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ABSTRACT

The magnetorotational instability (MRI) is considered a leading mechanism for driving angular momentum transport in differentially
rotating astrophysical flows, including accretion disks and protoneutron stars. This process is mediated by the exponential ampli-
fication of the magnetic field whose final amplitude is envisioned to be limited by secondary (parasitic) instabilities. In this paper,
we investigated the saturation of the MRI via parasitic modes relaxing previous approximations. We carried out the first systematic
analysis of the evolution of parasitic modes as they feed off the exponentially growing MRI while being advected by the background
shear flow. We provide the most accurate calculation of the amplification factor to which the MRI can grow before the fastest parasitic
modes reach a comparable amplitude. We find that this amplification factor is remarkably robust, depending only logarithmically
on the initial amplitude of the parasitic modes, in reasonable agreement with numerical simulations. Based on these insights, and
guided by numerical simulations, we provide a simple analytical expression for the amplification of magnetic fields responsible for
MRI-driven angular momentum transport. Our effective model for magnetic field amplification may enable going beyond the standard
prescription for viscous transport currently employed in numerical simulations when the MRI cannot be explicitly resolved.
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1. Introduction

Understanding the mechanism driving angular momentum trans-
port in turbulent magnetized disks is key to moving beyond
models based on enhanced viscosity, as originally intro-
duced by Shakura & Sunyaev (1973) and Lynden-Bell & Pringle
(1974). The inherent differential rotation present in astrophysi-
cal disks has the potential to produce unstable magnetic fields
with a wide range of properties (Velikhov 1959; Chandrasekhar
1960; Balbus & Hawley 1991, 1992; Pessah & Psaltis 2005;
Johansen & Levin 2008; Pessah & Chan 2012; Das et al. 2018;
Mamatsashvili et al. 2020; Squire et al. 2024; Brughmans et al.
2024). ITonized rotating fluids with angular frequency profiles
decreasing outwards are particularly prone to developing the
so-called magnetorotational instability (MRI) when threaded by
a weak magnetic field in the direction perpendicular to the
shear (Balbus & Hawley 1991). The turbulence driven by the
MRI is considered a leading mechanism enabling accretion in
astrophysical disks around compact objects (Balbus & Hawley
1998).

The conditions for the onset of the MRI can be fulfilled
in other important astrophysical scenarios. For example, pro-
toneutron stars (PNSs) that result from the core collapse of
rotating massive stars can possess regions where the MRI
grows faster than the explosion timescale (Akiyama et al.
2003; Obergaulinger et al. 2006; Cerda-Durdn etal. 2008;
Rembiasz et al. 2016a; Reboul-Salze et al. 2021). The MRI can
also develop in the binary neutron star (BNS) postmerger
phase (Duezetal. 2006a,b; Siegel et al. 2013; Kiuchi et al.
2018, 2024; Fernandez et al. 2019; Held & Mamatsashvili 2022;
Held et al. 2024). Depending on the total mass of the binary, the

* Corresponding author; m.miravet-tenes@soton.ac.uk

system may go through the formation of a short-lived postmerger
object, a so-called hypermassive neutron star. This object even-
tually collapses to a black hole once the support against gravity
by rotation or neutrino pressure lessens. During this phase, the
MRI can lead to efficient angular momentum transport and mag-
netic field amplification that could have important consequences
on the dynamics of the postmerger remnant. The efficiency of the
angular momentum transport is directly related to the timescale
in which the black hole forms. Moreover, magnetic field ampli-
fication can generate large-scale structures that seem to favor
jet formation and short gamma-ray bursts (Rezzolla et al. 2011;
Ruiz et al. 2016; Combi & Siegel 2023; Bamber et al. 2024).
Another scenario where the MRI plays a role involves neutron
star — black hole mergers (Etienne et al. 2012; Paschalidis et al.
2015; Kiuchi et al. 2015; Ruiz et al. 2018; Christie et al. 2019).
The instability sets in when an accretion disk is formed around
the black hole after the merger.

Due to the relevance of the MRI in many astrophysical
settings, significant effort has been devoted to unraveling the
physics of the instability and the resulting turbulent state. Seed
perturbations can grow exponentially on timescales close to the
rotational period. These perturbations take the form of so-called
channel modes, which are pairs of vertically stacked layers in
which the velocity and the magnetic field perturbations have
radial and azimuthal components of (sinusoidally) alternating
polarity. These modes have associated Maxwell and Reynolds
stresses that lead to outward transport of angular momen-
tum (Goodman & Xu 1994; Pessah et al. 2006a; Pessah & Chan
2008).

The growth of the instability eventually terminates, result-
ing in the breakdown of the channels into small-scale turbu-
lence. The details of the processes involved in the saturation

A2, page 1 of 15

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.


https://doi.org/10.1051/0004-6361/202452953
https://www.aanda.org
http://orcid.org/0000-0002-8766-1156
http://orcid.org/0000-0001-8716-3563
mailto: m.miravet-tenes@soton.ac.uk
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org

Miravet-Tenés, M. and Pessah, M. E.: A&A, 696, A2 (2025)

of the MRI, including the factor by which the seed per-
turbations are amplified, are not yet completely understood.
Several authors (Hawley et al. 1995; Brandenburg et al. 1995;
Fleming et al. 2000; Sano & Inutsuka 2001; Sano et al. 2004;
Gardiner & Stone 2005; Pessah et al. 2007; Vishniac 2009;
Davis etal. 2010; Murphy & Pessah 2015; Rembiasz et al.
2016a,b; Hirai et al. 2018; Gogichaishvili et al. 2018) have pro-
vided further insight into the saturation of the MRI and the
resulting nonlinear turbulent regime by performing numerical
box simulations and also (semi-)global simulations of accre-
tion disks (Sorathiaetal. 2010, 2012; Hawley et al. 2011),
fast rotating PNSs (Obergaulinger et al. 2009; Mosta et al.
2015; Reboul-Salze etal. 2022) and BNS merger rem-
nants (Kiuchi et al. 2018; Shibata et al. 2021).

Goodman & Xu (1994) presented a model for para-
sitic instabilities (PIs) that was further developed with
local linear analyses by Lesaffre etal. (2009), Latter et al.
(2009), Pessah & Goodman (2009), and Pessah (2010), among
others. This model provides a physical mechanism that explains
the termination of the MRI and the onset of the nonlinear regime.
Laminar channel flows can be unstable against PIs that can be of
Kelvin-Helmholtz (KH) or tearing-mode (TM) type, depending
on the value of kinematic viscosity and resistivity, that is, non-
ideal effects. At the beginning of the exponential growth of
the MRI, the effect of the PIs is negligible, since they grow
much slower than the MRI. Nevertheless, the growth rate of
the PIs is proportional to the amplitude of the MRI modes,
which grows exponentially in time. This means that, at some
point, the PIs start growing much faster than the MRI modes,
and they eventually disrupt the channel modes and saturate the
MRI, leading to a turbulent regime. The predictions made by
these analytical approaches have been tested by several numer-
ical magnetohydrodynamic (MHD) simulations (Latter et al.
2009, 2010; Longaretti & Lesur 2010; Lesur & Longaretti 2011;
Murphy & Pessah 2015; Rembiasz et al. 2016a,b; Hirai et al.
2018), but there are still some discrepancies between the ana-
lytical models and the numerical results.

Pessah & Goodman (2009) and Pessah (2010) performed an
analytical study in resistive-viscous MHD of the evolution of
PIs by solving an eigenvalue problem with linear equations for
these secondary instabilities. They exhaustively covered a huge
parameter space to identify the fastest growing parasitic modes
for different values of kinematic viscosity and resistivity. The
authors (and also Latter et al. 2009) made several assumptions
to make the problem more tractable. The most notable sim-
plifications are the consideration of the primary MRI mode as
a time-independent background, and the assumption that the
wavevectors of the parasitic modes are also time-independent
(see Sect. 3.1 in Pessah 2010 for a critical assessment of the
assumptions involved).

In this work, we relax some simplifications made in previ-
ous studies to obtain a more accurate description of the evolu-
tion of PIs and a better estimate of the saturation of the MRIL.
Building on the approach in Pessah (2010), we derive a set of
equations for the parasitic perturbations feeding of the fastest
growing MRI mode for a fixed vertical magnetic field. However,
here we account for the exponential growth of the MRI modes
and the linear shear of the parasitic wavevector induced by dif-
ferential rotation of the background flow'. By covering a dense

' Tt is worth noting that already Goodman & Xu (1994) presented as a
case study the long-term dynamical evolution of a marginally unstable
MRI mode including rotation and shear. However, they considered this
primary mode as a static background for the parasitic modes.
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parameter space, we identify the fastest secondary modes that
lead to the saturation of the MRI. Using different values for the
seed perturbations, we obtain amplification factors of the MRI
that are similar to the ones obtained in the numerical simulations
presented in Rembiasz et al. (2016b).

The paper is organized as follows: in Sect. 2, we state our
working assumptions and present the equations for the Pls. In
Sect. 3, we present the results of a systematic exploration to find
the fastest parasitic modes responsible for the saturation of the
MRI. We showcase the time evolution of several parasitic modes
to provide physical intuition on the elements playing a role in the
saturation process. In Sect. 4, we present our effective model for
field amplification driven by the MRI and provide a expression
for the MRI magnetic field at saturation. In Sect. 5, we compare
our findings with numerical simulations. We discuss the impli-
cations of our findings in Sect. 6.

2. Parasitic instabilities feeding off exponential MRI
modes

To carry out a linear analysis of the parasitic modes feed-
ing off the MRI channels, we need to treat those chan-
nels as part of the background fields, as in Goodman & Xu
(1994), Pessah & Goodman (2009) and Pessah (2010). This is
a sensible approach during the MRI growth, since the ampli-
tude of the channel modes is much larger than the parasitic ones.
This implies that the primary instability (the MRI) is not sig-
nificantly affected by the secondary (parasitic modes) until they
reach a similar amplitude. This approximation is bound to break
down when the amplitudes involved are comparable. Neverthe-
less, here we consider that the primary MRI mode grows expo-
nentially unimpeded. The novelty compared to previous stud-
ies is that we do consider that the parasites, with shearing time-
dependent wavevectors, are feeding from a time-dependent MRI
mode.

We consider the system of incompressible MHD equations
governing the dynamics of the velocity V and magnetic B fields
in the shearing box approximation (Hawley et al. 1995)

2
AV +(V-V)V =20 xV +gQ°V(x?) - 1V (P + B—) (D

P 8
+ —(B -V)B +vV2V,
4rp
B+ (V-V)B = (B-V)V +1V’B, )
V-V=0, 3)
V-B=0. 4)

Here, Q = Q7 stands for the angular frequency and g is the shear
parameter

dIinQ
dlnr ro’

q=- &)

both of these quantities are evaluated at some fiducial radius ry.
P stands for pressure, p is the density, whereas v and n are the
viscosity and resistivity. In what follows we simply write Q for
the local value of the angular frequency.

2.1. Equations of motion for the parasitic modes

The equations of motion for the PIs are obtained by seek-
ing solutions for the total velocity and magnetic fields of the
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form (Goodman & Xu 1994):

v, —qQx V;‘/IRI vy
V. | _ 0 0 v,
B, |~ 0 + BMRI b, (6)
B | o | |Bm]| |
B, B; 0 b;

Here, we include, from left to right, the contribution of the back-
ground shear flow V, = —gQxy, the vertical magnetic field B,,
the MRI fields (that also constitute the background dynamics of
our problem), and the parasitic fields. For absent secondary per-
turbations, the vertical magnetic field B, remains unchanged and
the MRI grows exponentially unaffected. The former assumption
holds in the incompressible limit because the MRI itself does
not feed back into B, (Pessah et al. 2006a). This is a reasonable
assumption in the context of local, shearing box simulations with
an imposed vertical magnetic field, since the magnetic flux over
the vertical boundaries is conserved when the usual azimuthally
periodic boundary conditions are adopted. The second assump-
tion is bound to break down when the parasitic mode amplitude
is comparable to the amplitude of the MRI mode from which
they feed. We address this issue in Sect. 5.

In the ideal, that is, for sufficiently small values of the vis-
cosity v and the resistivity 7, incompressible MHD regime,
the MRI evolves as an exact, nonlinear solution with a mode
structure given by (Goodman & Xu 1994; Pessah et al. 2006a;
Pessah & Chan 2008)

VMRE = V(1) sin(Kriz)[cos(6y)X + sin(@y)y ],

= By(1) cos(Kmriz)[cos(fp)X + sin(6p)¥],

)
®)

where Vo(t) = Voe™®' and By(f) = Bpe?™R' are the time-
dependent MRI velocity and magnetic field amplitudes, respec-
tively, X is the unit vector in the radial direction, ¥ is the unit
vector in the azimuthal direction, and 6y and 6y are the direc-
tions of the channels with respect to the radial direction. The
fastest growing rate

BMRI

YMRI = gQ , 9
is attained for the MRI mode with vertical wavenumber
(k/Q* Q
Kmri = 41 - > (10)
16 UAz

where k = /2(2 — ¢)Q is the epicyclic frequency, and 7, cor-
responds to the Alfvén velocity. The physical structure of the
fastest MRI mode is such that 8y = 7/4 and g = 3x/4. The
ratio between the MRI amplitudes in the ideal MHD limit, as
found by Pessah & Chan (2008), is

Vo | [4-w/QP
Bo/ Amp V4 + (k/Q)

As in Pessah (2010), we employ dimensionless variables
defined in terms of the characteristic scales of length and time
set by the background magnetic field and the local angular fre-
quency: Ly = 0, /Q = BZ/(4npQ) and Ty = 1/Q. With this, B.
sets the scale for all magnetic and velocity fields. From now on,
we omit the subscript “MRI” and use K, V and B to refer to the
wavenumber, velocity, and magnetic fields associated with the

an

fastest MRI mode. We absorb the factor +/4mp in the magnetic
field, effectively working with Alfvén velocities.

The secondary, parasitic velocity and magnetic fields can be
expressed as

v ="u(, 2),

b = & ¥u(t, 2),

(12)
(13)

where the explicit temporal dependence of the horizontal
wavevector is given by

kn = (ke(0) + gQk,1)X + k. (14)

This simply reflects the fact that wave crests are swept
by the (linear) shear background flow, thereby increasing
their wavenumber and rotating toward the radial direction,
X (Latter et al. 2010; Mamatsashvili et al. 2013).

We can exploit the incompressible nature of the flow and
focus on the dynamics in the plane (lvq,,i) (Pessah 2010). In
fact, this condition restricts our problem to one single direction,
since iky - vy, = —0,v,. We can furthermore eliminate the pressure
by using the divergenceless condition for the velocity [Eq. (3)].
Then, the evolution equations for the vertical components of the
parasitic velocity and magnetic fields become

(O + ikn - V + vA)Au, — iK?ky, - Vu, (15)
+ qsin 200%u; — iky - BAw, + iK*ky, - Bw, — Adw, = 0,
(0; + iky - V + nA)w, — iky - Bu, — 0,u, = 0, (16)

where we introduced the symbol A = kﬁ - 62 and 0 is the
time-dependent angle between the parasitic wavevector, kp, and
the radial direction in the counterclockwise sense. These equa-
tions are linear in the parasitic amplitudes in the incompressible
regime. The three-dimensional vector fields can be expressed
solely in terms of their vertical components thanks to the diver-
genceless conditions, so that

3

w=-20 vz, (17)
lkh
dw. v

w=-2%0 +wi (18)
lkh

It is convenient to obtain the equations of motion for the
vertical components of the parasitic modes in terms of Fourier
series

u, = Z a, (£)e Kk

(19)
we= ) Ba(De ", (20)

where k; is a parameter with 0 < k,/K < 1/2 (Goodman & Xu
1994; Pessah 2010). This leads to a band-diagonal system of
differential equations for the temporal evolution of the Fourier
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coefficients
Brata(t) = +iln + KB + L2 (1 1 k) @1
ky -V,
— KVo(1) ‘; n O[an_mr)(An_l 1) = a1 () (Apsy = 1)]
+iKB (t) [ﬁn 1Ot = 1) + Bt OAnsr — 1)]
—vK2A an(t)

v

V
2Bt (1) = Bur ()] (22)

OBu() = —KVo(t)

+iKBo(t) ki B @1 () + @1 (8)] + i1 + k) Katu(D)

— K> AB(1),
where V, = cos(@v)x + 51n(9v)y, o = cos(0p)X + sin(fp)y and
A=k +(n+ k)

In Writing the previous equations, we have scaled the time-
dependent Fourier coefficients in terms of the initial amplitude
of the MRI channel, By (o, — /By, 8, — Bn/Bo), and the
wavenumbers ky, and &, in terms of the MRI one, K (ky, — kyn/K,
k, — k;/K). We have also used the Euler expressions
sin(Kz) = (e'X* — ¢7K%) /2] and cos(Kz) = (¢'K* + eK%) /2.

2.2. The initial value problem

To integrate the set of differential equations, we must provide
appropriate initial values. The initial Fourier amplitudes of the
PIs, that is, the coefficients «,(0) and 8,(0), can be obtained
using the equations from Pessah (2010), which define a lin-
ear, eigenvalue problem where the eigenvalues correspond to the
growth rate of the PIs and the eigenvectors’ components are the
values of «,, 8,. These equations are:

L 0,(0) = +i(n +k:)B(0)

KBe (23)
k VoV,
‘; A 0 BZ [0 1 (0) (At = 1) = @ps1 (0)(Aper — 1)]
k B
+i °L8n 1O) (Aot = 1) + Bt (00(Anss — 1)]
_iAnan(O),
N _ kh VQE
Z5 PO = =25 B 0 = ra O] (24)
L B 0[an 1(0) + s 1 (0)] + t—(n+kz)an(0)
0
_'7_K2

A”ﬁn(o)’

where s is the growth rate of the parasitic modes. In the ideal
MHD limit, the last term in the right-hand-side of both equations
vanishes.

This set of equations corresponds to the problem solved
in Pessah (2010) under the assumption that the MRI pri-
mary mode and the parasitic wavenumber ky are both time-
independent. These equations allow us to obtain an approximate
initial solution of a given parasitic mode. Considering a value
for the initial MRI amplitude B, and a fixed parasitic wavenum-
ber ky(t = 0), we obtain the parasitic eigenvector corresponding
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to the eigenvalue with the largest real contribution (fastest PI
mode). This provides a set of «,(0) and §,(0) values that can
be used as initial values to solve the time-dependent Eqs. (21)
and (22), where the amplitude of the MRI By(#) and the parasitic
wavenumber ky(7) are time-dependentz.

Since the parasitic equations are linear, we must provide
the initial amplitude for the PI modes, vy = v(r = 0). We
choose to parameterize the initial amplitude of the parasitic
mode with the velocity vy because in ideal MHD these insta-
bilities correspond to KH modes®. Realize that the value of the
parasitic magnetic field by is determined by the PI eigenvalue
problem.

To summarize, under our working assumptions, the dynam-
ics of a parasitic mode with an initial wavenumber ky(0) feeding
off the fastest, exponentially growing MRI mode depends exclu-
sively on the initial amplitude of the MRI mode, By, and the
initial amplitude of the parasitic mode, vy. The background mag-
netic field that determines the dynamics of the fastest growing
MRI mode provides an overall scale.

2.3. Solution for the parasitic instabilities

Having solved for the temporal evolution of the Fourier coeffi-
cients (see Appendix A), the evolution of the parasitic velocity
and magnetic fields in physical space is obtained as

(e

v(60) = Y ()R, (25)
b(tix)= Y B (26)

Since the horizontal component in the direction of ky, is pro-
portional to the vertical component thanks to the divergence-free
condition, the velocity and magnetic field parallel to the plane

defined by (kn, %) are given by

v(t;x) = —— Z n+k )dn(t)e’(”+k )2 iken- xk

I’l——DO

" Z an(t) PO eikh-xi,

n=-—o00

b(t;x) = —— Z (n+k )ﬂn(t)el(lﬁ—k )z zkh xk

11——00

+ Z Bu(1)e/ I kT

n=-—o00

27

(28)

These expressions are in essence the same as in Pessah
(2010), except for the crucial difference that the Fourier coef-
ficients depend explicitly on time taking into consideration the
exponential growth of the MRI and the linear shear of the
parasitic wavevector, ky(f), by the local background flow. In

2 One possible option is to employ white noise, namely, equal power
in each Fourier mode, to seed the secondary modes. We choose to excite
the secondary eigenmodes because this gives us good control over their
onset to search for the fastest growing secondaries systematically. Excit-
ing a broad spectrum of perturbations at once would only mask the
fastest growing parasite initially.

3 The reason to parameterize the amplitude of the primary MRI mode
by its magnetic field By is that the ratio V,/ By may become vanishingly
small in limiting nonideal regimes.
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Appendix B, we depict the physical structure of both the para-
sitic velocity and magnetic fields, and also including the primary
MRI fields.

2.4. Saturation of the MRI based on parasitic mode
amplitudes

As long as the amplitude of the PIs remains small one can jus-
tify neglecting their effect on the MRI mode from which they
feed. This approximation eventually starts to break down and the
MRI saturates. An estimate for this saturation amplitude can be
obtained by seeking the time 7, that it takes to the fastest par-
asite to reach a kinetic energy comparable to the fastest MRI
mode?. In practice, we assume that the MRI mode (and also
the PI mode) saturates when the average velocity of the fastest
parasite reaches a certain fraction € ~ 1 of the MRI veloc-
ity (Latter et al. 2010; Rembiasz et al. 2016a):

U(tsat) = €V (fsar)s (29)
where the MRI primary mode grows according to
c Vo(2)
Vi =Vl = —, (30)
V2

whereas the average velocity of the PI modes can be computed
from the Fourier amplitudes a,(?):

i[l+

n=—oo

k.)?2
o(t) = 18(0)| = BOJ %]manz. 31)
h

Before presenting the results of a systematic study of the sat-
uration amplitude for the MRI in Sect. 3, it is useful to introduce
the following two quantities. We define the instantaneous growth
rate of a parasitic mode as

yorlt) = D =X = AD

At o(t - Ar) (32)

using a time interval Ar. We also define the amplifica-
tion factor A in terms of the ratio between the volume-
averaged Maxwell stress tensor and the initial vertical magnetic
field (Rembiasz et al. 2016b):

v B tsa .
A= M = M +/| cos 6 sin g|. (33)
t '\/EBZ
In ideal MHD this corresponds to
1 BO(tsal)
ﬂ === 34
2 B, (34)
3. Results

3.1. Searching for the fastest parasitic modes

We must first characterize the fastest growing MRI mode off
which the parasites will feed. Since numerical simulations are
not completely dissipation-less, we consider very small values
of the dissipation coefficients. For all practical purposes, we are
otherwise working very close to the ideal MHD regime. We

4 This is motivated by the fact that in ideal MHD the parasitic modes
that grow fastest are of the KH type. For sufficiently large resistivity,
where TMs become important, it may be appropriate to consider the
magnetic energy of the modes involved.

therefore set the (dimensionless) viscosity to v = 107 and the
resistivity to 7 = 1072, The fastest MRI mode (for Keplerian
shear with ¢ = 1.5) is characterized by a vertical wavenumber
K ~ 0.96 and angles 0y = 44.5° = 45° and 0 = 134.7° = 135°,
as shown in Pessah (2010). In addition, the ratio between the
MRI amplitudes is Vy/By = 0.77.

To obtain a systematic understanding of the saturation of the
MRI we need to sweep parameter space and identify the parasite
that reaches a comparable amplitude fastest. To accomplish this,
we solve a large number of initial value problems as described
above. We consider a range of initial values for the PI wavevec-
tors kp(0) = k,(0)X + k,¥ such that?

ke(0) = {~1,-1.125,-1.25,...,~15},
k, = {0.1,0.1125,0.125,...,0.7}.

(35)
(36)

We also tested the evolution with initial values of k,(0) and
k, from other regions of the parameter space, namely, positive
k.(0) and smaller k,. However, the primary MRI mode saturated
very late, or did not even saturate. Since the parasitic growth rate
is proportional to the MRI amplitude (see Sect. 4.1), the para-
sitic modes need enough time before being able to grow super-
exponentially. This entails allowing the primary MRI mode to
reach a sufficiently large amplitude. If the initial value of k, is
positive, the mode will swing through 6y too early (see Fig. 4).
Moreover, a large enough value of k, is needed, of the order
0(0.1), as shown by Pessah & Goodman (2009), Pessah (2010).
We must also provide the initial amplitudes for the fastest MRI
mode By and the initial parasitic perturbation vy. For this we con-
sider

By = {1,5,10,50,100} x 1074,
vo = {0.1,0.5,1,5,10} x 107%.

(37
(3%)

The properties of the fastest growing parasitic modes and
MRI saturation amplitudes are summarized in Table C.1 in
Appendix C. The analysis of these results leads to several
interesting conclusions. The fastest growing modes possess ini-
tial horizontal wavevectors ~3—5 times larger than K, with
k.(0) > k,, and values at saturation at around 0.6—0.7, with
6% < 20°. Fig. 1 shows the initial and final wavevectors of the
fastest PI modes in each of these runs. The amplification factors
take values within the range ~35-55, depending on the initial
parasitic amplitude. Although not shown here, many parasitic
modes grow almost as fast as the fastest ones, leading to simi-
lar amplification factors. Even though the initial PI amplitudes
are larger than the primary modes in some cases, the results also
seem valid since the early growth of the PIs is much slower than
that of the MRI.

3.2. Understanding the results

To shed light on the dynamics characterizing the behavior of the
fastest growing parasites we examine in detail the evolution of
some of the modes from run bOm-dh in Figs. 2, 3. We focus our
attention on the mode that is first to reach the same amplitude
as the MRI, that is to say, the fastest parasitic mode (red line);
a mode that takes a bit longer to accomplish the same (yellow
line), and a mode that grows initially but then stalls and later
decays (blue line).

> We focus on parasitic modes with the same vertical periodicity
than the MRI modes, that is, K, = 0, since are expected to grow
faster (Goodman & Xu 1994; Pessah 2010; Rembiasz et al. 2016a;
Hirai et al. 2018).
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Fig. 1. Representation of the parasitic wavevectors ky, at t = 0 and at saturation, ¢ = f,, for all the runs in Table C.1. The initial modulus k;“i ranges
between 3 and 5, but the initial angle 8™ is very close to 180° in all cases. The wavevectors at saturation have almost the same angle #** at around

18°, and the modulus klff“ lies around 0.7.
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Fig. 2. Top panel: time evolution of the averaged velocity, vpy, of three
parasitic modes from the run bOm-dh: the fastest (red), another that satu-
rates at later times (yellow), and one mode that does not saturate (blue).
Middle panel: time evolution of the parasitic wavevector kj,. Bottom
panel: time evolution of the angle 6 between the wavevector k; and
the radial direction, X. The modes start growing faster when k;, and 6
approach the values found in Pessah (2010), denoted as {'* and 6°'°,
respectively.

The top panel of Fig. 2 depicts the time evolution of the
velocity computed from Eq. (31) for these three modes. The
vertical velocity shear flow induced by the MRI is maximum
in the direction given by 6y. Examining the temporal evolution
of k, and 0 is key to understanding why certain modes grow
faster than others. The parasitic modes that can most effectively
tap into this energy source, are those that, as their wavevectors
are swept by the background flow according to Eq. (14), reach
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the direction 6y with an optimal wavenumber. The velocity of
the mode that does not saturate starts to decrease close to the
time when its wavenumber k;, becomes larger than unity (mid-
dle panel). This seems in agreement with the results known from
the time-independent calculations in Goodman & Xu (1994) and
Pessah (2010) that show that parasitic modes with &, > 1 do not
grow. For the fastest growing mode (in red), € starts decreasing
before the slower mode (in yellow). This allows the fastest mode
to start growing before the mode in yellow, when the MRI veloc-
ity is ~10°—10* times larger than the parasitic velocity, reaching
values of 0 ~ 6°'° = 6y and k, ~ k''% = 0.59 (Pessah 2010) at
earlier times. There is also a transient amplification of the par-
asitic velocity before the super-exponential growth that occurs
when 6 =~ 6y. This happens as the parasitic wavevector swings
through from leading to trailing.

We showcase in Fig. 3 the time evolution of the growth
rate of these PI modes (computed with Eq. (32)), normalized
by the growth rate of the MRI from Eq. (9). The growth rate
of the fastest mode starts increasing monotonically before the
other mode that also saturates. Some modes reach a larger
growth rate, but they saturate later because they get excited
also later. The growth rate of the fastest growing mode starts
increasing fast above 0 at ¢+ =~ 2.15 orbits and then it contin-
ues growing at a slower rate. The middle panel shows the evo-
lution of its time derivative. The region where the derivative
takes positive values and increases faster coincides with val-
ues of 6 (bottom panel) around 6y = 44.5°. The rapid decrease
of the derivative of the growth rate before the period of fast
growth is due to the stabilizing effect of the MRI magnetic
field, which is perpendicular to the MRI velocity field®. This
behavior is also observed in the other cases from Table C.1,
and also for other modes that saturate at later times (see also
Fig. 6).

Figure 4 shows that the rapid increase of the parasitic modes
coincides with the time-dependent wavevector ky, being aligned
with the MRI velocity field. When the growth rate starts increas-
ing monotonically at 6, (cf. Fig. 3), the direction of ky, is getting
close to 6y. The mode grows faster and its increase slows down
when 6 falls below 6y. The angle 6, of Fig. 4 corresponds to the
last turning point of the growth rate before saturation. The values
of 6; and 6, are given by the vertical dashed lines of Fig. 3 (see
also the horizontal gray lines in the bottom panel). The black
solid lines for 8; and 6, correspond to the mean value of these

® We have tested this is the case by excluding the MRI magnetic field
from the equations for the parasitic modes and confirming that the asso-
ciated parasitic modes grow monotonically.
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Fig. 3. Top panel: time evolution of the normalized growth rate for the
same modes as in Fig. 2. The growth rate stays considerably low up
to a certain point, where it starts increasing to become more than ten
times larger than the growth rate of the MRI (for the cases that reach
saturation). Middle panel: evolution of the time derivative of yp; for the
fastest mode. We draw vertical lines where the derivative takes positive
values and at its last local maximum before saturation. Between these
times, the parasitic mode grows the fastest. In the bottom panel, we
show the evolution of the wavevector angle 6. We depict horizontal gray
lines showing 6, and 6,, i.e., the values of 6 that indicate the fastest
growth of the parasitic mode.

angles from the runs of Table C.1, and the shaded regions in red
depict the 1-0- deviation. As seen in Fig. 4, the values of 6, are
almost the same for all runs, which means that, independently
from the initial amplitude of the instabilities, the fastest parasitic
modes start increasing at a reduced rate when 6 > 30°. Alter-
natively, there seems to be a larger dispersion for 8;, with an
average value of 6, ~ 60°. Thus, the modes start their phase
of super-exponential growth at an angle 6 = 6; > 6y. After
the braking in the parasitic growth, the fastest mode eventu-
ally saturates. This result is consistent with the findings made
by Pessah (2010), even though the saturation criterion is differ-
ent. In Pessah (2010), the saturation occurs when the parasitic
growth rate equals the MRI one, and our criterion is the one
given in Eq. (29). When the parasitic amplitude reaches a similar
value than the MRI channel’s, the parasitic growth rate is already
several times larger than the MRI growth rate (see Fig. 3). Fur-
thermore, with the current approach, it takes more time to the
MRI to saturate, leading to a smaller 6** and larger k™. This
is in agreement with the predictions from Latter et al. (2010),
who stated that it should take more time to saturate due to the
inclusion of the background shear in the equations and the time
dependence of ky,.

90°
75°

15°

Oo

Fig. 4. Values of the angle 6 for which the PIs grow super-exponentially.
The rapid increase of the secondary modes occurs between 6, and 6,,
depicted with solid black lines. These lines correspond to the mean
value of these angles for the runs from Table C.1. The red-shaded
regions represent the 1-o- deviation. The black dashed line stands for
the direction of the MRI velocity field, 8y = 44.5°.

4. An effective model for the amplification factor

Appealing to physical intuition and guided by our numerical
results, we here seek to provide a simple expression for the
amplification factor obtained when the fastest parasite, being
advected by the background shear flow, is able to match the
amplitude of the fastest, exponentially growing MRI mode.

In this Section, we employ a different value of the shear
parameter, g = 1.25, instead of the Keplerian value (g = 1.5),
in order to make a better comparison with the results from
the numerical simulations of Rembiasz et al. (2016b), who use
g = 1.25. We also consider the fastest MRI mode associated
to this value of ¢. This mode is characterized by a vertical
wavenumber K =~ 0.93, angles 6y = 45° and g = 135°, and
a ratio of MRI aplitudes V/By =~ 0.67. All these values are very
similar to those for g = 1.5.

The analysis of the results presented in Table C.2 (employ-
ing g = 1.25) and illustrated in Fig. 5 reveals that the amplifi-
cation factor is insensitive to the initial amplitude of the MRI
mode while it may change by a factor of a few when the ini-
tial amplitude of the parasitic modes varies by a few orders of
magnitude. The results from Table C.1 (using ¢ = 1.5) are not
depicted in Fig. 5, but are almost identical, meaning that the
slight change in the shear parameter ¢ does not have notable
effects.

We can make use of this result to find an approximate expres-
sion for the amplification factor which is physically motivated.
We proceed in two steps. First, we find the expression for the
amplification factor ignoring the fact that the parasitic wavevec-
tor ky, is advected by the background shear. We account for this
effect in a second step as described below.
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Fig. 5. Left panel: dependence of the amplification factor, defined in Eq. (34), on the amplitude of the initial MRI velocity field, V,. Right panel:
dependence of the amplification factor on the initial PI velocity field, vy. We use the runs from Table C.2 (solid lines with squares). Each color
represents a different initial PI amplitude, vy, where the darker colors stand for larger values of vy. The solid lines represent the fit from Eq. (45).
The dashed lines stand for the amplification factor computed with Eq. (42), i.e., assuming no background shear. The black triangles correspond to
the results from the numerical simulations of Rembiasz et al. (2016b), and the black solid line is the linear fit from Eq. (47).

4.1. Incorporating the exponential growth of the MRI

Building on the results presented in Pessah (2010),
Rembiasz et al. (2016b) derived an approximate expression
for the amplification factor assuming that the parasitic growth
rate is given by

vl = oK Vo(D), (39)

where o= = 0.27 (Pessah 2010) and considering that yp° =
0(¢)/v(?). This leads to an analytical expression for the velocity
of the parasitic mode

KVO (e)’MRII _ ])] .

o
v(t) = vy exp [
YMRI

(40)

Equating uv(fs,) = €V(s), and using the parasitic velocity
from Eq. (40), leads an analytical expression for the amplifica-
tion factor (Rembiasz et al. 2016b)

! ! | 44 [4-q
-——1 =—|-1 1 — . (41
A oy nA 20’[ n(vy) + n[e 4_q]]+ 46] Vo. (41)

This equation can be solved using the LambertW func-
tion (Corless et al. 1996), which has known asymptotic approx-
imations (see, e.g., Latter 2016, for an application). However,
we prefer approximating it to a simple analytical formula. It can
be seen that the amplification factor scales with the logarithm of
the initial parasitic amplitude and also linearly with the initial
MRI amplitude. Since initially Vy < 1, the amplification factor
should be almost independent of the initial MRI channel ampli-
tude. This behavior is observed in Fig. 5 (left panel), and the
linear dependence with the logarithm of the parasitic amplitude
can be seen in the right panel. The logarithmic dependence in
the parameters ¢ and € implies that these values do not strongly
affect the amplification factor. Similarly, one could obtain an
expression for the saturation time, #y,, which can provide another
interesting diagnostic.
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On the left-hand side of Eq. (41) there is a term involving
In A that prevents us from finding a close solution for the ampli-
fication factor. However, as shown in Fig. 5, the spread in A is
not big, which means that In A presents values around ~3—4.
Therefore, from our data, we can regard this term as roughly
constant and employ its average value, In A ~ 3.7. The resulting

expression for the amplification factor is
4 —
+ 4 / Ty, (42
4q

1 4 -
A= —|-In(v) +Inf|e i +InA
20 4—gq

4.2. Incorporating the advection of parasitic modes

It can be seen in Fig. 5 that the expression from (42) underesti-
mates A by a factor ~2, compared to our results (dashed lines
with respect to solid lines). This can be understood by the fact
that incorporating the advection of the parasitic wavevector kp
by the background shear effectively reduces the growth rate of
the parasitic modes, as stated in Latter et al. (2010).

Using the results from our calculations, we can compute
the factor, f, that needs to be applied to the parasitic growth
rate from Eq. (39) in order to match the amplification fac-
tors obtained with our approach which included the background
shear. Employing all the runs from Table C.2, we obtain that, on
average, the factor needed is

f = 0.498 = 0.006. (43)

We note that the value of this fraction, f, is found by analyz-
ing the parasitic modes that enable the breakdown of the pri-
mary MRI mode the fastest. The result is insensitive to the
initial amplitudes of either the primary MRI or the secondary
parasitic modes. The value we obtain agrees with the estimate
made by Latter et al. (2010), who argued a reduction by a factor
~2 by estimating the “average” growth rate during the time inter-
val in which the parasites grow super-exponentially. This time
interval is, in fact, short, because of the background disk shear.
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Fig. 6. Top panels: time evolution of the parasitic velocity for different initial amplitudes of the PIs (from left to right, vy = {0.112, 1.12, 11.2}x1073)
and a fixed initial MRI field, By = 3.33 x 1072. The solid blue lines refer to the evolution of the parasitic velocity given in Eq. (40), whereas the red
lines correspond to our approach. The dashed blue lines refer to the same velocity from Eq. (40), but adding the correcting factor f to the parasitic
growth rate from Eq. (39). Bottom panels: time evolution of the normalized parasitic growth rate. Adding the correcting factor f to the expression
from Eq. (39) (dashed blue lines), the parasitic growth rate roughly agrees with the one we obtain in our study (solid red lines).

In our case, we aimed to apply a correcting factor to the parasitic
growth rate from Eq. (39) to account for the background shear.
We, therefore, equate the amplitude of the non-advected para-
sitic velocity from Eq. (40) near the primary MRI breakdown to
the one obtained with the approach of this work (see Fig. 6). We
found that the correcting factor f obtained in this way also leads
to roughly similar growth rates at saturation time.

The top panels in Fig. 6 depict the evolution of the para-
sitic velocity using Eq. (40) (solid blue line), using the same
equation but introducing the factor f, so that y5° — fyhl°
in Eq. (39) (dashed blue line), and the actual evolution of a
parasitic mode (solid red line) obtained from solving the ini-
tial value problem. As expected, the parasitic mode with a con-
stant wavevector ky aligned with the MRI velocity (solid blue
curve), as implied by Eq. (40), grows faster than the parasitic
modes whose wavevector is advected by the background shear
flow (solid red curve). In the bottom panels we show the evo-
lution of the normalized parasitic growth rate. By introducing
the factor f from Eq. (43) in the analytical expression for the
parasitic growth rate from Pessah (2010), the parasitic mode
with constant wavevector kp can reach the same amplitude as
the parasitic mode with time-dependent wavevector advected by
the background shear. Including this factor f in Eq. (39) in the
amplification factor we obtain

I [4 ,
A ~ % l—ll’l(UO) + 11'1[6 ﬁ] + lnﬂ} s

where, supported by the results in Fig. 5, we neglect the depen-
dence of A on Vj.

(44)

4.3. An independent check using parasitic mode dynamics

Equation (44) has been obtained in a somewhat ad hoc way by
bringing together various approximations without much regard
for rigor. As an independent way to check whether the dependen-
cies implied can accurately describe the results we obtained by
solving for the full dynamical evolution of the parasites feeding
off exponentially growing MRI modes while being advected by
the background shear, we proceed as follows. Using the results
from Tables C.1 and C.2, we seek to find the coefficients in the

expression:
4 -
—q] +In ﬂ)} .
4-q

Here, we consider € = 1. Using the runs from Table C.1
(g = 1.5), we perform a linear fit and find that »’ = 1.022+0.014
and ¢’ = 0.714 + 0.019, with R> = 0.996. Alternatively, using
the results from Table C.2 (¢ = 1.25), the coefficients are
b = 1.038 £ 0.011 and ¢’ = 0.832 + 0.019, and R*> = 0.997.
Both coefficients are, for both values of ¢, very close to unity,
especially b’. The fact that ¢’ takes slightly smaller values than
expected might be due to the term with In A. In any case, the fact
that all coefficients are order O(1) shows that the dependencies
in Eq. (44) are indeed roughly correct.

A ~ ! [—b’ In(vg) + c'(ln [6 (45)
o

4.4. A simple expression for the amplification factor

With all these considerations we can provide a simple expression
that encapsulates the key processes involved and make use of
the insights provided by our calculations to provide a reasonable
accurate description of the amplification of the MRI as limited
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by the fastest parasitic modes as

B, / 4
Bo(tsa) = m l_ In(vo) + ll’l[ 4qu] + 37} s

where B, is the large-scale vertical magnetic field, vy is the initial
amplitude of the parasitic mode, and g is the shear parameter.

(46)

5. Comparison with numerical simulations
5.1. Amplification factors

The role of PIs in the breakdown of the primary MRI mode
has been studied through numerical simulations thoroughly
during the last decade (Obergaulinger etal. 2009; Lesur &
Longaretti 2011; Sorathia et al. 2012; Murphy & Pessah 2015;
Rembiasz et al. 2016a; Hirai et al. 2018; Gogichaishvili et al.
2018). The use of numerical simulations has allowed the nonlin-
ear regime of the MRI to be studied. However, numerical studies
have not usually focused on addressing the role that seed pertur-
bations, that excite unstable modes (either the MRI itself or the
parasites) may play on the saturation level of the ensuing turbu-
lence.

Rembiasz et al. (2016b) addressed this issue by carrying
out shearing box simulations using the pseudo-spectral code
SNOOPY (Lesur & Longaretti 2005, 2007) for different val-
ues of the initial amplitudes to seed the MRI, Vj, and the PIs,
vo. Figure 5 shows the amplification factors they obtained with
black triangles. In the left panel, the initial parasitic amplitude is
fixed at vy = 1.12 x 1072, whereas in the right panel the initial
MRI velocity is fixed at Vy = 2.2 x 1073, Their results show a
steeper dependence on the initial MRI velocity (left panel) and
on the initial parasitic amplitudes (right panel). These trends are
captured by the authors proposing that the amplification factor
scales according to

AVy,v9) =alnVy+ blnuy +c, 47)
where a = 5.4+0.55,b = -20.2+1.2, ¢ = =101 = 13. The value
of the factor ¢ differs from the one from the fit in Fig. 5 because
the units employed in Rembiasz et al. (2016b) are different.

We attribute the discrepancy in the amplification factors we
obtained with respect to those obtained in numerical simulations
by Rembiasz et al. (2016b), shown in Fig. 5, to the different ways
the modes involved are excited. We speculate, on rather reason-
able grounds, that the larger amplification factors seen in numer-
ical simulations could be due to the fact that the initial conditions
do not seed directly the fastest modes involved. Rembiasz et al.
(2016b) only excited the fastest growing velocity MRI field (let-
ting the magnetic MRI field grow later), and they excited a large
set of parasitic velocities applying random factors to their initial
amplitudes. In our approach, only the fastest primary (MRI) and
the secondary (parasitic) modes interact to reach saturation. The
initial primary modes correspond to the fastest MRI eigenmode
in Eq. (7). In addition, every time we seed secondary perturba-
tions, we do so by exciting parasitic eigenmodes at the same
initial time we allow the MRI mode to start evolving. Under
these conditions, we define the amplitude of the MRI at satu-
ration by equating the (kinetic) energy densities of the fastest
MRI mode and the fastest parasitic mode. For initial conditions
that exclusively involve perturbations in the velocity amplitude
of the primary, Vj, it takes longer for the primary MRI mode,
with the corresponding By, to emerge and grow exponentially
at the fastest rate. This produces a delay in the onset of the
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secondary mode that grows to saturation, resulting in a higher
amplitude for the MRI mode near breakdown that is higher than
the one we would have obtained had the primary MRI mode been
seeded directly. This may explain the trend exhibited by numer-
ical results on the left panel of Fig. 5. Concerning the discrepan-
cies observed in terms of the initial amplitude of the secondary
perturbations, on the right panel of Fig. 5, it seems natural for
saturation to be reached at a lower amplification when the fastest
secondary mode is excited directly. This is because depositing
the same amount of kinetic energy in a broad spectrum of sec-
ondary velocity perturbations is less efficient in seeding the par-
asites, allowing the primary to reach a higher amplitude.

It is worth mentioning that Rembiasz etal. (2016b)
performed simulations with another numerical code,
AENUS (Obergaulinger 2008), with different radial bound-
ary conditions, physical assumptions and numerical schemes.
The resulting amplification factor differed by a factor 5 from
that obtained with the SNOOPY code (A =~ 19 with AENUS
instead of A ~ 90 with SNOOPY). Moreover, they found that
employing a different form of the initial perturbations also
changed the amplification factor, obtaining A =~ 60 instead
of A =~ 90. Thus, differences in the simulation setup and the
use of different numerical codes can have an impact on the
amplification factor.

5.2. Other aspects

Numerical studies have also shown that the PIs eventually grow
super-exponentially, reaching an amplitude comparable to the
MRI and leading to a turbulent regime. It has also been found
that, in the ideal MHD case, the fastest growing parasitic mode
is aligned with the MRI velocity field (Rembiasz et al. 2016a;
Hirai et al. 2018), which is in agreement with our findings. How-
ever, the parasitic wavenumbers at saturation found in numer-
ical simulations (Rembiasz et al. 2016a; Hirai et al. 2018) are
somewhat larger than those obtained here. This can be explained
by the existence of other MRI modes (that grow more slowly),
which results in a shear flow that is not purely sinusoidal. More-
over, the interaction of the PIs with the channels can cause
the layered structure to become narrower, which induces a
smaller parasitic mode just before the primary MRI mode break-
down (Hirai et al. 2018). These nonlinear effects are not captured
by our approach.

Incorporating the advection of the parasitic modes has
allowed us to understand that the modes that end up being able to
reach amplitudes comparable to the MRI quite generically have
initial horizontal wavelengths that are a factor of a few smaller
than those previously inferred. We found that the fastest growth
occurs when the parasitic wavevector is aligned with the MRI
velocity field, in agreement with previous analytical and numer-
ical studies. However, these modes must be properly resolved
throughout their evolution in order for numerical simulations to
capture their dynamics, and thus the MRI saturation, faithfully.

Using more than ten grid cells per wavelength is
usually assumed to be enough to properly resolve the
MRI (Rembiasz et al. 2016a). It is clear from our findings that
it is equally important to resolve the evolution of the parasitic
wavevector, as it is advected by the background shear flow. By
performing box simulations with different aspect ratios and grid
resolution, Rembiasz et al. (2016a) found that at least 60 zones
per MRI channel are needed to obtain convergent results. This
is due to the fact that the KH-type parasitic modes, triggered
by the shear layer between MRI channels, develop finer spa-
tial structures that need to be resolved. As a result, an initially
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leading wave with large (negative) k,(0) may be numerically
damped early on, and thus reach positive values of k,(¢) at a
significantly lower amplitude than initially, which would com-
plicate any estimate made from it. This issue can be explained
by our results. The fastest parasitic modes have been found to
be initially ~3—5 times smaller than the MRI channels, mean-
ing that an increased resolution in the horizontal plane might be
needed to properly capture both the MRI and the PIs from the
beginning of the simulation. If resolved, all the simulations with
different numerical resolution should lead to the same amplifica-
tion factor.

6. Summary, discussion, and implications

We have investigated the saturation of the MRI via parasitic
modes relaxing important approximations previously invoked.
This allowed us to obtain the most accurate calculation of
the amplification factor to which the MRI can grow until the
parasitic modes reach a comparable amplitude. To accomplish
this, we carried out the first systematic analysis of the evo-
lution of the PIs considering the temporal dependence that
arises from the advection of the secondary parasitic modes
feeding off exponentially growing primary MRI modes. Our
approach involved solving a large number of initial value prob-
lems providing initial amplitudes for the modes involved. Even
though the values for the initial amplitudes spanned several
orders of magnitude we found that the amplification factor
incurred by the MRI is remarkably robust, depending only log-
arithmically on the initial amplitude of the parasitic modes.
This is overall in reasonable agreement, within a factor of
two, with the amplification factors found in numerical sim-
ulations (e.g., Hawley et al. 1995; Obergaulinger et al. 2009;
Murphy & Pessah 2015; Rembiasz et al. 2016a,b).

Building on previous work that has led to physical intuition
on the processes involved in the breakdown of the primary MRI
mode via PIs, and guided by our numerical results, we have pro-
vided a simple analytical expression in Eq. (46) that describes
quite reasonably well the amplification of magnetic fields driven
by the MRI.

The discrepancies with numerical studies mentioned above
may highlight interesting issues with simulations. All in all, the
amplification factors implied by our results differ by about a
factor ~2 from those reported in Rembiasz et al. (2016b). The
slope on the right panel of Fig. 5 is also considerably larger than
the one we obtain, although the trends are similar. The discrep-
ancy between our results and those in Rembiasz et al. (2016b)
can be partly explained by the different ways in which both
the MRI and the parasites are excited in each of these settings
(see Sect. 5 for a more detailed discussion). Another poten-
tial reason for which our predictions for saturation differ from
numerical results may be because our approach does not cap-
ture the nonlinear interaction between primary and secondary
that may arise near termination (see, e.g., Murphy & Pessah
2015; Gogichaishvili et al. 2018). In the nonlinear regime of the
KH instability, a growth rate reduction is expected when the
primary MRI mode breakdown approaches, so our predictions
might underestimate the amplification factor (cf. Keppens et al.
1999; Obergaulinger et al. 2010). The plausible reasons we offer
to explain the difference in amplification factors obtained via
numerical simulations and via our approach can be explicitly
tested by seeding numerical simulations exciting the fastest pri-
mary and secondaries.

In summary, with all the caveats stated, we have built an
effective model to compute the saturation amplitude of the MRI,

which differs up to a factor of roughly 2 from numerical results,
which is smaller than the spread in the values provided by dif-
ferent codes using different initial conditions. This is the first
approach that can achieve this and also highlights which param-
eters play the most relevant role in determining MRI saturation.

As shown in Eq. (33), the amplification factor is expressed
in terms of the volume-averaged Maxwell stress tensor, M,,.
Thus, the effective model we have built here can be employed
to predict the value at saturation of the turbulent stress tensors,
since the Reynolds stress, 7_€xy, can be found via (Pessah et al.
2006a)

Ry =——L M., (48)
XY 4 _ q XY

These components of the Maxwell and Reynolds stresses deter-

mine the radial flux of angular momentum via the total stress

T = Ry — My, (49)

Numerical simulations of astrophysical systems need to
account for many physical processes (e.g., realistic equations
of state, neutrino and radiative processes, etc.), usually lim-
iting their spatial resolution. For this reason, and in order to
resolve the initial field amplification due to the MRI, several
works assume initial large-scale magnetic fields with unreal-
istically large magnitudes (e.g., Etienne et al. 2012; Gold et al.
2014; Ruiz et al. 2018, 2021; Bamber et al. 2024). Our effective
model may be regarded as a means to predict the final mag-
netic field amplitude when secondary instabilities limit the MRI
growth. This presents an alternative to invoking the large initial
magnetic fields usually assumed in order to resolve the MRI.

Our findings may help develop more realistic effective mod-
els for MRI-driven turbulence to go beyond current approaches
that employ effective viscosity terms (Fernidndez & Metzger
2013; Shibata et al. 2017; Fujibayashi et al. 2018, 2020; Radice
2020; Just et al. 2023), which are based on the alpha-viscosity
prescription from Shakura & Sunyaev (1973). The resulting
radial flux of the angular momentum (cf. Eq. (49)) can be used
as a viscosity term in the momentum equation that allows trans-
porting angular momentum at the correct rate even though the
MRI is not well-resolved by the numerical simulation. The func-
tional dependence of the effective model from Eq. (46) on the
initial amplitudes of the modes and on the shear parameter g
improves its adaptability to different disk conditions with respect
to the widely used alpha-viscosity’. For example, the subgrid
model presented in Miravet-Tenés et al. (2022) makes use of the
findings made by Pessah (2010) to build evolution equations for
the turbulent kinetic energy densities of both the MRI and PIs.
This model can be improved by incorporating the findings of this
work, namely, by including the factor f ~ 1/2 from Eq. (43) in
the parasitic growth rate that appears in these equations.

The effective model for MRI saturation we obtained can
also be used to develop closure relations to link mean mag-
netic fields with turbulent stresses which are critical in mod-
els that go beyond viscous prescriptions for angular momentum
transport (e.g., Kato & Yoshizawa 1993, 1995; Ogilvie 2003;
Pessah et al. 2006b, 2008). This is a sensible approach, because
even though nonlinear effects may result in some amplitude fluc-
tuations during the turbulent state, the effective model presented
here can provide an estimate of the average MRI amplitude
after saturation (e.g., Rembiasz et al. 2016b; Hirai et al. 2018;
Reboul-Salze et al. 2021).

7 We refer the reader to Pessah et al. (2008) for further details.
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The insights obtained in better understanding the satura-
tion mechanism for the MRI have the potential to bring us
a step closer to developing more realistic dynamical mean-
field dynamo models where MRI-driven turbulence is nat-
urally built-in (Gressel 2010; Gressel & Pessah 2015, 2022;
Vourellis & Fendt 2021).
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Appendix A: Evolving the system of equations for
the parasitic instabilities

Having obtained the initial values of the Fourier amplitudes of
the velocity and magnetic fields of the PIs, we can evolve the
system of Egs. (21) and (22). To accomplish this we write it in
vector form as
dx(t) = ADx(0), (A.1)
where the vectors x contain the Fourier amplitudes «,(f) and
Bn(t) and A(?) is the matrix of coefficients. This coupled lin-
ear differential equation system can be decoupled, and solved,
as follows.

Let the matrix A(f) be expressed in terms of a diagonal
matrix, A(?):
A=S"AS, (A2)
where S is a matrix built with the eigenvectors of A(¢) as columns
and A is a diagonal matrix with the eigenvalues of A as elements.

The equations of motion (A.l) can be written in terms of the
variable

n=S"x, (A.3)
as a set of decoupled equations

am( = An() . (A4)
which can be cast independently for each component

Omi = Am; . (A.5)

This is valid only when S # S(¢), and we assume this is the case
in a small enough time interval Ar. The solutions can now be
trivially obtained as

n;(f) = exp [f ﬂi(T)dT} ni(t — Atr). (A.6)
t—At

We can define the matrix composed of elements given by the
right-hand-side of the above equation:

!
E;; = 0;;exp [f /li(‘r)dr] .
t—At

For small enough time intervals Az, we can assume that A; are
constant® to obtain

(A7)

E[j =~ 6,-jeAM" . (Ag)
In terms of the matrix E, the solutions we seek satisfy
x(t) = SES™'x(1 — Ar). (A.9)

In solving the equations given by (A.4), we employ the
approach shown in Eq. (A.8) using an adaptive timestep At that
decreases as yp; increases, as shown in Table A.1. The initial
timestep is set to Afy = 0.1.

8 Of course A; can change value between consecutive time intervals.

Table A.1. Timestep employed in terms of the parasitic mode growth
rate.

e/ ymr1 | At/Atg
< 0.1 1
> 0.1 107!
>1 1072
> 25 1073

Appendix B: Physical structure of the parasitic
modes

To study the structure of the parasitic modes and the disruption
of the MRI channels, we calculate the components of the vortic-

ity and current density perpendicular to the plane (K, 2):

ow, (t;x) = (Vxv) -
0jL(t;x) = (Vxb)-

kp, (B.1)
ky, (B.2)

where lvcp is the direction perpendicular to (lvch, 7). Ivcp =ZA lvch.
Using Eqgs. (27) and (28), we obtain

Sw, (1; %) = —kih DT+ (et k)l et (B.3)
010 = = DK + (kP IB I, (B4

n=—oo

where kyh = ky-x. The total vorticity and current can be obtained
by adding the contribution from the MRI fields projected onto

the direction Ivch:
w, (t;x) = Vy(t) cos(Kz) cos(f — Oy) + dw, (t;x),
Jji(t;x) = =Bo(?) sin(Kz) cos(8 — 0g) + 0j . (t;x) .

(B.5)
(B.6)

In Fig. B.1 we depict the total vorticity field w, projected
onto the plane (Ivch, Z), where the arrows represent the total veloc-
ity V +v (top panels) and the vorticity of the parasitic mode 6w
with the velocity field v (bottom panels), for different times. At
early times (first panel), the MRI channels remain steady, since
the fastest parasitic mode has not reached enough amplitude yet.
When the primary MRI mode breakdown approaches (last three
panels), the channels are disrupted by the parasitic mode, show-
ing the familiar wave-like structure expected from KH instability
modes in a periodic background. The bottom panels represent-
ing the vorticity and velocity fields of the parasitic mode show
a periodic structure of equidistant vortex sheets, similar to those
in Fig. 8 in Pessah (2010), but gradually evolving to more elon-
gated structures.

Alternatively, Fig. B.2 shows the current density and mag-
netic fields instead of the vorticity and the velocity fields. The
magnetic parasitic field again forms periodic vortex sheets that
become horizontally elongated as saturation approaches. The
MRI channels get disrupted and adopt the same structure as
shown in Fig. 10 from Pessah (2010).
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t = 2.3399

Fig. B.1. Physical structure of the fastest parasitic modes, including the velocity field of the primary MRI mode, for different times (in terms of
the number of orbits, increasing from left to right). The arrows in the top and bottom panels correspond, respectively, to the projections of the total
velocity, V(z) + v(h, z), and the parasitic velocity, v(h, z), onto the time-dependent plane (lvch,i). The color contours correspond to the associated
total vorticity w, and the parasitic vorticity dw, projected onto the direction perpendicular to k.

t = 2.3399 . t = 23717 t = 2.3800

knh

Fig. B.2. Same as Fig. B.1, but including the magnetic and the current density fields instead of the velocity and the vorticity, respectively.

Appendix C: Summary of the evolution runs for the
parasitic modes

We provide tables listing the parameters and important proper-
ties of the fastest parasitic modes evolved in this work:

— Table C.1 summarizes several properties of the fastest grow-
ing parasitic modes at = 0 and at saturation time, g, for
different initial amplitudes of primary MRI and secondary
modes. The shear factor used for these runs is g = 1.5.

— Table C.2 shows the same quantities as Table C.1, but the
value of the shear parameter corresponds to ¢ = 1.25, and
different initial amplitudes are also used.
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Table C.1. Summary of the fastest parasitic modes for different initial amplitudes of the MRI modes and parasitic velocities.

NAME [ Bol101 [ wol10°T [ ¢ | & [ 6™ 1 [ & [ 61 | teu [Orbits] | A
bOvI-dvl 1 0.1 | 15[ 425 177.64 [ 0.65 | 1570 | 2954 | 55.63
bov1-dl 1 05 | 15| 450 177.61 | 070 | 1557 | 2927 | 48.93
bOv1-dm 1 1 5450 177.61 | 0.68 | 1607 | 2915 | 46.15
bOv1-dh 1 5 5147517759 | 072 | 1625 | 2884 | 39.93
bOv1-dvh 1 10 | 15[ 475]177.59 | 0.69 | 1690 | 2.869 | 37.24
b01-dvl 5 0.1 5| 488 | 17736 | 070 | 1869 | 2613 | 55.54

b01-dl 5 05 | 1.5]388|177.23 [ 072 | 1506 | 2.587 | 49.26

bO1-dm 5 1 15| 3.88 | 17723 | 070 | 1557 | 2574 | 46.22

b01-dh 5 5 541317722 [ 070 | 1674 | 2.541 | 39.69
b81-dvh 5 10 5143817722 | 072 | 1722 | 2527 | 37.10
bOm-dvl 10 0.1 | 15| 451 |177.14 | 075 | 1743 | 2460 | 54.15

bOm-dl 10 0.5 5476 | 17714 | 074 | 1873 | 2435 | 48.14

bOm-dm 10 1 50476 | 17714 | 072 | 1935 | 2424 | 4574

bOm-dh 10 5 1.5 | 3.88 | 177.05 | 0.67 | 17.35 | 2395 | 39.91
b6m-dvh 10 10 | 1.5]3.88|177.05 | 0.65 | 18.00 | 2382 | 37.56
b8h-dvl 50 0.1 | 1.5]401|176.60 | 078 | 17.69 | 2120 | 54.44

bGh-dl 50 05 | 15| 401 | 17660 | 0.73 | 19.05 | 2094 | 48.32

bOh-dm 50 1 1.5 | 401 | 176.60 | 0.71 | 19.66 | 2.084 | 46.02

bOh-dh 50 5 1.5 | 3.01 | 17642 | 0.66 | 1659 | 2054 | 39.94
bOh-dvh 50 10 | 1533817640 | 0.74 | 1677 | 2.037 | 3691
bOvh-dvl | 100 0.1 | 15]351(17632|071 | 1836 | 1970 | 53.83
bevh-dl | 100 05 | 1.5]3.63|17625 077 | 17.94 | 1947 | 4832
bOvh-dm | 100 1 15| 3.63 | 17625 | 075 | 18.58 | 1.935 | 45.65
bOvh-dh | 100 5 15| 3.13 | 17611 | 0.72 | 17.06 | 1906 | 39.79
bOvh-dvh | 100 10 | 1531317611070 | 1775 | 1892 | 37.22

Notes. Evolutions of the fastest PIs for different initial amplitudes of the MRI modes and the parasitic velocities. We depict, from left to right: the
initial MRI magnetic field, By; the initial parasitic velocity, vy; the shear parameter, ¢; the modulus and angle with respect to the radial direction of
the initial wavevector, k", that leads to saturation; its modulus and angle at saturation; the saturation time, and the amplification factor. The runs
are labeled so that v1, 1, m, h, vh after b®@ (MRI amplitude) and d (parasitic amplitude) stand for “very low,” “low,” “mid,” “high” and “very high,”
respectively.

Table C.2. Same as Table C.1, but using now a shear parameter ¢ = 1.25 and different initial amplitudes to make a better comparison with the
results from Rembiasz et al. (2016b).

NAME Bo[107] [ wo[107°] [ ¢ | K™ [ ™[] | & [ 6 [°] | tsa [Orbits] | A
bOvI-dvi-qi25 | 3.33 0.112 | 1.25 [ 3.76 | 176.76 | 0.65 | 19.16 2.613 47.69
bOv1l-dl-q125 333 0.370 | 1.25 | 413 | 176.70 | 0.74 | 18.84 2.584 | 42.61
bOv1-dm-q125 333 112 | 125 | 413 | 17670 | 0.69 | 20.22 2.557 38.24
bOv1-dh-q125 3.33 370 | 125 | 451 | 176.66 | 0.75 | 20.40 2.525 33.73
bOvl-dvh-q125 | 333 112 | 125 | 3.51 | 176.53 | 0.69 | 17.90 2.491 29.54
b01-dvl-q125 11.1 0.112 | 1.25 | 3.88 | 176.31 | 0.69 | 21.15 2.303 47.16
b01-d1-q125 11.1 0.370 | 1.25 | 3.38 | 176.19 | 0.69 | 19.16 2276 | 42.54
b01-dm-q125 11.1 112 | 125 | 3.38 | 176.19 | 0.64 | 20.44 2.252 38.59
b01-dh-q125 11.1 370 | 125 | 3.88 | 176.13 | 0.74 | 20.72 2216 33.57
b01-dvh-q125 11.1 112 | 125 | 3.01 | 175.95 | 0.68 | 18.28 2.183 29.48
bOm-dvl-q125 333 0.112 | 125 | 2.76 | 175.58 | 0.67 | 18.62 2026 | 47.45
bOm-d1-q125 333 0.370 | 1.25 | 2.88 | 175.53 | 0.69 | 1891 1.999 | 42.67
bOm-dm-q125 33.3 112 | 125 | 3.01 | 17547 | 0.72 | 19.27 1.973 38.51
bOm-dh-q125 33.3 370 | 1.25 | 3.14 | 17543 | 0.73 | 19.98 1.941 34.11
bOm-dvh-q125 333 112 | 125 | 2.38 | 175.19 | 0.65 | 17.93 1.906 | 29.60
bOh-dv1-q125 111 0.112 | 1.25 | 2.26 | 174.61 | 0.66 | 18.89 1720 | 47.66
bOh-d1-q125 111 0.370 | 1.25 | 2.39 | 174.59 | 0.66 | 19.93 1.695 4321
bOh-dm-q125 111 112 | 125 | 2.39 | 17459 | 0.62 | 21.16 1.673 39.59
bOh-dh-q125 111 370 | 1.25 | 2.64 | 17429 | 0.80 | 19.19 1.639 34.65
bOh-dvh-q125 111 112 | 125 | 2.01 | 173.94 | 0.70 | 17.60 1.600 | 29.72
bOvh-dvl-q125 | 333 0.112 | 1.25 | 2.27 | 173.35 | 0.76 | 20.15 1438 | 47.25
bOvh-d1-q125 333 0.370 | 1.25 | 2.27 | 17335 | 0.71 | 21.59 1.413 42.81
bOvh-dm-q125 333 112 | 1.25 | 2.02 | 172.88 | 0.76 | 19.14 1.385 38.40
bOvh-dh-q125 333 370 | 125 | 2.02 | 172.88 | 0.70 | 20.88 1.352 33.71
bOvh-dvh-q125 | 333 112 | 125 ] 2.14 | 172.63 | 0.78 | 20.71 1.321 29.77
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