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[bookmark: OLE_LINK2]Abstract
[bookmark: _Hlk150108550]Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and in diseases such as metabolic dysfunction-associated steatotic fatty liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules [such as bile acids (BAs), trimethylamine-N-oxide, and short-chain fatty acids] or products derived directly from bacteria. The recent analysis of data sets has provided new insights in the association between MASLD and the risk of chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably BAs, have been described in many studies investigating the association between MASLD and the risk of developing CKD. This review aims to discuss specific classes of metabolites, fructose, vitamin D, BAs, and microbiota alterations in MASLD and CKD and describes the pathophysiological basis of these associations.
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1. Introduction
The metabolome is represented by all low-molecular-weight molecules (metabolites) that are present in the cell and can modulate other ‘omics’, such as the genome, epigenome, transcriptome and proteome. Through the intertwined interactions between the metabolome and other omics, metabolites are direct modulators of biological processes and diseases.1 Several metabolites, including fructose, vitamin D (VD), bile acids (BAs), trimethylamine-N-oxide (TMAO), uremic toxins, short-chain fatty acids (SCFA) and lipopolysaccharide (LPS), have emerged as important regulators that can interact with the host.2-4 Abnormalities in the composition of metabolites, especially altered BA profiles, and alterations in function might contribute to the development of metabolic diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD),5, 6 also known as metabolic dysfunction-associated fatty liver disease,7 which can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis and hepatocellular carcinoma.8 Furthermore, a large recent analysis reported that individuals with MASLD had significantly lower values of estimated glomerular filtration rate and a greater prevalence of chronic kidney disease (CKD) than subjects without liver disease, suggesting that MASLD is associated with a moderately increased risk of developing incident CKD.9-12 Besides, our previous study has indicated that urine protein biomarkers are accurate for non-invasively diagnosing liver fibrosis in MASLD.13 Despite the difficulty in defining a causal relationship between MASLD and CKD (MLKD), several lines of evidence suggest that the alteration of the BA profile and gut microbiota, are involved in the pathogenesis of MLKD.14, 15 Therefore, in this review, we aim to discuss gut microbiota-derived metabolites, with a focus on alterations of the BA profile, dysbiosis and the interactions between gut microbiota and the host via BA-sensing receptors (mainly the Farnesoid X receptor [FXR] and Takeda G protein-coupled receptor 5 [TGR5]) and other bioactive metabolites, such as fructose, VD and potential treatment by alternation of gut microbiota that are potentially implicated in the development of MLKD. 

2. Bile acids and MLKD
2.1 Bile acid metabolism
Figure 1 schematically summarizes the metabolism of bile acids (BAs).16, 17 In humans, the most abundant BAs are the primary bile acids (PBAs), i.e., cholic acid (CA), and chenodeoxycholic acid (CDCA), which are initially produced by the enzymatic activities of cholesterol 7α-hydroxylase and cholesterol 27α-hydroxylase. These enzymatic processes are followed by the conjugation of CA and CDCA to either taurine or glycine by bile acyl-CoA synthetase and bile acid-CoA:amino acid N-acyltransferase to form taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA) and glycochenodeoxycholic acid (GCDCA).18 In the intestine, conjugated CA and CDCA are deconjugated, and converted by 7-alpha-dehydroxylase to deoxycholic acid (DCA) and lithocholic acid (LCA), i.e., the main secondary BAs (SBAs).16, 18 Subsequently, DCA and LCA can be transformed into iso-DCA and iso-LCA via the so-called iso-BA pathway.19 

2.2 Altered bile acid profiles in MLKD
BAs, as a metabolite, play a crucial role in maintaining the host's physiological functions and may impact the progression of MLKD. Growing evidence has demonstrated that circulating levels of BAs are increased in people or animals with MASLD.20-24 A population-based cohort study showed that circulating levels of total BAs, PBAs, and SBAs are significantly higher in patients with MASLD than in healthy control (HC) subjects.25 Conversely, Caussy et al. elucidated that there is no significant difference in serum total BAs, but PBAs are reduced, whereas conjugated PBAs are increased in patients with MASLD.26 Similarly, elevation in individual BA concentrations and alterations of BA composition have also been reported in patients with MASH. A cross-sectional study has reported that increased total PBAs and decreased SBAs are characteristics of MASH; this increase in changes in PBAs might be due to increased PBA synthesis, decreased intestinal SBA conversion, or decreased PBA dehydroxylation and reduced SBA formation.21 Furthermore, in a study of 102 patients with biopsy-confirmed MASLD, Nimer et al. reported that higher levels of individual BAs (i.e., increased levels of plasma GCDCA, GCA, 7-Keto-DCA, and glycoursodeoxycholic acid) are associated with higher histological grades of hepatic inflammation and fibrosis.27 BAs are also important modulators of the intestinal microbiome but the bidirectional impact of the altered BA profile and the microbiome composition is not fully understood. Smirnova et al. have shown that fecal SBAs are higher in patients with MASLD, whereas 7,12-diketo-LCA, glycodeoxycholic acid (GDCA), and LCA are higher in those with MASH.22 Furthermore, metabolites of deoxycholate, including 12-dehydrocholate acid (12-DHCA), 7-keto-DCA, DHCA and GDCA, are increased among individuals with MASLD and liver fibrosis, suggesting a relationship between specific changes in the fecal BA profile and the severity of liver disease activity.22

Recent observational studies have demonstrated that MASLD may be an independent risk factor for CKD.14, 28-30 In addition to the alterations of BAs reported in MASLD patient cohorts, recent clinical studies have also reported an altered serum BA profile and alterations in BA homeostasis in people with CKD. For example, Chu et al. have reported increased serum BA levels and decreased urinary BA levels in patients with CKD, mainly due to decreased renal filtration of BAs.31 Increased plasma TCA and decreased CDCA levels were also found in patients with hypertensive nephropathy compared to those with hypertension alone, possibly related to the bile salt metabolism of gut microbiome influencing renal disease.32 Moreover, it has also been reported that patients with end-stage renal disease (ESRD) have decreased levels of unconjugated BAs and SBAs, such as CA, CDCA, DCA, hyodeoxycholic acid (HDCA), UDCA (ursodeoxycholic acid), α+ω Muricholic acid (MCA), γMCA, 7-keto-LCA, 12-keto-LCA and 6,7-diketo-LCA, while conjugated BAs and PBAs, including βMCA, GCA, GCDCA, TCA, TCDCA, taurohyocholic acid, tauro-α-muricholic acid (TαMCA) and tauroursodeoxycholic acid (TUDCA), were all significantly increased.33 However, the precise roles of distinct BAs in the diagnosis and prognosis of patients with CKD remain unclear, suggesting the need for further studies.

In addition to the altered BA profile in individuals with MASLD or CKD, similar studies evaluating BA profile have also been performed in rodent models.34, 35 For example, MASLD mice fed with a high-fat diet (HFD) had significantly higher levels of taurodeoxycholic acid (TDCA), DCA, TCA, CA, and lower levels of MCA, TUDCA than control mice.36 Further, MASH mice fed with methionine- and choline-deficient diet exhibited significantly increased serum TDCA, CDCA, LCA, and taurolithocholic acid than control mice.35 On the other hand, in models of diabetic nephropathy (DN) mice, Wei et al. have found that serum total BAs, TCA, and Tβ-MCA were increased.37 Further, in the feces of DN rats, there were increased TBAs, CA, DCA, and a decreased DCA-to-CA ratio, which might contribute to the progression of renal impairment by increasing mucosal permeability and gut inflammation.38

Due to discrepancies of the published literature, we have focused on concordant results where the circulating levels of BA metabolites are described in patients with MASLD or CKD alone and in those with combined MLKD33, 39 (Supplementary table 1). Comparing MLKD patients with healthy individuals, a consistently altered BA signature was observed in the circulating levels of PBAs (principally increased plasma TCA,27, 32, 39-41 GCA,21, 27, 33 TUDCA33, 41 and GCDCA21, 27, 39, 41). Similarly, in our unpublished study, we found an increase in plasma TCDCA and GCDCA levels in patients with MLKD, which is consistent with previously published literature.21, 27 Furthermore, there are some plasma BAs showing an opposite trend in patients with MASLD (increased levels of CA,5 CDCA,5 HDCA,27 UDCA5) compared to those with CKD (decreased levels of CA,15 CDCA,32 HDCA,33 UDCA33). Previous studies also reached contradictory conclusions regarding the BA profile in MASLD or CKD. For example, increases in TCDCA and DCA are reported in MASLD or CKD patients,15, 27 whereas Tan et al. have shown that TCDCA is decreased in MASLD and Li et al. found that DCA is reduced in ESRD patients.33, 40 Furthermore, HDCA is a metabolite of bMCA, generated by bacterial 6b-epimerization and additional 7b-dehydroxylation in small intestine.42 A recent study has indicated that MASLD was characterized by decreased plasma levels of HDCA.43 This study showed an improvement in hepatic steatosis via activation of the BA alternative synthetic pathway through inhibition of intestinal FXR signaling. Additionally, HDCA significantly increased abundances of probiotic species by peroxisome proliferator-activated receptor (PPAR)-α signaling (which was further validated in mouse models) to upregulate hepatic FXR.43 However, the underlying mechanisms linking HDCA and CKD are poorly understood. UDCA is a hydrophilic BA synthesized in the colon by bacterial 7β epimerization of CDCA and is important as a first-line treatment for primary biliary cholangitis.44, 45 It has been reported that UDCA strongly affects cholesterol and BA synthesis and induces neutral lipid accumulation in the liver by exerting FXR-antagonistic effects in patients with MASLD.46 UDCA also has effects on the kidney by preventing the over-expression of sodium-glucose cotransporter and oxidative stress, as shown in diabetic rats.47 However, the precise mechanisms by which BAs may affect kidney disease in MLKD are not fully understood, and further research is needed.

2.3 BA-related gut microbiome changes and MLKD
Enteric dysbiosis increases gut permeability to produce active metabolites, such as TMAO, SCFA, and SBAs, and these are implicated in several conditions linked to MASLD.48-50 Microbial enzymes from gut bacteria indirectly metabolize BAs via metabolites SCFA and TMAO, which are described in detail in the following section. 

The microbial genera involved in BA metabolism are Clostridium, Lactobacillus, Bifidobacterium, Listeria, Enterococcus, Bacteroides, Stenotrophomonas and Brucella for BA deconjugation; Clostridium and Eubacterium for 7-dehydroxylation; and Bacteroides, Eubacterium, Clostridium, Escherichia, Eggerthella, Peptostreptococcus and Ruminococcus for epimerization and oxidation of hydroxyl groups at ring positions 3, 7, or 12. Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes with hydroxysteroid dehydrogenases (HSDHs) attributed to the oxidation of hydroxyl, as well.16, 42 Enteric metabolites, such as SCFA and TMAO, play crucial roles in BA metabolism in patients with MLKD. SCFA (including acetate, sodium butyrate and propionate) originate from dietary fiber and escape fermentation until passing into the colon and cecum, where microbes metabolize them. A group of investigators from China observed that circulating levels of SCFA (mainly butyrate) were lower in CKD patients than in control subjects, thus increasing the synthesis of uraemic toxins, such as tryptophan metabolites and TMAO, and damaging kidney function.51 TMAO is mainly produced from the microbial processing of dietary components such as choline and carnitine.52 Emerging evidence suggested that plasma TMAO levels are increased in patients with MLKD.53, 54 Studies from China have shown that disturbance of TMAO-mediated crosstalk with gut microbiota disrupted sinusoidal vasculature to promote liver fibrosis in NASH.55 Besides, TMAO consequently aggravated the progression of kidney dysfunction by impacting the development of tubular-interstitial fibrosis and deposition of collagen.56 A previous animal study in ApoE−/− mice reported that elevated levels of TMAO could alter cholesterol transport and decrease the total BA pool size.57 However, Tan et al. reported that in a murine model TMAO administration increased hepatic steatosis, increased BA synthesis and shifted hepatic BA composition toward FXR-antagonistic activity.40 

Using results from the bacterial contribution to metabolite production, we have focused on bacterial effects on BA synthesis metabolism, summarizing results according to the taxonomic level (bacterial phylum, class, family and genus) associated with the presence and severity of MLKD. Compared to healthy controls, there are significant increases in the phylum Bacteroidetes and decreases in the phylum Firmicutes in the feces of MASLD patients, which account for more than approximately 90% of the whole gut microbiota in humans.49, 58-64 In contrast, the phylum Proteobacteria was consistently increased, leading to increased levels of microbial gut toxins in MASLD patients.60, 61, 65 Two predominant members of the Firmicutes family, i.e., Lachnospiraceae and Ruminococcaceae were markedly decreased in MASLD patients, which can affect the SCFA synthesis and potentially impacting intestinal integrity and permeability in the pathogenesis of MASLD.58, 66, 67 Furthermore, the genus Escherichia_Shigella is an ethanol-producing bacterium that affects fatty acid metabolism and exacerbates gut leakiness, and this organism was found to be markedly increased in patients with MASLD.68-72 Additionally, the genus Lactobacillus was also increased across the spectrum of MASLD (MASLD, fibrosis, cirrhosis).60, 61, 73

That said, several findings disagree with previous results in the study of the gut microbiota of MASLD. For example, it has been reported that patients with MASLD have reduced abundance of the phylum Bacteroidetes,73, 74 but increased phylum Firmicutes,65, 74 family Lactobacillaceae and Ruminococcaceae.49, 61 Moreover, several studies have specifically concentrated on microbiome signatures in MASLD severity. Schwimmer et al. found that the phyla Bacteroidetes and Proteobacteria and genus Lactobacillus were more abundant in MASLD patients with moderate-to-severe liver fibrosis (F≥2), whereas Firmicutes were more abundant in those with absent or mild fibrosis (F≤1).60 

Emerging evidence has also related CKD to the microbial metabolites and composition of the intestine.75-77 A study of 50 patients with CKD and 22 healthy control subjects has shown that patients with CKD had reduced abundance of the phylum Actinobacteria and increased genera Lactobacillus in their fecal samples.78 Besides, studies involving different animal models of CKD have indicated there is dysbiosis of the intestinal microbiome. Hu et al. have shown that in the high salt-induced CKD mouse, there were decreased levels of Firmicutes and increased levels of Bacteroidetes.79 However, DN mice had exhibited increased levels of the phylum Firmicutes but decreased Bacteroidetes compared to nondiabetic control mice. Simultaneously, a reduction in Bacteroides and Ruminococcus was found at the genus level.80 An experimental study of an adenine-induced CKD mouse model showed that the genus Lactobacillus was increased81 and an unclassified Lactobacillaceae family and Clostridia class were decreased, whereas genus Bifidobacterium and Clostridium were increased in this adenine-induced CKD mouse model.82 In parallel, the gut microbiota and their metabolites, indoxyl sulfate (IS), p-cresyl sulfate (PCS), and TMAO, known as uremic toxins, contributed to the progression of CKD.83 As a potent uremic toxin, IS was generated by intestinal bacteria like lactobacilli, exerting its negative impact on kidneys and the vascular system.84, 85 It is involved in the induction of vascular calcification and CKD fibrosis progression.86 Whereas another uremic toxin, PCS, was produced by microbiome like Bacteroides fragilis and progressively accumulated renal fibrosis via producing reactive oxygen species (ROS), activating TGF-β, stimulating the renal-angiotensin-aldosterone system and inducing renal tubular damage.87, 88 

Studying the alterations of the gut microbiome in MLKD we noted that there are four bacteria, phylum Firmicutes and Proteobacteria, and genus Lactobacillus, Escherichia_Shigella that are all changed in patients with MLKD (Supplementary table 2). In particular, Proteobacteria and Lactobacillus were increased in patients with MLKD. Escherichia_Shigella was increased in patients with MASLD but decreased in those with CKD. In contrast, Firmicutes was decreased in patients with MASLD but inecreased in those with CKD.

It is known that a high-fat diet (HFD) may alter gut microbiome.74, 89 Oral antibiotics exposure in HFD-fed mice induced lower levels of the genera Lactobacillus and decreased bile salt hydrolase activity, which led to increased levels of Tβ-MCA, inhibiting activation of intestinal FXR and resisting HFD-induced MASLD, thus suggesting that there is an endogenous pathway that controls metabolic fitness involving BAs, gut bacteria and FXR receptors.90 Treatment of CKD rats with Lactobacillus ameliorated the increased urinary protein excretion and inflammation associated with renal failure, suggesting that Lactobacillus may play a protective role against CKD progression.91 However, the precise role of gut microbiota in the progression of MLKD is not fully understood and requires further research.

2.4 Bile acid signaling pathways
2.4.1 Pathogenic mechanisms of FXR
The human BA composition is influenced by microbial transformations and gut metabolites, affecting the activity of BA-associated receptors, such as FXR and TGR5, and in Figure 2, we illustrate the molecular mechanisms relating to BA metabolism that underlie the development of liver and kidney damage in the process of MLKD. It is reported that levels of FXR and TGR5 are associated with the presence of MASLD,92 several studies have demonstrated that hepatic and renal expression of both FXR and TGR5 are mainly downregulated in the presence of MLKD (Table 1). FXR is a ligand-activated transcription factor, which is highly expressed in the liver, intestine and kidneys, where it controls all aspects of metabolism, including BA homeostasis, and lipid and glucose metabolism. The FXR agonist activity ranking for BAs is CDCA, DCA, CA, and LCA in sequence, whereas TαMCA, Tβ-MCA, TUDCA and glycoursodeoxycholic acid (GUDCA) serve as inhibitors of FXR.93 FXR modulates BA homeostasis mainly via three pathways: the small heterodimer partner (SHP) pathway, the mouse fibroblast growth factor-15 (FGF-15) or fibroblast growth factor-19 (FGF-19) pathway, and the c-Jun N-terminal kinase (JNK) pathway. SHP, as a downstream target of FXR, inhibits the expression of CYP7A1, a rate-limiting enzyme that is responsible for hydroxylating the cholesterol ring structure at carbon atom position 7 in BA biosynthesis.94, 95 Additionally, when FXR is activated, FGF-15/19 are upregulated in the intestine, thus entering the liver through the enterohepatic circulation. FGF-15/19 act on the fibroblast growth factor receptor-4 and SHP in the liver mainly via the JNK-depend pathway to inhibit the expression of CYP7A1, thus reducing the BA pool.96 With regards to the FXR involvement in lipid metabolism, FXR suppresses upregulation of sterol regulatory element-binding protein-1c (SREBP-1c), which is essential in the fatty acid biosynthesis, resulting in the repression of lipogenic genes, including fatty acid synthase, acetyl CoA carboxylase and stearoyl CoA desaturase (SCD).97-99 This FXR-induced effect reduces the production of triglyceride (TG) and very low-density lipoprotein (VLDL) particles. Moreover, FXR induces the expression of both the VLDL receptor and the microsomal TG transfer protein, to suppress VLDL formation. Additionally, FXR activation increases expression of the lipoprotein lipase (LPL) activator, apolipoprotein (Apo) CII, inhibits expression of the LPL inhibitor, Apo CⅢ, and the consequent effect is an increase in LPL activity that promotes the clearance of TG-rich lipoproteins by stimulating TG hydrolysis in VLDL.17 Not only is VLDL clearance affected, but also high-density lipoprotein (HDL) metabolism is subject to modulation by FXR agonists. Administration of an FXR ligand increases the expression of scavenger receptor B1, a molecule in charge of hepatic HDL uptake, that increases HDL clearance, and consequently lowers plasma HDL-cholesterol levels. 

Additionally, FXR activation exerts a significant effect on glucose metabolism as well, it is reported that impaired insulin sensitivity and elevated plasma glucose levels in random-fed and fasting states are found in FXR-deficient mice. Activation of the hepatic FXR nuclear receptor results in the induction of expression of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase, increasing hepatic glucose production, lowering plasma glucose levels in both wild-type and diabetic mice, and improves glucose tolerance and insulin sensitivity.100, 101 However, McIlvride et al. reported that FXR activation by obeticholic acid significantly reduced the impact of pregnancy on insulin resistance, but did not change glucose tolerance in a mouse model of gestational diabetes mellitus.102 Thus, the overall effects of FXR agonism on glucose levels need to be elucidated. Additionally, activation of gut-restricted FXR induces STC-1 in enteroendocrine cells to stimulate glucagon-like peptide-1 (GLP-1) secretion to improve glucose tolerance and hepatic insulin sensitivity.103 In addition to the impact on physiological metabolism, FXR also suppresses low-grade inflammation, endoplasmic reticulum (ER) stress, oxidative stress, and hepatocyte death in patients with MASLD. Yan et al. have studied the mechanism(s) of the hepatoprotective activities of FXR agonists in MASLD progression by hepatocytes or other tissue/cell-specific FXR-null mice.104 Hepatic FXR activation enables antagonization of nuclear factor kappa B (NF-κB) activation to reduce liver inflammation. FXR activation represses ER stress by downregulating protein kinase-like ER kinase (p-PERK)/CCAAT-enhancer-binding protein homologous protein pathway Metallothionein 1, which is an antioxidant protein primarily induced by FXR to suppress ROS. Meanwhile, in rodent models of MASH, activation of FXR via obeticholic acid enables to inhibit p53 activation, protecting from cell death in hepatocytes, and reducing hepatic fibrogenesis in MASH.104

FXR is also localized in glomeruli and the proximal tubules of the kidney, but its expression in proximal tubules is higher than in glomeruli.105 Studies indicate a crucial role for FXR in regulating lipid metabolism, fibrogenesis, and inflammation in the kidney. Virchow et al. first reported that the progression of CKD was associated with abnormal lipid metabolism.106 SREBP-1, SCD-1 and SCD-2, genes that regulate lipogenesis pathways, were increased in HFD-fed mice. In contrast, this effect was reversed by FXR activation, which was also observed in DN mice models.105, 107 Additionally, FXR activation ameliorates glomerulosclerosis, tubulointerstitial fibrosis, and proteinuria by reducing renal gene expression, such as mesangial matrix proteins fibronectin, fibrosis markers fibroblast-specific protein-1 and α-smooth muscle actin, as well as the profibrotic growth factors transforming growth factor-β (TGF-β), the proinflammatory cytokines tumor necrosis factor-β in DN mice models; thus collectively supporting a renal-protective role for FXR.105 Further, it is reported that activation of FXR suppressed kidney fibrosis and downregulated Smad3 expression, which has a central role in kidney fibrosis.108 Marquardt et al. have also found that the TUDCA-induced FXR-dependent genes suppressor of cytokine signaling and dimethylarginine dimethylaminohydrolase-1 expression in tubular cells ameliorates maladaptive ER stress signaling and protects the tubular compartment via FXR agonism in DN mice109, thereby suggesting another potentially protective mechanism linking FXR agonism to protection from renal disease.

2.4.2 Pathogenic mechanisms of TGR5
TGR5 is activated by natural or synthetic ligands and is widely expressed in adipocytes, myocytes, Kupffer cells, enteroendocrine cells and renal cells.110 TGR5 is, therefore, relevant for regulating energy expenditure, glucose metabolism, and immunity in MASLD/MASH. 110 In the intestine, activation of TGR5 induces the release of GLP-1 from enteroendocrine L-cells and acts on pancreatic β cells to potentiate insulin secretion in response to glucose.111 The activation of TGR5 increases thermogenesis in the brown adipose tissue (BAT) and skeletal muscle by upregulating the gene encoding type 2 iodothyronine-deiodinase; this enzyme converts inactive thyroxine to active 3,5,3´-tri-iodothyronine, thus increasing oxygen consumption and energy expenditure.110, 112 In Kupffer cells, the activation of TGR5 is implicated in the inflammatory response, inducing an anti-inflammatory effect mainly through inhibition of nuclear NF-κB translocation and suppression of cytokine production.113, 114

Wang et al. have studied CKD mice models and human renal cells, establishing a role for TGR5 in CKD.115 TGR5 is expressed in the highest levels in the renal tubules. In DN mice, a selective TGR5 synthetic agonist INT-777 induced renal mitochondrial biogenesis, reduced oxidative stress, and induced fatty acid β-oxidation.115 Meanwhile, TGR5 activation reduced TGF-β1 and fibronectin expressions through suppressing sphingosine 1-phosphate / sphingosine 1-phosphate receptor signaling to ameliorate DN.116 This was thought to prevent DN occurrence by decreasing urinary albumin excretion, glomerular mesangial expansion, accumulation of extracellular matrix proteins, macrophage accumulation, and podocyte injury in the kidneys. Similar to DN mice models, there is a significantly higher abundance of p-AMPK, PGC-1α, and SIRT3 in obesity-associated nephropathy mice treated with the TGR5 synthetic agonist INT-777. Besides, TGR5 activation in these obesity-associated nephropathy mice attenuated proteinuria, podocyte injury, mesangial expansion, and renal fibrosis by reducing the accumulation of extracellular matrix proteins fibronectin and type IV collagen, profibrotic growth factors TGF-β, CD68 macrophages, and proinflammatory cytokine monocyte chemoattractant protein (MCP)-1.115 Additionally, in human podocytes exposed to high glucose, TGR5 activation-induced mitochondrial biogenesis, decreased oxidative stress and increased fatty acid β-oxidation,115 thus further suggesting a favorable effect of TGR5 activation in the kidney to protect against renal disease.

Fructose and MLKD
3.1 Fructose metabolism and pathologies in MLKD
Fructose, a kind of monosaccharide, was mainly metabolized by the liver and it was commonly found in high-fructose corn syrup (HFCS), sugar-sweetened beverages (SSB).117 Due to its lipogenic potential, it demonstrated that increase intake of fructose was known as a risk factor in the development of MASLD.118 Consumption of fructose in patients with MASLD was nearly 2-3 fold higher than controls.119 Additionally, compared with sucrose-sweetened beverages, serum uric acid was higher in group consumed HFCS-sweetened beverages.118 Fructose consumption might contribute directly or indirectly to the development of MLKD by which fructose-induced rise in uric acid and its stimulation of hepatic lipogenesis.

3.2 Fructose-induced gut microbiome changes and MLKD
Human gut microbiota species encode fructose uptake and metabolizing genes, thus it may contribute to the development of MASLD through effects on the gut.120 High fructose consumption contributed to dysbiosis of gut microbial diversity was observed in recent studies. For example, it is indicated that composition of the phyla Bacteroidetes or Proteobacteria, major phyla constituting the gram-negative bacteria, was substantially increased in mice fed with high fructose intake.121 Alternation of the gram-negative bacteria, featured by bacterial endotoxin or LPS, was thought to be a significant factor for increasing gut permeability and inducing inflammation.122 On the other hand, dietary fructose increases the abundance of Escherichia, which required for the generation of trimethylamine, and it can be metabolized into TMAO, which was known as a risk factor for CKD.117 It is thoroughly gauged that bacteria were coupled with the host pathologies of MLKD in high fructose intake.123 

VD and MLKD
4.1 VD metabolism and pathologies in MLKD	
VD is an essential secosteroid hormone, which is synthesized initially in skin, predominantly in the liver to produce 25-hydroxyvitamin D and dominantly occurs in the proximal tubule of the kidney to generate 1α,25-dihydroxyvitamin D.124 VD deficiency (VDD) is frequently present in MLKD, with an estimation of over 1 billion people worldwide suffering either a VD deficiency (<15 ng/ml) or an insufficiency (<30 ng/ml).4 Nelson et al. have found that low VD level was correlated with increased histologic severity of steatosis, ballooning, lobular inflammation grade and fibrosis in those with MASLD through upregulating liver tissue expression of genes involved in hepatic inflammation and oxidative stress.125 On the other hand, VDD served as a known risk factor for all-cause mortality in those with CKD due to disturbance of calcium and phosphorus homeostasis, dysregulation of the innate and adaptive immune and increased microinflammation.126 Conversely, individuals with CKD are susceptible to developing VDD, which accelerate the progression of CKD.126 

4.1 VD-induced gut microbiome change in MLKD
Recent studies have revealed functions of VD, particularly its role in regulating the immune system, one of which is facilitated by the modulation of gut microbiota.127 Bacterial-produced LPS was involved in the inflammation and immune system in the development of MASLD. Besides, gut microbiota interacted with the progression of MASLD through toll-like receptors (TLR), which expressed on gut epithelium, to mediate immune function and stimulate inflammation.128 Meanwhile, immune system was also affected in patients with CKD, particularly TLRs, which played an essential role in synthesizing cytokines in response to a bacterial challenge.129 VDD causing dysbiosis, like increase in Bacteriodetes and Proteobacteria phyla, probably resulting in the dysregulation of immune system of host pathologies in MLKD.130

1. Potential treatment for MLKD by alternation of gut microbiota
Despite there was no single definitive treatment available for MLKD, drugs like vitamin E, statin, Dipeptidyl peptidase-4 inhibitors, GLP-1 receptor agonists (GLP-1 RAs) and sodium glucose co-transporter 2 (SGLT2) inhibitors were extensively reviewed.14 In particular, GLP-1 RAs and SGLT2 inhibitors, which initially developed for the treatment of diabetes, are potential to benefit MLKD due to their abilities of combating obesity, hepatic steatosis and impaired kidney function via partly regulating gut microbiota.123 On the one hand, GLP-1 RA liraglutide modified the structure of the gut microbiota, such as elevation of species Lactobacillus reuteri, which enhanced weight-loss and fat browning effect of GLP-1 RAs in turn.131 On the other hand, SGLT2 inhibitors reduced metabolites from uremic toxins to improve CKD by alternation of gut microbiota, such as an increase in Akkermansia and Lachnoclostridium.132 

1. Conclusion
[bookmark: _Hlk150108435][bookmark: _Hlk150108807]A growing body of clinical and experimental evidence suggests that alteration of metabolites from the intestine and BA metabolism can influence the physiopathology of MLKD.21, 31 BAs and microbiota signature could serve as non-invasive diagnostic biomarkers27, 68, 78 and potential therapeutic target for MLKD,133, 134 but further research is needed. The presence of MASLD and advanced liver fibrosis is associated with a higher prevalence and incidence of CKD,28, 135 and certain circulating BAs, excessive fructose intake, VDD along with altered gut microbiota may influence renal disease via a variety of mechanisms. GLP-1 RA and SGLT-2 inhibitors are potential treatment for MLKD partly exerts its effects through the gut microbiota.136, 137 Three individual BAs are significantly higher in MASLD patients with coexisting CKD, and FXR and TGR5, as two BA-associated receptors, are potentially involved in the development and progression of MLKD.115, 138 Reliable biomarkers of BAs and their signaling pathways and microbiota signature are now needed to test therapeutic responses in MLKD.
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Table Legends
Table 1. FXR and TGR5 expression levels in patients and preclinical models of MASLD or CKD.
Supplementary table 1. Summary of altered bile acid profile in MASLD and CKD patients and animal models.
Supplementary table 2. Intestinal BA-modifying bacteria spectrum in MASLD and CKD patients and animal models.

Figure Legends
Figure 1. Bile acid biosynthesis, transport pathways, metabolism and excretion. 
Cholesterol is converted into primary bile acids (PBAs) via classical pathway and alternative pathway and conjugated to glycine or taurine in the hepatocytes, then secrete into bile, which flows through the bile duct to the intestine. At the terminal ileum, most BAs are recycled to the liver via portal circulation. Unabsorbed BAs are passed along from the small to large intestine. In the colon lumen, conjugated PBAs are metabolized into secondary bile acids (SBAs) by microbial enzymes from gut bacteria. Conjugated cholic acid (CA) and chenodeoxycholic acid (CDCA) are deconjugated via bacterium with bile salt hydrolases, including Clostridium, Lactobacillus, Bifidobacterium, Listeria, Enterococcus, Bacteroides, Stenotrophomonas and Brucella, and then 7α‑dehydroxylated with Clostridium and Eubacterium to form deoxycholic acid (DCA) and lithocholic acid (LCA). The majority of CDCA is converted to α-muricholic acid (α-MCA) and β-MCA, which predominant in mice and scarce in humans. Tauro-α-muricholic acid (Tα-MCA) is deconjugated to form α-MCA. α-MCA is C-6 epimerized with Bacteroides, Eubacterium, Clostridium, Escherichia, Eggerthella, Peptostreptococcus and Ruminococcus to form ω-MCA, and then ω-MCA is 7α-dehydroxylated to form hyodeoxycholic acid (HDCA). CDCA is transformed into ursodeoxycholic acid (UDCA) by the hydroxysteroid dehydrogenase (HSDH) with Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes. BAs that are not absorbed from the small and large intestine excreted in feces. In the kidney, cholesterol is converted into BAs via CYP27A1 and CYP7B1. After the first hepatic pass, BAs that have not been cleared are filtrated by the renal glomerulus and reabsorbed by proximal tubular cell of the kidney, and unabsorbed BAs are excreted into urine. 

Figure 2. Differential expression of FXR and TGR5 receptors and putative pathogenic mechanisms in MASLD and CKD. 
FXR and TGR5 is expressed in the liver (mainly in hepatocytes), kidney (mainly in the glomerulus and tubular cells, especially the proximal tubular cells), and in other tissues, such as skeletal muscle and adipose tissue (BAT, brown adipose tissue). Activation of both FXR and TGR5 facilitates a decrease in lipid accumulation in the liver and kidneys, whilst improving insulin sensitivity and hepatocyte inflammation and apoptosis by inhibiting endoplasmic reticulum stress and oxidative stress in MASLD. Activation of both FXR and TGR5 represses the expression of multiple profibrotic growth factors and proinflammatory cytokines to improve glomerulosclerosis tubulointerstitial fibrosis and proteinuria in CKD. Activation of both FXR and TGR5 promotes mitochondrial activity in BAT and skeletal muscle cells and increases energy expenditure.
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