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Abstract— The insulation resistance (IR) test has been widely 
conducted by electricity companies to assess cable insulation 
health status due to its ease of applicability. However, there exist 
cases in which medium-voltage power cables pass the IR test but 
fail in service after re-energization. So far, historical IR data 
obtained via measurements have been recorded, but have never 
been systematically studied to improve the accuracy of detecting 
unhealthy cables. This paper proposes a data analytic approach 
using historical IR data to identify patterns for distinguishing 
between healthy and unhealthy cables and assess the cable 
insulation condition. The proposed approach first leverages a two-
parameter Weibull analysis to link the failure probability of the 
cables to their ages. Such analysis sheds light on the classification 
of the cables with respect to their age and material. Next, a 
diminishing method (DM) is used to set the critical IR values and 
provide maximum detection of the unhealthy cables with 
minimum misclassification of the healthy cables as unhealthy. 
Finally, a self-organizing-map-based support vector machine 
(SOM-SVM) is used to classify the cables as healthy or unhealthy. 
The hybrid DM-SOM-SVM approach is applied to the historical 
IR data of 22kV and 6.6kV cross-linked polyethylene (XLPE) 
cables. Compared to current industrial IR criteria for insulation 
condition diagnosis, the proposed approach allows detecting 18.5x 
and 1.8x more unhealthy 22kV and 6.6kV XLPE distribution 
cables, respectively. 
 
Index Terms—Data analysis, degradation, distribution cables, 
failure analysis, power cable insulation, support vector machine 
(SVM). 

 

I. INTRODUCTION 
HE cables are the key components of the electricity 
network. The reliability and resilience of electricity 
delivery through distribution and transmission networks 

rely on the stable operation of power cables and the status of 
their insulations [1]. Various techniques have been proposed to 
assess the health of cables [2]. Partial discharge (PD), applied 
both online and offline, detects local defects within the cables 
insulation [3], but it is sensitive to noise [4]. Dielectric loss (Tan 
) measurement is another well-known insulation health 

indicator, yet its application is constrained by high power 
requirements for long cables under power frequency [5], [6] and 
temperature-dependent measurement variations [7]. An 
improved frequency-domain reflection (FDR) based method is 
introduced and validated using artificial cable defects in [8]; 
however, its accuracy in real-world scenarios may be affected 
by cable accessories and multiple joints.  

Insulation resistance (IR) measurement remains widely used 

in the industry to assess the status of cable insulation. The 
measurement is usually carried out via a portable, easy-to-
operate, and cost-effective IR tester [9]. The IR measurement 
data can also be obtained by dielectric absorption ratio and 
polarization index, which can be calculated via the ratio of IR 
measured at various time instants (i.e., 30s, 60s and 600s) [9]. 
Additionally, polarisation and depolarisation currents has been 
used to further assess cable health conditions [11]. Electricity 
companies commonly evaluate cable insulation health based on 
IR criteria before re-energizing the cable. However, failures 
still occur in some medium-voltage (MV) power cables that 
initially pass the IR test, highlighting the need for a more 
accurate and reliable IR-based health assessment technique. 

In the past, various methods have been explored to improve 
cable insulation diagnostics. While machine learning (ML) 
techniques have been widely applied, they have primarily 
focused on alternative measurement data rather than historical IR 
values. For example, models such as tree ensembles and support 
vector machines (SVM) have been used for PD type 
classification in transformers [12]. Similarly, the researchers used 
SVM to recognize the PD type based on SF6 and its 
decomposition products [13]. Fuzzy support vector machine 
(FSVM) classification algorithm hs been employed to enhance 
cable health evaluation by weighting key aging factors, (i.e., PD, 
cable corrosion, annual load, and operating life) [14]. Compared 
to the SVM, FSVM can allow for assessing the health status of 
cables more accurately. Deep learning approaches, such as 
convolutional neural networks (CNN), have been leveraged to 
classify cable aging states based on dielectric parameter 
measured under various frequencies [15]. Additionally, feature 
fusion techniques have been applied to analyze space charge 
properties in cross-linked polyethylene (XLPE) cables, with 
radial basis function (RBF)-based SVM demonstrating superior 
classification performance [16]. Some studies have also 
focused on post-fault classification rather than pre-fault 
diagnostics [17]. While these methods highlight the 
effectiveness of ML in cable health assessment, none have 
leveraged historical IR data for long-term insulation condition 
monitoring and predictive health assessment.  

Only one study [18] has attempted to incorporate historical 
IR dataset to cable health assessment. It employed a simple 
thresholding method using 5,700 historical IR values to 
establish a maintenance strategy for 11kV distribution cables, 
identifying an imbalance degree among three phases and a 

. However, this heuristical 
approach relies on a fixed threshold that does not account for 
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key factors such as cable age, type, and length, limiting its 
applicability to 22kV and 6.6kV distribution networks, MV 
cables considered in our study.  

This paper proposes a hybrid data analytic technique using 
historical IR data to assess the insulation health of MV (22kV 
and 6.6kV) distribution cables. As shown in Fig.1, the 
technique first uses a two-parameter Weibull method to to 
establish the relationship between cable failure rates and cable 
age. Based on this relationship, cables are grouped with respect 
to their ages or types. Next, the diminishing method (DM), 
leveraging the principle of diminishing returns, is used to obtain 
high (Secnario I) or low (Secnario II) critical IR values for each 
group, classifying cables as healthy or unhealthy. While DM 
acts as a linear classifier, it alone is insufficient for maximizing 
true detection rates of unhealthy cables while minimizing false 
detections. To further exploit IR patterns, a self-organizing-
map-based support vector machine (SOM-SVM) is leveraged 
after DM [Fig. 1]. The SOM-SVM first performs re-sampling 
on data to reduce the imbalance ratio of healthy and unhealthy 
classes without discarding any useful information. It then 
classifies cables into healthy or unhealthy states for failure 
prediction [Fig. 1]. The proposed DM-SOM-SVM approach 
allows for detecting 18.5x and 1.8x more unhealthy 22kV and 
6.6kV cables compared to the current IR guideline utilized by 
the electricity company, respectively.  

A preliminary version of this framework was presented in 
[19], where rationale for applying the two-parameter Weibull 
model in cable failure assessment was discussed. In addition, 
the work in [20] established the link between cable failures, 
cable type and cable age. However, this study presents a 
systematic hybrid data analytic method using historical IR 
measurement values, introducing the DM-SOM-SVM method 
to assess the health status of cables. For each subgroup, 
threshold IR values are derived, and ML methodologies are 
implemented to employed to improve predictive accuracy.  

 

Scenario II 
Low Critical IR Values

 Scenario I  
High Critical IR Values

 Weibull Failure Analysis for Grouping 
Cables w.r.t. Types and Ages 

DM for Obtaining Critical IR 
Values of Each Subgroup

SVM-based Classification of 
Healthy and Unhealthy Cables

IR Data

SOM-based Resampling

 
Fig. 1. Flowchart of the proposed data analytic technique. 
 

The main contributions of this work are twofold:  
1) A data analytic approach is proposed for the first time 

to assess the health status of power cables using the IR 
measurement values. Utility companies can implement the 
proposed data analytical approach and use it with their own 
historical IR measurement values to assess the health status of 
MV cables. The proposed approach demonstrates superior 
performance compared to the heuristic techniques currently 
employed by utility companies. 

2) Threshold IR values for MV power cables, indicating 
the cable health status, are systematically studied and presented. 
Utility companies can use these threshold IR values to quickly 
screen the health status of their MV cables with a certain 
accuracy. 

The rest of this paper is organized as follows. Section 2 
introduces the two-parameter Weibull method to analyze 
historical failure events and classify cables by age/type. Section 
3 introduces the DM method and demonstrates the 
improvement in detection capability achieved via DM. Section 
4 presents the SOM-SVM technique, where datasets are re-
sampled after applying DM. Section 5 demonstrates the results 
of the hybrid DM-SOM-SVM technique, followed by Section 
6, which discusses the overall performance of the proposed 
method. Finally, Section 7 concludes the work. 

II. PRELIMINARY ANALYSIS OF FAILURE EVENTS VIA WEIBULL 
MODEL 

In recent years, the Singapore utility company has 
experienced failures on distribution cables insulated with 
XLPE. In addition, there were cases of cable failures when the 
cable circuit passed the IR screening. The health status was then 
initially determined by the Singapore power company via the 
critical IR values and the IR unbalance ratio, heuristically 
derived via the company's years of experience, as shown in 
Table I. The IR unbalance ratio is the ratio of the maximum IR 
value to the minimum IR value among the three phases. 
Generally, cable was classified as unhealthy if the cable failed 
during operation (Case 1), cable could not pass the IR screening 
(Case 2 & 3), or cable failed during re-energizing after the IR 
measurement (Case 4). 

The existing IR guidelines assumed can produce fair and 
reasonable classification. However, it felt short as it was 
determined heuristically with experience and did not take into 
account the cables’ type, age, and length. Furthermore, it was 
not derived from a systematic data analytics study on historical 
data. In theory, cable IR degrades over its operational period 
due to the growing exposure to environmental, thermal, and 
electrical stresses. It is inversely proportional to the cable’s 
length. In short, the current approach based solely on analyzing 
IR without considering the cables’ age, type, and length is 
biased and inaccurate [21]. 
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TABLE I
INITIAL IR GUIDELINES FOR CABLE HEALTHY LABELLING

Case
Minimum 

IR among 3 
phases

IR 
Ratio

Re-
energising

Power 
Utility 

Labelling

Labelling 
in this 
study

1 Fail during operation Unhealthy Unhealthy
2 N/A N/A Unhealthy Unhealthy
3 > 15 N/A Unhealthy Unhealthy
4 Fault Healthy Unhealthy
5 Pass Healthy Healthy

A. Data Preparation
Apart from IR measurements carried out on-field, the 

historical IR measurement values obtained since April 2013 are 
also used in this study. In total, two databases were provided by 
the utility company: the first database contains operational
information such as cable circuit ID, voltage level, cable age, 
cable type, cable length, and up-to-date IR measurement values; 
the other database has the records of failed circuits including 
the information of cable circuit ID, the last IR measurement 
value, and date of failure. Comprehensive circuit information 
with IR values was obtained via the following steps: 

1) The circuit with missing cable age/type/length information
or IR measurement values was discarded.

2) The cable circuit ID was matched up between two 
databases to find the operational information of the cables. 
After data clean-up, the IR values of 1642 22kV cables and 
1680 6.6kV cables have been included in the dataset.

3) By applying the initial IR guidelines, 96 unhealthy 22kV
cable circuits and 72 6.6kV cable circuits have been identified.
The large imbalance ratio between the ‘Health’ and ‘Unhealthy’
classes of the 22kV and 6.6kV was noted as 16.1 and 22.3, 
respectively.

B. Specifications and IR Measurement Setup
In this study, 22kV and 6.6kV three-core XLPE cables 

owned by the Singapore utility company are considered. The 
structure of these medium voltage power cables is provided in 
Fig 2. Generally, each cable phase has five layers: conductor 
core, conductor screen, insulation, insulation screen, and 
metallic screen. The thicknesses of the cable layers are provided 
in Table II. Specifically, nominal thicknesses of the insulation 
for 22kV and 6.6kV power cables are 5.5mm and 2.8mm,
respectively.

The IR values of cables were measured under DC excitation 
by using Megger S1-1568 at the power cable terminal located 
in a substation. Table III provides the specifications of the 
Megger S1-1568. The IR measurement accuracy depends on the 
test voltage and resistance range. The large resistance value at 
the orders of tera-ohms leads to an extremely low current value, 
which consequently reduces the measurement accuracy. 
Megger S1-1568 has a sufficiently broad resistance range and 
is suitable for IR measurements conducted in this study.

Fig. 2. The structure of MV power cables.

TABLE II
SPECIFICATION OF 22KV AND 6.6KV POWER CABLES

Parameter 22kV 6.6kV
Nominal conductor cross-section area (mm2) 300 300
Nominal thickness of conductor screen (mm) 0.8 0.5

Nominal thickness of insulation (mm) 5.5 2.8
Nominal thickness of insulation screen (mm) 1.1 1.1

Thickness of metallic screen (mm) 0.4 0.4
Nominal thickness of separation sheath (mm) 2.1 1.9

Nominal thickness of armour (mm) 1.6 1.0
Nominal thickness of PVC oversheath (mm) 3.9 3.4

TABLE III
SPECIFICATIONS OF MEGGER S1-1568

Parameter Details

Accuracy @10 kV

Accuracy @ 5 kV

Resistance range

Current accuracy ±5% or  ±0.2 nA at all voltages (20 °C)
Current range 0.01 nA to 6 mA
Display range

Real-time output (V, I, R) Readings at a rate of 1 Hz
Operating temperature range 20 °C to 50 °C

Remote control Via USB only
Weight 6.5 kg

Dimensions 305 mm × 194 mm × 360 mm

The connection of the test instrument is shown in Fig. 3. 
During on-field IR measurements, the tests were remotely 
controlled by the PowerDB Lite software provided by Megger 
instrument. When the indicator is lit green, the remote control 
becomes activated. Two test leads are required to make the 
connection to the test circuit. In detail, one lead, marked as high 
voltage electrode, was connected to the cable connector lug, 
while the other lead, called measuring electrode, was clipped on 
the cable earthing braid. The data was recorded at 1 Hz where 
the data was transferred to the laptop via a USB cable. With 
consideration of instrument response time in practice, it usually 
takes ten seconds to generate a steady current. Therefore, the 
power was supplied until the 70th seconds and the IR measured 
at 70th seconds was used in the database. Uncertainties like 
human error, inconsistent test methods, and missing humidity 
or temperature data are not considered due to a lack of records.
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Fig. 3. The connection of the test instrument for on-field IR measurement.

C. The Two-Parameter Weibull Model
The two-parameter Weibull model, as one of the statistical

approaches, has been applied to analyze cable failure events and 
predictions in early 1990s [22]. Based on the two Weibull 
parameters, the failure distribution for the cable population 
located in a certain district and operational condition can be 
evaluated. To perform survival analysis and link the cables’ 
specifications (age and type) to their failure probability, two-
parameter Weibull model is introduced as 

1( ) ( ) exp( ( ) )t tf t , (1)

where t is time,  is the shape parameter, and is the scale 
parameter. The parameters and are used to model the trend 
of failure rate within the lifespan. In detail, the value of 
reflects the aging rate of a population, while the value of 
indicates the characteristic life when 67.3% of the population is 
failed [20]. Based on (1), the Weibull cumulative distribution 
function (CDF), F(t), is then provided as

( ) 1 exp( ( ) )tF t . (2)

Usually, the Weibull parameters are derived via Maximum 
Likelihood Estimation. Before applying this approach, the type 
of data should be classified via a censorship indicator, i , which 
is

1,
0,i

Uncensored
Censored

. (3)

The first type of data is uncensored data or failed/unhealthy 
cable data, denoted as ‘1’. For this type of data, the exact time 
of each cable failure is known. The other type of data denoted 
as ‘0’, which will be involved in this paper, is called censored 
data or survived/healthy cable data. The cable belonging to 
censored data indicates it is still in operation at the time of 
measurement [23]. For a cable population whose survival 
behavior obeys Weibull distribution, the likelihood function 
can be expressed as

( ) ), (
i iL p t , (4)

where ti is the years of service for each observation, p(ti) is the 

probability function and subscript i denotes the ith year of the 
service. The p(ti) depends on the censorship of each observation 
and can be expressed via cumulative and probability density 
functions as

( ),
( )

( ) 1 ( ),
i

i
i i

f t Uncensored
p t

R t F t Censored
. (5)

To combine the two censorships in a single expression, i and 
(1– i) are moved to the powers of f(ti) and R(ti), respectively, 
as

1( ) i i

i i ip t f t R t . (6) 
When i = 1, f(ti) contributes to the likelihood function and,  
when i = 0, R(ti) contributes to the likelihood function.
After substituting (1), (2) and (6) in (4), we obtain [24]

1

1

1

1

1

1

( )

e

ex

,

xp

p

i i

i

i

n

i

i i

i

n

i

n

i
i

i

L f t

t t

t

tR

(7)

Then, by taking the logarithm of both sides of (7), the 
Weibull parameters and are estimated by maximizing the 
logarithm of the likelihood function ln(L( , )). In this study, 
the estimation of Weibull parameters via the likelihood function 
is performed using MATLAB ‘wblfit’ function.

D. Application of the Two-Parameter Weibull Model
The applications of the two-parameter Weibull model to the 

whole 22kV cable data and 6.6 kV cable data are shown in Fig. 
4(a) and Fig. 4(b), respectively. In Fig. 4(a), the fitted Weibull 
distribution has R2 value of 0.391, which indicates a weak 
correlation between the Weibull plot of failures and the fitted 
distribution. The Weibull plot of failures represents the 
observed unrealiabilities which can be estimated via the 
adjusted rank method as we presented in the preliminary 
version of the proposed framework [19]. The application of the 
model to the overall 6.6 kV cable data (Fig. 4(b)) also shows a 
poor fit with an R2 value of 0.767. Because of the poor-fitted 
results, the three-parameter Weibull model with location 
parameter ( ) is tested, where the values of , , and are 
obtained as 163.7, 1097.9, and -1040.4 for 22kV power cables 
and -2989.50, 501.9, and 3045.6 for 6.6kV power cables, 
respectively. The values of and for both voltage levels are 
unrealistic large, while the values of are negative. However, 
the data used in our study do not include any extremely large or 
negative values, i.e., cable in service for thousands of years or 
negative ‘cable age’. Besides, the concave-up shaped Weibull 
probability also indicates a negative value of if the failure data 
is fitted by a 3-parameter model [24]. 

In addition, the goodness-of-fit of other failure distributions 
is examined. As indicated in [25], commonly used distributions 
for engineering failure analysis are Gumbel, lognormal, and 
exponential distributions. The Gumbel distribution is a Type 1 
extreme value distribution and is used to model critical and 
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extreme events, such as earthquakes [26], natural disasters, and 
breakdown in liquids. Thereby, it is not suitable for this study. 
The lognormal distribution has a poor goodness-of-fit with R2

value of 0.597 and 0.672 for 22kV and 6.6kV cables, 
respectively. To this end, it is not considered in this research. 
The R2 value for the exponential distribution is 0.381 and 0.003 
for 22kV and 6.6kV datasets, and thereby it is not applicable to 
this study.

Furthermore, fitted Weibull distribution has a corner or 
dogleg, indicating a mixture of failure modes [24], [25]. Similar 
trending has been observed for the 6.6 kV case (Fig. 4(b)). 
Therefore, the two-parameter Weibull model with multiple 
aging mechanisms or various pairs of Weibull parameters are
to be determined for further analysis. 

To this end, three different age subgroups for 22kV cable data 
have been introduced and the two-parameter Weibull model has 
been applied to data in each subgroup separately. While age group 
1 (AG1) includes the data of the 22kV cables with ages from 1 to 
9, age groups 2 and 3 (AG2 and AG3) include the data of 22kV 
cables with ages between 10-23 and 24-40, respectively. It is clear 
in Table IV that the fitted Weibull distributions have R2 values 
more than 0.90 for all age groups, while Fig. 4(c) shows a good 
match between Weibull plots of failures and fitted distributions. A 
similar grouping has been performed for the 6.6 kV cable data. In 
particular, data for 6.6kV has been grouped according to the cable 
types: the ones with copper cores (type 1) and aluminum cores 
(type 2) (Table IV). In fact, the average age for 6.6kV type 1 cables 
was around 20 years, whereas that for 6.6kV type 2 cables was 
nearly 32 years and thus greater degradation has been accumulated 
for the type 2 cables, which results in higher aging rate or shape 
parameter. Thereby, it is reasonable to group 6.6kV cables 
according to their types. While the R2 values for all subgroups are 
obtained more than 0.96, a good match between the Weibull failure 
data and distributions is shown in Fig. 4(d).

TABLE IV
CATEGORIZATION OF 22KV AND 6.6KV CABLE DATA VIA WEIBULL 

ANALYSIS

Voltage 
Subgroup Information

R2

Age Group (AG) Cable Type

22kV

Young (AG1)

Copper Core(Type 1)

0.909

Middle Aged 
(AG2) 0.952

Old (AG3) 0.959

6.6kV All Age
Copper Core (Type 1) 0.972

Aluminum Core (Type 2) 0.962

(a)

(b)

(c)

(d)
Fig. 4. Weibull distribution fitting to the Weibull plot of failures when whole 

(a) 22kV cable data and (b) 6.6kV cable data are considered, and when (c) 22kV 
cable data and (d) 6.6kV cable data are considered after grouping with respect 
to age and type, respectively.
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III ENHANCED IR CRITERIA BASED ON DM 
The data in each subgroup determined via two-parameter 

Weibull analysis for 6.6kV and 22kV cable assets is further 
processed by DM. In specific, a critical IR value used to classify a 
cable as healthy or unhealthy is determined by the DM applied to 
the data of each subgroup. Note that these IR values can serve as 
enhanced IR guidelines for utility companies, yet we use them as 
auxiliary knowledge in an intermediate step of our proposed data 
analytic framework. The current guideline used by the utility 
compa
cables at all ages determined by users’ experience and heuristics. 
The cables are classified as unhealthy if their IR values are smaller 
than the critical IR value. However, the enhanced critical IR values 
obtained by the diminishing method are determined by considering 
the historical data for certain cables at certain ages or with certain 
types. Thereby, the enhanced IR guidelines yield more accurate 
health prediction/classification than those achieved by electricity 
companies’ current IR guidelines.  

 
Fig. 5. IR distributions of the healthy and failed 22kV cables for (a) AG1, 

(b) AG2, and (c) AG3 subgroups. 
 

 
Fig. 6. IR distributions of the healthy and failed 6.6kV cables for (a) type 1 

and (b) type 2 subgroups. 
 

Before applying the diminishing method, distributions of 
historical IR values of all subgroups are analyzed to understand 
better the IR behaviour of the cables of each subgroup. For each 
subgroup, IR values are classified as the ones belonging to 
healthy cables and unhealthy/failed cables. While the IR values 
of the healthy cables are measured when the cables are 
operational and healthy, the IR values of the failed cables are 
the ones measured just before cable failures. Boxplots of the IR 
distributions of the healthy and unhealthy/failed 22kV cables 
are provided in Fig. 5. For the AG1 (Fig. 5(a)), after removing 
the one outlier (the red cross) in failed cables, two classes of 
data nearly become separable via a prescribed IR threshold. The 
IR values of failed cables are extremely small compared to 
those of the healthy ones since the failure at this age period 
(AG1) is primarily due to the poor quality of manufacturing or 
wrong installation practices [27]. For the AG2 (Fig. 5(b)), the 
IR distributions of healthy and failed cables are hard to be 
separated via a threshold, however, the median of the healthy 
class is 1.76x higher compared to that of the unhealthy/failed 
class. For the AG3 (Fig. 5(c)), the majority of the IR data of 
both classes is separable via a threshold, especially for the 
healthy cables, no outliers is found. In this wear-out period, the 
bulk dielectric strength of insulation degrades because of long 
time exposure to electrical, thermal, environmental, and 
mechanical stresses. For 6.6kV cable type 1 and type 2 
subgroups, boxplots of the IR distributions of the healthy and 
unhealthy/failed were similar to the 22kV AG1 cables. As 
illustrated in Fig. 6, after removing the outlier in failed cables, 
two classes of data nearly become separable via a prescribed IR 
threshold. 

As seen in the previous investigation of IR for each subgroup, 
a cut-off value for each subgroup can be determined so that 
cables can be classified as healthy when the IR is higher than 
the cut-off value. For this purpose, the DM has been used. The 
DM aims to find a cut-off value for maximizing the detection 
of unhealthy cables (true detection) while minimizing the 
misclassification of healthy cables as unhealthy (false 
detection). As the problem at hand is a classification/detection 
problem, the metrics used in this classification are as follows: 
The majority of samples belonging to the healthy cables are 
counted in the negative class while the remaining minority of 
samples belonging to unhealthy/failed cables are included in the 
positive class.  Two metrics are defined to assess the true 
positive detection (of unhealthy/failed) and true negative 
detection (of healthy cables) as [28] 
 Acc+ (True Positive Rate) = TP / (TP+FN), (8) 
 Acc– (True Negative Rate) = TP / (TP+FN), (9)  
where the definitions of true positive (TP), false negative (FN), 
true negative (TN), and false positive (FP) are provided in Table 

 
TABLE V 

CONFUSION MATRIX FOR CLASSIFICATION 

 Predicted Positive 
(Unhealthy/Failed) 

Predicted Negative 
(Healthy) 

Real Positive 
(Unhealthy/Failed) True Positive (TP) False Negative (FN) 

Real Negative 
(Healthy) False Positive (FP) True Negative (TN) 

Healthy Cables Failed Cables

0

10

20

30

IR
 (M

)

10 4

(a)

min = 8090M
median = 100000M
max = 303000M

min = 2000M
median = 12150M

max = 100000M

Healthy Cables Failed Cables

0

10

20

IR
 (M

)

10 4

(b)

min = 4000M
median = 50000M
max = 200000M

min = 200M
median = 30000M

max = 226000M

Healthy Cables Failed Cables

0

10

20

IR
 (M

)

10 4

(c)

min = 1450M
median = 100000M
max = 200000M

min = 330M
median = 20600M

max = 200000M

Healthy Cables Failed Cables

0

10

20

IR
 (M

)

10 4

(a)

min = 500M
median = 32000M
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V [29]. Acc+ and Acc– reflect the proportion of correctly 
identified cables in both failed/unhealthy and healthy cable 
populations, respectively. In the procedure of DM, first, the IR 
values of failed cables are sorted in ascending so that the unique 
values of IR are recorded as useful cut-off points, while the IR 
values of healthy cables are compared with the useful cut-off 
points. Then the Acc+ and Acc– are computed for each useful 
cut-off point (and plotted in Fig. 7 and Fig. 8). Finally, the 
optimal cut-off point is determined as the improved critical IR 
value. It is clear in Figs. 7 and 8 that Acc+ and Acc– are directly 
and inversely proportional to the values at cut-off points, 
respectively.

Following the DM procedure, two different critical IR 
values, high and low critical IR values, are determined and 
indicated in Figs. 7 and 8. Selecting a high critical IR value 
yields detecting more unhealthy cables (at least 70% of the 
unhealthy cables (Acc+ 70%)), in exchange of misclassifying 
more healthy cables as unhealthy. (Note: Misclassification of 
health cables as unhealthy results in a heavy workload of 
mitigation measures or unnecessary and costly measurements 
performed after the IR test, which the electricity companies do 
not desire.) On the other hand, selecting a low critical IR value 
yields slight improvement in detecting unhealthy cables while 
ensuring the minimum misclassification of health cables as 
unhealthy (at least detecting one more unhealthy cable while 
keeping Acc– around 90%). These facts can also be observed in 
Table VI, which shows the true positive and negative detection 
rates, Acc+ and Acc– , achieved after setting low and high 
critical IR values. Clearly, the accurate detection of the positive 
(unhealthy/failed) class, Acc+, increases with increasing critical 
IR value while the accurate detection of the negative (healthy) 
class, Acc–, decreases. (Note: Acc+ and Acc–  in Table VI are 
different from those in Figs. 7 and 8 as those are calculated for 
the whole cable populations after setting the low and high 
critical IR values provided in Table VI.)  This study’s target is 
achieving more than 70% accuracy in detecting 
unhealthy/failed cables while minimizing the misclassification 
of healthy cables as unhealthy, i.e., increasing both Acc+ and 
Acc–. Therefore, further effort via an ML algorithm is devoted 
to increasing the classification accuracy, as explained in the 
following section.

TABLE VI
CLASSIFICATION ACCURACY W.R.T. HIGH AND LOW CRITICAL IR VALUES 

OBTAINED BY DM 

Group 
Name 

High Low

IR (G ) Acc+ Acc– Acc+ Acc–

22kV

AG1 87.5

59% 70%

20.0

96% 22%AG2 50.0 12.0

AG3 50.0 4.3

6.6kV
Type1 12.4

69% 79%
3.0

86% 46%
Type 2 12.4 3.0

(a)

(b)

(c)
Fig. 7. Results of DM procedure for (a) AG1, (b) AG2, and (c) AG3 of 22kV 

Cables 

(a)

(b)
Fig. 8. Results of DM procedure for (a) Type 1 and (b) Type 2 of 6.6kV 

Cables 

IV. SELECTION OF CLASSIFIER

For linear separable data, the classification problem can be 
solved by SVM via finding a hyperplane and maximizing the 
distance between the support vectors and the hyperplane. For 
an example of a two-dimensional space, the hyperplane is 
expressed as WTX + b = 0. Here W denotes the weight vector, 
X represents the input vector, and b is the bias. The predicted 
label of each entry of X is set to -1 or 1 (belonging to negative 
or positive classes) if its value is below or above the hyperplane, 
respectively. When solving the real-world classification 
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problems, the classes in datasets oftentimes are not linearly 
separable. To this end, a kernel transformation function is 
leveraged to create new features based on the features from the 
input space [30]. Then the hyperplane is optimized in the high 
dimensional space instead of the original low dimensional input 
space. A Gaussian RBF is selected as the kernel transformation 
function in this study. The Gaussian RBF allows SVM to model 
non-linear relationships between variables, which can result in 
better classification performance. Furthermore, it requires the 
adjustment of only two parameters, which can be tuned to fit 
the specific needs of the real-world problem at hand. In 
addition, the effectiveness of the Gaussian RBF has been 
demonstrated in a wide range of applications. It was shown that 
the Gaussian RBF outperforms other kernel functions [31]. 

The metrics used to estimate the performance of the classifier 
are [30] 
 Accuracy= (TP+TN) / (TP+TN+FP+FN), (10) 
 Precision = TP / (TP+FP), (11) 
 Recall = TP / (TP+FN), (12) 

Accuracy provides the general ability of the model to predict 
the correct class. However, when the datasets are unbalanced in 
nature, Accuracy can still be high, but the model fails to 
correctly predict the class of interest (minority class in our 
case). Precision or Recall is recommended to acquire more 
information on the model’s performance. Precision is preferred 
when the cost of FP is higher, and Recall is selected when the 
cost of FN is higher [32]. In our case, the misclassification of 
unhealthy cable as healthy cable (FN) is more costly compared 
to the misclassification of healthy cable as unhealthy cable 
(FP). While FN results in higher cost of power outages, loss of 
revenue, and the costs from the customers’ side, the FP just 
requires an additional monitoring of the cable with another 
technique (pre-maintenance). To this end, since the cost of FN 
is higher than the cost of FP, Recall is more significant for our 
study. 

The performance of the SVM with Gaussian kernel classifier 
is compared with those of the classifiers, including Logistic 
Regression, Naïve Bayes, KNN, and Decision Tree (DT). The 
performance metrics of all classifiers are tabulated in Table VII 
and Table VIII. In this comparison, the ML techniques were 
trained with the whole datasets of 22kV and 6.6kV. Because of 
extremely large number of samples in the majority class 
(healthy class), the Accuracy values are noticeably higher than 
Recall values, but Recall is still considered the primary metric 
in our study. For 22kV cable IR dataset, the comparison of the 
Recall among the various classifiers shows that the SVM 
classifier with Gaussian kernel outperformed the rest of the 
classifiers. For 6.6kV cable IR dataset, although the Recall of 
Naïve Bayes classifier is the largest, the Accuracy of this 
classifier is the worst, resulting from 108 cases of FPs. The 
substantial number of FPs results in excessive workload and 
additional tests for the power utility company. To this end, the 
SVM classifier is still the optimal option.  

The performance of the SVM classifier combined with DM 
and reduced imbalance ratio will be investigated next.  

 
 
 
 
 

TABLE VII 
PERFORMANCE OF CLASSIFIERS ON THE OVERALL 22KV IR DATA 

Name of Classifier Accuracy Precision Recall 
SVM with Gaussian kernel  80.1% 78.1% 31.0% 

Logistic Regression 74.4% N/A 0.0% 
Naive Bayes 76.6% 76.9% 13.0% 

KNN 73.7% 47.6% 25.0% 
DT 76.6% 88.9% 10.0% 

 
TABLE VIII 

PERFORMANCE OF CLASSIFIERS ON THE OVERALL 6.6KV IR DATA 
Name of Classifier Accuracy Precision Recall 

SVM with Gaussian kernel  87.4% 83.3% 37.7% 
Logistic Regression 82.0% N/A 0.0% 

Naive Bayes 60.9% 29.9% 44.4% 
KNN 82.7% 55.0% 20.8% 
DT 83.7% 64.7% 20.8% 

V. THE SOM-SVM TECHNIQUE 
Enhanced IR criteria allow detecting healthy and 

unhealthy/failed cables more accurately compared to the 
original IR criteria utilized by the electricity company, yet these 
criteria are insufficient to achieve high classification accuracy. 
To improve the accuracy, SVM is applied to the data classes 
obtained after DM. The SVM is chosen for the binary 
classification problem being considered as it is accurate and 
highly robust [33] and it has better generalization capability 
compared to other classification algorithms [34]. Furthermore, 
since the solution of the classification problem is obtained by 
the determined support vectors, SVM provides the globally 
optimal solution [35]. However, the performance of the SVM, 
when quantified by Recall, deteriorated after the 
implementation of DM. This is because there exists an 
imbalance between the numbers of samples in positive 
(unhealthy/failed) and negative (healthy) classes: The number 
of samples for the negative (healthy) set is much larger than that 
of the positive (unhealthy/failed) set. This imbalance gives rise 
to inaccurate calculation of the training and testing errors of the 
ML algorithm and it is alleviated by the SOM (self-organizing-
maps) in this study, as explained below. 

The ratios between the numbers of samples in negative 
(healthy) and positive (unhealthy/failed) classes are as high as 
16.1 and 22.3 for 6.6kV and 22kV cables, respectively. These 
high imbalance ratios of imbalanced data sets lead to poor 
classification accuracy. As the performance of SVM depends 
on the selected support vectors, the removal of samples far 
away from the decision boundary in the majority class (negative 
class in our case) will not affect the predictions [29]. To this 
end, a judicious under-sampling of the majority class should be 
performed to prevent the misguidance of the ML algorithm and 
a large number of false negatives. Random under-sampling is 
the simplest method to re-sample the majority class. However, 
it randomly eliminates samples and useful information can be 
discarded, which consequently results in inaccuracy in 
predictions. On the other hand, SOM avoids eliminating the 
useful information of the majority class while performing 
under-sampling. It is an unsupervised clustering technique 
based on neural networks [36].  

The general process of SOM clustering can be described as 
follows. First, the map size or the number of neurons (cluster 
centers) is determined. Next, the vectors from the input space 
are assigned to the neurons with the smallest distance. The 
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distance is usually evaluated via Euclidean distance. As a result, 
the vectors associated with the same neuron are from the same 
clustering on the output layer. The results before and after SOM 
under-sampling are illustrated for an example in Fig. 9. The 
SOM algorithm assigns all samples into several clusters. The 
clusters composed of all samples of the negative class (Cluster 
1 and Cluster 2) are removed before applying the SVM.

During the application of SOM, map sizes of 10 and 20 were 
initially evaluated with three inputs, namely age (in years), 
length (in meters), . However, the 
imbalance ratio after the re-sampling was still as high as 8.1 and 
2.6 for 22kV and 6.6kV data, respectively. Then, the map size 
of 30, corresponding to a grid with 30 rows and 30 columns, 
was implemented and yielded an acceptable imbalance ratio of
1.1. A similar process has been performed for the 6.6kV dataset. 
The map size of 30 reduced the imbalance ratio from 22.3 to 
1.4. The SOM technique effectively decreased the imbalance 
ratio and is applicable in this study. The effectiveness of SOM 
after DM is also examined and will be introduced in the next 
section.

Fig. 9. An example illustration of the SOM under-sampling

VI. THE APPLICATION OF THE DM-SOM-SVM TECHNIQUE

SOM-SVM is applied to data classified by the DM with high 
critical IR values (Scenario I) and low critical IR values 
(Scenario II). In Scenario I, a large number of healthy cables 
are misclassified as unhealthy/failed since the cut-off IR value 
is high. For such case, the objective of SOM-SVM is to shift 
some FPs (misclassified healthy cables as unhealthy) to TPs 
(correctly classified unhealthy cables as unhealthy). Thus, 
SOM-SVM is applied to the provisional unhealthy class 
obtained after applying DM. In Scenario II, low critical IR 
values give rise to the failure to detect unhealthy cables. Hence, 
SOM-SVM is applied to the provisional healthy class obtained 
after applying DM.

Based on the original datasets provided by the electricity 
company, the age (in years), length (in meters) and IR values 
(in Ohms) of cables are selected as the features for SOM-SVM. 
Table IX demonstrates the datasets used by SOM-SVM for 
Scenarios I and II. The imbalance ratios after DM are large, 
especially when low critical IR values are used.

TABLE IX
DATASETS USED BY SVM BEFORE AND AFTER SOM UNDER-SAMPLING

Voltage 
Level Scenario

No. of Real 
Unhealthy/ 

Failed 
Cables

No. of Real 
Healthy Cables

Imbalance 
Ratio

Before After Before After 

6.6 kV I 57 497 69 8.7 1.2
II 39 1,382 42 35.4 1.1

22 kV
I 74 635 83 8.6 1.1
II 73 1,489 80 20.4 1.1

Table IX shows the results after applying SOM under-
sampling. It can be seen that by using the SOM, the imbalance 
ratio decreased remarkably and became close to 1, which means 
that the two classes tentatively have a similar number of 
samples. The samples of the majority (negative) class are in the 
proximity of the samples of the positive class in the three-
dimensional input space and these samples cannot be linearly 
separable, which requires Gaussian RBF for the transformation.

A ten-fold cross-validation is applied to the dataset. In 
particular, the dataset is partitioned into ten parts and the 
learning process is repeated ten times. For each learning process 
based on the under-sampling dataset, nine parts of the dataset 
were used for training and the remaining one part of the dataset 
was used for the testing process. Before any SVM algorithm is 
executed, the data is normalized. For each dataset, the model 
with minimum classification error is used for making 
predictions with the optimal value of kernel scale for the 
original dataset.

The classification results of the DM-SOM-SVM scheme are 
shown for Scenarios I and II in Fig. 10. For 22kV cables, the 
proposed scheme achieves a higher classification accuracy in 
Scenario I compared to that in Scenario II. The proposed 
scheme can detect more unhealthy cables while misclassifying 
a small number of healthy cables as unhealthy. For 6.6kV 
cables, although the proposed scheme can achieve an accuracy 
as high as 94%, it can only detect 7% of unhealthy cables in 
Scenario I. This is because the size of the dataset used for 
classification after DM was significantly reduced. Additionally, 
the IR values of the healthy and failed cables exhibited highly 
similar distributions, which resulted in the reduced performance 
of the proposed scheme for this case. On the other hand, the 
scheme can detect around 60% of the unhealthy cables in 
Scenario II.

It should be noted that deep learning (DL) methods were not 
adopted in this study due to the following reasons: 1) The size 
of the datasets studied in this work is limited. DL models 
require a larger dataset to effectively learn patterns and prevent 
overfitting, whereas machine learning (ML) models can better 
extract insights from smaller datasets. 2) The data in this work 
were all obtained via on-field IR measurements, which are 
influenced by test conditions, such as temperature, humidity, 
and test manners, introducing unstructured noises into the IR 
data. Unlike DL models, ML models with proper preprocessing 
(DM & SOM in our study), tend to handle small and noisy 
datasets more effectively.

VII. DISCUSSION

Based on the previous investigation on cable classification 
using DM-SOM-SVM scheme, Table X lists the metrics used 
to evaluate the classification performance. By comparing the 
values of Recall provided with and without SOM, it can be 
concluded that SOM can significantly improve the performance 
of SVM while the values of Recall can be maintained over 70%. 
The table also includes classification accuracy achieved by 
using the electricity company’s initial IR guidelines, stating that 

otherwise, it is healthy. The confusion charts obtained after 
applying the initial IR guidelines to the historical data are 
provided in Fig. 11.
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TABLE X
METRICS USED TO EVALUATE THE CLASSIFIERS

Data Method TP FP Recall Accuracy

6.6kV 
Scenario 

II

Initial IR guidelines 24 83 33.3% 92.2%
DM-SVM 33 226 12.7% 82.3%

DM-SOM-SVM 43 430 59.7% 72.7%

22kV 
Scenario 

II

Initial IR guidelines 4 4 4.2% 94.2%
DM-SVM 13 52 20% 91.0%

DM-SOM-SVM 74 362 77.1% 76.6%

                (a)                                           (b)

                 (c)                                           (d)
Fig. 10. The results of the classification by DM-SOM-SVM approach for (a) 

Scenario I and (b) Scenario II of 22 kV cables and for (c) Scenario I and (d) 
Scenario II of 6.6 kV cables.

                 (a)                                           (b)
Fig. 11. The classification results obtained via the initial IR guidelines used 

by the electricity company for (a) 22 kV and (b) 6.6 kV cables.

As clearly seen from the first row (‘TP’) of Table V, the 
proposed approach DM-SOM-SVM can detect 18.5x and 1.8x 
more unhealthy cables compared to the initial IR guidelines for 
22kV and 6.6kV cables, respectively. However, as seen from 
the second row (“FP”), the proposed approach requires follow-
up maintenance actions for 362 and 430 of 22kV and 6.6kV 
healthy cables, respectively. The proposed approach doubled 
the value of Recall for 6.6kV cables and reached approximately 
18x higher Recall for 22kV cables compared to the initial 
approach. Due to the large imbalance ratios, the classification 
performance of the initial approach is misleading, as discussed 
in Section 4. For distribution power cables, as the cable failure 
costs many times compared to that of planned maintenance 
outages, the cost of FNs is greater than the cost of FPs. In such 
a scenario, Recall's improvement is more significant compared 
to the other metrics.

Usually, IR values are used as quick diagnostic metrics to 
assess insulation health. No international standard has been 
published so far to diagnose insulation health using cable IR 
values. The value of IR depends on the voltage level and cable 
length, while it fluctuates with the temperature and humidity of 
the soil environment. The value of IR can also be significantly 
affected by the measurement errors. Besides, the IR values of 
the failed/unhealthy cable circuits used in this study are the last 
IR readings from on-site measurements before the failures 

occurred. The other limitation is that this study can be only 
based on the information that has been provided, other 
information that can be used as input features, such as 
polarisation index, dielectric absorption ratio, dielectric loss 
etc. were not available. Hence, although the datasets 
investigated in this paper are not as comprehensive as desired, 
the proposed DM-SOM-SVM method can still differentiate the 
majority of the unhealthy cables from the healthy ones. The 
methodology and findings of this study will form the basis for 
consecutive studies on the health assessment of the distribution 
cable insulation via IR values.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed a data analytical approach for diagnosing 
the health condition of the distribution cables via IR values. The 
approach made use of distinct techniques for judiciously 
processing the data and performing classification. First, a two-
parameter Weibull method was used to link the failure rates to 
the cables’ ages and types and to partition the data into 
subgroups. Next, DM, a linear classification scheme, was 
applied to data to obtain enhanced IR cut-off values. The SOM 
clustering method was used to alleviate the misbalance between 
the numbers of samples of positive (unhealthy/failed) and 
negative (healthy) classes. Finally, the SVM classifier was 
leveraged to diagnose the health of cable insulation. The key 
input features for the proposed method were the ages, lengths 
and IR values of cables. The performance of the final 
classification results has been evaluated based on Recall. 
Compared to the initial IR guidelines of the electricity 

estimate cable health status, the enhanced method could detect 
more unhealthy cables. Although more false positives were 
generated, the Recall was significantly increased by the 
proposed approach. In the future, the monetized cost for TP, FP, 
TN and FN will be considered to improve the method further 
and optimize the results from a cost-risk perspective. Cable IR, 
as bulk solid insulation, can only reflect the entire insulation 
condition. Data on dielectric loss and partial discharge 
magnitude will be used as additional input features to reflect 
water moisture and local defects in the cable; Such data will 
increase the accuracy of the proposed hybrid DM-SOM-SVM 
model. To address uncertainties arising from data collection 
procedures, adaptive estimation techniques, as discussed in 
[37], based on raw data (applied test voltage and measure 
current) will be further investigated in future work.

ACKNOWLEDGEMENT

This research is supported by SP Group, the National 
Research Foundation, Singapore, the Energy Market Authority 
under its Energy Programme (EP Award <EMA-EP010-SNJL-
005>) and Nanyang Technological University.

REFERENCES

[1] C. Zhou, H. Yi, and X. Dong, "Review of recent research towards power 
cable life cycle management," High Voltage, 2(3), pp. 179-187, 2017.

[2] H. M. Hashemian, "State-of-the-Art Predictive Maintenance Techniques," 
IEEE Trans Instrum Meas., 60(1), pp. 226-236, Jan. 2011

[3] S. Govindarajan, A. Morales, J. A. Ardila-Rey and N. Purushothaman, "A 
review on partial discharge diagnosis in cables: Theory, techniques, and 
trends," Meas, 216, pp. 1-19, Jul. 2023.

74 22

362 1184

Unhealthy/Failed Healthy

Predicted Class

Unhealthy/Failed

HealthyTr
ue

 C
la

ss

54 42

558 988

Unhealthy/Failed Healthy

Predicted Class

5 67

33 1575

Unhealthy/Failed Healthy

Predicted Class

Unhealthy/Failed

HealthyTr
ue

 C
la

ss

43 29

430 1178

Unhealthy/Failed Healthy

Predicted Class

4 92

4 1542

Unhealthy/Failed Healthy

Predicted Class

Unhealthy/Failed

HealthyTr
ue

 C
la

ss

24 48

83 1525

Unhealthy/Failed Healthy

Predicted Class



11 
 
[4] G. C. Tone, "Partial discharge. VII. Practical techniques for measuring PD 

in operating equipment," IEEE Electr. Insul. Mag., 7(4), pp. 9-19, July-
Aug. 1991. 

[5] IEEE guide for field testing of shielded power cable systems using very 
low frequency (VLF) (less than 1 Hz), IEEE Std 400.2-2013, 2013. 

[6] S. Morsalin, T.B. Phung, M. Danikas and D. Mawad, "Diagnostic 
challenges in dielectric loss assessment and interpretation: a review," IET 
Sci. Meas, 13(6), pp.767-782, 2019. 

[7] A. Ghaderi, A. Mingotti, F. Lama, L. Peretto and R. Tinarelli, "Effects of 
Temperature on MV Cable Joints Tan Delta Measurements," IEEE Trans 
Instrum Meas., 68(10), pp. 3892-3898, Oct. 2019. 

[8]  Z. Tang, K. Zhou, P. Meng and Y. Li, "A Frequency-Domain Location 
Method for Defects in Cables Based on Power Spectral Density," IEEE 
Trans Instrum Meas., 71, pp. 1-10, 2022. 

[9] B. Oyegoke, D. Birtwhistle and J. Lyall, "New techniques for determining 
condition of XLPE cable insulation from polarization and depolarization 
current measurements," in Proc. IEEE Int. Conf. Dielectr. Liq., Winchester, 
UK, 2007, pp. 150-153. 

[10] H. Torkaman and F. Karimi, "Measurement variations of insulation 
resistance/polarization index during utilizing time in HV electrical 
machines – A survey," Meas, 59, pp. 21-29, Jan. 2015.  

[11] B. Oyegoke, D. Birtwhistle and J. Lyall, "Condition assessment of XLPE 
cable insulation using short-time polarisation and depolarisation current 
measurements," IET Sci. Meas. Technol., 2(1), pp. 25–31, Jan. 2018. 

[12] W.L. Woon, A. El-Hag and M. Harbaji, "Machine learning techniques for 
robust classification of partial discharges in oil–paper insulation systems," 
in IET Sci. Meas. Technol., 10(3), pp. 221-227, May 2016. 

[13] J. Tang, F. Liu, X. Zhang, X. Liang and Q.Fan, "Partial discharge 
recognition based on SF6 decomposition products and support vector 
machine," IET Sci. Meas. Technol., 6(4), 198-204, Jul. 2012. 

[14] X. Wu, Y. Liu, L. Wang, X. Ren and X. Tan, "XLPE cable health 
assessment based on Relief-F feature weighted FSVM," in IOP Conf. 
Series: Earth and Environmental Science, Xiamen, China, 2021. 

[15] S. Quan, S. Gao, Q. Mu, C. Liu, L. Zhou and D. Wang, "Onboard EPR 
Cable Aging Evaluation by Rectangular-SPP-CNN Based on LMMGS 
Processing Method," IEEE Trans Instrum Meas., 70, pp. 1-10, Sep. 2021. 

[16] S. S. Roy, A. Paramane, J. Singh, A. K. Das, S. Chatterjee and X. Chen, 
"Automated Space Charge Classification Inside ±500-kV HVDC Cable 
Insulation Using Fusion of Superpixel and Deep Features for Remote 
Condition Assessment," IEEE Trans Instrum Meas., 72, pp. 1-8, 2023.  

[17] K. Zhu and P. W. T. Pong, "Fault Classification of Power Distribution 
Cables by Detecting Decaying DC Components With Magnetic Sensing," 
IEEE Trans Instrum Meas., 69(5), pp. 2016-2027, May 2020. 

[18] K. Zhu, "Use of insulation resistance imbalance degree for the condition 
assessment of power distribution cables," HKIE Transactions, 30(4), pp. 
2–12, Jan. 2023 

[19] H. Yi et al., "Enhanced Cable Insulation Resistance Guidelines Based on 
Weibull Analysis and Diminishing Method," in Proc. IEEE Int. Conf. on 
High Voltage Eng. and Appl. (ICHVE), Chongqing, China, 2022, pp. 1-4. 

[20] H. Yi, I. Hancock, D. Chen and C. Zhou, "An improved Weibull model 
with consideration of thermal stress for analysis of cable joint failures," in 
Proc. IEEE 3rd Int. Conf. Dielectr., 2020, pp. 609-612. 

[21] Nuclear power plants – Instrumentation and control important to safety -- 
Electrical equipment condition monitoring methods - Part 6: Insulation 
resistance, IEC/IEEE 62582-6:2019, 2019. 

[22] R. M. Bucci, R. V. Rebbapragada, A. J. McElroy, E. A. Chebli and S. 
Driller, "Failure prediction of underground distribution feeder cables," 
IEEE Trans. on Power Deliv., 9(4), pp. 1943-1955, Oct. 1994. 

[23] L. A. Ferreira and J. L. Silva, "Parameter estimation for Weibull 
distribution with right censored data using EM algorithm," Eksploatacja i 
Niezawodnosc – Maintenance and Reliability, 19 (2), pp. 310–315, 2017. 

[24] Abernethy, R.B. The New Weibull Handbook, 2nd ed, Blackwell, 1996. 
[25] IEC/IEEE guide for the statistical analysis of electrical insulation 

breakdown data (Adoption of IEEE Std 930-2004), IEC 62539 First 
Edition 2007-07 IEEE 930, 2007. 

[26] A. Grous. Fracture Mechanics. 1, Analysis of Reliability and Quality 
Control. Mechanical Engineering and Solid Mechanics Series, London: 
Hoboken, N.J, 2013. 

[27] G. A. Klutke, P. C. Kiessler and M. A. Wortman, "A critical look at the 
bathtub curve," IEEE Trans. Rel., 52(1), pp. 125-129, Mar 2003. 

[28] X. Liu, J. Wu and Z. Zhou, "Exploratory undersampling for class-
imbalance learning," IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), 
39(2), pp. 539-550, Apr 2009. 

[29] Y. Tang, Y. Zhang, N. V. Chawla and S. Krasser, "SVMs modeling for 
highly imbalanced classification," in IEEE Trans. Syst., Man, Cybern., Part 
B (Cybern.), 39(1), pp. 281-288, Feb. 2009. 

[30]  H. Belyadi and A. Haghighat, "Chapter 5 - Supervised learning," in 
Machine Learning Guide for Oil and Gas Using Python, H. Belyadi and A. 
Haghighat, Eds, Gulf Professional Publishing, 2021, pp 169-295. 

[31] S. Caner, and F. Dovis, "The impact of different kernel functions on the 
performance of scintillation detection based on support vector machines" 
Sensors, 19(23), Nov 2019. 

[32] A. Subasi, "Chapter 3 - Machine learning techniques," in Practical 
Machine Learning for Data Analysis Using Python, A. Subasi, Ed, 
Academic Press, 2020, pp. 91- 202. 

[33] Iqbal H. Sarker, "Machine learning: Algorithms, real-world applications 
and research directions," SN COMPUT. SCI., 2(160), pp. 1-21, Mar 2021. 

[34] R. Adhikari and R. K. Agrawal, "An introductory study on time series 
modeling and forecasting," LAP, 2013. 

[35] L. J. Cao and F. E. H. Tay, "Support vector machine with adaptive 
parameters in financial time series forecasting," IEEE Trans. Neural Netw., 
14(6), pp. 1506-1518, Nov. 2003. 

[36] T. Kohonen,"Self-organized formation of topologically correct feature 
maps," Biol. Cybern., 43(1), pp.59–69, Jan 1982. 

[37] O. Tutsoy, "Design and Comparison Base Analysis of Adaptive Estimator 
for Completely Unknown Linear Systems in the Presence of OE Noise and 
Constant Input Time Delay," Asian J.  Control, 18(3), pp. 1020-1029, May 
2016. 


