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Abstract—In a large range of manufacturing tasks, the design
objective is characterised as following a given path defined in
space. In these applications, the tracking time of any particular
position along the path is not specified, so an appropriate
motion profile can be chosen among its admissible solutions
to improve its tracking performance. This paper develops an
indirect reference update framework that maximizes accuracy
while embedding practical constraints. An optimal path planning
problem, incorporating system constraints, is formulated and can
be solved using a discretized approach to derive a motion profile
that minimizes control energy for a broad spectrum of industrial
tasks. To satisfy robustness concerns, an iterative learning control
(ILC) algorithm with an indirect reference update framework
is designed to improve the accuracy and robustness of path
following. It is evaluated on a gantry robot test platform, and
the results illustrate superior levels of practical performance in
terms of energy reduction and path following accuracy compared
with existing approaches.

Index Terms—iterative learning control, path planning, con-
straint handling, optimization.

I. INTRODUCTION

ROBOTS are extensively applied in modern manufactur-
ing due to their efficiency and precision [1]. A significant

class of industrial operations are characterized by directing
the robot’s end-effector along a specified trajectory, such as
manufacturing, assembly [2], welding [3], drilling [4] and
electro-hydraulic rolling [5]. These tasks focus on precisely
following a path, rather than achieving a position tracking
objective at each individual time instant as in the case of
trajectory tracking [6]. Therefore, the end-effector’s moving
speed along the path is not specified by a unique motion
profile [7]. In this path following problem setup, the temporal
tracking requirement component is removed and significant
design freedom is released compared to trajectory tracking
with a fixed motion profile [8]. However, the flexibility of
choosing a time-varying motion profile from the large set of
admissible choices also brings design challenges.

Due to the elimination of the temporal tracking requirement,
there exist an infinite number of motion profiles for a given
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path following task. Existing research has attempted to cap-
italise on the flexibility of choosing an appropriate motion
profile to achieve performance benefits. The work in [9]–
[13] leveraged the flexibility in path planning to enhance task
execution, e.g., minimum traveling time, via robotic motion
planning techniques. Parallel work in [14]–[16] considered the
collision avoidance problem in path planning using dynamic or
heuristic approaches, which may change the reference profiles.
However, all the aforementioned work used nominal system
models to compute the input signal and motion profile solu-
tions, and their practical path following accuracy was therefore
sensitive to the level of model uncertainty. Moreover, they
primarily focused on tracking, but did not address economic
issues such as energy reduction. However, these issues are key
performance indicators in modern industry [17], [18].

In terms of robustness, various control algorithms have been
designed to improve path following performance in practice. In
[19]–[21], the class of vehicle steering problems were studied
with respect to both model uncertainty and random disturbance
[22], [23]. A real-time motion profile was obtained via the
feedback of measured data, e.g., displacement and traveling
direction, such that the vehicle asymptotically follows its
given path. Aiming at improving the path following accuracy,
iterative learning control (ILC) was introduced in order to
update the input signal using the measured data from past
trials, such that the path following error gradually reduces to a
sufficiently small value [24]–[26]. Related work in [27], [28]
applied ILC to a class of systems with constraints for path
following tasks. Research in [29]–[31] applied energy-efficient
or ILC-based algorithms to path planning tasks. However, like
most ILC approaches for spatial tracking, only linear dynamics
were considered.

The stabilization of nonlinear systems while improving
system performance has long been a challenging problem.
Related research [32]–[34] has focused on integrating nonlin-
ear control techniques and data-driven algorithms to improve
system performance while ensuring system stability. In terms
of data-driven methods, various intelligent control algorithms
combined with data-driven techniques have been proposed
to control complex systems. In [35], [36], Neural Network
(NN) based control strategies, such as Q-learning and adaptive
implicit inverse control, were applied in the control and
optimization of time-delay and nonlinear systems. However,
the stability analysis of data-driven Model Free Control (MFC)
algorithms is a key issue and is closely related to the mathe-
matical model of the controlled process. A discussion of this
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topic can be found in [37].
To expand the class of admissible robotic applications, this

paper considers a minimum energy path following problem
with system constraints for industrial robots, e.g., robotic
manipulator [38], [39] and Cartesian coordinate robots [40],
[41], which repetitively perform the same task. The technique
of ILC has been applied to this application area in several
previous studies, where it has proved capable of leveraging
learning to outperform other control methods in terms of
path following accuracy [42], [43], implementation simplicity
and computational load reduction [44], [45]. To address the
minimum energy problem, the work in [46], [47] combined
optimal path planning with ILC to yield a comprehensive
algorithm with an indirect reference update framework, which
provides path following accuracy, energy reduction and con-
straint handling. In [48], a low-cost fuzzy control scheme was
proposed that employed ILC algorithms and a unified design
method focused on Takagi-Sugeno proportional-integral fuzzy
controllers. In [49], [50], the problem of 2D path following
minimum time was addressed using ILC. However, the inner
structure of the optimization problem varies for each trial
due to the nominal model update, which hence increased
the computation load. Previous ILC approaches have imposed
restrictions on the form of path that can be followed which lead
to a suboptimal solution. For example, the leading approach
[40] stipulated additional ‘point-to-point’ timings throughout
the motion that complicated the design and implementation.

In order to liberate available degrees of freedom in con-
trol time duration, enhance the capability of optimizing per-
formance indicators, and simplify the conventional design
framework of Optimal ILC (OILC), this paper introduces
an indirect reference update framework employing ILC to
address the minimum energy path following problem. This
gives rise to a highly coupled system input and reference
profile which motivates a reference profile update ILC law
instead of the input signal update law used in conventional
ILC. The reference profile is then linked to the input signal
using the global solution of minimum energy path following
problems. In this way, this paper obtains an indirect reference
update framework of ILC embedding both a reference profile
update and minimum energy path following solution. This
framework not only provides a minimum energy path strategy,
but also improves the path following accuracy and robustness
in the presence of model uncertainty. The paper’s contributions
include:

1) The path following task is defined for a general class
of robotic system, embedding system constraints with
coordinates in a spatial domain, and a minimum energy
path planning problem is formulated.

2) The path planning component is redefined as a convex
optimization problem within the spatial domain, yielding
a global solution through a discretized methodology.

3) A comprehensive ILC algorithm incorporating an indirect
reference update framework is developed to enhance the
precision of path tracking in the presence of model
uncertainties.

4) The proposed algorithm is verified on a gantry robot to
demonstrate feasibility, and a comparison with unplanned

motion profiles is also made in terms of energy reduction.
The following notation is used: Rn and Rn×m denote the

sets of n dimensional real vectors and n × m real matrices
respectively; Lℓ

2[a, b] denotes the space of Rℓ valued Lebesgue
square-summable sequences defined on an interval [a, b].

II. PROBLEM FORMULATION

This section presents the system dynamics, and defines
the path following task in a spatial domain with system
constraints. The minimum energy path following problem is
then formulated for the class of industrial robots.

A. System Dynamics

An ℓ-input, m-output time-invariant robotic system with
second order dynamics is given by

R(q(t))u(t) = M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) +D(q(t)),

y(t) = q(t), (1)

where t ∈ [0, T ] is the time index with 0 < T < ∞ denoting
the trial length; R ∈ Rm×ℓ is the control matrix, M ∈ Rm×m

is the mass matrix, C ∈ Rm×m is the centrifugal matrix
which is linear in q̇, and D ∈ Rm is the force dependent
on configuration; u(t) ∈ Rℓ and y(t) ∈ Rm are the input and
output respectively; q(t) ∈ Rm denotes the state of the system.
This system represents a general class of robotic applications
widely used in manufacturing, and its input output relationship
can be represented by

y = G(u), (2)

where the operator G maps the input signal u ∈ Lℓ
2[0, T ] to

the output signal y ∈ Lm
2 [0, T ]. The input and output Hilbert

spaces Lℓ
2[0, T ] and Lm

2 [0, T ] are defined with inner products
and associated induced norms

⟨u, v⟩ =
∫ T

0

u⊤(t)v(t)dt, ∥u∥ =
√
⟨u, u⟩, (3)

⟨x, y⟩ =
∫ T

0

x⊤(t)y(t)dt, ∥y∥ =
√
⟨y, y⟩. (4)

B. Path Following Task

A path is described as a subset of points in the output
space, Rm, defined by a continuous function, r̃, which maps
each spatial position s in [0, 1] to a point r̃(s) in the output
space, i.e. r̃ : s ∈ [0, 1] → r̃(s) ∈ Rm. In a path following
task, the reference profile r̃ is given as a priori and hence is
independent of temporal information. In addition, the system
input and output signals can be alternatively defined using
spatial coordinates as

ũ ∈ Lℓ
2[0, 1], ỹ ∈ Lm

2 [0, 1]. (5)

In general, the definition of a path following task is given as
Definition 1. Path Following Task: the end-effector of a robot
first starts from an initial position r̃(0), and must accurately
follow a path defined by r̃ and reach a terminal position r̃(1)
within a time period T .
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According to Definition 1, the end-effector initiates its
motion from the position r̃(0) at the initial time instant t = 0,
with the initial state condition that q(0) = 0, and proceeds
to reach the position r̃(1) at the terminal time instant T̂ ,
with the constraint that 0 < T̂ ⩽ T . Upon reaching the
terminal position, the end-effector ceases movement, thus for
the interval [T̂ , T ], the following conditions hold:

q(t) = q̂, u(t) = û, ẏ(t) = 0, t ∈ [T̂ , T ], (6)

where q̂ represents the constant value at rest, and û is the
solution to the linear equation R(q̂)u(t) = D(q̂) pertaining to
u(t).

To connect the spatial and temporal variables, a motion
profile θ is specified to determine the speed of the end-
effector along the path. The motion profile is defined as
a bijective continuous function, mapping each time instant
t in [0, T̂ ] to a unique spatial variable s in [0, 1] i.e.
θ : t ∈ [0, T̂ ] → s ∈ [0, 1] as follows:

s = θ(t), θ̇(t) ⩾ 0, t ∈ [0, T̂ ] (7)

with initial and terminal conditions

θ(0) = 0, θ(T̂ ) = 1, θ̇(0) = 0, θ̇(T̂ ) = 0. (8)

Using the motion profile, any given signal can be transformed
between temporal and spatial coordinates as

r(t) = r̃(θ(t)), t ∈ [0, T̂ ],

r̃(s) = r(θ−1(s)), s ∈ [0, 1]. (9)

Using this spatial transformation, the design objective of the
path following task is to design an input signal u to guarantee
the output trajectory y = G(u) accurately following the given
path defined by r̃, i.e.,

y = G(u), y = r, r(t) = r̃(θ(t)), t ∈ [0, T̂ ], θ ∈ Θ, (10)

where the motion profile θ belongs to the admissible set

Θ = {θ : [0, T̂ ] → [0, 1] : θ(0) = 0, θ(T̂ ) = 1,

θ̇(0) = 0, θ̇(T̂ ) = 0, θ̇(t) ⩾ 0, t ∈ [0, T̂ ]} (11)

for all possible motion profiles.

C. System Constraints

In industrial tasks, there are various system constraints that
restrict system performance. For instance, an input constraint
represents the physical limit of the system’s tolerance, beyond
which hardware damage may occur. Therefore, it is imperative
to keep these variables within their corresponding constraints
while performing these industrial tasks.

In the path following task, the primary system constraints
associate with the input signal u, speed θ̇ and acceleration θ̈.
Hence, the following two spatial coordinate transformations
are introduced to represent the speed and acceleration,

a(s) = s̈(θ−1(s)) = s̈(t), b(s) = ṡ2(θ−1(s)) = ṡ2(t) (12)

for s ∈ [0, 1]. The path following task system constraints have
the form

(ũ, a, b) ∈ C, (13)

where C is a convex set consisting of all admissible values of
the triplet (ũ, a, b).

Remark 1. The system constraints in (13) should be chosen
based on practical concerns, such as the performance limit of
the robot and the working environment. See [51] for some
exemplary system constraints required by practical applica-
tions. In particular, input saturation constraints are taken into
consideration in the experimental section as they are required
to prevent damage to the gantry robot.

D. Minimum Energy Path Following Problem

The design objective (10) naturally allows an infinite num-
ber of alternative solutions for the path following task, which
provides significant design freedom. This sort of freedom
enables a suitable choice of the input u and motion profile θ, to
optimize some performance index and maintain the objective
(10) at the same time. Therefore, a path following problem
can be formulated as

min
θ

f(u, y)

s.t. y = G(u), ỹ = r̃,

y(t) = ỹ(θ(t)), t ∈ [0, T̂ ],

u(t) = û, t ∈ [T̂ , T ],

0 < T̂ ⩽ T, θ ∈ Θ, (ũ, a, b) ∈ C.

(14)

In optimization problem (14), the decision variable is θ which
represents the system performance can be optimized by the
motion profile. The cost function f(u, y) represents the target
performance index, which might vary according to different
tasks. As an example, to minimize the peak input, f(u, y) is
chosen as

f(u, y) = ∥u∥∞,

and to minimize the output acceleration, f(u, y) is chosen as

f(u, y) = ∥ÿ∥.

In this paper, the path following task is considered, and
the target performance index is selected as the overall control
energy of this task, i.e.,

f(u, y) = ∥u∥2.

This choice has significant economic effect in manufacturing.
In industry, the number of robotic tasks completed every day
is large, so even a small degree of energy reduction in a single
task accumulates to a large energy saving. Hence, a minimum
energy path following problem is formulated as

min
θ

∥u∥2 (15a)

s.t. y = G(u), (15b)

y(t) = ỹ(θ(t)) = r̃, t ∈ [0, T̂ ] (15c)

u(t) = û, t ∈ [T̂ , T ], (15d)

0 < T̂ ⩽ T, (15e)
θ ∈ Θ, (15f)
(ũ, a, b) ∈ C. (15g)
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In the minimum energy path following problem (15), the
constraints have the following interpretation:

1) Eq. (15b) embeds the system dynamics.
2) Eq. (15c) converts the trajectory tracking task from the

temporal domain to the spatial domain during the move-
ment interval.

3) Eq. (15d) converts the inputs from the temporal domain
to the spatial domain after the movement has ceased.

4) Eq. (15e) specifies that the movement time interval does
not exceed the feasible time interval.

5) Eq. (15f) specifies the feasible set of decision variable θ.
6) Eq. (15g) ensures that the admissible values of the triplet

(ũ, a, b) are in a convex set.

III. PATH PLANNING STRATEGY

In general, the minimum energy path following problem
(15) is non-linear and non-convex, which makes it difficult
to solve. Consequently, this problem is reformulated into an
equivalent convex optimization problem in the spatial domain,
and a discretized approach is applied to solve the reformulated
problem.

A. Problem Reformulation

Using the definition of motion profile (7), the condition
(15c) gives rise to

y(t) = ỹ(θ(t)) = r̃(θ(t)), t ∈ [0, T̂ ], θ ∈ Θ, (16)

and the derivatives of y(t) is represented as

ẏ(t) = r̃
′
(s)θ̇(t),

ÿ(t) = r̃
′
(s)θ̈(t) + r̃

′′
(s)θ̇2(t), (17)

where
r̃
′
=

dr̃

ds
, r̃

′′
=

d2r̃

ds2
. (18)

Here the symbol ˙ represents the derivatives with respect to t,
and the symbol ′ represents the derivatives with respect to s.
After the reformulation in the spatial domain, the initial state
condition is converted to q̃(0) = q(θ−1(0)) = 0.

Using the above representations, the original problem (15) is
equivalently reformulated from time domain to spatial domain
via the change of variable scheme proposed in [52]. The
derivatives (17) are substituted into the system dynamics (1)
to yield the spatial representation of the system dynamics as

R̃(s)ũ(s) = M̃(s)s̈+ C̃(s)ṡ2 + D̃(s), (19)

where R̃(s), M̃(s), C̃(s) and D̃(s) are constants in spatial
domain for given reference profile r̃ denoted as

R̃(s) = R(r̃(s)),

M̃(s) = M(r̃(s))r̃
′
(s),

C̃(s) = M(r̃(s))r̃
′′
(s) + C(r̃(s))r̃

′2(s),

D̃(s) = D(r̃(s)).

The next proposition illustrates the equivalent representation
of problem (15) in the spatial domain.

Proposition 1. The minimum energy path following problem
(15) is equivalently reformulated in the spatial domain as the
convex optimization problem

min
ũ,a,b

∫ 1

0

ũ⊤(s)ũ(s)√
b(s)

ds+ Ê(T̂ , û) (20a)

s.t. R̃(s)ũ(s) = M̃(s)a(s) + C̃(s)b(s) + D̃(s), (20b)

b
′
(s) = 2a(s), (20c)

b(s) ⩾ 0, s ∈ [0, 1], (20d)∫ 1

0

1√
b(s)

ds ⩽ T, (20e)

(ũ, a, b) ∈ C. (20f)

Proof. See Appendix A.

By re-specifying the system model G(·) via the temporal-
spatial coordination conversion mechanism as a linear con-
straint, Proposition 1 reformulates the problem (15) into a con-
vex optimization problem (20). The decision variables become
the spatial input ũ, spatial speed a and jerk b. In addition,
any local optimal solution of this reformulated problem is
guaranteed to be a global optimum. This appealing property
enables a reliable computational path planning strategy to ad-
dress the original design problem. The subsequent Proposition
2 delineates a method for computing the energy consumption
term Ê(T̂ , û), ensuring its minimization.
Proposition 2. Suppose the control input u(t) = û during the
interval [T̂ , T ] being the least-squares solution to the linear
equation R(q̂)u(t) = D(q̂) pertaining to u(t), is given by

û = R⊤(q̂)(R(q̂)R⊤(q̂))−1D(q̂), (21)

then the energy consumption term Ê(T̂ , û) is minimum for
any given T̂ .

Proof. See Appendix B.

Proposition 2 effectively demonstrates that the optimal
control input û , which minimizes energy consumption during
the interval [T̂ , T ], corresponds to the least-squares solution of
the equation R(q̂)u(t) = D(q̂). Hence, with the optimization
of Ê(T̂ , û) in objective (20a) is addressed elegantly, the com-
plexity of the original optimization problem is significantly
reduced.

B. Solution via Discretized Approach

The problem (20) is an infinite dimensional convex opti-
mization problem, which is hard to solve directly. Therefore,
it is converted into a finite dimensional problem using a
discretized approach proposed in [52]. The variables ũ(s),
a(s) and b(s) are discretized at (N + 1) sample points, i.e.,
si, i = 0, . . . , N , in [0, 1] with equal distance between the
adjacent pairs si and si+1, i.e.,

∆s = si+1 − si, i = 0, . . . , N − 1. (22)

Denote bi as the value of b(s) at si, i.e.,

bi = b(si), i = 0, . . . , N, (23)
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and ai and ui as the values of a(s) and ũ(s) at the middle of
each sub-interval [si, si+1], i.e.,

ai = a(
si−1 + si

2
), ui = ũ(

si−1 + si
2

), i = 1, . . . , N. (24)

If a sufficiently high sampling frequency is chosen, then the
discretized points ai, si match their continuous counterparts
over sub-intervals containing si. This leads to the assumption:

Assumption 1. The values of a(s) and ũ(s) are constant on
each sub-interval [si, si+1], i.e.,

a(s) = ai, ũ(s) = ui, s ∈ [si, si+1], i = 1, . . . , N. (25)

Based on Assumption 1, the next proposition shows the
discretized form of problem (20).

Proposition 3. The convex optimization problem (20) has the
following discretized form

min
ũ,a,b

N∑
i=1

2∆s · u⊤
i ui√

bi−1 +
√
bi

+ Ê(T̂ , û) (26a)

s.t. R̃iui = M̃iai + C̃i ·
bi−1 + bi

2
+ D̃i, (26b)

bi − bi−1 = 2ai ·∆s, i = 1, . . . , N, (26c)
bi ⩾ 0, i = 0, . . . , N, (26d)
N∑
i=1

2∆s√
bi−1 +

√
bi

⩽ T, (26e)

(ũ, a, b) ∈ C̃, (26f)

where the system parameters R̃i, M̃i, C̃i and D̃i are calculated
as

R̃i = R̃(
si−1 + si

2
), M̃i = M̃(

si−1 + si
2

),

C̃i = C̃(
si−1 + si

2
), D̃i = D̃(

si−1 + si
2

). (27)

Proof. See Appendix C.

Problem (26) is the discretized form of the spatial optimiza-
tion problem (20) and can be solved using numerical methods.
The latter problem can be omitted if the problem is originally
stated in discrete-time, and the former taken as the starting
point. Problem (26) can be written in a standard optimization
setup, which is shown in the next corollary.

Corollary 1. The discretized form (26) is rewritten as a second
order cone programming (SOCP) problem as

min
ũ,a,b,c,d,d̂

N∑
i=1

2∆s · di + Ê(T̂ , û) (28a)

s.t. R̃iui = M̃iai + C̃i ·
bi−1 + bi

2
+ D̃i, (28b)∥∥∥∥ 2ui

ci−1 + ci − di

∥∥∥∥
2

⩽ ci−1 + ci + di, (28c)∥∥∥∥ 2

ci−1 + ci − d̂i

∥∥∥∥
2

⩽ ci−1 + ci + d̂i, (28d)

bi − bi−1 = 2ai ·∆s, i = 1, . . . , N, (28e)∥∥∥∥ 2ci
bi − 1

∥∥∥∥
2

⩽ bi + 1, (28f)

bi ⩾ 0, i = 0, . . . , N, (28g)
N∑
i=1

2∆s · d̂i = T, (28h)

(ũ, a, b) ∈ C̃ (28i)

by introducing three more variables c, d, and d̂.

Proof. See Appendix D.

The problem (26) is reformulated into the SOCP problem
(28), which combines features of linear programming (LP)
and quadratic programming (QP), has strong versatility, and
has a wide range of applicable scenarios. In addition, it can
be readily solved using standard numerical solvers and parsers
available in MATLAB, such as SeDuMi [53] and YALMIP
[54]. Once the problem (26) is solved, the optimal input
solution can be directly obtained, and the optimal motion
profile can be reconstructed from the solution of a and b.

Remark 2. The path information is required while calculating
the values of R̃i, M̃i, C̃i and D̃i. The analytic approach is used
to calculate the path reference derivatives, or alternatively they
can be estimated using

r̃(
si−1 + si

2
) =

r̃(si−1) + r̃(si)

2
,

r̃
′
(
si−1 + si

2
) =

r̃(si)− r̃(si−1)

∆s
,

r̃
′′
(
si−1 + si

2
) =

r̃(si+1)− r̃(si)− r̃(si−1) + r̃(si−2)

2∆s2
.

This section reformulated a minimum energy path following
problem (15) into an SOCP problem, which enables a global
optimal solution. Note that this solution is computed by the
nominal system model (1). However, there widely exists model
uncertainties in practice, and hence the solution based on nom-
inal system model might not yield sufficiently accurate results
for given tasks. Therefore, this motivates using a controller
to modify the input signal and improve the real time path
following performance. Consequently, the next section will
introduce an indirect update framework to embed the solution
of the SOCP problem. This takes the form of a comprehensive
ILC algorithm to enhance path following accuracy with respect
to model uncertainties.
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Fig. 1. A visual diagram on the time-spcae coordinate conversion mechanism
and the entire algorithm implementation.(The final version is still being
revised)

IV. CONTROL DESIGN APPROACH

This section proposes a comprehensive ILC algorithm with
an indirect reference update framework to increase the path
following accuracy of industrial robotic tasks. A diagram
summarizing the time-space coordinate conversion mechanism
and the entire algorithm implementation is shown in Fig. 1.
This algorithm is based on the minimum energy path planning
strategy and the ILC reference update law. Its robust conver-
gence properties are then discussed.

A. An Indirect Reference Update Framework of ILC

In a wide class of industrial robotic tasks, the robots operate
in a repetitive mode. In other words, these robots’ end-
effectors are required to follow the same path at each trial, and
the state q is set to the same initial value at the termination of
each trial. It is therefore possible to integrate the technique of
ILC with the path planning strategy to increase the practical
performance of these robotic path following tasks. In these
repetitive tasks, ILC outperforms alternative control strategies,
including traditional feedback control and model predictive
control, for the following two reasons:

1) It learns the correct input and reference, which does not
necessarily need on-line computations at each trial and
certainly reduces the computation load.

2) It can reduce the error between successive trials, while
the corresponding error of other control methods stays at
a similar level for all trials.

To design an ILC law, a subscript k is used to denote the
corresponding information at the kth trial. For example, uk

and yk represent the kth trial’s input and output respectively.
The spatial error at each trial is

ẽk = r − ỹexk , (29)

where ỹexk denotes the kth trial’s measured spatial output.
In the conventional ILC framework, the input signal uk

is updated at each trial to improve the temporal tracking
accuracy. However, the input signal u is coupled with the
problem (15) as a variable, and the direct input update scheme
using ILC breaks the optimization structure. Alternatively, note
that the input signal fully depends on the reference profile r̃,
as they have a causal relationship linked by the problem (15).

Algorithm 1 Comprehensive ILC Algorithm with Minimum Energy
Input: Reference profile r̃, nominal system model (1)
Output: Optimal input signal u∗ and motion profile θ∗

1: initialization: Trial number k = 0
2: Solve the problem (15) with r̃0 = r̃; record the solutions

u0 and θ0.
3: Apply u0 to the plant to obtain yex0 , and transform yex0 to

ỹex0 with respect to θ0; Record ẽ0.
4: repeat
5: Update the reference profile using r̃k+1 = r̃k + Lẽk.
6: Set k → k + 1.
7: Solve the problem (15) with r̃k; record the solutions uk

and θk.
8: Implement uk to the plant, and measure ỹexk respect to

θk; Record ẽk.
9: until ∥ẽk∥ < δ

10: return u∗ = uk and θ∗ = θk

As a result, instead of applying the conventional input
update ILC scheme, an indirect ILC procedure is proposed
to update the nominal reference profile, r̃k, at each trial. Once
the nominal reference profile is updated, it is applied to the
problem (15), which yields an input signal uk. This indirect
reference update framework, as an approach which alternates
optimization of input and reference, gives rise to a practical
iterative algorithm (Algorithm 1). In Algorithm 1, the spatial
output trajectory ỹexk in Step 3 and 8 should be measured
experimentally, L : Lm

2 [0, 1] → Lm
2 [0, 1] is a learning

operator and δ is a positive scalar representing the accuracy
requirement of particular task.

The requirement of experimentally measured data is not
necessary if the nominal system model (1) matches the real
plant. However, ILC has a strong track record in achieving
high accuracy despite significant modeling error. The desired
properties will be further discussed in the next subsection.

Remark 3. In the spatial reference update law r̃k+1 = r̃k +
Lẽk, the learning operator L must satisfy the condition ρ(L) <
1 to guarantee convergence of the spatial reference iterative
update. For simplicity, L is chosen as L = γI , where γ ∈ [0, 1]
is a scalar. As γ increases, the algorithm converges faster, with
the tracking error decreasing concordantly.

B. Robust Convergence Analysis

If nominal system model (1) is accurate, Algorithm 1
provides the optimal solution within a single trial. However,
with the existence of model uncertainty, the experimentally
measured output yexk differs from the numerical computed
value yk even for the same input signal uk. This algorithm
attempts to incorporate real-time measured data (generated by
the real plant) in the indirect reference update framework to
improve the task performance.

In this section, evidence is provided that Algorithm 1 solves
the optimal path following problem with desired error con-
vergence properties despite significant model uncertainty. To
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investigate the robust performance, the following assumption
is required to describe the model uncertainty.

Assumption 2. Suppose that the difference between measured
output yex and the numerical computed value y, i.e., ∆y =
yex − y, satisfies

∥∆y∥ ⩽ δ ∥y∥ , (30)

where δ is a non-negative scalar.

This assumption can always be satisfied in practice, as the
model uncertainty has a finite range. To analyze the robust
convergence properties of Algorithm 1, the next lemma is
needed.

Lemma 1. Suppose that the speed profile θ̇ is bounded as

θ ⩽ θ̇(t) ⩽ θ, t ∈ [0, T ]. (31)

The value ỹ is bounded as√
θ ∥y∥ ⩽ ∥ỹ∥ ⩽

√
θ ∥y∥ . (32)

Proof. See Appendix E.

Using the above lemma, the robust convergence properties
of Algorithm 1 are illustrated in the next theorem.

Theorem 1. If the speed profile θ̇ is bounded by (31), and the
inequality

∥I − L∥+ δ

√
θ

θ
∥L∥ < 1 (33)

holds, the spatial error ẽk generated by Algorithm 1 satisfies
the following condition∥∥∥ẽ′

k+1

∥∥∥ < ∥ẽk∥ , (34)

where ẽ
′

k+1 = r̃ − (ỹk+1 + ∆̃y
′

k+1), y
′

k+1(t) = ỹk+1(θk(t))

and ∆̃y
′

k+1(s) = ∆y
′

k+1(θ
−1
k (s)).

Proof. See Appendix F.

Theorem 1 illustrates the robust properties of Algorithm 1
between successive trials. The forthcoming theorem elucidates
this algorithm’s overall robust convergence properties via a
randomized coordinate descent methodology [55].

Theorem 2. Suppose that two variables θ and r̃ are updated
by the law {

θk+1 = θ∗k, k is even,
r̃k+1 = r̃k + Lẽk k is odd,

(35)

where θ∗k is the optimizer of problem (15). Then, both the
control effort sequence {∥uk∥} and the error sequence {∥ẽk∥}
will converge to their limits respectively, i.e., ∥u∥∗ and ∥ẽ∥∗
which is demonstrated in Algorithm 1.

Proof. See Appendix G.

This theorem delineates the robust convergence properties
of Algorithm 1. These properties ensure that both the energy
consumption and system error will converge to their limits.

Fig. 2. Three-axis gantry robot test platform.

Based on the results in Theorem 1 and 2, the next corollary
further defines some attractive properties.

Corollary 2. Suppose that the system model is linear, then the
converged solutions of Algorithm 1 provide the global optimal
performance index of the given path following problem (14),
i.e., the following two sets of constraints are equivalent as

y = G(u), ỹ = r̃∗ ⇔ y = Ĝ(u), ỹ = r̃, (36)

where Ĝ denotes the accurate system model function.

Proof. See Appendix H.

This corollary illustrates that the problem solved at each ILC
trial will gradually approach the exact problem within certain
class of systems, and finally provide the same solution. It can
therefore be concluded that, although the real plant model is
partially unknown, practical implementation of Algorithm 1
can be carried out to achieve the minimum control energy of
the path following task, and achieve path following accuracy
at the same time.

V. VERIFICATION ON A GANTRY ROBOT

This section employs a three-axis gantry robot as a test
platform to verify the practical performance of Algorithm 1.

A. Test Platform Description

The gantry robot shown in Fig. 2 replicates the manufac-
turing environment including model uncertainty and random
disturbance. The three axes (x, y and z) shown in the figure
are perpendicular to each other, and the hybrid motion of three
axes yields the 3D space motion of its end-effector in a given
region. The gantry robot performs manufacturing tasks such as
picking up a payload from the dispenser and placing it down
on a moving convey situated below.

The input of the gantry robot has units of voltage, and the
displacement of each axis is measured by an incremental en-
coder as the output. The resolutions of the encoders on x-axis,
y-axis and z-axis are 32µm, 32µm and 16µm respectively.
The gantry robot is controlled by a powerful dSPACE device
DS1103. See Fig. 3 for a block structure overview of the gantry
robot test platform.
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Fig. 3. Gantry robot block structure overview.
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B. Task Specifications

The objective of the path following task is to use the x-axis
and z-axis (m = 2) of the gantry robot to repetitively follow a
2D circular path (shown as the yellow curve in Fig. 5) defined
as

r̃(s) =

[
0.005 cos(−2πs+ π) + 0.005

0.005 sin(−2πs+ π)

]
, s ∈ [0, 1] (37)

during a given time period T = 2 seconds. The nominal
system models of x-axis and z-axis are given as the following
transfer function representations

Gx(s) =
0.05

s
and Gz(s) =

0.03

s
, (38)

and each axis is in series with an integrator. An input saturation
constraint

|ũ(s)| ⪯
[
1
2.5

]
, s ∈ [0, 1] (39)

is also considered to prevent the damage to gantry robot, and
added into system constraint set C.

C. Experimental Results

Algorithm 1 is implemented on the gantry robot with
γ = 0.3, 0.4, 0.5, 0.6 and 0.7 to perform the repetitive path
following task described in the previous subsection. The mean
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square path following error on each trial is plotted in Fig.
4, for different values of γ. The error convergence rate is
proportional to the value of γ. Also, due to the incremental
encoder resolutions, the errors all converge to around 10−4,
which illustrates the ability of this algorithm to increase the
path following accuracy.

The results with γ = 0.3 are selected for further analysis.
The measured hybrid output trajectories over the first three
trials and on the final trial are plotted in Fig. 5 as the dashed
curves, and the given reference profile (37) is also plotted as
the yellow curve for comparison. From this figure, note that
there exists a certain level of mismatch between the output and
the given path for first few trials, which is clearly beyond the
scope of practical tolerance for path following error. However,
the output trajectory of the final trial accurately follows the
desired path. This fact again confirms that this algorithm
improves the path following accuracy using ILC reference
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update law.

The input trajectories at each trial for γ = 0.3, are shown
in Fig. 6. Note that the input gradually converges to the final
one, and all inputs stay within the input saturation constraint
set (39), which verifies the feasibility of this algorithm to
handle system constraints. In addition, the final optimal motion
profile is plotted in Fig. 7. This solution suggests that the best
way to save control energy is to gradually accelerate at the
beginning, then keep an almost constant speed, and finally
gradually decelerate at the trial end.

Moreover, the control energy on each trial for γ = 0.3
is plotted as the blue curve in Fig. 8. For comparison, the

identified system model of the gantry robot is considered, i.e.,

Ĝx(s) =
1.67× 10−5(s+ 500.2)(s+ 4.9× 105)...

s(s2 + 24s+ 6401)...

(s2 + 10.58s+ 1.145× 104)(s2 + 21.98s+ 2.9× 104)

(s2 + 21.38s+ 2.017× 104)(s2 + 139.5s+ 2.162× 105)

and Ĝz(s) =
15.8869(s+ 850.3)

s(s2 + 707.6s+ 3.377× 105)
(40)

obtained using frequency response fitting, with full details
provided in [56]. This model is applied to the minimum energy
path following problem (15) to yield the solutions for input
and motion profile. As this identified model is accurate, there
is no need to perform the reference update procedure, and the
resulting control energy is regarded as the global minimum,
which is plotted in the same figure as the dashed magenta line.
Note that the blue curve converges to the dashed magenta
line. The reason is that the gantry robot consists of stepper
motors, whose system model is approximately equivalent to
an integrator. As each axis is in series with an integrator,
the overall system can be considered as a double integrator
system, whose model uncertainty is obviously time invariant
and independent of the motion profile. Then, according to
Corollary 2, the converged solutions of Algorithm 1 provide
the global minimum control energy of the given path following
problem in the case of a linear system.

For comparison, the feedback control method and NOILC
algorithm are also applied to the same path following task with
constant motion profile. The corresponding path following
error and control energy consumption are plotted as the dashed
lines in Fig. 4 and Fig. 8 respectively. From the comparison, it
is obvious that the path following error using feedback control
is around 1, 000 times larger and NOILC is around 10 times
larger than the error of Algorithm 1. In addition, an 11.69%
energy reduction is achieved using the path planning strategy
of Algorithm 1 compared to the energy required by feedback
control and a 6.97% energy reduction is achieved compared
to NOILC. Therefore, Algorithm 1 outperforms the classical
control method both in terms of path following accuracy and
energy reduction.

D. Case Study

In this subsection, a simulation involving a 3-degree-of-
freedom (3-DOF) serial robot manipulator is conducted to
validate the effectiveness of Algorithm 1 on highly nonlinear
systems.

The objective of the path following task is to use the 3-DOF
serial robot manipulator (m = 3) to repetitively follow a 3D
circular path (shown as the yellow curve in Fig. 9) defined as

r̃(s) =

0.005 cos(−6πs+ π) + 0.005
0.005 sin(−6πs+ π)

0.05s

 , s ∈ [0, 1] (41)

over a time period of T = 2 seconds. The nominal system
model of the serial robot manipulator is given as plant (1),
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Fig. 9. Comparison between desired path and the hybrid output trajectories
of the 3-DOF serial robot manipulator over the first three trials and on the
final trial for γ = 0.3.

0 2 4 6 8 10 12 14 16 18 20

Trials, k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
ra

c
k
in

g
 E

rr
o

r 
(m

m
2
)

Fig. 10. Mean square path following error of 3-DOF serial robot manipulator
on each trial for γ = 0.3.

where the specific state and parameter matrix representation
is

q =
[
q1 q2 q3

]⊤
, R = I3,

M =

 4.5 1.25 cos(q2) 0.4 cos(q3)
1.25 cos(q2) 2.5 0.4 cos(q3)
0.4 cos(q3) 0.4 cos(q3) 1

 ,

C =

 0 −1.25 sin(q2)q̇2 −0.4 sin(q3)q̇3
1.25 sin(q2)q̇1 0 −0.4 sin(q3)q̇3
0.4 sin(q3)q̇1 0.4 sin(q3)q̇1 0

 ,

D =

9.81(cos q1 + 1.2 cos(q1 + q2) + 0.6 cos(q1 + q2 + q3))
9.81(0.6 cos(q1 + q2) + 0.3 cos(q1 + q2 + q3))

2.943 cos(q1 + q2 + q3)

 .

Algorithm 1 is implemented on the robot manipulator with
γ = 0.3. The mean square path following error on each trial
is plotted in Fig. 10 and the control energy on each trial is
plotted in Fig. 11.

As seen from Fig. 10, despite the high nonlinearity of the
model, the error of Algorithm 1 can still converge. However,
considering that the discretization method will cause distortion
of the nonlinear signal, the error cannot achieve a monotonic
decrease. Fig. 11 shows the initial energy consumption does
not start from 0, just as shown in Proposition 2. As long
as the system is in the startup state, the robot arm needs to
compensate for the influence of gravity against it. In particular,
there is always an input û to resist gravity, and there will exist
energy consumption Ê.

0 2 4 6 8 10 12 14 16 18 20

Trials, k

2

2.2

2.4

2.6

2.8

3

3.2

3.4

In
p

u
t 

E
n

e
rg

y
 (

V
2

s
)

Fig. 11. Control energy of 3-DOF serial robot manipulator comparison with
the minimum value for γ = 0.3.

VI. CONCLUSION AND FUTURE WORK

This paper provides a comprehensive algorithm for robots in
manufacture, which achieves energy reduction and high path
following accuracy at the same time. A path following problem
with system constraints is formulated to minimize the control
energy. This problem is reformulated in spatial domain as a
convex optimization problem, which is solved by a discretized
approach. Then, a comprehensive ILC algorithm is proposed
via an indirect reference update framework to increase the path
following accuracy under model uncertainties, which combines
a minimum energy path planning strategy and a reference
profile update precedure. The experimental results on a gantry
robot demonstrate its feasibility, and the comparison with
unplanned motion profiles verifies its advantages and novelty.

Future work will focus on designing the learning operator
L to improve algorithm performance and formulating perfor-
mance indices to quantify the effect of disturbance inputs. In
addition, the problem setup will be expanded to handle the
energy problem for an even more general class of system.

APPENDIX A
PROOF OF PROPOSITION 1

According to the definitions in (12), it is clear that

b(s) ⩾ 0, (42)

and the two functions a(s) and b(s) have

ḃ(s) = b
′
(s)ṡ =

d(ṡ2)

dt
= 2s̈ṡ = 2a(s)ṡ,

which is equivalent to

b
′
(s) = 2a(s). (43)

Furthermore, the initial and terminal condition of b(s) is

b(0) = ṡ2(0) = 0, b(1) = ṡ2(T̂ ) = 0, (44)

which respects to the fact that the end-effector starts from its
initial position and stopped at the terminal position.

In addition, the overall tracking time T̂ is represented in
spatial domain by

T̂ =

∫ T̂

0

1dt =

∫ θ(T̂ )

θ(0)

ṡ−1ds =

∫ 1

0

1√
b(s)

ds, (45)



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON CYBERNETICS 11

and similarly the cost function ∥u∥2 can be represented in
spatial domain by

∥u∥2 =

∫ T

0

u⊤(t)u(t)dt =

∫ T̂

0

u⊤(t)u(t)dt+ Ê(T̂ , û)

=

∫ θ(T̂ )

θ(0)

ũ⊤(s)ũ(s)ṡ−1ds+ Ê(T̂ , û)

=

∫ 1

0

ũ⊤(s)ũ(s)√
b(s)

ds+ Ê(T̂ , û), (46)

where Ê(T̂ , û) = (T − T̂ )û⊤û is a term dependent on T̂ and
û, representing the energy consumption during the interval
[T̂ , T ].

Using these spatial notations, the problem (15) can be
reformulated. The problem (20) involves three variables u, a
and b. It follows from [57] that the function x2/y is convex
respect to (x, y) for y ⩾ 0, and integration reserves the
convexity, so the cost function is convex. Due to the same
reason, the left side function in the time constraint (20e) is
also convex, so this inequality constraint is convex. Since
the dynamic constraint (20b) is linear and affine in u, a and
b, the relationship (20c) between a and b is linear. As the
derivative is a linear operator, the inequality constraint (20d)
is convex. Also, the system constraint (20f) is convex as the set
C is convex. Therefore, problem (20) is a convex optimization
problem.

APPENDIX B
PROOF OF PROPOSITION 2

To minimize the energy consumption E(T̂ , û) subject to the
motion termination constraint R(q̂)u(t) = D(q̂), we formulate
the optimization problem as follows:

min
û

Ê(T̂ , û) (47a)

s.t. R(q̂)û = D(q̂) (47b)

According to the Lagrange multiplier method, for any given
T̂ , we can transform the original optimization problem (47)
into finding the extremum of the Lagrangian

f(û, λ) = û⊤û− λ⊤(R(q̂)û−D(q̂)), (48)

where λ is the Lagrange multiplier. By solving this, we obtain:

λ = 2(R(q̂)R⊤(q̂))−1D(q̂), (49)

û = R⊤(q̂)(R(q̂)R⊤(q̂))−1D(q̂), (50)

which is identical in form to the least-squares solution of the
equation R(q̂)u(t) = D(q̂), thus completing the proof.

APPENDIX C
PROOF OF PROPOSITION 3

From Assumption 1, the value of b
′
(s) on this sub-interval

is also constant by relationship (20c), and it follows that

bi − bi−1

si − si−1
= b

′
(s) = 2ai, i = 1, . . . , N, (51)

which gives rise to

bi − bi−1 = 2ai ·∆s, i = 1, . . . , N, (52)

and

b(s) = bi + (s− si) ·
bi+1 − bi
si+1 − si

, s ∈ [si, si+1]. (53)

The discretized form of the cost function (20a) is∫ 1

0

ũ⊤(s)ũ(s)√
b(s)

ds =

N∑
i=1

∫ si

si−1

ũ⊤(s)ũ(s)√
b(s)

ds

=

N∑
i=1

∫ si

si−1

u⊤
i ui · (bi−1 + (s− si−1) ·

bi − bi−1

si − si−1
)−

1
2 ds

=

N∑
i=1

u⊤
i ui

2(si − si−1)

bi − bi−1
(bi−1 + (s− si−1)

bi − bi−1

si − si−1
)

1
2 |sisi−1

=

N∑
i=1

u⊤
i ui

2(si − si−1)

bi − bi−1
(bi − bi−1)

1
2

=

N∑
i=1

2∆s · u⊤
i ui√

bi−1 +
√
bi
, (54)

and the discretized form for time constraint (20e) is

N∑
i=1

2∆s√
bi−1 +

√
bi

⩽ T. (55)

Furthermore, the dynamic constraint (20b) can be represented
in discretized form as

R̃iui = M̃iai + C̃i ·
bi−1 + bi

2
+ d̃i, i = 1, . . . , N. (56)

In addition, the system constraint (20f) is converted into
its discretized form (26f). Hence, all above steps yield the
discretized form (26).

APPENDIX D
PROOF OF COROLLARY 1

To rewrite (26) into a SOCP problem with a standard form,
three extra variables are first introduced as

c = [c0, . . . , cN ]⊤, d = [d1, . . . , dN ]⊤, d̂ = [d̂1, . . . , d̂N ]⊤.

The cost function (26a), and the time constraint (26e) can be
equivalently written as a linear forms as

N∑
i=1

2∆s · di,
N∑
i=1

2∆s · d̂i = T (57)

with the inequality constraints

u⊤
i ui√

bi−1 +
√
bi

⩽ di,
1√

bi−1 +
√
bi

⩽ d̂i, i = 1, . . . , N,

(58)
which can be further replaced as

u⊤
i ui

ci−1 + ci
⩽ di,

1

ci−1 + ci
⩽ d̂i, i = 1, . . . , N,

ci ⩽
√
bi, i = 0, . . . , N. (59)
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The inequality (59) is written as three second order cone
constraints as follows:∥∥∥∥ 2ui

ci−1 + ci − di

∥∥∥∥
2

⩽ ci−1 + ci + di, i = 1, . . . , N,∥∥∥∥ 2

ci−1 + ci − d̂i

∥∥∥∥
2

⩽ ci−1 + ci + d̂i, i = 1, . . . , N,∥∥∥∥ 2ci
bi − 1

∥∥∥∥
2

⩽ bi + 1, i = 0, . . . , N. (60)

Hence, the above steps generate the SOCP problem (28).

APPENDIX E
PROOF OF LEMMA 1

The 2−norm in spatial domain is equivalently written as

∥ỹ∥2 =

∫ 1

0

ỹ⊤(s)ỹ(s)ds

=

∫ T̂

0

θ̇(t)y⊤(t)y(t)dt (61)

in the time domain. As the speed profile θ̇ is bounded as shown
in (31), it follows that

∥ỹ∥2 ⩽ θ

∫ T̂

0

y⊤(t)y(t)dt = θ ∥y∥2 , (62)

and in symmetry, we can derive the lower bound, which
together give rise to the bounded condition (32).

APPENDIX F
PROOF OF THEOREM 1

The spatial error equation (29) is equivalent to

ẽk = r̃ − ỹexk = r̃ − (ỹk + ∆̃yk), (63)

which together with definition of ẽ
′

k gives rise to

ẽ
′

k+1 − ẽk = (ỹk − ỹk+1) + (∆̃yk − ∆̃y
′

k+1). (64)

Due to the path following requirement, there exists ỹk = r̃k,
which together with the ILC law yield

ẽ
′

k+1 = (I − L)ẽk + (∆̃yk − ∆̃y
′

k+1), (65)

and has a norm inequality∥∥∥ẽ′

k+1

∥∥∥ ⩽ ∥I − L∥ ∥ẽk∥+
∥∥∥∥(∆̃yk − ∆̃y

′

k+1)

∥∥∥∥ . (66)

Since the speed profile θ̇ is bounded by (31), it follows from
Lemma 1 that∥∥∥∥∆̃yk − ∆̃y

′

k+1

∥∥∥∥ ⩽
√
θ
∥∥∥∆yk −∆y

′

k+1

∥∥∥ , (67)∥∥∥yk − y
′

k+1

∥∥∥ ⩽
1√
θ
∥ỹk − ỹk+1∥ . (68)

According to the model uncertainty bounded condition (32) in
Assumption 2, there exists∥∥∥∆yk −∆y

′

k+1

∥∥∥ ⩽ δ
∥∥∥yk − y

′

k+1

∥∥∥ . (69)

The above inequalitues (67), (68) and (69) yield∥∥∥∥∆̃yk − ∆̃y
′

k+1

∥∥∥∥ ⩽ δ

√
θ

θ
∥ỹk − ỹk+1∥ . (70)

which further implies∥∥∥∥∆̃yk − ∆̃y
′

k+1

∥∥∥∥ ⩽ δ

√
θ

θ
∥L∥ ∥ẽk∥ . (71)

Substitute (71) into (66) to give

∥∥∥ẽ′

k+1

∥∥∥ ⩽ (∥I − L∥+ δ

√
θ

θ
∥L∥) ∥ẽk∥ . (72)

Therefore, if the condition (33) holds, the error reduction
property (34) holds.

APPENDIX G
PROOF OF THEOREM 2

In randomized coordinate descent algorithm, the update
component is chosen randomly at each iteration. Before
proving Theorem 2, the convergence lemma of randomized
coordinate descent algorithm will be introduced first.

Lemma 2. [58] Suppose a function f : Rn 7→ R is strictly
convex satisfying

f(y) > f(x) +∇f(x)⊤(y − x) +
σ

2
∥y − x∥2 , (73)

where σ > 0 denotes the modulus of convexity. Then, for all
trial numbers k, there exists

E(f(xk))− f∗ ≤ (1− σ

nLmax
)k(f(x0)− f∗), (74)

where operator E(·) denotes the expectation with respect to all
random variables of f , and Lmax is the maximum component
Lipschitz constant.

According to the definition of spatial error ẽ, the cost
function (15a) can be equivalently converted to

min
θ,r̃

J(θ, r̃), (75)

J(θ, r̃) = ∥ẽ∥2 + α ∥u∥2 ,

in a Lagrange multiplier form, where α is the Lagrange
multiplier with respect to (15c) and two variables θ and r̃
are viewed as two coordinates of (75). Based on Lemma 2
and Corollary 1, the above equivalent problem can be solved
with the update law (35). When k is odd, the cost function
(75) decreases along the direction of ∇r̃kJ , and when k is
even, the whole course of searching the optimizer of (15) is
equivalent to multiply randomized descents along the direction
of ∇θkJ . Thus, according to (74), the equivalent cost function
J(θ, r̃) will converge to a theoretical minimum J∗.

As Theorem 1 illustrates the bounded monotonical property
of spatial error between adjacent trials, along with the converge
of J(θ, r̃), both {∥uk∥} and {∥ẽk∥} will converge to their limit
∥u∥∗ and ∥ẽ∥∗ respectively.



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON CYBERNETICS 13

APPENDIX H
PROOF OF COROLLARY 2

As the system is linear, the difference ∆y of model uncer-
tainty satisfies

∆y = Hy, (76)

where H : Lm
2 [0, T ] 7→ Lm

2 [0, T ] is an operator mapping y
to ∆y.

While the path following error converges to zero, and there
exists

ỹex∗ = r̃. (77)

where the superscript ∗ indicates the optim Also, according to
the path following task requirement, the following condition

ỹ∗ = r̃∗ (78)

holds. Assume that there is an invertible map defined as Γ :
f(t) 7→ f̃(s), where f(t) is a class of time function and f̃(s)
is a class of spatial variable function. Then, it follows from
the model uncertainty condition (76) such that

r̃ = ỹex∗ = Γ((I +H)y∗) = Γ((I +H)r∗). (79)

The tracking constraints for optimal path planning problem
(14) at the corresponding trial is

y = G(u), ỹ = r̃∗, (80)

which yields

yex = (I +H)y = (I +H)G(u) = Ĝ(u),

ỹex = Γ((I +H)y) = Γ((I +H)Γ−1(ỹ))

= Γ((I +H)Γ−1(r̃∗)) = Γ((I +H)r∗) = r̃. (81)

The above equivalent constraint is exactly the same as that
of the optimal problem using the accurate system model Ĝ
and the actual reference profile r̃, i.e.,

y = Ĝ(u), ỹ = r̃. (82)

Therefore, the problem solved at the final trial is equivalent to
the problem in the ideal case, and provides the global optimal
performance index.

REFERENCES

[1] T. Brogardh, “Present and future robot control development -an indus-
trial perspective,” Annual Reviews in Control, vol. 31, no. 1, pp. 69–79,
2007.

[2] W. Wang, W. Ding, C. Hua, H. Zhang, H. Feng, and Y. Yao, “A digital
twin for 3D path planning of large-span curved-arm gantry robot,”
Robotics and Computer-Integrated Manufacturing, vol. 76, p. 102330,
2022.

[3] X. Zhou, X. Wang, Z. Xie, F. Li, and X. Gu, “Online obstacle avoidance
path planning and application for arc welding robot,” Robotics and
Computer-Integrated Manufacturing, vol. 78, p. 102413, 2022.

[4] J. Wang, X. Xi, Y. Zhang, L. Qin, Y. Liu, and W. Zhao, “Path
optimization for multi-axis edm drilling of combustor liner cooling holes
using SCGA algorithm,” Computers and Industrial Engineering, vol.
157, p. 107319, 2021.

[5] K. Ly, J. V. Mayekar, S. Aguasvivas, C. Keplinger, M. E. Rentschler,
and N. Correll, “Electro-hydraulic rolling soft wheel: Design, hybrid
dynamic modeling, and model predictive control,” IEEE Transactions
on Robotics, vol. 38, no. 5, pp. 3044–3063, 2022.

[6] K. Shi, C. Liu, Z. Sun, and X. Yue, “Coupled orbit-attitude dynamics
and trajectory tracking control for spacecraft electromagnetic docking,”
Applied Mathematical Modelling, vol. 101, pp. 553–572, 2022.

[7] H. Chen, J. Yang, and H. Ding, “Robotic grinding of curved parts with
two degrees of freedom active compliant force-controlled end-effector
using decoupling control algorithm,” Robotics and Computer-Integrated
Manufacturing, vol. 93, p. 102935, 2025.

[8] Y. Chen, B. Chu, and C. T. Freeman, “Iterative learning control for path-
following tasks with performance optimization,” IEEE Transactions on
Control Systems Technology, vol. 30, no. 1, pp. 234–246, 2021.

[9] K. G. Shin and N. D. McKay, “Minimum-time control of robotic
manipulators with geometric path constraints,” IEEE Transactions on
Automatic Control, vol. 30, no. 6, pp. 531–541, 1985.

[10] E. Barnett and C. Gosselin, “A bisection algorithm for time-optimal
trajectory planning along fully specified paths,” IEEE Transactions on
Robotics, vol. 37, no. 1, pp. 131–145, 2020.

[11] M. Chen and D. Zhu, “Optimal time-consuming path planning for
autonomous underwater vehicles based on a dynamic neural network
model in ocean current environments,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 12, pp. 14 401–14 412, 2020.

[12] S. Lin, C. Hu, S. He, W. Zhao, Z. Wang, and Y. Zhu, “Real-time
local greedy search for multiaxis globally time-optimal trajectory,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 54, no. 2,
pp. 960–971, 2022.

[13] M. Faroni, A. Umbrico, M. Beschi, A. Orlandini, A. Cesta, and
N. Pedrocchi, “Optimal task and motion planning and execution for
multiagent systems in dynamic environments,” IEEE Transactions on
Cybernetics, vol. 54, no. 6, pp. 3366–3377, 2024.

[14] Y. Ning, M. Yue, J. Shangguan, and J. Zhao, “Optimal trajectory
planning method for the navigation of wip vehicles in unknown envi-
ronments: Theory and experiment,” IEEE Transactions on Cybernetics,
vol. 53, no. 10, pp. 6317–6328, 2023.

[15] H. Chen and X. Zhang, “Path planning for intelligent vehicle collision
avoidance of dynamic pedestrian using Att-LSTM, MSFM, and MPC at
unsignalized crosswalk,” IEEE Transactions on Industrial Electronics,
vol. 69, no. 4, pp. 4285–4295, 2022.

[16] Y. Xu, L. Liu, N. Gu, D. Wang, and Z. Peng, “Multi-ASV collision
avoidance for point-to-point transitions based on heading-constrained
control barrier functions with experiment,” IEEE/CAA Journal of Auto-
matica Sinica, vol. 10, no. 6, pp. 1494–1497, 2023.

[17] Y. Shi, Z. Zhang, L. Xie, and H. Su, “ILC-based two-layer strategy
for economic performance improvement in industrial MPC systems,”
Journal of Process Control, vol. 108, pp. 136–147, 2021.

[18] M. van de Vosse, T. W. Toner, M. J. Wu, D. M. Tilbury, and K. L. Barton,
“Using economic iterative learning control for time-optimal control of
a redundant manipulator,” in 2023 IEEE 19th International Conference
on Automation Science and Engineering (CASE). IEEE, 2023, pp. 1–7.

[19] C. Zhang, H.-K. Lam, J. Qiu, P. Qi, and Q. Chen, “Fuzzy-model-
based output feedback steering control in autonomous driving subject
to actuator constraints,” IEEE Transactions on Fuzzy Systems, vol. 29,
no. 3, pp. 457–470, 2021.

[20] S. You, G. Kim, S. Lee, D. Shin, and W. Kim, “Neural approximation
based adaptive control using reinforced gain for steering wheel torque
tracking of electric power steering system,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 53, no. 7, pp. 4216–4225,
2023.

[21] Y. Chen, X. Zhang, and J. Wang, “Robust vehicle driver assistance
control for handover scenarios considering driving performances,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 7,
pp. 4160–4170, 2021.

[22] M. Deyuan and Z. Jingyao, “Robust optimization-based iterative learn-
ing control for nonlinear systems with nonrepetitive uncertainties,”
IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 5, pp. 1001–1014,
2021.

[23] D. Shen and J.-X. Xu, “An iterative learning control algorithm with
gain adaptation for stochastic systems,” IEEE Transactions on Automatic
Control, vol. 65, no. 3, pp. 1280–1287, 2019.

[24] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning
control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–144,
2006.

[25] N. Strijbosch and T. Oomen, “Iterative learning control for intermit-
tently sampled data: Monotonic convergence, design, and applications,”
Automatica, vol. 139, p. 110171, 2022.

[26] R. Chi, H. Li, N. Lin, and B. Huang, “Data-driven indirect iterative
learning control,” IEEE Transactions on Cybernetics, 2023.

[27] Q. Wang, S. Jin, and Z. Hou, “Event-triggered cooperative model-
free adaptive iterative learning control for multiple subway trains with
actuator faults,” IEEE Transactions on Cybernetics, 2023.



MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON CYBERNETICS 14

[28] Y. Chen, B. Chu, and C. T. Freeman, “Generalized iterative learning
control using successive projection: Algorithm, convergence, and exper-
imental verification,” IEEE Transactions on Control Systems Technology,
vol. 28, no. 6, pp. 2079–2091, 2019.

[29] L. Yang, Y. Li, D. Huang, J. Xia, and X. Zhou, “Spatial iterative learning
control for robotic path learning,” IEEE Transactions on Cybernetics,
vol. 52, no. 7, pp. 5789–5798, 2022.

[30] P. T. Kyaw, A. V. Le, P. Veerajagadheswar, M. R. Elara, T. T. Thu,
N. H. K. Nhan, P. Van Duc, and M. B. Vu, “Energy-efficient path
planning of reconfigurable robots in complex environments,” IEEE
Transactions on Robotics, vol. 38, no. 4, pp. 2481–2494, 2022.

[31] J. Luo, J. Zhuang, M. Jin, F. Xu, and Y. Su, “An energy-efficient
path planning method for unmanned surface vehicle in a time-variant
maritime environment,” Ocean Engineering, vol. 301, p. 117544, 2024.

[32] R.-C. Roman, R.-E. Precup, E.-L. Hedrea, S. Preitl, I. A. Zamfirache, C.-
A. Bojan-Dragos, and E. M. Petriu, “Iterative feedback tuning algorithm
for tower crane systems,” Procedia Computer Science, vol. 199, pp. 157–
165, 2022.

[33] M. Zhang, Y. Cao, J. Huang, and X. Chen, “Cross-backstepping control
with prescribed performance for input-coupled underactuated systems
under arbitrary initial conditions,” Journal of the Franklin Institute, vol.
360, no. 16, pp. 11 892–11 915, 2023.

[34] R.-C. Roman, R.-E. Precup, E. M. Petriu, and A.-I. Borlea, “Hybrid
data-driven active disturbance rejection sliding mode control with tower
crane systems validation,” Sci. Technol, vol. 27, pp. 3–17, 2024.

[35] I. A. Zamfirache, R.-E. Precup, and E. M. Petriu, “Q-learning, policy
iteration and actor-critic reinforcement learning combined with meta-
heuristic algorithms in servo system control,” Facta Universitatis, Series:
Mechanical Engineering, vol. 21, no. 4, pp. 615–630, 2023.

[36] Y. Wang, X. Zhang, Z. Li, X. Chen, and C.-Y. Su, “Adaptive implicit
inverse control for a class of butterfly-like hysteretic nonlinear systems
and its application to dielectric elastomer actuators,” IEEE Transactions
on Industrial Electronics, vol. 70, no. 1, pp. 731–740, 2022.

[37] R.-E. Precup, R.-C. Roman, and A. Safaei, Data-driven model-free
controllers. CRC Press, 2021.

[38] J. Xu, D. Li, and J. Zhang, “Extended state observer based dynamic
iterative learning for trajectory tracking control of a six-degrees-of-
freedom manipulator,” ISA Transactions, vol. 143, pp. 630–646, 2023.

[39] J. A. Drallmeier, J. B. Siegel, and A. G. Stefanopoulou, “Iterative
learning-based trajectory optimization using fourier series basis func-
tions,” IEEE Control Systems Letters, vol. 6, pp. 2180–2185, 2022.

[40] Y. Chen and C. T. Freeman, “Iterative learning control for piecewise arc
path tracking with validation on a gantry robot manufacturing platform,”
ISA Transactions, vol. 139, pp. 650–659, 2023.

[41] S.-L. Chen, S.-M. Hsieh, and T.-Q. Ta, “Iterative learning contouring
control for five-axis machine tools and industrial robots,” Mechatronics,
vol. 94, p. 103030, 2023.

[42] G. Liu and Z. Hou, “Adaptive iterative learning fault-tolerant control
for state constrained nonlinear systems with randomly varying iteration
lengths,” IEEE Transactions on Neural Networks and Learning Systems,
2022.

[43] R. Yang, Y. Gong, and W. Paszke, “ILC-based tracking control for
linear systems with external disturbances via an SMC scheme,” IEEE
Transactions on Automation Science and Engineering, 2024.

[44] X. Liu, L. Ma, X. Kong, and K. Y. Lee, “An efficient iterative
learning predictive functional control for nonlinear batch processes,”
IEEE Transactions on Cybernetics, vol. 52, no. 6, pp. 4147–4160, 2020.

[45] M. Schwegel and A. Kugi, “A simple computationally efficient path
ILC for industrial robotic manipulators,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024, pp.
2133–2139.

[46] Y. Chen, B. Chu, and C. T. Freeman, “Iterative learning control for
robotic path following with trial-varying motion profiles,” IEEE/ASME
Transactions on Mechatronics, vol. 27, no. 6, pp. 4697–4706, 2022.

[47] B. Chu, A. Rauh, H. Aschemann, E. Rogers, and D. H. Owens, “Con-
strained iterative learning control for linear time-varying systems with
experimental validation on a high-speed rack feeder,” IEEE Transactions
on Control Systems Technology, vol. 30, no. 5, pp. 1834–1846, 2021.

[48] R.-E. Precup, S. Preitl, J. K. Tar, M. L. Tomescu, M. Takács, P. Korondi,
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[54] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in
Matlab,” in In Proceedings of the CACSD Conference, 2004, pp. 284–
289.

[55] Y. Chen, B. Chu, and C. T. Freeman, “A coordinate descent approach to
optimal tracking time allocation in point-to-point ILC,” Mechatronics,
vol. 59, pp. 25–34, 2019.

[56] J. D. Ratcliffe, “Iterative learning control implemented on a multi-axis
system,” Ph.D. dissertation, University of Southampton, Southampton,
June 2005.

[57] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[58] S. J. Wright, “Coordinate descent algorithms,” Mathematical program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

Yiyang Chen (Member, IEEE) received the M.Eng.
degree from Imperial College London, London,
U.K., in 2013, and the Ph.D. degree from the Univer-
sity of Southampton, Southampton, U.K., in 2017.
After that, he worked as a Research Fellow in control
systems (2017–2018) and in traffic signal control
(2018–2020) at the University of Southampton. He
joined the School of Mechanical and Electrical
Engineering, Soochow University, in 2020, as an
Associate Professor. He has published several papers
in top control conferences and journals. His research

interests include iterative learning control, optimization, artificial intelligence,
image processing, and robotic systems.

Yiming Wang received the B.Eng. degree degree in
the School of Mechanical and Electrical Engineer-
ing, Soochow University, in 2022. He is currently
pursuing his MS degree in control engineering from
Soochow University, Suzhou, China. His current
research interests include iterative learning control
and optimization.

Christopher T. Freeman received the B.Eng. de-
gree in electromechanical engineering and the Ph.D.
degree in applied control from the University of
Southampton, Southampton, U.K., in 2000 and
2004, respectively, and the B.Sc. degree in mathe-
matics from The Open University, Milton Keynes,
U.K., in 2006. He is currently a Professor and
Deputy Head of School within Electronics and Com-
puter Science at the University of Southampton.
He has authored 310 journal and conference papers
primarily on the development, application, and as-

sessment of intelligent controllers within both the biomedical engineering
domain and for application to industrial systems.


	Introduction
	Problem formulation
	System Dynamics
	Path Following Task
	System Constraints
	Minimum Energy Path Following Problem

	Path planning strategy
	Problem Reformulation
	Solution via Discretized Approach

	Control design approach
	An Indirect Reference Update Framework of ILC
	Robust Convergence Analysis

	Verification on a gantry robot
	Test Platform Description
	Task Specifications
	Experimental Results
	Case Study

	Conclusion and future work
	References
	Biographies
	Yiyang Chen
	Yiming Wang
	Christopher T. Freeman


