length τ in the i direction, i.e.,

Ci(τ, �x) = Ui(�x,0)

τ−1∏
x4=0

U4(�x + î, x4)U
†
i (�x, τ )

Lτ∏
x4=τ

U4(�x, x4) ·

We have calculated the correlators Gbare
EE

on the lattice at various temperatures � 3.5Tc. Equi-
librium configurations for a gluonic plasma were generated at various temperatures by using 
lattices with temporal extent Nτ = 1

T a(β)
, where a is the lattice spacing, and β = 6

2 is the 

g

B

4
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Table 1
Summary of runs and statistics.

β Nτ Nσ T/Tc # sublattice # update # conf
7.05 20 64 1.50 5 500 1270

7.192 24 72 1.48 4 2000 2032

7.30 20 64 2.03 5 500 1200

7.457 24 80 2.04 4 500 1000
20 80 2.45 6 500 730

7.634 30 96 2.01 5 2000 640
24 96 2.51 4 2000 657
20 96 3.01 5 2000 500

7.78 28 96 2.55 7 2000 678
24 96 2.98 4 2000 536
20 96 3.55 5 2000 522

7.909 28 96 2.96 7 2000 1100
24 96 3.46 6 2000 967

coefficient of the plaquette term in the Wilson gauge action. The details of the lattices generated 
and the number of configurations at each parameter set is given in Table 1.

The spatial extent of the lattices are chosen such that LT > 3 and also the lattice is confined in 
the spatial direction. At various temperatures we have more than one lattice spacings; this allows 
us to estimate the discretization error, and to get the continuum result. Also for various values of 
the coupling, we have changed Nτ to change the temperature, keeping all the other parameters 
of the lattice unchanged. A comparison of the results from such lattices give us a direct handle 
on the temperature modification of κE .

Since we require very accurate correlation functions on lattices with large temporal extents, 
we have used the multilevel algorithm [19] in calculating eq. (8). We follow the implementa-
tion of the algorithm outlined in [9]. The number of sublattices for the multilevel update, and the 
number of sublattice updates, are shown in Table 1, where each update consisted of (1 heatbath+3 
overrelaxation) steps. Typically, a few parallel streams with independent random number seeds 
were used at each parameter sets. After a thermalization run which is many times the autocorre-
lation length, O(102 − 103) configurations were generated from each stream. The total number 
of configurations generated at each parameter set is shown in Table 1.

The temperature scale shown in Table 1 is obtained from the interpolation formula [20]

log
r0

a
=

[
β

12b0
+ b1

2b2
0

log
6b0

β

]
1 + c1/β + c2/β

2

1 + c3/β + c4/β2 (9)

where b0 = 11/(4π)2 and b1 = 102/(4π)4. The fit parameters ci are

c{1,2,3,4} = {−8.9664, 19.21, −5.25217, 0.606828} (10)

and r0Tc = 0.7457 [20]. Other ways of determining the temperature gives slightly different val-
ues: e.g., using the formula of Ref. [21] leads to a temperature which differs by ∼ 1-1.5% at 
the higher β values of Table 1. So we will effectively round off the temperature and, e.g., treat 
3.46 Tc and 3.55 Tc in Table 1 as ∼ 3.5Tc. The physical value of Tc for the gluonic plasma also 
depends somewhat on how the scale is set. Using the value of r0Tc quoted above, and taking r0 ≈
0.5 fm [22] one gets Tc ≈ 294 MeV.
5
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4. Analysis of the correlators and extraction of κ/T 3

4.1. Discretization effect in Gbare
EE

The EE correlation functions GEE(τ) are ultraviolet finite. The bare correlators Gbare
EE

(τ ) re-
quire only finite renormalization:

Grenorm
EE

(τ ) = ZEE(a(β))Gbare
EE

(τ ) · (11)

The renormalization coefficient ZEE(a) has been determined at one loop level in [23]:

ZEE = 1 + 2g2
B
Cf

3
P1 ≈ 1 + 0.1377g2

B
(12)

where the lattice bare coupling g2
B

= 6
β

, Cf = 4
3 , and P1 = ∫ π

−π
d4k

(2π)4
1

K2 ≈ 0.15493.

The renormalization constant needed here, eq. (11), is a finite renormalization constant that is 
expected to go to 1 on taking the continuum limit. However, it is known that this approach is slow 
[24], and an accurate estimation of ZEE is important for a proper estimation of the continuum 
limit. Unfortunately, for ZEE only the one loop result is available. We can make a guesstimate 
of the uncertainty involved by doing a mean field-like treatment of the renormalization factor: 
handling the large renormalization of the gauge links through nonperturbative information of the 
plaquette variable [24]. This leads to a tadpole-corrected renormalization factor

Ztad
EE

≈ 1 + (
0.1377 − 1

3

)
g2

B

〈P(β)〉 (13)

where 〈P(β)〉 is the vacuum expectation value of the spacetime averaged plaquette variable 
P = 〈1

3 Tr
∏

l∈� Ul〉.
For our values of the coupling, Ztad

EE differ from ZEE by ∼ 7 − 9% on individual lattices, and 
the continuum extrapolated correlators differ by � 7%. For the value of the diffusion coefficient 
κ , we checked that the variation in the estimate, due to normalization by Ztad

EE
, is comfortably 

within the spread due to other systematics quoted in Section 4.2 (dominated by the uncertainty 
in the fit form).

After the renormalization, the correlator still shows cutoff effect, especially at short distances. 
A major part of this cutoff effect at short distances can be taken into account by a consideration 
of the discretization effect in the leading order. In leading order, the EE correlator takes the form 
[25]

GEE(τ,LO) = g2 Cf Gnorm(τ), (14)

GCont
norm(τ ) = π2T 4 cosec2(πτT )

(
cot2(πτT ) + 1

3

)
(15)

GLat
norm(τ ) = 1

3a4

∫
d3k

8π3

ek̄(Nτ −t) + ek̄t

ek̄Nτ − 1

k̃2

sinh k̄
(16)

where the integration is over the Brillouin zone (−π, π) and

k̄

2
= arcsinh

k̃

2
, k̃2 =

3∑
4 sin2 ki

2
· (17)
i=1

6
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Fig. 1. Continuum extrapolation of the correlator ratio GEE

GLat
norm

(τ ), at (left) 2 Tc , (middle) 2.5 Tc , and (right) 3 Tc .

Fig. 2. A comparison of the nonperturbatively obtained correlator GEE

GLat
norm

(τ ) at T = 3Tc with the results of perturbation 
theory [27]. The LO and NLO results use an optimized scale (eq. (19)). Also shown is the LO result with the scale μfit
(eq. (20)). In each case, the bands for the perturbation theory are obtained by varying the scale by a factor of two in each 
direction from the scale mentioned above.

A major part of the discretization effect can be accounted for by a comparison of eq. (15) with 
eq. (16): in particular, by defining an improved distance τimp through [22,25]

GLat
norm(τimp) = GCont

norm(τ ) · (18)

We have Gbare
EE

(τ ) at multiple lattice spacings at each temperature. As noted in [11,12] before, we 
found that the use of τimp, eq. (18), reduces considerably the short distance discretization effect 
in GEE(τ). In what follows, we have used τimp to denote the distance scale for Grenorm

EE
.

At T/Tc = 2, 2.5 and 3 we have three lattice spacings each. Using these correlators, we find 
the continuum extrapolated correlators at distances corresponding to τimp for the finest lattice. 

We extrapolate GEE

GLat
norm

(τ ) to a → 0, where τ takes the values τimp of the finest lattice at each 

temperature. The details of the method are presented in Appendix A. The correlators GEE

GLat
norm

(τ )

for the different discretized lattices, and their continuum extrapolated value, are shown in Fig. 1. 
The extrapolated ratio is now multiplied by GCont

norm(τ ) to get the continuum extrapolated correla-
tor. The calculation is done through a bootstrap analysis [26]. The particulars of our bootstrap 
implementation are given in Appendix A.

It is interesting to compare the continuum extrapolated correlator with perturbation theory. 
GEE has been calculated in perturbation theory to NLO in Ref. [27]; in Fig. 2 we compare 
7
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the perturbative results of Ref. [27] with our nonperturbatively determined correlator [28]. In 
Ref. [27] the scale for the running coupling has been set at

μopt ≈ max [7.57ω, 6.74T ] (19)

following the principle of minimal sensitivity. The LO and NLO bands in Fig. 2 are obtained 
by varying μ ∈ [0.5, 2] μopt. This way of scale setting leads to a good agreement between the 
LO and the NLO calculation; but as Fig. 2 shows, the perturbative estimates are very different 
from the nonperturbative results. We also show the LO results obtained by setting the scale in an 
intuitive way [11]:

μfit = max [ω,πT ] · (20)

The band is obtained by varying this scale by a factor [0.5, 2.0] as before. As Fig. 2 shows, the 
LO curve captures the main features of the nonperturbative result. However, the good agreement 
of perturbation theory with the lattice result in this case is misleading, as the NLO result changes 
strongly from the LO result and the lattice result. Guided by Fig. 2, we will use the LO spectral 
function evaluated at the scale μfit for modeling the ultraviolet part of the spectral function.

4.2. Extraction of κ from the correlators

A direct inversion of eq. (5) to get ρT (ω) is very difficult. Instead, to get an estimate of what 
kind of κE is consistent with the GEE obtained, we have used some simple models for ρT (ω). 
Our models, and the analysis strategy, are similar to what was followed in Ref. [15] for GBB(τ), 
which, in turn, was influenced by earlier works [9,11] on GEE(τ). The ultraviolet and the infrared 
parts of ρT (ω) are modeled with the simple forms

ρUV (ω) = g2(μfit)Cf ω3

6π
, ρIR(ω) = κE ω

2T
, (21)

where μfit is defined in eq. (20). ρIR(ω) is the simplest form capturing the dissipative behavior 
of κE . The correlator eq. (4) does not have a transport peak, and is expected to have a smooth 
linear behavior in the infrared [7,27,29], motivating ρIR(ω) [30]. ρUV (ω) is the known leading 
order form of the spectral function and the scale choice is motivated by Fig. 2. The NLO spectral 
function is known [27] but, as Fig. 2 shows, it is not clear that it will capture the ultraviolet 
behavior better except at very high ω.

While both ρUV (ω) and ρIR(ω) are well-motivated, not much is known a-priori about the 
form of the spectral function in the intermediate ω regime. An ansatz, that allows ρT (ω) to 
continuously change from ρUV (ω) to ρIR(ω), is

ρT (ω) = max [c ρUV (ω), ρIR(ω)] (22)

where we have introduced a parameter c to take into account the uncertainty due to the scale 
choice and the use of the leading order form for ρUV (ω). c is treated as a fit parameter. The best 
fit values we obtained for c are close to 1, in the range 1-1.2.

A more smooth form of connecting ρUV (ω) with ρIR(ω) is

ρT (ω) =
[√

(c ρUV (ω))2 + ρIR(ω)2

]
· (23)

The form of eq. (23) has been argued to be theoretically better justified in [11], [13]. Here again, 
the fit parameter c ∼ 1 is introduced to account for the uncertainty in ρUV (ω). In our analysis we 
have treated eq. (22) and eq. (23) at par.
8
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Fig. 3. (Left) Our estimates for the range of κE/T 3 in the temperature range � 3.5Tc . Also shown (dotted lines) is the 
NLO perturbation theory estimate eq. (26) [8]; the band corresponds to varying the scale of the coupling g2(μ) in the 
range μ ∈ [πT , 4πT ]. (Right) A survey of other existing lattice results for κE in gluonic plasma in the 1-4 Tc temperature 
range. For visual clarity, points at 1.5 Tc and 3 Tc have been slightly shifted horizontally.

Table 2
Temperature dependence of κE/T 3.

T/Tc 1.2 1.5 2.0 2.5 3.0 3.5

κE/T 3 2.1 - 3.5 1.5 - 2.8 1.0 - 2.3 0.9 - 2.1 0.8 - 1.8 0.75 - 1.5

Instead of introducing a fit parameter c as above, ref. [11] has suggested parametrizing the 
difference between the above forms (with c=1) and ρT (ω) in a sine expansion:(

1 +
∑
n

cn sin(πny)

)
, y = x

1 + x
, x = log

(
1 + ω

πT

)
·

For the fit range we used, we found that one term in the expansion sufficed to fit our correlator. 
Therefore we have also tried the fit forms

ρT (ω) = (1 + c1 sin πy)

[√
ρUV (ω)2 + ρIR(ω)2

]
; (24)

= (1 + c1 sin πy) max [ρUV (ω), ρIR(ω)] . (25)

In all our fits we have found c1 to be small, ∈ [0.02, 0.12].
We perform the whole analysis for each of the model forms eq. (22), eq. (23), eq. (24) and 

eq. (25) in a bootstrap framework. Our final estimates of κE are shown in Table 2 and in Fig. 3. 
The details of the analysis can be found in Appendix A, where the estimates for each model are 
given in Table 3 and Fig. 7. Our estimates in Table 2 and Fig. 3 include the entire bands for 
eq. (23), eq. (22) and the central values for eq. (24), eq. (25).

There are other estimates of κE/T 3 for a gluonic plasma from the lattice. While Ref. [9] stud-
ied the temperature range close to Tc, a detailed study at 1.5 Tc was performed in Ref. [11]. A 
broad temperature range was studied in Ref. [12], with the main focus being very high temper-
atures. While the analysis techniques, in particular the spectral function models, vary, all these 
references used the multilevel algorithm and perturbative renormalization constants. Recently, 
Refs. [13] and [16] have used gradient flow [31] to get the renormalized EE correlators at 1.5 
Tc. We compare these studies with ours in the right panel of Fig. 3. Within the uncertainties of 
our and other studies, our results agree very well with these other quenched lattice studies.
9
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5. Discussion of the results

Let us see how the temperature dependence of κE , obtained in Section 4.2, compares with 
perturbation theory. κE/T 3 has been calculated to NLO in perturbation theory in [8]. For SU(3) 
gluonic plasma, the NLO result is

κE/T 3 = g4CF

6π
T 3

[
log

2T

mD

+ ξ + C g

]
(26)

where CF = 4/3, ξ ≈ −0.64718, C ≈ 2.3302 and mD = gT in LO perturbation theory. This 
NLO result is shown in Fig. 3 by the band bordered by the dotted lines; the band corresponds 
to evaluating g2 at the scales μ ∈ [πT , 4πT ]. The NLO results explain the data quite well. 
Note, however, that perturbation theory is inherently unstable here: the LO result is an order of 
magnitude smaller than NLO. In fact, if we omit the O(g) term in eq. (26), we will get a negative 
value for κE/T 3 in our temperature range [27].

There have been various QCD-based estimates of κ that incorporate some nonperturbative 
effects. In particular, in the T-matrix approach [32] the interaction between various partons and 
heavy quarks are taken into account by trial potentials as input to the T matrix, which are then 
tuned to reproduce the equation of state and the quarkonia correlators. In more phenomenological 
quasiparticle approaches, the thermal masses of quarks and gluons and the coupling strength are 
fitted. We will discuss some of these results below Fig. 5.

It is of interest to compare our results on the temperature dependence of κE with some other, 
related theories. The estimate in Ref. [6] is for N = 4 supersymmetric Yang-Mills theory, which 
is scale invariant. Clearly, κE/T 3 is temperature independent in such a theory. A different AdS-
CFT based approach has been taken in Ref. [33], where the drag term has been connected to 
the spatial string tension, σs . Eqn. (3) then connects κE to σs . While the estimate of κE/T 3

obtained in Ref. [33] this way is close to our estimates, it provides a somewhat milder temperature 
dependence at higher temperatures.

While it is the momentum diffusion coefficient that enters the equations of Langevin dynamics 
and is of interest for the phenomenology of heavy quark thermalization, it has been the conven-
tion to quote the transport coefficient as the position space diffusion coefficient Ds . In particular, 
the combination

2π T Ds = 4π

κ/T 3 (27)

is usually quoted. In the left panel of Fig. 4 we plot 2π T Ds as obtained form our results of κE

using eq. (27).
For phenomenological studies, one is interested in estimates of κ for charm and bottom, rather 

than for the infinitely massive quarks. Using eq. (7) [14] one can provide such an estimate [15]. 
In Fig. 5 we show the separate estimates for Dc

s and Db
s , obtained using eq. (7) and eq. (27), and 

the κE values of Table 2. The estimates of κB are from ref. [15], supplemented by a calculation 
at 3 Tc, following exactly the same analysis techniques as in Ref. [15]. The estimates we get for 
Dc

s and Db
s are shown in Fig. 5. The details can be found in Appendix A.

2π T D
c,b
s show a rising trend with temperature. The temperature dependence of Dc

s is of 
great interest to phenomenological studies [34–38]. In particular, in Ref. [37], using a parametric 
temperature dependence

2π T Ds ∼ α + γ

(
T − 1

)
, (28)
Tc

10
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Fig. 4. An estimation of the static quark diffusion coefficient, using eq. (27) and Table 2.

Fig. 5. Estimate of Dc
s and Db

s , the spatial diffusion coefficients for the charm and bottom quarks, using eq. (7) and 
eq. (27). See text, and Table 5 in the appendix. For visual clarity, the points for Db

s have been slightly shifted horizontally.

2π T Ds was estimated from the experimental data for D meson using a Bayesian analysis. They 
quote the central values (α, γ ) ∼ (1.9, 3.0), with α ∼ 1 − 3 being the 5 − 95 percentile band 
[37]. While our study is for quenched QCD, it is still interesting to check if the temperature 
dependences of Dc

s and Db
s shown in Fig. 5 are consistent with the simple parametrization of 

eq. (28). The answer is “yes” (admittedly, aided by the large uncertainties in our measurements), 
with (α, γ ) = (3.61(30), 2.57(43)) for charm and (3.99(35), 3.08(54)) for bottom, respectively 
[39]. The ALICE collaboration’s survey of phenomenological studies of D meson RAA and flow 
quotes the range 1.5 < 2πT Ds < 4.5 at Tc [34]; our value of α for charm is also consistent with 
this. For the static Ds , using the same parametrization (eq. (28)) we obtained α = 4.27(29) and γ
= 3.60(33). We also tried doing this linear fit for 2π T Ds from each of the models of Section 4.2. 
The results can be seen in Fig. 8 and Table 4 in Appendix A. All of the model spectral functions 
indicate a positive slope of 2π T Ds with temperature.

We emphasize that eq. (28) is a purely phenomenological fit: the temperature dependence of 
Ds is, of course, more complicated in general. We have already discussed the dependence in per-
turbation theory. The temperature dependence obtained in various QCD based studies that model 
the nonperturbative aspects in some way are discussed in [35]; the behavior obtained in some 
of them is very similar to Fig. 5. To mention a couple: in the T matrix approach, one gets two 
different sets of solutions. The solution with a “strong” potential, that includes a screened string 
term, leads to values and temperature dependence of Dc in very good agreement with Fig. 5, 
s

11
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while the scenario with a potential close to the free energy gives results which are somewhat 
different. Quasiparticle models can also give a similar temperature dependence to the behavior 
seen by us [38].

6. Summary

In this paper we have studied the electric field correlator, eq. (4), in a thermally equilibrated
gluonic plasma at moderately high temperatures T � 3.5Tc, nonperturbatively using lattice QCD. 
We investigated in detail the cutoff dependence of the correlators (Fig. 1). With a simple set 
of models for the EE spectral function ρT (ω), we then estimated the static quark momentum 
diffusion coefficient κE .

κE and its temperature dependence for the gluonic plasma at moderately high temperatures 
are shown in Fig. 3 and in Table 2. Using eq. (7) and the results of [15] one can then calculate the 
diffusion coefficients for the charm and bottom quarks. These results are shown in Fig. 5 where, 
using standard practice, we have used eq. (27) to present the results for the diffusion coefficients 
2π T D

c,b
s .

The results presented here are for a gluonic plasma; first unquenched studies of κE (with un-
physically heavy pion) indicate that the effects of thermal quarks can be large [10]. It is still 
interesting to compare our results for Dc

s and its temperature dependence with the phenomeno-
logical studies. In Section 5 we compare our results to some QCD-based model studies and also 
to phenomenological extractions of Dc

s from the experimental data [34,37], and find very good 
agreement.
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Appendix A. Some details of the numerical analysis

Here we provide additional details of our numerical analysis in Section 4.
We do a detailed calculation at temperatures T/Tc = 2, 2.5 and 3. At these temperatures we 

have correlators from three lattice spacings. We have estimated the continuum correlator from 
them, and calculated κE . Our whole analysis is done within a bootstrap formalism [26]. For the 
bootstrap analysis, the data of each set s is first blocked into Ns blocks, with blocksize at least 
2-3 times the autocorrelation length. Now Nb bootstrap samples are created from each set by 
randomly choosing Nb blocks with replacement. For each bootstrap sample now the continuum 
correlator is obtained by the continuum extrapolation of the correlators.

The correlators for the sets at different lattice spacings are measured at different distances. 
For the continuum extrapolation, the correlators are interpolated to get the correlation functions 
at distances corresponding to the τimp values of the finest lattice. We use a weighted B-spline 
of order 3 [40] for the interpolation, where the correlator data at each point is weighted by 
the standard error calculated for the bootstrap sample, and is fitted by a combination of spline 
functions. For the error estimation of the continuum correlator, a bootstrap analysis is done within 
each bootstrap sample.

Note that the continuum extrapolation typically involves an extrapolation of the coarser sets 
at the smallest distance, but this is not a concern as this distance is not used in the fits. A very 
slight extrapolation is also required at the largest (τ ∼ 1/2T ) distance point, but it is a very small 
extrapolation and we do not expect this to be a problem.

At short distances τimpT � 0.15 we see a clear discretization effect, which is approximately 
linear in a2; we fit to a linear form to get the continuum correlator. For larger distances τimpT >

0.25 the correlators do not show a clear discretization effect. In particular, for correlators at large 
distances τimpT � 0.3 we found a constant fit to be more reasonable. We show examples of 
our continuum extrapolation at some representative distances in Fig. 6. Note that we have also 
carried out the analysis with linear extrapolation at all distances; the κ values obtained agree 
within errorbar.

To extract κE from the continuum correlators using eq. (5), we have used the fit forms dis-
cussed in Section 4.2, and done a standard χ2 fit. For the minimization and the B-spline fitting, 
scipy routines [41] were used. For the final estimate of κ of each fit form, the median of the 
13
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Table 3
Results for κE/T 3 from the different fit forms of Section 4.2.

T/Tc eq. (22) eq. (23) eq. (25) eq. (24)

1.2 2.16-2.80 2.44-3.54 1.80-2.50 2.34-3.14

1.5 1.74-2.16 1.62-2.80 1.25-1.73 1.55-2.27

2 1.05-1.60 1.48-2.30 0.77-1.42 1.04-1.82

2.5 0.91-1.77 1.17-2.08 0.70-1.59 0.97-1.86

3 0.87-1.48 1.04-1.80 0.60-1.30 0.83-1.56

3.5 0.76-1.14 1.01-1.50 0.62-1.02 0.96-1.33

Fig. 7. Results for κE/T 3 obtained at T/Tc = 2 (left), 2.5 (middle) and 3 (right). Besides the continuum results, the results 
obtained from fitting individual lattices are also shown. See the text for details of the error band. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

distribution of the bootstrap estimates is taken, and the ∓1σ band is obtained from the central 
68% interval, i.e., from the [16,84] percentiles of the distribution. The results for the various fit 
forms are shown in Fig. 7. Typically we get a good χ2 by taking the whole range except the two 
shortest distance points. We have, however, also varied τmin

imp . The results shown in Fig. 7 include 
the variation with fit range, and any difference due to using linear vs constant extrapolation at 
large separations in Fig. 6.

As mentioned in Section 4.2, we have also fitted the correlators from the individual lattices to 
the forms of Section 4.2. For this we have used τmin

imp ∼ 0.25/T , where the discretization effect 

on the correlators is small. τmin
imp is further varied within a small range. The bands shown in Fig. 7

include the spread due to such a variation.
In Table 3 we show the final results for κE/T 3 using the different fit forms. The error esti-

mate is conservative, covering the 1σ interval obtained from the continuum correlator and the 
correlators from lattices with Nt ≥ 24.

Table 3 also includes two temperatures where we have only two lattice spacings each, and 1.2 
Tc where we have reanalyzed the correlators on Nt=24 lattices calculated in Ref. [15]. In these 
cases we have only fitted the individual lattices. The rest of the discussion is the same as above. 
The final result in these cases is taken from the Nt=24 lattices.

For the final result for κE shown in Fig. 3, we have treated the fit forms eq. (22) and eq. (23) at 
par, and conservatively quoted an error band that includes the bands for eq. (22) and eq. (23) in 
Table 3 and the central values of the bands for eq. (22) and eq. (23). These results are also shown 
in Table 2.

Using Table 3 and eq. (27) we can also make separate estimates for 2π T Ds for each form of 
the model ρT (ω) in Section 4.2. This is shown in Fig. 8. The linearly rising behavior of each of 
14
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Fig. 8. An estimation of the static quark diffusion coefficient, using eq. (27) and Table 2. Also shown are the best fits to 
a linear temperature dependence (eq. (28)).

Fig. 9. (Left) The correlator GBB(τ) at 3 Tc calculated at different lattice spacings, normalized by Gnorm =
GBB(τ,LO)

g2Cf

. Also shown is the continuum extrapolated correlator. (Right) Estimates of κB/T 3 at 3 Tc obtained using 

the different fit forms. See text for explanation.

Table 4
The fit parameters for eq. (28).

eq. (23) eq. (22) eq. (24) eq. (25)
α 4.01(24) 4.51(27) 5.42(50) 4.39(45)
γ 3.91(39) 2.73(24) 4.99(71) 3.12(50)

these forms can then be separately fitted to the linear fit form eq. (28). The results of such a fit 
are shown in Table 4.

In Fig. 5 we show the estimates for Dc
s and Db

s in the temperature range 1.2-3 Tc, using 
eq. (27), where κc and κb are obtained using eq. (7). The estimates for κB are taken from 
Ref. [15], supplemented with a calculation at 3 Tc. The BB correlator GBB(τ) at 3 Tc at dif-

ferent lattice spacings, normalized by the corresponding leading order correlator GBB(τ,LO)

g2Cf

for lattice with the same Nτ , are shown in Fig. 9. We also show the corresponding continuum
extrapolated correlator in the figure. The analysis for κB at 3 Tc follows that used in [15]; it is 
similar to the analysis for κE outlined in Section 3, except, following Ref. [15], the scale for 

the perturbative part of the BB spectral function is taken to be μB = max
[
ω

5
11 (πT )

6
11 ,πT

]

fit
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Table 5
The estimates for 2π T D

c,b
s , from eq. (27) and eq. (7).

1.2 Tc 1.5 Tc 2 Tc 3 Tc

2π T Dc
s 2.9 - 5.1 3.5 - 6.6 4.0 - 9.9 5.1 - 11.4

2π T Db
s 3.3 - 5.6 4.0 - 7.6 4.7 - 11.2 5.9 - 13.1

instead of eq. (20). The results obtained for κB for the different fit forms are also shown in Fig. 9. 
Taking a band that includes the different fit forms, we obtain an estimate κB/T 3 ∼ 0.6 - 1.3 at 3 
Tc.

Following Ref. [15], 〈v2〉 was estimated from a ratio of the susceptibilities calculated in [42]. 
This gives 〈v2〉 ≈ (0.76, 0.40) for charm and bottom at 3 Tc, respectively (the values at the lower 
temperatures are given in Ref. [15]). At such temperatures, a nonrelativistic treatment of charm 
may be questionable. We find that the O(m−1

Q ) corrections to κ , eq. (7), are ∼ 38% for charm 
and ∼ 20% for bottom.

From the results for κc and κb , Dc
s and Db

s can be obtained using eq. (27). Since the range for 
κ is dominated by systematics, we simply find the range of Ds by using eq. (27) for the lower 
and upper bound of the range for κ . The results for 2π T D

c,b
s obtained this way are given in 

Table 5 and shown in Fig. 5.
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