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The traditional view from particle physics is that quantum gravity effects should only
become detectable at extremely high energies and small length scales. Due to the sig-
nificant technological challenges involved, there has been limited progress in identifying
experimentally detectable effects that can be accessed in the foreseeable future. How-
ever, in recent decades, the size and mass of quantum systems that can be controlled in
the laboratory have reached unprecedented scales, enabled by advances in ground-state
cooling and quantum-control techniques. Preparations of massive systems in quantum
states pave the way for the explorations of a low-energy regime in which gravity can be
both sourced and probed by quantum systems. Such approaches constitute an increas-
ingly viable alternative to accelerator-based, laser-interferometric, torsion-balance, and
cosmological tests of gravity. In this review, we provide an overview of proposals where
massive quantum systems act as interfaces between quantum mechanics and gravity.
We discuss conceptual difficulties in the theoretical description of quantum systems in
the presence of gravity, review tools for modeling massive quantum systems in the labo-
ratory, and provide an overview of the current state-of-the-art experimental landscape.
Proposals covered in this review include, among others, precision tests of gravity, tests
of gravitationally-induced wavefunction collapse and decoherence, as well as gravity-
mediated entanglement. We conclude the review with an outlook and summary of the
key questions raised.
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I. INTRODUCTION

Inspired by particle physics, the central paradigm of
gravitational physics indicates that quantum gravity ef-
fects should become detectable at extremely high ener-
gies and at extremely small length scales. Known as the
Planck scale, this regime encompasses particle energies
of 1019 GeV or length scales of 10−35 meters. However,
accessing this parameter regime is extremely challenging,
and there are few prospects for achieving the necessary
technological progress in the next few decades. Tests of
proposals such as string theory (Dienes, 1997; Schwarz
and Seiberg, 1999), loop quantum gravity (Ashtekar and
Bianchi, 2021; Rovelli, 2008), and causal dynamical tri-
angulation (Loll, 2019), to mention just a few, therefore
remain outstanding.

At lower energies, however, quantum systems with
masses several orders of magnitude higher than the
atomic mass scale are starting to become accessible in the
laboratory. At these scales, current theories predict that
gravity should start affecting the dynamics of quantum
states. A number of proposals and ideas have therefore
been put forward. They encompass questions about su-
perpositions of gravitational fields, gravity-induced wave-
function collapse via self-gravity or decoherence due to
external gravitational fields, as well as the quantum na-
ture of the gravitational field itself. The most encourag-
ing aspect of these proposals is that many of them appear
experimentally and technologically accessible in the near
future.

Historically, the first tests of gravity (beyond drop tests
performed by Galileo) were carried out by Cavendish in
the 1790s. Here, a torsion balance was used to mea-
sure the gravitational constant G (Newton et al., 1900).
Since then, Torsion balance experiments have been a
cornerstone of gravitational research, and the most ac-
curate estimates of Newton’s constant, namely G =
(6.67430 ± 0.00015) × 10−11 m3 kg−1s−2 is based on num-
ber of torsion balance experiments (Tiesinga et al., 2021).
Yet, G remains one of the least precisely known fun-
damental constants, and experiments actually disagree
on the value of G more than they should based on the
reported uncertainties (Rothleitner and Schlamminger,
2017). The smallest detected gravitational coupling mea-
sured to date was observed between two millimeter-radius
gold spheres (Westphal et al., 2021), and the smallest sep-
aration which the gravitational potential has been mea-
sured at is 52µm (Lee et al., 2020).

More focused searches for quantum gravity have been
considered in the context of particle accelerators and
tests of the Standard Model. The current energy scale of
the LHC is 6.8 TeV per beam and 13.6 TeV during colli-
sions, which is 16 orders of magnitude away from the en-
ergies of the Planck scale (1019 GeV). Nevertheless, sev-
eral proposals predict that gravity might interact more
strongly at energies below the Planck scale due to the
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FIG. 1 Intersection of quantum mechanics and grav-
ity. The figure shows the possible tests of gravity that
can be performed with quantum systems. (a) Quantum-
enhanced measurements of gravitational effects. (b) Quan-
tum superpositions are unstable due to gravitational self-
energy. (c) An external gravitational field that acts as the
environment causes the quantum system to decohere. (d)
Two quantum systems in spatial superpositions become en-
tangled through gravity.

existence of additional dimensions (Arkani-Hamed et al.,
1998; Dimopoulos and Landsberg, 2001). Concretely, any
signs of gravity should appear mainly as missing energy
signatures due to direct graviton production. As of yet,
no such evidence has been conclusively found, and the
technological challenges involved in reaching higher en-
ergy with particle accelerator scales are substantial.

Another way to test gravity is to turn to cosmo-
logical observations. Indications of quantum gravity
could potentially be found in the signatures of γ-ray
bursts (Amelino-Camelia et al., 1998). Another key ques-
tion is how quantum gravity effects influenced the early
formation of the universe. While many other effects have
likely been washed out during the latter stages of the
universe’s expansion, the detection of primordial gravi-
tational waves could shed light on quantum gravity ef-
fects present shortly after the Big Bang (Kamionkowski
and Kovetz, 2016). In addition, non-Gaussian signatures
in the cosmic microwave background (CMB) might pro-
vide additional insights into this period (Komatsu, 2010).
Other astrophysical tests of quantum gravity have also
been proposed, such as signatures in the light of distant
quasars (Lieu and Hillman, 2003; Ragazzoni et al., 2003).
However, no such signals have yet been found.

The detection of gravitational waves by the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
collaboration (Abbott et al., 2016a) has opened yet an-
other avenue for tests of quantum gravity. Many the-
ories of quantum gravity (such as loop quantum grav-
ity (Ashtekar and Bianchi, 2021; Rovelli, 2008) or string
theory (Dienes, 1997)) require modification to the clas-
sical Einstein-Hilbert action, which in turn affects the
propagation of gravitational waves (Alexander et al.,
2008). The detection of primordial gravitational waves
could potentially also shed light on which effective theo-

ries of gravity are valid at lower scales, which is otherwise
known as the so-called Swampland problem of string the-
ory (Dias et al., 2019). In addition, the development of
LISA provides prospects for tests of the equivalence prin-
ciple and Lorentz invariance (Barausse et al., 2020).

In this review, we aim to provide an alternative view-
point to the paradigm of accelerator-based, cosmologi-
cal, and laser-interferometric tests of gravity. The core
question that this review thus seeks to address is: What
aspects of gravity can be tested with massive quantum
systems, and what can we learn from the outcome of
these tests? Here, we define massive quantum sys-
tems as systems with masses far beyond the single-
atom mass scale, such as micromechanical resonators,
levitated nano-beads, as well as Bose-Einstein conden-
sates (BECs). We are primarily concerned with the non-
relativistic regime, where velocities are lower compared
with the speed of light. Our goal is to gather together
the tools and ideas necessary for testing gravity at low
energies with massive quantum systems. Some of these
notions are sketched in Figure 1. We also hope that
this review article will serve as a useful introduction and
overview of the field for those who are just setting out
to explore these questions. We also refer to the follow-
ing works, which summarize tests that can be performed
with tabletop experiments (Carney et al., 2019) and su-
perconductors (Gallerati et al., 2022).

The review is structured as follows. In Section II, we
provide an overview of tensions between quantum me-
chanics and gravity, as well as a conceptual overview of
how gravity can be incorporated into quantum mechanics
at low energies. In Section III, we provide an overview
of theory tools for modeling massive quantum systems in
the laboratory. Many of these tools are directly applica-
ble to the proposed tests that follow in the next section.
In Section IV, we review proposals for tests of gravity
with massive quantum systems. They include precision
tests of gravity, searches for gravitational decoherence
and wavefunction collapse, schemes for entangling mas-
sive quantum systems through gravity, and more. In Sec-
tion V, we provide an overview of state-of-the-art gravity
tests and experimental platforms which appear promis-
ing for tests of gravity. The review is concluded with
some final remarks in Section VI.

Before proceeding, we note that it would be impossible
to give a completely balanced overview of such a broad
and diverse field. We hope that this review provides a
snapshot of the field today and that it ultimately helps
focus efforts toward realizing some of the proposals that
have been put forward for testing the interplay between
quantum mechanics and gravity.
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II. CONSOLIDATING QUANTUM MECHANICS AND
GRAVITY

A limitation in developing a theory of quantum gravity
has been the inability to resolve the persisting tensions
between the fundamental principles of quantum physics
and general relativity. Current theories are good approx-
imations in certain regimes. The relations between cur-
rent theories can be found in the cube of theories in Fig. 2,
see Ref. (Bronstein, 1933). A “Theory of Everything”
that combines quantum physics and general relativity is
expected to be a theory in which the speed of light c,
Planck’s constant h̵, and the gravitational constant G all
play significant roles. Interestingly, scientists disagree on
the need to quantize gravity. In this section, we discuss
how gravity is different from other forces, and why it has
been so difficult to construct a unified theory.

We start by exploring different attempts to incorpo-
rate gravity into quantum mechanics at low energies. We
cover modifications of quantum dynamics that include
gravity as a phase term or driving term. We then mo-
tivate moving to quantum field theory in curved space-
time and perturbative quantum gravity (Sec. II.A). Then,
we summarize the challenges that arise when incorpo-
rating general relativity into the way we generally do
non-relativistic quantum mechanics in first quantization
(Sec. II.B). Many of these challenges have been discussed
throughout the literature. While we here attempt to pro-
vide an outline of the main ideas and research directions,
it is by no means a complete account of the history or
challenges that arise in the context of developing a fully-
fledged theory of quantum gravity.

A. Incorporating gravitational effects into quantum
mechanics at low energies

The goal of this section is to provide a high-level out-
line of the main theoretical ideas that enable a limited
consolidation of quantum mechanics and gravity. For
each case, we detail the underlying assumptions that en-
able the treatment and discuss the validity and limits of
the theory. Every time we introduce a new tool (such as
quantum field theory), we motivate the leap beyond the
current framework. However, we note that current tools
are often not enough and that theory must ultimately be
guided by experiments.

1. Newtonian potential in the Schrödinger equation

The second postulate of quantum mechanics dictates
that the evolution of a single or composite quantum wave-
function Ψ(t, x) in time is described by the Schrödinger
equation. A natural starting point when attempting
to incorporate gravity into the dynamics of a quantum
system is by including it as a potential term in the

FIG. 2 Cube of theories. Current theories are placed in
a cube where the axes are small expansion parameters: the
speed of light 1/c, Plank’s constant h̵, and the gravitational
constant G. The axes are the speed of light c, Plank’s con-
stant h, and the gravitational constant G. While some physi-
cists aim at building a “Theory of Everything” that includes
quantum physics (depending on h̵) and general relativity (de-
pending on both c and G), others suggest that gravity should
not be quantized. This review mainly focuses on the regime of
the lower, light-red triangle, and the upper diagonal (quantum
field theory). *Interplay of quantum mechanics and gravity
at low energies (this could include Schrödinger-Newton-like
equations, collapse models, gravitational phase shifts, etc.,
see Sec. II.A and Sec. IV). Figure adapted from (Bronstein,
1933), slightly modified for our purposes.

Schrödinger equation. However, time in the Schrödinger
equation is absolute, in contrast to general relativity,
where time is an observer-dependent quantity. To use
the Schrödinger equation, we must therefore make the
following assumptions: (i) we consider a single inertial
frame where time is well-defined, (ii) the gravitational
field is weak, and (iii) the quantum particles do not travel
at relativistic speeds. With these assumptions, it is pos-
sible to include the Newtonian potential from a source
mass into the Schrödinger equation for a quantum parti-
cle with mass m as follows:

ih̵
∂

∂t
Ψ(t,x) = [ p

2

2m
+ VN(x)]Ψ(x), (1)

where Ψ(x) is the wavefunction in the position basis, for
which we have denoted the position vector x, and the mo-
mentum operator pi ≡ −ih̵∂/∂xi for the direction xi. The
gravitational constant G explicitly appears in the New-
tonian potential VN(x) = −GmmS/∣x − xS ∣, where mS

is the source mass and xS is the position of the source
mass. For small radial displacements δx≫ R away from
the source located at distance R, such as for a particle
moving in Earth’s gravitational field, we may approxi-
mate the Newtonian potential as GmmS/∣x−xS ∣ ≈mgδx
where we have introduced the gravitational acceleration
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FIG. 3 Superpositions of neutrons along different
paths in a gravitational field. Reprinted with permis-
sion from the original work Collela R, Overhauser A W and
Werner S A 1975 Phys. Rev. Lett. 34 1472 (Colella et al.,
1975). Copyright 1975 by the American Physical Society.

g =mSG/R2 (omitting the constant part of the potential
and higher order corrections). For such a linear potential,
the solutions to the Eq. (1) are given by Airy functions
(Griffiths and Schroeter, 2018), and the Feynman path-
integral propagator is given by (Sakurai and Commins,
1995):

⟨xn, tn∣xn−1, tn−1⟩

=
√

m

2πih̵∆t
exp [i∫

tn

tn−1
dt

1
2
mẋ2 −mgδx

h̵
] , (2)

where ∆t = tn − tn−1 denotes the time-increment.

Indeed, the fact that gravity can be included into the
Schrödinger equation as in Eq. (1) has been experimen-
tally verified. In their pioneering experiment, Colella,
Overhauser, and Werner (COW) demonstrated that neu-
trons passing through the Earth’s gravitational field ac-
quire a phase-shift that can be observed through inter-
ference (Colella et al., 1975) (with the initial theoreti-
cal proposal outlined in (Overhauser and Colella, 1974)).
This effect is sometimes referred to as gravity induced
quantum interference (Rauch and Werner, 2015).

For the description of the COW experiment, we fol-
low (Abele and Leeb, 2012). The neutrons are placed
into a superposition of two spatial locations. Each branch
then traverses a path at two different heights above the
Earth. The two paths enclose a parallelogram (see the
original sketch of the experiment in Fig. 3). One branch
of the superposition takes the upper path A → C → D,
and the lower branch takes the path A → B → D. The
momentum of each neutron is determined through energy
conservation, which dictates that the sum of the kinetic

and potential energy must remain the same:

E0 =
h̵2k20
2mn

= h̵
2k2

2mn
+mngH(ϕ), (3)

where mn is the neutron mass, g is the gravitational ac-
celeration, and H(ϕ) =H0 sin(ϕ) is the height which de-
pends on the orientation of the setup ϕ (i.e., ϕ = π/2
corresponds to the maximum height difference H0, i.e.,
the height difference between the segments AB and CD
for vertical orientation). The difference in height be-
tween the two paths means that the momentum p = h̵k
on the higher path CD must be less than the momen-
tum p0 = h̵k0 on the lower path AB. The corresponding
accumulated phase difference ∆ΦCOW between the two
different paths is given by

∆ΦCOW =∆kS ≈ −qCOW sin(ϕ), (4)

where ∆k = k − k0, and S is the path length of the seg-
ments AB and CD. It is instructive to write the final
phase using the geometric factor qCOW = λm2

ngA0/h̵2,
where A0 = H0S is the area of the parallelogram (i.e.,
interferometric area), and λ is the neutron wavelength.
Depending on the value of the phase difference ∆ΦCOW

we then observe either destructive or constructive inter-
ference of each individual neutron with itself as it is re-
combined at the end of the interferometric paths.

Gravitational phase shifts, such as the one in Eq. (4),
have sparked numerous investigations, not only with neu-
trons but also with cold atoms, where experiments span
from tests of the equivalence principle to searches of dark
matter (Tino, 2021). However, subtleties arise when ad-
ditional corrections from general relativity are similarly
included as phase shifts. We return to this question in
Sec. II.A.3.

2. Gravity and the quantum harmonic oscillator

Before going beyond Newtonian gravity, we briefly
mention another route for including gravity as a pertur-
bation into the dynamics of a quantum system. One
of the few known analytic solutions to the Schrödinger
equation apart from the hydrogen atom is the quantum
harmonic oscillator (QHO). Here, the potential V (x) in
Eq. (1) is quadratic in x, such that in a single spatial di-
mension x, V (x) ∝ x2. The resulting solutions describe
a harmonic oscillator with quantized energy levels. The
QHO is important in the context of tests of gravity be-
cause gravitational effects can be described as effective
interaction terms as modifications to the quadratic trap-
ping term.

In the language of second quantization, the Hamilto-
nian of the QHO reads

ĤQHO =
1

2
mω2

mx̂
2 + 1

2m
p̂2, (5)
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where m is the mass of the system, ωm is the angular fre-
quency, and where x̂ and p̂ are position and momentum
operators. In second quantization, x̂ and p̂ are given in
terms of the annihilation and creation operators â and
â† as

x̂ =
√

h̵

2ωmm
(â† + â) , p̂ = i

√
h̵ωmm

2
(â† − â) , (6)

where [â, â†] = 1.
Gravitational effects can be included in the descrip-

tion of the center-of-mass dynamics of these quantum
systems. We consider a point-like gravitational source of
mass mS situated at a distance r0 away from the quan-
tum systems (Qvarfort et al., 2018; Rätzel et al., 2018;
Scala et al., 2013). The Newtonian potential is given
by GmmS/r0. Assuming that the quantum system that
probes the gravitational field is perturbed by a small dis-
tance δx, we expand the Newtonian potential in terms of
δx

V (r − δx) ≈ GmmS

r0
(1 + δx

r0
+ (δx)

2

2r20
+O[(δx)2]) . (7)

Inserting this potential in the Hamiltonian of the QHO
and replacing the perturbation δx with the quantum op-
erator x̂ we obtained a modified Hamiltonian of the QHO:

ĤQHO =
1

2
mω2

mx̂
2 + 1

2m
p̂2 + G1x̂ + G2x̂2 +O(x̂3), (8)

where we have defined

G1 =
GmmS

r20
, G2 =

GmmS

2r30
, (9)

and where higher orders of the perturbation can be simi-
larly defined, although the resulting nonlinear equations
of motion are generally challenging to solve. We provide
an overview of quantum sensing of gravitational fields
with quantum optomechanical systems and with Bose-
Einstein condensates, where the force enters as described
here in Sec. IV.A.

3. Gravity beyond the Schrödinger equation

Thus far in our presentation, incorporating gravity into
quantum mechanics has been straight-forward since both
the Newtonian potential and the Schrödinger equation
are non-relativistic and share a joint notion of absolute
time. However, problems start to arise as we wish to go
further and include additional effects from general rela-
tivity, e.g., time-dilation.

Consider, for example, a quantum particle in a spatial
superposition where each branch of the superposition fol-
lows a different spacetime trajectory, not unlike the COW
experiments discussed in Section II.A.1. In that case, we

assumed that a weak gravitational effect introduces a po-
tential difference. However, if the gravitational effect is
strong, such that the background spacetime can no longer
be considered flat across the relevant length scale, the two
branches of the superposition experience different proper
times throughout their trajectories and should, therefore,
evolve at different rates. There is no prescription for how
to perform calculations in this scenario in the absence of
an external observer. However, some studies have con-
sidered using the Schrödinger equation to describe the
system only in the reference frame in which the system is
measured. That is any evolution of the quantum states,
as seen in the laboratory frame, can be described as a
result of some effective dynamics that arise from gravity.
In (Zych et al., 2011), for example, it was proposed that
internal degrees-of-freedom of particles can act as clocks
that record the elapsed proper time. The addition of in-
ternal clock states solves the challenge of interpreting a
phase shift as either a potential shift or redshift due to
differences in proper time. Similarly, in (Pikovski et al.,
2015), it was shown that the effects of time-dilation, as
seen from an external observer, result in decoherence in
composite particles. That is, by defining a Hamiltonian
for the center-of-mass and internal degrees of freedom,
general relativistic corrections are incorporated into the
full dynamics of the particle. When the superposition
branches are brought back together, the effect manifests
as decoherence. Several other mechanisms that cause de-
coherence have been derived using similar semi-classical
arguments. We cover these in Sec. IV.B. It has been
pointed out in the literature that there are inconsistencies
that arise when introducing proper times in quantum su-
perpositions (Marzlin, 1995; Schwartz and Giulini, 2019b;
Sonnleitner and Barnett, 2018). The argument is that
classical systems couple to gravity via the minimum cou-
pling principle, which is diffeomorphism invariant, and
that the coupling is not consistent with Galilean invari-
ant equations such as the Schrödinger equation (Schwartz
and Giulini, 2019a). However, the argument of (Pikovski
et al., 2015) in response is that there is no inconsistency
if no non-relativistic physics is imposed and the correct
Schrödinger equation canin fact be derived with relativis-
tic extensions.

Work on describing post-Newtonian phases in atom in-
terferometry considers the free propagation of the atoms
along spacetime geodesics. The atom-light interaction is
described in a covariant manner to calculate the leading
order general relativistic effects (Dimopoulos et al., 2008;
Werner et al., 2023). In addition, these considerations
offer a possible reinterpretation of the COW experiment
(see Sec. II.A.1). The question becomes: Can the phase
shift that is detected by an atom interferometer be in-
terpreted as a gravitational redshift? This interpretation
was first suggested in (Müller et al., 2010), and was fol-
lowed by a vigorous debate in the community (see Refs
[236–244] in (Tino, 2021)). The ambiguity arises because
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the phase shift in the atom interferometer can either be
interpreted as an effective potential shift or due to red-
shift, which has resulted from the differences in proper
times.

Many of the works listed above consider interferome-
try of quantum states in the presence of gravity. Recom-
bining the two states at the end of the interferometry
process naturally involves taking a notion of an appro-
priate inner product. It is important to note that the
inner product between quantum states in non-relativistic
quantum mechanics, where there is an absolute time, is
not Lorentz-invariant. In the position representation, the
inner product is given by

∫
R3

dxψ∗j (t, x)ψℓ(t, x) = δj,ℓ, (10)

where ψj(t, x) are wavefunctions and where δj,ℓ is the
Kronecker delta-function. A consequence is that two
quantum states in different inertial frames or different
spacetime locations cannot be consistently compared.
Since the description of measurements and averages re-
quires the inner product, the experimental observations
cannot be described appropriately with this inner prod-
uct. This poses a problem often overlooked when describ-
ing quantum interferometry in curved spacetime. How-
ever, as long as a single laboratory frame is considered,
the inner product is well-defined. In Sec. II.A.4, we
introduce the Klein-Gordon inner product, which is ap-
propriate for (scalar) relativistic quantum fields.

If we truly wish to describe quantum systems in a man-
ner that is consistent with general relativity, we must use
a covariant formalism where the equations and the inner
products are Lorentz invariant. Quantum field theory in
curved spacetime enables such a description in the low
energy regime.

4. Quantum field theory in curved spacetime

Thus far, we discussed approaches for describing the ef-
fects of weak gravitational effects using the Schrödinger
equation. Such schemes consider a single inertial frame or
study the differences between two inertial frames as an ef-
fective Hamiltonian. That is, relativistic corrections are
treated as dynamical perturbations in the Schrödinger
equation, where time remains absolute. However, in rel-
ativity, measurements of well-defined quantities must co-
incide in different frames, and a consistent description in
non-inertial frames is also required. This is only possible
through a covariant formalism. The question becomes:
can quantum systems be described using equations that
are Lorentz invariant?

The answer is affirmative within some restrictions. It
is possible to describe some aspects of the interplay of
quantum physics and general relativity using quantum
field theory (QFT) in curved spacetime (CS). QFT in CS

is a semi-classical approach that considers the behavior
of quantum fields on a classical spacetime background.
Crucially, spacetime is not quantum, rather, it is a solu-
tion of Einstein field equations. The formalism describes
multi-particle effects, and, interestingly, it turns out that
considering single particles such as single atoms is non-
trivial. Quantum field theory in curved spacetime has
enabled the study of some effects in quantum physics and
quantum information in relativistic settings, including
entanglement and its applications in non-inertial frames
and curved spacetime. Section II.A.6 includes a discus-
sion on the degradation of entanglement as seen by ob-
servers in uniform acceleration.

Here, we provide a brief overview of QFT in CS. A
more comprehensive account of this research field can be
found in textbooks by (Birrell and Davies, 1982; Fulling,
1989; Parker and Toms, 2009; Schweber, 2005). We limit
our discussion to a scalar field, which is the simplest case.
See (Hollands and Wald, 2015) for a full review of QFT
in CS, including other cases, such as the Dirac equation,
which describes fermionic fields. In the case of a single
scalar field, the Schrödinger equation is replaced by the
Klein-Gordon equation, which reads (having set h̵ = c =
1)

(◻g −m2)ϕ = 0, (11)

where ◻g = gµν∇µ∇ν is the D’Alembertian operator as-
sociated with the metric g and ϕ is the scalar field with
mass m.

Under superficial inspection, the Klein-Gordon equa-
tion in flat spacetime looks very similar to the
Schrödinger equation. The main difference is that it has a
second derivative in both the spatial and temporal coor-
dinates, making it invariant under Lorentz transforma-
tions as required by relativity. Historically, the Klein-
Gordon equation was derived from a relativistic (classi-
cal) Hamiltonian of a particle and then interpreting mo-
mentum and position as operators (Schweber, 2005)

Hr =
√
(pc)2 + (mc2)2, (12)

with momentum vector p. To avoid the problem of the
square root, which would appear if we inserted Hr into
the Schrödinger equation, the formalism considers in-
stead the squared operator equation

−h̵2 ∂
2

∂t2
ϕ(t,r) = [p̂2c2 + (mc2)2]ϕ(t,r). (13)

In contrast to the Schrödinger equation, the resulting
wave equation is Lorentz invariant

[( 1

c2
∂2

∂t2
−∇2) + (mc

h̵
)
2

]ϕ(t,r) = 0. (14)

However, interpreting ϕ(t,r) as a wave function is gen-
erally problematic. This is because the probability den-
sity ρ ≡ ih̵

2mc2
(ϕ∗[∂tϕ] − [∂tϕ∗]ϕ) and probability current
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jℓ ≡ h̵
2mi
(ϕ∗[∂ℓϕ] − [∂ℓϕ∗]ϕ) defined such that they sat-

isfy the continuity equation ∇ ⋅ j + ∂µρ = 0 can take
negative values due to the second derivative in time
in Eq. (14) (Schweber, 2005). Specifically, the Klein-
Gordon inner product for ϕ(t, r) is derived from the con-
tinuity equation and is given by

(ϕ(t, r), ψ(t, r)) = −i∫
Σ
(ψ∗∂µϕ − (∂µψ∗)ϕ)dΣµ,

where Σ is a spacelike hypersurface. While the inner
product is Lorentz invariant by construction, it yields
negative probabilities in some cases. Therefore, inter-
preting ϕ(t,r) as the wave function of a single particle is
inconsistent with quantum mechanics.

The problem can be solved in special cases when the
spacetime has specific symmetries. In these cases, one
can construct an operator-valued function by associating
creation and annihilation operators âk and â†

k for a mode
k to the positive and negative mode solutions uk and u∗k
of the Klein-Gordon equation.

ϕ̂(t,r) = ∫ dk(ukâk + u∗kâ
†
k). (15)

This operator-valued function obeys the Klein-Gordon
equation, and particle states, with positive norms, are
defined by the action of creation operators on the vac-
uum state. The vacuum state is defined by ak ∣0⟩ = 0.
The operators act on the Fock space ⊕∞n=0H⊗n, where
∣0⟩ ∈ C, H is the single particle Hilbert space, H⊗n the n-
particle sector and ⊕, ⊗ the direct sum and tensor prod-
uct, respectively. This construction is only possible when
the solutions of the Klein-Gordon equation can be clas-
sified in positive and negative frequency mode solutions.
Crucially, such a classification is only possible when the
spacetime admits a time-like Killing vector field. A
Killing vector field is the tangent vector space of transfor-
mations that leave the metric invariant. Spacetimes that
admit a global time-like Killing vector field are station-
ary, such as Minkowski or the Schwarzschild spacetime.
A consistent theory can be constructed for spacetimes
with these symmetries having a well-defined probability
distribution. Well-known examples are quantum fields in
non-inertial frames and eternal black holes (Birrell and
Davies, 1982; Schweber, 2005).

A key problem in QFT in CS is that particles are
not well defined. Only observers flowing along time-
like Killing vector fields can describe particle states in
a meaningful way. In general, curved spacetimes do not
admit time-like Killing vector fields globally. Moreover,
in the case that the spacetime does have a global time-
like Killing vector field, the vector field is not necessarily
unique. A consequence of this is that the field can be
equivalently quantized in several different bases corre-
sponding to different Killing observers. Using the Klein-
Gordon inner product, it is possible to find a unitary
transformation, called a Bogoliubov transformation, that

relates the solutions to the equation in the different ba-
sis. This induces a transformation between the creation
and annihilation operators in the old basis âj and â†

j and

new operators b̂k and b̂†k associated to the solutions in a
different basis. In the new frame, the operators are given
by

b̂k = ∫ dk (αkj âj + βjkâ†
j) , (16)

where αkj and βjk are called Bogoliubov coefficients. A
consequence is that the vacua are not equivalent, and the
particle content of the field is observer-dependent. The
vacuum that was annihilated by the mode operator âj ∣0⟩
in the first frame no longer appears empty in the second
frame, since

⟨0∣ b̂†k b̂k ∣0⟩ = ∫ dk∣βkj ∣2 ≠ 0. (17)

This has important consequences in the study of entan-
glement in relativistic quantum fields since the notion of
subsystems are indispensable to store information (see
Sec. II.A.6).

Some spacetimes do not admit global time-like Killing
vector fields but do have spacetime regions where parti-
cles can be well defined. An example is the metric that
describes a toy model for the expansion of the universe,
known as the Friedmann–Lemâıtre–Robertson–Walker
(FLRW) metric. The spacetime is not stationary, and
time-like Killing vector fields are defined only in the past
and future infinity regions (see (Birrell and Davies, 1982)
and references within). It is possible to show, using Bo-
goliubov transformations, that the vacuum state at past
infinity has entangled particles in the future infinity re-
gion (Ball et al., 2006).

Some particularly interesting consequences of QFT in
non-inertial frames and CS are the Unruh-Davies-Fulling
effect (Davies, 1975; Fulling, 1973; Unruh, 1976) and the
closely related Hawking radiation effect (Hawking, 1975).
The inertial vacuum appears populated by particles in
a thermal state for uniformly accelerated observers. A
region of spacetime becomes inaccessible to non-inertial
observers due to their acceleration. Tracing over the field
modes in the casually discounted region leads to mixed
states. In the case of uniformly accelerated observers in
flat spacetime, the Minkowski vacuum corresponds to a
thermal state with Unruh temperature

TUnruh =
h̵a

2πckB
, (18)

where kB is the Boltzmann constant. A similar situation
occurs in black hole spacetimes, where observers hovering
outside the horizon loose access to the region inside the
black hole. The inertial vacuum state corresponds to a
thermal state for observers at a fixed distance from an
eternal black hole. This spacetime is stationary and the
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black hole mass is constant. In the case of a collapsing
star, the spacetime is not stationary and there is energy
flux known as Hawking radiation, where

THawking =
h̵c3

8πGMkB
, (19)

is the Hawking temperature for a black hole with mass
M .

These results further emphasize the notion that the
vacuum in a curved spacetime is not unique, which has
implications for the coherence and entanglement of quan-
tum systems. We explore the consequences for entangle-
ment in curved spacetime in Sec. II.A.6.

A main lesson that we learn from the development of
QFT in CS is that fields, and not particles, are fundamen-
tal. Particles are derived notions that do not always have
a viable interpretation. QFT is a multi-particle theory
and single particles can be described using this formalism
only when energies are not sufficient to create new parti-
cles. In this low-energy case, it is possible to restrict the
system to the single particle sector because the energies
present are not high enough to create new particles. In
the next section, we will discuss attempts to construct
a covariant description of the quantum harmonic oscilla-
tor in the presence of curved spacetime using the Klein-
Gordon equation and the restriction to the single particle
sector mentioned above.

A full reconciliation between quantum mechanics and
special relativity requires QFT (in flat spacetime), which
has been demonstrated numerous times in particle ac-
celerators. However, QFT in curved space still awaits
experimental corroboration. In Sec. IV.D.4, we discuss
proposals to test its key predictions using Bose-Einstein
condensates. Although QFT in curved spacetime enables
the study of some effects at the interface of quantum
physics and GR, including entanglement and decoherence
(see Sec. IV.B), a full reconciliation between the theo-
ries must include the effects of quantum matter on the
background metric itself. These effects, known as back-
reaction, are out of the scope of QFT in CS. That is, QFT
in CS is limited by a semi-classical description where the
spacetime is assumed to be a classical background given
by Einstein’s equations, and only fields are quantized.
Ultimately, the difficulty in including back-reaction in a
covariant theory of quantum fields is the main difficulty
in developing a theory of quantum gravity.

5. Harmonic oscillator in the presence of gravity using the
Klein-Gordon equation

An alternative approach to describe a harmonic os-
cillator in the presence of a gravitational field beyond
the Newtonian approximation is to use a Klein-Gordon
equation and the Klein-Gordon inner product, which,
as introduced in the section above, are compatible with

both general relativity and quantum physics. The Klein-
Gordon equation describes a scalar field in curved space-
time. However, a single particle (such as an atom)
in the presence of the gravitational field of a spherical
mass can be described by restricting the solutions to the
single particle sector and using the Schwarzschild met-
ric (Huimann, 2020; Marzlin, 1995; Schwartz and Giulini,
2019b; Sonnleitner and Barnett, 2018). The problem
with this approach is that the Klein-Gordon equation
does not have a trapping potential term.

A solution to this was proposed in (Huimann, 2020) by
designing an effective spacetime metric that included not
only the external gravitational field but also mimicked
the relevant features of an oscillating trapping potential.
The effective metric reduces to the Newtonian potential
in the non-relativistic approximation, and the equation
reduces to the Schrödinger equation of a harmonic os-
cillator in the presence of Newtonian gravity. However,
solving the equation beyond this approximation is very
challenging, and only some solutions are possible in spe-
cial cases.

An alternative approach which also uses a restriction
of the dynamics to the single particle sector, considers
a classical system coupling to gravity via minimum cou-
pling and then quantizes the system via canonical quanti-
zation (Schwartz and Giulini, 2019a). This approach was
inspired on work computing relativistic corrections of an
atom interacting with the electromagnetic field (Sonnleit-
ner and Barnett, 2018) and on studies of the dipole cou-
pling between a system of N particles with total charge
zero and the electromagnetic field in the presence of a
weak gravitational field (Marzlin, 1995). More recently,
a full first-order post-Newtonian expansion has been per-
formed in (Schwartz and Giulini, 2019b).

6. Entanglement and decoherence in non-inertial frames and
black holes

Entanglement is a key notion in quantum mechanics
and is often regarded as the true herald of quantumness.
In a single inertial frame, the Schrödinger equation read-
ily describes how two subsystems interacting via a po-
tential gradually become entangled. However, describing
entanglement in relativistic settings is more complicated.
Entanglement strongly depends on the notion of subsys-
tem and bipartition. In the quantum theory, subsystems
can always be defined independently of the observer. As
a consequence, entanglement is conserved for moving ob-
servers.

In the relativistic case, entanglement is only invariant
in flat spacetime and if observers move with constant ve-
locity. Interestingly, it was shown that the Minkowski
vacuum contains spatial correlations that can produce
entanglement between initially uncorrelated atoms inter-
acting with the vacuum state (Reznik, 2003; Valentini,



11

1991; Wang and Blencowe, 2021).

Consider two inertial observers in flat spacetime who
are performing an experiment to determine the degree
of entanglement between two particles, such as two pho-
tons or two fermions. We assume that they find that
the systems are maximally entangled. If two uniformly
accelerated observers try to determine the degree of en-
tanglement in the same system, they find that there are
many particles isntead of just two. The notion of the sys-
tem’s bipartition is lost due to the Fulling–Davies–Unruh
effect, which was introduced in Sec. II.A.4. The iner-
tial vacuum state corresponds to a thermal state for uni-
formly accelerated observers. In QFT, a well-defined no-
tion of the subsystem is only possible when global bosonic
or fermionic modes with sharp frequency are considered.
This is because the frequency is invariant, although the
number of particles in the mode varies with accelera-
tion. For uniformly accelerated observers, a region of
spacetime becomes inaccessible, and global states become
more mixed at higher accelerations, decreasing entangle-
ment. Non-uniform motion and, thus, gravity produce
decoherence (Fuentes-Schuller and Mann, 2005). For lo-
calized systems, such as moving cavities (Bruschi et al.,
2012) or propagating wave packets in curved spacetime
(Bruschi et al., 2014b), motion and gravity can either de-
grade states or create entanglement (Friis et al., 2013).

In curved spacetime, the situation is even more com-
plex because inertial observers disagree with the particle
content of the field. As a consequence of this, there is no
well-defined notion of entanglement in curved spacetime.
Entanglement between global modes can only be studied
in spacetimes that have asymptotically flat spacetimes
such as black holes (Adesso and Fuentes, 2009; Jing and
Jing, 2023; Wu et al., 2023c) and cosmological toy models
(Ball et al., 2006).

The study of the observer-dependent nature of entan-
glement (Alsing and Fuentes, 2012) in relativistic settings
has been a topic of interest in the field of relativistic quan-
tum information. For an overview of the field, see the
special issue (Mann and Ralph, 2012). The field is con-
cerned with studying relativistic effects on quantum tech-
nologies, including quantum communications (Bruschi
et al., 2014b), and on addressing fundamental questions
in quantum field theory (Barman et al., 2023; Lopp and
Mart́ın-Mart́ınez, 2018; Wu et al., 2023a), black holes (Ng
et al., 2022), cosmology (Bubuianu et al., 2021) and high-
energy physics (Bertlmann and Hiesmayr, 2001; Naikoo
et al., 2020) with an information-theoretical perspective.

A good example where notions of quantum informa-
tion are applicable to fundamental questions is the well-
known information loss paradox in black holes. Informa-
tion stored in pure states in the spacetime of a black hole
is lost due to states becoming completely mixed after the
black hole evaporates via Hawking radiation. Here, the
interplay of quantum field theory and general relativity
leads to a paradox, the resolution of which seems to re-

quire giving up fundamental principles such as unitarity,
locality, or the equivalence principle. Quantum fields in
black hole spacetimes give rise to one of the starkest in-
dications of the incompatibility of quantum theory and
general relativity. A large amount of work has focused on
addressing this problem using quantum information, see
for example the recent papers (Penington, 2020; Yoshida,
2019). The question becomes: could entanglement carry
the lost information out of the black hole? The distri-
bution of entanglement, via the monogamy of entangle-
ment, between modes inside and outside of the black
hole (Adesso and Fuentes, 2009) could play a role in the
potential resolution to the paradox (Merali, 2013). How-
ever, this resolution requires entanglement to be some-
how broken at the horizon. It was conjectured that ob-
servers falling into a black hole encounter a firewall made
of high-energy quanta at (or near) the event horizon,
which breaks the entanglement (Almheiri et al., 2021).
However, there is still an ongoing discussion in the com-
munity on whether this resolves the matter or not.

7. Perturbative quantum gravity

In the preceding sections, we have assumed that grav-
ity is a background gravitational field obtained by solv-
ing Einstein’s equations with classical sources (for ex-
ample, the background gravitational field created by the
Earth). Such analysis does, however, not take into ac-
count that the quantum matter (i.e., the quantum sys-
tem in the laboratory) can also be a source of gravity.
This effect is known as gravitational backreaction and is
one of the many challenging problems that a fully-fledged
quantum theory of gravity should address. The backre-
action from a quantum system could be naively included
in Einstein field equations with both the spacetime met-
ric and the stress-energy tensors promoted to quantum
operators. However, when we try to perturbatively quan-
tize gravity, we are faced with the problem of an infinite
number of free parameters coming from the high-energy
regime that need to be fixed using experimental data,
i.e., we get a theory that is non-renormalizable and thus
does not have predictive power. The full quantization of
gravity is an open problem (Niedermaier, 2007; Reuter
and Saueressig, 2007; Shomer, 2007; Weinberg, 1980).

Instead, we here limit the discussion of the gravita-
tional backreaction to the perturbative regime of gravity
at low energies. In this regime, general relativity can be
quantized by following analogous steps, as with any other
field theory. This was done in the seminal paper (Gupta,
1952b) using the Gupta–Bleuler formalism (Bleuler, K.,
1950; Gupta, 1950) applied to the approximate linear
form of Einstein’s gravitational field and later general-
ized beyond the linear case (Gupta, 1952a). Quantum
general relativity can be treated as an effective field the-
ory (EFT) at low energies using the covariant Feynman
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path integral approach, which allows making predictions
without the full knowledge of the theory at high ener-
gies (Donoghue, 1994). Within this framework, we first
expand the metric gµν as

ĝµν = ηµν + ĥµν , (20)

where ηµν is the Minkowski spacetime metric (or, in gen-
eral, some other background gravitational field ḡµν), and

ĥµν contains the fluctuations of the metric which we
quantize. Specifically, we can then obtain the graviton
propagator:

iPµν,αβ

k2 + iϵ
, (21)

where kµ is the four momenta (k2 = kµkµ), and the pro-
jection operator is given by (in the harmonic gauge)

Pµν,αβ =
1

2
(ηµαηνβ + ηµβηνα − ηµνηαβ) . (22)

The interaction Lagrangian is given by:

Lint =
1

2
ĥµν T̂µν , (23)

where T̂µν is now the stress-energy tensor produced by
quantum systems. Starting from Eq. (23), we can ob-
tain matter-graviton vertices. In addition, we also have
graviton-graviton vertices as the graviton couples to all
energetic particles, including to itself. Once the Feyn-
man rules are obtained, we can then perform calculations
similarly as done in other quantum field theories (see, for
example, the book (Scadron, 2006)).

Let us suppose we have two non-relativistic massive
quantum systems. We can write the corresponding
stress-energy tensor as:

T̂µν = T̂ (m)µν + T̂ (M)µν , (24)

where T̂
(m)
µν (T̂

(M)
µν ) is the contribution from system of

mass m (M). Using perturbation theory in the EFT
context discussed in Eqs. (20)-(23), we can then find the
corrections to the Newtonian potential:

V̂ = −GMm

r̂
[1 + 3

G(M +m)
r̂c2

+ 41

10π

Gh̵

r̂2c3
], (25)

where r̂ denotes the distance between the two sys-
tems. The first term in Eq. (25) is the tree-level
contribution, while the second and third terms come
from one loop Feynman diagrams. These latter terms
have been calculated with three techniques: Feyn-
man diagrams (Bjerrum-Bohr et al., 2003; Kirilin and
Khriplovich, 2002), unitarity-based methods (Bjerrum-
Bohr et al., 2014; Holstein, 2016), and dispersion rela-
tions (Bjerrum-Bohr et al., 2003). In addition, this re-
sult in Eq. (25) applies to particles of any spin and is
thus universal (Holstein and Ross, 2008).

To conclude this section, we note that there are many
ways in which gravitational effects can be incorporated
into the dynamics of quantum systems. To establish
which ones are accurate, we must ultimately be guided
by experiments.

B. Summary of challenges

We have outlined ways in which gravity can be con-
solidated with quantum mechanics in a limited way, al-
though many conceptual and mathematical challenges re-
main. Here we summarize the challenges by examining
the postulates of quantum mechanics one by one. For
each challenge, we mention the resolution when one ex-
ists (for example, quantum field theory successfully com-
bines quantum mechanics with special relativity). The
remaining challenges must ultimately be determined by
experiments.

1. Quantum states and the superposition principle

The first postulate states that non-relativistic quan-
tum mechanics (NRQM) in first quantization associates
a Hilbert space with every quantum system by repre-
senting the states of a system with vectors in a Hilbert
space. To preserve probabilities, physical states ∣ψj(t)⟩
must be normalized with respect to the inner product
⟨ψj(t)∣ψℓ(t)⟩ = δj,l, shown in Eq. (10). Physical quanti-
ties are given in terms of expectation values, which are
evaluated using this inner product. A quantum super-
position corresponds to a state ∣Ψ(t)⟩ that is a linear
combination of basis states ∣ψj(t)⟩ and amplitudes cj ,

∣Ψ(t)⟩ = ∑
j

cj ∣ψj(t)⟩ , (26)

in which ∑j ∣cj ∣2 = 1 ensures that the superposition state
is normalized, hence allowing for a probabilistic interpre-
tation of the theory. Any such superposition remains a
valid quantum state.

Several conflicts between this postulate and relativity
can be identified:

(i) To satisfy Lorentz invariance, space and time must
enter on an equal footing. As mentioned in
Sec. II.A.3, the inner product in Eq. (10) is not
Lorentz invariant (Birrell and Davies, 1982), which
implies that physical quantities in NRQM are not
compatible with physical quantities in relativity.

(ii) The wave functions ∣ψj(t)⟩, ∣ψℓ(t)⟩ in Eq. (10) and
(26) are evaluated at equal times t. Time enters as
a (global) parameter, while in special and general
relativity, it is a relative concept that depends on
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the given world line. Furthermore, whereas quan-
tum states can be in a superposition of several spa-
tial locations, in curved spacetime, time can pass
at different rates in different locations.

(iii) In both special and general relativity, the times at
which events occur are observer-dependent. For
space-like events, the order in which they occur may
change. Such explicit notions of causality are not
part of the framework of NRQM but must instead
be added by hand.

(iv) It has been argued that the superposition principle
is in conflict with the principle of covariance (Pen-
rose, 1986, 1996) and with the equivalence principle
(Howl et al., 2019). An argument challenging this
view has been recently put forward (Giacomini and
Brukner, 2022).

As we saw in Sec. II.A.4, some of these points can be
addressed by moving to quantum field theory and con-
sidering fields rather than particles.

2. Quantum state evolution

The time evolution of quantum states in NRQM is
given by the Schrödinger equation in Eq. (1). There are
a number of conflicts with general relativity:

(i) As we saw in Sec. II.A.4, Lorentz invariance re-
quires that derivatives with respect to time and
space are of the same order, which is not the
case for the Schrödinger equation in Eq. (1).
However, relativistically invariant versions of the
Schördinger equation, such as the Klein-Gordon
equation (Eq. (14)) or the Dirac equation, in con-
junction with relinquishing the notion of single-
particle states are needed to overcome this incon-
sistency, as illustrated by quantum field theory.

(ii) In quantum mechanics, energies are quantized;
while they are not in general relativity, they are
closely related to mass and the metric through Ein-
stein’s field equations. Two possible approaches
to this apparent conflict are to either (i) ’quantize
gravity’, i.e. develop a theory of quantum gravity in
which the gravitational field is quantized, or (ii) to
’gravitize quantum mechanics’, i.e. to preserve the
principles of general relativity, such as the equiva-
lence principle, to modify quantum mechanics. The
question of how to resolve these issues remains very
much open.

(iii) As detailed in Sec. II.A.6, the black hole informa-
tion paradox (see (Raju, 2022) for a review) poses
another challenge as it seems to require giving up
unitarity. This question similarly remains open.

3. Quantum measurements

The process of performing measurements in general
relativity is straightforward, and up to limitations due
to the measurement apparatus, we assume that we can
measure with arbitrary precision. However, in quantum
mechanics, (projective) measurements are performed ac-
cording to the Born rule: possible measurement outcomes
are the eigenvalues λj of Hermitian operators Â (observ-
ables) and the associated probability to observe this mea-
surement result is the projection of the system’s state
∣ψ⟩ onto the associated eigenstate ∣λj⟩ of the observable,
∣⟨λj ∣ψ⟩∣2. The fact that we measure observables that do
not necessarily commute imposes limits to the precision
with which we can measure different observables at the
same time, most famously captured in the Heisenberg
uncertainty for position and momentum

var(x̂(t))var(p̂(t)) ≥ h̵
2

4
. (27)

Several conflicts with general relativity arise from this
statement:

(i) In the context of relativity, we do not encounter the
same limitations on measurement precision. Classi-
cal variables can be measured to arbitrary precision
without state-update resulting from the measure-
ment.

(ii) Without the measurement postulate (that is, ex-
ternal observers), there are no events in quantum
mechanics. On the other hand, both special and
general relativity are fundamentally based on the
notion of events. Quantum superpositions are not
compatible with the notion of a single event, such
as a measurement, in spacetime. There have, how-
ever, been proposals for an event-based formulation
of quantum mechanics, which fundamentally mod-
ifies the Born rule (Giovannetti et al., 2023).

(iii) Problems also arise in QFT in CS. On one hand,
the theory inherits the measurement problem from
quantum theory, and on the other hand, new prob-
lems arise due to causality. Here, it has been shown
that projective measurements on quantum fields
lead to faster-than-light signaling (Sorkin, 1993).
Finding ways to give a resolution to this problem is
an active research field (see, for example, (Fewster
and Verch, 2020)).

Finally, the measurement problem in quantum me-
chanics, which states that there is no consistent dynamic
description of the measurement process, also applies in
the context of gravity. The issue is partially addressed
by collapse theories, which, while they have not yet been
experimentally verified, propose a dynamical mechanism
(see Section IV.B.3).
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4. Composite quantum systems and entanglement

In quantum mechanics, we use the tensor product
to compose a system out of multiple subsystems, e.g.
∣ψ⟩ = ∣ψ⟩A ⊗ ∣ψ⟩B . We saw in Sec. II.A.4 that in quan-
tum field theory in curved spacetime, the definition of
sub-systems is problematic since the notion of particle
number is observer-dependent (Alsing and Fuentes, 2012;
Fuentes-Schuller and Mann, 2005). We have already
identified the crucial issues, which are:

(i) A consequence of the tensor product structure for
composite systems in quantum theory is that multi-
partite systems can be entangled, which means
that entanglement becomes an observer-dependent
quantity. In the famous EPR paradox, this leads
to a violation of causality of locality, i.e. we need
to allow for faster-than-light effects if the theory is
to remain local.

(ii) The notion of entanglement requires the Hilbert
space partition to be well-defined. This is com-
monly done in terms of particles or modes. How-
ever, in curved spacetime, the notion of particles is
ill-defined. Generally, different inertial observers in
curved space see different particle content in the
field. Particles can only be well defined in rare
spacetimes in which the metric is globally invari-
ant under spatial translations or in which space-
time has regions where the metric has this symme-
try. In most cases, it is not possible to define a
Hilbert space partition and study entanglement in
composite systems.

The challenges listed here are all difficult to address,
and in many cases their resolution should ultimately
be determined by experiments. To enable these experi-
ments, we now proceed to review tools and methods used
to model such systems in the laboratory.

III. THEORETICAL FRAMEWORKS FOR MODELING
MASSIVE QUANTUM SYSTEMS IN THE LABORATORY

To test the effects of gravity, which are often extremely
small, with massive quantum systems, it is crucial to
model the proposed experiment accurately. Here, we
briefly account for common theoretical tools used to de-
scribe mechanical resonators in the laboratory. Firstly,
we discuss ways in which a probe can interact with the
massive system (Sec. III.A). We then cover models of
open-system dynamics (Sec. III.B), which are needed to
model the experiments. We cover measurements and con-
trol schemes necessary for readout (Sec. III.C), as well
as quantum metrology tools (Sec. III.D). A snapshot of
experiments with massive quantum systems is given in
Sec. V.A for testing gravity and for generating quantum
states in Sec. V.B.

A. Coupling a mechanical mode to a probe

A key challenge in controlling massive systems in the
laboratory is the fact that they often cannot be measured
directly. In order to manipulate and control these mas-
sive systems, we must first couple them to a probe. We
review two such models here.

1. Optomechanical interaction

We first consider the case where a mechanical mode
couples to a cavity mode (which can be optical, mi-
crowave, electrical, or magnetic). This brief exposition
largely follows the review (Aspelmeyer et al., 2014). See
also (Barzanjeh et al., 2022) for further reading. In many
systems, the frequency of the cavity mode depends on
the center-of-mass position of the mechanical resonator.
When consider the frequency shift to first-order in the
position of the mechanical oscillator, we acquire a cou-
pling between the occupation number of the cavity mode
and the position of the oscillator. The derivation often
depends on platform-specific details. For example, in
a Fabry-Pérot moving-end mirror cavity, the cavity de-
forms due to photon pressure (Law, 1995). For levitated
nano-particles, the light-matter interaction can instead
be derived by assuming the trapped sphere to be smaller
than the laser waist of the beam (Romero-Isart et al.,
2011). Similarly, in some electro-mechanical systems, the
motion of the resonator couples to capacitance which in
turn induces a frequency shift (Regal and Lehnert, 2011).

In all of the cases above, we arrive at the following
cavity optomechanical Hamiltonian (we denote it in this
way even though the cavity field might not be an optical
mode)

Ĥ = h̵ωcâ
†â + h̵ωmb̂

†b̂ − h̵g0â†â(b̂† + b̂), (28)

in which â and â† are the annihilation and creation oper-
ators for the radiation mode with free angular frequency
ωc, and where b̂ and b̂† are the annihilation and cre-
ation operator for the mechanical mode with free an-
gular frequency ωm. The operators obey the canoni-
cal commutator relation [â, â†] = [b̂, b̂†] = 1. The op-
tomechanical coupling g0 has units of angular frequency
and encodes the strength of the interaction between the
cavity and mechanical modes. In most experimental
realizations, the coupling is defined as the optical fre-
quency shift per displacement g0 ≡ −xZPF∂ωc/∂x, where

xZPF =
√
h̵/2mωm is the zero-point fluctuation. The

probe fields act as the means for both readout and con-
trol. Crucially, the interaction between the bosonic mode
and mechanical resonator enables the detection of ex-
tremely small displacements, e.g. due to gravitational ef-
fects. The nonlinear quantum dynamics generated by
the Hamiltonian in Eq. (28) were first solved in (Bose
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et al., 1997; Mancini et al., 1997), where it was shown
that both the cavity mode and the mechanical mode
evolve into highly non-classical superpositions of coher-
ent states. Particularly, this is a classic way to gener-
ate Schrödinger cat states of the macroscopic mechanical
mode (Bose et al., 1999; Marshall et al., 2003; Qvarfort
et al., 2018). The solutions were later generalized to time-
dependent couplings (Qvarfort et al., 2019). As detailed
in Section IV.B.1, the system dynamics of this Hamilto-
nian have been used for a number of proposals related to
the detection of gravitational decoherence.

The Hamiltonian in Eq. (28) describes an idealized sys-
tem isolated from its environment. In a realistic setting,
both the bosonic mode and mechanical modes undergo
dissipation, thermalization, and decoherence (see Sec-
tion III.B for details). To replenish the lost quanta from
the radiation mode, an external source is used to pump
the system. Such a pump is modeled with a bosonic
pump term Ĥd = α(t)â + α∗(t)â†, where α(t) is a com-
plex drive amplitude. However, with the inclusion of
such a term, the dynamics induced by the Hamiltonian
in Eq. (28) can no longer be solved exactly (Qvarfort
and Pikovski, 2022). A common method to proceed is
to solve the system dynamics perturbatively, or by ex-
amining the steady-state for weak driving, see e.g. (Nun-
nenkamp et al., 2011; Rabl, 2011).

For a strong enough pump, the system dynamics can
be approximated as linear. Here, the term ‘linear’ refers
to the fact that the resulting Heisenberg equations of mo-
tion contain only linear operator terms. The inclusion of
a pump term (strongly) driving mode â lets us separate
â into the classical amplitude of the drive α and the fluc-
tuations δâ, such that â = α + δâ1. The interaction term
in Eq. (28) becomes

ĤI = −h̵g0(α + δâ)†(α + δâ)(b̂† + b̂). (29)

When ∣α∣ ≫ ⟨δâ⟩, the cubic term −h̵g0δâ†δâ can be re-
moved because it is smaller by a factor of ∣α∣ than the
other terms. The remaining linear Hamiltonian is

ĤI ≈ −h̵g0(α∗δâ + αδâ†)(b̂† + b̂). (30)

This Hamiltonian is a common starting point for a num-
ber of investigations and accurately describes a range
of experiments (see references in (Aspelmeyer et al.,
2014)). For example, within the resolved sideband regime
where ωm ≫ κ, it is possible to engineer either a beam-
splitter interaction â†b̂ + h.c. or a two-mode squeezing
term â†b̂† + h.c. by optically pumping on either the red
(ωc − ωm) or blue (ωc + ωm) sideband. The red-sideband

1 Depending on the application, we may also consider â = ⟨â⟩ + δâ
and ⟨δâ⟩ = 0. This leads to a Hamiltonian of a similar form,
see (Aspelmeyer et al., 2014).

interaction is necessary for implementing e.g. side-band
cooling (Liu et al., 2013). Another way to couple an op-
tical and mechanical mode is through a dissipative cou-
pling rather than a dispersive one, where the displace-
ment of the mechanical resonator directly modulates the
decay rate of the cavity (Elste et al., 2009).

The dynamics of the nonlinear Hamiltonian in Eq. (28)
cannot be solved exactly in the presence of a pump term
and optical dissipation. However, by engineering the sys-
tem such that the optical mode dissipates from the cavity
on a time scale much faster than that of the mechanical
element, the interaction between the optical and mechan-
ical modes can instaed be described as an instantaneous
interaction. This is also known as the unresolved side-
band regime, where ωm ≪ κ. The framework, often re-
ferred to as pulsed optomechanics was developed in (Van-
ner et al., 2011). By considering the Langevin equations
in the unresolved sideband regime, the light-matter in-
teraction can be modeled as an instantaneous unitary

operator of the form Û = eiµn̂lX̂m (Pikovski et al., 2012),
where µ is a dimensionless coupling which depends on
the pulse shape, n̂l is the number of photons in the pulse
entering or leaving the cavity, and X̂m = (b̂† + b̂)/

√
2 is

the mechanical quadrature. For an adiabatic cavity with
κ ≫ τ−1in , where τin is the characteristic timescale of the
input pulse, the value of µ becomes µ =

√
8g0/κ, where

g0 is the optomechanical coupling and κ is the optical
dissipation rate (Clarke et al., 2023). It is also possi-
ble to start from the linearized optomechanical Hamil-
tonian in Eq. (30) and derive a pulsed interaction that
couples the position quadratures of the mechanical mode
and the probe field (Bennett et al., 2016; Khosla et al.,

2013). The resulting unitary operator is ÛLin = eiχX̂cX̂m ,
where χ again depends on the pulse shape, and where
X̂c is the amplitude quadrature of the input pulse (as
opposed to the cavity quadrature). In the adiabatic
regime and for an input coherent pulse, χ = 4g0

√
N/κ,

where N is the average number of photons in the in-
put pulse (Vanner et al., 2011). A closely related idea
to pulsed optomechanics is that of stroboscopic optome-
chanics (Brunelli et al., 2020), where a train of short
pulses of light is injected into the cavity. Proposals
using nonlinear pulsed optomechanics include the gen-
eration of cat-states (Clarke and Vanner, 2018; Ring-
bauer et al., 2018), entangled states (Clarke et al., 2020;
Neveu et al., 2021), and entangled cat-states (Kanari-
Naish et al., 2022). State-preparation using linearized
pulsed optomechanics to generate cat-like states has also
been put forward using the addition and subtraction of
phonons from the mechanical state (Milburn et al., 2016)
and by swapping the mechanical state with a photon-
subtracted state of light (Hoff et al., 2016). Pulsed op-
tomechanics has given rise to a number of protocols in-
tended to test fundamental physics, such as tests of mod-
ified commutator relations detailed in Section IV.D.1.
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2. Coupling to a two-level system

Instead of a probe field, it is also possible to couple the
mechanical resonator to a two-level system. The advan-
tage of such a coupling is that the high level of control
that has been achieved for two-level systems can now
be indirectly applied to the mechanical resonator. Col-
lectively, these systems are sometimes known as hybrid
optomechanical systems since they couple bosonic con-
tinuous degrees-of-freedom to a two-level qubit system.
Examples include nitrogen-vacancy centers (NV) embed-
ded into a nanodiamond (Hoang et al., 2016; Neukirch
et al., 2015), or superconducting resonator qubits cou-
pled to mechanical modes (Arrangoiz-Arriola et al., 2019;
Chu et al., 2018; O’Connell et al., 2010; Satzinger et al.,
2018). See e.g. (Chu and Gröblacher, 2020; Rogers et al.,
2014) for dedicated reviews.

In the case of a spin coupled to mechanical motion, the
same notions apply to the coupling between the spin of
an ion and its center-of-mass position (Cirac and Zoller,
1995). Applying a magnetic field gradient to a trapped
ion couples the internal and motional states of the system
through the Zeeman effect. The spin-mechanical Hamil-
tonian reads, to first order in the position operator,

Ĥ = h̵ωmb̂
†b̂ + 1

2
h̵ω0σ̂z +

h̵λ

2
(b̂† + b̂)σ̂z, (31)

where ω0 is the angular frequency of the qubit system, σz
is the Pauli operator denoting the free energy, b̂, b̂† denote
the annihilation and creation operators of the mechanical
mode, and λ is a coupling constant that depends on the
platform in question.

Superconducting qubits coupled to a mechanical mode
are more commonly modeled using the Jaynes-Cummings
Hamiltonian:

ĤJC = h̵ωmb̂
†b̂ + h̵Ω

σz
2
+ h̵λ

2
(b̂σ+ + b̂†σ−) , (32)

where Ω is the oscillation frequency of the superconduct-
ing qubit, σz is the Puali matrix, while σ− = σx − iσy
and σ+ = σx + iσy are the raising and lowering opera-
tors in terms of Pauli matrices. Here λ again denotes
the strength of the coupling between the mechanical
mode and the qubit. A number of theoretical proposals
have utilized the two-level system coupling for e.g. en-
hancing the optomechanical coupling strength (Heikkilä
et al., 2014; Pirkkalainen et al., 2015a), state prepara-
tion (Kounalakis et al., 2020; Yin et al., 2013), as well as
cooling (Hauss et al., 2008; Jaehne et al., 2008; Martin
et al., 2004; Nongthombam et al., 2021).

B. Open-system dynamics for massive quantum systems

To detect the extremely weak effects of gravity, we
must be able to distinguish them against any underlying

noise floor. Additionally, proposals such as gravitational
decoherence and gravity-induced state reduction stipu-
late that gravity itself manifests as a noise signature (see
Sec. IV.B.1). Both of these considerations necessitate
the use of accurate noise models for massive quantum
systems. Here we review the main tools for modeling de-
coherence in massive quantum systems. For a dedicated
review on noise models for mechanical resonators in the
quantum regime, see (Bachtold et al., 2022).

1. Quantum master equations

Quantum master equations describe the quantum state
evolution in a situation in which a system, e.g., a me-
chanical oscillator or other probes, is coupled to a larger
environment that we cannot control or measure, such as
a thermal bath. Apart from modeling the interaction
of a probe with its environment, this description is rel-
evant for describing gravitational decoherence, gravita-
tional collapse, see Sec. IV.B, and gravitational entan-
glement, see Sec. IV.C.

The dynamics of a quantum system coupled to the
environment, or bath, can be described with the Hamil-
tonian Ĥ, which contains a term for the system dynam-
ics Ĥs (e.g., a quantum system in the laboratory, such
as a cavity, a mechanical oscillator or atoms), the envi-
ronment or bath Ĥb (e.g., a thermal bath) and a term
describing the coupling between system and bath Ĥsb.
The full Hamiltonian is

Ĥ = Ĥs + Ĥb + Ĥsb. (33)

The fully evolved state of the system given an initial state

∣Ψ0⟩ is ∣Ψ(t)⟩ = Û(t) ∣Ψ0⟩, where Û(t) = e−iĤt/h̵. In prin-
ciple, any type of system-bath coupling Ĥsb is possible,
but they might not always lead to analytically solvable
dynamics (Gardiner and Zoller, 2000).

In the laboratory, we often do not have access to the
bath degrees-of-freedom which are therefore traced out
from the quantum state. The result is a mixed state,
where the degree of mixedness is captured by the purity
tr (ρ̂2) ≤ 1, saturating the bound tr (ρ̂2) = 1 only when
the state is pure.

We now consider a dynamical equation for the evo-
lution of the reduced system density matrix ρ̂s (Breuer
et al., 2002). Such an equation is known as a master
equation. To derive the simplest possible master equa-
tion, we assume (i) that the system and bath are initially
in a product state ρ̂s,b = ρ̂s ⊗ ρ̂b, (ii) that the coupling
between the system and the bath is weak (also known as
the Born approximation), (iii) that the environment does
not retain a memory of the interactions (the Markov ap-
proximation), and, (iv), that fast-rotating terms can be
discarded (the secular approximation). By tracing out

the bath modes b̂ℓ, we obtain the Gorini-Kossakowski-
Sudarshan-Lindblad master equation for the evolution of
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ρ̂s(t) (Gorini et al., 1976; Lindblad, 1976) (commonly
just referred to as the Lindblad equation):

˙̂ρs(t) = −
i

h̵
[Ĥs, ρ̂s(t)]

+∑
ℓ

(L̂ℓρ̂s(t)L̂†
ℓ −

1

2
{ρ̂s(t), L̂†

ℓL̂ℓ}) . (34)

Here, Ĥs is the system Hamiltonian and L̂ℓ de-
note the Lindblad jump operators. The Lind-
blad equation can also be written in shorthand as
˙̂ρs = −i[Ĥs, ρ̂s]/h̵ + ∑ℓ D̂[L̂ℓ]ρs(t), where D̂[L̂ℓ]ρ̂(t) =
L̂ℓρ̂(t)L̂†

ℓ−L̂
†
ℓL̂ℓρ̂(t)/2− ρ̂(t)L̂†

ℓL̂ℓ/2 is called the standard
dissipator.

For mechanical resonators coupled to probe fields or
two-level systems, there are commonly two types of noise
that affect the system: dissipation and scattering pro-
cesses in the probe field, and thermalization processes in
the phononic modes (Aspelmeyer et al., 2014). Mechani-
cal dissipation and thermalization arise due to processes
specific to the system. In clamped systems, for exam-
ple, unwanted thermal excitations are transferred via the
physical point of attachment. Both optical and mechan-
ical noise can be modeled with the Langevin equation in
the linear optomechanical regime (see Sec. III.B.2). A
common way to model Markovian dissipation and ther-
malization is to assume Lindblad operators of the form
L̂1 =

√
(1 + nth)Γb̂ and L̂2 =

√
Γnthb̂

†, where Γ is the me-
chanical linewidth and nth = [exp(h̵ω/kBT ) − 1]−1 is the
thermal occupation number of the bath, for which ω is
the bath frequency, kB is Boltzmann’s constant, and T is
the temperature of the bath.

In levitated systems, environmental noise arises in part
due to collisions between the system and surrounding gas
particles. A number of such processes correspond to po-
sition localization, which can be described with the fol-
lowing master equation (Romero-Isart, 2011):

⟨x∣ ˙̂ρ(t) ∣x′⟩ = i
h̵
⟨x∣ [ρ̂(t), Ĥ] ∣x′⟩

− Γ(x − x′) ⟨x∣ ρ̂(t) ∣x′⟩ . (35)

Here, the form of Γ(x−x′) depends on the nature of the
noise. In the limit where the decoherence decay depends
quadratically on ∣x − x′∣, the equation simplifies to

˙̂ρ(t) = i
h̵
[ρ̂(t), Ĥ] −Λ[x̂, [x̂, ρ̂(t)]], (36)

where Λ is the dissipation rate. The dynamics has been
solved for a coupling o a probe field in (Bassi et al., 2005)
using a stochastic unraveling method (see (Adler et al.,
2005) for details).

We now briefly discuss generalizations to the strong
coupling and the non-linear regime as well as to non-
Markovian dynamics. Commonly, dissipation of the
probe field and mechanical mode are treated separately.

However, such a treatment is not always valid when
the probe field and mechanics are strongly coupled. In-
stead, we must consider a dressed Lindblad equation (Hu
et al., 2015), which was solved in (Torres et al., 2019)
using a damping basis approach (Briegel and Englert,
1993). In the nonlinear regime, a solution to the Lind-
blad master equation has been found for weak dissipa-
tion (Mancini et al., 1997) and was later generalized to
arbitrary κ (Qvarfort et al., 2021b), although a closed-
form expression for the evolved state cannot be obtained.
The Lindblad equation for an optomechanical system in
the nonlinear regime was solved for dissipation of the me-
chanical mode (Bose et al., 1997; Mancini et al., 1997),

with Lindblad operators L̂ = √γb̂†b̂, where γ is the me-
chanical dissipation rate.

Models assuming a Markovian environment are often
sufficient to capture the open dynamics of the system ac-
curately. However, there are certain cases where a non-
Markovian description is necessary. Non-Markovianity
arises when the bath retains a memory of the interac-
tion with the system, and information can flow back
into the system (Breuer et al., 2002). Generally, to
model such non-Markovian noise, we must either con-
sider the Caldeira-Leggett master equation for Brow-
nian motion (Caldeira and Leggett, 1983a) or solve
a general non-Markovian master equation (Hu et al.,
1992), although some care must be taken since the dy-
namics predicted by these approaches do not automati-
cally guarantee physical states as solution (Kohen et al.,
1997). Non-Markovian dynamics can also be modeled us-
ing Lindblad-type equations with time-dependent noise
rates (Zhang et al., 2012). Some studies of mechanical
resonators indicate the requirement for non-Markovian
dynamics. For example, it was shown that in clamped
systems, the resulting noise spectrum was consistent with
a non-Markovian spectrum (Gröblacher et al., 2009a).
In addition, theoretical works indicate that modeling
the effects of damped tunneling two-level systems on a
nanomechanical flexing beam resonator gives rise to non-
Markovian noise (Remus et al., 2009). Optomechanical
systems in non-Markovian environments have been mod-
eled, although generally without the use of a master equa-
tion. A Feynman-Vernon influence functional method
was used to study sideband cooling in non-Markovian
environments (Triana et al., 2016), and the influence of
non-Markovian noise on the optomechanical nonlinearity
was considered in (Qvarfort, 2023).

Beyond analytic solutions, master equations are often
solved numerically. Useful tools include, for example,
the QuTiP Python package (Johansson et al., 2012). See
also (Campaioli et al., 2023) for a tutorial.
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2. Langevin equations and input-output formalism

The quantum Langevin equations model the non-
unitary evolution of the quantum modes in the Heisen-
berg picture. The interaction between an input mode
and the system is imprinted on output fields, which are
detected in experiments. The Langevin equations also
are a useful tool for modeling quantum metrology, see
Sec. III.D, and in particular experimental tests of grav-
ity, e.g., weak-force detection, see Sec. IV.A.

The Langevin equations for the bosonic field âj read
(see (Caldeira and Leggett, 1983b; Gardiner and Zoller,
2000) for a derivation)

˙̂aj = −
γj + γj,in

2
âj −

i

h̵
[Ĥs, âj] −

√
γj,inâj,in. (37)

Note that following standard convention, âj,in has units
of s−1/2. This input field could be noise from a (heat)
bath or a coherent probe field. In a concrete setting,
γj,in could be the coupling rate between the system and a
waveguide used to couple the probe field into the system.
If the system also experiences loss into other channels at
rate γj , this rate is added to the overall decay rate.

The input fields are connected the the output fields via
input-output boundary conditions (Caves, 1982; Clerk
et al., 2010; Gardiner and Collett, 1985)

âj,out = âj,in +
√
γj,inâj . (38)

By solving the internal system dynamics as a function of
the input fields, it becomes possible to model the output
fields purely as a function of the input fields.

The Langevin equations for a cavity optomechanical
system with Hamiltonian given by Eq. (28) are (Bowen
and Milburn, 2015)

˙̂a = −κ
2
â + i∆â + ig0â(b̂† + b̂) −

√
κinâin,

˙̂
b = −Γ

2
b̂ − iωmb̂ + ig0â†â −

√
Γinb̂in,

(39)

in which ∆ = ω−ωc is the detuning of the light frequency
ωl from the cavity frequency ωc, Eq. (28), κ is the opti-
cal linewidth, κin is the rate by the probe field dissipates
away from the cavity, Γ is the mechanical linewidth, and
Γin is the coupling rate for thermal heating. These equa-
tions are challenging to solve in the nonlinear regime but
can be linearized by considering a strong optical pump
field (see Section III.A.1). Such a treatment lies at the
basis of many models of optomechanical systems (As-
pelmeyer et al., 2014).

In a typical experimental setting, we are interested
in the frequency-dependent response to an input âj,in,
which we obtain by means of the Fourier transform from
Eqs. (37), â(ω) ≡ 1

√

2π ∫
∞

−∞
dt eiωtâ(t). Experimentally,

the Fourier transform is calculated over a finite time-
window [−τ, τ], which converges to the Fourier integral

in the limit τ → ∞. The Fourier transform is also the
main analytic method by which the Langevin equations
can be solved, provided that they are linear in terms of
the operators they contain. In that case, we can apply
the Fourier transform to Eq. (37) to derive a scattering
matrix

S(ω) = 1 +√γin(iω1 +M)−1√γin, (40)

where γin = diag(γ1,in, . . . , γN,in) contains the input noise
terms and where the elements of M are defined from
the Langevin equations in Eq. (37) as ˙̂aj = ∑ℓMj,ℓâℓ −√
γj âj,in. The scattering matrix allows us to relate the

input and output fields as

âj,out(ω) = ∑
ℓ

Sj,ℓ(ω)âℓ,in(ω), (41)

where Sj,ℓ are the matrix elements of S. The transmis-
sion between the jth input and the ℓth output port is
given by Tℓ,j(ω) = ∣Sℓ,j(ω)∣2. Interactions such as single-
or two-mode squeezing can give rise to ∣Sℓ,j(ω)∣2 ≥ 1,
which is referred to as gain G = ∣Sℓ,j(ω)∣2. These quanti-
ties are relevant for characterizing sensors, devices such
as isolators, circulators, and (directional) amplifiers, and
other scattering experiments such as optomechanical in-
duced transparency (OMIT) experiments (Xiong and
Wu, 2018).

We now turn our attention to (quantum) noise in the
context of the Langevin equations. For a general treat-
ment of noise, we refer to the designated review (Clerk
et al., 2010) and specifically in the context of cavity-
optomechanics to (Aspelmeyer et al., 2014).

Quantum systems are typically hard to isolate and
are susceptible to noise and dissipation. For instance,
the real-time motion of a mechanical oscillator sub-
jected to fluctuating thermal Langevin force was mea-
sured in (Hadjar et al., 1999). These forces can be in-
cluded straightforwardly in the Langevin equations via
the input fields âj,in, Eq. (37). Instead of recording
real-time trajectories, it is typically more convenient to
record the noise power spectral density SÔÔ(ω) defined

for some system operator Ô. The spectral density de-
scribes the intensity of the noise at a given frequency.
In practice, we obtain SÔÔ(ω) by averaging over many
experimental runs. According to the Wiener-Khinchin
theorem (Khintchine, 1934; Wiener, 1930) this is equiv-
alent to calculating the Fourier-transform of the auto-
correlation:

SÔ†Ô(ω) ≡ ∫
∞

−∞

dt eiωt⟨Ô†(t)Ô(0)⟩. (42)

We obtain the noise spectral density from the Langevin
equations in Eq. (37) by calculating correlators of, e.g.,

the fields ⟨â†
j(ω)âj(ω)⟩, or position ⟨x̂j(ω)x̂j(ω)⟩, taking

into account the input fluctuations âj,in(ω). The assump-
tion we made of Markovian noise translates to the fact
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that âin are uncorrelated in time. This is also known as
Gaussian white noise, and the vacuum fluctuations are
given by

⟨âin(t)â†
in(t

′)⟩ = (nth + 1)δ(t − t′), (43)

⟨â†
in(t)âin(t

′)⟩ = nthδ(t − t′), (44)

with the number of thermal bosonic excitations. Note
that, for the case of an optical probe field, the environ-
ment corresponds to the vacuum, meaning that nth = 0.

As an example, let us consider the position noise of a
single harmonic oscillator with frequency ωm and damp-
ing rate Γ. The spectral density is given by (Clerk et al.,
2010)

Sxx = 2πx2xpf(nth(h̵ωm)
Γ

(ωm + ω)2 + (Γ/2)2

+[nth(h̵ωm) + 1] Γ

(ωm − ω)2 + (Γ/2)2
), (45)

where nth(h̵ωm) is the expected number of particles ac-
cording to the Bose-Einstein statistic, and where xxpf =√
h̵/(2ωmm) is the zero-point fluctuation, for which m is

the mass of the oscillator. The area under the spectral
density Sx̂x̂(ω) with x̂ the position operator is propor-
tional to ⟨x̂2⟩. In thermal equilibrium at large tempera-
tures, kBT ≫ h̵Ω, ⟨x̂2⟩ is proportional to the temperature
according to the fluctuation-dissipation theorem.

In general, we note that the spectral density in Eq. (45)
is not symmetric in ω due to spontaneous emission,
which, classically, it would be. As important applica-
tion to optomechanics, the asymmetry of the noise spec-
tral density of the radiation pressure when driving on the
red-detuned sideband allows to cool the mechanical os-
cillator. The optical noise spectral density then enters
in the net optical cooling rate of the mechanical oscilla-
tor (Marquardt et al., 2007). If, in addition, the light
used to drive the mechanical oscillator is squeezed, side-
band cooling allows the cooling of the mechanical mode
to the ground state (Clark et al., 2017). The spectral
density is also relevant to sensing applications as it de-
termines the signal-to-noise ratio (Clerk et al., 2010; Lau
and Clerk, 2018), Sec. III.D.

C. Measurement and control of massive quantum systems

To control the massive quantum systems in the labora-
tory, we need to be able to manipulate their motion and
perform accurate measurements. This is particularly im-
portant when measuring weak gravitational effects. Here
we summarize the key ideas behind different measure-
ment and control schemes that are used in the various
proposals covered in Section IV. For an in-depth discus-
sion of control and measurement of quantum systems, we
refer to the designated reviews (Clerk et al., 2010; Jacobs

and Steck, 2006) as well as the following textbooks (Ja-
cobs, 2014; Wiseman and Milburn, 2009).

1. Quantum measurements

To extract information about how gravity affects quan-
tum systems, we must perform a measurement. There are
a number of different measurement types and schemes.
Here we briefly review the most common ones.

Projective measurements, also known as von Neumann
measurements, model the measurement apparatus as a
macroscopic pointer that can be read out classically.
Strong correlations between the system and the pointer
let us determine the state of the system unambiguously
by measuring the pointer. However, the measurement de-
stroys the coherence of the wave function, subsequently
destroying information about the conjugate observable
and leading to back-action quantum noise (Clerk et al.,
2010; Jacobs and Steck, 2006).

Quantum non-demolition measurements (Braginsky
and Khalili, 1996; Braginsky et al., 1995, 1980; Peres,
1993), on the other hand, present a special case in which
the eigenstates of the observable we are measuring are
also eigenstates of the system, or equivalently the mea-
sured observable Â commutes with the Hamiltonian Ĥ,
[Ĥ, Â] = 0, and thus Ĥ and Â are simultaneously di-
agonalizable. Measuring multiple times yields the same
result and allows for improved measurement accuracy,
which is crucial for certain force-sensing schemes. We
discuss such back-action evasion schemes in more detail
in Section IV.A.1.

Weak measurements only extract partial information
about an observable and thus do not fully destroy the
information about the conjugate observable. For a de-
tailed discussion, we refer to the pedagogical review (Ja-
cobs and Steck, 2006). The main idea is to construct
operators P̂m such that ∑m P̂ †

mP̂m = 1. The state after
the measurement expressed in terms of the projectors P̂n

and the state ρ̂ before the measurement is then given by

ρ̂f =
P̂ †
nρ̂P̂n

tr (P̂ †
nρ̂P̂n)

, (46)

with the probability tr (P̂ †
nρ̂P̂n) to obtain this outcome2.

Note that we recover a von Neumann measurement when
measuring in the eigenbasis, i.e. setting Pn = ∣n⟩⟨n∣.
Rather than measuring in the eigenbasis, we define Pn

as a weighted sum over different eigenstates that peaks
at a specific eigenstate but has a certain width (Jacobs
and Steck, 2006). A small width corresponds to a strong

2 An operator of the form M̂ = ∑b
n=a P̂ †

nP̂n is a positive operator

and tr(M̂ρ̂) gives the probability that n ∈ [a, b]. Therefore, this
operator defines a positive operator-valued measure (POVM).



20

measurement, with the limit of zero width corresponding
to a von Neumann measurement. A large width per-
forms a weak measurement. The measurement strength
k is typically defined as the inverse of this width. It
was suggested that weak measurements can lead to more
accurate measurements of gravitational forces (Kawana
and Ueda, 2019).

Rather than measuring a system once, it can be inter-
esting to continuously extract information from the sys-
tem. Together with feedback, such measurement strate-
gies can, for instance, be employed to squeeze or cool
levitated mechanical systems (Genoni et al., 2015) that
can be used for gravity tests, see Sec. V.A.4. A theory for
such continuous measurements can be constructed from
a sequence of time intervals ∆t during which weak mea-
surements are performed with a measurement strength
proportional to ∆t. In the limit of infinitesimally short
time intervals, we obtain a stochastic equation of motion
due to the random nature of the measurements (see (Ja-
cobs and Steck, 2006) for a derivation). The measure-
ment current of the continuously observed observable A
with a weak measurement is then given by

dI(t) =
√
k⟨A(t)⟩dt + dW (t), (47)

in which k is the measurement strength, dW (t) is the
standard Wiener increment describing the white impre-
cision noise in the measurement current and fulfills3

⟪dW⟫ = 0 and ⟪dW 2⟫ = dt (Clerk et al., 2010). The den-
sity matrix ρ̂c determining the expectation value ⟨A(t)⟩ is
now conditional on the measurement current and evolves
according to the stochastic master equation

dρ̂c = −
i

h̵
[Ĥs, ρ̂c]dt +

k

4
D[Â]ρ̂cdt

+
√
k

2
[Âρ̂c + ρ̂cÂ − 2⟨Â⟩ρ̂c]dW, (48)

with D[.]ρ̂c defined as below Eq. (34). The evolution of
this conditioned quantum state is referred to as quantum
trajectory. This equation can only be solved analytically
in a special case (Jacobs and Steck, 2006; Wiseman, 1996)
and, in most cases, has to be solved numerically.

Averaging over all possible measurement results, i.e.,
the observer does not retain the measurement current,
Eq. (48) simplifies to

d⟪ρ̂c⟫ = −
i

h̵
[Ĥs,⟪ρ̂c⟫]dt +

k

4
D[Â]⟪ρ̂c⟫dt, (49)

since ⟪ρ̂cdW⟫ = 0 as ρ̂c and dW are statistically inde-
pendent (Jacobs and Steck, 2006).

3 ⟪.⟫ denotes the average over all possible measurement outcomes.
For a pedagogic introduction to stochastic calculus, we refer
to (Jacobs and Steck, 2006).

Continuous measurements can also be described with
Langevin equations. Here, the recorded measurement
current is then determined by the output fields. This
is particularly convenient for describing homodyne and
heterodyne detection. For a homodyne detection, the
output at frequency ω0 is combined with a signal of a
local oscillator at the same frequency ω0 in an interfer-
ometer. The detected current (in a rotating frame with
frequency ω0) is then given by4 (Barchielli and Vacchini,
2015)

Î(t) ≡ (e−iϕb̂out(t) + eiϕb̂†out(t))/
√

2. (50)

Here, ϕ is a phase difference depending on the optical
path that determines the observed quadrature. For ϕ = 0,
we obtain Î(t) = (b̂out(t) + b̂†out(t))/

√
2 = qout(t) while

ϕ = π/2 yields Î(t) = −i(b̂out(t) − b̂†out(t))/
√

2 = pout(t).
In a heterodyne detection scheme, the output at fre-

quency ω0 is combined with a signal of a local oscillator
at a different frequency ω1 detuned from the output fre-
quency by ∆ ≡ ω1 −ω0, thereby giving rise to the hetero-
dyne current

Î(t) ≡ (e−i(ϕ−∆t)b̂out(t) + ei(ϕ−∆t)b̂†out(t))/
√

2. (51)

As a result, the measured quadrature oscillates in time,
providing information about both amplitude and phase.
However, this comes at the cost of an added half-quantum
of noise (Bowen and Milburn, 2015). Homodyne and het-
erodyne noise spectra are discussed in detail in (Barchielli
and Vacchini, 2015; Bowen and Milburn, 2015).

2. Feedback and feedforward

Along with continuous measurements, we can continu-
ously apply operations on the system to steer it toward a
desired state. Creating or stabilizing certain quantum
states can be advantageous in the context of metrol-
ogy. In particular, superposition states can be used
to test theories about quantum mechanics and gravity.
Furthermore, it has been shown that certain entangled
states can improve the sensitivity and signal-to-noise ra-
tio (Leibfried et al., 2004; Roos et al., 2006). Feedback is
also employed for squeezing or cooling in many of the ex-
perimental tests of gravity in Sec. V.A, and, in general,
for the control of quantum systems, see Sec. V.B. The
feedback can either explicitly depend on the measure-
ment current I(t) obtained in Eq. (47) (closed loop) or
not (open loop feedback). Apart from applying feedback,

4 Note that we encounter different conventions for the definition
of I(t) which is sometimes defined as I = (e−iϕbout + eiϕb†out)/2
or simply I = e−iϕbout + eiϕb†out.
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we can also use the continuously measured quantum sys-
tem to control a second quantum system which is then
referred to as feedforward.

The optimal control of quantum systems has been in-
vestigated over a long time (Dahleh et al., 1990; Jud-
son and Rabitz, 1992; Magrini et al., 2021; Peirce et al.,
1988; Warren et al., 1993; Wiseman, 1994; Wiseman and
Milburn, 1993). Feedback can either be applied semi-
classically—here, the measurement current that is used
to provide feedback is obtained with a classical sensor—
or fully quantum—here, the detectors and sensors are
all quantum systems. The main idea behind classical,
continuous feedback is to apply a semi-classical poten-
tial that steers the system coherently towards the desired
quantum state (Caves and Milburn, 1987; Doherty et al.,
2000; Lloyd, 2000; Wiseman, 1994). For instance, we may
measure the position of a mechanical oscillator and then
perform a displacement operation to shift its position.

In general, the quantum state evolution now explic-
itly depends on the stochastic measurement current I(t),
which will be different in each experimental run, resulting
in conditional dynamics described by a stochastic master
equation. We obtain the stochastic measurement cur-
rent, Eq. (47), by measuring an observable Â, which is
determined according to the stochastic master equation
for continuous feedback, Eq. (48). This current (47) is
then fed back to drive the system system via the Hamil-
tonian

Ĥfb =
√
κfbI(t − τ)B̂, (52)

with κfb the feedback strength, τ some time delay, and
in which B̂ encodes the operation that is chosen to be
applied based on the measurement outcome. Note that
the feedback operation B̂ may also involve the measured
observable Â. Furthermore, the choice of B̂ explicitly de-
pends on the measurement current in the case of closed-
loop feedback, while it does not for open-loop feedback.

Instead, we can look at the unconditional dynamics by
averaging over all measurement outcomes

dρ̂

dt
= − i

h̵
[Ĥs, ρ̂] +

k

4
D[Â]ρ̂ + κfbD[B̂]ρ̂

− i
√
kκfb
2
[B̂, Âρ̂ + ρ̂Â]. (53)

Here, −i
√

kκfb

2
[B̂, Âρ̂+ρ̂Â] encodes a linear restoring term

and dissipation, e.g., in an optomechanical system, this
could be a restoring force. The term κfbD[B̂]ρ̂ describes
additional fluctuations as a consequence of the feedback.

Analogous to the scenario described above, the mea-
surement current of system A can force a second sys-
tem B in a feedforward scheme. The main difference
is that B̂ now denotes an operator of the other sys-
tem B. For instance, reservoir-engineered non-reciprocity
can be thought of as an autonomous feed-forward

scheme (Metelmann and Clerk, 2017) in which the mea-
surement results of one system are used to drive another
system but not vice versa.

Rather than controlling the quantum system based
on the classical measurement record, it is also possi-
ble to replace the sensors and controllers with quan-
tum systems that coherently interact with the system
to be controlled (Lloyd, 2000; Nelson et al., 2000; Nur-
din et al., 2009). Coherent feedback protocols can
outperform measurement-based schemes (Hamerly and
Mabuchi, 2012, 2013) because they can exploit a geodesic
path in Hilbert space that is forbidden to measurement-
based schemes (Jacobs et al., 2014). A convenient way to
describe coherent feedback is with a Langevin equation
formalism (Gardiner and Zoller, 2000), Eq. (37). Here,

the output field âout is fed to the input field b̂in of the
mode that is to be controlled with some time delay τ :

b̂in(t) =
√
κfbâout(t − τ). (54)

A number of schemes have been proposed and imple-
mented to control mechanical oscillators via feedback,
such as feedback cooling (Chang et al., 2010; Genoni
et al., 2015; Guo and Gröblacher, 2022; Hamerly and
Mabuchi, 2012, 2013; Harwood et al., 2021; Jain et al.,
2016; Li et al., 2011; Mansouri et al., 2022; Rademacher
et al., 2022b; Setter et al., 2018; Vovrosh et al., 2017),
schemes to control squeezing, entanglement and state
transfer (Harwood et al., 2021), or to control the mo-
tional state of the mechanical oscillator, its resonance
frequency and damping rate (Ernzer et al., 2022). Feed-
back cooling allowed the cooling of a 10 kg mass in
the LIGO detector close to its ground state (Abbott
et al., 2009; Whittle et al., 2021) and a millimeter-
sized membrane resonator was cooled to the ground
state with measurement-based feedback (Rossi et al.,
2018). Measurement-based feedback cooling has also
been demonstrated in electromechanical systems (Wang
et al., 2023) where it was also demonstrated that feed-
back can lead to dynamically stability in situations that
would be unstable without feedback. Feedback schemes
are also employed to equalize mechanical loss rates in ex-
periments with multiple mechanical oscillators (del Pino
et al., 2022; Poggio et al., 2007; Wanjura et al., 2022).

D. Quantum metrology with massive quantum systems

Since gravity is extremely weak, we may sometimes
wish to quantify the sensitivity of a quantum sensor to
ensure it is powerful enough. The main tool used for
this is quantum estimation theory, also referred to as
quantum metrology. We here outline the key concepts
and refer to the following reviews for more detailed read-
ing (Clerk et al., 2010; Paris, 2009; Tóth and Apellaniz,
2014). Detection methods for optomechanical systems
are reviewed in (Poot and van der Zant, 2012). Many
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of these tools are used for precision tests of gravity (see
Sec. IV.A).

1. Langevin description of a quantum sensor

This exposition of a sensing scheme follows (Clerk
et al., 2010; Lau and Clerk, 2018). In a typical metrology
setting, we would like to infer an infinitesimal change in
a small parameter ϵ that the Hamiltonian Ĥ(ϵ) depends
on. Expanding Ĥ(ϵ) to first order in ϵ, we have

Ĥ = Ĥ0 + ϵV̂ +O(ϵ2), (55)

where Ĥ0 is the free Hamiltonian and where V̂ is the
operator that encodes ϵ. To extract changes in ϵ, we
probe the system governed by Ĥ with a probe field âin
and currents the response âout which then depends on ϵ.

For small ϵ, we can write âout ≅ â(0)out + λϵ where λ is a
linear response coefficient.

To characterize the resolving power of a quantum sen-
sor, we can calculate the signal-to-noise ratio (SNR) by
comparing the integrated signal power to the noise power.
The measurement current can, for instance, be obtained
via homodyne detection (see Sec. III.C.1). The power
associated with the signal is then given by the expec-
tation value of the time-integrated measurement current
m̂(t) ≡ ∫

t
0 dτ Î(t), where Î(t) is defined in Eq. (50). The

measurement current should be compared to the power
without the perturbation ϵ, so we define the power differ-
ence P of the signal with and without the perturbation
ϵ as

P = [⟨m̂(t)⟩ − ⟨m̂(t)⟩∣ϵ=0]2 . (56)

The associated noise power is then given by

N ≡ ⟨δm̂(t)δm̂(t)⟩ = tSII(0), (57)

where δm̂(t) = m̂(t) − ⟨m̂(t)⟩. Here, SII(0) =
1
2 ∫ dteiωt⟨{δI(t), δI(0)}⟩ is the noise spectral density de-
fined in Eq. (42) of the measurement current at ω = 0.
Note that Eq. (57) is linear in time t because we con-
sider the integrated measurement current. The signal-
to-noise ratio (SNR) is then given by the ratio of P and
N , ρSNR ≡ P/N . For applications such as gravitational
wave detection (Caves, 1979), force sensing (Caves et al.,
1980), and force gradient sensing (Rudolph et al., 2022),
it is vital to ensure that the signal is stronger than the
noise, such that ρSNR ≥ 1. Since the noise increases with
t, we require the measurement current to also accumu-
late information about ϵ at the same rate. Therefore, it
is crucial to retain long coherence times in the system so
that a strong signal can be retained throughout.

Quantum mechanics puts a limit (Caves et al., 2012)
on the added noise A of an amplifier when referred to
the amplification gain G. In particular, we find for the

variance ⟨∆âout⟩ ≡ ⟨â†
outâout⟩ − ∣⟨âout⟩∣2 the expression

⟨∆âout⟩ = G(⟨∆âin⟩ + A) in which quantum mechanics
restricts A ≥ 1

2
.

It was proposed that non-reciprocity and non-
Hermitian topology are promising resources for quan-
tum sensors; the first allows to overcome fundamen-
tal constraints on the signal-to-noise ratio of conven-
tional sensors (Kononchuk et al., 2022; Lau and Clerk,
2018; Slim et al., 2023), and, in addition, the second
can lead to an exponentially-enhanced sensitivity (Koch
and Budich, 2022; McDonald and Clerk, 2020). Both
non-reciprocity (Metelmann and Clerk, 2015) and non-
Hermitian topological chains (McDonald et al., 2018;
Wanjura et al., 2020) can be engineered in driven-
dissipative quantum systems, e.g., based on optomechan-
ics (Mercier de Lépinay et al., 2020; del Pino et al., 2022;
Youssefi et al., 2022a).

2. Standard quantum limit

To perform tests of fundamental physics, see Sec. V.A,
it is often crucial to measure the oscillator position ac-
curately. However, Heisenberg’s uncertainty principle
states that it is impossible to simultaneously know the
position and momentum of a single quantum system with
high accuracy. A measurement of the mass’s position
necessarily introduces back action on its momentum. In
this context, we often speak of a standard quantum limit
(SQL) that limits the accuracy of position measurements
as the system evolves in time.

The SQL is straightforward to derive for an effective
free mass meff that is harmonically trapped with fre-
quency ωm. Its position quadrature X̂m(t) evolves in
time as

X̂m(t) = X̂m(0) cos(ωmt) +
P̂m(0)
meffωm

sin(ωmt), (58)

where X̂m(0) and P̂m(0) are the position and momen-
tum operators at t = 0, which remain unchanged during
intervals smaller than the damping time. Then, consid-
ering the Heisenberg uncertainty principle, we find

∆Xm(t)∆Ym(t) ≥
1

2
∣⟨[X̂m(0), Ŷm(0)]⟩∣ = x2zpf , (59)

where we have introduced the quadrature Ŷm(t) = P̂m(t)
meffωm

and xzpf =
√

h̵
2meffωm

is the zero-point fluctuation (X̂m(t)
and Ŷm(t) are both expressed in units of length for easier
comparison). Thus, any measurement that tries to mea-
sure both quadratures with equal precision is limited to
∆Xm(t) = ∆Ym(t) = xzpf . See (Caves et al., 1980) for a
derivation of the SQL for a single quantum oscillator.

When the system is coupled to an external probe field,
we consider an optomechanical SQL where the position
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of a mechanical resonator is detected through phase mea-
surements (Bowen and Milburn, 2015). There are small
fluctuations in the probe field itself, which is known as
shot-noise. Shot-noise can be decreased by increasing the
number of quanta in the probe field, which improves the
signal-to-noise ratio and makes detection easier. The in-
crease in the field quanta does, however, lead to stronger
recoil in the mechanical system, known as (quantum)
back-action noise or radiation pressure noise. The re-
sult is a fluctuation force on the mechanical resonator.
By balancing these two sources of noise, we arrive at the
optomechanical SQL, which sets the limit on the achiev-
able accuracy of position measurements. The SQL can be
calculated by deriving the output spectrum of the mea-
sured probe field and balancing the resulting shot-noise
and radiation-pressure noise. We refer to (Bowen and
Milburn, 2015; Clerk et al., 2010) for the full derivation.
With the Langevin equations in Eq. (39) to model the
dynamics, as well as the input-output relations shown
in Eq. (38), we find that the measured quadrature of
the mechanical mode in Fourier space results in the fol-
lowing symmetrized power spectral density (Bowen and
Milburn, 2015)

Sdet(ω) =
1

8ηΓ∣Ceff ∣
+ 2Γ∣χ(ω)∣2∣Ceff ∣, (60)

where Ceff is the effective optomechanical cooperativity,
defined as Ceff = C/(1 − 2iω/κ)2, where C = 4g20/κΓ is
the optomechanical cooperativity, for which g0 is the op-
tomechanical coupling, and κ and Γ are the optical and
mechanical linewidths, respectively. η is the detection
efficiency. The expression χ(ω) in Eq. (60) is the me-
chanical susceptibility, which is given by

χ(ω) = ωm

ω2
m − ω2 − iωΓ

. (61)

To balance the two terms in Eq. (60), we require the
optimal effective cooperativity to be

∣Copt
eff ∣ =

1

4η1/2Γ∣χ(ω)∣
, (62)

the symmetrized spectrum at the SQL is then given by

SSQL
det (ω) = ∣χ(ω)∣, (63)

where we have assumed an optimal detection efficiency
with η = 1. That is, in the optimum case, the spectrum
is given by the susceptibility χ(ω) of the resonator.

In practice, there are a number of additional noise
sources that can be included in the measured noise spec-
trum, such as measurement imprecision and amplifier
noise, see Sec. III.D.1. For example, (Magrini et al.,
2021) provides a detailed analysis of noise budgeting in an
optomechanical experiment for the purpose of quantum-
limited measurements, and (Martynov et al., 2016) lists

and characterizes a number of relevant noise sources, such
as thermal noise, laser noise and electronic noise in the
LIGO detector which are also relevant to many other ex-
periments. See also (Danilishin and Khalili, 2012) for
a review of how quantum noise can be calculated in a
gravitational-wave detector.

Note that the SQL is by no means a fundamental limit,
as opposed to the Heisenberg limit (see Sec. III.D.3). It
can be evaded by using squeezed states, which reduce the
noise in the measured quadrature (Bowen and Milburn,
2015).

3. Classical and quantum Fisher information

Previously, we focused on how well a detector can
probe a signal against a noisy environment. However,
we can also ask how much information a quantum sys-
tem can fundamentally accumulate about a specific ef-
fect. This notion is captured by the Fisher information,
which is a valuable metrology tool relevant for many of
the weak-force detection schemes described in Sec. IV.A.
See (Giovannetti et al., 2011; Paris, 2009) for comprehen-
sive introductions.

Consider a specific measurement with outcomes {x}
performed on the quantum state ρ̂(θ), where θ is the
parameter that we wish to estimate. The distribution of
the measurement outcomes is given by p(x∣θ) = tr(Π̂xρ̂θ),
where Π̂x is a POVM element which models the mea-
surements. The classical Fisher information (CFI) cor-
responds to the amount of information about θ gained
from this measurement series. It is given by

IF(θ) = ∫ dxp(x∣θ)(∂ lnp(x∣θ)
∂θ

)
2

. (64)

The CFI can be generalized in the quantum case by op-
timizing over all possible measurements of the quantum
state. This is known as the quantum Fisher information
(QFI). The QFI can also be viewed as a distance mea-
sure that quantifies the change of the state due to the
parameter θ. That is, given the two quantum states ρ̂θ
and ρ̂, the most general form of the QFI is

IF(θ) = 4( ∂dB(ρ̂θ, ρ̂)
∂θ

∣
ϵ=0

) , (65)

where dB is the Bures distance (Bures, 1969; Helstrom,
1967)

dB(ρ̂1, ρ̂2) =
√

2(1 −
√
F(ρ̂1, ρ̂2)), (66)

for which F is the fidelity F(ρ̂1, ρ̂2) =
(tr[
√√

ρ̂1ρ̂2
√
ρ̂1])

2
. For pure states ∣Ψ(θ)⟩ which

encode the parameter θ, the QFI becomes

IF(θ) = 4 (⟨∂θΨ(θ)∣∂θΨ(θ)⟩ − ∣⟨Ψ(θ)∣∂θΨ(θ)⟩∣2) , (67)
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where ∂θ denotes the partial derivative with respect to
θ. The QFI can also be computed for initially mixed
states ρ̂ that evolve unitarily, such that ρ̂(θ) = Ûθρ̂(0)Û †

θ .
When the initial state can be decomposed in terms of an
orthonormal basis ρ̂(0) = ∑n λn ∣λn⟩ ⟨λn∣ the QFI can be
written as (Liu et al., 2014; Pang and Brun, 2014)

IF(θ) = 4∑
n

λn (⟨λn∣ Ĥ2
θ ∣λn⟩ − ⟨λn∣ Ĥθ ∣λn⟩2)

− 8 ∑
n≠m

λnλm
λn + λm

∣⟨λn∣ Ĥθ ∣λm⟩∣
2
, (68)

where the second sum is over all terms with λn +λm ≠ 0,
λn is the eigenvalue of the eigenstate ∣λn⟩, and where the

Hermitian operator Ĥθ is defined as Ĥθ = −iÛ †
θ∂θÛθ. The

expression in Eq. (68) can also be extended to the multi-
parameter case (Liu et al., 2019), where it sometimes is
possible to extract more information than in the single-
parameter case (Paris, 2009).

When the quantum system interacts with an envi-
ronment, the QFI can be challenging to compute since
Eq. (68) no longer holds. In addition to the general ex-
pression in Eq. (65), the QFI can be defined in terms of
the symmetric logarithmic derivative L̂θ (Helstrom, 1969;
Holevo, 2011) IF = tr(ρ̂L̂2

θ), where L̂θ is given by

∂θρ̂ =
1

2
(ρ̂ L̂θ + L̂θρ̂). (69)

If an expression for L̂θ is found, the QFI can be immedi-
ately calculated. One way to solve this equation for L̂θ

by treating it as a Lyapunov matrix equation, which has
a general solution (Paris, 2009)

L̂θ = 2∫
∞

0
dt exp[−ρ̂θt]∂θ ρ̂θ exp[−ρ̂θt]. (70)

When the channel that encodes the parameter θ can be
represented with Kraus operators, a general upper bound
to the QFI can be derived (Escher et al., 2011).

A key feature of the QFI and CFI is that they fun-
damentally relate to the variance of the parameter θ
through the Cramér–Rao bound (Braunstein and Caves,
1994; Helstrom, 1969)

var(θ) ≥ 1

MIF(θ)
, (71)

whereM is the number of measurements performed, and
where for the QFI, the inequality is saturated. Since
M is always finite, it is generally desirable to maximize
the Fisher information to reduce the variance of the esti-
mated parameter. The Cramér–Rao bound is applicable
to any quantum system and provides a generalized un-
certainty relation (Braunstein et al., 1996) even when no
Hermitian operator can be associated with the parameter
of interest, e.g., as in the case of phase estimation (Braun-
stein and Caves, 1994; Braunstein et al., 1996; Helstrom,

1969). The Cramer-Rao bound also relates to the so-
called Heisenberg limit, which is defined as the scaling of
the variance Var(θ) of a parameter θ. For classical sys-
tems, the scaling of Var(θ) is at most 1/N , where N is
the number of probes used, in accordance with the central
limit theorem (Giovannetti et al., 2011). As opposed to
the standard quantum limit (see Sec. III.D.2), the Heisen-
berg limit is a hard limit that depends on the number of
resources in the system (Zwierz et al., 2010). These re-
sources can either refer to a number of subsystems or the
translational power of the Hamiltonian, which is higher
for nonlinear dynamics (that is, Hamiltonian terms with
products of more than quadratic operators). For exam-
ple, a self-Kerr Hamiltonian with a term proportional to
(â†â)2 has more translational power than that with just
â†â. The Heisenberg scaling does, however, go beyond
1/N for certain initial quantum states. For example, the
QFI for phase estimation with NOON states scales as
1/N2 (Bollinger et al., 1996; Dowling, 1998). The QFI
has also been used to investigate certain relativistic set-
tings, see e.g. (Ahmadi et al., 2014a; Hao and Wu, 2016;
Pinel et al., 2013; Tian et al., 2015) and has been pro-
posed as a probe of spacetime structure (Du and Mann,
2021).

IV. PROPOSED TESTS OF GRAVITY WITH MASSIVE
QUANTUM SYSTEMS

Equipped with tools to model massive systems in the
laboratory, we now ask the question: What are the pos-
sible ways in which gravity influences quantum systems,
and how can these effects be detected? A number of di-
verse and creative proposals have been put forward that
probe the properties of gravity, quantum mechanics, and
their interfaces. The goal of this section is to outline the
main directions of research and key proposals that allow
tests to be performed with massive quantum systems. We
begin by considering gravity from a classical source, such
as the Earth’s gravitational fields, and its detection by
quantum systems (Sec. IV.A). Specifically, we focus on
proposals for how quantum properties can enhance the
sensitivity of the probe. We proceed to consider propos-
als where gravity causes decoherence of a quantum probe
(Sec. IV.B), including different types of decoherence pro-
posals as well as nonlinear modifications of quantum the-
ory. We then review recent proposals for detecting grav-
itationally induced entanglement (Sec. IV.C). The final
part (Sec. IV.D) outlines additional proposals that do not
strictly fit into the other sections but are still relevant to
the topic of this review.
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A. Precision tests of gravity

One approach for precision tests of gravity relies on
the use of sensitive mechanical resonators. This section
provides a brief review of weak-force sensing with mas-
sive systems in the quantum regime. We here restrict
ourselves to proposals where the sensor is in the quan-
tum regime, but where gravity originates from a classical
source. This should be contrasted with the tests dis-
cussed in Sec. IV.C, where the quantum system itself is
considered as a source of the gravitational field. Many
precision tests of gravity have already been performed
with classical mechanical resonators and atom interfer-
ometers. See Sec. V.A for an overview of these experi-
ments and Fig. 7 for a summary of force sensitivities that
have been achieved to date.

1. Weak-force detection with back-action evading
measurements

The large mass of massive quantum systems (compared
with the mass scale of single atoms) means that they
couple more strongly to gravity. A common goal of pre-
cision gravimetry with massive quantum systems is to
resolve the force that affects the center of mass of the
mechanical resonator. Usually, a probe field or two-level
system is used for the control and readout of the sensor.
For a probe field, back-action noise and the inherent un-
certainty of field fluctuations give rise to the standard
quantum limit (SQL), which we reviewed in Sec. III.D.2,
beyond which displacements cannot be resolved. The
limits for a moving-end mirror were first discussed in (Ar-
cizet et al., 2006), and the first experimental observation
of radiation pressure due to shot noise was performed
in (Purdy et al., 2013).

Back-action evading (BAE) schemes constitute a key
resource for weak-force sensing since they allow for an
increase in measurement precision without adding addi-
tional noise during readout. The effect of measurement
backaction can be circumvented if, rather than attempt-
ing to measure both of the mechanical quadratures, one
only couples the light field to one of the quadratures such
that it becomes a conserved quantity (Braginsky et al.,
1980; Thorne et al., 1978). Concretely, this means that

if we couple only the X̂m = (b̂† + b̂)/
√

2 quadrature of the
mechanical oscillator to the radiation pressure of the pho-
ton field ∝ n̂, the interaction Hamiltonian is Ĥint ∝ n̂X̂m

which implies that [Ĥint, X̂m] = 0. An observable that
commutes with the Hamiltonian is also referred to as
a quantum non-demolition (QND) variable since it can
be measured repeatedly without destroying the quantum
state.

Coupling only one quadrature to the light field is ex-
perimentally challenging since it would require a time-
dependent coupling between the quadratures and the de-

tected field. This can be achieved in a scheme for a
cavity-optomechanical system driven on both the red and
the blue sideband (Clerk et al., 2008), or by modulat-
ing the optomechanical coupling strength (Clerk et al.,
2008). As we discussed in Sec. III.A, the coupling be-
tween the cavity mode â and the mechanical oscillator
b̂ in the frame rotating with the cavity frequency ωc is
given by ĤI ≈ −h̵g0(α∗δâ + αδâ†)(b̂† + b̂). A drive can
be modeled by Ĥd = α(t)â + α∗(t)â† with α(t) the com-
plex drive amplitude. For a drive on the red sideband
at ωc − ωm, with ωm the mechanical frequency, we have
α(t) ∝ ei(ωc−ωm)t giving rise to the interaction Hamilto-

nian ĤI ∝ â†b̂ + h.c. in the frame rotating with ωc for
the photons and ωm for the mechanical modes and in
which we neglected counter-rotating terms. Similarly, a
drive on the blue sideband at ωc −ωm, α(t) ∝ ei(ωc+ωm)t,

gives rise to the interaction Hamiltonian ĤI ∝ â†b̂†+h.c..
Combining both the drive on the red and the blue side-
band, we obtain

HI ∝ X̂cX̂m. (72)

That is, the interaction Hamiltonian couples the quadra-
ture X̂c = (â†+ â)/

√
2 of the cavity to the quadrature X̂m

of the mechanical mode such that both X̂m and X̂c are
constants of the motion since [HI , X̂m] = [HI , X̂c] = 0.
Since the mechanical oscillator only couples to the X̂m

quadrature of the cavity, information on its motion only
propagates into the conjugate cavity quadrature P̂c =
i(â† − â)/

√
2. This allows us to repeatedly (or contin-

uously) measure P̂c and infer X̂m to arbitrary precision.
For a more detailed theoretical discussion of this scheme,
we refer to (Clerk, 2020) and the reviews (Braginsky
and Khalili, 1996; Clerk et al., 2010). The exact con-
ditional dynamics of an optomechanical system driven
on both sidebands were analyzed in detail in (Brunelli
et al., 2019).

The scheme described above was experimentally im-
plemented in a superconducting electromechanical device
in (Suh et al., 2014), allowing the detection and reduction
of back action and the detection of a single quadrature
below the zero-point fluctuations in the optical domain
in (Shomroni et al., 2019). BAE was also realized in hy-
brid optomechanical systems of a macroscopic mechani-
cal oscillator and a spin oscillator (Møller et al., 2017).
A more elaborate BAE scheme relies on constructing an
effective oscillator out of two and measuring a collective
variable (Woolley and Clerk, 2013), which was experi-
mentally realized in a microwave circuit with two me-
chanical oscillators (Ockeloen-Korppi et al., 2016) achiev-
ing a measurement precision below the zero-point fluctu-
ations. Back-action-noise can also be canceled through
the addition of an ensemble of cold atoms, which act as
a negative-mass oscillator and allow for sensing beyond
the SQL (Motazedifard et al., 2016). Furthermore, in a
scheme with four drives (de Lépinay et al., 2021), back-
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action was evaded, and the entanglement between the
two oscillators was demonstrated.

Apart from improving the measurement precision,
BAE schemes result in the squeezing of the mechanical
modes. In a generic, parametrically driven mechanical
oscillator, the attainable amount of squeezing is limited
due to the onset of parametric instability. However, con-
tinuous BAE measurements allow us to overcome this
3dB limit for squeezing (Lei et al., 2016). Beyond the
schemes discussed above that rely on measuring a sin-
gle quadrature, an alternative approach to cancel quan-
tum noise and overcome the SQL of force sensing us-
ing coherent feed-forward quantum control was proposed
in (Tsang and Caves, 2010). Another proposal shows
that mechanically driving the oscillator within the BAE
scheme leads to a monotonic response of the cavity, which
can be beneficial for sensing force gradients (Arvidsson
et al., 2024).

Yet another direction for resolving the energy levels of
a mechanical oscillator in an electromechanical experi-
ment (Dellantonio et al., 2018) is to use QND measure-
ments to bring us a step closer to understanding how
quantum jumps between phonon states work, which is
challenging since the coupling to an environment makes
it difficult to detect mechanical mode occupation. The
notion of QND variables was generalized to a quantum-
mechanics-free subsystem (Tsang and Caves, 2012), i.e.,
subsystems in which all observables commute and their
expectation values are governed by classical equations of
motion.

2. Additional weak-force detection schemes

Theoretical proposals for force sensing with massive
quantum systems generally take one of two approaches:
they either show that the SQL can be circumvented
through novel protocols, such as back-action evading
measurements (see Sec. IV.A.1) or the addition of quan-
tum resources, or they consider the fundamental sen-
sitivity that the systems can achieve, often quantified
by the classical and quantum Fisher information (see
Sec. III.D.3). Both approaches limit the precision of the
measurement. Generally, the Fisher information quanti-
fies the precision that can be achieved beyond the SQL.

Apart from back-action evasion, quantum resources
such as squeezing and entanglement are required for beat-
ing the SQL (Zhang and Zhuang, 2021). In optomechan-
ical systems, squeezing of both optical and mechanical
motion can be implemented in a number of ways (see
Sec. V.B.1 for an overview of experiments). For example,
in a mirror-in-the-middle optomechanical setup which re-
sults in two coupled cavity modes (Xu and Taylor, 2014),
the SQL is surpassed due to the resulting squeezing of
the light. The inclusion of a single- or two-mode para-
metric amplifier (PA) (Mollow and Glauber, 1967) with

either â†2 + â2 (single-mode) or âb̂+ â†b̂† (two-mode), re-
sults in sensing precision beyond the SQL (Motazedifard
et al., 2019; Zhao et al., 2020). Further, in dissipative op-
tomechanical systems, a PA can counteract the negative
effects of mechanical damping, which allows us to go be-
yond the SQL (Huang and Agarwal, 2017). Advantages
through squeezing can also be achieved by adding a non-
linear medium in the cavity (Peano et al., 2015). Squeez-
ing has also famously been shown to improve the preci-
sion of LIGO (Aasi et al., 2013; Buikema et al., 2020).

Beyond squeezing, entanglement plays a crucial role in
sensing and is a key ingredient for achieving a sensitiv-
ity that scales with the Heisenberg limit (Zhuang et al.,
2018). Most importantly, by performing measurements
with N entangled sensors, we may go beyond the 1/

√
N

scaling achieved with independent probes and possibly
obtain a scaling with 1/N . EPR-entangled states have,
for example, been proposed for use in LIGO (Ma et al.,
2017). In (Brady et al., 2022), the use of an array of me-
chanical sensors connected by entangled light was pro-
posed, with applications for dark-matter searches (see
Sec. IV.A.5). However, it has been shown that sensors
with multicarrier optical modes do not outperform their
single-mode counterparts (Branford et al., 2018). It has
been experimentally demonstrated that using two opti-
cally entangled mechanical membranes leads to a 40% im-
provement in the shot-noise dominant regime (Xia et al.,
2023) and allows a scaling better than 1/

√
N .

Another method for improving the precision of quan-
tum sensors involves noise mitigation and engineering
the surrounding noise bath. A structured non-Markovian
environment was found to amplify the susceptibility for
weak-force sensing with an optomechanical sensor (Zhang
et al., 2017). More broadly, the use of quantum er-
ror correction techniques has been proposed for quan-
tum metrology (Dür et al., 2014; Kessler et al., 2014),
even to the extent that the Heisenberg limit can be
achieved (Zhou et al., 2018).

Yet another proposal for high-precision sensing, albeit
challenging, is through the use of macroscopic superposi-
tions in the sense of a large mass being in a quantum su-
perposition of two distinct spatial locations. One method
for generating such superpositions, particularly effective
for large masses, is to couple a spin with a mass through
a magnetic field gradient (a Stern-Gerlach mechanism,
as described in Sec. IV.C) (Bose, 2016; Bose et al., 2017;
Margalit et al., 2021; Marshman et al., 2021, 2020b; Scala
et al., 2013; Wan et al., 2016; Zhou et al., 2022, 2023),
which followed on from general ideas to couple ancillary
systems such as a quantized electromagnetic mode in a
cavity with a mechanical object (Armata et al., 2017;
Bose et al., 1997, 1999; Mancini et al., 1997; Marshall
et al., 2003; Qvarfort et al., 2018) or other ancillary quan-
tum systems (superconducting qubits, etc) (Bose and
Agarwal, 2006; Bose, 2006; Johnsson et al., 2016). Such
quantum superpositions can be used to detect weak forces



27

to a precision linear in time (essentially Heisenberg scal-
ing), as the accumulated relative phase between the su-
perposed components grows linearly in time. Moreover,
at the end of such quantum ancilla-induced interferom-
etry, the phase can be sensed by just measuring the an-
cilla. Example applications in the gravitational context
involve detection of accelerations to very high sensitivity
(Johnsson et al., 2016; Marshman et al., 2020b; Qvarfort
et al., 2018), gravity gradient noise (Toroš et al., 2021),
space debris (Wu et al., 2023b), as well as the possibility
to detect gravitational waves with a meter-sized compact
interferometer for nano-objects (Marshman et al., 2020b)
(applications also exist outside the gravitational domain,
eg, to detect neutrinos (Kilian et al., 2023)).

The quantum Fisher information (QFI) (see
Sec. III.D.3) allows us to consider sensitivities be-
yond the SQL. In the linearized optomechanical regime,
the QFI has been considered for squeezed state in-
puts (Lee et al., 2022). In the nonlinear regime of
optomechanics (see Sec. III.A), the QFI was computed
for detecting a constant (Armata et al., 2017; Qvarfort
et al., 2018), as well time-dependent gravitational
potentials including gravitational waves (Qvarfort et al.,
2021a). The QFI was also computed for an opto-
magnon-mechanical setup, where the optomechanical
system senses small changes in the separation between
two magnets (Iakovleva et al., 2023).

For further reading on sensing with mechanical res-
onators, we refer to the following dedicated reviews
on sensing, which cover levitated systems (Rademacher
et al., 2020), hybrid optomechanical-BEC systems (Mo-
tazedifard et al., 2021), and cavity optomechanics (Li
et al., 2021; Liu et al., 2021b).

3. Weak-force detection with BECs

The mass of a BEC is generally lower than that of a
composite quantum resonator, which means that it gen-
erally couples more weakly to gravity (see Sec. V.A for a
comparison of experimental parameters). However, the
fact that all atoms in a BEC are identical makes it pos-
sible to control it extremely well in the laboratory. As
such, BECs have been explored for force sensing. Grav-
ity sensing with BECs can be done using trapped atoms,
or atoms in free fall. In the free fall case, the preci-
sion depends on the time of flight. The time of flight
in atom interferometry can be increased by using Bragg
diffraction and Bloch oscillations of a BEC to slow down
the particles (Abend et al., 2016). In such schemes, in-
teractions are undesirable because they reduce the coher-
ence time of the interferometer (Pereira dos Santos et al.,
2017). However, interactions can be used to prepare ini-
tial states that have higher sensitivities (Szigeti et al.,
2020). Nevertheless, spatial interferometers cannot be
reduced in size without losing precision. An alternative

that could resolve this limitation is trapped BECs. Inter-
actions in a trapped BEC give rise to phonons. Phonon
modes are sharp in frequency while the atoms are com-
pletely delocalized within the trapped potential. Recent
work shows that interferometry in the frequency domain
using phonon modes can be used to miniaturize detec-
tors while retaining high precision (Howl and Fuentes,
2023). In frequency interferometry, the precision is lim-
ited by the lifetime of the states, not by the size of the
system. Squeezed states of phonon modes can be used
to measure the gravitational field and its gradient with
high precision (Bravo et al., 2019, 2020) since the fre-
quency of the modes is affected by the gravitational field.
Phonon modes can also be used to measure oscillating
gravitational fields, such as the acceleration and gradient
of an oscillating mass close to the BEC (Rätzel et al.,
2018). Single phonon measurement precisions have been
reached in BEC analog experiments (Steinhauer, 2022).
The most relevant limiting factor is particle loss due to
three-body recombination. The resonance of phonons
modes to external gravitational fields has been proposed
to detect high-frequency gravitational waves and searches
for dark matter (Howl and Fuentes, 2023; Sab́ın et al.,
2014). A BEC trapped in a double well has been pro-
posed in searches of dark energy (Hartley et al., 2019b),
and a proposal to show that gravity degrades entangle-
ment between two BEC in a space-based experiment was
presented in (Bruschi et al., 2014c). While there are only
theoretical proposals, the center of mass oscillations of a
BEC has been used to measure Casimir-Polder forces in
the lab (Harber et al., 2005). This work shows that BEC
technology is useful in measuring very small forces.

4. Deviations from the Newtonian potential

An open problem in modern physics is the discrep-
ancy between the observation of a small cosmological
constant and the predicted value from particle physics
theory (Padilla, 2015). Modified gravity theories (MGTs)
provide a solution to this dilemma, in that some of them
predict deviations from general relativity while simulta-
neously addressing the discrepancy with particle physics.
For a review of MGTs, see (Clifton et al., 2012). To ad-
dress the fact that no deviations from general relativity
have thus far been observed, mechanisms are introduced
to explain the absence of large deviations in tests that
have thus far been performed. For example, one such
proposal known as a chameleon mechanism (Brax et al.,
2004; Khoury and Weltman, 2004a,b) resolves the dis-
crepancy via the introduction of a screening mechanism
that depends on the local mass density. Note, however,
that they do not solve the cosmological constant problem.
According to the proposal, deviations in regions with
high density, such as the solar system, are suppressed.
Instead, high vacuum and extremely sensitive laboratory
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tests are needed. For current bounds on chameleon the-
ories, see the Figures in (Burrage and Sakstein, 2018).

Most MGTs can be parameterized into the following
Yukawa-like modification to Newton’s potential:

V (r) = −
GMSmp

r
(1 + αe−r/λ) , (73)

where MS is the source mass, mp is the probe mass (not
to be confused with the Planck mass MP ), α is a di-
mensionless modification to the strength of the potential,
and λ is a length-scale beyond which the modification
is exponentially suppressed. Current solar-system tests
of Newton’s laws have considerably constrained the free
parameters of such modified theories; see, e.g., Figure 8
in (Murata and Tanaka, 2015). The parameter regimes
that remain to be excluded include small ∣α∣ and λ, which
correspond to the detection of extremely weak forces at
short range.

The main avenue for searches for MGTs with mas-
sive quantum systems is via precision tests of gravity,
which we covered in the previous section. Several ex-
periments have already been performed with mechan-
ical resonators in the classical regime to bound devia-
tions from the Newtonian potential, including with can-
tilevers (Chiaverini et al., 2003). A key advantage for
mechanical resonators such as levitated systems is that
they are relatively confined in space and, therefore, can
be used to test extremely short-length scales. See (Moore
and Geraci, 2021) for a review of searches for new physics
with optically levitated sensors. Additional proposals
have been put forward for tests with levitated optome-
chanical devices (Blakemore et al., 2021; Chen et al.,
2022), as well as specific tests of the chameleon mech-
anism (Betz et al., 2022). However, while the larger
mass of mechanical resonators increases the strength of
the Newtonian potential and thus the deviations, their
larger volume brings with it additional challenges. For
example, in the context of the chameleon mechanism, the
large radius of, for example, a levitated nanomechanical
resonator was found to additionally screen the interac-
tion (Qvarfort et al., 2022). Another major challenge is
the presence of Casimir forces, which increase for small
distances. See (Onofrio, 2006) for a review of measure-
ments of Casimir forces in the context of searching for
deviations from the Newtonian potential.

5. Tests of the equivalence principle and dark matter searches

The equivalence principle (EP) states that all forms
of matter couple to gravity in the same way. An addi-
tional formulation known as the weak equivalence prin-
ciple (WEP) states that gravitational mass and inertial
mass are the same. Violation of the EP can be indica-
tive of modified theories of gravity (Hui et al., 2009) or
physics beyond the Standard Model (Damour, 2012).

As we pointed out in Sec. II.B, there is a conflict be-
tween the EP and quantum mechanics. Nevertheless,
several ideas have been put forward for testing the EP
with quantum systems. Perhaps the simplest is a classi-
cal test of the Eötvös ratio, which defines the correlation
between inertial mass and gravitational mass and which
serves as a test of the WEP. The Eötvös ratio is defined
as

ηA−B = 2
∣aA − aB ∣
∣aA + aB ∣

= 2
∣(mi/mg)A − (mi/mg)B ∣
∣(mi/mg)A + (mi/mg)B ∣

, (74)

where aA and aB are the accelerations of bodies A and
B, and where mi and mg are the inertial and gravita-
tional mass, respectively. The advantage of using quan-
tum systems mainly pertains to the increased precision
that they offer as sensors. Most of the measurements of
the Eötvös ratio with quantum systems have been car-
ried out through atom-interferometry (see e.g. (Albers
et al., 2020; Asenbaum et al., 2020; Duan et al., 2016;
Overstreet et al., 2018; Schlippert et al., 2014)). The
best Eötvös ratios achieved to-date is that of the MI-
CROSCOPE mission, at (1.5 ± 2.3 (stat) ± 1.5 (sys)) ×
10−15 (Touboul et al., 2022). See also Sec. V.A.1 for an
overview of state-of-the-art tests with cold atoms.

In general, there appears to be no clear consensus in
the community on how the EP should be formulated for
quantum systems since there are often additional aspects
that need to be taken into account. One of the earliest
works on this topic showed that for the simple case of a
particle in an external gravitational field, the WEP does
not apply to a quantum-mechanical description of the
problem (Greenberger, 1968). While the classical equa-
tions of motion can be made independent of mass, the
same is not true for quantum mechanics since mass enters
into the quantization rules. However, the opposite point
of view has also been argued. Starting from linearized
gravity perturbations as a massless, spin-two gauge field
coupled to itself and to matter, the equivalence principle
must hold for quantum systems for the theory to be con-
sistent (Davies and Falkowski, 1982). It has also been
argued that, for quantum particles in free fall, their ex-
pectation values for position and momentum are consis-
tent with the WEP (Viola and Onofrio, 1997).

The influence of internal degrees of freedom of quan-
tum systems on the formulation of the EP has been raised
in several works. Since the EP stipulates equivalence be-
tween mass and energy, it must take into account the
internal (potentially superposed) energy states of a quan-
tum system. Based on this, a quantum formulation of the
EP has been proposed, which requires equivalence be-
tween the rest, inertial and gravitational internal energy
operators (Zych and Brukner, 2018). An experimental
test based on this proposal was put forwards in (Orlando
et al., 2016) using trapped spin− 1

2
atoms and later per-

formed using a Bragg atom interferometer (Rosi et al.,
2017). The test provided constraints on the off-diagonal
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elements of the mass operators and additional constraints
of the Etvös ratio for the WEP. Similarly, the WEP can
be explicitly considered for internal degrees of freedom.
Two distinct formulations of the WEP were proposed
in (Anastopoulos and Hu, 2018). The first states that
the probability distribution of position for a free-falling
particle is the same as the probability distribution of a
free particle (up to a mass-independent shift of its mean).
The second states that any two particles with the same
velocity wave function behave identically in free fall, ir-
respective of their masses. It has also been stipulated
that a quantum version of the EP should be linked to
a notion of causality (Hardy, 2018) since it is always
possible to transform to a quantum reference frame in
which we have a definite causal structure in the local
vicinity of any point. Here, the notion of a quantum ref-
erence frame refers to frameworks developed in (Giaco-
mini et al., 2019; Guérin and Brukner, 2018) and related
work (de la Hamette et al., 2022).

Tests of the EP can also aid the search for dark matter
since some dark matter models (such as light scalar dark
matter (Hees et al., 2018)) predict deviations from the
EP. See (Carney et al., 2021a; Kilian et al., 2024) for an
overview of quantum sensing with mechanical resonators
for the detection of dark matter. It has been proposed
that mechanical oscillators with masses below or around
one kilogram operating near the standard-quantum limit
could be used to detect ultra-light dark matter candi-
dates (Carney et al., 2021b). In addition, an optical cav-
ity with mirrors made of different materials could facil-
itate coupling channels for vector dark matter (Manley
et al., 2021). Heavier dark-matter candidates can also
be detected by scattering off a mechanical resonator. A
large array of femtogram masses could potentially de-
tect dark matter candidates around 10 keV, with the ad-
vantage that they also provide directional sensing (Afek
et al., 2022). In addition, a recent white paper focuses on
detecting deviations in momentum kicks resulting from
exotic decay processes (Brodeur et al., 2023). Here, the
position of levitated spheres is carefully monitored using
displacement sensing.

B. Gravitational decoherence, semi-classical models,
self-energy and gravitationally-induced wavefunction
collapse

Gravity can impart a coherent signal on the quantum
state, which can be detected using quantum metrology
tools (see Sec. IV.A). However, there are a number of
theoretical proposals where the quantum state no longer
follows a unitary evolution when interacting with grav-
ity. Here we cover proposals ranging from decoherence
arising from quantum and stochastic gravity to modifi-
cations to the Schrödinger equation. We also refer to
the following comprehensive reviews dedicated to these

topics (Anastopoulos and Hu, 2022; Bassi et al., 2017).

1. Gravitational decoherence

Decoherence is the process by which off-diagonal el-
ements in the density matrix of a quantum system are
gradually reduced to zero. There are many proposals
for how an external gravitational field interacts with the
quantum system to cause decoherence, as well as dis-
sipation and thermalization, in the regime of gravity
at low energies. Unlike other sources of decoherence,
such as from fluctuating electromagnetic fields, gravita-
tional decoherence is universal, and its influence cannot
be shielded.

The common starting point for most gravitational de-
coherence proposals is the linearized metric

gµν = ηµν + hµν , (75)

where ηµν is the Minkowski background spacetime, and
hµν denote the fluctuations. Fluctuations can emerge
within the perturbative quantum theory of gravity (see
Eq. (20)), can be postulated in a fundamentally classical
theory of gravity (see the discussion around Eq. (89)), or
could also emerge as a consequence of a minimum length
scale of the spacetime fabric (Hossenfelder, 2013). Re-
gardless of its physical origin, the fluctuations of the grav-
itational field are expected to decohere a quantum system
similarly as any other fluctuating field (see Sec. III.B).

In most of the proposals, the structure of the dynamics
of a massive quantum system moving along one axis is
captured by the following master equation:

∂

∂t
ρ̂ = −C

2
[Â, [Â, ρ̂]], (76)

where we have omitted the Hamiltonian terms for brevity,
and C (Â) is a constant prefactor (an operator) specific
to the model (see Eq. (34) with only the jump operator
L̂1 =

√
CÂ). It is then easy to obtain the decoherence

rate γ in the eigenbasis of the operators Â. Suppose a1
and a2 are two real-valued eigenvalues of the operator Â.
By applying ⟨aL∣ (∣aR⟩) from the left (right) on Eq. (76),
and multiplying by 2, we readily find:

γ = C∆a2, (77)

where we have defined ∆a = aL −aR (which can be inter-
preted as the superposition size). When Â is not Hermi-
tian, the analysis in Eqs. (76) and (77) requires general-
izations (see details in the referenced works below).

In (Anastopoulos and Hu, 2013; Blencowe, 2013) grav-
itational waves (forming an environmental bath) were
considered as a source for the fluctuations hµν . It was
found that a free particle should decohere with the op-
erators in Eq. (76) given by kinetic energy Â = p̂2/2m,
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where p̂ is the momentum operator and m the particle
mass. The characteristic decoherence rate is given by

γ = 9

32πτP

TP
Θ
(∆E

EP
)
2

, (78)

where τP (TP ) is the Planck time (Planck temperature),
∆E (EP ) is the difference in kinetic energy of a zero
momentum and a finite momentum state (Planck en-
ergy), and Θ is a free parameter of the model. In earlier
works, a general non-Markovian master equation for the
interaction between N gravitating quantum particle was
derived (Anastopoulos, 1996), a complementary analy-
sis was given in (Oniga and Wang, 2016), and a gener-
alization for photons is discussed in (Lagouvardos and
Anastopoulos, 2021).

Decoherence due to the emission of gravitational waves
was studied in (Suzuki and Queisser, 2015). A relation
between decoherence and the classical limits in terms of
the quadrupole radiation formula and backreaction dis-
sipation was discussed in (Oniga and Wang, 2017). The
analysis from (Toroš et al., 2024) recovered the clas-
sical results for a linear quadrupole and showed that
only systems with quadrupoles would decohere, while a
free particle would not decohere. For the simplest case
of a harmonically trapped particle (which has a linear
quadrupole), it was found that the decoherence opera-

tor is Â = b̂2 (with b̂ the mode operator of the harmonic
oscillator). The associated decoherence rate for number
states ∣n⟩ is given by

γ = 64ω

15
( E
EP
)
2

(⟨n̂2⟩ − ⟨n̂⟩), (79)

where ω is the frequency of the harmonic trap, E = h̵ω
(EP ) is the difference between the energy levels (Planck
energy), and n̂ denotes the number operator. Starting
from Einstein’s equivalence principle, it was found that
the emission of quantized gravitational waves can only
happen via the transition n → n − 2, which is prohibited
for the states ∣1⟩ and ∣0⟩. The number states ∣0⟩, ∣1⟩, or
any superposition of these states, are thus protected from
decoherence via quantized gravitational waves resulting
in a vanishing decoherence rate in Eq. (79). For a dis-
cussion about the bremsstrahlung effects, see (Weinberg,
1965).

The decoherence effect induced by gravitons in the con-
text of gravitational wave detectors has been discussed
in (Parikh et al., 2020, 2021a), while in (Kanno et al.,
2021) the analysis considered also matter-wave interfer-
ometry. The approximate decoherence rate obtained for
an interferometer consisting of two paths (i.e., left and
right paths) is given by:

γ = 10 Ωm (
mv

mpc
)

1
2

, (80)

where m (mp) is the mass of the system (Planck mass),
2v is the relative speed between the states following the
left and right paths of the interferometer, and Ωm is a
high-frequency cut-off (which is inversely proportional to
the superposition size, ∆x, i.e., Ωm ∼ c/∆x).

A class of stochastic models can be obtained by consid-
ering the non–relativistic limit of classical field equations
and assuming stochastic fluctuations of the metric. Start-
ing from the Klein–Gordon equation, it was found that
the decoherence operator is Â = p̂2/2m, where p̂ is the
momentum operator, and m the particle mass (Breuer
et al., 2009) . The decoherence rate is given by

γ = τc
h̵2

∆E2, (81)

where τc is a free parameter characterizing the correlation
time of the stochastic bath, and ∆E is the difference in
kinetic energy. A generalized analysis using the Foldy-
Wouthuysen method capturing higher order corrections
has been performed in (Asprea et al., 2021).

Another proposal for decoherence is related to compos-
ite quantum particles such that individual parts of the
systems follow different geodesics. In (Pikovski et al.,
2015), it was shown that gravity entangles the internal
and center-of-mass degrees of freedom, which in term de-
coheres the center-of-mass degrees of freedom of a sys-
tem, e.g., of a crystal. An equation of the form in Eq. (76)
was obtained with the decoherence operator Â = x̂, where
x̂ is the center-of-mass position operator. The decoher-
ence rate was given as:

γ =
√
NgkbT∆x√

2h̵c2
, (82)

where N is the number of degrees of freedom in the crys-
tal, g is the Earth’s gravitational acceleration, kb is the
Boltzmann constant, T is the temperature, and ∆x is
the spatial superposition size. The proposal has been the
source of much discussion in the community (see (Bassi
et al., 2017) and (Pikovski et al., 2017) for a summary of
the discussions).

Experimental signatures on matter-wave interferome-
ters have been analyzed in (Asprea et al., 2021; Lamine
et al., 2006; Wang et al., 2006). While many of these
proposals suggest different mechanisms behind the grav-
itationally induced decoherence, many result in similar
reductions of the density matrix elements. As a result,
there are tests that search for gravitational decoherence
regardless of its origin. Some of the first proposals for
testing gravitational collapse and decoherence with op-
tomechanical systems were those in (Bose et al., 1999)
and (Marshall et al., 2003). In this protocol, a sin-
gle optical mode is passed through a beam-splitter and
into an interferometer, wherein one of the arms inter-
acts with a mechanical resonator according to the op-
tomechanical Hamiltonian in Eq. (28). The protocol has
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been analyzed with the addition of mechanical position-
damping noise (Adler et al., 2005; Bassi et al., 2005) (see
Sec. III.B.1). Additionally, the protocol has been exam-
ined in the high-temperature limit (Bernád et al., 2006).
It was further developed in (Kleckner et al., 2008), where
a number of practical aspects were taken into account. To
date, such an experiment has not yet been performed. It
has been pointed out that the phases picked up through
the optomechanical interaction can partially be repro-
duced through classical dynamics (Armata et al., 2016).

Should gravity cause decoherence, it is possible that
the mechanism itself relies on a modification of quantum
mechanics. If the experiments are still modeled using
standard quantum mechanics, it can become difficult to
distinguish the decoherence effects accurately. Such a
scenario has been considered in Ref (Pfister et al., 2016),
where a general information-theoretic measure of deco-
herence was proposed. While many approaches consider
continuous variable systems, there are also results for
qubit states (Kok and Yurtsever, 2003).

2. Nonlinear modifications

A key cornerstone of quantum mechanics is that the
Schrödinger equation is a linear equation for the state
of the system ∣ψ⟩, and that the expectation value of an
observable Ô is a bilinear function of the state, e.g.,
⟨ψ∣Ô∣ψ⟩. We can, however, devise a modification of
Quantum mechanics where the dynamics become non-
linear in the state ∣ψ⟩ or construct expectation values
with a non-bilinear dependency on the state (Weinberg,
1989a,b). Such modifications are motivated by the mea-
surement problem (see Sec. II.B) as well as emerge from
elementary considerations about semi-classical gravity.
Semi-classical gravity is viewed by some as an effective
theory, i.e., an approximation to a fundamental quantum
theory of gravity. Within this approximation, one can in-
vestigate the back-reaction of matter on the gravitational
field, generalizing the results of quantum field theory in
curved spacetime (see Sec. II.A.4), as well as model clas-
sical stochastic fluctuations of the gravitational field (Hu
and Verdaguer, 2008). An alternative viewpoint advo-
cated by others is that semi-classical gravity is not a mere
approximation but the fundamental theory where grav-
ity remains classical whilst matter is quantized (Kibble,
1981).

A conceptual start for such a nonlinear modification of
quantum mechanics is given in the semi-classical Einstein
equations (Møller et al., 1962; Rosenfeld, 1963; Ruffini
and Bonazzola, 1969):

Gµν =
8πG

c4
⟨T̂µν⟩, (83)

where on the left-hand side, we have the classical Einstein
tensor Gµν , and on the right-hand side, the expectation

value of the quantum stress-energy tensor T̂µν taken with
respect to the state of the quantum matter. The coupling
in Eq. (83) is arguably the simplest way to couple a clas-
sical gravitational field to quantized matter, but more
importantly, it is the expected theory when the matter
is in well-localized states. In such a case, matter can
still be approximately described using a classical stress-
energy tensor Tµν such that Tµν ≈ ⟨T̂µν⟩, but beyond this
regime, e.g., when we have spatial superpositions, there
is no consensus about its validity as we discuss below.

In the non-relativistic regime, the gravitational field
acting on by a particle in the state ∣ψ⟩ thus depends on
the value of ⟨ψ∣T̂µν ∣ψ⟩. Hence we expect the associated
nonlinear Schrödinger equation to have a cubic depen-
dency on the state of the matter system, i.e.,

ih̵
d

dt
∣ψ⟩ ∝ G⟨ψ∣T̂µν ∣ψ⟩∣ψ⟩. (84)

Such an equation has been proposed in (Diósi, 1984;
Penrose, 1996, 1998), and has become known as the
Schrödinger-Newton equation. A derivation from first
principles of Eq. (84) is however still a subject of de-
bate (Adler, 2007; Anastopoulos and Hu, 2014a,b; Chris-
tian, 1997; Giulini and Großardt, 2012).

Such a hybrid quantum matter-classical gravity model
has its appeal in conceptual simplicity of Eq. (83), with
testable predictions differing from those arising from
the framework of perturbative quantum gravity (see
Sec. II.A.7). However, unlike the latter, which is a
fully consistent relativistic theory, deterministic nonlin-
ear modifications of the Schrödinger equation, such as
the Schrödinger-Newton equation, are at odds with the
requirement of no-faster than light signaling to make
them, at least conceptually, unsatisfactory (Gisin, 1989;
Polchinski, 1991).

Nonetheless, to date, no laboratory experiment has
been able to rule out the Schrödinger-Newton equation.
Furthermore, it has been suggested that it might be
possible to resolve the issue of superluminal signaling
if one takes into consideration the measurement prob-
lem with a suitable prescription of the wave-function
collapse (Bahrami et al., 2014a; Bera et al., 2015), and
hence the predictions of the Schrödinger-Newton equa-
tion might still remain valid in specific domains (see
Sec. IV.B.3 for a discussion of possible modifications).
For a discussion within the context of Generalized Prob-
abilistic Theories (GPT) and its relation to classical state
space, see (Galley et al., 2022; Mielnik, 1974, 1980). We
here provide below a summary of the current experimen-
tal endeavors to test the Schrödinger-Newton equation.

Starting from the semi-classical Einstein equations in
Eq. (83) we obtain in the non-relativistic limit the one-
particle Schrödinger-Newton equation (Diósi, 1984):

ih̵
d

dt
∣ψt⟩ =

p̂2

2m
∣ψ⟩ −Gm2 ∫ ds

∣ψ(t, s)∣2

∣r̂ − s∣
∣ψ⟩ , (85)
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where m is the mass of the particle, r̂ (p̂) is the position
(momentum) operator, and we have introduced the wave-
function ψ(t, s) = ⟨s∣ψt⟩. The generalization to the N -
particle case can be obtained from Eq. (85) by replacing
the source of the gravitational field with ∣ψ(t, s1, .., sN)∣2:

ih̵
d

dt
∣ψt⟩ = −Gm2∑

j,k
∫ ∏

l

dsl
∣ψ(t, s1, .., sN)∣2

∣r̂j − sk ∣
∣ψ⟩ , (86)

where we have omitted the kinetic terms for brevity, and
j, k = 1, ..N .

Eqs. (85) and (86) form the starting point for a number
of experimental proposals. While some analytical results
can be obtained (Tod and Moroz, 1999) in most situa-
tions, one has to resort to numerical simulations to make
quantitative predictions using the nonlinear Schrödinger-
Newton equation, similarly as in the case of the for-
mally similar Gross-Pitaevskii equation (Gross, 1961;
Pitaevskii, 1961). The key prediction of the Schrödinger-
Newton equation is the modification of the free spread-
ing of the wavefunction as the last term in Eq. (85),
with its Newtonian-like 1/r dependency, can be viewed
as a self-gravity term which tends to localize the system
in space. There are a number of papers investigating
the free-spreading in space with the required parameter
regime for experimental tests (Bahrami et al., 2014a; Car-
lip, 2008; Colin et al., 2016; Giulini and Großardt, 2011;
Moroz et al., 1998) as well as proposals to test secondary
effects in harmonic traps such as squeezing (Yang et al.,
2013) and energy shifts (Großardt et al., 2016).

Additional dependencies on the state of the system
∣ψ⟩ can also be introduced to other parts of the quan-
tum formalism (Sorkin, 1994). Motivated by consid-
erations about general covariance, it has been argued
that all quantities in physical theories must be dynam-
ical (Norton, 1993) suggesting corrections to the Born
rule (Berglund et al., 2022). Cubic corrections to the
Born rule O(∣ψ⟩3), i.e., triple interference phenomena,
have been theoretically discussed in the context of the
Talbot interferometer (Berglund et al., 2023). The class
of nonlinear modifications introduced in (Weinberg,
1989a,b) have also been recently analyzed in the context
of gravitationally induced entanglement (Spaventa et al.,
2023).

3. Nonlinear and stochastic modifications

The quest of unifying quantum mechanics and gravity
into a single theory and the measurement problem from
quantum foundations appear to be two distinct prob-
lems at first (see Sec.II.B). However, using an elementary
analysis, it was shown that there appears to be a deep
conflict between the superposition principle in quantum
mechanics and the equivalence principle of general rel-
ativity (Penrose, 1986). Such a result could be viewed
as another hint for the necessity to modify gravity i.e.,

constructing a quantum theory of gravity. However, any
theory where the superposition principle remains valid,
would not resolve the tension between quantum and clas-
sical physics, thereby leaving unanswered the measure-
ment problem. Another option is that the conflict in-
stead signifies the need to also modify quantum mechan-
ics to accommodate notions of gravity, i.e., gravitization
of quantum mechanics (Penrose, 1986, 1996, 1998, 2014).
Such a theoretical program, whilst still in its tentative
state, suggests that it might be possible to consistently
couple classical and quantum systems (in this context,
gravity and matter, respectively) as well as solve the mea-
surement problem simultaneously. We, however, remark
that other programs for the emergence of classicality,
fully compatible with (unmodified) quantum mechanics,
are also considered in the literature (Giulini, 2000).

The measurement problem of quantum mechanics, still
to this day subject of controversy, has its roots in the two
prescriptions for the evolution of quantum systems: on
the one hand, the Schrödinger equation is deterministic
and linear, while, on the other hand, the wave-function
collapse postulate induces a stochastic and nonlinear evo-
lution of the state. It was shown that it is possible to
combine the two types of prescriptions into a single dy-
namical law, thus avoiding the dichotomy, with quantum
dynamics the limit for microscopic systems and classi-
cal dynamics the limit for macroscopic systems (Ghirardi
et al., 1986).

The structure of such modifications forms the basis for
the family of spontaneous wave-function collapse mod-
els (Bassi and Ghirardi, 2003; Bassi et al., 2013), with
the basic form given by the following stochastic differen-
tial equation (Ghirardi et al., 1990a)

d

dt
∣ψt⟩ =

√
λ(Â − ⟨Â⟩)dWt

dt
∣ψt⟩ −

λ

2
(Â − ⟨Â⟩)2∣ψt⟩, (87)

where ∣ψt⟩ is the state-vector, Â is the operator, ⟨ψt∣Â∣ψt⟩
is the expectation value, dWt is the Wiener increment,
and λ is the coupling rate. The models based on Eq. (87)
make a series of predictions that are expected to be tested
with the next generation of experiments, e.g., loss of in-
terferometric visibility, anomalous heating of free sys-
tems, and X-ray emission (Bassi et al., 2013; Carlesso
et al., 2022). In contrast to the case of deterministic
nonlinear modifications (see Sec. IV.B.2), the stochas-
tic nature of the evolution in Eq. (87) conspires with
the nonlinear terms to avoid the possibility of superlu-
minal signaling, making such models conceptually more
appealing, albeit a relativistic extension of such models
is still an open problem (Bedingham et al., 2014). Col-
lapse models have already been tested experimentally, in-
cluding by mechanical systems in a non-interferometric
way (Forstner et al., 2020; Helou et al., 2017; Vinante
et al., 2016, 2020), which provide the strongest experi-
mental bound as of today, see (Carlesso et al., 2022) for
a review on testing collapse models.
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As such, the connection between dynamical collapse
models of the form in Eq. (87) and gravity remains ten-
tative to date, with a derivation from first principles still
an open question (Bahrami et al., 2014b). Nonetheless,
using an elementary analysis, considering a spatial super-
position, it has been argued that the system should deco-
here within a time given by τ = h̵

Eg
, where Eg is the grav-

itational self-energy of the difference between the mass
distributions of the two states in superposition (Penrose,
1986, 1996, 1998, 2014). For example, for a spherical
mass distribution we have the following formula (Pen-
rose, 2014):

Eg =
⎧⎪⎪⎨⎪⎪⎩

Gm2

R
(2λ2 − 3

2
λ3 + 1

5
λ5) λ ≤ 1

Gm2

R
( 6
5
− 1

2λ
) 1 ≤ λ

, (88)

where m is the total mass, R is the particle radius, λ =
∆x/(2R), and ∆x is the superposition size.

Although self-gravity has been extensively investigated
in general relativity (Lynden-Bell, 1961), writing a fully
consistent relativistic spontaneous collapse model re-
mains an open problem. In the non-relativistic limit, one
can nonetheless construct a wavefunction collapse model
inspired by Newtonian gravity (Diósi, 1987; Diósi, 1989),
which recovers the prediction for Penrose’s decoherence
time τ (Diósi, 2005; Diósi, 2007). A drawback of the pro-
posed model is, however, that it requires a short-distance
cut-off to avoid the divergence for point-like microscop-
ically mass distributions (Ghirardi et al., 1990b). We
briefly discuss experimental bounds on the short-distance
cut-off, usually labeled as R0, at the end of this section.

There have been a series of investigations aiming to de-
rive the collapse of the wave function from an underlying
mechanism related to random fluctuations of spacetime:

gµν = ḡµν + δgµν , (89)

where gµν is the spacetime metric, ḡµν denotes a fixed
background, and δgµν denotes the stochastic fluctua-
tions. One of the earliest such attempts posited that
the wave-function collapse could be induced by real-
valued fluctuations of the space-time metric related to
the Planck scale (Karolyhazy, 1966). However, the ob-
tained model is still compatible with the superposition
principle, and it seems to be at odds with the predicted
X-ray emission from charged particles (Diósi and Lukács,
1993). An alternative idea with complex-valued fluctua-
tions of the space-time metric was also proposed (Adler,
2004), with a possible model of the basic form of Eq. (87)
constructed in (Gasbarri et al., 2017).

A collapse-like dynamics of the form in Eq. (87) also
appears in the context of quantum measurement and
control (Wiseman and Milburn, 2009), which has been
exploited to construct models of semi-classical gravity.
Specifically, by continuously measuring the system, one
has access to the signal I(t) given by Eq. (47). The

signal I(t) is used in experiments to gather informa-
tion about the state of the system as well as to con-
trol the evolution of the system at future times, i.e.,
by creating a feedback loop. However, in this context,
the system is not measured by an actual experimental-
ist or physical measurement apparatus, but it is instead
postulated that such dynamics, resembling continuous
measurements, is a fundamental law of nature (Diósi,
2018). Such an approach has been used in the Kafri-
Taylor-Milburn model (Kafri et al., 2014) to construct
a semi-classical (linearized) Newtonian interaction. We
recall that the quantum interaction, arising in standard
quantum mechanics, is given by

− Gm1m2

∣(d + x̂1) − x̂2∣
≈ 2Gm1m2

d3
x̂1x̂2, (90)

where d is the mean distance between the two masses
m1, m2, and x̂1,x̂2 are the position operators, respec-
tively (see Eq. (7)). In (Kafri et al., 2014), using a for-
malism reminiscent of quantum measurement and control
outlined above, one instead finds in place of Eq. (90) a
modified potential:

Gm1m2

d3
(x̂1⟨x̂2⟩ + ⟨x̂1⟩x̂2). (91)

A related approach has also been considered in (Tilloy
and Diósi, 2016), where the matter density of the system
ρ is continuously monitored, producing the signal given
by

ρt = ⟨ρt⟩ + δρt, (92)

where ⟨ρt⟩ is the expectation value taken with respect to
the state of the system. In (Tilloy and Diósi, 2016) it has
been shown that when ρt is the source of Newtonian po-
tential ϕ in the Poisson equation, i.e. ∇2ϕ = 4πGρt, one is
able to recover the standard quantum Newtonian interac-
tion among particles in Eq. (90), as well as the terms ap-
pearing in the Diosi model discussed above (Diósi, 1987;
Diósi, 1989).

Another approach that is related to the Diosi model is
given by hybrid quantum-classical models (Oppenheim,
2018). In such models, working in the ADM formal-
ism (Arnowitt et al., 1959) (see e.g., (Poisson, 2004) for
an introduction), the gravitational field is described by a
probability density in (classical) phase space ρ(z), where
we attach to each point z in phase-space a distinct den-
sity matrix σ̂(z). As a result, the total state of the sys-
tem (comprising gravity and matter) is described by the
classical-quantum state given by:

ρ̂cq = ∫ d ρ(z)∣z⟩⟨z∣ ⊗ σ̂(z). (93)

We can construct a master equation for such a dynam-
ics; by tracing away the state of gravitational field ρ(z)
we obtains a master equation for the matter state (while



34

tracing away the matter system one obtains a Fokker-
Planck like equation for the gravitational field providing
correction to general relativity). In the former case, we
can, by suitably restricting the general form of the ini-
tial equation, recover the master equation arising from
Eq. (87) such as the one given by the Diosi model (Op-
penheim et al., 2022).

Testing spontaneous collapse models falls into two
broad categories: interferometric and non-interferometric
tests. In the former, the signature is a loss of inter-
ferometric visibility (Toroš and Bassi, 2018), where the
current record is provided by experiments with macro-
molecules (Fein et al., 2019), while the latter is a broad
class of all other experiments (Carlesso et al., 2022). To
test the idea put forward by Penrose, one has to resort
to direct tests of the superposition principle in interfero-
metric tests (as a mathematical model has not yet been
constructed). One way to test this idea is to use Bose-
Einstein condensates (Fuentes and Penrose, 2018; Howl
et al., 2019). On the other hand, the model put for-
ward by Diosi, precisely formulated as discussed above,
can also be tested with indirect non-interferometric tests.
The model depends on a single free parameter R0, which
can be interpreted as the localization length-scale, which
has been constrained using X-ray emission to values
R0 < 5 × 10−10m (Arnquist et al., 2022; Donadi et al.,
2021).

C. Entanglement mediated by gravity

It is not yet known whether gravity is fundamentally
a quantum force. In this section, we will present argu-
ments in favor of the view that detecting entanglement
induced by gravitational interaction between two masses
could finally help to settle this issue. We will also review
proposals of how to generate such entanglement. The
realistic possibility of such an experiment has captured
attention only recently. One reason for this raised in-
terest was a proposal that showed that masses as small
as micron-sized crystals, which can be isolated by levi-
tation, can be fruitfully combined with spin qubit and
quantum gate technologies developed for quantum com-
putation to generate and witness gravitational entangle-
ment (Bose, 2016; Bose et al., 2017). Simultaneously, a
rationale based on a known result from quantum informa-
tion theory, along with some basic assumptions, was also
presented, which justified why such entanglement would
evidence the quantum nature of gravity (Bose, 2016; Bose
et al., 2017; Marshman et al., 2020a) (see also (Marletto
and Vedral, 2017) for alternative rationale). An impor-
tant fact, noticed for the first time in the above refer-
ences, is that one has to prepare and coherently maintain
quantum superpositions having large spatial spreads for
the entanglement growth to be realistically measurable.
This, of course, makes the experiments challenging. We

will review this class of schemes, as well as the recent
rapid growth of literature which has been triggered by
the above works. These dwell on the need to identify
all the necessities needed for a practical realization, al-
ternative proposals, as well as other ways to justify the
conclusions about the quantum features of gravity from
such experiments.

In a historic verbal debate with other researchers on
whether gravity is quantum, Feynman (Feynman, 1957)
advocated a thought experiment involving one mass in a
spatial quantum superposition displacing a second mass
due to its gravity (see Fig. 11 of Sec. V.B). Although
he stressed using quantum amplitudes to describe the
setup, he did not explain why such an experiment will
demonstrate the quantum character of gravity, nor did
he clarify what to measure in order to make such conclu-
sions. Also, crucially, he did not realize that the second
mass also has to be in a highly delocalized state (spa-
tial quantum superposition of comparable delocalization
as the first mass) for the experiment to have a realistic
duration. Subsequently, a version of Feynman’s setup
was suggested by supposing that the large mass in a spa-
tial superposition was a Bose-Einstein condensate (Lind-
ner and Peres, 2005). Such a superposition demands all
atoms in one well or another; it is not an easy state to
generate. It was then suggested that the interference pat-
tern of a mesoscopic mass in a momentum state (again,
not easy to prepare) be measured, scattering gravitation-
ally from this superposition. However, a single parti-
cle measurement does not suffice to reveal entanglement
without extra assumptions or procedures. Moreover, it
is not justified exactly why such an interference pattern
would constitute a test for quantum-natured gravity. In
(Schmöle et al., 2016), after presenting measurements of
gravity for the smallest masses (milligram scale) to date,
it was remarked that reaching a quantum coherent regime
for such masses can generate entanglement gravitation-
ally. However, an estimate of the required regime and
states was not the subject of that work. On the side of
logic, (Kafri and Taylor, 2013) defined a classical force
as one which cannot generate entanglement, and found
that such a classical force leads to excess noise. They
then suggested a design using tethered torsional oscil-
lators to detect this excess noise, which is challenging,
and requires 103 s per run – if that noise is not found,
then one can conclude a quantum (coherent) coupling.
Thus, the emphasis in the experimental proposal was to
rule out a specific classical interaction rather than verify
gravitationally generated entanglement. Similarly, (Kris-
nanda et al., 2017) showed that if an inaccessible system
entangled two quantum probes, then it would display
nonclassical correlations with the probes in the form of
quantum discord. It was then suggested that this could
potentially detect the nonclassicality of gravity without
going into the formulations of any scheme. Thus, an ex-
plicit scheme with calculated numbers, which proposed
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to exploit contemporary developments in levitation and
quantum technologies, along with a simple rationale from
quantum information theory, was necessary (Bose, 2016;
Bose et al., 2017) to inspire confidence in the testability
of the quantum character of gravity in the laboratory.

1. Gravitationally interacting interferometers based protocol

We outline here the protocol presented in (Bose, 2016;
Bose et al., 2017). Contemporary in publication (2017) is
also (Marletto and Vedral, 2017), although, as that deals
only schematically with the same idea without outlin-
ing explicit schemes, we present the below in accordance
to (Bose et al., 2017). We consider two masses, labeled
by j = 1,2, each with a spin embedded in it. A par-
ticularly relevant experimental example for these masses
would be a diamond nano-crystal hosting a Nitrogen-
Vacancy (NV) center, which is a highly coherent spin-1
system used in the area of quantum computation (Bar-
Gill et al., 2013; Hensen et al., 2015; March et al., 2023;
Wood et al., 2022b). However, any other crystal with an
embedded spin with a long coherence time would suffice,
and generically, we require only two spin states, which
we label as ∣ ↑⟩ and ∣ ↓⟩. The two masses, labeled as
j = 1,2, are each created in a quantum superposition of
well-separated Gaussian states ∣L ↑⟩j and ∣R ↓⟩j by means
of the Stern-Gerlach effect. So, we imagine that ideally,
a spin embedded in each mass j is placed in a quantum
superposition of spin states,: 1

√

2
(∣ ↑⟩j +∣ ↓⟩j), where after

a spin-dependent force (as in Stern-Gerlach) is applied to
the masses so that they move from their initial central
positions given by Gaussians ∣C⟩j to evolve to

∣ψ⟩j =
1√
2
(∣L ↓⟩j + ∣R ↑⟩j). (94)

This is shown in the upper half of Fig. 4 as the point
at which the trajectories achieve their maximal splitting
∆x. After achieving a certain maximal splitting ∆x, the
Stern-Gerlach force (spin-dependent splitting process) is
stopped, for example, by either switching off the mag-
netic field or mapping the electronic spins to nuclear
spins (this is shown as shoulders in the interferometers of
Fig. 4), and the masses are allowed to translate in par-
allel next to each other. We are going to assume (just
for simplicity of presentation, although this assumption
may be hard to fulfill) that the superposition is created
so fast that the phase accumulation due to gravitational
interaction during this time is negligible. During the par-
allel motion after the creation of the superposition, the
four configurations LL,LR,RL, and RR (where the for-
mer refers to mass 1, and the latter refers to mass 2) have
different energies due to their Newtonian interaction, and
thus their quantum phase evolutions happen at different
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FIG. 4 Mechanism of gravitationally generated entan-
glement. Mechanism of entanglement of two masses through
the phase evolution due to gravitational interaction. The
phase evolution due to only the most prominent interaction,
between the ∣R ↓⟩1 and ∣L ↑⟩2 is explicitly shown. The figure
is a modified version of (Bose et al., 2017).

frequencies

ωRL ∼
Gm1m2

h̵(d −∆x)
, ωLR ∼

Gm1m2

h̵(d +∆x)
,

ωLL = ωRR ∼
Gm1m2

h̵d
. (95)

For simplicity, as well as for appreciating the maximal ef-
ficiency of the process, we consider the situation when the
superposition splitting is much larger than the distance
of the closest approach of the masses, i.e., ∆x >> d−∆x.
In that case, we can simplify to a situation where only
ωRL is prominent, while the other frequencies are negli-
gible (taken to be zero with respect to ωRL). Then the
evolution of the state at a time τ is

∣Ψ(t = τ)⟩12 = ∣L ↓⟩1
1√
2
(∣L ↓⟩2 + ∣R ↑⟩2) (96)

+ ∣R ↑⟩1
1√
2
(e−iωRLτ ∣L ↓⟩2 + ∣R ↑⟩2)}.

It is by inspection of the state, we conclude that for any
value of ωRLτ ≠ 2kπ, where k = integer, the state is entan-
gled as it cannot be factorized into a product state of the
two qubits as (∣L ↓⟩2 + ∣R ↑⟩2) ≠ (e−iωRLτ ∣L ↓⟩2 + ∣R ↑⟩2).
In fact, for ωRLτ ∼ π, the state is a maximally entangled
state of two qubits (the qubit states being defined by two
orthogonal states ∣L ↓⟩ and ∣R ↑⟩.

To compute the highest possible value of the frequency
ωRL one needs to identify the minimum value of d −∆x.
This, in turn, depends on the range within which you
can bring the two masses without electromagnetic inter-
actions swamping gravity. It is possible, in principle,
to make masses neutral (by shining UV radiation on the
masses or the enclosure). We also assume that it is possi-
ble to make the masses free of internal charge multipoles
(how to achieve this is not yet fully solved for realistic
nano and micro-crystals). Suppose the electrostatic in-
teractions between the masses are fully eliminated; there
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is still the Casimir interaction. The ratio of the Casimir
to the Gravitational interaction is given by

UCasimir

UGravity
∼ 23

4π
( 3

4π
)2 (ϵ − 1

ϵ + 2
)
2 m2

p

ρ2(d −∆x)6
, (97)

where mp is the Planck mass and ρ is the density of
the masses. As we have to use some material to get the
dielectric constant and density properties, we choose a
diamond, which is a good candidate for the experiment,
as it can host an embedded spin as an NV center defect,
as stated before. If we want gravity to dominate by a
factor of 10 over the Casimir interaction, we get the min-
imum d −∆x ∼ 157µm (van de Kamp et al., 2020; Schut
et al., 2023a). Putting this value in Eq. (95), we get, for
micron-sized objects (radius ∼ 1µm, mass ∼ 10−14 kg)

ωRL ∼
Gm1m2

h̵(d −∆x)
∼ 0.4Hz. (98)

Now, how are we going to detect the entanglement gen-
erated as above? It is here that the rest of the interfer-
ometer shown in Fig. 4 is important. The paths are now
recombined once again using Stern-Gerlach forces so that
∣L ↓⟩j → ∣C ↓⟩j and ∣R ↑⟩j → ∣C ↑⟩j . Then the state of
the two embedded spins becomes

∣ ↓⟩1
∣ ↓⟩2 + ∣ ↑⟩2√

2
+ ∣ ↑⟩1

e−iωRLτ ∣ ↓⟩2 + ∣ ↑⟩2√
2

. (99)

The entanglement of these spins can be verified by
measuring spin-spin correlation functions and combin-
ing them to construct an entanglement witness. A good
entanglement witness in this context (which works for
smaller time evolution durations in comparison to the
witness in (Bose et al., 2017)) is (Chevalier et al., 2020;
Guff et al., 2022)

W = 1 − σ1
xσ

2
x − σ1

yσ
2
z − σ1

zσ
2
y. (100)

If, after measuring the correlations, the expectation value
⟨W ⟩ < 0, then the state of the two spins is entangled.
As the only interaction was gravitational, verifying the
entanglement of these spins is equivalent to verifying the
gravitationally generated entanglement.

Now, in a real experiment, it is possible that ∆x is
achieved slowly so that a significant contribution to grav-
itational entanglement happens even during the growth
of the superposition. Thus, according to the protocol of
entanglement generation, τ should be an effective time
that correctly captures the total entanglement growth
rate during the evolution of the size of the superposi-
tion. Moreover, it is also possible that the ideal case
of ∆x ≫ d − ∆x is not easily achievable. In fact, it
is perhaps more likely, at least in the earliest experi-
ments, that ∆x = χd, where fraction 0 < χ < 1. In
this general case, the entanglement developed, as well
as the entanglement witness, depends only on a total

phase, which one may call the “entangling phase”, de-
fined as ϕent = (ωLR − ωLL)τ + (ωRL − ωLL)τ . For
the configuration of interferometers given in Fig. 4 we
have, for small enough values of the entangling phase
⟨W ⟩ ∼ −ϕent (Chevalier et al., 2020), with

ϕent =
Gm1m2τ

h̵d

2χ2

1 − χ2
, (101)

which, for χ≪ 1 becomes

ϕent =
2Gm1m2(∆x)2τ

h̵d3
. (102)

From Eq. (101), it becomes clear that the fraction χ
should be chosen to be as close as possible to unity for a
higher magnitude of the entanglement witness, enabling a
lower number of measurements to determine it. However,
in the regime of χ≪ 1, from Eq. (102), one observes that
we can, in principle, either choose a light mass m and a
large superposition size ∆x (the case discussed Sec. IV.C)
or alternatively, a heavy mass and a small superposition
size without affecting the accumulated entangling phase.
For example, with a mass of m = 1 kg, a superposition
size of ∆x = 10−14 m, and an inter-particle separation
d = 7 cm (commensurate with the dimensions of such an
object taking a standard density for a nanocrystal, say,
that of diamond, of 3.5×103 kg/m−3), and a time τ = 1 s,
a ϕent ∼ 0.2 is obtained. However, such masses are usually
tethered, which offers extra decoherence channels rather
than being levitated. How to achieve, by squeezing and
free expansion, a spinless measurement of a two-qubit en-
tanglement witness (in terms of spatial qubits) has also
been shown (Yi et al., 2021, 2022).

2. Alternative protocols

Instead of an interferometric scheme, we can also con-
sider nearby harmonic oscillators with mechanical fre-
quency ω that are interacting gravitationally (Krisnanda
et al., 2020; Qvarfort et al., 2020). We can obtain a figure
of merit for the generated entanglement from Eq. (102)
by setting the delocalization to be the zero-point motion
∆x =

√
h̵/(2mω) (see Eq. (6)) and the interaction time

to be t = 1/ω:

η = 2Gm

ω2d3
, (103)

where we have defined η ≡ ϕent following the notation
from (Krisnanda et al., 2020). Choosing the separation
d of the masses to be about 1.5 times their radius, the
above expression becomes solely dependent on their den-
sities and ω (Krisnanda et al., 2020). In order to achieve
considerable entanglement, we again require η ∼ 1. For
that, for example, even with the densest material (Os-
mium), one has to accomplish the entire protocol with
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each mass in a ω ∼ mHz trap over an interaction time
of 103 s, over which it will be very difficult to retain
quantum coherence. Thus to achieve considerable entan-
glement, one has to use quantum states far more spa-
tially spread (essentially similar in spread to the super-
positions mentioned earlier) (Cosco et al., 2021; Kris-
nanda et al., 2020; Weiss et al., 2021), or non-Gaussian
resources (i.e., we need to prepare non-Gaussian initial
states) or with non-negligible nonlinear couplings (i.e.,
cubic or higher order terms in the position operators be-
yond the expansion in Eq. (90)) as discussed in (Qvarfort
et al., 2020). The generated entanglement can be read
out using two optomechanical setups separately moni-
toring each of the two masses, i.e., each mass is a mir-
ror that is coupled to an optical field that can then be
measured (see Secs. III.A.1 and III.C). Specific optome-
chanical configurations to measure the gravitationally-
induced entanglement have been considered using the
single-photon nonlinear regime in a quantum Cavendish
experiment (Balushi et al., 2018; Matsumura and Ya-
mamoto, 2020), and in the linear regime with the cav-
ity driven by a coherent laser field (Miao et al., 2020).
Furthermore, in (Datta and Miao, 2021) an optomechan-
ical scheme for measuring the differential motion of the
two mirrors is given, and it is argued that detecting
gravitationally-induced squeezing of the differential mo-
tion should be experimentally more accessible than de-
tecting quantum entanglement between the two masses,
and consequently, the conclusions that can be drawn
would be different.

We can also consider the experimental situation with
unequal masses (Bose et al., 2017). In place of m2 and
∆x2 in Eq. (102) we have m1m2 and ∆x1∆x2, respec-
tively, where ∆xj is the superposition size of the mass
mj (j = 1,2). To generate substantial entanglement, we
again require ϕent ∼ 1. One scheme in this direction uses
extremely different masses, an atom (in an atom interfer-
ometer), and a massive oscillator coupled to it gravita-
tionally (Carney et al., 2021c). Here, treating the atom
as a spatial qubit gives a cyclic decoherence-recoherence
dynamics of the two-mass system, which is robust to the
thermal state of the oscillator, an interesting property
that also underpins some previous optomechanical (Ar-
mata et al., 2017; Bose et al., 1997, 1999; Mancini et al.,
1997; Marshall et al., 2003; Qvarfort et al., 2018) and
qubit-oscillator (Bose, 2006; Scala et al., 2013) schemes.
The decoherence-recoherence of the spatial qubit is then
suggested as evidence of entanglement, although this is
reliant on the assumption of the high purity of the joint
qubit-oscillator state. Another variant of this is a case
with two qubits (Pedernales et al., 2022): a nanoscale
mass as a spatial qubit, which is gravitationally coupled
to a massive mediating oscillator, which is, in turn, cou-
pled electromagnetically to another qubit. By measuring
entanglement between the two qubits, the quantumness
of the gravitational interaction can be tested. While in a

manner similar to the above, robustness to the thermal
state of the intermediary is present (also reminiscent of
geometric phase gates in ion traps (Milburn et al., 2000;
Mølmer and Sørensen, 1999; Solano et al., 1999)), one
still has the challenge of preparing a sufficiently spread
spatial quantum superposition state of a nanoscale mass.
Other works have also considered experimental configu-
rations with modified geometries and multidimensional
systems (Tilly et al., 2021). Specific schemes with three
or four (Schut et al., 2022), as well as an array of par-
ticles (Ghosal et al., 2023; Miki et al., 2021) have been
analyzed.

It has also been noted that the relativistic regime is
required to probe the spin nature of the gravitational in-
teraction (Biswas et al., 2023; Bjerrum-Bohr et al., 2015;
Carney, 2022; Scadron, 2006). In (Bose et al., 2022) the
leading order post-Newtonian terms in an experimental
situation with harmonic oscillators have been considered,
and in (Aimet et al., 2022) photons from two separate in-
terferometers are let to entangle.

Notably, a hybrid optomechanical scheme testing the
quantum counterpart of the light bending by gravity was
given in (Biswas et al., 2023). The scheme consists of a
harmonic oscillator of mass m placed at the origin and of
a circular path of radius r for the optical field confined
to a half-ring cavity (i.e., the mechanical oscillator and
the cavity photons are conceptually replacing the two
massive interferometers shown in Fig. 4). The interac-
tion between the trapped mass and the photons is purely
gravitational, and it reduces to the form of the cavity
optomechanical interaction in Eq. (28) with the coupling
g0, in this case, arising from the quantum light-bending
interaction.

A figure of merit, similar to the ones in Eqs. (102)
and (103), can also be constructed for these latter cases,
albeit the details can depend on the specific experimental
configuration and on the interaction. To get a tentative
idea about the order of magnitude of the entanglement
phase with photons, we can use the relation m = h̵ω/c2.
For example, replacing one of the masses in Eq. (102)
with m = h̵nω/c2 (where ω is the frequency of the optical
field), we find a figure of merit for entanglement between
a photon and a massive particle:

ϕent ∼
2Gmω∆x2τ

c2d3
, (104)

which can be used to gauge the order of magnitude of the
entanglement phase. Taking the ratio of Eqs. (104) and
Eq. (102), we thus see that the effects are suppressed
by h̵ω/(mc2), and as such, achieving an entanglement
phase of order unity requires a very large photon number
to enhance the effect.

There are also proposals for testing gravitationally-
induced self-interactions of matter (Anastopoulos and
Hu, 2013, 2014a, 2020). While in the previous scheme,
one was interested in the interaction between two dis-
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tinct systems ∝ T
(A)
µν T

(B)
αβ one can also consider self-

interaction terms ∝ T
(A)
µν T

(A)
αβ and ∝ T

(B)
µν T

(B)
αβ , where

T
(A)
µν and T

(B)
µν denote the stress-energy tensors corre-

sponding to systems A and B. We can readily see how
such terms emerge in the Newtonian limit. The interac-
tion with quantum matter from Eq. (23) reduces to:

Ĥint =
1

2
∫ dr ρ̂(r)ϕ̂(r), (105)

where Ĥint = −∫ L̂int(r)dr is the interaction Hamilto-

nian, ρ̂ is the matter density, and ϕ̂ is the Newtonian
potential. The matter-density ρ̂ is also a source for ϕ̂
with the solution given by the familiar Newtonian poten-
tial. From Eq. (105) we thus find:

Lint = −
G

2
∫ dr∫ dr′

ρ̂(r)ρ̂(r′)
∣r − r′∣

. (106)

Eq. (106) is suggestive for a figure of merit based on the
entanglement phase from Eq. (102). Since we have only
one system we set ∆x ∼ d to find:

ϕent ∼
Gm2τ

h̵d
, (107)

where d is to be interpreted as a characteristic length
scale of the problem (e.g., the wavefunction spread). A
scheme with BECs was investigated, where ρ̂∝ â†â (with
â the mode of a BEC). We thus find from Eq. (105) a
Kerr nonlinearity which induces non-Gaussianity (Haine,
2021; Howl et al., 2021). Recently a scheme has also con-
sidered using the self-interaction of photons (Mehdi et al.,
2023). In place of Eq. (107) we can use m = nh̵ω/c2
(where ω is the frequency of the optical field) to find the
figure of merit ϕent ∼ 2Gh̵ω2τ/(c2d) which can be again
enhanced by considering a large number of photons. It
should be noted that gravitationally mediated entangle-
ment experiments will also be able to test various variants
of gravitational theories (Beckering Vinckers et al., 2023;
Chakraborty et al., 2023; Elahi and Mazumdar, 2023;
Marshman et al., 2020a). Several foundational questions
involving the nonclassical behavior of gravity can also be
probed with similar setups (Etezad-Razavi and Hardy,
2023; Kent and Pitalúa-Garćıa, 2021), including the non-
classical behavior of gravity under a measurement (Hanif
et al., 2023).

3. Major challenges

Proposals for testing gravitationally-induced quantum
phenomena discussed in this section face a series of ex-
perimental challenges specific to the experimental imple-
mentation.

One major difficulty is the achievement of a large
superposition for the interferometry-based schemes (for

schemes using Gaussian wavepackets, it translates to ob-
taining a very large delocalization of the wavepacket
(Cosco et al., 2021; Weiss et al., 2021), which is a problem
of similar nature). A large mass requires a strong force to
create a quantum superposition of components separated
by ∆x. Some of the early protocols of Stern-Gerlach-
based creation of superpositions (Scala et al., 2013; Wan
et al., 2016) have been found to have limitations of the
achievable growth rate of ∆x (Marshman et al., 2021;
Pedernales et al., 2020). Some solutions have been inves-
tigated (Zhou et al., 2022, 2023), and this splitting rate
is still a work in progress.

If the electromagnetic interactions between the masses
can be screened (Schmöle et al., 2016; Schut et al.,
2023a,b), then the masses can be brought closer (d de-
creased), and consequently, the requirement of ∆x can
be alleviated. For example, the most optimistic results
known to us in this context of using both screening and
trapping (Schut et al., 2023a). For a screening material
of 1µm thickness, d ∼ 11µm, masses m1 ∼m2 ∼ 10−14 kg,
then, for ∆x ∼ 0.65µm and a τ ∼ 1 s, ϕent ∼ 0.01 is ob-
tained, which requires ∼ 104 repeats of the experiment.

The other important obstacle is, of course, maintain-
ing coherence. In short, in presence of decoherence at a
rate Γ the witness becomes ⟨W⟩ ∼ Γτ − ϕent (Chevalier
et al., 2020; Guff et al., 2022; Schut et al., 2023a). Thus,
in order to have a negative expectation value of the wit-
ness, one has to keep the growth rate of the entangling
phase above the decoherence rate. Here we provide some
general considerations about noise and decoherence for
the figure of merit given in Eq. (102) for concreteness.
The requirements on the force noise spectra SFF can be
estimated from the decoherence rate Γ:

Γ =
SFF (ωexp)∆x2

h̵2
, (108)

where ωexp = 1/τ is the characteristic frequency of the
experiment. We require τ < Γ−1 to have sufficiently long
coherence times (Bose et al., 2017). Specific noise and de-
coherence sources have been considered, as well as meth-
ods for its mitigation (Fragolino et al., 2023; Gunnink
et al., 2022; van de Kamp et al., 2020; Pedernales et al.,
2020; Rijavec et al., 2021; Toroš et al., 2021; Weiss et al.,
2021; Wu et al., 2023a; Yi et al., 2022). In the above, it
is perhaps important to emphasize that primary sources
are the collisions with background gas, and blackbody
radiation emission (van de Kamp et al., 2020; Romero-
Isart, 2011). There could also be electromagnetic noise
of various forms (Fragolino et al., 2023). Most interest-
ingly, gravitational and inertial noise also plays an impor-
tant role in the decoherence of large quantum superposi-
tions, and some ways of mitigation have been worked out
(Toroš et al., 2021). Very importantly, various systematic
noises affect Stern-Gerlach interferometry, when that is
the mechanism of creating large spatial superpositions,
such as due to phonons (Henkel and Folman, 2022, 2023)
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and rotations (Japha and Folman, 2022). In this context,
the coherence of spins is also important, and achieving
dynamical decoupling has also been considered (Wood
et al., 2022a).

4. Implications

Considering one observes the entanglement between
two masses due to their gravitational interaction, what
can we conclude from that? Essentially, it verifies one
prediction of a fully quantum counterpart of Einstein’s
equations

Ĝµν =
8πG

c4
T̂µν . (109)

In this sense, it verifies a prediction common to all ap-
proaches in which gravity is treated as a quantum field,
eg, (Dienes, 1997; Donoghue, 1994; Rovelli, 2008). Alter-
nately, it falsifies all hybrid theories of quantum sources
in a state ∣ψ⟩Source leading to classical gravity Gµν (while
Eq. (83) is a special case of that, there could, of course,
be much more general stochastic theories of the above
hybrid nature (Diósi and Halliwell, 1998; Galley et al.,
2023; Kafri et al., 2014; Oppenheim, 2018)). We present
our arguments below in favor of the view that observa-
tion of entanglement is inconsistent with gravity being a
classical field/curvature even when defined in the above,
very general, sense. We should, at once, state that such
a conclusion is possible if one makes (i) an appropriate
(very standard) definition of a classical field, and (ii) a
minimal assumption.

Let us first define what a classical field is. Namely, it is
an entity with a probability distribution over fixed values
(numbers) at every point in space-time. Thus, retaining
the symbol usually used for the gravitational metric, we
would define a classical gravitational field as an entity
defined by probabilities P (j) and corresponding metrics

g
(j)
µ,ν :

{P (j), g(j)µ,ν(r, t)}, (110)

where µ, ν = 0, ..,4, and r, t are spacetime points. This
definition is broader than just having a unique metric
gµ,ν(r, t) defined everywhere in spacetime as we are al-
lowing for probabilities. The allowance for probabilities
makes it possible for gravity to be a statistical field, while
still being classical. Quantum is more stringent, as it ne-
cessitates quantum superpositions of different configura-
tions gµ,ν(r, t). As long as we disallow superpositions,
then even with fluctuations (probabilities), a field is clas-
sical. Now comes the assumption. This is namely the
assumption that two masses outside each other’s sup-
port (by support, we mean their positions, or, if quan-
tum, their wavefunctions, or if a second quantized mat-
ter field, then the localized mode which they occupy) can

only interact with their local field and not directly with
each other. This makes the field a mediator. Within
the domain of non-relativistic experiments that would be
feasible in the foreseeable future, we cannot prove the ne-
cessity of the mediator, and we appeal to what is known
from the rest of physics, namely that there is no action
at a distance in our known domain of physics.

Under assumptions (i) and (ii), the operations that
can happen between the masses due to their interactions
with their local gravitational field are Local Operations
and Classical Communications (LOCC), which cannot
create entanglement. Thus it follows very simply that
if entanglement is observed between the masses due to
their gravitational interaction, then either gravity is not
a classical field as per the definition (i) (i.e., it is non-
classical) or the assumption of a mediator (ii) is violated.
This was the justification presented in (Bose et al., 2017).
Within this setting of exchange of a mediator between
the masses, only a highly quantum mediator, namely a
virtual (off-shell) particle (a quantum superposition of all
energies) is necessary for the continuously coherent gener-
ation of entanglement, as has been shown through a fully
relativistic treatment in (Marshman et al., 2020a) (for a
treatment that also shows the retardation in the growth
of entanglement, see (Christodoulou et al., 2023)). Al-
ternately, it has been shown that the presence of entan-
glement also necessitates an operator valued interaction
between masses, which is not possible with a classical
mediator (Bose et al., 2022).

Another way to interpret the results of the experi-
ment is that it evidences a quantum superposition of ge-
ometries that one of the masses produces, on which the
other mass evolves (Christodoulou and Rovelli, 2019). If
the quantum superposition of geometries (i.e., quantum-
natured gravity) is disallowed, then no superposition de-
velops. The conditions for justification of a non-classical
nature of gravity within the framework of generalized
probability theories have been presented (Galley et al.,
2022). Within the effective quantum field theory descrip-
tion of gravity, it has also been argued that once the
Newtonian interaction enables entanglement, then the
other degrees of freedom have to be quantized for con-
sistency (Belenchia et al., 2018; Carney, 2022; Danielson
et al., 2022), along with an expression for a quantum
state of gravity associated to a mass in a quantum su-
perposition (Chen et al., 2023). Indeed, if the condition
of mediator, providing the L part of the LOCC, is not
imposed, one can still draw interesting conclusions from
the generation of entanglement, as discussed in (Fragkos
et al., 2022), while the modifications needed to draw
conclusions about quantum natured gravity even with-
out the assumptions have been stated, after a relativistic
treatment, in (Mart́ın-Mart́ınez and Perche, 2023). It is
worthwhile to also note here that LOCC is more restric-
tive than just disallowing entanglement generation (Lami
et al., 2023).
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D. Other tests of gravity

There are a number of ways in which gravity can affect
quantum systems beyond the topics of precision gravime-
try, decoherence, and entanglement. Here we detail ad-
ditional tests of gravity and related effects.

1. Tests of the generalized uncertainty principle

Many quantum gravity theories predict the existence of
a finite and minimum length scale at least as small as the
Planck length lP =

√
h̵G/c3 ≈ 1.6×10−35 m (Garay, 1995;

Hossenfelder, 2013). The emergence of a finite length im-
plies a generalized uncertainty principle (GUP) because
the fundamental position uncertainty can no longer be
reduced to zero. The GUP widely considered reads

∆x∆p = ih̵(1 + β0 (
lP ∆p

h̵
)
2

) , (111)

where ∆x and ∆p denote the uncertainties in the op-
erators, and where β is a dimensionless constant that
indicates the strength of the modification. The minimal
length arises because the uncertainty in ∆x can no longer
be made infinitesimally small. Associated with the GUP
is also the modified commutator relation

[x̂, p̂] = ih̵(1 + β0 (
lP p̂

h̵
)
2

) . (112)

Bounding the parameter β in Eq. (111) through exper-
iments also bounds new physics below the length scale√
βlP (Das and Vagenas, 2008).
The existence of a finite length scale and GUP was

first put forward in string theory (Amati et al., 1989;
Veneziano, 1986), but were later also derived using gen-
eral mode-independent properties of quantum gravity
theories. For example, a generalized Gedanken experi-
ment for the measurement of the area of the apparent
horizon of a black hole in quantum gravity leads to the
emergence of a GUP (Maggiore, 1993a). There also ex-
ists an algebra that gives rise to the modified commutator
relation in Eq. (111), just like the operator x̂ and p̂ sat-
isfies [x̂, p̂] = ih̵ (Maggiore, 1993b). Model-independent
arguments for the measurement of micro-black holes al-
low us to arrive at a GUP (Scardigli, 1999). The in-
fluence of minimal length scales on quantum states has
been widely considered. There are quantum-mechanical
implications of a GUP and finite length, which were ana-
lyzed in (Kempf et al., 1995), including the localization of
wavefunctions in space and the effects on harmonic oscil-
lators. Harmonic oscillators with minimal length scales
were also considered in (Chang et al., 2002), where the
effects on electrons trapped in magnetic fields were also
considered, as well in (Lewis and Takeuchi, 2011). In ad-
dition, an equivalent formulation of the GUP but with

a maximum observable uncertainty in the momentum,
rather than a minimum uncertainty in the position, has
been formulated (Petruzziello, 2021).

A number of proposals for laboratory experiments to
test GUPs with massive quantum systems have been
put forward. By using pulsed optomechanics (see
Sec. III.A.1), it was shown that the effects of a GUP
should create changes in the trajectories in phase space
traced out by a massive system in (Pikovski et al., 2012).
The scheme was later extended in (Kumar and Plenio,
2018). Along similar lines, mechanical oscillators near
the Planck mass (mP ≈ 22 ng) were analyzed, where
the modified dynamics were directly compared with the
unmodified (Bawaj et al., 2015). A further proposal
considered a pendulum, where continuous rf measure-
ments of the frequency of an electromechanical oscilla-
tor can help to further bound β0 (Bushev et al., 2019).
The radiation-pressure noise can also contain information
about the GUP, as proposed in (Girdhar and Doherty,
2020). The sensitivity to the modified commutator rela-
tion was shown to improve in the vicinity of exceptional
points (Cui et al., 2021), and quadratic corrections were
shown to affect the noise spectrum of an optomechanical
system (Sen et al., 2022). A recent result is the evalua-
tion of improved constraints on minimum length models
by using a low-loss phonon cavity (Campbell et al., 2023).

It should be noted that additional considerations sug-
gest that the observed effects from a GUP scale with
N−a, where N is the number of particles of the compos-
ite system and a is a parameter to be determined (Kumar
and Plenio, 2020). The strength of this scaling is unclear
but should be taken into account in experiments. It has
therefore been proposed that bounds on GUPs can also
be obtained through the use of atoms (Chatterjee et al.,
2021). In another work, it was pointed out that different
modifications of the canonical commutator yield the same
commutator relation in Eq. (112) (Bishop et al., 2020),
which necessitates the need for caution when interpreting
experimental results.

The current leading bound for β0 appearing in
Eq. (111) is β0 < 5.2 × 106, which was calculated using
pendulum measurements (Bushev et al., 2019). Including
the dependency on the number of constituent particles as
discussed above would, however, change the bound for β0
as well as its physical interpretation within the considered
GUP model (Kumar and Plenio, 2018). Other bounds
on β0 have been derived from astronomy (Scardigli and
Casadio, 2015) as well as from gravitational-waves (Das
et al., 2021). See (Scardigli and Casadio, 2015) for a
comparison between bounds obtained from different ex-
periments available at the time.
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2. Tests of the gravitational Aharonov-Bohm effect

The Aharonov-Bohm effect was originally introduced
for electrons in a constant magnetic field, which picks
up a phase depending on the (spatially dependent) vec-
tor potential that can be measured in an interferometer.
Fundamentally, the phase difference stems from an ac-
tion difference between the interferometer arms which
would not be accessible classically. Similarly, a grav-
itational field can induce such action differences (even
in the absence of forces), giving rise to a scalar grav-
itational Aharonov-Bohm effect (Audretsch and Lam-
merzahl, 1983). Ultra-cold atoms were proposed as an
experimental platform to detect this effect (Hohensee
et al., 2012) due to their long coherence times. The
gravitational Aharonov-Bohm effect was successfully de-
tected with a light-pulse 87Rb atom interferometer and
a kilogram-scale source mass (Overstreet et al., 2022a)
allowing to directly probe space-time curvature (Roura,
2022). Further proposals include tests using quantum
systems in free-fall (Chiao et al., 2023), as well as of the
vector gravitational Aharonov-Bohm effect (Chiao et al.,
2014).

3. Tests of gravity through resonances and phonon excitations

The first attempts to detect gravitational waves in-
volved resonant mass antennae (Misner et al., 1973).
Weber searched for gravitational waves using resonances
with phononic modes of aluminum bars now known as
Weber bars (Ferrari et al., 1982; Weber, 1969). In the
experiments Weber’s bars reached temperatures of a few
Kelvin, not cold enough to suppress noise sufficiently
nor to reach the quantum regime. Proposals to use
a kilogram-scale superfluid 4Helium resonator promise
better sensitivities by reaching mKelvin temperatures
(Lorenzo and Schwab, 2014; Singh et al., 2017).

A quantum version of a resonant antenna has been
proposed using resonances of phonon modes in BECs
that can reach nanoKelvin or picoKelvin tempera-
tures (Kohlrus et al., 2017; Sab́ın et al., 2014). At
these temperatures, it is possible to prepare highly sen-
sitive quantum states that could be used to detect long-
lived high-frequency gravitational waves (between 103 −
107Hz). The quantum thermodynamical properties of
resonances in relativistic quantum fields were studied in
(Bruschi et al., 2020), showing that the BEC phonon res-
onance antenna is a quantum thermal machine capable
of extracting energy from the gravitational wave. Res-
onant effects with BEC phonons can be used to detect
gravitational accelerations and gradients in the Newto-
nian approximation (Rätzel et al., 2018), including the
search for modifications of Newtonian dynamics (known
as MOND) (Fernandez-Melendez et al., 2023) and also
to measure relativistic corrections (Ahmadi et al., 2014b;

Howl and Fuentes, 2023; Lock and Fuentes, 2017).

Recent proposals consider searching for signatures
of quantum gravity using multi-atomic states of cold
atoms (Haine, 2021) (see also Sec. IV.C), BEC
phonons (Howl et al., 2021) and massive quantum acous-
tic resonators (Tobar et al., 2023, 2024). These propos-
als aim at detecting single gravitons through their di-
rect interaction with matter, rather than through deco-
herence. A proposal to detect quantum gravity using
Weber bars cooled down to sub-miliKelvin temperatures
(Aguiar, 2011), suggests searching for quantum gravity
signatures by testing modifications of the energy moment
uncertainty principle (Bhattacharyya et al., 2020). Sig-
nals detected using these new detector concepts could be
correlated with independent classical detections of grav-
itational waves by laser interferometry to ascertain their
origin. There are also new proposals to use laser interfer-
ometers to search for signatures of the quantum nature
of gravitational waves (Parikh et al., 2020, 2021a,b) and
looking for geontropic vacuum fluctuations from quan-
tum gravity (Bub et al., 2023; Verlinde and Zurek, 2021).

Detecting gravitational waves and gravitons using
table-top experiments that make use of the high sensi-
tivity of quantum technologies promise to open a new
area in the study of fundamental physics.

4. Tests of quantum field theory in curved spacetime and
analog gravity

Quantum field theory in curved spacetime predicts
that spacetime dynamics produces entangled excitations
in quantum fields (Ball et al., 2006; Fuentes et al., 2010)
and that the presence of horizons gives rise to deco-
herence (Adesso and Fuentes, 2009; Alsing and Fuentes,
2012; Fuentes-Schuller and Mann, 2005), see Sec. IV.D.4.
Underpinning these effects is parametric amplification,
where particles are created out of the quantum vac-
uum by moving boundary conditions or horizons. In
this sense, there is a deep connection between the dy-
namical Casimir effect where by changing the length of
a cavity, the vacuum state of the electromagnetic field
changes producing entangled particles (Bruschi et al.,
2012; Fulling et al., 1976; Moore, 1970); parametric
down-conversion where a medium change produces en-
tangled photons (Kwiat et al., 1995); and effects of quan-
tum field theory such as Hawking radiation (Hawking,
1974) and the creation of particles by the expansion of the
universe (Birrell and Davies, 1982; Polarski and Starobin-
sky, 1996), among other interesting effects. This connec-
tion is made evident through the mathematical formal-
ism of both quantum optics and quantum field theory
in curved spacetime, where Bogoliubov transformations
produce mode-mixing and two and single-mode squeezing
of modes. In (Friis et al., 2013), the formalism of continu-
ous variable quantum information is applied to quantum
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field theory in curved spacetime to compute entangle-
ment in relativistic settings. Quantum field theory has
been demonstrated numerous times in the flat case, how-
ever, they key predictions of the theory in the presence of
gravity are currently out of experimental reach. Systems
such as black holes are not accessible to experimentation,
and most predicted effects are too small. Consider, for
example, the dynamical Casimir effect, where produc-
ing excitations via oscillating mirrors requires velocities
close to the speed of light. Oscillating a microwave mir-
ror at a frequency of 2 GHz with a displacement of 1 nm
produces velocities of only v ≈ 10−7c. At these velocities,
approximately one photon is produced per day. However,
moving the mirror at these speeds requires an input of
mechanical power of 100 MW, and at the same time, a
temperature of ≈ 20 mK is needed to ensure that the field
is in the vacuum state. For this reason, it has become
fashionable to simulate effects in the lab. Photon creation
by a moving boundary condition was demonstrated using
a superconducting circuit where the electromagnetic flux
going through a SQUID produced a boundary condition
moving at a third of the speed of light (Wilson et al.,
2011).

Analog experiments help test consistencies within a
given mathematical model. An alternative that involves
using a massive system in a small-scale lab is to test the
key predictions of the theory using Bose-Einstein con-
densates (BECs). Atomic interactions in a BEC pro-
duce phonons, which are a massless quantum field that
obey a Klein-Gordon equation in an effective curved met-
ric (Fagnocchi et al., 2010; Hartley et al., 2019a; Sab́ın
et al., 2014; Visser and Molina-Paŕıs, 2010),

◻ψ = 1√
−G

∂µ (
√
−gGµν∂νψ) , (113)

where G ∶= det(G) is the effective metric given by

Gµν = ρ c
cs
(gµν + (1 −

c2s
c2
)
uµuν

∣uµ∣∣uν ∣
) . (114)

Here gµν is the spacetime metric, ρ is the density of the
condensate, c the speeds of light and cs is defined by

c2s ∶=
c2c20

∣uαuα∣ + c20
, (115)

with c20 ∶= λρh̵2/2m2 and the four-vector uµ is the flow
associated with the phase of the wave function of the
BEC bulk. The speed of sound in the BEC is c0, and the
density ρ of the BEC may depend on space and time co-
ordinates. By choosing or changing the density, the speed
of sound, or the velocity field, it is possible to simulate
certain spacetime metrics.

One metric that can be simulated this way is that of
a black hole, which makes it possible to test Hawking’s
prediction for black hole radiation (Hawking, 1974, 1975).

By starting from the expression for an irrotational fluid,
∇×v = 0, where v is the velocity of the fluid, the analog
to the Schwarzschild metric is (Unruh, 1981)

ds2 = ρ
⎛
⎝
(c2 − v2)dr2 − 1

1 − v2

c2

dt2 − r2dΩ2⎞
⎠
, (116)

where ρ is the density of the fluid, v, as before, is the
velocity of the fluid, and c is the speed of the particles,
also referred to as the speed of sound. The Hawking
temperature is then given by

TH =
h̵

4πkBc
[ d
dx
(c2 − v2)] . (117)

The TH of a BEC should be about 1 nK (Unruh, 1981).
A BEC black hole emitting Hawking radiation has been
both theoretically simulated (Carusotto et al., 2008) and
experimentally realized(Lahav et al., 2010; Steinhauer,
2014, 2022; Steinhauer et al., 2022). Beyond BECs, an
analog of Hawking radiation can also be observed in
quantum optics (Philbin et al., 2008) using the nonlinear
Kerr effect that arises in certain dielectric media.

We note that computer and analog simulations on
their own cannot falsify nor verify theories. As a re-
sult, current analog gravity experiments cannot be said
to test general relativity directly. Fortunately, experi-
mental settings are reaching scales where the key pre-
dictions of quantum fields in curved spacetime are be-
coming testable in the laboratory. Theoretical studies
have shown that actual changes of the spacetime met-
ric gµν can, in principle, produce observable effects on
phonon states (Sab́ın et al., 2014). This effect is at the
heart of the proposals to detect high frequency persistent
gravitational waves (Sab́ın et al., 2014), search for dark
matter and dark energy (Howl and Fuentes, 2023), open-
ing the possibility of testing the predictions of quantum
field theory in curved spacetime in the lab. Some aspects
of the interplay of quantum fields and general relativity
could be tested in space-based experiments where pho-
ton entanglement has been distributed across thousands
of kilometers (for a review, see (Sidhu et al., 2021)). At
these scales, relativity kicks in since the proper time on
Earth is different from the proper time on a satellite.
Theoretical studies have shown that spacetime curvature
affects the propagation of light wavepackets on Earth, af-
fecting quantum communications (Bruschi et al., 2014b).
This effect goes beyond the gravitational phase shift pre-
dicted by special relativity. The curvature of the space-
time around the Earth can flatten traveling wavepackets,
as well as decohere quantum state,s and these effects can
be used to measure spacetime parameters (Bruschi et al.,
2014a; Kohlrus et al., 2019, 2017).
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V. EXPERIMENTAL PATHWAYS TOWARDS TESTS OF
GRAVITY

In the previous section, we reviewed proposals for test-
ing the overlap between quantum mechanics and gravity
with massive quantum systems. Here we review experi-
mental advances toward the regime where the dynamics
of quantum systems are affected by gravity.

To showcase the diversity of systems available, we pro-
vide a graphical overview of different platforms in Fig. 5.
To further demonstrate advances that have been made
in terms of controlling massive systems in the laboratory,
we plot of masses vs. phonon numbers achieved for me-
chanical oscillator in Fig. 6. Here, the symbols represent
the type of system, and the colors indicate the date of
publication. For comparison, the largest Bose-Einstein
condensates (which are not included in the plot) that
have been created thus far contain around 1010 atoms
(van der Stam et al., 2007), which have a total mass
of 4 × 10−16 kg in the case of sodium. We start by re-
viewing the state-of-the-art experimental tests of gravity
today (Sec. V.A), then we provide an overview of key
methods for controlling massive quantum systems in the
laboratory, including preparing squeezed states, spatial
superpositions, and entangled states (Sec. V.B).

A. State-of-the-art of experimental tests of gravitation
with massive systems

Here, we review experiments that have made headway
toward testing aspects of gravity, such as precision force
sensing. In Fig. 7, we plot the force sensitivities that have
been achieved to date against the masses of the probe
systems. We note that it is not always clear whether
the values reported can be compared directly, as we do
here. In some cases, such as for (Hofer et al., 2023),
the values plotted are based on predictions for the ideal
experiment. We refer the interested reader to further
consult the works in questions, which are cited in the
caption of Fig. 7.

1. Tests with atoms and molecules

Since its early demonstrations and pioneering work of
Kasevich and Chu (Kasevich and Chu, 1991), atom in-
terferometry employing laser-cooled cold atoms (Cronin
et al., 2009) has been established as a precision tech-
nique for sensing (Peters et al., 1999, 2001; Tino, 2021),
with the realization of sensitive gravimeters, gravity gra-
diometers, and gyroscopes. In addition to measuring the
gravitational acceleration due to the earth g with part-
per-billion precision, atom interferometers have also been
used to measure the Newton constant GN (Lamporesi
et al., 2007; Rosi et al., 2014; Sorrentino et al., 2010) at

the 150 parts-per-million level and are promising for im-
proving tests of the gravitational inverse square law at
laboratory scales (Tino, 2021). Several theories, as de-
scribed in Sec. IV.A.4 predict modifications of the New-
tonian inverse square law with a Yukawa type deviation
below the mm length scale, such as that described in
Eq. (73). As one particularly well-suited class of modified
gravity theories, interferometry with cold atoms is ideal
to study Chameleon forces (Jaffe et al., 2017; Sabulsky
et al., 2019) due to the screening effect present in larger
scale test masses. Atom interferometry has also been
used to test the Einstein Equivalence principle (Schlip-
pert et al., 2014) at the part-per-trillion level (Asenbaum
et al., 2020) and has been proposed as a technique for pre-
cision tests of general relativity (Dimopoulos et al., 2007).
In addition, atom interferometry has been identified as
a promising method to search for gravitational waves
in the mid-band (∼ 1 Hz) (Abe et al., 2021; Badurina
et al., 2020; Canuel et al., 2018), between the sensitivity
bands of the ground-based interferometer detectors (Ab-
bott et al., 2016a) and LISA (Amaro-Seoane et al., 2017;
Seoane et al., 2013). Recent work has enabled the detec-
tion of the gravitational analog of the Aharonov-Bohm
effect in precision atom interferometry (Overstreet et al.,
2022a,b).

The sensitivity of atom interferometers as gravime-
ters are limited by the interrogation time T , which for
free-fall interferometers scales as δϕ = keffgT 2, limiting
earth-based experiments to times of order 1 second for
a 10-meter drop path. Here g is the Earth’s gravita-
tional acceleration and keff is the effective wave-vector
of the momentum transfer in the beamsplitter pulse of a
light-pulse atom interferometer. Large momentum trans-
fer beamsplitters (Kirsten-Siemß et al., 2023; Rudolph
et al., 2020) are a pathway for improved sensitivity when
limited by interrogation time constraints. Recent work
has demonstrated a momentum transfer of 102h̵k in
87Rb (Chiow et al., 2011), 112h̵k in 174Yb (Plotkin-Swing
et al., 2018), and 141h̵k in 88Sr (Rudolph et al., 2020).
Space-based approaches may permit significantly longer
interrogation times, and alternatively, atom interferome-
try with atoms trapped in a lattice can extend interroga-
tion times up to 20 seconds (Xu et al., 2019), with recent
work recently surpassing a minute (Panda et al., 2023).

Atom interferometry has also been performed with
ultra-cold atoms cooled to quantum degeneracy, both
with bosonic (see for example (Kovachy et al., 2015;
Müntinga et al., 2013; van Zoest et al., 2010)) and
fermionic (Roati et al., 2004) atomic species. Bose-
Einstein condensates (BECs) of ultracold atoms are a
versatile platform that can be used for a variety of preci-
sion quantum sensing applications, where their slow wave
packet expansion and coherence play an important role.
Interferometry with Bose-Einstein condensed atoms has
been proposed as a method to search for short-range devi-
ations from Newtonian gravity (Dimopoulos and Geraci,
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FIG. 5 Illustration of state-of-the-art mechanical systems. This figure encapsulates an array of resonators utilized in
experimental efforts aimed at detecting the interplay between quantum mechanics and gravity. The leftmost column showcases
mechanical resonators: a 2D clamped resonator (Graphene), a 1D clamped resonator (A suspended carbon nanotube), and
a 1D singly clamped beam resonator, illustrating the diversity in mechanical systems. The central column depicts optical
levitation systems: a standalone optical levitation and a hybrid Paul-optical levitation system, demonstrating the integration
of optical techniques. The rightmost column presents an electrical resonator and a magnetic levitation system, representing the
incorporation of electromagnetic methodologies. Together, these systems exemplify the wide range of experimental apparatuses
employed in the quest to uncover the interplay between quantum mechanics and gravity.

2003). Bloch oscillations of bosonic Sr atoms have been
considered as a method to test short-range gravitational
forces (Ferrari et al., 2006). The largest condensates of
ultracold atoms have realized atom numbers as large as
20-120 million (van der Stam et al., 2007; Streed et al.,
2006), with reports of atom interferometry with 5 million
atoms (Hardman et al., 2016). Atom chip-based atomic
interferometry experiments with Bose-Einstein conden-
sates have been performed using as many as 4 × 105

atoms (Jo et al., 2007). Key advantages when compared
with mechanical oscillators are the environmental decou-
pling and quantum coherence as well as a mature toolbox
for quantum state preparation and measurement. BECs
and atom interferometers, in general, can, in principle,
achieve atom shot-noise limited sensitivity, with a phase
resolution scaling as δϕ ∼ 1/

√
N . Interferometry with

phase resolution at the Heisenberg limit δϕ ∼ 1/N is also
possible with the aid of squeezed and highly entangled
states (Szigeti et al., 2021). A challenge has to do with
the fragility of such highly entangled states due to en-
vironmental perturbations such as background gas colli-
sions.

Another modality of sensing with BECs involves ob-
serving their center of mass oscillations or collective
modes. For example, the center of mass oscillation of
BECs has been used to measure Casimir-Polder surfaces
between the condensate and a nearby surface (Harber
et al., 2005). The dynamical response of the phonons of
BECs has also been predicted to be very sensitive to ac-

celeration due to the gravitational attraction of nearby
masses, with sensitivities to oscillating masses at the hun-
dred mg scale at millimeter separations (Rätzel et al.,
2018). Experiments employing a BEC in a double-well
are useful for a variety of fundamental physics tests and
could have some advantages when compared to methods
using solids (Howl et al., 2019). BECs can be cooled
down to picoKelvin regime lowering some sources of
noise. Another advantage is that atoms are free to tun-
nel between wells and states such as two-mode squeezed
states can be prepared involving atom superpositions
between the two wells (Esteve et al., 2008). However,
particularly challenging is to prepare Schrödinger cat or
NOON states. These states are very sensitive to deco-
herence. The most limiting source of noise is three-body
recombination (Tolra et al., 2004).

Also, atom interferometry with atoms trapped in an
optical lattice has been suggested as a possible route
towards observing quantum entanglement induced from
the gravitational interaction with a mechanical oscilla-
tor (Carney et al., 2021c), albeit with additional assump-
tions (Hosten, 2022; Ma et al., 2022; Streltsov et al.,
2022).

Finally, matter-wave interferometers for complex
molecules formed of many atoms are also promising for
tests of gravity as they benefit from the increase in mass
in superposition (Fein et al., 2019). One example is
shown in Fig. 9 (a) and (b), where interferometry mea-
surements assess the acceleration of Cesium atoms to-
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FIG. 6 Masses and phonons of massive quantum systems. The plot shows the masses of systems controlled in the
laboratory plotted against the mechanical occupation number (phonons). The colors indicate the year of publication, while
the symbols indicate the type of system. Where phonon occupancy numbers were not explicitly stated in the publication, we
have estimated them using N = kBT /(h̵ωm), where N is the number of thermal phonons, kB is Boltzmann’s constant, T is the
temperature, and ωm is the reported mechanical frequency. We classify systems as hybrid whenever a qubit or similar system
is used to interface with the mechanical element. The data points correspond to the following references: JILA ’08: (Teufel
et al., 2008), Vienna ’09: (Gröblacher et al., 2009b), MPQ ’09: (Schliesser et al., 2009), UCSB ’10: (O’Connell et al., 2010),
EPFL ’11: (Riviere et al., 2011), NIST ’11: (Teufel et al., 2011), Caltech ’11: (Chan et al., 2011), NBI ’18: (Rossi et al., 2018),
Delft ’19: (Guo et al., 2019), Néel ’21: (Cattiaux et al., 2021), NBI ’22: (Seis et al., 2022), EPFL ’23: (Youssefi et al., 2023),
ICFO ’18: (De Bonis et al., 2018), ICFO ’14: (Moser et al., 2014), MIT ’11: (Schleier-Smith et al., 2011), Soton ’17: (Vovrosh
et al., 2017), ETH ’19: (Windey et al., 2019), ETH ’20: (Tebbenjohanns et al., 2020), Vienna ’20: (Delić et al., 2020), Tokyo
’21: (Kamba et al., 2021), ETH ’21: (Tebbenjohanns et al., 2021), Vienna ’21: (Magrini et al., 2021), Tokyo ’22: (Kamba
et al., 2022), Florence ’22: (Ranfagni et al., 2022), ETH ’23: (Piotrowski et al., 2023), UCL ’23: (Pontin et al., 2023), LIGO
’21: (Whittle et al., 2021).

ward a tungsten cylindrical mass in an ultrahigh vacuum
environment. This setup employs a Mach-Zehnder in-
terferometer with Raman transitions to measure phase
differences and determine acceleration, adapted from
(Jaffe et al., 2017). Additionally, the duration of free
fall in Earth’s gravity ultimately limits the mass of
molecules in interferometry, while it is more difficult to
pick up a COW-like phase in the typically near-field
regime of operation of these large-mass interferometers
(see Sec. II.A.1 for a discussion of Collela-Overhauser-
Werner (COW) phases on matter waves). Fig. 8 illus-
trates the optical COW experiment conducted in space,
demonstrating how a single photon split by an unbal-
anced Mach-Zehnder interferometer and transmitted to a
satellite reveals gravity-induced phase shifts through ob-
served interference (Mohageg et al., 2022). More details
about molecule interferometry experiments are given in

Sec. V.B.2.

2. Tests with neutrons

Neutrons have proven to be a powerful probe for test-
ing our understanding of gravity. The equivalence prin-
ciple, which states that all objects fall at the same rate
in a gravitational field regardless of their composition or
structure, can be scrutinized using neutron matter-wave
interferometry (Colella et al., 1975; Greenberger, 1983;
Rauch et al., 1975) (see also Sec. II.A.1). In these exper-
iments, a neutron beam is split into two paths. These
two paths then interfere upon recombination, a process
that allows for precise determination of the relative grav-
itational potential experienced by the neutrons in the
two paths. The equivalence principle is tested by mea-
suring the phase shift in the interference pattern. Such
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FIG. 7 Force sensitivities achieved with massive probe
systems. The colors correspond to BECs (blue), hybrid
systems (pink), torsion balances (green), levitated systems
(purple), and clamped systems (orange). Plus signs indicate
that the system contains less than one thermal phonon. We
classify systems as hybrid whenever a qubit or similar sys-
tem is used to interface with the mechanical element. The
data points correspond to the following references: Canberra
’16: (Hardman et al., 2016), Boulder ’03: (Long et al., 2003),
Stanford ’03: (Chiaverini et al., 2003), Stanford ’08: (Geraci
et al., 2008), ICL ’18: (Pike et al., 2018), ICFO ’18: (De Bonis
et al., 2018), ICFO ’14: (Moser et al., 2014), ICFO ’18: (Tav-
ernarakis et al., 2018), UC ’99: (Goodkind, 1999), Maryland
’02: (Moody et al., 2002), Reno ’16: (Ranjit et al., 2016), So-
ton ’17: (Hempston et al., 2017), Yale ’17: (Monteiro et al.,
2017), Yale ’20: (Monteiro et al., 2020), UCL ’20: (Pontin
et al., 2020), Montana ’21: (Lewandowski et al., 2021), Vienna
’21: (Magrini et al., 2021), Stanford ’21: (Blakemore et al.,
2021), Tokyo ’22: (Kamba et al., 2022), Leiden ’23: (Fuchs
et al., 2023), Vienna ’23: (Hofer et al., 2023), ESA ’16: (Ar-
mano et al., 2016), MICROSCOPE ’17: (Touboul et al., 2017),
Seattle ’12: (Wagner et al., 2012), Seattle ’15: (Terrano et al.,
2015), Vienna ’21: (Westphal et al., 2021), Seattle ’22: (Shaw
et al., 2022), ISTA ’24: (Agafonova et al., 2024).

an approach has made it possible to verify the equiva-
lence principle to a high degree of precision (Lämmerzahl,
1996; Lämmerzahl, 1998). One of the main advantages
of neutrons in these experiments over atoms is that neu-
trons are uncharged, meaning they are free from the elec-
tromagnetic forces that can influence the movement of
atoms. This allows the gravitational interactions to be
studied with less interference from other forces, leading
to a higher degree of precision in the results.

Later, with the advancement in the field, ultra-cold

neutrons (UCN) emerged as a robust tool for testing
gravitational theories. The UCNs originated from the in-
sights of Enrico Fermi (Fermi et al., 1936) who recognized
the potential of slow neutrons to interact coherently while
scattering, creating an effective interaction potential for
neutrons passing through matter. This led to the con-
cept of storing neutrons with very low kinetic energies,
initially predicted by (Zeldovich, 1959) and first realized
experimentally by groups in Dubna (Lushikov and et al.,
1969) and Munich (Steyerl, 1969). A significant break-
through was made by (Nesvizhevsky et al., 2002), who
observed quantized states of matter under the influence
of gravity using UCNs. Their work has further opened
up possibilities for probing fundamental physics, such
as the equivalence principle (Nesvizhevsky et al., 2002).
More generally, the advancement in this field has led to
UCNs becoming a robust tool for testing gravitational
theories (Ivanov et al., 2021; Steyerl et al., 1977). UCNs
cooled nearly to absolute zero can be stored for extended
periods, enabling precise measurements of the gravita-
tional behavior of neutrons. In recent years, there have
been advances in the production of UCNs, with (Zimmer
et al., 2011) reporting a world-best UCN density avail-
able for users, achieved with a new source based on the
conversion of cold neutrons in superfluid helium. Exper-
iments with UCNs aim to measure the gravitational free-
fall of neutrons with high accuracy, offering a platform
to test general relativity and other theories like modified
Newtonian dynamics (MOND) (Famaey and McGaugh,
2012). Ultracold neutron (UCN) spectroscopy has been
instrumental in constraining various theories and phe-
nomena, including dark energy, chameleon fields, (Jenke
et al., 2014) and new short-range forces (Kamiya et al.,
2015). In a recent experiment (Haddock et al., 2018)
a pulsed neutron beam was deployed to probe Newton’s
law of universal gravitation on subnanometer scales. The
results set a stringent upper bound on the magnitude
of potential unaccounted-for forces, enhancing the foun-
dation upon which we apprehend gravity. Moreover,
promising theoretical outlooks are unveiling new paths
of exploration, including measurements of the gravita-
tional redshift of neutrons. This involves observing the
change in energy of a neutron due to a change in gravi-
tational potential, establishing a promising technique for
testing general relativity (Roura, 2022). Advancements
are also foreseen in the precision of measuring the elec-
tric dipole moment of neutrons, with potential assistance
from quantum sensors based on weak-value amplifica-
tion (Altarev et al., 1986; Knee et al., 2013; Pendlebury
et al., 2015). Other projects, such as the qBOUNCE
and the GRANIT collaborations, aim to expand the un-
derstanding of gravity at short distances by examining
gravitationally bound quantum states of ultra-cold neu-
trons (Jenke et al., 2019, 2009; Kreuz et al., 2009). Stud-
ies such as these could impose stringent constraints on
hypothetical fields and forces, further refining our un-
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FIG. 8 Simplified diagram of the optical COW experiment in space. A single photon is split into two paths using
an unbalanced Mach-Zehnder interferometer (MZI). This photon is then transmitted to a satellite with an identical MZI. The
interference observed at the satellite shows the phase shift caused by gravity. Adapted from (Mohageg et al., 2022).

derstanding of gravity and providing insights that might
push beyond the boundaries of currently accepted theo-
ries. For a more detailed review of gravity measurements
by neutrons, we recommend (Pokotilovski, 2018).

3. Tests with torsion balances and clamped mechanical systems

Sensitive torsion balances are a powerful and proven
method for studying exotic short-range gravity (Kapner
et al., 2007; Lee et al., 2020), equivalence-principle vi-
olation involving ordinary and dark (Shaw et al., 2022;
Wagner et al., 2012) matter, and novel spin-dependent
interactions (Terrano et al., 2015) as well as measuring
the Newton constant (Gundlach and Merkowitz, 2000).
They remain one of the most promising paths forward
for these studies as their sensitivity continues to increase
and the understanding of background noise and system-
atic errors from patch charges and other surface forces
improves.

Current tests are often limited by environmental vi-
brations that can “kick” the pendulum, exciting it’s
fundamental and spurious (swing, bounce, and wobble)
modes (Wagner et al., 2012). This is particularly in
short-range tests where patch charges couple to the spu-
rious modes producing noise that dominates at small
separations and limits the minimum attainable separa-
tion (Lee et al., 2020). Time-varying environmental grav-
ity gradients limit equivalence-principle tests. Both of
these technical limiting factors could be addressed by the
development of a suitable low-vibration underground fa-
cility.

Torsion balance experiments (shown in Fig. 9 (c)
and (d)) have typically employed relatively large source
masses, well beyond the scale envisioned for achieving a

quantum superposition. Work towards employing sub-
mm-scale source masses and similarly miniaturized tor-
sion pendula is underway (Westphal et al., 2021). In this
work, thus far the smallest source mass that has been
used for a gravitational measurement is approximately
the mm scale. While far from the scale where macro-
scopic quantum superpositions have been imagined in in-
terference experiments, this work represents a step in this
direction to bridge this gap. These experiments also tend
to operate at low frequencies and are limited by the same
environmental perturbations and thus could benefit from
similar future low-noise facilities.

At even smaller length scales, microcantilevers (Chi-
averini et al., 2003; Geraci et al., 2008) and microfab-
ricated torsion oscillators (Long et al., 2003) have been
used to obtain bounds on Yukawa type deviations of the
Newton inverse square law at distances ranging from a
few microns to tens of microns. Cutting-edge nanofabri-
cation technology is making it possible to routinely de-
sign advanced 2D and 1D clamped resonators with mas-
sive quality factors, for instance, suspended silicon nitride
membranes and carbon nanotube resonators.

Clamped mechanical systems interfaced with super-
conducting qubits have emerged as a fertile ground for
probing the interplay between quantum mechanics and
macroscopic objects. Early groundbreaking experiments
demonstrated the feasibility of reaching the quantum
ground state of mechanical resonators using supercon-
ducting circuits (O’Connell et al., 2010; Teufel et al.,
2011). Furthermore, laser cooling techniques have been
adapted to cool nanomechanical oscillators into their
quantum ground state (Chan et al., 2011). Recent work
in (Qiu et al., 2020) reported laser cooling a clamped
oscillator to an average occupation number as low as
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FIG. 9 Experimental setup and interferometry measurement. (a) Setup for measuring Cesium atoms’ acceleration
towards a 0.19 kg tungsten cylinder in ultrahigh vacuum. The cylinder is 2.54 cm in height and diameter, with a 0.5 cm axial
through-hole and slot width. Differential measurements are used to study interactions with the mass. (b) A Mach–Zehnder
interferometer using Raman transitions in an optical cavity. Three laser pulses manipulate Cesium atoms, splitting, reflecting,
and recombining them to measure phase differences, providing an ensemble-averaged acceleration over 110 ms across approxi-
mately 100,000 atoms. Adapted from (Jaffe et al., 2017). (c) Schematic of a Cavendish torsion balance with dumbbell masses
(M), external forces (F), and resulting rotation angle (θ). (d) Torsion pendulum as a gravitational acceleration transducer,
containing two gold spheres (1 mm radius, 40 mm apart) on a glass capillary. One sphere serves as a test mass (90.7 mg),
the other as a counterbalance (91.5 mg). A silica fiber with a diameter of 4 µm supports the pendulum with a 3.6 mHz
torsional resonance. The torsion angle is detected optically. The source mass (92.1 mg) is harmonically moved 3 mm at 12.7
mHz to enhance the gravitational signal. Electrostatic interference is reduced using Faraday shield and discharging techniques.
Adapted from (Westphal et al., 2021).

⟨n⟩ = 0.09 phonons.

Building upon this lineage of research, (Youssefi et al.,
2022b) introduced a hybrid quantum system consisting
of a superconducting circuit seamlessly integrated with
a micromechanical oscillator. Achieving a thermal deco-
herence rate of 20.5 Hz and a dephasing rate of 0.09 Hz,
they enabled the free evolution of a squeezed mechanical
state over milliseconds. We anticipate that such advances
will enable exploration of elusive phenomena that arise
from the interplay between quantum mechanics and gen-
eral relativity.

Furthermore, LIGO-style experiments have also con-
tributed significantly to the field. The Laser Interferom-
eter Gravitational-Wave Observatory (LIGO) (Abbott
et al., 2016b), as shown in Fig. 10, has provided direct
evidence for the existence of black holes and opened up
a new avenue for exploring the nature of gravity.

In conclusion, tests with clamped systems, including
torsion balances, have proven effective in studying grav-
ity and fundamental physics. Challenges such as envi-
ronmental vibrations and technical limitations have mo-
tivated the development of low-vibration facilities and
miniaturization efforts. Nanofabrication techniques have
enabled advanced resonators, while hybrid quantum sys-
tems offer new avenues for investigating quantum physics
and dark matter. Additionally, LIGO-style experiments
have made groundbreaking contributions to our under-
standing of gravitational waves. Overall, these advances
hold substantial potential to advance our understanding
of gravitational phenomena.

4. Tests with levitated mechanical systems

Levitated mechanical systems offer a platform to in-
vestigate the interplay between quantum mechanics and
gravity in the low-energy non-relativistic regime. Since
levitated systems are much isolated from their envi-
ronment the center of mass motion can be very close
to an ideal harmonic oscillator persisting at large Q-
factors (Geraci et al., 2010). Such isolation together with
the, in principle, quantum-limited detection of the posi-
tion and therefore motion of the mechanical system by
light (or direct electrical or magnetic interactions) make
them exceptional for testing quantum effects in grav-
ity (Aspelmeyer et al., 2014; Caves et al., 1980).

Recently, the study of levitated mechanical systems
has gone beyond the usual limits set by the gravitational
law that governs how objects attract each other (Arndt
and Hornberger, 2014). In (Moore and Geraci, 2021;
Priel et al., 2022) the finer points of gravity-related phe-
nomena were explored by probing two-particle interac-
tions with levitated particles beyond established force
laws based on precise force and acceleration measure-
ments.

In some more detail, levitated systems provide a plat-
form to generate and coherently control quantum effects
in their motion via ground-state cooling, measurement-
based schemes, and more (Aspelmeyer et al., 2014) and
at the same time, come with sufficient mass for di-
rectly testing gravity effects on experimentally accessi-
ble time and magnitude scales. Quantum experiments
with gravitating particles of the Planck mass (mpl =
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FIG. 10 LIGO laser interferometer setup. The interference of light in the two arms leads to the detection of extremely
small displacements. Adapted from (Scharpf et al., 2017).

√
h̵c/G) (Aspelmeyer, 2022; Ulbricht, 2021) become fea-

sible. In addition, the levitated system has a full set
of only six mechanical modes of translation (x, y, z) and
rotation (α,β, γ) which are developed to be used as
quantum probes of gravity in the linear and nonlinear
regimes (Bateman et al., 2014; Gosling et al., 2024; Kil-
ian et al., 2024). Recent experiments achieved the simul-
taneous cooling of all those modes (Kamba et al., 2023;
Pontin et al., 2023), which opens the door for quantum
state preparation (Delić et al., 2020). Rotational states
provide a unique setting with their intrinsic nonlinearities
for quantum experiments (Schrinski et al., 2022; Stickler
et al., 2018).

Besides the prospects of using levitated mechanical
systems for force (Winstone et al., 2018) and inertial
sensing (Teufel et al., 2011), direct gravity probes are
emerging. Gravity affects levitation directly but is neg-
ligible in small-mass particle optical levitation (Ashkin
and Dziedzic, 1971; Rademacher et al., 2022a), while rel-
evant in larger mass Paul ions (Paul, 1990), In Meissner-
superconducting and diamagnetic traps, g influences the
trapping position and has a clear effect (Cano et al.,
2008). Static gravity was measured with levitated op-
tomechanics by turning off the trap (Frimmer et al.,
2017). In addition, a Meissner levitated magnet has
been used in a two-mass gravity detection experiment
and has measured gravity at the level of attonewton grav-
ity (Fuchs et al., 2023).

In optical levitation, nano and microparticles trapped
in an ultra-high vacuum can be cooled down to their
ground state of center-of-mass motion through radiation
pressure forces exerted by optical cavities (Barker and
Shneider, 2010; Chang et al., 2010; Libbrecht and Black,

2004; Romero-Isart et al., 2010). This technique has been
explored for over a decade to test short-range gravity
forces (Geraci et al., 2010). By employing optically levi-
tated systems where microspheres are trapped and cooled
in a vacuum, it has been possible to probe and mea-
sure gravitational effects with unprecedented precision
at the micrometer scale (Ranjit et al., 2016). Nanopar-
ticles with a cooled center of mass temperature can also
serve as a source for matter-wave interferometry exper-
iments (Bateman et al., 2014), which could be used for
measuring gravitational acceleration and probing gravity
at the micron length scale (Geraci and Goldman, 2015).

Recent experiments (Timberlake et al., 2021) employed
levitation via the Meissner effect, where two magnets sus-
pended in a levitated state perturb each other’s motion
to measure the gravitational attraction between them.
These experiments demonstrated the practicality of mea-
suring gravitational acceleration for small masses, show-
casing the potential for future improvements in experi-
mental setups. Additionally, the gravitational constant
(G) can be estimated from such measurements. Coupling
to superconducting LCs in cryogenic environments. Paul
ion trapping provides a stable trap for tuneable e/m ra-
tios (Paul, 1990). The close technological heritage from
atomic Paul trapping makes available a set of the center
of mass motion state preparation protocols and tools for
the manipulation, cooling, and control of charged nano-
and micro-particles motion via electro-dynamical ion lev-
itation (Leibfried et al., 2003; Schneider et al., 2010).

The LISA Pathfinder (LPF) mission, designed to de-
tect gravitational waves in space, utilized electrostatic
detection of freely falling masses on the level of kilo-
gramm (Armano et al., 2016). LPF data, as well as those
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from earth-bound gravitational wave detectors, were em-
ployed to establish strong upper bounds on CSL and DP
models and are space-based derivatives of ground-based
optomechanical precision experiments, including gravita-
tional wave detectors such as LIGO, VIRGO, GEO600,
but also AURIGA (Carlesso et al., 2016). LPF is simi-
lar to other space missions such as Gravity Probe B to
test Lense-Thirring GR frame-dragging effects (Everitt
et al., 2011), and GRACE, GOCE the satellite gradiome-
try missions (Drinkwater et al., 2003; Tapley et al., 2004).
The MICROSCOPE mission (Touboul et al., 2017) aimed
to test the weak version of the equivalence principle, the
basic principle of Einstein’s theory of general relativity.
Test masses made of different materials but with equal
inertial masses were used in this experiment. By monitor-
ing the motion of these masses over an extended period,
MICROSCOPE sought to detect any deviations from the
principle. The results of MICROSCOPE provided strong
evidence in support of the principle, consolidating the
predictions of general relativity.

In conclusion, levitated systems have emerged as a
promising platform for investigating the interface be-
tween quantum mechanics and gravity. Recent advance-
ments, such as Meissner effect-based levitation and space-
based experiments like LISA Pathfinder and MICRO-
SCOPE, have expanded our capabilities to study fun-
damental physics principles. The precise measurements
achievable in levitated systems, coupled with the micro-
gravity environment of space, contribute to our under-
standing of gravity, general relativity, and the fundamen-
tal laws of physics. To this end, the recent MAQRO
proposal aims to explore levitated particle dynamics in
space, which would open a pathway for matter-wave in-
terference experiments with long interaction times, by
not being subject to falling under Earth’s gravity (Be-
lenchia et al., 2022; Kaltenbaek et al., 2022). Future ad-
vancements in levitated systems and their applications
hold exciting prospects for furthering our knowledge of
the quantum-gravity interface (Rademacher et al., 2020).

5. Approaches with hybrid systems

Last but not least, there are also hybrid mechani-
cal systems (Kolkowitz et al., 2012; Rogers et al., 2014;
Treutlein et al., 2014) where systems other than optical
fields/photons are coupled to mechanical motion. Hy-
brid mechanical systems are indeed very powerful ex-
periments building on the well-studied Jayens-Cummings
Hamiltonian physics of a two-level system coupled to a
continuous variable - quantum harmonic oscillator - sys-
tem, as discussed in Sec.III.A.2. Hybrid systems have
been indeed at the forefront of demonstration of quan-
tum states of very massive systems, while for relevance
for probing gravity effects, one has to consider that many
of the hybrid systems involve non-center-of-mass mo-

tional modes, such as vibration modes of membranes
states (O’Connell et al., 2010) or acoustic modes in su-
perconducting qubits (Chu et al., 2017). Hybrid systems
are arguably the most established mechanical quantum
systems, and the quantum aspects of hybrid systems are
discussed more in Sec. V.B.2 as they are used for the
generation of massive superpositions and as well as for
demonstration of quantum entanglement between two
large-mass systems. Typically, in hybrid systems, the
mechanical modes are at high frequency (100 MHz to
10 GHz) which allows for cooling to the quantum ground
state by cryogenics, usually in dilution-type refrigerators.
Such ground state cooling gives direct access to the quan-
tum regime and for quantum state preparation and co-
herent control schemes. An example where this has been
done by continuous weak measurement (see for theory
on measurement based control Sec. III.C) based feedback
techniques is the work by Siddiqi (Siddiqi, 2021), which
is built on a record-high detection efficiency of the mea-
surement of more than 80%. A more detailed account
of the physics of hybrid systems is given in (Aspelmeyer
et al., 2014).

However, there are approaches for testing aspects of
gravity by hybrid systems including for gravitational
wave detection including coupling atoms to an optome-
chanical cavity which influences the atom-cavity interac-
tion (Camerer et al., 2011), cooling the system by link-
ing a superconducting qubit to a mechanical resonator
for improved detection sensitivity (O’Connell et al.,
2010) and integrating quantum dots with mechanical res-
onators or optical cavities for enhanced detection (Ben-
nett et al., 2010; Yeo et al., 2014). Also, the use of solid-
state systems with mechanical resonators, coupled with
optical cavities, proves promising for gravitational wave
detection (Arcizet et al., 2011; Kolkowitz et al., 2012).
These various approaches leverage the unique properties
of different components for higher sensitivity and preci-
sion in gravitational wave detection; for instance, the use
of optomechanical systems that offer enhanced cooling by
constructive quantum interference and suppressed heat-
ing by destructive interference, which is essential for pre-
cision control and quantum information processing (Chen
et al., 2015). Furthermore, modern hybrid systems allow
for the exploration of the quantum-classical mechanics
interface and demonstrate the potential for a paradigm
shift from cryogenic to room temperature quantum ex-
periments using hybrid nanoelectromechanical system
(NEMS) resonators (Tavernarakis et al., 2018). Such ad-
vancements reflect the rapidly evolving potential of hy-
brid systems in examining quantum physics at a macro-
scopic scale and as an avenue for quantum state genera-
tion in massive mechanical systems (Akram et al., 2015;
Liu et al., 2021a).

In conclusion, hybrid systems are expected to open new
ways to inject quantum features into large-mass mechan-
ical systems by coupling to qubit systems, and the first
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concrete steps have been taken already. Hybrid mechan-
ical systems will play a key role to probe into gravity
effects within the domain discussed in this review, be-
cause of the maturity of quantum controlling large-mass
mechanical states.

B. Controlling massive mechanical quantum systems in the
laboratory

Here we briefly review experimental achievements and
theoretical proposals for large-mass mechanical systems
in the quantum domain by sectioning into three classics
of exemplary quantum states: squeezing, superposition,
and entanglement.

1. Squeezing and swapping of mechanics

As we are interested in creating quantum states of me-
chanics, we here discuss the squeezing of mechanical de-
grees of freedom. We do not, however, discuss the ap-
plication of squeezed light to mechanical oscillators as
it was, for instance, used to advance the gravitational
wave detectors VIRGO (Schnabel, 2017) and eventually
LIGO (Aasi et al., 2013; Collaboration, 2011).

Squeezing in clamped optomechanics: An early demon-
stration of directly squeezing the mechanical mode was
by (Rugar and Grütter, 1991), where control over the
spring constant enabled to parametrically drive and thus
amplify the mechanical motion of the oscillator. This
approach allowed for noise suppression of -4.9 dB in one
quadrature (see Sec. III.D.2). Improvement in noise sup-
pression has been theoretically proposed by using both
detuned parametric driving and continuous weak mea-
surement of the mechanical oscillator (Szorkovszky et al.,
2011). Experimentally, noise suppression was demon-
strated by weak measurement and achieved -6.2 dB in
one quadrature (Szorkovszky et al., 2011). (Pontin et al.,
2014) use parametric feedback to stabilize one quadrature
without affecting the other and achieve squeezing of -7.9
dB. The realization of quantum squeezing of a quadrature
below the zero point fluctuations was achieved by (Lecocq
et al., 2015; Pirkkalainen et al., 2015b; Wollman et al.,
2015).

Further quantum state protocols, such as state trans-
fer and swapping have also been shown as multi-mode
optomechanics systems began to be explored. These nat-
urally have a strong motivation as quantum information
protocols but demonstrate powerful state control capabil-
ities with a myriad of techniques. For example, (Weaver
et al., 2017) demonstrates coherent state swapping be-
tween modes of two separate mechanical frequencies in
the same cavity.

Squeezing in levitated optomechanics: Adjacent to this,
the novel capability to control the potential and thus

the mechanical frequencies enabled squeezing via non-
adiabatic pulses (Rashid et al., 2016). A study of the
scattered light revealed the signatures of squeezing on
the scattered light generated by the mechanics oscilla-
tors (Militaru et al., 2022). Recently, squeezed states
have been discussed for testing tiny effects such as those
predicted by some form of quantum gravity (Belenchia
et al., 2016). Squeezing is an operation to affect the
mechanical state, it is one crucial operation in the uni-
versal toolbox of Gaussian state preparation, but is also
discussed as a state preparation step for achieving non-
Gaussian states such as quantum superposition in a lev-
itated mechanical system (Riera-Campeny et al., 2023),
and as well for generating quantum entanglement be-
tween two mechanical systems (Cosco et al., 2021).

In conclusion, squeezing is one option for generating
out-of-equilibrium states of a continuously variable sys-
tem. Squeezing of large-mass mechanical systems has
been experimentally demonstrated. Squeezing generates
highly sensitive states exhibiting a peculiar quantum sig-
nature (Chowdhury et al., 2020) and is used to control
the effect of dynamical nonlinearities.

2. Spatial superpositions of mechanical systems

The goal of this section is to review the state-of-the-art
mechanical quantum systems and how they approach the
regime for testing the overlap between quantum mechan-
ics and gravity. One key aspect of this endeavor is the
generation of the prototypical quantum state – the spa-
tial superposition state of sufficiently massive or macro-
scopic systems. An illustrative example is Feynman’s
thought experiment, shown in Fig. 11, where a gravita-
tional field source in a quantum superposition interacts
with a test mass, leading to different scenarios depending
on whether the field remains in a superposition or col-
lapses to a classical state (Pedernales and Plenio, 2023).
Theoretical proposals for achieving this or similar goals,
such as (Bose et al., 2017; Hanif et al., 2023) and others
have been described in IV.C.

There are competing definitions of what ”macroscopic”
actually means and it strongly depends on what aspects
of physics are to be tested. A single photon in a superpo-
sition or a pair of photons entangled over a thousand kilo-
meters is arguably a large quantum system. while vari-
ous measures of what quantum coherence at macroscopic
scales actually means (Björk and Mana, 2004; Cavalcanti
and Reid, 2006; Dür et al., 2002; Lee and Jeong, 2011;
Leggett, 1980; Marquardt et al., 2008). Here, however,
for the purpose of testing the overlap between quantum
mechanics and gravity, it seems advisable to choose a
macroscopicity measure which includes a set of three pa-
rameters about the quantum system and is able to com-
pare a manifold of different physical systems in an ob-
jective way, such as the macro-measure based on matter-
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wave superposition as put forward in (Nimmrichter and
Hornberger, 2013). The measure µ is a function of the
mass of the system in a spatial superposition, the spa-
tial size of the superposition, and the time for the spa-
tial superposition to exist. Using µ, it becomes evident
how wide beam splitting low-mass atomic fountains (Ko-
vachy et al., 2015), large-mass small zero-point motional
optomechanical setups (LIGO) (Whittle et al., 2021) in
continuously monitored low-phonon states and levitated
mechanical systems compare and why levitated mechan-
ics with mesoscopic masses look most promising to de-
liver the most macroscopic of superpositions. See Table I
for a summary of values computed for the measure thus
far. The current mass record in matterwave interferom-
etry is for complex molecules at 28 kDa in (Fein et al.,
2019), which achieves µ > 14.

Experiment Yearµ
Mechanical
resonators

Bulk acoustic waves (Bild
et al., 2023; Schrinski et al.,
2023)

2022 11.3

Phononic crystal res-
onator (Wollack et al., 2022)

2022 ∼ 9.0∗

Surface acoustic
waves (Satzinger et al.,
2018)

2018 ∼ 8.6∗

Matter-wave
interference

Molecule inteferometry (Fein
et al., 2019)

2019 14.0

Atom interferometry (Xu
et al., 2019)

2019 11.8

BEC interferometry (Asen-
baum et al., 2017)

2017 12.4

TABLE I Macroscopicity measure summarized in (Schrinski
et al., 2023). *estimated by the authors of (Schrinski et al.,
2023).

Different ways to generate spatial superpositions have
been proposed for mechanical systems, both clamped and
levitated, and some have already been demonstrated ex-
perimentally. The technical challenge, if formulated in
matterwave language, is to split the matter-wavefront co-
herently for a tiny de Broglie wavelength. This typically
requires preparing, by cooling, some sort of coherent ini-
tial state, and a subsequent application of a coherence
beamsplitter operation. For spatial superpositions, the
prepared coherence length determines both the spatial
resolution of the beamsplitter as well as the extend of
the final superposition.

Methods to realize beamsplitters inspired by estab-
lished technology from matterwave interferometry with
electrons, neutrons, atoms and complex molecules (Arndt
and Hornberger, 2014; Cronin et al., 2009; Horn-
berger et al., 2012; Juffmann et al., 2013; Millen and
Stickler, 2020) the use of optical gratings (Bateman
et al., 2014; Geraci and Goldman, 2015), by nonlin-
ear interaction in a cavity (Bose et al., 1997, 1999;

Mancini et al., 1997; Romero-Isart et al., 2011) or lev-
itated magneto-mechanical oscillators coupled to mag-
netic fields (Romero-Isart et al., 2012) are in the mix
of proposals, such as magnetic beamsplitter using fer-
romagnetic particles (Rahman, 2019). For mechanical
systems, ideas also include measurement-based multiple-
pulsed schemes addressing the position and momentum-
dependent continuous variables (feeding the cat to be-
come fat) (Vanner et al., 2011) as well as by continuous
weak measurements protocols (Rossi et al., 2018) or ad-
vanced protocols from quantum metrology using dynam-
ical model selection and classical and quantum hypoth-
esis testing (McMillen et al., 2017; Ralph et al., 2018;
Schrinski et al., 2019), schemes which go even conceptu-
ally much beyond the classic scenario for generation of
superposition states as well as in evidencing the appear-
ance of non-classicalities, however, the same measure has
to be applied to rank macroscopicity consistently.

While all of the above addresses external (x and p) de-
grees of freedom for generating superpositions, there are
also promising ideas for addressing internal states such
as isolated electron and nuclear spin states. If the co-
herence of such states can be extended to long enough
times and coupled to x and p in a coherent fashion, then
beautiful protocols for state preparation can be trans-
ferred from the rich toolbox of atomic two- and few-level
physics. Such ideas have been put forward for harmon-
ically bound systems (Scala et al., 2013) as well as for
free motion (Wan et al., 2016). Again the massive and
freely evolving quantum state keeps promise to become
the most macroscopic quantum one.

Superpositions of different energy states of the har-
monic oscillator using strong coupling in cavity-QED-
like (Jaynes-Cummings Hamiltonian, see Sec. III.A.2)
systems are a further option and have historically been
the first demonstration for a quantum superposition
of a seriously massive microwave-driven quantum sys-
tem (Teufel et al., 2011), for surface acoustic-wave
phonons (Satzinger et al., 2018) and by using coupling
to a superconducting qubit (Wollack et al., 2022), while
the spatial extend of the superposition is on the size of
the amplitude of the zero-point motion in those systems
and advanced techniques have to be applied to reach
the defined macroscopic. The energy state superposi-
tion is mapped onto a motional or vibrational state (Bild
et al., 2023; O’Connell et al., 2010; Schrinski et al., 2023).
While large-mass hybrid mechanical systems can be pre-
pared in quantum states (Sletten et al., 2019), the macro-
scopicity of hybrid quantum superposition states has to
be analyzed by a generalized measure as, for instance, the
one shown in table I. (Bild et al., 2023) have produced
the so far largest spatial superposition state among hy-
brid systems for Planck mass acoustic modes. Hybrid
mechanical systems are supreme quantum systems and
their relevance for gravity measurements is discussed in
Sec.V.A.5.
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FIG. 11 Feynman’s thought experiment. (a) A gravitational field source (blue ball) is placed in a quantum superposition
and interacts with a test mass (green ball). The system can develop into two scenarios: (b) If the field is in a quantum
superposition, the test mass feels two different gravitational forces and also enters a superposition state. (c) If the field stays
classical, the test mass feels a single gravitational force and moves accordingly. Adapted from (Pedernales and Plenio, 2023).

While the above discussion is about linear motion,
macroscopic superpositions can also be achieved by uti-
lizing rotational mechanical degrees of freedom (Carlesso
et al., 2017; Stickler et al., 2021). These approaches are
promising since the generated quantum state is poten-
tially more protected from noise and decoherence. In
addition, the technology for implementing angular su-
perpositions is different from those needed for linear su-
perpositions and could be easier to realize.

For the realization of superposition experiments, as-
pects of decoherence such as by gas collisions and effects
of black body photons, amongst others, have to be con-
sidered and understood (Hackermüller et al., 2004; Horn-
berger et al., 2003; Romero-Isart, 2011). It is clear that
decoherence puts severe constraints on any attempt to re-
alize macroscopic quantum states, and each experiment
has to focus on those aspects. Theoretical studies of de-
coherence effects have been carried out by using an open
quantum system dynamical model on the level of master
equations, see Sec. III.B.1 for a more detailed summary.

Another intriguing area of research focuses on the
superposition of massive electromechanical resonators,
which carries significant implications for exploring the
effects of general relativity (Gely and Steele, 2021). To
investigate these effects effectively, it is crucial to ensure
that the coherence time of the superposition state ex-
ceeds the timescale associated with general relativity. In
pursuit of this goal, one approach involves integrating
clamped mechanical oscillators, such as silicon nitride

membranes, with superconducting circuits. This inte-
gration allows for the preparation of these resonators in
small cat/fock states, enabling experiments that probe
the interplay between quantum mechanics and general
relativity (Albrecht et al., 2014; Liu et al., 2021c).

Furthermore, the coherent coupling of mechanical vi-
brations in carbon nanotube resonators, controlled by
the electronic spin of a nitrogen vacancy, has emerged as
a fascinating avenue of research (Qin et al., 2019). By
cooling these resonators to their quantum ground state,
it becomes possible for the mechanical phonons within
them to exhibit both wave-like and particle-like behavior,
effectively manifesting the essence of quantum superposi-
tion. This line of inquiry not only pushes the boundaries
of quantum mechanics but also highlights the potential
applications of electromechanical resonators in quantum
information processing and quantum metrology.

Additionally, electromechanical systems offer opportu-
nities for experiments involving Paul traps, which can
shed light on the interplay between quantum mechan-
ics and general relativity. In the work by (Martinetz
et al., 2020), a Paul trap is proposed to trap and cool
a single charged nanoparticle to its quantum ground
state. Through the controlled application of laser beams
and the analysis of the nanoparticle’s evolution, the re-
searchers were able to demonstrate the sensitivity of the
nanoparticle to gravity and place constraints on non-
Newtonian gravitational interactions. Moreover, electri-
cally levitated nanorotors, when coupled to a supercon-
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ducting qubit, enable ultra-short timescale interference
experiments by achieving a quantum superposition state
through controlled rotational and translational motion.
These developments represent exciting prospects for fur-
thering our understanding of macroscopic quantum phe-
nomena and their implications for our understanding of
both quantum mechanics and gravity.

Based on careful considerations of thermal decoherence
effects, a proposal for a superconducting and magnetic
version of a superposition experiment has been made.
The low temperature and extreme-high vacuum setting
appear the most promising (Pino et al., 2018). The ex-
treme settings where the quantum system is - as much
as possible - decoupled from its environments can be an-
alyzed in terms of the duration of free evolution (spread-
ing) of the wavefunction and demands extremely small
amplitudes (typically smaller than the spatial size of the
de Broglie wavelength) of all guiding fields and also vi-
brations. This adds another serious technical demand to
any experimental realization.

As dictated by Schrödinger dynamics, the free evolu-
tion time grows proportional to the mass of the quantum
system and is pushing realistic attempts to beat the exist-
ing mass record well beyond some 100 ms superposition
lifetime. All decoherence effects and noises have to be
controlled to be smaller than the evolution amplitudes
during that same time. Ideally, the wavefunction is let
alone for some seconds, as is at the core of proposals
for macroscopic quantum superposition on a dedicated
satellite in space (Kaltenbaek et al., 2022).

However, an alternative solution may come from boost
or inflation operations, which accelerate the spread of
the wavefunction significantly (Romero-Isart, 2017). The
boost has to be coherent so it does not spatially resolve
the position of the particle during the boost. Boosts have
been demonstrated by Stern-Gerlach beam splitters for
atoms on a chip (Margalit et al., 2021), and it seems
possible to translate the same beam splitting technique
to the much more massive NV-defect center diamond
nanoparticles and other spin systems.

Another severe experimental challenge is that the me-
chanical experiments, which are usually single-particle
experiments, have to be repeated many times to achieve
particle number statistics to show unique quantum fea-
tures (Neumeier et al., 2022). All known measures of
quantumness are statistical ensemble measures on the
level of density matrix rather than the level of the wave-
function directly, as every single run of a quantum experi-
ment or operation has a completely random outcome and
cannot be predicted by quantum mechanics. As there
is no coherent ensemble of massive particles, equivalent
to, for instance, an atomic BEC, each large mass single-
particle experiment has to be repeated many times (say,
at least 1000 times) under the exact same conditions.
Still, many experimentalists have started taking on the
challenge to work toward the first generation of a truly

macroscopic quantum superposition, which will challenge
our understanding of quantum mechanics as well as grav-
ity and will hint at how the two important theories are
connected fundamentally.

In a recent study (Romero-Sanchez et al., 2018), re-
searchers explored the fascinating realm of ultra-strong
coupling between a mechanical oscillator and an LC-
resonator, achieved through magnetically induced elec-
tromotive force. This intriguing approach to cou-
pling magneto-mechanical oscillators in the ultra-strong
regime has opened up a wealth of possibilities, ranging
from sensitive weak-force detection to advanced electro-
mechanical state manipulation.

Furthermore, the use of levitated superconducting mi-
crorings offers a unique advantage over traditional micro-
spheres by capitalizing on flux conservation within the
ring structure (Navau et al., 2021). This innovative ap-
proach provides a versatile platform for the design and
optimization of magneto-mechanical ring oscillators. No-
tably, when it comes to generating quantum superposi-
tions through ground state cooling, the separation be-
tween the peaks of the wave function must exceed the
physical dimensions of the object. In this regard, ring ge-
ometries outperform traditional spherical counterparts,
making magneto-mechanical ring resonators particularly
suited for experiments investigating gravitational inter-
actions. Recent breakthroughs have demonstrated pre-
cise control and levitation of high-Q superconducting mi-
crospheres (Gutierrez Latorre et al., 2023; Hofer et al.,
2023). Appealing aspects of these systems include the
mechanical frequencies on the order of 100Hz, the access
to trap anharmonicities, and the scalability of mass of the
levitated particle, which is of particular relevance for test-
ing macroscopic quantum states and the role of gravity
affecting quantum states. One viable approach involves
utilizing a static magnetic trap formed by two coils con-
figured in an anti-Helmholtz arrangement to achieve sta-
ble levitation, which was first analyzed in detail numeri-
cally for an on-chip configuration (Latorre et al., 2020).

In addition, nanomechanical oscillators can be effec-
tively cooled to their ground state when levitated under
an inhomogeneous field, a phenomenon facilitated by the
Meissner effect (Cirio et al., 2012). When these oscilla-
tors are inductively coupled to a flux qubit, a remark-
able opportunity arises to create macroscopic entangled
states within these sizable objects. This breakthrough
holds significant promise for practical applications, espe-
cially in the precise measurement of force gradients, such
as those encountered in the study of gravity (Johnsson
et al., 2016).

In conclusion, while quantum superpositions have been
achieved in clamped and hybrid mechanical systems, we
are still awaiting their experimental demonstration for
levitated mechanics. There are plenteous ideas and ap-
proaches under active research and we expect the first
levitated superposition within the next five years or so.
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3. Entanglement in mechanical systems

The quantum entanglement of massive objects has
been a focal point in the intersection of quantum mechan-
ics and gravity research. Understanding entanglement in
macroscopic systems offers insights into the quantum-to-
classical transition and theories related to wave-function
collapse, as discussed in Section IV.B which delves into
gravitational decoherence, semi-classical models, self-
energy, and gravitationally-induced wavefunction col-
lapse. Furthermore, the intricacies of entanglement me-
diated by gravity are elaborated upon in Section IV.C.
Various approaches have been explored to create and
manipulate entanglement in massive quantum systems,
aiming to unravel the mysteries of quantum mechanics
and its connection to gravity. Several approaches have
been proposed for entangling massive quantum systems,
and some have been already demonstrated experimen-
tally in clamped optomechanical systems in recent years.
Quantum entanglement has not yet been demonstrated
in levitated mechanical systems but is an active research
objective.

In a clamped system, (Eichler et al., 2014) uses a Bose-
Hubbard dimer, consisting of two bosonic modes with
an onsite interaction strength, to experimentally demon-
strate quantum-limited amplification and entanglement.
The authors studied how this system responds in differ-
ent parameter regimes, and by applying a coherent drive
field, they were able to generate entangled photon pairs
from vacuum input fields demonstrated through the mea-
surement of cumulants. This study could prove useful
for experimental studies related to non-equilibrium many
particle physics in photonic systems as well as being ap-
plied towards massive resonators, which would be used
for exploring wavefunction collapse theories at macro-
scopic scales due to gravitational interactions between
them. (Riedinger et al., 2018) demonstrated the genera-
tion of distributed entanglement between two nanome-
chanical phononic-crystal resonators by using a three-
step protocol consisting of cryogenically cooling the two
mechanical resonators, sending a weak pump pulse into
a phase-stabilized interferometer, and creating a phonon.
The joint state of the two mechanical systems was then
entangled and the entanglement was verified by map-
ping the mechanical state onto an optical field in this
measurement-based entanglement scheme. The simulta-
neous coupling of two nanomechanical resonators to a su-
perconducting qubit in the strong dispersive regime was
used to entangle the two nanomechanical devices (Wol-
lack et al., 2022).

Cavity optomechanical setups have also been demon-
strated experimentally for generating entanglement be-
tween two massive mechanical oscillators (Ockeloen-
Korppi et al., 2018) by a two-mode back-action evad-
ing measurement to verify entanglement in the cav-
ity mode. (Thomas et al., 2021) have experimentally

achieved entanglement between a macroscopic mechani-
cal oscillator and an atomic spin oscillator. This achieve-
ment was accomplished using a millimeter-sized dielec-
tric membrane and an ensemble of roughly 109 atoms
within a magnetic field. The entanglement was confirmed
by achieving an Einstein–Podolsky–Rosen variance below
the separability limit. The process involved manipulat-
ing the light that passed through the two spatially sepa-
rated systems, with the collective atomic spin serving as
an effective negative-mass reference, thereby suppressing
quantum back-action.

Further theoretical proposals for entanglement
schemes making use of access to a discrete variable qubit
quantum system and/or cavity modes include things
like a coherent feedback loop (Li et al., 2017) applied
to two macroscopic mechanical resonators that were
strongly coupled to a common optical mode. (Asadian
and Abdi, 2016) proposed using a sequence of pulses to
periodically flip a qubit, synchronized with the resonator
frequency. A conditional photon emission is then applied
to the qubit to produce a single photon depending on
the state of the qubit prior to the pulse to create a
mechanically entangled coherent state, a Schrödinger
cat state. (Yi et al., 2021) discusses the use of large-scale
spatial qubits to explore macroscopic nonclassicality
and entanglement generated through the Casimir effect.
As already mentioned in Sec. V.B.1, (Cosco et al.,
2021) proposed a protocol for generating entanglement
between two weakly interacting massive resonators,
such as nanoparticles levitated by optical means or
massive pendula tethered to a base. The protocol
involves applying a continuously squeezed protocol to
the two resonators and removing the squeezing quickly
after generating the desired entanglement. They also
proposed the reverse protocol to reduce the decay rate
of the entanglement dramatically.

Another promising approach and especially interest-
ing for low-frequency mechanical oscillators, as proposed
by (Li and Gröblacher, 2020), involves the preparation of
entangled states between a massive membrane and a low-
frequency LC (inductor-capacitor) resonator, and (Li and
Gröblacher, 2021) are proposing to use cavity magnome-
chanics for entangling vibrational modes of two massive
ferromagnetic spheres. (Xu and Blencowe, 2022) focus on
the entanglement dynamics of spatially separated local
LC oscillators coupled to a long, partially metalized elas-
tic strip through the optomechanical interaction which
is proposed to be usable to observe quantum gravity-
induced entanglement at low energies. Electromechani-
cal systems have been considered as well, (Khosla et al.,
2018) introduced a novel approach involving the cou-
pling of multiple electromechanical resonators to a com-
mon qubit. Such electromechanical systems also allow
the verification of entanglement of mechanical oscillators
via qubits (Bose and Agarwal, 2006). This coupling
scheme results in the entanglement of these massive os-
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cillators. Remarkably, this entanglement manifests itself
in the form of quantum interference patterns observed in
the displacement of the resonators.

In conclusion, various protocols have been proposed,
and some have already been demonstrated, with each of-
fering unique insights into the interplay between quan-
tum mechanics and gravity. These advancements not
only contribute to our understanding of fundamental
quantum principles but also hold the potential to vali-
date or challenge extensions of the Schrödinger equation,
furthering our grasp of the complex realm of quantum
mechanics in gravitational contexts, including such excit-
ing questions such as if gravity can be used to quantum
entangle two particles, see Sec. IV.C. We emphasize that
large-mass mechanical systems are considered the system
for experimental exploration at the quantum gravity in-
terface.

VI. OUTLOOK

In this review article, we have outlined ideas and pro-
posals for probing the interface between quantum me-
chanics and gravity with massive quantum systems. We
emphasize that many unknowns still persist and that nu-
merous questions remain completely open in the field.
Gravity appears to behave differently in comparison with
the other forces, in that it can be formulated as curvature
and allows for an equivalence principle. A fully-fledged
theory that consistently combines quantum mechanics
and gravity might ultimately manifest in a completely
unexpected manner.

To conclude this review, we offer a few brief remarks
on some of the outstanding questions raised throughout
the article. Firstly, we have seen that even classical grav-
ity is one of the least precisely tested forces, especially
at small-length scales. New and better precision tests
are needed to further constrain modified gravity theories
and verify our current description of gravity. Quantum-
enhanced sensors play an important role here. Equally
intriguing are questions regarding the nature of gravity
itself, and whether its interaction with quantum systems
results in a decohering or entangling process. Here, tests
with masses prepared in quantum superpositions could
provide a key step toward establishing the correct theo-
retical description. Beyond non-relativistic quantum me-
chanics, the mathematical formalism of quantum field
theory in curved spacetime enables the study of the in-
terplay of quantum and relativistic effects at low energies.
It has, however, not yet been demonstrated in the lab-
oratory, and the formalism itself gives rise to additional
tensions, such as the black-hole information paradox.

All of the questions above warrant further study. Ul-
timately, to develop a theory that incorporates quantum
and general relativistic effects in a consistent way, it is
necessary to understand what principles are truly funda-

mental. Experiments and the development of quantum
technologies play a key role here. In particular, increas-
ing the masses and coherence times of quantum systems
may allow for some of the proposals outlined in this ar-
ticle to be realized in the laboratory. The results could
help guide future research, which thus far has mainly re-
lied on mathematical and theoretical arguments.

In summary, the prospect of using massive quantum
systems to explore the interplay between quantum me-
chanics and gravity opens up a number of novel ques-
tions and exciting challenges. The field is ripe for explo-
ration and potentially groundbreaking discoveries. We
(the authors of this article) hope that this review may
inspire many future discussions around these topics and
look forward to learning about and partaking in potential
discoveries in the future.
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Phillip Martin, Alessandro Bruno, and Yiwen Chu (2023),
“Schrödinger cat states of a 16-microgram mechanical os-
cillator,” Science 380 (6642), 274–278.

Birrell, N, and P. Davies (1982), Quantum Fields in Curved
Space (Cambridge Monographs on Mathematical Physics)
(Cambridge University Press, Cambridge).

Bishop, Michael, Jaeyeong Lee, and Douglas Singleton (2020),
“Modified commutators are not sufficient to determine a
quantum gravity minimal length scale,” Physics Letters,
Section B: Nuclear, Elementary Particle and High-Energy
Physics 802, 135209.

Biswas, Dripto, Sougato Bose, Anupam Mazumdar,
and Marko Toroš (2023), “Gravitational optomechanics:
Photon-matter entanglement via graviton exchange,” Phys-
ical Review D 108 (6).

Bjerrum-Bohr, N E J, John F. Donoghue, and Barry R. Hol-



60

stein (2003), “Quantum gravitational corrections to the
nonrelativistic scattering potential of two masses,” Physical
Review D - Particles, Fields, Gravitation and Cosmology
67, 084033.

Bjerrum-Bohr, N E J, John F. Donoghue, Barry R. Hol-
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and Anupam Mazumdar (2023), “Decoherence of a matter-
wave interferometer due to dipole-dipole interactions,”
arXiv preprint arXiv:2307.07001 .

Friis, N, A. R. Lee, K. Truong, C. Sab́ın, E. Solano, G. Johans-
son, and I. Fuentes (2013), “Relativistic Quantum Tele-
portation with Superconducting Circuits,” Physical Review
Letters 110, 113602.

Frimmer, Martin, Karol Luszcz, Sandra Ferreiro, Vijay Jain,
Erik Hebestreit, and Lukas Novotny (2017), “Controlling
the net charge on a nanoparticle optically levitated in vac-
uum,” Physical Review A 95 (6), 061801.

Fuchs, Tim M, Dennis Uitenbroek, Jaimy Plugge, Noud
van Halteren, Andrea Vinante, Hendrik Ulbricht, and
Tjerk H Oosterkamp (2023), “Magnetic Zeppelin: Detec-
tion of gravitational drive in the Hz regime,” arXiv preprint
arXiv:2303.03545 .

Fuentes, Ivette, Robert B. Mann, Eduardo Mart́ın-Mart́ınez,
and Shahpoor Moradi (2010), “Entanglement of Dirac fields
in an expanding spacetime,” Physical Review D - Particles,
Fields, Gravitation and Cosmology 82, 045030.

Fuentes, Ivette, and Roger Penrose (2018), “Quantum State
Reduction via Gravity, and Possible Tests Using Bose-
Einstein Condensates,” in Collapse of the Wave Function,
edited by Shan Gao (Cambridge University Press, Cam-
bridge) pp. 187–206.

Fuentes-Schuller, Ivette, and Robert B Mann (2005), “Alice
falls into a black hole: entanglement in noninertial frames,”
Physical Review Letters 95 (12), 120404.

Fulling, S A, P. C. W. Davies, and Roger Penrose (1976),
“Radiation from a moving mirror in two dimensional space-
time: conformal anomaly,” Proceedings of the Royal So-
ciety of London. A. Mathematical and Physical Sciences
348 (1654), 393–414.

Fulling, Stephen A (1973), “Nonuniqueness of canonical field
quantization in Riemannian space-time,” Physical Review
D 7 (10), 2850.

Fulling, Stephen A (1989), Aspects of Quantum Field Theory
in Curved Spacetime, London Mathematical Society Stu-
dent Texts (Cambridge University Press).

Gallerati, A, G. Modanese, and G.A. Ummarino (2022),
“Interaction Between Macroscopic Quantum Systems and
Gravity,” Frontiers in Physics 10, 941858.

Galley, Thomas D, Flaminia Giacomini, and John H Selby
(2022), “A no-go theorem on the nature of the gravitational
field beyond quantum theory,” Quantum 6, 779.

Galley, Thomas D, Flaminia Giacomini, and John H Selby
(2023), “Any consistent coupling between classical gravity
and quantum matter is fundamentally irreversible,” arXiv



65

preprint arXiv:2301.10261 .
Garay, Luis J (1995), “Quantum gravity and minimum

length,” International Journal of Modern Physics A
10 (02), 145–165.

Gardiner, C W, and M. J. Collett (1985), “Input and output
in damped quantum systems: Quantum stochastic differen-
tial equations and the master equation,” Physical Review
A 31, 3761–3774.

Gardiner, C W, and P. Zoller (2000), Quantum Noise
(Springer).

Gasbarri, Giulio, Marko Toroš, Sandro Donadi, and Angelo
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Khan, and Mika A Sillanpää (2014), “Enhancing optome-
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stochastischen Prozesse,” Mathematische Annalen 109 (1),
604–615.

Khosla, KE, MR Vanner, WP Bowen, and GJ Milburn (2013),
“Quantum state preparation of a mechanical resonator us-
ing an optomechanical geometric phase,” New Journal of
Physics 15 (4), 043025.

Khosla, Kiran E, Michael R Vanner, Natalia Ares, and Ed-
ward Alexander Laird (2018), “Displacemon electrome-
chanics: how to detect quantum interference in a nanome-
chanical resonator,” Physical Review X 8 (2), 021052.

Khoury, Justin, and Amanda Weltman (2004a), “Chameleon
cosmology,” Modern Physics Letters A 69, 044026.

Khoury, Justin, and Amanda Weltman (2004b), “Chameleon
Fields: Awaiting Surprises for Tests of Gravity in Space,”
Physical Review Letters 93, 171104.

Kibble, TWB (1981), “Is a semi-classical theory of gravity
viable?” Quantum Gravity II A Second Oxford Symposium
ed Isham C J, Penrose R and Sciama D W (New York:
Oxford University Press) , 63.

Kilian, Eva, Markus Rademacher, Jonathan M. H. Gosling,
Julian H. Iacoponi, Fiona Alder, Marko Toroš, Antonio
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