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Abstract
The recent discovery of gravitational waves by the LIGO-Virgo collaboration created renewed interest
in the investigation of alternative gravitational wave detector designs, such as small scale resonant
detectors. In this article, it is shown howproposed small scale detectors can be tested by generating
dynamical gravitational fields with appropriate distributions ofmovingmasses. A series of interesting
experiments will be possible with this setup. In particular, small scale detectors can be tested very early
in the development phase and tests can be used to progress quickly in their development. This could
contribute to the emergingfield of gravitational wave astronomy.

1. Introduction

Thefirst observation of gravitational waves by the LIGO-Virgo collaboration inNovember 2015 [1] is seen as the
dawn of the age of gravitational wave astronomy. In the next few years, new interferometric detectors will be
built and developed, enabling us to learnmore about the sources of gravitational waves and the cosmos. The
success of the LIGO-Virgo collaboration also sparked renewed interest into the development of alternative
detector designs onmuch smaller scales than the kilometers required for an interferometric detector. Among
such proposals are some that consider detectors on scales betweenmeters andmicrometers, we shall refer to
these as small scale detectors. Proposed systems range from electromagnetic cavity resonators [2–5] and
resonantmass detectors [6, 7] over Bose–Einstein condensates [8, 9] to amicrowave cavity resonator coupled to
a superfluid helium container [10, 11]. Some proposals for small scale detectors are based on quantum
technologies, for example the one presented in [8, 9].With the advancement of quantum technologies that will
be promoted by funding initiatives like that by the EuropeanCommission in the next years, we expectmany
more proposals for small scale gravitational wave detectors to appear.

Themain advantage of small scale detectors is that a single detector would be cheap in comparison to an
interferometric detector and a lot of them could be built to achieve high directional resolution. One could even
imagine a network of hundreds of small scale gravitational wave detectors throughout theworldwith collective
data analysis. The disadvantages of small scale detectors are: they are usually narrow band, they often operate in a
high frequency band and they need long integration times to achieve the necessary sensitivity for a detection.
Thismakesmost of themonly applicable for persistent sources of gravitational waves. The disadvantages could
be possibly overcome by design adjustments and long termdevelopment. In particular, it would be beneficial if
prototypes could be tested and evaluatedwith artificially created gravitational signals of larger amplitudes than
those expected from gravitational wave sources. Unfortunately, it is nearly impossible to artificially create
gravitational waves of significant amplitude.However, the effect of local oscillating gravitational fields on a small
scale detector can resemble the effect of gravitational waves sufficiently to serve as test signals which can be
createdwith comparatively large amplitudes. In this article, we propose tests of small scale gravitational wave
detectors that could be performed by employingmovingmasses, creating local gravitational fields that resemble
gravitational waves on the length scale of the detectors.
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Note that the approach presented in this article is similar in spirit to the calibrationmethods developed for
interferometric detectors [12] and resonantmass detectors [13–19]. However, the size of the small scale
detectors considered in this article allows for sizes of the sources of gravitational fields, and the amplitudes of
their oscillations to be significantly reduced aswell. This can lead to a high level of control of systematics as
discussed in [20].More importantly, the reduced scales allow for the gravitational field of a plane gravitational
wave like those expected fromdistant astronomical sources to bemimicked aswe show in this article. In general,
as we are facing a new generation of resonant gravitational wave detector proposals, we consider it worthwhile to
start a newdiscussion about possibilities for tests and calibrations adopted to the newdetector proposals.

The basic framework that wewill employ in this article is linearized gravity, where the spacetimemetric gμν is
considered to differ just slightly from the flatMinkowskimetric ημν.We define the perturbation of themetric as
hμν=gμν−ημν andwe assume that h 1mn ∣ ∣ for allμ, ν in an appropriately chosen set of coordinates.

2.Gravitational wavemetric

Since sources of gravitational waves are usually very distant, we can restrict our considerations to plane
gravitational waves. The perturbation of the spacetimemetric hwμν (the superscript w standing forwave)
corresponding to a plane gravitational wave that propagates in the positive or negative z-direction has only four
non-zero components hw11=−hw22=h+ and h h h12

w
21
w= = ´ in the transversal-traceless (TT) gaugewhich is a

specific coordinate system inwhich freely fallingmassive test particle at rest stay at rest. Here, h+ and h×are the
strains corresponding to the two polarization directions+ and×, respectively. If we assume propagation in the
positive z-direction and consider amonochromatic wave of angular frequencyω, the corresponding strains can
bewritten as
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TheTT gauge corresponds to an appropriate coordinate system for the analysis of interferometric detectors
such as LIGO andVirgo, since theirmirrors are, in approximation, freely falling along the beam line of the
interferometer. For the analysis of local detectors, a different coordinate system ismuch better suited—the
proper detector frame [7], whichwas introduced in [21]. The proper detector frame corresponds to the
coordinate system constructed by an observer using rigid rods to define spatial coordinates from the center of
the observerʼs laboratory and a clock at the center of the observerʼs laboratory to define time. This leads to an
expression of the spacetimemetric in the constructed coordinates which is valid up to quadratic terms in the
spatial coordinates as long as thewavelength of the gravitational wave ismuch larger than all extensions of the
detector system. For a freely falling observer, the proper detector frame is commonly called Fermi normal
coordinates [22].

For a freely falling laboratory in the spacetime defined by hwh +mn mn , themetric perturbation in the
laboratory’s proper detector frame has the form

h h t M c h t M c¨ , 0 ¨ , 0 , 2w,P
,

2
,
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where the superscript P stands for proper detector frame, the dots denote the second time derivative of the strain
functions and the components of thematricesM+,μν andM×,μν are second order polynomials in x and y. They
are explicitly given as
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Equations (2) and (3) can be derived using the general expressions for the proper detector framemetric in
equation (1.87) of [7] and expressions for the components of the Riemann curvature tensor of themetric
perturbation in the TT-gauge above3. Note that earthbound detectors will never be freely falling. Instead of
equation (1.87) of [7] onewould need to employ equation (1.88), which contains rotation and acceleration of the
detector system. Effects of the upward acceleration of the detector against the gravitational field of the Earth can

3
Explicit expressions for the curvature components corresponding to a plane gravitational wave propagating in the negative z-direction can

be found in equationA.14–16 in [23].
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be neglected if x and y are assumed to be the horizontal directions. Remaining contributions to the proper
detector framemetric are the rotation of the Earth, vibrational and rotational noise. Those have to be analyzed
taking specific experimental conditions into account once a realization of our proposal is considered. This is not
part of this article.

From the geodesic equations that govern themotion ofmassive particles in the field of the gravitational
wave, we obtain the following acceleration for any part of the small scale detector that doesmovewith non-
relativistic velocity v j:

d

dt

c
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where i, jä{x, y, z}. Equation (3) gives the tidal forces induced by the gravitational wave that deform the small
scale detector. This deformation is the fundamentalmechanism onwhichmeasurement is based for all examples
of small scale detectorsmentioned in the introduction.

Wefind that the dynamical effects of all components of themetric perturbation besides h00
w,P are suppressed

in comparison to the strongest dynamical effects of h00
w,P (which are, above all, used for the detection processes in

the examples for small scale detectors considered here); either by at least a factor v/c, where v is the largest speed
in the detector system (see also section 17.4 of [24]) or by at least a factor lω/c, where l is the largest extension of
the detector system. For all the examples of detectors given in the introduction, the detectorʼs parts used for
sensing the gravitational field aremoving very slowly in comparison to the speed of light. Sowe can assume that
v c 1 . Furthermore, for frequencies between kHz andMHz and extensions of the detector systems at or
below themeter scale, we have l c 1w  . Of the various local detectors that wementioned in the introduction,
only the electromagnetic resonators [2–5, 10, 11] contain parts thatmove at high speeds—namely the
electromagnetic radiation in the resonator. However, the light is only used to ‘read out’ deformations of the
resonator, a slowlymoving systemofmassivematter; what is used formeasurement is not a direct effect of the
gravitational field on the light. Therefore, this effect can be neglected4.

There is also an effect on length scales by the purely spatial components of themetric perturbation; the
spatial components contribute to the length scale associatedwith rigid rods associatedwith the proper length
l d g s sp ò V= ¢ ¢mn

m n , where s′ is the tangent to a space like geodesic alongwhich the length ismeasured.

Therefore, the change of proper length due to themetric perturbation lp is proportional to hw,P
mn . The

deformation of the detector systems due to tidal forces, the basicmechanismof the detection process, can be
derived from the acceleration d dti2 2g in equation (3) viaHookʼs law. If we assume that the detector system is
constructed from rods and shear forces are neglected, the observations of [28], in particular, equation (30)with
a x=0 can be applied; deformations of thematter system are proportional to c h Y2 w,Pr mn , whereY is Youngʼs
modulus and ρ is themass density for thematerial the detector system consists of (note that Y cs

2r = , where cs
is the speed of sound in thematerial).Wefind that the proper length change is smaller than the tidal length
change by roughly a factorY/ρ c2. The stiffestmaterial per density is carbyne, with a specificmodulusY/ρ of the
order of 10 m s9 2 2- . The specificmodulus of the used solid statematter is usuallymuch smaller than the extreme
value for carbyne. For example, the specificmodulus of aluminum is 2.6 10 m s7 2 2´ - . This corresponds to
Y c 102 10r ~ -( ) . Due to the size of this factor, we can expect that evenwhen different geometries of the detector
systems or shear forces are considered, proper length changes can be neglected in comparison tomaterial
deformations.

In summary, we are justified to restrict our considerations to the component

h h t x y c h t xy c¨ , 0 2 ¨ , 0 . 500
w,P 2 2 2 2= - ++ ´( )( ) ( ) ( )/ /

Due to our arguments above, these deformations are the only significant gravitational effects on the small scale
gravitational wave detectors5. Then, ametric perturbation that generates, to a good approximation, the same
physical effects as hw,P

mn can be generated by an appropriate distribution ofmasses, as wewill show in the
following.

3.Newtonian limit

Restricting our considerations to h00
w,P and setting all other components of themetric perturbation formally to

zero, we obtain a perfect Newtonian frame for the case of a gravitational wave; the spatial part of themetric is flat,

4
If the light is used for the sensing like in the detector proposal described in [25–27], the response of the detector on g N

mn has to be evaluated
explicitly.
5
This statement is also derived in [7] using the equation of geodesic deviation and the curvature tensor).
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diagonal and normalized and there are no space-timemixed terms in themetric (see section 17.4 of [24]). A
similar situation arises for themass distribution if we assume that the sourcemasses that are used tomimic the
gravitational wavemetricmovewith non-relativistic speed. Sincewe already assumed that the parts of the
detector used for sensing the gravitational field aremoving non-relativistically, we obtain theNewtonian limit
which is well defined in linearized gravity (see section 6.3 of [29] and section 17.4 of [24]).More explicitly, for an
oscillatorymotion of the sourcemasses with frequencyω on length scales ls, we obtain velocities of the order lsω.
Therefore, the time derivatives of themetric perturbation are smaller than its spatial derivatives by a factor lsω/c
and the corresponding non-Newtonian effects are suppressed by the same factor. For frequencies in the kHz
regime and amplitude of the sourcemassmotion of the order ofmillimeters, this amounts to the order 10−8.
Therefore, time derivatives of themetric perturbation and the corresponding non-Newtonian effects can be
safely neglected for our considerations. Sometimes, gravitational fields of this kind are called quasi-stationary
[30]. The slowmotion of the detector parts in comparison to the speed of light leads to a suppression of all other
non-Newtonian effects as those are at least proportional to the velocity of the affected system.

Now,wewrite the spacetimemetric as g hN Nh= +mn mn mn . In theNewtonian limit, the only component of the

metric perturbation thatwe have to take into account is the component h c200
N 2= - F , whereΦ is the

Newtonian potential [24, 29]. Depending on the design of the small scale gravitational wave detector, the effect
of the other components of themetric perturbation on the detectormay be investigated explicitly. In a specific
set of coordinates (the Lorenz gauge), we can identify h c200

N 2= - F as before and have only three other non-
zero components of themetric perturbation; the three diagonal spatial components. Furthermore, they are all
equivalent to the time-time component, i.e. h h h h11

N
22
N

33
N

00
N= = = 6. However, for the detector proposals

mentioned in the introduction, the same arguments thatwe used above to neglect all components of hw,P
mn

besides h00
w,P can be applied to hii

N. Therefore, we can restrict our considerations to h c200
N 2= - F in the

following.

4.Gravitational wave substitutes

The only step that remains in order tomimic a gravitational wave for small scale gravitational wave detectors is
the creation of a situation inwhich h00

N matches h00
w,P.We consider two examples here—a distribution of spheres

and a distribution of cylinders. First, let us consider four oscillating spheres of the samemassM placed at the
same distance from the detector. Two of these spheres are placed along the x-axis on opposite sides of the
detector. They oscillate along the x-axis in opposite directions.We assume a similar situation for the two other
spheres along the y-axis (seefigure 1). Such a situation could be realized by holding the spheres by levers. This
would be similar to the experimental proposal described in [20], where the gravitational field of a single
oscillatingmass is planned to bemeasured. The x-y-plane could be arranged horizontally and the levers could be
attached such that the space between the spheres would be empty except for the detector. In particular, we
assume that the spatial positions of the centers of the spheres (x, y, z) are given as (±(L−δ L (t)), 0, 0) and
(0,±(L+δ L (t)), 0), where L t L tcos0d d w f= +( ) ( ). For the time-time component of themetric
perturbation in theNewtonian limit expanded up to quadratic terms in the spatial coordinates, we then obtain

h
GM
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r z

L L
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whereG is Newtonʼs constant and r x y z2 2 2= + + . The constant term in equation (5) can be considered as
a small offset that has atmost a time-independent effect on the detector readout. The constant term vanishes if
one places twomore spheres at the static spatial positions (0,0,±L). Comparison of the oscillating term in
equation (5)with themetric perturbation due to a plane gravitational wave in equation (4) and equation (1) leads
to the conclusion that we need the conditions GM L L h18 20

4 2
0, ,d w= w+ andf=j++π to be fulfilled to

create the effect of the plane gravitational wave of+ polarization specified above. Accordingly, we can rotate our
whole setup in the x-y plane by 45° to create the effect of a plane gravitational wave of×polarization. Sincewe are
working in linearized gravity, we can superimpose the two setups by using 8 spheres (10 to eliminate the offset)
tomimic a gravitational wave of any polarization. Furthermore, we can simulate a general gravitational wave
pattern by superimposing oscillations of themasses of different frequencies.

Another possibility to eliminate the constant term in h00
N is to replace the spheres with long cylinders

oriented in the z-direction. Let us assume that the centers of the cylinders follow the same trajectories in the x-y-
plane aswe assumed for the centers of the spheres above. Furthermore, let us assume that the cylinders aremuch
longer than the extension of the detector. Then, theNewtonian potential of a single rod can bewritten as

AG R R2 lnrod
0rF = ( ), where ρ is themass density of the rod,A is its cross section andR is the distance to the

6
Thismetric can be derived directly from the linearized Einstein equations and the energymomentum tensor for a non-relativistic point

particle in the Lorenz gauge [31].
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center of the rod. In this work, R0 can be considered as an arbitrary constant of the same dimension asR that is
only introduced to obtain a dimensionless expression in the logarithm. It will not contribute to any physical
effect here. The time-time component of themetric perturbation for the set of fourmoving cylinders expanded
up to quadratic terms of the spatial coordinates becomes

h
AG

c L
x y L t

16
, 700

N
2 3

2 2r
d= -( ) ( ) ( )

andwe can identify AG L L h16 20
3 2

0, ,r d w= w+ andf=j++π.
To accuratelymimic the component h00

N of themetric perturbation due to a gravitational wave, themasses
and the detector have to be positioned precisely. Small displacements from the setup described abovemay lead
to a net gravitational force on the center ofmass of the detector or additional tidal forces.However, the
positioning of themasses and the detector can be achievedwith sufficient precision7, so that the acceleration/
additional gravitational effects/tidal forceswould be small in comparison to themimicked effect of a
gravitational wave.

Note that the designs of the detectorsmentioned in the introduction are so that their detection efficiency is
maximal for a certain orientation of the detector with respect to polarization plane of the gravitational wave. In
the setup proposed in this article, the polarization plane isfixed (x-y-plane) and the local detector can always be
oriented tomaximize detection efficiency.

5. Signal amplitudes

Let us evaluate the effective signals that one canmimicwith spheres and cylinders for some specific experimental
parameters.We found that h MG L L360, , 0

4 2d w=w+ for the spheres and h AG L L320, , 0
3 2r d w=w+ for the

cylinders. Let us assume that the detector systems thatwe consider have dimensions below themeter scale.
Accordingly, we assume that the distance from the detector to the sourcemasses L is of the order of 1 m.
Furthermore, let us assume that the angular frequencyω of interest is around 2π×103 Hz. Let us assume that
we are able tomove spheres from tungsten or gold ofM=20 mg (corresponding to a diameter of about 1 mm)
at this frequency by a distance of about 100 μm.Then, we obtain that we canmimic a strain of the order of 10−25.
For gold or tungsten cylinders with diameters of about 0.5 mmas sourcemasses, wefind amimicked strain of

Figure 1. Schematic representation of the setup tomimic the effect of a gravitational wave on a small scale gravitational wave detector.
The detector is placed at the center of a distribution of four spheres (possibly hold by levers [20]) that oscillate towards and away from
the detector. Opposing spheres have half a period phase shift, while there is a phase shift of quarter of a period between neighboring
spheres. A gravitational wave of×-polarization can bemimicked by rotating the setup by 45° in the x-y-plane. Another twomasses
placed along the z-axis above and below the detector are needed to cancel constant tidal forces induced by the spheres in the x-y-plane.

7
Positioning is usually possible with a relative error of, atmost, the order of 10−3 and, in principle, down to an absolute error of 0.1 μm

given a good reference point using commercially available high accuracy positioners.
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the order of 10−23. For the case of gravitational wave detectors on the centimeter scale like that proposed in [8],
the distance between the detector and the sourcemasses L can be reduced to the order of 10 cm,which leads to
mimicked strains of the order of 10−21 for spheres and 10−20 for cylinders or strings.

A strain of the order of 10−20 is 5 orders ofmagnitude larger than the strain that is claimed to be detectable
with the design proposed in [8]. In [10], it is claimed that a sensitivity for strains of the order of 10−26 could be
expected for thefirst generation detector proposed in the article (denoted asGen1 in the article). The dimensions
of this detector would be about 50 cm. Therefore, L can be of the order ofmeters and strains could bemimicked
that are up to 3 orders ofmagnitude larger than the expected sensitivity of theGen1 detector in [10]. Therefore,
themimicked strains could be used as a tool to experimentally test the proposed detector designs.

For frequencies of the order ofMHz, largermasses have to bemoved to obtain large strains.However,
besides very extreme sources like galactic center branes,most expected sources of gravitational wave signals of
frequencies at or above theMHz regime give rise to strains of the order of 10−29 and less [32]. To test appropriate
proposals for small scale detectors for theMHz range already during the engineering phase, gravitational waves
with strains of the order of 10−27 could bemimickedwith steel stringswith diameters of about 100 μmusing
oscillation amplitudes of the order of 100 μmand a distance of 10 cmbetween the sources and the detector.

Note that smaller strains of exactly the same order as the expected gravitational waves can always be
mimicked by increasing the distance between the sourcemasses and the center of the detector system.

How vibration isolation of sources and detector can be achieved for experiments with oscillatingmasses in
themilligram rangewas discussed in [20] and inmuch detail in the thesis of Jonas Schmöle at theUniversity of
Vienna [33]. An experimental proposal is presented inwhich a sourcemass of about 100 mg ismoved at a
frequency of about 10 Hz and its gravitational effect on a testmass ismeasured. The vibration isolation is
implemented through severalmechanical vibration isolation stages in the suspension of detector and source.
The experiment proposed in [20] is currently set up in the laboratories ofMarkus Aspelmeyer inVienna.
Vibration isolationwithmechanical isolation stages in the suspension is similar to the techniques developed for
vibration isolation of the parts of interferometric gravitational wave detectors like LIGO andVirgo. There, up to
7 individual isolation stages are used in the suspension of the testmasses leading to a significant suppression of
seismic noise [34]. Similar techniques should be used for the test of small scale gravitational wave detectors. A
more detailed analysis will be necessary to obtain the precise experimental requirements.

Furthermore, for the design of an explicit experimental realization of our proposal, an extensivemodeling of
the gravitational fields induced by all parts of the source system and the surrounding devices would need to be
conducted.However, all parts can, in principle, be taken into account and engineered appropriately. In
particular, levers that are used tomove the sourcemasses can be positioned respecting the same symmetries as
the sourcemasses which only leads to an increase of themimicked strain. In the case of the oscillating rods or
strings as sourcemasses, those could bemade long enough such that the devices that set them inmotion are far
from the detector system.

6. Conclusions

We found that the effect of a gravitational wave on a small scale gravitational wave detector of any type
mentioned in the introduction can bemimicked by a systemof 10 oscillating spheres or a systemof 8 oscillating
cylinders. In principle, strains can bemimicked that are several orders larger than the sensitivities claimed by
some of the proposals [8, 10]. Additionally, the orientation of the polarization plane of themimicked
gravitational waves is known and the local detectors can be oriented so that their signal ismaximized. Therefore,
the setup proposed in this article can be used to test prototypes of small scale detector designs. Viable detector
designs could be singled out and developedwith concentrated effort. The possibility tomimic gravitational wave
signals of any type could also be extremely helpful in the engineering and development stage of the detectors, as
problems could be identified and performances could be optimized. The great advantage of the scheme
presented here is the possibility ofmimicking persistent sources.Most of the small scale detector proposals need
large integration times, whichmakes themmore useful for the detection of persistent sources. The parameters of
the setup needed to test a specific small scale gravitational wave detector proposal have to be specified depending
on the parameters of the detector design;most importantly the frequency band and the size of the detector.

In our derivation, we assume theNewtonian limit of linearized gravity which requires the assumptions of
non-relativisticmotion of the sourcemasses that are used tomimic the effect of a gravitational wave.
Furthermore, we assumed that all parts of the detector that are directly interactingwith the gravitational field to
realize the sensing process aremovingwith non-relativistic speed. This is not the case for some proposals, such
as those presented in [25–27]. For these proposals, the additional relativistic effects have to be taken into
account.
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