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Threading light through dynamic complex 
media
 

Chaitanya K. Mididoddi    1, Robert J. Kilpatrick    1,3, Christina Sharp1,3, 
Philipp del Hougne    2, Simon A. R. Horsley    1 & David B. Phillips    1 

The dynamic scattering of light impacts sensing and communication 
technologies throughout the electromagnetic spectrum. Here we introduce 
a new way to control the propagation of light through time-varying complex 
media. Our strategy is based on the observation that in many dynamic 
scattering systems, some parts of the medium will change configuration 
more slowly than others. We experimentally demonstrate a suite of new 
techniques to identify and guide light through the more temporally stable 
channels within dynamic scattering media—threading optical fields 
around multiple highly dynamic pockets hidden at unknown locations 
inside. We first show how the temporal fluctuations in scattered light can 
be suppressed by optimizing the wavefront of the incident field. Next, we 
demonstrate how to accelerate this procedure by two orders of magnitude 
using a physically realized form of adjoint gradient descent optimization. 
Finally, we show how the time-averaged transmission matrix reveals a 
basis of temporal fluctuation eigenchannels that can be used to increase 
the stability of beam shaping through time-varying complex media such 
as bending multimode fibres. Our work has potential future applications 
to a variety of technologies reliant on general wave phenomena subject to 
dynamic conditions, from optics to microwaves and acoustics.

Optical scattering randomly redirects the flow of light. It is a ubiquitous 
phenomenon that has wide-ranging effects. Since imaging relies on 
light travelling in straight lines from a scene to a camera, scattering 
prevents image formation through fog and precludes high-resolution 
microscopy inside biological tissue1,2. Scattering also impairs optical 
communications through air and water, and disrupts the transmission 
of microwave and radio signals3. Overcoming the adverse effects of 
light scattering is an extremely challenging problem4. Nonetheless, 
owing to its prominence, substantial progress has been made over 
the past decades5.

When light propagates through a strongly scattering environ-
ment (also known as a ‘complex’ medium1), the wavefront of the inci-
dent optical field is distorted, corrupting the spatial information that 
it carries. Elastic scattering from a static medium is deterministic, 
meaning that the precise way in which light has been perturbed can 

be characterized and subsequently corrected. By sending a series of 
probe measurements through the medium, a digital model of its effect 
on light can be created: represented by a linear matrix operator known 
as a transmission matrix (TM)6. The TM reveals how to pre-distort an 
input optical field so that it evolves into a user-defined state at the 
output—a technique known as wavefront shaping7.

Despite these successes, control of light through time-varying 
complex media remains a largely open problem2. Evidently, wave-
front shaping can only be successfully applied if the medium in ques-
tion stays predominantly stationary for the time taken to make probe 
measurements and apply a wavefront correction. Yet many application 
scenarios feature complex media that rapidly fluctuate on a timescale 
of milliseconds or faster8—rendering wavefront shaping approaches 
exceedingly difficult. So far, the main strategies to control light through 
moving complex media have focused on achieving the task of wavefront 
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the temporal fluctuations in the output field v(t) by analysing externally 
scattered light.

To begin experimentally investigating this scenario, we emulate 
a three-dimensional time-varying forward scattering medium using 
a cascade of three computer-controlled diffractive optical elements, 
each separated by free space, as shown in Fig. 1. Cascades of phase 
planes can emulate atmospheric turbulence30,31 and mimic multiple 
scattering samples32–35. In practice, our set-up is implemented using 
multiple reflections from a liquid crystal spatial light modulator (SLM), 
allowing the phase profiles to be arbitrarily digitally reconfigured. We 
choose this test bed as it is a versatile way to control the number and 
location of dynamic regions for proof-of-principle experiments.

As shown in Fig. 1e (top row), we show a static random phase pat-
tern on each phase screen, spatially distorting optical signals flowing 
through the system. On each plane, we also define an area within which 
the phase profile is programmed to randomly fluctuate in time.  
A second SLM is used to shape the incident light, and a digital camera 
records the level of temporal intensity fluctuations in transmitted light. 
We quantify these fluctuations by calculating the temporal fluctuation 
level Fl = ̄σI/μ̄I , where ̄σI  denotes the standard deviation of the 
time-fluctuating intensity, averaged over all illuminated camera pixels, 
and μ̄I  is the average transmitted intensity. For example, Fl = 0 for an 
unchanging transmitted field, and Fl = 1 for a series of uncorrelated 
Rayleigh speckle patterns (Methods). Here we use the term ‘fluctua-
tions’ to refer to temporal fluctuations.

Unguided optimization
We first pursue a straightforward optimization method: iterative 
adjustment of the input field u to suppress the level of temporal 
intensity fluctuations (Fl) in the transmitted field. Our approach is 

shaping as quickly as possible8–16. Approaches rely on ultra-fast beam 
shaping17–23 or reducing the number of probe measurements by, for 
example, spectral multiplexing21,24 or exploiting prior knowledge about 
the scattering medium25–29.

Here we introduce an alternative way to control the propagation 
of light through dynamic scattering media. We begin by classifying 
complex media into three categories, based on the type of motion 
exhibited over the timescale required for wavefront shaping, τws. Class 1 
represents static complex media that remain fixed over time τws—estab-
lished TM-based methods can be applied in this case. Class 2 represents 
moving complex media, which undergo substantial motion everywhere 
over time τws and elude current wavefront shaping approaches. There 
is a third class of medium that falls between classes 1 and 2. Class 3 
comprises partially moving scattering media, which, over the time-
scale τws, exhibit localized time-varying pockets embedded within a 
comparatively static medium. This situation describes, for example, 
slowly moving tissue through which the small capillaries conducting 
blood flow typify faster changing regions, and pockets of turbulent air 
above hot chimneys within calmer air over a city skyline. In this article, 
we focus on how to identify light fields that thread through networks 
of static material within such partially moving complex media.

Results
When a light field u is incident on a dynamic medium, the 
time-dependent transmitted field v(t) is given by

v(t) = T(t)u, (1)

where T(t) is the time-dependent TM of the medium, and u and v are 
complex column vectors. Our aim is to find an input u that minimizes 
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Fig. 1 | Unguided optimization. a, Schematic of experimental set-up. An input 
wavefront is iteratively modified to reduce the output temporal intensity 
fluctuations. b, A plot of temporal fluctuation level (Fl) as a function of iteration 
number throughout the optimization procedure. Convergence plateaus 
(red dashed line) after ~2,500 iterations. c, Output intensity fluctuations for 
a randomly chosen input field. Upper heat maps show the mean intensity of 
transmitted light, and lower heat maps show the standard deviation of the 
intensity fluctuations. The line plots show line profiles through the output field 
along the lines marked with white hatched lines, with mean intensity (red line) 
and fluctuations about the mean (grey shading). Std., standard deviation.  

d, Equivalent plot to c but showing the suppressed output intensity fluctuations 
for an optimized input field. e, Measured shape of the optimized field inside 
the dynamic scattering sample. Top row: examples of the three phase planes 
forming the artificial scattering system, with a small fluctuating patch on each 
plane highlighted by a red box. Middle row: optimized optical field incident on 
each plane. Bottom row: corresponding intensity incident on each plane (max 
intensity on each plane is normalized to 1). We observe a low-intensity region on 
the three dynamic patches, highlighted by white arrows (percentage of intensity 
passing through each patch is quoted). The distance between the planes is 
δz = 5 cm. amp., amplitude; rad., radians; arb., arbitrary unit.
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shown schematically in Fig. 1a (Methods and Supplementary Section 1).  
Figure 1b shows a typical optimization convergence curve, which pla-
teaus at Fl ~0.1. Noiseless simulations of this experiment reproduce a 
similar convergence plateau (Supplementary Section 8). We speculate 
that this may be because we optimize only the phase of the input field 
in this experiment. Figure 1c,d shows examples of the output temporal 
fluctuations of a randomly chosen initial trial field (Fl = 0.25) and an 
optimized field (Fl = 0.1), respectively. See also Supplementary Video 1, 
which shows that intensity fluctuations have been heavily suppressed.

The artificial nature of our dynamic scattering medium renders it 
possible to directly observe the evolution of the optimized field inside 
by digitally ‘peeling back’ the outer scattering layers (Supplementary 
Section 2). We find the optimized field takes the form of a speckle pat-
tern that evolves to exhibit near-zero intensity on fluctuating regions 
on each plane (Fig. 1e, bottom row)—thus almost entirely avoiding 
these dynamic areas.

Our unguided optimization strategy is analogous to the first 
methods used to shape light through static scattering media7, and as 
such may be improved using more advanced algorithms36,37. Further-
more, the form of the objective function can be arbitrarily chosen. 
For example, intensity shaping terms could potentially be included to 
simultaneously reduce fluctuations and shape the output38,39. However, 
undirected optimization is a relatively slow process requiring many 
iterations to converge (~2,500 in our experiment). Therefore, we next 
ask: is there a way to find optimized fields more rapidly?

Physical adjoint optimization
In our first strategy, on each iteration, we measure how one single 
spatial component of the input field should be adjusted to reduce Fl. 
We now describe how to simultaneously measure how all spatial com-
ponents should be adjusted in parallel. Our approach can be under-
stood as gradient descent optimization using a physical realization 
of fast adjoint methods—which enable the efficient determination of 
the gradient of an objective function with respect to the optimization 
variables.

Our scheme is shown in Fig. 2a (Methods and Supplementary 
Section 4). To render an adjoint optimization approach feasible, it 
is necessary to modify the optimization objective function and send 

light back and forth in both directions through the dynamic scatter-
ing medium (reminiscent of work placing a scattering medium inside 
a laser cavity9). We now aim to maximize the correlation C between all 
N measured output fields over time, given by

C = 1
N
||||

T
∑
t=1

T
∑
t′=1

[v†(t) ⋅ v(t′)]
||||

2

. (2)

See Supplementary Section 3 for derivation of this method and proof 
of its convergence.

Figure 2b shows the increase in the objective function through-
out the optimization process. For comparison with our first strategy, 
we also monitor the level of temporal fluctuations Fl. After only ~15 
iterations the procedure converges. See also Supplementary Video 2.  
Here we attribute the higher level of residual fluctuations to addi-
tional noise induced by the asynchronous uncontrolled flickering 
of the three SLMs used in this experiment. Supplementary Section 8  
provides supporting simulations and discussion of the noise floor. 
Once again looking inside the dynamic medium, we see that we have 
found a more smoothly varying optical field that avoids the moving 
regions, as shown in Fig. 2c—an effect also reproduced in simulations 
(Supplementary Section 8).

This adjoint optimization strategy is reminiscent of iterative time 
reversal40 and recently proposed in situ methods to train photonic 
neural networks41. Indeed, our work may be considered one of the 
first real-world implementations of a photonic adjoint optimization 
routine—a challenging yet powerful method to realize experimentally42.

Temporal fluctuation eigenchannels of the time-averaged TM
So far, we have focused on strategies to find a single stable channel. We 
now consider how to determine a set of stable channels that all navigate 
around dynamic regions inside the medium. Our approach makes use 
of the information stored in the time-averaged TM of a fluctuating 
optical system, 〈T〉t. Figure 3a shows how 〈T〉t is measured (Methods 
and Supplementary Section 5).

〈T〉t reveals the input fields that deliver high levels of coherently 
time-averaged energy to the output. Finding such input fields can 
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(i + 1) is given by u(i+1) = u(i) + δu. b, A plot of temporal fluctuation level (Fl) (black 
line) as a function of iteration number throughout the optimization procedure. 
In this scheme, convergence is reached after ~15 iterations. We also plot the 
normalized field correlation between all output fields at each iteration (dashed 
red line). c, The experimentally recorded intensity of the optimized field arriving 
at the three phase planes (max intensity at each plane is normalized to 1). The 
white squares indicate the location of the moving region on each plane. We see 
that the optimized field avoids these moving regions of the sample.

http://www.nature.com/naturephotonics


Nature Photonics | Volume 19 | April 2025 | 434–440 437

Article https://doi.org/10.1038/s41566-025-01642-z

be represented as an eigenvalue problem by noting that the total 
intensity of the time-averaged field arriving at the output, 〈P〉t, can 
be expressed as

⟨P⟩t = ⟨v⟩†t ⟨v⟩t = u†⟨T⟩†t ⟨T⟩tu. (3)

Therefore, the eigenvectors of matrix ⟨T⟩†t ⟨T⟩t  with the largest eigen-
values represent input fields that deliver the highest intensity of the 
time-averaged output fields. These eigenvectors also correspond to 
input fields that interact least with the dynamic regions inside the 
medium, under the assumption that the internal fluctuations of the 
medium are large enough to randomize the phase of dynamically scat-
tered light, meaning that fluctuating fields can be effectively 
‘time-averaged away’ (Supplementary Section 12). We term this basis 
of eigenvectors the ‘temporal fluctuation eigenchannels’ of the dynamic 
medium. This concept links to our previous approach: we show in Sup-
plementary Section 3 that when using the objective function given in 
equation (2), physical adjoint optimization finds the most stable tem-
poral fluctuation eigenchannel of the time-averaged TM.

Figure 3b shows the distribution of absolute eigenvalues of ⟨T⟩†t ⟨T⟩t, 
arranged in ascending order. We compare two 3-plane dynamic samples 
with different numbers of moving regions: (i) has a single dynamic patch 
on each plane similar to before; (ii) has randomly placed fluctuating 
patches covering approximately half of the area of each plane. We show 
in Supplementary Section 11 that medium (i) has at least one stable 
temporal fluctuation eigenchannel that avoids all dynamic patches, 
while medium (ii) has no completely stable channels.

We first demonstrate excitation of the fluctuation eigenchannels 
through the more weakly fluctuating sample, shown in Fig. 3d. We see 
that the transmitted fields corresponding to high eigenvalues remain 
stable. Conversely, the transmitted fields corresponding to low eigen-
values vary with time—as these modes interact strongly with the moving 
parts of the medium. See also Supplementary Video 3.

We now turn our attention to the more strongly fluctuating 
medium. Figure 3e shows the stability of transmitted fields when 
exciting channels with high and low eigenvalues. As expected, even 
light propagating through the most stable eigenchannel exhibits 
non-negligible output fluctuations over time, indicating that we have 
not found any fields that thread perfectly around all dynamic regions. 
Despite this, we find that a marked improvement in focusing at the 
output is possible using the information stored in the time-averaged 
TM. Figure 3f shows a focus created using conventional wavefront shap-
ing, where the medium freely fluctuates throughout TM measurement 
(left column), compared with focusing using a sub-basis formed from 
the top 100 most stable temporal fluctuation eigenchannels (right 
column)—see Supplementary Section 6 and Supplementary Video 4 
for details. Both the contrast and stability of the focus are enhanced. 
Beyond focusing, more elaborate beam shaping may also be possible 
using this stable sub-basis43.

The time-averaged TM is related to several previously intro-
duced matrix operators connected to physical quantities in scatter-
ing media6,44–47. In particular, it has similar properties to the TM of 
a static medium with inhomogeneous absorption39,48,49. As fluctua-
tions in the medium go to zero, the time-averaged TM tends to the 
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time—that is, for three different configurations of the dynamic regions of the 
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through a strongly fluctuating medium. f, Enhanced focusing through strongly 
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focus are improved. The peak intensity is increased by a factor of 2.8 when using 
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peak intensity across the three panels.
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conventional TM, and the temporal fluctuation eigenchannels tend to 
the transmission eigenchannels of a static scattering medium50,51. The 
‘deposition matrix’47 and the ‘generalized Wigner-Smith operator’44,52 
are both also capable of revealing light fields that circumnavigate 
predetermined regions within a complex medium. However, only the 
time-averaged TM does so without requiring access to internal fields 
within the medium47 or the measurement of an entire TM while the 
medium is held static44.

Stable light transmission through flexing optical fibre
Up to this point, we have considered samples with well-defined mov-
ing regions embedded within static complex media. We now explore 
a more general scenario in which an entire medium deforms, leaving 
no clearly identifiable locations that remain static. To investigate this 
case, we search for stable channels within a step-index multimode 
fibre (MMF) as it is gradually bent—here all transmitted spatial modes 
will interact with the core-cladding boundary of the fibre as it flexes.

Figure 4a shows a schematic of our experiment (Methods and Sup-
plementary Section 7). We measure the time-averaged TM of an MMF 
supporting ~750 spatial modes as it is smoothly moved through 9 dif-
ferent bend configurations. Figure 4b shows how the TM decorrelates 
as the fibre is bent. Transmitting a fixed random input field through 
the fibre yields different output speckle patterns for each bend state, 
corresponding to a temporal fluctuation level of Fl ~0.8.

Figure 4c shows the eigenvalues of matrix ⟨T⟩†t ⟨T⟩t. We experimen-
tally measure the temporal fluctuations Fl in the output fields of 754 
temporal fluctuation eigenchannels, which are shown in Fig. 4d. We 
find ~150 channels that exhibit lower fluctuation levels than that of a 
random input field, across this range of fibre movement. Figure 4e 
shows examples of the most stable channels—all of which show reduced 
intensity on the axis (see Supplementary Section 7 for discussion of 
this phenomenon). See also Supplementary Video 5. This approach 
may be useful for the transmission of data through MMFs.

Discussion
We have shown that it is possible to identify and guide light through 
stable channels within dynamic scattering media. Our methods do not 
rely on prior knowledge of the location of dynamic regions or type of 
motion, and only require measurements of externally scattered light 
made on the same timescale as temporal fluctuations. To understand 
the potential applications of these techniques, a key question arises: 
to what extent do such stable channels exist within dynamic scattering 
media? While there is a large parameter space of possible scattering 
scenarios, we numerically examine some general trends for random 
disordered media.

We first use a layered forward scattering model to study how the 
proportion of stable transmission channels scales as a function of 
the area fraction of dynamic regions on each layer, and the number 
of randomly connected layers (that is, medium depth)—see Supple-
mentary Section 11 for details. For the first few layers, we find that the 
number of stable channels decreases linearly with the dynamic area per 
layer and the number of layers. However, at greater depths, this trend 
becomes sub-linear, and a proportion of stable channels are capable 
of propagating deeply. For example, with a 5% dynamic area ratio per 
layer, we find that ~10% of the modes remain highly stable to a depth 
of 20 layers. As with all wavefront shaping approaches, our ability to 
excite stable channels will depend upon the number of SLM control 
elements relative to the mode capacity of the medium.

We next consider media in which backscattering is not negligible. 
Such media pose additional challenges owing to competing require-
ments: optical fields must both circumnavigate moving regions and 
also penetrate deeply enough into the medium to transmit substan-
tial levels of power to the other side. In Supplementary Section 13, 
we explore how stable channels may be identified in this regime. We 
first show that if we are able to measure the full scattering matrix of 
a diffusive sample, coherently time-averaging the scattering matrix 
allows stable channels to be identified. Since the full scattering matrix 
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selected temporal fluctuation eigenchannels as the MMF is moved through all 
nine bend configurations. Output optical fields (with fibre in bend state 5) are 
shown to the right.
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is difficult to measure in most realistic scenarios, we next show how our 
physical adjoint optimization approach can be adapted to successfully 
guide light around dynamic regions while measuring transmitted 
light only. This modified optimization procedure requires light to be 
passed back and forth once per iteration on a timescale over which 
the entire medium is static (the medium is still free to move between 
iterations). This places more stringent constraints on the update rates 
of SLMs, yet offers an advantage over conventional wavefront shaping 
methods in which the medium must remain static throughout the entire 
optimization process. More broadly, we note that each new choice of 
adjoint optimization objective function will lead to a new physical 
optimization procedure, and it will be interesting to further explore 
this space in the future.

We now evaluate our adjoint methods in the context of entirely 
dynamic media containing no permanently static regions, but exhibit-
ing multiple decorrelation rates ranging from τfast to τslow. If coherent 
scattered field averaging is carried out over a timescale longer than τslow, 
this average tends to zero and our methods fail. However, we find that 
as few as two medium realizations will suffice to create useful coher-
ent averages to guide optimizations towards a more stable channel 
(Supplementary Sections 9, 10 and 12). Thus, if optimization is con-
ducted on a timescale τopt that is τfast < τopt < τslow, the resulting channel 
will preferentially occupy the slowest parts of the medium, gradually 
losing stability over a timescale of τslow—which could be rectified by 
continuous optimization. Recent work indicates that focusing using 
conventional wavefront shaping conducted on the same timescale as 
the medium decorrelation time also preferentially selects for more 
stable modes38,39.

Looking beyond optics, the problem that we have addressed here 
is closely related to multi-path fading in radio frequency wireless com-
munication channels. In that case, the interaction of transmitted signals 
with moving media is known as mode-stirring, and the Rician K-factor 
quantifies the ratio of ‘unstirred’ to ‘stirred’ paths53–56. Circumnavi-
gation of dynamic regions may potentially be applied at radio and 
microwave frequencies, either in the spectral domain or in the spatial 
domain in conjunction with beam-forming systems.

The concepts that we have introduced in this article apply to gen-
eral wave phenomena and may have relevance to a diverse range of 
applications. Possibilities include imaging deep into living biological 
tissue57–59, transmission of space-division multiplexed optical commu-
nications through turbulent air60 and underwater61, propagation noise 
reduction in acoustic beam forming62 and emerging smart microwave 
and radio environments63. Our work adds to the toolbox of methods to 
counteract the adverse effects of dynamic scattering media.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-025-01642-z.
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Methods
Calculation of temporal fluctuations
Throughout this work, we quantify the degree of temporal fluctuation 
in the intensity of optical fields transmitted through dynamic scatter-
ing media using the real positive scalar Fl, which is calculated from a 
sequence of camera frames recording the transmitted time-dependent 
intensity patterns in the following way:

Fl = ̄σI/μ̄I, (4)

where ̄σI  denotes the standard deviation of the time-fluctuating inten-
sity, averaged over all illuminated camera pixels, and is given by

̄σI =
1
P

P
∑
p=1

[ 1T

T
∑
t=1

(Ip,t − μp)
2]

1
2

. (5)

μ̄I  is the mean intensity averaged over all camera pixels at all measured 
times, given by

μ̄I =
1
P

P
∑
p=1

μp, μp =
1
T

T
∑
t=1

Ip,t. (6)

Here p indexes the camera pixel and t indexes the frame number, so 
that Ip,t is the intensity of the pth pixel in the tth frame. P is the total 
number of camera pixels, T is the total number of frames, and μp is the 
mean intensity detected by camera pixel p. This choice of temporal 
fluctuation quantification ensures that fluctuations are normalized 
with respect to transmitted power. Fl = 0 for a static transmitted field. 
Fl = 1 for a series of naturally occurring speckle patterns (that is, exhibit-
ing Rayleigh statistics64) that are uncorrelated in time. This second case 
is derived from the fact that such speckle patterns have a 
negative-exponential intensity probability distribution function, where 
the probability of a point in space having intensity I is given by 
Pr(I) = (1/ ̄I) exp (I/ ̄I), and here ̄I  is the mean intensity of the speckle pat-
tern. The standard deviation and mean of this distribution are equal; 
thus, Fl = 1 for a sequence of uncorrelated speckle patterns.

Unguided optimization
The optimization commences by transmitting an initial trial field u0 
through the sample and recording a series of transmitted intensity 
images with the camera. We sample 20 realizations of the fluctuating 
speckle pattern and calculate the level of temporal fluctuations Fl over 
these frames. In this initial experiment, we looped the same 20 ran-
domly generated phase patterns inside the patches on each iteration. 
The input SLM used to generate the incident fields is subdivided into 
1,200 super-pixels. The phase delays imparted by these super-pixels 
represent the independent degrees of freedom that we aim to optimize. 
We begin by setting each super-pixel to a random phase value, creating 
incident field u0, and measure the level of output fluctuations. Next, two 
new test fields are sequentially transmitted through the sample. These 
are generated by randomly selecting half of the input SLM super-pixels 
used to create u0, and adding/subtracting a small constant phase offset 
δθ from these pixels, yielding inputs u±δθ. Here we used δθ = π/40. We 
measure the corresponding level of output fluctuations for these two 
new trial inputs, and if either exhibit lower fluctuations than u0, the 
optimized input field is updated accordingly. This process is repeated 
until the output fluctuation level no longer improves.

This algorithm relies on accurately capturing the output fluc-
tuations on each iteration. However, there is an uncertainty in the 
measurement of Fl owing to the finite number of realizations of the 
dynamic medium sampled and the presence of other sources of noise. 
To enhance the algorithm’s robustness to this source of noise, on each 
new iteration, the optimum input field from the last iteration is retested 
and compared with the two new trial fields—doing so increases the 

optimization time, but crucially prevents a single measurement with 
an erroneously low value of Fl from blocking the optimizer from taking 
steps in subsequent iterations.

Physical adjoint optimization
To increase C, the input field at iteration i + 1 is given by u(i+1) = u(i) + δu. 
Our task is to find the elements of column vector δu at each iteration. 
The jth element of δu is given by δu j = δAeiθj. Here δA is the optimization 
step size, which is set to the same value of a small positive constant for 
all elements of δu. θj is the phase change of element j, which in general 
will be different for all elements of δu. All of these phase changes com-
ponents can be found simultaneously (see Supplementary Section 3 
for derivation), which when stacked in column vector θ are given by

θθθ = − arg (TT ⋅ ⟨v⟩∗t ) , (7)

where ⟨v⟩∗t  is the phase conjugate of the time-averaged output field.
As shown in Fig. 2a, iteration i commences by illuminating the 

dynamic scattering medium from the left-hand side (LHS) with trial 
field u(i), and time-averaging the transmitted optical field on the 
right-hand side (RHS), yielding 〈v〉t. Equation (7) specifies that 〈v〉t 
should be phase conjugated and transmitted in the reverse direction 
through the dynamic medium, from the RHS back to the LHS. Measur-
ing the phase of the resulting field on the LHS reveals how to update 
all spatial components of the input field to improve C, generating the 
next input u(i+1).

Experimentally, this adjoint field optimization strategy requires a 
relatively complicated optical set-up: two digital optical phase conjuga-
tion (DOPC) systems—which enable time reversal of optical fields—are 
arranged back-to-back on either side of the dynamic sample. We use 
single-shot off-axis digital holography to measure the output fields 
on each side. The DOPC systems require very precise alignment, so we 
implemented a calibration method that we recently described in ref. 65.  
Our set-up enables spatial shaping of both the intensity and phase 
profile of the time-reversed field travelling in both directions. We test 
this approach to guide light through a similar sample dynamic medium 
to that used for unguided optimization (Fig. 1e, top row). To construct 
the time-averaged field transmitted through the medium, we coher-
ently average the field scattered through N = 5 different realizations of 
the dynamic parts of the medium. Supplementary Section 4 shows a 
schematic of the full optical set-up used in this experiment.

We note that, in principle, adjoint optimization could be used to 
find multiple stable fields—by conducting a series of adjoint optimiza-
tions, each seeded from a different initial field. This would lead to a 
set of stable output fields that can be stored as the column vectors of 
matrix V, and used to generate a target output field vtrg by injecting into 
the medium the field u = V−1vtrg. However, this is not an efficient search 
strategy, since there is no way to guarantee the linear independence 
of the set of optimized fields—meaning that very similar fields may be 
inadvertently found. Hence, we developed the final approach based 
on the time-averaged TM.

Temporal fluctuation eigenchannels of the time-averaged TM
For the experiments shown in Fig. 3, we illuminate the sample with 
M = 2,304 probe fields, and average the output field sampling N = 10 
uncorrelated realizations of the scattering medium for each input 
mode. Supplementary Section 5 describes the full optical set-up for 
this experiment. For the experiments shown in Fig. 4, we illuminate 
the MMF with M = 1,600 probe fields and measure its TM in 9 differ-
ent bend states. Supplementary Section 7 describes the full opti-
cal set-up for this experiment. Experimentally, measurement of the 
time-averaged TM is simpler than physical adjoint optimization—
although the main challenge is that the reference beam required for 
holographic field measurement must be phase-drift-stabilized for the 
entire measurement of Tav.
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The data supporting the findings of this study are available within the 
paper, its Supplementary Information files and at the University of 
Exeter data repository66.
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