
MNRAS 000, 1–14 (2024) Preprint 18 March 2025 Compiled using MNRAS LATEX style file v3.2

Observation of discontinuities in the periodic modulation of PSR
B1828−11

Adriana Dias1,★ Gregory Ashton1, Julianna Ostrovska1, David Ian Jones2, Michael Keith3
1Physics Department, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, United Kingdom
2Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
3Department of Physics and Astronomy, Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester M13 9PL, United Kingdom

18 March 2025

ABSTRACT
PSR B1828−11 is a radio pulsar that undergoes periodic modulations (∼500 days) of its spin-down rate and beam width, providing
a valuable opportunity to understand the rotational dynamics of neutron stars. The periodic modulations have previously been
attributed to planetary companion(s), precession, or magnetospheric effects and have several interesting features: they persist
over 10 cycles, there are at least two harmonically related components, and the period is decreasing at a rate of about 5 days
per cycle. PSR B1828−11 also experienced a glitch, a sudden increase in its rotation frequency, at 55 040.9 MJD. By studying
the interaction of the periodic modulations with the glitch, we seek to find evidence to distinguish explanations of the periodic
modulation. Using a phenomenological model, we analyse a data set from Jodrell Bank Observatory, providing the longest and
highest resolution measurements of the pulsar’s spin-down rate data. Our phenomenological model consists of step changes in
the amplitude, modulation frequency, and phase of the long-term periodic modulation and the usual spin-down glitch behaviour.
We find clear evidence with a (natural-log) Bayes factor of 1486 to support that not only is there a change to these three separate
parameters but that the shifts occur before the glitch. We also present model-independent evidence which demonstrates visually
how and when the modulation period and amplitude change. Discontinuities in the modulation period are difficult to explain if
a planetary companion sources the periodic modulations, but we conclude with a discussion on the insights into precession and
magnetospheric switching.
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1 INTRODUCTION

Pulsars provide a unique astrophysical laboratory to probe physics
at the extreme. One avenue to better understand pulsars is through
the investigation of pulse timing, which may reveal insights into the
properties of the magnetosphere (which emits the observed radiation)
or the interior of the neutron star itself. In this work, we study data
on the spin-down rate of PSR B1828−11 (i.e., the time derivative
of the pulsation frequency), performing a phenomenological model
fit to study features in a new high-resolution data set recorded at
Jodrell Bank Observatory (JBO). This pulsar exhibits several inter-
esting and related phenomena: the timing properties are periodically
modulated with a timescale of ∼500 days and display a characteris-
tic double-harmonic-sinusoid structure. Meanwhile, the pulse shape
rapidly switches between two distinct states, and the proportion of
time spent in each state is also modulated and correlated with the tim-
ing variations. Finally, the modulation period decreases with time,
and the star has undergone a glitch - a sudden spin-up event. This
rich mixture of observations requires a unified explanation. Three
primary model interpretations have been proposed: the presence of
a planet or system of planets orbiting the pulsar, free precession and
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magnetospheric switching. The ultimate goal of this work is to utilise
the new data to constrain these models.

2 PREVIOUS STUDIES OF PSR B1828−11

Bailes et al. (1993) reported the first observations of PSR B1828−11
and hypothesised a planetary explanation, noting that a system of
at least two planets would be required to explain the two harmonics
observed in the timing properties of the star. However, in Stairs et al.
(2000), an extended data set was analysed, covering several cycles
and simultaneously analysing timing properties and the pulse shape
(via an averaged shape parameter ⟨𝑆⟩), finding strong correlations
between the two. Based on this observation, Stairs et al. (2000)
rejected the planetary explanation since it would require the planet,
orbiting at about 1 AU, to interact with the magnetosphere that is
at most a few thousand kilometres. Nevertheless, recent work by
Liu et al. (2007) studied a quark planetary model and separately Niţu
et al. (2022) conducted a search for planetary companions around 800
pulsars, finding that PSR B1828−11 could, in principle, be explained
with two planetary companions (though they conclude that intrinsic
spin variation is a better-supported explanation).

Instead, Stairs et al. (2000) proposed free precession as the cause
of the periodic modulation. They postulated that the periodicity of
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PSR B1828−11, with harmonically related sinusoids with periods
of ∼ 1000, 500 and 250 days, was resultant from precession of the
spin axis, caused by the misalignment of the angular momentum
and symmetry axis of the star and assuming the star to be non-
spherical. This work was followed by physical models proposed by
Jones & Andersson (2001) and Link & Epstein (2001), where the
authors explored how the variations in the pulse shape and timing of
PSR B1828−11 could be explained by free precession of the star’s
crust causing variations in the magnetic dipole torque angle. They
found the observations could be explained by a star precessing with
a period of ∼ 500 days and a wobble angle of ∼ 3◦, assuming that
the magnetic dipole is nearly orthogonal to the star’s symmetry axis.
This configuration is somewhat special as it means that the dipole cuts
through the equator four times per precession period, producing the
characteristic double-harmonic-sinusoid observations (see Fig. 1).
Moreover, Link & Epstein (2001) fitted the model to the data and
found that an hourglass-type beam geometry was required to explain
the observed ⟨𝑆⟩ data. Further advances of precession include a tri-
axial body with core and blob beam geometry (Akgün et al. 2006)
and the development of a time-varying magnetic field (Rezania, V.
2003).

Following further observations, the free precession interpretation
was challenged in Lyne et al. (2010). Most notably, they highlight that
the time-averaging baseline required to measure the spin-down rate
(used in the beam-shape parameter of Stairs et al. (2000)) will obscure
behaviour happening on faster timescales. Following the contempo-
raneous identification of rapid magnetospheric switching phenomena
(see, e.g. the extreme case of PSR B1931+24 Kramer et al. (2006),
where the pulsar switches on and off with correlated changes in its
spin-down rate), the authors proposed that the spin-down and beam-
width variations of PSR B1828−11 could similarly be explained by
a model in which the magnetosphere switches between states in a
quasi-periodic fashion, but that the probability of being in one state
or the other varies on the modulation timescale. This suggestion is
based on the identification (Stairs et al. 2000, 2003) that the pul-
sar exhibits distinct narrower and wider profiles. They explained
that inferred parameters such as the spin-down rate and shape pa-
rameter ⟨𝑆⟩, which use a multiday baseline, average over behaviour
on shorter timescales, revealing the slow time-varying probability
between states but obscuring the rapid switching. To evidence this,
they introduce a new pulse shape parameter,𝑤10, that could be calcu-
lated on individual observations to avoid the longer 100-day baseline
required to measure the spin-down. A further follow-up study of
PSR B1828−11 in Stairs et al. (2019) used additional high-solution
observations from the Parkes and Green Bank Telescopes, which
enabled a detailed study of the pulse-to-pulse behaviour. They con-
firmed that there are only two distinct pulse shapes. By correlating
the ratio of the time spent in each state with the modulation phase,
they further validate the model proposed by Lyne et al. (2010).

A generative model of the switching process was developed in Per-
era et al. (2015) and applied to the PSR B0919+06, which shows a
similar pattern of long-term behaviour to PSR B1828−11. To explain
the characteristic double-harmonic-sinusoid present in the spin-down
rate of B0919+06 with a two-state magnetospheric switching model,
Perera et al. (2015) proposed a four-phase model in which the pulsar
switches between the two states twice per cycle. The characteristic
second (lower) peak arises because the time spent in the state is
shorter than the time-averaging window used to generate the spin-
down data. The authors of Shaw et al. (2022) also report a similar be-
haviour in PSR B0740-28, whose profile exhibits two distinct shapes.
Taking this model, Ashton et al. (2016) compared the precession and
switching hypotheses for PSR B1828−11, analysing the spin-down

and 𝑤10 pulse shape data from Lyne et al. (2010). They augmented
the standard precession model with a variable braking index and in-
cluded a flexible beam profile. Meanwhile, the four-state switching
model proposed by Perera et al. (2015) was applied, additionally
modelling the time-averaging process to predict the spin-down and
connecting each state with a separate beam width 𝑤10. Ashton et al.
(2016) concluded that, based on the models and data under consid-
eration, precession was the favoured explanation.

However, the more recent study of Stairs et al. (2019) points out
that the precession beam-width model applied in Ashton et al. (2016)
is at odds with the observation. Specifically, 𝑤10 varies slowly due to
changes in the line-of-sight view of the radio emission, while the data
demonstrates that it, in fact, varies rapidly between pulses. Neverthe-
less, while the pulse shape model of Ashton et al. (2016) is mistaken,
the precessional explanation of the spin-down is the more parsimo-
nious: it both provides a natural clock and avoids the complicated
four-phase model required to explain the double-harmonic-sinusoid.
Moreover, as pointed out by Jones (2012), it remains plausible that
precession is the clock driving the long-timescale variability. For
example, the spin-down could remain a product of the effects of
precession, while the time-varying wobble of the star could be re-
sponsible for driving the unstable magnetosphere to switch between
quasi-stable states.

We also point out in reviewing Ashton et al. (2016) that the Perera
et al. (2015) four-phase switching model also seems to be at odds with
our new observations. Specifically, in this model, the pulsar switches
rapidly between two distinct spin-down rates but switches twice per
cycle. To produce the double-peaked spin-down rate, the time spent
in one of the states must be shorter than the time-averaging baseline.
It therefore follows that the secondary peak “height” is a function of
the time-averaging baseline. If the baseline is sufficiently short, there
will be a double peak, but the heights will be equal; only the duration
spent in each state will differ.

In Fig. 1, we can compare the data produced using the 100 day base-
line from Lyne et al. (2010) with the higher-resolution data obtained
generated by Keith & Niţu (2023b) using a Fourier-basis Gaussian
process regression (GPR) (described later in Section 3). Notably,
we do not see a variation in the height of the second peak. While
the methods are not directly comparable, the average time between
TOAs in the data analysed by Shaw et al. (2022) was 7 days; since
in Ashton et al. (2016), it was shown that the duration spent in the
short-duration state was approximately 10-20 days, we would there-
fore expect the Keith & Niţu (2023b) inferred spin-down measure-
ments to be more sensitive to the step-changes if the pulsar switches
suddenly and semi-permanently between states as in the Perera et al.
(2015) model. However, this is not the case. Therefore, this observa-
tion is inconsistent with the four-phase switching model and suggests
that whatever mechanism drives the spin-down variations smoothly
varies between the minima and maxima (as previously argued and
demonstrated by Stairs et al. (2019)). To account for this observation,
the four-phase switching model could be modified. Minimally, one
could introduce three distinct states, though this then causes incon-
sistencies with the observation of the beam width, which itself does
not show any evidence of a third state.

The complexity of B1828−11 became more interesting when Ash-
ton et al. (2017) discovered that the modulation period present in the
spin-down data is itself getting shorter, losing about 1 day per 100
days, and identified from the Jodrell bank glitch catalogue (Basu et al.
2021) that the pulsar also experienced a glitch, a sudden increase in
the rotation frequency, at 55 040.9 Modified Julian Day(MJD) (co-
inciding with the end of the data set provided by Lyne et al. (2010)).
Leading models of glitches suggest they provide evidence for a su-
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perfluid component in the core of the star. However, such a superfluid
component is incompatible with precession (Shaham 1977; Jones &
Andersson 2001; Haskell & Jones 2024) since the pinning of the
superfluid would result in a free precession period much shorter than
the observed modulation period of ∼ 500 days, and may also be
expected to be rapidly damped.

The implications of this were discussed in Jones et al. (2017),
where several models tried to tie together the decreasing modula-
tion period with the glitch, making predictions for the subsequent
behaviour. In the main, these predicted that the glitch should pro-
duce changes in the modulation period. However, subsequent anal-
yses Brook et al. (2016); Stairs et al. (2019); Shaw et al. (2022)
have demonstrated that the modulation of the timing properties on a
∼ 500 day timescale continues after the glitch. However, to date, no
quantitative study has been performed to determine if there are any
step changes associated with the glitch.

Very recently, Lower et al. (2025) made a study of radio emis-
sion variability in a sample of 259 pulsars, making two findings of
potential relevance here. Firstly, they found that variations in both
spin-down rate and pulsar profile shape are more common than pre-
viously thought. Secondly, by looking at the set of 45 pulsars that
exhibit quasi-periodic variations in their spin-down date, they found
that the modulation period of the variations was approximately in-
dependent of the spin-period, a result not expected on the basis of
several free precession models described in Jones (2012). This last
point makes the free precession interpretation of quasi-periodic tim-
ing variability less attractive, at least as a common explanation for
all such variable pulsars.

In any case, it remains unclear what mechanism is responsible for
the long-term behaviour of PSR B1828−11. While we can agree that
the magnetosphere switches rapidly between two states and that this
varies coherently on a 500-hundred-day cycle with variations in the
spin-down, we do not yet know “what sets the clock of this cycle?”
“If it is switching between just two states, why is the spin-down
smoothly varying?” and “Why is the modulation period decreasing,
and are there any changes related to the glitch?”

To answer these questions, we revisit the analysis of PSR
B1828−11 using the new high-resolution spin-down data (Keith &
Niţu 2023b). And, to avoid pre-conditioning our interpretation with
a physical model, we apply a phenomenological model to capture
the salient features that may be present in the spin-down rate of
the pulsar. We will model the spin-down rate data for this pulsar
and ascertain whether any step changes occur around the glitch that
changes its spin-down rate or modulation. To consider several pos-
sibilities, we developed three models to describe the spin-down rate
of this pulsar: a model which assumes that a glitch occurred and
that there are changes to the periodic modulations; a model which
assumes that there is no glitch nor changes to the periodic modula-
tion and another one which assumes there is a glitch but no changes
to periodic modulation. We obtained and compared the natural-log
evidence for these three models to understand which one fits the data
more appropriately.

The paper is structured as follows. We first introduce the data set
and methodology in Sections 3 and 4 before describing the mod-
els and the fits to the data in Section 5. Then, in Section 6, we
study the time-period behaviour of the pulsar and compare this with
the features extracted from the model. Finally, we conclude with a
discussion and outlook in Section 7 and 8, respectively.

3 DATA

In this work, we will analyse the open spin-down data published in
Keith & Niţu (2023b) (and available from Keith & Niţu (2023a)),
which was derived using a Fourier-basis GPR on the raw data in
Shaw et al. (2022). Observations were conducted using the 76 m
Lovell telescope and were supplemented with data from the 25 m
“Mark-II” telescope, both located at JBO (Lovell 1957). Data col-
lected before 2009 was centred at 1400 MHz and recorded using a
32 MHz filterbank. After 2009, data collection shifted to being cen-
tred at 1520 MHz and recorded with a 384 MHz filterbank. Detailed
information on data acquisition settings can be found in Shaw et al.
(2022). To transform the acquired data into the spin-down rate anal-
ysed in this paper, Shaw et al. (2022) generated a single pulse profile
for each observation epoch by summing the data across all frequency
channels. The time of arrival (TOA) is obtained by comparing this
integrated pulse profile with a high signal-to-noise profile represent-
ing the observed profile’s expected shape. The TOAs are then fitted
with a timing model (Hobbs et al. 2006), then subtracting this model
from the data results in a timing residual. Finally, the timing residual
is fitted using Fourier-basis GPR and from this, the second derivative
of the spin-down ¤𝜈 is extracted (see Keith & Niţu (2023b) for further
details).

Previous studies on PSR B1828−11, i.e. in Ashton et al. (2017),
utilised a smaller dataset spanning 5280 days between 49 710 MJD
and 54 980 MJD, which ended before the glitch occurred. This dataset
had 755 TOAs, and the spin-down rate was obtained by applying a
timing model to a sliding window of duration 100 days over the data
(Lyne et al. 2010). In contrast, the Keith & Niţu (2023b) dataset used
in this paper spans 8615 days between 49 202 MJD and 57 817 MJD,
encompasses the glitch event, and has better resolution. Fig. 1 il-
lustrates the differences between these datasets, with the old dataset
shown in orange, the newer dataset in blue and the glitch time marked
by a vertical black dotted line.

4 DATA ANALYSIS METHODOLOGY

This section provides a brief overview of the Bayesian methodology
we use to analyse the data under a set of phenomenological models.
(For a general introduction, see, e.g. Carlin et al. (2013).)

Bayes theorem aims to solve the inverse problem: what can be
learnt about model 𝑀 and its associated parameters 𝜗, based on data
d? This can be described by Equation 1:

𝑝(𝜗 |d, 𝑀) = L(d|𝜗, 𝑀)𝜋(𝜗 |𝑀)
Z(d|𝑀) , (1)

where 𝑝(𝜗 |d, 𝑀) is the posterior probability distribution of the pa-
rameters 𝜗 given the data and the model; L(d|𝜗, 𝑀) is the likelihood
function of the data, given the parameters and the model; 𝜋(𝜗 |𝑀) is
the prior probability distribution, associated with the set of model pa-
rameters; and Z(d|𝑀) is the evidence for the data, given the model,
and can be calculated from Z(d|𝑀) =

∫
𝜗
L(𝑑 |𝜗, 𝑀)𝜋(𝜗 |𝑀)𝑑𝜗.

We will use the Bilby Bayesian inference library (Ashton et al.
2019) to draw samples from the posterior probability density and
estimate the evidence using the nested sampling algorithm (Skilling
2004), specifically, the dynesty sampler (Speagle 2020; Koposov
et al. 2024). Nested sampling enables efficient exploration of the
multi-modal and higher-dimensional space we will explore, produc-
ing a set of samples approximating the posterior 𝑝(𝜗 |d, 𝑀) and an
estimate of the evidence Z(𝑑 |𝑀) which we will use for model com-
parisons.
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Figure 1. Comparison between Lyne et al. (2010) (in orange) and Keith & Niţu (2023b) (in blue, used in this work) datasets of spin-down rate, with respect to
time in MJD. The black dashed vertical line highlights the glitch time for PSR B1828−11.

In contrast to previous works that used Bayesian analyses, through-
out this work, we will use ‘slab-and-spike’ priors (Malsiner-Walli &
Wagner 2016). These comprise a slab, usually a standard prior dis-
tribution, such as a uniform or a normal distribution prior, and a
Dirac spike at a fixed location. We use these in our phenomenologi-
cal model as a means to marginalise over the model dimensionality
without requiring the implementation of a transdimensional sampler
(Green 2003). Consider a polynomial of degree 𝑁 with coefficients
𝑎𝑖 with 𝑖 ∈ [0, 𝑁] as a generic example. A naive analysis may ap-
ply a Bayesian analysis to each degree, treating each as a separate
“model”; a transdimensional sampler improves on this by including
𝑁 as a model parameter, enabling automatic marginalisation over
the model size. However, implementation is often domain-specific
(though see Tong et al. (2024)). Instead, slab-spike priors can be used
with regular stochastic samplers when the models are nested (e.g. in
the polynomial case, a model of degree 𝑁 is equivalent to a model
with degree 𝑁 − 1 with the parameter 𝑎𝑁 fixed to zero). By placing
the spike at the point that recovers the simpler model (e.g. 𝑎𝑖 = 0),
higher-dimensional models can be explored with the sampler finding
posteriors equal to zero for higher-dimensional parameters that don’t
improve the fit.

5 DEFINING AND FITTING MODELS

In this section, we define three phenomenological models of the sec-
ular spin-down and periodic modulations to fit the data in Fig. 1. For
all three models, the secular part encodes a standard expansion of 𝑁𝑠
frequency derivatives, and the periodic modulations utilise a sinusoid
with 𝑁𝑐 harmonically related components. Within each sinusoidal
term, the phase follows an expansion up to the 𝑁 𝑓 phase-derivate
to capture the slow changes to the modulation period observed in
Ashton et al. (2017). We start with the most general model, referred
to as Model: S + P, which allows independent step changes in the
secular spin-down and periodic modulation. We also explore two
subsets of the S+P model: one which assumes that there is no glitch
nor changes to the secular spin-down or the periodic modulation

(Model: no-glitch) and another one which assumes a step change
only in the secular spin-down (Model: S). These subset models allow
us to probe the significance of changes in the periodic modulation
relative to the other step changes. For each model, we discuss the the-
oretical reasoning first, then explain the choice of priors and, finally,
the inferred posteriors.

5.1 Model: S+P

In this section, we define and apply a model in which a glitch oc-
curs (modelled by an instantaneous change in the spin-down rate
accompanied by a transient decay) and that there are also instanta-
neous changes to the features of the periodic modulation. We model
changes to the features of the periodic modulations as step functions
and allow a step change in each component separately.

To develop a full generative model, first we define 𝑡′ = 𝑡−𝑡0, where
𝑡 is the MJD of the observed data and 𝑡0 is the MJD of a reference
time (55 372 MJD as quoted in Parthasarathy et al. (2019)). We then
write the spin-down rate as:

¤𝜈(𝑡) =
𝑁𝑠−1∑︁
𝑖=0

¤𝜈𝑖
𝑖!

[
1 + 𝐻

(
𝑡′ − 𝑡 𝜉𝑠

) (
𝜉
𝑝

𝑖
+ 𝜉𝑡𝑖 𝑒

− 𝑡′−𝑡 𝜉𝑠
𝜏𝑖

)]
Δ𝑡𝑖

+
𝑁𝑐∑︁
𝑗=1

𝐴 𝑗
[
1 + 𝐻 (𝑡′ − 𝑡𝜂𝑠 )𝜂 𝑗

]
· cos

(
𝑗𝜙 (𝑡) + Δ𝜙 𝑗

(
1 + 𝐻 (𝑡′ − 𝑡 𝛿𝑠 )𝛿 𝑗

))
, (2)

where the phase is given by

𝜙(𝑡) = 2𝜋
𝑁 𝑓 −1∑︁
𝑘=0

1
𝑘!
𝑓𝑘

(
1 + 𝐻 (𝑡′ − 𝑡𝜒𝑠 )𝜒𝑘

)
Δ𝑡𝑘+1 . (3)

The key components of this model are: ¤𝜈𝑖 , the 𝑖th coefficient of
the spin-down expansion, ¤𝜈𝑖 = 𝑑 (𝑖) ¤𝜈

𝑑𝑡 (𝑖)
; 𝐴 𝑗 , the 𝑗 th cosine compo-

nent coefficient (amplitude); Δ𝜙 𝑗 , the phase-offset of the 𝑗 th cosine
component and 𝑓𝑘 , the 𝑘th derivative of the modulation frequency.
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Within this model, the parameters 𝑁𝑠 , 𝑁𝑐 and 𝑁 𝑓 define the max-
imum number of components included in the model. Ideally, we
would like to marginalise over these parameters (e.g. using a trans-
dimensional sampler). However, in practice, we will use a maximum
value and then apply slab-spike priors. To determine the maximum
value, we analysed the data using the S+P model, incrementing each
maximum until no improvement in the fit was found (as quantified
by the change in the Bayesian natural-log evidence). Using this ap-
proach, we selected maximum values of 𝑁𝑠 = 3, 𝑁𝑐 = 8 and 𝑁 𝑓 = 2;
the choice of upper-limit on the number of frequency components is
consistent with the frequency range of the Fourier-basis GPR used
to generate the data (Keith & Niţu 2023b). To confirm these were
sufficiently large, we then verified that the amplitude parameter of
the largest component had the maximum posterior support at zero
(see Table A1); in other words, the model preferred a simpler model,
and our results are robust to increases in the maximum values.

To model the step changes in each component of Equations 2 and
3, we utilise a Heaviside step function multiplying a dimensionless
relative amplitude for the spin-down 𝜉 𝑝 , the amplitude 𝜂, modulation
phase 𝛿 𝑗 and modulation frequency 𝜒𝑘 . There is one step-change per
summation term, but all parameters in a given set have a single
associated time (i.e. 𝑡 𝜉𝑠 , 𝑡𝜂𝑠 , 𝑡 𝛿𝑠 , and 𝑡𝜒𝑠 ) such that, e.g. all spin-down
changes happen at the same time. For the changes to the secular
spin-down rate, following standard approaches to modelling glitches
(see, e.g. Lorimer & Kramer (2005)), there is a permanent offset
𝜉 𝑝 and an exponentially-decaying transient term 𝜉𝑡 with associated
time-scale 𝜏. However, the transient component is only non-zero for
the zeroth-order term as set by the priors discussed shortly.

The modulation component of the model follows a harmonic-
sinusoid form with an amplitude 𝐴 𝑗 , harmonic phase 𝑗𝜙(𝑡) (where
𝜙(𝑡) is the standard phase expansion), and phase offset Δ𝜙 𝑗 . The
harmonic coefficient 𝑗 multiplies the phase in the argument of the
cosine but does not multiply the phase offset. This prevents degen-
eracies in the solution as Δ𝜙 ∈ [0, 2𝜋] while still exploring the entire
parameter space.

Priors We list the complete set of priors used in Table A1. For many
parameters, we use a uniform prior, choosing a suitable range to cover
the expected behaviour (and check where performed to ensure the
range did not arbitrarily limit the model fit). We then augment several
of these with slab-spike priors emulating a transdimensional sampler.

For the glitch time parameter 𝑡 𝜉𝑠 affecting the secular spin-down,
we apply a prior width ranging ± 50 days around the 55 040.9 MJD
based on the recorded glitch time (Basu et al. 2021). Meanwhile, for
the other step-change time parameters, we sample in an offset time
relative to 𝑡 𝜉𝑠 : that is we define Δ𝑡𝛼𝑠 = 𝑡𝛼𝑠 − 𝑡 𝜉𝑠 for 𝛼 ∈ {𝜒, 𝛿, 𝜂}
and then apply a uniform prior on Δ𝑡

𝜒
𝑠 , Δ𝑡 𝛿𝑠 and Δ𝑡

𝜂
𝑠 from −5000 to

2000 days.
For ¤𝜈0, we apply a wide prior ranging from the minimum to the

maximum values of the observed spin-down data shown in Fig. 1,
i.e. from −2.74 × 10−3 to −2.72 × 10−3days−2. For all higher-order
derivatives of ¤𝜈0, we set a uniform prior on an arbitrary range and
verify the choice of the prior range has no impact on the analysis.

For 𝜉0
𝑝 and 𝜉0

𝑡 , we set a uniform prior with a range ±0.01 and
again verify this arbitrary range is sufficiently broad. For 𝜏, we apply
a uniform prior between 0 and 500 days, ensuring the relaxation time
is positive while choosing an arbitrarily large upper value.

The amplitude terms, 𝐴 𝑗 , are given prior distributions ranging
from 0 to 10−5; while a negative amplitude is, in principle, physical,
this would introduce degeneracy with the phase term. The modula-
tion phase offset terms are given a uniform prior on −𝜋 to 𝜋. For

the step-change parameters, we apply a uniform prior from −1 to 1
for 𝜒 𝑗 ; we set a uniform prior on −1 to 1; this enables direct inter-
pretation of the posterior without concern about the effects of the
prior. However, for 𝜂 𝑗 and 𝛿 𝑗 , we found that with a uniform prior,
the sampler failed to robustly identify the maximum-posterior mode
(occasionally getting stuck in islands with lower posterior support
with larger relative changes. Therefore, we instead apply a standard
normal prior such that the prior maximum is zero while setting a
scale for expected instantaneous changes, which suppresses order-
of-magnitude increases in the amplitude and phase term.

The phase, as seen in Equation 3, contains kth derivatives of the
modulation frequency. The base modulation period is estimated to
be ∼ 460 days, although as it is shown in Fig. 10 this modulation
period varies from 489 days to 435 days throughout the entire data
range. Thus, we set the prior range of 𝑓0 to a range which includes
the base modulation frequency, i.e. 1

460 Hz. The other 𝑓𝑘 terms have
an arbitrary factor of 104+𝑘 applied to the modulation frequency.

Results We summarise the posterior distributions in Table A4,
which contains the median ± standard deviation values. Fig. 2a
presents the spin-down rate data (in blue) together with the maxi-
mum posterior estimate solution of the model (in red) and an orange
dashed line showing the secular component of the model alone (i.e.
without the periodic modulation) from which we see the analysis
identified an exponential recovery present after the glitch. Addition-
ally, four vertically shaded 99% quantile regions are shown, which
relate to each of the step-change time parameters, with 𝑡 𝜉𝑠 shown
in blue, 𝑡𝜂𝑠 shown in yellow, 𝑡 𝛿𝑠 shown in green and 𝑡𝜒𝑠 shown in
red. A detailed description of the results of the glitch step change is
presented in Section 5.2.

In Fig. 2b, we visualise the residuals obtained by subtracting the
model from the data alongside the 90% interval generated by sam-
pling model draws from the posterior distribution before subtracting
for the residual. We note that, while the broad fit to the data is good,
the residual still displays some structure, suggesting further improve-
ments to our phenomenological model are possible.

5.2 Interpreting the step-changes in inferred parameter for
Model S+P

We find that the posterior distribution of 𝑡 𝜉𝑠 has a posterior width of
∼ 6 days at the 99% credible interval (see Fig. 3), with a maximum
posterior value of 55049,∼ 9 days apart from the recorded glitch time
of PSR B1828−11 (shown as a vertical dashed line in Fig. 2a). This
difference likely arises from the fact that we are estimating the glitch
time from the spin-down rate whereas the glitch time is estimated
from the full phase evolution.

For the secular spin-down, we measure the spin-down and its
first two derivatives with values consistent with those known in the
literature. We also measure a third-order derivative that while non-
zero, contained zero at 3 standard deviations. Fig. 2a shows that the
model has recovered the step-change and transient recovery observed
on the data (which has an inferred timescale of 121 ± 14 days). We
do not allow for step changes in the spin-down derivatives and there
is no evidence from the residuals to suggest these are required.

For the periodic modulations, we identify 8 non-zero harmonic
components, a significant change relative to the 2 harmonic compo-
nents that have been fitted to the data before (see, e.g. Stairs et al.
(2019); Ashton et al. (2016)). The impact of these higher-order terms
can be observed directly in Fig. 1: looking at the trailing edge after
each of the successive maxima, we can identify in the data a short

MNRAS 000, 1–14 (2024)



6 A. Dias et al.

(a)

(b)

Figure 2. 2a shows the spin-down rate data, in blue, together with the maximum posterior estimate solution of Model S+P, in red, which uses the parameters
with the highest posterior probability. An orange dotted line shows the spin-down rate component of the model without the modulation cosine components.
The glitch time is represented by a black dashed vertical line. Four vertical shaded 99% quantile regions are shown, which relate to each of the 𝑡𝑠 step-change
parameters, with 𝑡 𝜉𝑠 (the step in spin-down rate) shown in blue, 𝑡𝜂𝑠 (the step in modulation amplitude) shown in yellow, 𝑡 𝛿𝑠 (the step in modulation phase) shown
in green and 𝑡𝜒𝑠 (the step in modulation frequency) shown in red. 2b shows the residuals, as a line in blue, obtained by subtracting Model S+P from the data.
The blue shaded area around the data shows the 90% quantile region. Here, a black dashed vertical line also indicates the glitch time.

plateau; this was present in the original data set (Lyne et al. 2010),
but is distinct in the newer higher-resolution data analysed in this
work. In Fig. 2a, we see the corresponding behaviour of the higher-
order terms in the harmonic expansion fitting this feature (this is also
present in fits of the no-glitch model as well, c.f. Fig. 8a).

From our analyses, we also identify that a shift in the modulation
amplitude occurs at 𝑡𝜂𝑠 = 54 316.34 MJD before the glitch occurs.
To visualise the posterior distributions, in Figures 4 and 5, we plot
the posterior distribution for the amplitudes 𝐴[1−9] and relative am-
plitude changes 𝜂[1−9] , respectively. Notably, the first component
undergoes a ∼ 20% decrease in amplitude while the second compo-
nent increases by about the same amount. These two components are

the leading order, and the impact can be seen by comparing the fit
before and after the glitch in Fig. 2a.

We find that at the highest-order component (i.e. 𝐴9 and 𝜂9), the
posterior peak is at zero, justifying that our choice of N is sufficiently
large. However, while this suggests the existence of multiple higher-
order harmonics (above the 2 fitted in previous works), we do note
that this could arise from the GPR methodology used to infer the
spin-down rate (Keith & Niţu 2023b).

We also find evidence for a distinct step-change in the modulation
phase at 𝑡 𝛿𝑠 = 50 622.26 MJD. However, by eye, it is difficult to
distinguish in Fig. 2a what feature this is fitting: there is no clear
discontinuity in the phase at this time.
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Figure 3. Posterior distribution, shown in orange, for the 𝑡 𝜉𝑠 parameter that
gives the time of the glitch as found in our Model S+P. The 99% quantile
region is shown in blue and the previously reported glitch time of PSR
B1828−11 is represented by the vertical dashed black line.

Figure 4. Posterior probability distribution for the 𝐴 𝑗 parameters inferred
from fitting Model S+P.

We recover a modulation frequency and non-zero first deriva-
tive consistent with values already reported in the literature (Ashton
et al. 2017). Our model is also sensitive to a second derivative not
previously explored – Fig. 6. However, the posterior distribution is
consistent with zero, i.e. we do not find any evidence for a second
derivative of the modulation period. We find evidence for a distinct
step change in the modulation frequency at 𝑡𝜒𝑠 = 53 615.11 MJD,
some 1434 days before the glitch time 𝑡 𝜉𝑠 (55 048.92 MJD). The
posterior distributions show that the modulation period and its first
derivative experience fractional shifts of 3.92×10−4 and 8.07×10−1,
respectively. To visualise this behaviour, in Fig. 7, we plot the inferred
modulation period as a function of time.

To test the significance of our discovery that the modulation fre-
quency, phase, and component amplitudes change at disjoint times
spanning nearly the entire dataset, we repeat the analysis but restrict
the prior distributions on the times of the step-changes to +/−50 days,
centred on the reported glitch time. We find that the Bayes factor

Figure 5. Posterior probability distribution for the 𝜂 𝑗 parameters inferred
from fitting Model S+P. Note 𝜂5 and 𝜂6 are bimodal distributions with a
mode at zero and a non-zero mode.

between the full model and this restricted analysis is decisively in
support of the full model with a natural-log Bayes factor of 877.

5.3 Model subsets

To probe the relative importance of different features of the S +
P model, we now explore two model subsets. First, a model which
assumes that there is no glitch nor changes to the periodic modulation
(Model no-glitch) and then a model which includes a step change
only in the secular spin-down (Model S).

For Model no-glitch, we modify Eqn 2 and 3 removing the step
changes leading to

¤𝜈(𝑡) =
𝑁𝑠−1∑︁
𝑖=0

¤𝜈𝑖
𝑖!
Δ𝑡𝑖 +

𝑁𝑐∑︁
𝑗=1

𝐴 𝑗 cos
(
𝑗𝜙(𝑡) + Δ𝜙 𝑗

)
, (4)

and

𝜙(𝑡) = 2𝜋
𝑁 𝑓 −1∑︁
𝑘=0

1
𝑘!
𝑓𝑘Δ𝑡

𝑘+1 . (5)

Meanwhile, for Model S, which assumes a step-change at the glitch
for the spin-down rate, we include a step change only in the secular
part of the spin-down, i.e.:

¤𝜈(𝑡) =
𝑁𝑠−1∑︁
𝑖=0

¤𝜈𝑖
𝑖!

[
1 + 𝐻

(
𝑡′ − 𝑡 𝜉𝑠

) (
𝜉
𝑝

𝑖
+ 𝜉𝑡𝑖 𝑒

− 𝑡′−𝑡 𝜉𝑠
𝜏𝑖

)]
Δ𝑡𝑖

+
𝑁𝑐∑︁
𝑗=1

𝐴 𝑗 cos
(
𝑗𝜙(𝑡) + Δ𝜙 𝑗

)
, (6)

with

𝜙(𝑡) = 2𝜋
𝑁 𝑓 −1∑︁
𝑘=0

1
𝑘!
𝑓𝑘Δ𝑡

𝑘+1 . (7)

Model results The procedure described in Section 5.1 was applied
to both model subsets, from how the priors were defined to how the
posterior distributions were obtained. Tables A2 and A3 list the full
set of priors, for Model no-glitch and Model S, respectively. The
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Figure 6. Posterior probability distribution for the modulation frequency terms, 𝑓𝑘 , and 𝜒𝑘 , which represent their step change, for Model S+P.

Figure 7. Modulation period vs MJD, for Model S+P. The red vertical line
indicates the 𝑡𝜒𝑠 glitch time parameter, and the black dotted line indicates the
glitch time.

choice of priors was the same as the ones presented in Section 5.1 for
Model S+P, but no glitch-related parameter priors and no modulation

change-related parameter priors were included, for Model no-glitch
and Model S, respectively.

These subsets were obtained with 𝑁𝑠 = 4, 𝑁𝑐 = 9 and 𝑁 𝑓 = 3 and
Tables A5 and A6 show that 𝑓2, 𝐴9 and ¤𝜈3 have maximum posterior
probability values consistent with 0 within 1 𝜎, as was previously
noted in Model S+P. Model no-glitch and Model S returned natural-
log evidences of – 68 308.4 ± 0.2 and 68 445.6 ± 0.2, respectively,
lower than what was obtained for Model S+P (69 931.9 ± 0.2).

Figures 8a and 9a present the spin-down rate data (in blue) to-
gether with the maximum posterior estimate solution of the model
(in red), which uses the parameters with the highest posterior proba-
bility, for Model no-glitch and Model S, respectively. These subset
models were not able to capture the changes in the spin-down rate, in
particular the transient recovery, that occurred after the glitch. This
is evident in these figures but also in Figures 8b and 9b, which show
the residuals obtained by subtracting Model no-glitch and Model S
from the data, respectively. By comparing these figures with Fig. 2b,
we can see that Model no-glitch and Model S are unable to cap-
ture the changes occurring on the data after the glitch, in the region
between 55 000 and 56 000 MJD.

Discussion The model subsets perform poorly relative to Model
S+P in modelling the observed spin-down rate of PSR B1828−11.
This is evidenced by the residual plots, which show larger deviations
from zero and clear structures indicating specific instances where
they fail, such as the transient recovery after the glitch, as addressed in
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(a)

(b)

Figure 8. Figure similar to Fig. 2 showing the 8a spin-down rate data together with the maximum posterior estimate solution of the model; and the 8b residuals,
for Model no-glitch.

the previous section. Moreover, we can perform a quantitative model
comparison using the estimated natural-log evidence. In Table 1, we
calculate the natural log-Bayes factors (𝑙𝑛(𝐾)) demonstrating that
S+P model is decisively preferred (e.g. using the interpretation from
Kass & Raftery (1995)). It is of note that the 𝑙𝑛(𝐾) value obtained
from Models S+P and S is lower than that obtained from Models
S+P and no-glitch. Since the models are nested, the S+P vs S Bayes
factor can be compared to the S vs no-glitch Bayes factor to assess
the relative importance of the secular glitch and the step changes in
the periodic modulation. Since the former is larger than the latter,
this implies that for the spin-down data, the step changes in the
modulation period are more significant than the secular changes.

Table 1. Tabulated ln Bayes factor, 𝑙𝑛(𝐾 ) , calculated for a comparison
between Model S+P and the other models.

Model A Model B ln(K)
S+P no-glitch 1623.60
S+P S 1486.34

6 COMPARING WITH MODEL-INDEPENDENT
VISUALISATIONS

In Ashton et al. (2017), we introduced a time-period plot to study
how the modulation period varies across the observed data span. We
now build on this concept in order to understand the implications
of the S+P model inferences. First, we fit and subtract a first-order
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(a)

(b)

Figure 9. Figure similar to Fig. 2 showing the 9a spin-down rate data together with the maximum posterior estimate solution of the model; and the 9b residuals,
for Model S.

polynomial from the raw spin-down rate data. This ensures only the
periodic modulations remain, and any information on the average
spin-down rate or the second-order spin-down rate is removed. We
then plot the Lomb-Scargle periodogram (Lomb 1976; Scargle 1982)
applied in a sliding window with a stride length of 1500 days. We var-
ied this stride length, balancing long-duration windows that reduce
the uncertainty on the estimation of the period with short-duration
windows that increase the resolution in time.

We find three modes in the spectrum: a primary mode at∼ 460 days
(taking a reference epoch of 50 000 MJD, the start of the data) and
two smaller ones at ∼ 250 days and ∼ 170 days. The 460 days and
250 days modes have been modelled in Niţu et al. (2022) and Ashton
et al. (2017); the authors of Stairs et al. (2000) stated that there was a

strong indication for the presence of a third mode at ∼ 167 days and
Rezania, V. (2003) confirmed the existence of this third harmonic.

We add to Fig. 10 horizontal lines denoting the epoch of the time
parameters obtained by the data fit shown in Fig. 2a. We also add
white dashed lines to represent the three modulation periods and
evolution of the three harmonic modes obtained by the fit on the
spin-down rate data. They match the modulation periods obtained
from the data. Higher derivatives of the modulation period obtained
from the model are not displayed, as the Lomb-Scargle periodogram
reveals no additional modes beyond those already presented.

From Fig. 10, we can clearly identify that the modulation period
is decreasing over time and continues to do so after the glitch at
approximately the same rate. If we compare the modulation period
value obtained for the major mode for the first and the last slid-
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Figure 10. Modulation period spectrum of the spin-down rate residuals over a sliding window of 1500 days, on the x-axis, as a function of the mid-point
timestamp for each window, on the y-axis. The z-axis shows the Spectral Amplitude. The horizontal lines represent the glitch and step change time parameters
(at their exact inferred times) obtained by Model S+P and are superimposed upon this figure for comparison purposes. 𝑡 𝜉𝑠 , in blue, represents the glitch time
parameter; 𝑡𝜂𝑠 , in yellow (dashed), represents the step change time parameter related to a change in amplitude; 𝑡𝜒𝑠 , in red (dotted), represents the step change
time parameter related to a change in modulation frequency and 𝑡 𝛿𝑠 , in green (dotted dashed), represents the step change time parameter related to a change in
phase offset. The vertical dashed white lines represent three modulation period modes returned by Model S+P.

ing window, we can see that the modulation period has decreased
from 489 days to 435 days. From the Lomb-Scargle periodogram we
can extract the maximum values and perform a linear regression
across the entire dataset, as well as before and after the glitch. This
calculation returned a rate of change of the modulation period of
∼ −0.011 s/s, consistent with the values previously calculated in
Ashton et al. (2017) on the shorter pre-glitch data (see Fig. 1). Ad-
ditionally, we observe that before the glitch, the modulation period
changes at a rate of ∼ −0.010 s/s. After the glitch, this rate increases
to ∼ −0.014 s/s, indicating that the modulation period is decreasing
more rapidly post-glitch.

Another noticeable feature is the change of maximum spectral
amplitude occurring at the same 𝑡𝜂𝑠 reported by the model, indicated
by the line in yellow. A decrease in the spectral amplitude occurs
at 𝑡𝜂𝑠 for the first modulation period mode, while the second mod-
ulation period mode sees an increase. This is also consistent with
the inferences made from Model S+P. Finally, a shift in the modu-
lation period and frequency is observed at 𝑡𝜒𝑠 , matching the model,
indicated by the line in red. After this point, the modulation period

temporarily shifts to the right, indicating an increase. Subsequently,
it resumes its continuous decrease for the remainder of the data range.
This behaviour aligns with the model results depicted in Fig. 7.

7 DISCUSSION

In this work, we analyse a newly available high-resolution and ex-
panded data set containing the spin-down rate of PSR B1828−11. The
longer data set contains several cycles of observations after the pul-
sar glitch at 55 040.9 MJD. As opposed to previous efforts, in which
physics-informed models were developed to explain the behaviour
of the pulsar, here we apply a phenomenological model. We con-
sidered three models to describe the behaviour of the pulsar: Model
S+P, which considered the existence of a glitch and changes to the
periodic modulation of the star; Model no-glitch, which assumed
that no glitch nor changes to the periodic modulation occurred; and
Model S, which allowed for a glitch but assumed no modulation
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changes. Model S+P was preferred over the other two, as detailed in
Section 5.3, with the Bayes factor values shown in Table 1.

Model S+P was designed to allow for parameter changes at the
glitch, with a preference for no change to occur, by using ‘Slab-and-
spike’ priors. For each component of the model, i.e. the spin-down
rate, the amplitude, the phase-offset and the modulation frequency,
we allowed for a separate parameter recording the time at which the
step occurred, to see if these changes coincided with the glitch time.
This was not the case, with step changes for some parameters being
found to occur before the glitch: a decrease of modulation amplitude,
described by 𝜂1 = -0.175 ± 0.008 was observed for the main mod-
ulation period mode at 𝑡𝜂𝑠 ; a change in modulation frequency was
observed, as seen in Fig. 7, at 𝑡𝜒𝑠 ; all cosine components observed
a change in the phase-offset at 𝑡 𝛿𝑠 . Additionally, we found that the
spin-down rate experienced an exponential recovery after the glitch
𝑡
𝜉
𝑠 .

To add validity to this model, the data was analysed without a
model, as described in Section 6. We obtained a Lomb Scargle pe-
riodogram spectrum from the data. This shows that the modulation
period of the pulsar is decreasing at a rate of ∼ −0.010 s/s before the
glitch and decreasing more rapidly after the glitch (∼−0.014 s/s); the
modulation period modes experienced spectral amplitude changes
before the glitch time; and we visually identify a step change to the
modulation frequency and thus the modulation period, also before
the glitch.

7.1 Interpreting the results in light of astrophysical models

Planetary companions: It is clear already from the correlated
changes in the spin-down and pulse shape that a planetary expla-
nation for the modulations is unlikely. Nevertheless, the observation
of a decreasing modulation period (Ashton et al. 2017) invites recon-
sideration of the planetary explanation, with some coupling torque
between the star and planet(s) yielding the inspiral and explaining the
changing modulation period. However, while no generative model
exists, we feel that any such model would necessarily require the
modulations to arise from the smoothly varying orbital separation
of the planets and star. Therefore, the observation in this work is
that there are distinct instantaneous changes in the modulation seems
difficult to explain with a planetary hypothesis. Moreover, the obser-
vation that there are up to 8 harmonically related sinusoids would
also call for up to 8 planets, following the original arguments that
the two sinusoids correspond to two planets. Once again, this feels
implausible.

Free precession The global difficulties of reconciling free preces-
sion, the decreasing modulation period, and the glitch have already
been discussed in Jones et al. (2017). Here, we can quantify the ob-
servation from Shaw et al. (2022); Stairs et al. (2019) that contrary
to some of the predictions of Jones et al. (2017), the modulations
continue after the glitch, constraining the models connecting the in-
terior of the star to the cause of the modulations. Furthermore, the
observation that there are distinct changes (at different times) in the
modulation amplitude, frequency, and phase adds to the challenge
of interpreting this event in light of free precession. However, the
observation of multiple harmonically related sinusoids offers a new
opportunity to test the model. Namely, in Jones & Andersson (2001),
the precession model used in later works was developed with an
expansion in the small angle 𝜃 between the symmetry axis of the
(assumed biaxial) moment of inertia tensor and the angular momen-
tum. Therefore, a more physically accurate model can be obtained

by either expanding the model to include higher-order terms. Since
the precession model has no additional degrees of freedom left, it
will be interesting to discover if the amplitude coefficients of the
harmonically related sinusoids measured here are consistent with the
predictions of precession, enabling a new test of precession. How-
ever, to explain the observed beam-width data, such a model would
need to be extended as suggested by Stairs et al. (2019) to combine
the long-term precession behavior with quantized profile switches.

Magnetospheric switching There is no single well-defined mag-
netospheric switching model: in a sense, it is a set of observations
rather than a generative model itself. It is, therefore, not straightfor-
ward to connect our observations to such a model. Moreover, since
we are using only the spin-down rate data, we are insensitive to the
rapid switches between states and can only discuss the long-timescale
periodic modulations in this switching rate. Nevertheless, our phe-
nomenological study reveals several insights into whatever process
drives this. First, there is decisive evidence for more than two terms
in the harmonic expansion; this is observable directly by our fit to the
data but also by the non-zero posterior support for these terms. The
amplitude of these terms could provide a way to test mechanisms
for the clock (e.g. as proposed for precession in the previous sec-
tion). Second, we find evidence for distinct changes in the spectral
amplitude of the harmonic sinusoid, with a sudden shift from the
fundamental to the first harmonic. This is interesting as it suggests
another variability mechanism for the periodic modulations. It would
be interesting to study the raw data of PSR B1828−11 to identify if
there are corresponding systematic changes in the beam shape during
this transition (or, indeed, any of the observed step changes).

In Seymour & Lorimer (2013), the authors introduced evidence
that PSR B1828−11 was displaying chaotic behaviour consistent with
a system with 3 governing variables. From this work and further
discussion Stairs et al. (2019), it is proposed that the spin-down
rate and mode transition rate act as two of the governing variables.
However, it is unclear see how this observation can be connected to
a physical process to predict the observed chaotic behaviour.

8 OUTLOOK

The high-quality data released by Niţu et al. (2022) has enabled a
new and detailed study of PSR B1828−11 using the inferred spin-
down rate. Since the end of the data set studied in this work, JBO
has continued observing PSR B1828−11 and we expect there to be
several more cycles to study. Moreover, there are other pulsars which
display similar (if less clear) behaviours. For example, the authors
of Zubieta et al. (2024) have reported on changes to the amplitude
and frequency of PSR J0742−2822 following a glitch. We believe the
tools and techniques developed in this work could be applied to larger
data sets, with the ultimate goal of providing quantitative measures of
the behaviour to help us constrain models. However, one key missing
aspect is that we are studying only the spin-down rate and neglecting
information about the mode-transition rate. Therefore, we believe
further methodological work is needed to develop approaches that
can automate the analysis of pulsars. This would allow the study of
both their rapidly changing beam shape and their long-term timing
properties. We believe this has the capacity to answer long-held
questions about the star’s interaction with its magnetosphere.

The work presented here shows that a model that allows for sudden
step changes in the amplitude, phase and frequency parameters in the
long-term periodicity in the spin-down of PSR B1828−11 is a better
fit to the data than a model that does not allow for sudden step
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changes in these parameters. Significantly, the model locates these
step changes at three different times, all well before the glitch itself.
This is somewhat surprising, and difficult to account for in terms of
a physical model. This suggests that other models of the long-term
periodicity, not based on sudden step changes, may also be worth
exploring.
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Table A2. Prior distributions for Model no-glitch’s parameters. Parameters
with priors denoted with ’SS’ have slab-spike priors applied to them

Prior Units
¤𝜈0 Unif( -2.74×10−3 , -2.72×10−3 ) days−2

¤𝜈1 Unif( -2.73×10−7 , 2.73×10−7 ) days−3

¤𝜈2 Unif( -2.73×10−11 , 2.73×10−8 ) days−4

¤𝜈3 Unif( -2.73×10−15 , 2.73×10−8 ) days−5

𝐴1−9 SS + Unif( 0 , 1.00×10−5 ) -
Δ𝜙1−9 Unif( −𝜋 , 𝜋 ) rad
𝑓0 SS + Unif( 2.11×10−3 , 2.33×10−3 ) days−1

𝑓1 SS + Unif( -2.22×10−7 , 2.22×10−7 ) days−2

𝑓2 SS + Unif( -2.22×10−11 , 2.22×10−11 ) days−3

Table A3. Prior distributions for Model S’s parameters. Parameters with
priors denoted with ’SS + Unif’ have slab-spike priors applied to them

Prior Units
¤𝜈0 Unif( -2.74×10−3 , -2.72×10−3 ) days−2

¤𝜈1 Unif( -2.73×10−7 , 2.73×10−8 ) days−3

¤𝜈2 Unif( -2.73×10−11 , 2.73×10−11 ) days−4

¤𝜈3 Unif( -2.73×10−15 , 2.73×10−15 ) days−5

𝜏 Unif( 0 , 500 ) days
𝑡
𝜉
𝑠 Unif( 54990.90 , 55090.90 ) days
𝜉 0
𝑝 SS + Unif( -0.01 , 0.01 ) days
𝜉 0
𝑡 SS + Unif( -0.01 , 0.01 ) days
𝐴1−9 SS + Unif( 0 , 1.00×10−5 ) -
Δ𝜙1−9 Unif( −𝜋 , 𝜋 ) rad
𝑓0 SS + Unif( 2.11×10−3 , 2.33×10−3 ) days−1

𝑓1 SS + Unif( -2.22×10−7 , 2.22×10−7 ) days−2

𝑓2 SS + Unif( -2.22×10−11 , 2.22×10−11 ) days−3

APPENDIX A: PRIOR DISTRIBUTIONS AND SUMMARY
STATISTICS.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Table A4. Maximum posterior distribution summary, with their standard
deviations, for Model S+P’s parameters

Posterior median(s.d.) Units
¤𝜈0 -2.72739(5)×10−3 days−2

¤𝜈1 9.0(3)×10−10 days−3

¤𝜈2 6(2)×10−14 days−4

¤𝜈3 -2(1)×10−17 days−5

𝜏 121(14) days
𝑡
𝜉
𝑠 55047(3) days
𝜉 0
𝑝 -5(3)×10−5 days
𝜉 0
𝑡 1.23(8)×10−3 days
𝐴1 5.77(3)×10−6 -
𝐴2 4.77(3)×10−6 -
𝐴3 2.03(3)×10−6 -
𝐴4 9.3(3)×10−7 -
𝐴5 7.4(3)×10−7 -
𝐴6 2.0(3)×10−7 -
𝐴7 5.8(3)×10−7 -
𝐴8 2.6(3)×10−7 -
𝐴9 0(1)×10−9 -
𝜂1 -0.175(8) -
𝜂2 0.19(1) -
𝜂3 -0.38(2) -
𝜂4 -0.32(5) -
𝜂5 0(3) -
𝜂6 0.8(4) -
𝜂7 -0.30(9) -
𝜂8 -0.8(1) -
𝜂9 -0.03(7) -
Δ𝜙1 2.30(1) rad
Δ𝜙2 -1.48(2) rad
Δ𝜙3 3.139(9) rad
Δ𝜙4 -0.32(3) rad
Δ𝜙5 1.4(1) rad
Δ𝜙6 -0.6(2) rad
Δ𝜙7 3.13(4) rad
Δ𝜙8 2.7(1) rad
Δ𝜙9 2(2) rad
𝛿1 -0.143(5) -
𝛿2 0.39(1) -
𝛿3 -0.276(6) -
𝛿4 4.4(4) -
𝛿5 -0.59(5) -
𝛿6 3.7(5) -
𝛿7 -0.47(2) -
𝛿8 0(4) -
𝛿9 1.5(7) -
𝑓0 2.1748(3)×10−3 days−1

𝑓1 1.847(7)×10−8 days−2

𝑓2 0(6)×10−16 days−3

𝜒0 3.9(2)×10−4 -
𝜒1 0.81(2) -
𝜒2 0.2(4) -
Δ𝑡

𝜒
𝑠 -1424(4) -

Δ𝑡 𝛿𝑠 -4420(20) -
Δ𝑡

𝜂
𝑠 -740(6) -
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Table A5. Maximum posterior distribution summary, with their standard
deviations, for Model no-glitch’s parameters

Posterior median(s.d.) Units
¤𝜈0 -2.72754(4)×10−3 days−2

¤𝜈1 9.5(2)×10−10 days−3

¤𝜈2 1.8(2)×10−13 days−4

¤𝜈3 3(1)×10−17 days−5

𝐴1 5.27(3)×10−6 -
𝐴2 5.08(3)×10−6 -
𝐴3 1.66(3)×10−6 -
𝐴4 7.1(3)×10−7 -
𝐴5 6.6(3)×10−7 -
𝐴6 2.5(3)×10−7 -
𝐴7 3.7(3)×10−7 -
𝐴8 9(5)×10−8 -
𝐴9 0(3)×10−9 -
Δ𝜙1 2.070(7) rad
Δ𝜙2 -1.875(8) rad
Δ𝜙3 2.53(2) rad
Δ𝜙4 -1.16(5) rad
Δ𝜙5 0.85(5) rad
Δ𝜙6 -1.6(1) rad
Δ𝜙7 2.6(1) rad
Δ𝜙8 3(2) rad
Δ𝜙9 2(2) rad
𝑓0 2.1874(3)×10−3 days−1

𝑓1 2.16(1)×10−8 days−2

𝑓2 0(1)×10−15 days−3

Table A6. Maximum posterior distribution summary, with their standard
deviations, for Model S’s parameters

Posterior median(s.d.) Units
¤𝜈0 -2.72737(7)×10−3 days−2

¤𝜈1 9.2(4)×10−10 days−3

¤𝜈2 9(2)×10−14 days−4

¤𝜈3 -0.03(1)×10−17 days−5

𝜏 74(8) days
𝑡
𝜉
𝑠 55091(2) days
𝜉 0
𝑝 -3.67(4)×10−5 days
𝜉 0
𝑡 2.1037(1)×10−3 days
𝐴1 5.32(3)×10−6 -
𝐴2 5.07(3)×10−6 -
𝐴3 1.67(3)×10−6 -
𝐴4 6.8(3)×10−7 -
𝐴5 6.7(3)×10−7 -
𝐴6 2.3(3)×10−7 -
𝐴7 3.6(3)×10−7 -
𝐴8 1.4(6)×10−7 -
𝐴9 0(4)×10−9 -
Δ𝜙1 2.088(6) rad
Δ𝜙2 -1.853(7) rad
Δ𝜙3 2.57(2) rad
Δ𝜙4 -1.11(5) rad
Δ𝜙5 0.88(5) rad
Δ𝜙6 -1.7(1) rad
Δ𝜙7 2.52(9) rad
Δ𝜙8 3(2) rad
Δ𝜙9 2(2) rad
𝑓0 2.1868(3)×10−3 days−1

𝑓1 2.14(1)×10−8 days−2

𝑓2 0(1)×10−16 days−3

MNRAS 000, 1–14 (2024)


	Introduction
	Previous studies of PSR B1828-11
	Data
	Data Analysis Methodology
	Defining and fitting models
	Model: S+P
	Interpreting the step-changes in inferred parameter for Model S+P
	Model subsets

	Comparing with model-independent visualisations
	Discussion
	Interpreting the results in light of astrophysical models

	Outlook
	Prior distributions and summary statistics. 

