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A B S T R A C T 

PSR B1828 −11 is a radio pulsar that undergoes periodic modulations ( ∼500 d) of its spin-down rate and beamwidth, providing 

a valuable opportunity to understand the rotational dynamics of neutron stars. The periodic modulations have previously been 

attributed to planetary companion(s), precession, or magnetospheric effects and have several interesting features: they persist 
o v er 10 cycles, there are at least two harmonically related components, and the period is decreasing at a rate of about 5 d per 
cycle. PSR B1828 −11 also experienced a glitch, a sudden increase in its rotation frequency, at 55040 . 9 MJD . By studying the 
interaction of the periodic modulations with the glitch, we seek to find evidence to distinguish explanations of the periodic 
modulation. Using a phenomenological model, we analyse a data set from Jodrell Bank Observatory, providing the longest and 

highest resolution measurements of the pulsar’s spin-down rate data. Our phenomenological model consists of step changes in 

the amplitude, modulation frequency, and phase of the long-term periodic modulation and the usual spin-down glitch behaviour. 
We find clear evidence with a (natural-log) Bayes factor of 1486 to support that not only is there a change to these three separate 
parameters but that the shifts occur before the glitch. We also present model-independent evidence which demonstrates visually 

how and when the modulation period and amplitude change. Discontinuities in the modulation period are difficult to explain if 
a planetary companion sources the periodic modulations, but we conclude with a discussion on the insights into precession and 

magnetospheric switching. 

Key words: stars: neutron – pulsars: general – pulsars: individual: PSR B1828 −11. 
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 I N T RO D U C T I O N  

ulsars provide a unique astrophysical laboratory to probe physics 
t the extreme. One avenue to better understand pulsars is through 
he investigation of pulse timing, which may reveal insights into the 
roperties of the magnetosphere (which emits the observed radiation) 
r the interior of the neutron star itself. In this work, we study data
n the spin-down rate of PSR B1828 −11 (i.e. the time deri v ati ve of
he pulsation frequency), performing a phenomenological model fit 
o study features in a new high-resolution data set recorded at Jodrell
ank Observatory (JBO). This pulsar exhibits several interesting and 

elated phenomena: the timing properties are periodically modulated 
ith a time-scale of ∼500 d and display a characteristic double- 
armonic-sinusoid structure. Meanwhile, the pulse shape rapidly 
witches between two distinct states, and the proportion of time 
pent in each state is also modulated and correlated with the timing
ariations. Finally, the modulation period decreases with time, and 
he star has undergone a glitch – a sudden spin-up event. This
ich mixture of observations requires a unified explanation. Three 
rimary model interpretations have been proposed: the presence of 
 planet or system of planets orbiting the pulsar, free precession, and
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agnetospheric switching. The ultimate goal of this work is to utilize
he new data to constrain these models. 

 P R E V I O U S  STUDIES  O F  PSR  B 1 8 2 8  −1 1  

ailes et al. ( 1993 ) reported the first observations of PSR B1828 −11
nd hypothesized a planetary explanation, noting that a system of 
t least two planets would be required to explain the two harmonics
bserved in the timing properties of the star. Ho we ver, in Stairs,
yne & Shemar ( 2000 ), an extended data set was analysed, co v ering
ev eral c ycles and simultaneously analysing timing properties and 
he pulse shape (via an averaged shape parameter 〈 S〉 ), finding strong
orrelations between the two. Based on this observation, Stairs et al.
 2000 ) rejected the planetary explanation since it would require the
lanet, orbiting at about 1 au, to interact with the magnetosphere that
s at most a few thousand kilometres. Nevertheless, recent work by
iu, Yue & Xu ( 2007 ) studied a quark planetary model and separately
i t ¸u et al. ( 2022 ) conducted a search for planetary companions

round 800 pulsars, finding that PSR B1828 −11 could, in principle,
e explained with two planetary companions (though they conclude 
hat intrinsic spin variation is a better-supported explanation). 

Instead, Stairs et al. ( 2000 ) proposed free precession as the cause
f the periodic modulation. They postulated that the periodicity of 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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M

Figure 1. Comparison between Lyne et al. ( 2010 ) (in the foreground) and Keith & Ni t ¸u ( 2023b ) (in the background, used in this work) data sets of spin-down 
rate, with respect to time in MJD. The dashed vertical line highlights the glitch time for PSR B1828 −11. 
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SR B1828 −11, with harmonically related sinusoids with periods
f ∼1000, 500, and 250 d, was resultant from precession of the
pin axis, caused by the misalignment of the angular momentum
nd symmetry axis of the star and assuming the star to be non-
pherical. This w ork w as followed by physical models proposed by
ones & Andersson ( 2001 ) and Link & Epstein ( 2001 ), where the
uthors explored how the variations in the pulse shape and timing
f PSR B1828 −11 could be explained by free precession of the
tar’s crust causing variations in the magnetic dipole torque angle.
hey found the observations could be explained by a star precessing
ith a period of ∼500 d and a wobble angle of ∼3 ◦, assuming

hat the magnetic dipole is nearly orthogonal to the star’s symmetry
xis. This configuration is somewhat special as it means that the
ipole cuts through the equator four times per precession period,
roducing the characteristic double-harmonic-sinusoid observations
see Fig. 1 ). Moreo v er, Link & Epstein ( 2001 ) fitted the model to the
ata and found that an hourglass-type beam geometry was required
o explain the observed 〈 S〉 data. Further advances of precession
nclude a tri-axial body with core and blob beam geometry (Akg ̈un,
ink & Wasserman 2006 ) and the development of a time-varying
agnetic field (Rezania 2003 ). 
Following further observations, the free precession interpretation

as challenged in Lyne et al. ( 2010 ). Most notably, they highlight
hat the time-averaging baseline required to measure the spin-down
ate (used in the beam-shape parameter of Stairs et al. 2000 ) will
bscure behaviour happening on faster time-scales. Following the
ontemporaneous identification of rapid magnetospheric switching
henomena (see e.g. the extreme case of PSR B1931 + 24 Kramer
t al. 2006 , where the pulsar switches on and off with correlated
hanges in its spin-down rate), the authors proposed that the spin-
own and beamwidth variations of PSR B1828 −11 could similarly
e explained by a model in which the magnetosphere switches
etween states in a quasi-periodic fashion, but that the probability of
eing in one state or the other varies on the modulation time-scale.
his suggestion is based on the identification (Stairs et al. 2000 ,
003 ) that the pulsar exhibits distinct narrower and wider profiles.
he y e xplained that inferred parameters such as the spin-down rate
nd shape parameter 〈 S〉 , which use a multiday baseline, average over
ehaviour on shorter time-scales, revealing the slow time-varying
NRAS 538, 2923–2936 (2025) 
robability between states but obscuring the rapid switching. To
vidence this, they introduce a new pulse shape parameter, w 10 ,
hat could be calculated on individual observations to a v oid the
onger 100-d baseline required to measure the spin-down. A further
ollow-up study of PSR B1828 −11 in Stairs et al. ( 2019 ) used
dditional high-solution observations from the Parkes and Green
ank Telescopes, which enabled a detailed study of the pulse-to-
ulse behaviour. They confirmed that there are only two distinct
ulse shapes. By correlating the ratio of the time spent in each state
ith the modulation phase, they further validate the model proposed
y Lyne et al. ( 2010 ). 
A generative model of the switching process was developed in

erera et al. ( 2015 ) and applied to the PSR B0919 + 06, which shows a
imilar pattern of long-term behaviour to PSR B1828 −11. To explain
he characteristic double-harmonic-sinusoid present in the spin-down
ate of B0919 + 06 with a two-state magnetospheric switching model,
erera et al. ( 2015 ) proposed a four-phase model in which the pulsar
witches between the two states twice per cycle. The characteristic
econd (lower) peak arises because the time spent in the state is
horter than the time-averaging window used to generate the spin-
own data. The authors of Shaw et al. ( 2022 ) also report a similar
ehaviour in PSR B0740 −28, whose profile exhibits two distinct
hapes. Taking this model, Ashton, Jones & Prix ( 2016 ) compared the
recession and switching hypotheses for PSR B1828 −11, analysing
he spin-down and w 10 pulse shape data from Lyne et al. ( 2010 ). They
ugmented the standard precession model with a variable braking
ndex and included a flexible beam profile. Meanwhile, the four-
tate switching model proposed by Perera et al. ( 2015 ) was applied,
dditionally modelling the time-averaging process to predict the spin-
own and connecting each state with a separate beamwidth w 10 .
shton et al. ( 2016 ) concluded that, based on the models and data
nder consideration, precession was the fa v oured explanation. 
Ho we ver, the more recent study of Stairs et al. ( 2019 ) points out

hat the precession beamwidth model applied in Ashton et al. ( 2016 )
s at odds with the observ ation. Specifically, w 10 v aries slo wly due
o changes in the line-of-sight view of the radio emission, while
he data demonstrate that it, in fact, varies rapidly between pulses.
evertheless, while the pulse shape model of Ashton et al. ( 2016 )

s mistaken, the precessional explanation of the spin-down is the
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ore parsimonious: it both provides a natural clock and a v oids
he complicated four-phase model required to explain the double- 
armonic-sinusoid. Moreo v er, as pointed out by Jones ( 2012 ), it
emains plausible that precession is the clock driving the long-time- 
cale variability. For example the spin-down could remain a product 
f the effects of precession, while the time-varying wobble of the 
tar could be responsible for driving the unstable magnetosphere to 
witch between quasi-stable states. 

We also point out in re vie wing Ashton et al. ( 2016 ) that the Perera
t al. ( 2015 ) four-phase switching model also seems to be at odds
ith our new observations. Specifically, in this model, the pulsar 

witches rapidly between two distinct spin-down rates but switches 
wice per cycle. To produce the double-peaked spin-down rate, the 
ime spent in one of the states must be shorter than the time-averaging
aseline. It therefore follows that the secondary peak ‘height’ is a 
unction of the time-averaging baseline. If the baseline is sufficiently 
hort, there will be a double peak, but the heights will be equal; only
he duration spent in each state will differ. 

In Fig. 1 , we can compare the data produced using the 100 d
aseline from Lyne et al. ( 2010 ) with the higher resolution data
btained generated by Keith & Ni t ¸u ( 2023b ) using a Fourier-basis
aussian process regression (GPR) (described later in Section 3 ). 
otably, we do not see a variation in the height of the second peak.
hile the methods are not directly comparable, the average time 

etween time of arri v als (TOAs) in the data analysed by Shaw et al.
 2022 ) was 7 d; since in Ashton et al. ( 2016 ), it was shown that
he duration spent in the short-duration state was approximately 10–
0 d, we would therefore expect the Keith & Ni t ¸u ( 2023b ) inferred
pin-down measurements to be more sensitive to the step-changes if 
he pulsar switches suddenly and semipermanently between states 
s in the Perera et al. ( 2015 ) model. Ho we ver, this is not the
ase. Therefore, this observation is inconsistent with the four-phase 
witching model and suggests that whatever mechanism drives the 
pin-do wn v ariations smoothly v aries between the minima and max-
ma (as previously argued and demonstrated by Stairs et al. 2019 ). To
ccount for this observation, the four-phase switching model could 
e modified. Minimally, one could introduce three distinct states, 
hough this then causes inconsistencies with the observation of the 
eamwidth, which itself does not show any evidence of a third 
tate. 

The complexity of B1828 −11 became more interesting when 
shton et al. ( 2017 ) disco v ered that the modulation period present in

he spin-down data is itself getting shorter, losing about 1 d per 100 d,
nd identified from the Jodrell bank glitch catalogue (Basu et al. 
021 ) that the pulsar also experienced a glitch, a sudden increase
n the rotation frequency, at 55040.9 Modified Julian Day (MJD) 
coinciding with the end of the data set provided by Lyne et al.
010 ). Leading models of glitches suggest they provide evidence 
or a superfluid component in the core of the star. Ho we ver, such
 superfluid component is incompatible with precession (Shaham 

977 ; Jones & Andersson 2001 ; Haskell & Jones 2024 ) since the
inning of the superfluid would result in a free precession period 
uch shorter than the observed modulation period of ∼500 d, and 
ay also be expected to be rapidly damped. 
The implications of this were discussed in Jones, Ashton & Prix

 2017 ), where several models tried to tie together the decreasing
odulation period with the glitch, making predictions for the subse- 

uent behaviour. In the main, these predicted that the glitch should 
roduce changes in the modulation period. Ho we ver, subsequent 
nalyses (Brook et al. 2016 ; Stairs et al. 2019 ; Shaw et al. 2022 )
ave demonstrated that the modulation of the timing properties on 
 ∼500 d time-scale continues after the glitch. Ho we ver, to date, no
uantitative study has been performed to determine if there are any
tep changes associated with the glitch. 

Very recently, Lower et al. ( 2025, ) made a study of radio emission
ariability in a sample of 259 pulsars, making two findings of
otential rele v ance here. First, they found that variations in both spin-
own rate and pulsar profile shape are more common than previously
hought. Secondly, by looking at the set of 45 pulsars that exhibit
uasi-periodic variations in their spin-down date, they found that the 
odulation period of the variations was approximately independent 

f the spin period, a result not expected on the basis of several free
recession models described in Jones ( 2012 ). This last point makes
he free precession interpretation of quasi-periodic timing variability 
ess attractive, at least as a common explanation for all such variable
ulsars. 
In any case, it remains unclear what mechanism is responsible for

he long-term behaviour of PSR B1828 −11. While we can agree that
he magnetosphere switches rapidly between two states and that this 
aries coherently on a 500-hundred-day cycle with variations in the 
pin-down, we do not yet know ‘what sets the clock of this cycle’?
If it is switching between just two states, why is the spin-down
moothly varying’? and ‘Why is the modulation period decreasing, 
nd are there any changes related to the glitch’? 

To answer these questions, we revisit the analysis of PSR 

1828 −11 using the new high-resolution spin-down data (Keith & 

i t ¸u 2023b ). And, to a v oid preconditioning our interpretation with a
hysical model, we apply a phenomenological model to capture the 
alient features that may be present in the spin-down rate of the pulsar.
e will model the spin-down rate data for this pulsar and ascertain
hether any step changes occur around the glitch that changes its

pin-down rate or modulation. To consider several possibilities, we 
eveloped three models to describe the spin-down rate of this pulsar: a 
odel which assumes that a glitch occurred and that there are changes

o the periodic modulations; a model which assumes that there is no
litch nor changes to the periodic modulation; and another one which
ssumes there is a glitch but no changes to periodic modulation.
e obtained and compared the natural-log evidence for these three 
odels to understand which one fits the data more appropriately. 
The paper is structured as follows. We first introduce the data

et and methodology in Sections 3 and 4 before describing the
odels and the fits to the data in Section 5 . Then, in Section 6 ,
e study the time-period behaviour of the pulsar and compare this
ith the features extracted from the model. Finally, we conclude with
 discussion and outlook in Sections 7 and 8 , respectively. 

 DATA  

n this work, we will analyse the open spin-down data published in
eith & Ni t ¸u ( 2023b ) (and available from Keith & Ni t ¸u 2023a ), which
as derived using a Fourier-basis GPR on the raw data in Shaw et al.

 2022 ). Observations were conducted using the 76 m Lo v ell telescope
nd were supplemented with data from the 25 m ‘Mark-II’ telescope,
oth located at JBO (Lo v ell 1957 ). Data collected before 2009
ere centred at 1400 M Hz and recorded using a 32 M Hz filterbank.
fter 2009, data collection shifted to being centred at 1520 M Hz

nd recorded with a 384 M Hz filterbank. Detailed information on 
ata acquisition settings can be found in Shaw et al. ( 2022 ). To
ransform the acquired data into the spin-down rate analysed in 
his paper, Shaw et al. ( 2022 ) generated a single pulse profile for
ach observation epoch by summing the data across all frequency 
hannels. The TOA is obtained by comparing this integrated pulse 
rofile with a high signal-to-noise profile representing the observed 
rofile’s expected shape. The TOAs are then fitted with a timing
MNRAS 538, 2923–2936 (2025) 
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odel (Hobbs, Edwards & Manchester 2006 ), then subtracting this
odel from the data results in a timing residual. Finally, the timing

esidual is fitted using Fourier-basis GPR and from this, the second
eri v ati ve of the spin-down ν̇ is extracted (see Keith & Ni t ¸u 2023b
or further details). 

Previous studies on PSR B1828 −11, i.e. in Ashton et al. ( 2017 ),
tilized a smaller data set spanning 5280 d between 49710 and 54980
JD, which ended before the glitch occurred. This data set had 755

OAs, and the spin-down rate was obtained by applying a timing
odel to a sliding window of duration 100 d o v er the data (Lyne

t al. 2010 ). In contrast, the Keith & Ni t ¸u ( 2023b ) data set used in this
aper spans 8615 d between 49202 and 57817 MJD, encompasses the
litch event, and has better resolution. Fig. 1 illustrates the differences
etween these data sets, with the old data set shown in orange, the
ewer data set in blue and the glitch time marked by a vertical black
otted line. 

 DATA  ANA LY SIS  M E T H O D O L O G Y  

his section provides a brief o v erview of the Bayesian methodology
e use to analyse the data under a set of phenomenological models.

For a general introduction, see e.g. Carlin et al. 2013 ). 
Bayes theorem aims to solve the inverse problem: what can be

earnt about model M and its associated parameters ϑ , based on data
? This can be described by equation ( 1 ): 

( ϑ | d , M) = 

L ( d | ϑ, M ) π ( ϑ | M ) 

Z( d | M) 
, (1) 

here p( ϑ | d , M) is the posterior probability distribution of the pa-
ameters ϑ given the data and the model; L ( d | ϑ, M) is the likelihood
unction of the data, given the parameters and the model; π ( ϑ | M)
s the prior probability distribution, associated with the set of model
arameters; and Z( d | M) is the evidence for the data, given the model,
nd can be calculated from Z( d | M) = 

∫ 
ϑ 
L ( d | ϑ, M) π ( ϑ | M) d ϑ . 

We will use the Bilby Bayesian inference library (Ashton et al.
019 ) to draw samples from the posterior probability density and
stimate the evidence using the nested sampling algorithm (Skilling
004 ), specifically, the dynesty sampler (Speagle 2020 ; Koposov
t al. 2024 ). Nested sampling enables efficient exploration of the
ultimodal and higher dimensional space we will explore, producing
 set of samples approximating the posterior p( ϑ | d , M) and an
stimate of the evidence Z( d| M) which we will use for model
omparisons. 

In contrast to previous works that used Bayesian analyses, through-
ut this work, we will use ‘slab-and-spike’ priors (Malsiner-Walli &
agner 2016 ). These comprise a slab , usually a standard prior

istribution, such as a uniform or a normal distribution prior, and a
irac spike at a fixed location. We use these in our phenomenological
odel as a means to marginalize o v er the model dimensionality
ithout requiring the implementation of a transdimensional sampler

Green 2003 ). Consider a polynomial of degree N with coefficients
 i with i ∈ [0 , N ] as a generic e xample. A naiv e analysis may
pply a Bayesian analysis to each degree, treating each as a separate
model’; a transdimensional sampler impro v es on this by including
 as a model parameter, enabling automatic marginalization o v er

he model size. Ho we ver, implementation is often domain-specific
though see Tong et al. 2025 ). Instead, slab-spike priors can be used
ith regular stochastic samplers when the models are nested (e.g. in

he polynomial case, a model of degree N is equi v alent to a model
ith degree N − 1 with the parameter a N fixed to zero). By placing

he spike at the point that reco v ers the simpler model (e.g. a i = 0),
igher dimensional models can be explored with the sampler finding
NRAS 538, 2923–2936 (2025) 
osteriors equal to zero for higher dimensional parameters that do
ot impro v e the fit. 

 DEFI NI NG  A N D  FITTING  M O D E L S  

n this section, we define three phenomenological models of the
ecular spin-down and periodic modulations to fit the data in Fig. 1 .
or all three models, the secular part encodes a standard expansion
f N s frequency deri v ati ves, and the periodic modulations utilize
 sinusoid with N c harmonically related components. Within each
inusoidal term, the phase follows an expansion up to the N f 

hase-deri v ate to capture the slow changes to the modulation period
bserved in Ashton et al. ( 2017 ). We start with the most general
odel, referred to as Model: S + P , which allows independent step

hanges in the secular spin-down and periodic modulation. We also
xplore two subsets of the S + P model: one which assumes that there
s no glitch nor changes to the secular spin-down or the periodic
odulation ( Model: no-glitch ) and another one which assumes a

tep change only in the secular spin-down ( Model: S ). These subset
odels allow us to probe the significance of changes in the periodic
odulation relative to the other step changes. For each model, we

iscuss the theoretical reasoning first, then explain the choice of
riors and, finally, the inferred posteriors. 

.1 Model: S + P 

n this section, we define and apply a model in which a glitch
ccurs (modelled by an instantaneous change in the spin-down
ate accompanied by a transient decay) and that there are also
nstantaneous changes to the features of the periodic modulation. We
odel changes to the features of the periodic modulations as step

unctions and allow a step change in each component separately. 
To develop a full generative model, first we define t ′ = t − t 0 ,

here t is the MJD of the observed data and t 0 is the MJD of a
eference time (55372 MJD as quoted in Parthasarathy et al. 2019 ).

e then write the spin-down rate as: 

˙( t) = 

N s −1 ∑ 

i= 0 

ν̇i 

i! 

[ 

1 + H 

(
t ′ − t ξs 

)( 

ξ
p 

i + ξ t 
i e 

− t ′ −t 
ξ
s 

τi 

) ] 

�t i 

+ 

N c ∑ 

j= 1 

A j 

[
1 + H ( t ′ − t ηs ) ηj 

]
· cos 

(
jφ ( t ) + �φj 

(
1 + H ( t ′ − t δs ) δj 

))
, (2) 

here the phase is given by 

( t) = 2 π
N f −1 ∑ 

k= 0 

1 

k! 
f k 

(
1 + H ( t ′ − t χs ) χk 

)
�t k+ 1 . (3) 

The key components of this model are: ν̇i , the j th coefficient of
he spin-down expansion, ν̇i = 

d ( i) ν̇

d t ( i) 
; A j , the j th cosine component

oefficient (amplitude); �φj , the phase-offset of the j th cosine
omponent; and f k , the kth deri v ati ve of the modulation frequency. 

Within this model, the parameters N s , N c , and N f define the
aximum number of components included in the model. Ideally,
e w ould lik e to marginalize o v er these parameters (e.g. using
 transdimensional sampler). Ho we ver, in practice, we will use a
aximum value and then apply slab-spike priors. To determine

he maximum value, we analysed the data using the S + P model,
ncrementing each maximum until no impro v ement in the fit was
ound (as quantified by the change in the Bayesian natural-log
vidence). Using this approach, we selected maximum values of
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 s = 3, N c = 8, and N f = 2; the choice of upper limit on the number
f frequency components is consistent with the frequency range of the 
ourier-basis GPR used to generate the data (Keith & Ni t ¸u 2023b ).
o confirm these were sufficiently large, we then verified that the 
mplitude parameter of the largest component had the maximum 

osterior support at zero (see Table A1 ); in other words, the model
referred a simpler model, and our results are robust to increases in
he maximum values. 

To model the step changes in each component of equations ( 2 ) and
 3 ), we utilize a Heaviside step function multiplying a dimensionless
elative amplitude for the spin-down ξp , the amplitude η, modulation 
hase δj , and modulation frequency χk . There is one step-change per 
ummation term, but all parameters in a given set have a single
ssociated time (i.e. t ξs , t 

η
s , t 

δ
s , and t χs ) such that, e.g. all spin-down

hanges happen at the same time. For the changes to the secular spin-
o wn rate, follo wing standard approaches to modelling glitches (see 
.g. Lorimer & Kramer 2005 ), there is a permanent offset ξp and
n exponentially decaying transient term ξ t with associated time- 
cale τ . Ho we ver, the transient component is only non-zero for the
eroth-order term as set by the priors discussed shortly. 

The modulation component of the model follows a harmonic- 
inusoid form with an amplitude A j , harmonic phase jφ( t) (where
( t) is the standard phase expansion), and phase offset �φj . The
armonic coefficient j multiplies the phase in the argument of 
he cosine but does not multiply the phase offset. This prevents 
egeneracies in the solution as �φ ∈ [0 , 2 π ] while still exploring
he entire parameter space. 

Priors . We list the complete set of priors used in Table A1 . For
any parameters, we use a uniform prior, choosing a suitable range to 

o v er the expected behaviour (and check where performed to ensure
he range did not arbitrarily limit the model fit). We then augment
everal of these with slab-spike priors emulating a transdimensional 
ampler. 

For the glitch time parameter t ξs affecting the secular spin-down, 
e apply a prior width ranging ±50 d around the 55040.9 MJD
ased on the recorded glitch time (Basu et al. 2021 ). Meanwhile, for
he other step-change time parameters, we sample in an offset time 
elative to t ξs : that is we define �t αs = t αs − t ξs for α ∈ { χ, δ, η} and
hen apply a uniform prior on �t χs , �t δs , and �t ηs from −5000 to
000 d. 
For ν̇0 , we apply a wide prior ranging from the minimum to the
aximum values of the observed spin-down data shown in Fig. 1 ,

.e. from −2 . 74 × 10 −3 to −2 . 72 × 10 −3 d −2 . For all higher order
eri v ati ves of ν̇0 , we set a uniform prior on an arbitrary range and
erify the choice of the prior range has no impact on the analysis. 

For ξ 0 
p and ξ 0 

t , we set a uniform prior with a range ±0 . 01 and
gain verify this arbitrary range is sufficiently broad. For τ , we apply
 uniform prior between 0 and 500 d, ensuring the relaxation time is
ositive while choosing an arbitrarily large upper value. 
The amplitude terms, A j , are given prior distributions ranging 

rom 0 to 10 −5 ; while a ne gativ e amplitude is, in principle, physical,
his would introduce de generac y with the phase term. The modulation 
hase offset terms are given a uniform prior on −π to π . For the
tep-change parameters, we apply a uniform prior from −1 to 1 
or χj ; we set a uniform prior on −1 to 1; this enables direct
nterpretation of the posterior without concern about the effects of 
he prior. Ho we ver, for ηj and δj , we found that with a uniform
rior, the sampler failed to robustly identify the maximum-posterior 
ode (occasionally getting stuck in islands with lower posterior 

upport with larger relative changes. Therefore, we instead apply 
 standard normal prior such that the prior maximum is zero 
hile setting a scale for expected instantaneous changes, which 
uppresses order-of-magnitude increases in the amplitude and phase 
erm. 

The phase, as seen in equation ( 3 ), contains k th deri v ati ves of the
odulation frequency. The base modulation period is estimated to 

e ∼460 d, although as it is shown in Fig. 10 this modulation period
aries from 489 to 435 d throughout the entire data range. Thus, we
et the prior range of f 0 to a range which includes the base modulation
requency, i.e. 1 

460 Hz . The other f k terms have an arbitrary factor of
0 4 + k applied to the modulation frequency. 
Results . We summarize the posterior distributions in Table A4 ,

hich contains the median ± standard deviation values. Fig. 2 (a) 
resents the spin-down rate data (in blue) together with the maximum
osterior estimate solution of the model (in red) and an orange dashed
ine showing the secular component of the model alone (i.e. without
he periodic modulation) from which we see the analysis identified 
n exponential recovery present after the glitch. Additionally, four 
ertically shaded 99 per cent quantile regions are shown, which relate
o each of the step-change time parameters, with t ξs shown in blue, t ηs 
hown in yellow, t δs shown in green, and t χs shown in red. A detailed
escription of the results of the glitch step change is presented in
ection 5.2 . 
In Fig. 2 (b), we visualize the residuals obtained by subtracting the
odel from the data alongside the 90 per cent interval generated

y sampling model draws from the posterior distribution before 
ubtracting for the residual. We note that, while the broad fit to
he data is good, the residual still displays some structure, suggesting
urther impro v ements to our phenomenological model are possible. 

.2 Interpreting the step-changes in inferred parameter for 
odel S + P 

e find that the posterior distribution of t ξs has a posterior width of
6 d at the 99 per cent credible interval (see Fig. 3 ), with a maximum

osterior value of 55049, ∼ 9 d apart from the recorded glitch time
f PSR B1828 −11 (shown as a vertical dashed line in Fig. 2 a). This
ifference likely arises from the fact that we are estimating the glitch
ime from the spin-down rate whereas the glitch time is estimated
rom the full phase evolution. 

For the secular spin-down, we measure the spin-down and its 
rst two deri v ati ves with v alues consistent with those kno wn in the

iterature. We also measure a third-order deri v ati ve that while non-
ero, contained zero at 3 standard deviations. Fig. 2 (a) shows that the
odel has reco v ered the step-change and transient reco v ery observ ed

n the data (which has an inferred time-scale of 121 ± 14 d. We do
ot allow for step changes in the spin-down derivatives and there is
o evidence from the residuals to suggest these are required. 
For the periodic modulations, we identify eight non-zero harmonic 

omponents, a significant change relative to the two harmonic 
omponents that have been fitted to the data before (see e.g. Ashton
t al. 2016 ; Stairs et al. 2019 ). The impact of these higher-order
erms can be observed directly in Fig. 1 : looking at the trailing edge
fter each of the successive maxima, we can identify in the data a
hort plateau; this was present in the original data set (Lyne et al.
010 ), but is distinct in the newer higher-resolution data analysed in
his work. In Fig. 2 (a), we see the corresponding behaviour of the
igher-order terms in the harmonic expansion fitting this feature (this 
s also present in fits of the no-glitch model as well, c.f. Fig. 8 a). 

From our analyses, we also identify that a shift in the modulation
mplitude occurs at t ηs = 54316 . 34 MJD before the glitch occurs.
o visualize the posterior distributions, in Figs 4 and 5 , we plot the
osterior distribution for the amplitudes A [1 −9] and relative amplitude 
hanges η[1 −9] , respectively . Notably , the first component undergoes 
MNRAS 538, 2923–2936 (2025) 
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Figure 2. (a) Shows the spin-down rate data, in blue, together with the maximum posterior estimate solution of Model S + P , in red, which uses the parameters 
with the highest posterior probability. An orange dotted line shows the spin-down rate component of the model without the modulation cosine components. The 
glitch time is represented by a black dashed v ertical line. F our v ertical shaded 99 per cent quantile regions are shown, which relate to each of the t s step-change 
parameters, with t ξs (the step in spin-down rate) shown in blue, t ηs (the step-in modulation amplitude) shown in yellow, t δs (the step-in modulation phase) shown 
in green, and t χs (the step-in modulation frequency) shown in red. (b) Shows the residuals, as a line in blue, obtained by subtracting Model S + P from the data. 
The blue shaded area around the data shows the 90 per cent quantile region. Here, a dashed vertical line also indicates the glitch time. 
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 ∼ 20 per cent decrease in amplitude while the second component
ncreases by about the same amount. These two components are the
eading order, and the impact can be seen by comparing the fit before
nd after the glitch in Fig. 2 (a). 

We find that at the highest-order component (i.e. A 9 and η9 ), the
osterior peak is at zero, justifying that our choice of N is sufficiently
arge. Ho we ver, while this suggests the existence of multiple higher-
rder harmonics (abo v e the two fitted in previous works), we do note
hat this could arise from the GPR methodology used to infer the
pin-down rate (Keith & Ni t ¸u 2023b ). 

We also find evidence for a distinct step-change in the modulation
hase at t δs = 50622 . 26 MJD . Ho we v er, by e ye, it is difficult to
istinguish in Fig. 2 (a) what feature this is fitting: there is no clear
iscontinuity in the phase at this time. 
NRAS 538, 2923–2936 (2025) 
We reco v er a modulation frequenc y and non-zero first deri v ati ve
onsistent with values already reported in the literature (Ashton
t al. 2017 ). Our model is also sensitive to a second derivative not
reviously explored – Fig. 6 . However, the posterior distribution is
onsistent with zero, i.e. we do not find any evidence for a second
eri v ati ve of the modulation period. We find evidence for a distinct
tep change in the modulation frequency at t χs = 53615 . 11 MJD ,
ome 1434 d before the glitch time t ξs (55048 . 92 MJD ). The posterior
istributions show that the modulation period and its first deri v ati ve
xperience fractional shifts of 3 . 92 × 10 −04 and 8 . 07 × 10 −01 , re-
pectively. To visualize this behaviour, in Fig. 7 , we plot the inferred
odulation period as a function of time. 
To test the significance of our disco v ery that the modulation

requency, phase, and component amplitudes change at disjoint times
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Figure 3. Posterior distribution for the t ξs parameter that gives the time of the 
glitch as found in our Model S + P . The 99 per cent quantile region is shown 
and the previously reported glitch time of PSR B1828 −11 is represented by 
the vertical dashed line. 

Figure 4. Posterior probability distribution for the A j parameters inferred 
from fitting Model S + P . 

Figure 5. Posterior probability distribution for the ηj parameters inferred 
from fitting Model S + P . Note η5 and η6 are bimodal distributions with a 
mode at zero and a non-zero mode. 
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panning nearly the entire data set, we repeat the analysis but restrict
he prior distributions on the times of the step-changes to + / − 50
, centred on the reported glitch time. We find that the Bayes factor
etween the full model and this restricted analysis is decisively in
upport of the full model with a natural-log Bayes factor of 877. 

.3 Model subsets 

o probe the relative importance of different features of the S + P
odel, we now explore two model subsets. First, a model which

ssumes that there is no glitch nor changes to the periodic modulation
 Model no-glitch ) and then a model which includes a step change
nly in the secular spin-down ( Model S ). 
For Model no-glitch , we modify equations ( 2 ) and ( 3 ) removing

he step changes leading to 

˙( t) = 

N s −1 ∑ 

i= 0 

ν̇i 

i! 
�t i + 

N c ∑ 

j= 1 

A j cos 
(
jφ( t) + �φj 

)
, (4) 

nd 

( t) = 2 π
N f −1 ∑ 

k= 0 

1 

k! 
f k �t k+ 1 . (5) 

Meanwhile, for Model S , which assumes a step-change at the
litch for the spin-down rate, we include a step change only in the
ecular part of the spin-down, i.e.: 

˙( t) = 

N s −1 ∑ 

i= 0 

ν̇i 

i! 

[ 

1 + H 

(
t ′ − t ξs 

)( 

ξ
p 

i + ξ t 
i e 

− t ′ −t 
ξ
s 

τi 

) ] 

�t i 

+ 

N c ∑ 

j= 1 

A j cos 
(
jφ( t) + �φj 

)
(6) 

ith 

( t) = 2 π
N f −1 ∑ 

k= 0 

1 

k! 
f k �t k+ 1 . (7) 

Model results . The procedure described in Section 5.1 was 
pplied to both model subsets, from how the priors were defined
o how the posterior distributions were obtained. Tables A2 and 
3 list the full set of priors, for Model no-glitch and Model S ,

espectively. The choice of priors was the same as the ones presented
n Section 5.1 for Model S + P , but no glitch-related parameter priors
nd no modulation change-related parameter priors were included, 
or Model no-glitch and Model S , respectively. 

These subsets were obtained with N s = 4, N c = 9, and N f = 3
nd Tables A5 and A6 show that f 2 , A 9 , and ν̇3 have maximum
osterior probability values consistent with 0 within 1 σ , as was
reviously noted in Model S + P . Model no-glitch and Model S
eturned natural-log evidences of – 68308 . 4 ± 0.2 and 68445 . 6 ±
.2, respectively, lower than what was obtained for Model S + P
69931 . 9 ± 0.2). 

Figs 8 (a) and 9 (a) present the spin-down rate data (in blue) together
ith the maximum posterior estimate solution of the model (in red),
hich uses the parameters with the highest posterior probability, for 
odel no-glitch and Model S , respectively. These subset models 
ere not able to capture the changes in the spin-down rate, in
articular the transient reco v ery, that occurred after the glitch. This is
vident in these figures but also in Figs 8 (b) and 9 (b), which show the
esiduals obtained by subtracting Model no-glitch and Model S from 

he data, respectively. By comparing these figures with Fig. 2 (b), we
an see that Model no-glitch and Model S are unable to capture the
MNRAS 538, 2923–2936 (2025) 
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Figure 6. Posterior probability distribution for the modulation frequency terms, f k , and χk , which represent their step change, for Model S + P . 

Figure 7. Modulation period versus MJD, for Model S + P . The bold vertical 
line indicates the t χs glitch time parameter, and the dotted line indicates the 
glitch time. 
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hanges occurring on the data after the glitch, in the region between
5000 and 56000 MJD. 
Discussion . The model subsets perform poorly relative to Model

 + P in modelling the observed spin-down rate of PSR B1828 −11.
his is evidenced by the residual plots, which show larger deviations

rom zero and clear structures indicating specific instances where
NRAS 538, 2923–2936 (2025) 
hey fail, such as the transient recovery after the glitch, as addressed in
he previous section. Moreo v er, we can perform a quantitative model
omparison using the estimated natural-log evidence. In Table 1 , we
alculate the natural log-Bayes factors ( ln ( K)) demonstrating that
 + P model is decisively preferred (e.g. using the interpretation from
ass & Raftery 1995 ). It is of note that the ln ( K) value obtained

rom Models S + P and S is lower than that obtained from Models
 + P and no-glitch . Since the models are nested, the S + P versus S
ayes factor can be compared to the S versus no-glitch Bayes factor

o assess the relative importance of the secular glitch and the step
hanges in the periodic modulation. Since the former is larger than
he latter, this implies that for the spin-down data, the step changes in
he modulation period are more significant than the secular changes.

 C O M PA R I N G  WI TH  MODEL-I NDEPENDENT  

I SUALI ZATI ONS  

n Ashton et al. ( 2017 ), we introduced a time-period plot to study
ow the modulation period varies across the observed data span. We
ow build on this concept in order to understand the implications
f the S + P model inferences. First, we fit and subtract a first-order
olynomial from the raw spin-down rate data. This ensures only the
eriodic modulations remain, and any information on the average
pin-down rate or the second-order spin-down rate is remo v ed.
e then plot the Lomb–Scargle periodogram (Lomb 1976 ; Scargle

982 ) applied in a sliding window with a stride length of 1500 d.
e varied this stride length, balancing long-duration windows that
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Figure 8. Figure similar to Fig. 2 showing the 8 (a) spin-down rate data together with the maximum posterior estimate solution of the model; and the 8 (b) 
residuals, for Model no-glitch . 
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educe the uncertainty on the estimation of the period with short-
uration windows that increase the resolution in time. 
We find three modes in the spectrum: a primary mode at ∼460 d

taking a reference epoch of 50000 MJD, the start of the data) and
wo smaller ones at ∼250 and ∼170 d. The 460 and 250 d modes
ave been modelled in Ni t ¸u et al. ( 2022 ) and Ashton et al. ( 2017 );
he authors of Stairs et al. ( 2000 ) stated that there was a strong
ndication for the presence of a third mode at ∼167 d and Rezania
 2003 ) confirmed the existence of this third harmonic. 

We add to Fig. 10 horizontal lines denoting the epoch of the time
arameters obtained by the data fit shown in Fig. 2 (a). We also add
hite dashed lines to represent the three modulation periods and 

volution of the three harmonic modes obtained by the fit on the
pin-down rate data. They match the modulation periods obtained 
rom the data. Higher deri v ati ves of the modulation period obtained
rom the model are not displayed, as the Lomb–Scargle periodogram 

eveals no additional modes beyond those already presented. 
From Fig. 10 , we can clearly identify that the modulation period

s decreasing o v er time and continues to do so after the glitch at
pproximately the same rate. If we compare the modulation period 
alue obtained for the major mode for the first and the last sliding
indow, we can see that the modulation period has decreased from
89 to 435 d. From the Lomb–Scargle periodogram we can extract the
aximum values and perform a linear regression across the entire 

ata set, as well as before and after the glitch. This calculation
eturned a rate of change of the modulation period of ∼ −0.011 s
 

−1 , consistent with the values previously calculated in Ashton et al.
 2017 ) on the shorter pre-glitch data (see Fig. 1 ). Additionally, we
bserve that before the glitch, the modulation period changes at a rate
f ∼ −0.010 s s −1 . After the glitch, this rate increases to ∼ −0.014 s
MNRAS 538, 2923–2936 (2025) 
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Figure 9. Figure similar to Fig. 2 showing the 9 (a) spin-down rate data together with the maximum posterior estimate solution of the model; and the 9 (b) 
residuals, for Model S . 

Table 1. Tabulated ln Bayes factor, ln ( K), calculated for a comparison 
between Model S + P , and the other models. 

Model A Model B ln (K) 

S + P no-glitch 1623.60 
S + P S 1486.34 
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−1 , indicating that the modulation period is decreasing more rapidly
ost-glitch. 
Another noticeable feature is the change of maximum spectral

mplitude occurring at the same t ηs reported by the model, indicated
y the line in yellow. A decrease in the spectral amplitude occurs at
 

η
s for the first modulation period mode, while the second modulation
eriod mode sees an increase. This is also consistent with the
nferences made from Model S + P . Finally, a shift in the modulation
NRAS 538, 2923–2936 (2025) 
eriod and frequency is observed at t χs , matching the model, indicated
y the line in red. After this point, the modulation period temporarily
hifts to the right, indicating an increase. Subsequently, it resumes
ts continuous decrease for the remainder of the data range. This
ehaviour aligns with the model results depicted in Fig. 7 . 

 DI SCUSSI ON  

n this work, we analyse a newly available high-resolution and
xpanded data set containing the spin-down rate of PSR B1828 −11.
he longer data set contains several cycles of observations after

he pulsar glitch at 55040.9 MJD. As opposed to previous efforts,
n which physics-informed models were developed to explain the
ehaviour of the pulsar, here we apply a phenomenological model.
e considered three models to describe the behaviour of the pulsar:
odel S + P , which considered the existence of a glitch and changes
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Figure 10. Modulation period spectrum of the spin-down rate residuals o v er a sliding window of 1500 d, on the x -axis, as a function of the mid-point timestamp 
for each window, on the y -axis. The z -axis shows the Spectral Amplitude. The horizontal lines represent the glitch and step change time parameters (at their 
exact inferred times) obtained by Model S + P and are superimposed upon this figure for comparison purposes. t ξs , in blue (solid), represents the glitch time 
parameter; t ηs , in yellow (dashed), represents the step change time parameter related to a change in amplitude; t χs , in red (dotted), represents the step change 
time parameter related to a change in modulation frequency; and t δs , in green (dotted dashed), represents the step change time parameter related to a change in 
phase offset. The vertical dashed white lines represent three modulation period modes returned by Model S + P . 
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o the periodic modulation of the star; Model no-glitch , which 
ssumed that no glitch nor changes to the periodic modulation 
ccurred; and Model S , which allowed for a glitch but assumed
o modulation changes. Model S + P was preferred o v er the other
wo, as detailed in Section 5.3 , with the Bayes factor values shown
n Table 1 . 

Model S + P was designed to allow for parameter changes at the
litch, with a preference for no change to occur, by using ‘Slab-and-
pike’ priors. For each component of the model, i.e. the spin-down 
ate, the amplitude, the phase-offset and the modulation frequency, 
e allowed for a separate parameter recording the time at which the

tep occurred, to see if these changes coincided with the glitch time.
his was not the case, with step changes for some parameters being

ound to occur before the glitch: a decrease of modulation amplitude, 
escribed by η1 = –0.175 ± 0.008 was observed for the main 
odulation period mode at t ηs ; a change in modulation frequency was

bserved, as seen in Fig. 7 , at t χs ; all cosine components observed
 change in the phase-offset at t δs . Additionally, we found that the
pin-down rate experienced an exponential recovery after the glitch 
 

ξ
s . 

To add validity to this model, the data was analysed without a
odel, as described in Section 6 . We obtained a Lomb–Scargle 

eriodogram spectrum from the data. This shows that the modulation 
eriod of the pulsar is decreasing at a rate of ∼ −0.010 s s −1 before
he glitch and decreasing more rapidly after the glitch ( ∼ −0.014 s
 

−1 ); the modulation period modes experienced spectral amplitude 
hanges before the glitch time; and we visually identify a step change
o the modulation frequency and thus the modulation period, also 
efore the glitch. 

.1 Interpreting the results in light of astrophysical models 

.1.1 Planetary companions 

t is clear already from the correlated changes in the spin-down
nd pulse shape that a planetary explanation for the modulations 
s unlikely. Nevertheless, the observation of a decreasing modu- 
ation period (Ashton et al. 2017 ) invites reconsideration of the
lanetary explanation, with some coupling torque between the star 
nd planet(s) yielding the inspiral and explaining the changing 
odulation period. Ho we ver, while no generati v e model e xists, we

eel that any such model would necessarily require the modulations to 
rise from the smoothly varying orbital separation of the planets and
tar. Therefore, the observation in this work is that there are distinct
nstantaneous changes in the modulation seems difficult to explain 
ith a planetary hypothesis. Moreo v er, the observation that there are
p to eight harmonically related sinusoids would also call for up to
MNRAS 538, 2923–2936 (2025) 
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ight planets, following the original arguments that the two sinusoids
orrespond to two planets. Once again, this feels implausible. 

.1.2 Free precession 

he global difficulties of reconciling free precession, the decreasing
odulation period, and the glitch have already been discussed in

ones et al. ( 2017 ). Here, we can quantify the observation from
tairs et al. ( 2019 ) and Shaw et al. ( 2022 ) that contrary to some
f the predictions of Jones et al. ( 2017 ), the modulations continue
fter the glitch, constraining the models connecting the interior of the
tar to the cause of the modulations. Furthermore, the observation
hat there are distinct changes (at different times) in the modulation
mplitude, frequency, and phase adds to the challenge of interpreting
his event in light of free precession. Ho we ver, the observ ation of

ultiple harmonically related sinusoids offers a new opportunity to
est the model. Namely, in Jones & Andersson ( 2001 ), the precession
odel used in later w orks w as developed with an expansion in

he small angle θ between the symmetry axis of the (assumed
iaxial) moment of inertia tensor and the angular momentum.
herefore, a more physically accurate model can be obtained by
ither expanding the model to include higher-order terms. Since
he precession model has no additional degrees of freedom left, it
ill be interesting to disco v er if the amplitude coefficients of the
armonically related sinusoids measured here are consistent with
he predictions of precession, enabling a new test of precession.
o we v er, to e xplain the observ ed beamwidth data, such a model
ould need to be extended as suggested by Stairs et al. ( 2019 ) to

ombine the long-term precession behaviour with quantized profile 
witches. 

.1.3 Magnetospheric switching 

here is no single well-defined magnetospheric switching model:
n a sense, it is a set of observations rather than a generative model
tself. It is, therefore, not straightforward to connect our observations
o such a model. Moreo v er, since we are using only the spin-down
ate data, we are insensitive to the rapid switches between states and
an only discuss the long-time-scale periodic modulations in this
witching rate. Nevertheless, our phenomenological study reveals
everal insights into whatever process drives this. First, there is
ecisi ve e vidence for more than two terms in the harmonic expansion;
his is observable directly by our fit to the data but also by the non-zero
osterior support for these terms. The amplitude of these terms could
rovide a way to test mechanisms for the clock (e.g. as proposed for
recession in the previous section). Second, we find evidence for
istinct changes in the spectral amplitude of the harmonic sinusoid,
ith a sudden shift from the fundamental to the first harmonic. This

s interesting as it suggests another variability mechanism for the
eriodic modulations. It would be interesting to study the raw data
f PSR B1828 −11 to identify if there are corresponding systematic
hanges in the beam shape during this transition (or, indeed, any of
he observed step changes). 

In Seymour & Lorimer ( 2013 ), the authors introduced evidence
hat PSR B1828 −11 was displaying chaotic behaviour consistent
ith a system with three go v erning variables. From this work and

urther discussion (Stairs et al. 2019 ), it is proposed that the spin-
own rate and mode transition rate act as two of the go v erning
 ariables. Ho we ver, it is unclear to see how this observation can
e connected to a physical process to predict the observed chaotic
ehaviour. 
NRAS 538, 2923–2936 (2025) 
 O U T L O O K  

he high-quality data released by Ni t ¸u et al. ( 2022 ) has enabled a
ew and detailed study of PSR B1828 −11 using the inferred spin-
own rate. Since the end of the data set studied in this work, JBO
as continued observing PSR B1828 −11 and we expect there to
e several more cycles to study. Moreover, there are other pulsars
hich display similar (if less clear) behaviours. For example the

uthors of Zubieta et al. ( 2024 ) have reported on changes to the
mplitude and frequency of PSR J0742 −2822 following a glitch.
e believe the tools and techniques developed in this work could

e applied to larger data sets, with the ultimate goal of providing
uantitative measures of the behaviour to help us constrain models.
o we v er, one ke y missing aspect is that we are studying only the

pin-down rate and neglecting information about the mode-transition
ate. Therefore, we believe further methodological work is needed to
evelop approaches that can automate the analysis of pulsars. This
ould allow the study of both their rapidly changing beam shape and

heir long-term timing properties. We believe this has the capacity
o answer long-held questions about the star’s interaction with its
agnetosphere. 
The work presented here shows that a model that allows for sudden

tep changes in the amplitude, phase, and frequency parameters in
he long-term periodicity in the spin-down of PSR B1828 −11 is a
etter fit to the data than a model that does not allow for sudden step
hanges in these parameters. Significantly, the model locates these
tep changes at thr ee differ ent times , all well before the glitch itself.
his is somewhat surprising, and difficult to account for in terms of
 physical model. This suggests that other models of the long-term
eriodicity, not based on sudden step changes, may also be worth
xploring. 
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Table A1. Prior distributions for the Model S + P ’s parameters. Parameters 
with priors denoted with ‘SS’ have slab-spike priors applied to them. 

Prior Units 

ν̇0 Unif( −2.74 ×10 −3 , −2.72 ×10 −3 ) d −2 

ν̇1 Unif( −2.73 ×10 −7 , 2 . 73 × 10 −7 ) d −3 

ν̇2 Unif( −2.73 ×10 −11 , 2 . 73 × 10 −11 ) d −4 

ν̇3 Unif( −2.73 ×10 −15 , 2 . 73 × 10 −15 ) d −5 

τ Unif(0,500) d 
t 
ξ
s Unif(54990.90,55090.90) d 
ξ0 
p SS + Unif( −0.01,0.01) d 

ξ0 
t SS + Unif( −0.01,0.01) d 

A 1 −9 SS + Unif(0,1.00 ×10 −5 ) –
η1 −9 SS + N (0,1) –
�φ1 −9 Unif( −π, π ) rad 
δ1 −9 SS + N (0,1) –
f 0 SS + Unif(2.11 ×10 −3 , 2 . 33 × 10 −3 ) d −1 

f 1 SS + Unif( −2.22 ×10 −7 , 2 . 22 × 10 −7 ) d −2 

f 2 SS + Unif( −2.22 ×10 −11 , 2 . 22 × 10 −11 ) d −3 

χ0 SS + Unif( −1,1) –
χ1 SS + Unif( −1,1) –
χ2 SS + Unif( −1,1) –
�t 

χ
s SS + Unif( −5000,2000) –

�t δs SS + Unif( −5000,2000) –
�t 

η
s SS + Unif( −5000,2000) –

Table A2. Prior distributions for Model no-glitch ’s parameters. Parameters 
with priors denoted with’SS’ have slab-spike priors applied to them. 

Prior Units 

ν̇0 Unif( −2.74 ×10 −3 , −2.72 ×10 −3 ) d −2 

ν̇1 Unif( −2.73 ×10 −7 , 2 . 73 × 10 −7 ) d −3 
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ξ0 
p SS + Unif( −0.01,0.01) d 

ξ0 
t SS + Unif( −0.01,0.01) d 

A 1 −9 SS + Unif(0,1.00 ×10 −5 ) –
�φ1 −9 Unif( −π, π ) rad 
f 0 SS + Unif(2.11 ×10 −3 , 2 . 33 × 10 −3 ) d −1 
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Table A4. Maximum posterior distribution summary, with their standard 
deviations, for Model S + P ’s parameters. 

Posterior median(s.d.) Units 

ν̇0 −2.72739(5) ×10 −3 d −2 

ν̇1 9.0(3) ×10 −10 d −3 

ν̇2 6(2) ×10 −14 d −4 

ν̇3 −2(1) ×10 −17 d −5 

τ 121(14) d 
t 
ξ
s 55047(3) d 
ξ0 
p −5(3) ×10 −5 d 

ξ0 
t 1.23(8) ×10 −3 d 

A 1 5.77(3) ×10 −6 –
A 2 4.77(3) ×10 −6 –
A 3 2.03(3) ×10 −6 –
A 4 9.3(3) ×10 −7 –
A 5 7.4(3) ×10 −7 –
A 6 2.0(3) ×10 −7 –
A 7 5.8(3) ×10 −7 –
A 8 2.6(3) ×10 −7 –
A 9 0(1) ×10 −9 –
η1 −0.175(8) –
η2 0.19(1) –
η3 −0.38(2) –
η4 −0.32(5) –
η5 0(3) –
η6 0.8(4) –
η7 −0.30(9) –
η8 −0.8(1) –
η9 −0.03(7) –
�φ1 2.30(1) rad 
�φ2 −1.48(2) rad 
�φ3 3.139(9) rad 
�φ4 −0.32(3) rad 
�φ5 1.4(1) rad 
�φ6 −0.6(2) rad 
�φ7 3.13(4) rad 
�φ8 2.7(1) rad 
�φ9 2(2) rad 
δ1 −0.143(5) –
δ2 0.39(1) –
δ3 −0.276(6) –
δ4 4.4(4) –
δ5 −0.59(5) –
δ6 3.7(5) –
δ7 −0.47(2) –
δ8 0(4) –
δ9 1.5(7) –
f 0 2.1748(3) ×10 −3 d −1 

f 1 1.847(7) ×10 −8 d −2 

f 2 0(6) ×10 −16 d −3 

χ0 3.9(2) ×10 −4 –
χ1 0.81(2) –
χ2 0.2(4) –
�t 

χ
s −1424(4) –

�t δs −4420(20) –
�t 

η
s −740(6) –

Table A5. Maximum posterior distribution summary, with their standard 
deviations, for Model no-glitch ’s parameters. 

Posterior median(s.d.) Units 

ν̇0 −2.72754(4) ×10 −3 d −2 

ν̇1 9.5(2) ×10 −10 d −3 

ν̇2 1.8(2) ×10 −13 d −4 

ν̇3 3(1) ×10 −17 d −5 

A 1 5.27(3) ×10 −6 –
A 2 5.08(3) ×10 −6 –
A 3 1.66(3) ×10 −6 –
A 4 7.1(3) ×10 −7 –
A 5 6.6(3) ×10 −7 –
A 6 2.5(3) ×10 −7 –
A 7 3.7(3) ×10 −7 –
A 8 9(5) ×10 −8 –
A 9 0(3) ×10 −9 –
�φ1 2.070(7) rad 
�φ2 −1.875(8) rad 
�φ3 2.53(2) rad 
�φ4 −1.16(5) rad 
�φ5 0.85(5) rad 
�φ6 −1.6(1) rad 
�φ7 2.6(1) rad 
�φ8 3(2) rad 
�φ9 2(2) rad 
f 0 2.1874(3) ×10 −3 d −1 

f 1 2.16(1) ×10 −8 d −2 

f 2 0(1) ×10 −15 d −3 

Table A6. Maximum posterior distribution summary, with their standard 
deviations, for Model S ’s parameters. 

Posterior median(s.d.) Units 

ν̇0 −2.72737(7) ×10 −3 d −2 

ν̇1 9.2(4) ×10 −10 d −3 

ν̇2 9(2) ×10 −14 d −4 

ν̇3 −0.03(1) ×10 −17 d −5 

τ 74(8) d 
t ξs 55091(2) d 
ξ 0 
p −3.67(4) ×10 −5 d 

ξ 0 
t 2.1037(1) ×10 −3 d 

A 1 5.32(3) ×10 −6 –
A 2 5.07(3) ×10 −6 –
A 3 1.67(3) ×10 −6 –
A 4 6.8(3) ×10 −7 –
A 5 6.7(3) ×10 −7 –
A 6 2.3(3) ×10 −7 –
A 7 3.6(3) ×10 −7 –
A 8 1.4(6) ×10 −7 –
A 9 0(4) ×10 −9 –
�φ1 2.088(6) rad 
�φ2 −1.853(7) rad 
�φ3 2.57(2) rad 
�φ4 −1.11(5) rad 
�φ5 0.88(5) rad 
�φ6 −1.7(1) rad 
�φ7 2.52(9) rad 
�φ8 3(2) rad 
�φ9 2(2) rad 
f 0 2.1868(3) ×10 −3 d −1 

f 1 2.14(1) ×10 −8 d −2 

f 2 0(1) ×10 −16 d −3 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

© 2025 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/538/4/2923/8090498 by U
niversity of Southam

pton user on 02 M
ay 2025

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 PREVIOUS STUDIES OF PSR B182811
	3 DATA
	4 DATA ANALYSIS METHODOLOGY
	5 DEFINING AND FITTING MODELS
	6 COMPARING WITH MODEL-INDEPENDENT VISUALIZATIONS
	7 DISCUSSION
	8 OUTLOOK
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: PRIOR DISTRIBUTIONS AND SUMMARY STATISTICS

