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Polynomial Growth of Coarse Intervals in Coarse Median Spaces

by Amina Assouda Ladjali

In this thesis, we explore the structure and geometry of coarse intervals in coarse
median spaces, obtaining polynomial growth of coarse intervals as a consequence. We
study finite rank bounded geometry coarse intervals in a quasi-geodesic coarse
median space. We equip our coarse intervals with an ordering and then split our
approach: we first consider rank 2 intervals and then turn our attention to higher rank
intervals. In the rank 2 case, we introduce the concept of a coarse hyperplane in a
coarse median space, a coarse analogue of hyperplanes in CAT(0) cube complexes,
and use this as an important tool in proving three key properties: coarse hyperplanes
intersected with a rank 2 coarse interval have co-dimension 1 in the coarse interval,
coarse hyperplanes coarsely cover the whole coarse interval, and the intersection of a
coarse hyperplane and coarse interval is ‘almost’ a coarse interval. We then use these
three results and an inductive argument to show that rank 2 coarse intervals have
quadratic growth. For the higher rank case, we introduce the important notion of a
directly edge maximal point in a coarsely convex subset of a coarse interval. We then
show that the length of a finite, incomparable sequence of directly edge maximal
points, an antichain, associated to a coarsely convex subset is bounded above by the
rank of the subset. Equipped with this result, we prove that an R-separated subset of
directly edge maximal points equipped with a partial ordering can be decomposed
into a union of chains via the aforementioned result and the application of Dilworth’s
Lemma. We then obtain two maps, f = ( fi) and g, where f maps any point u in a
coarse interval to a product of chains, which is isometrically embedded in Zr. Each
chain gives the coordinate of u in that direction, i.e. fi provides the ith coordinate of u.
The map g maps the coordinates of u back into the interval by computing the
minimum of these coordinates. Hence, we have shown that higher rank coarse
intervals also have polynomial growth.

http://www.southampton.ac.uk




v

Contents

List of Figures vii

Declaration of Authorship ix

Acknowledgements xi

1 Introduction 1

2 CAT(0) Cube Complexes and Median Algebras 7
2.1 Metrics and Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 CAT(0) Cube Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Median Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Coarse Median Spaces 15
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The Rank of a Coarse Median Space . . . . . . . . . . . . . . . . . . . . . 17
3.3 Iterated Coarse Medians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Coarse Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Prerequisites 21
4.1 Important Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Important Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Quadratic Growth of Rank 2 Coarse Intervals 25
5.1 Coarse Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Coarse Hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Notation and Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Coarse Hyperplanes have Co-dimension 1 . . . . . . . . . . . . . . . . . . 31

5.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.2 Proof of Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.3 Proof of the General Case . . . . . . . . . . . . . . . . . . . . . . . 37

5.5 Coarsened Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 The Covering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Coarse Hyperplanes are Coarsely Coarse Intervals . . . . . . . . . . . . . 53

5.7.1 Coarse Convexity of Coarse Hyperplanes . . . . . . . . . . . . . . 54
5.7.2 An Alternative Version of Lemma 5.2 . . . . . . . . . . . . . . . . 57
5.7.3 Application of Lemma 5.22 to hab,L′ ∩ [x, y] and hab,L ∩ [x, y] . . . 59

5.8 Quadratic Growth of Rank 2 Coarse Intervals . . . . . . . . . . . . . . . . 59



vi CONTENTS

6 Structure of Rank n Coarse Intervals 63
6.1 Maximal Edge Subsets and Dilworth’s Lemma . . . . . . . . . . . . . . . 63

6.1.1 Median Maximal Edge Points . . . . . . . . . . . . . . . . . . . . . 64
6.1.2 Coarse Maximal Edge Points . . . . . . . . . . . . . . . . . . . . . 67

6.2 Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Proof of Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.3 Application of Transitivity . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix A Appendix 87
Appendix A.1 Co-dimension 1 of Coarse Hyperplanes . . . . . . . . . . . . . 87

Appendix A.1.1 Proof of Case 1 . . . . . . . . . . . . . . . . . . . . . . . 87
Appendix A.1.2 Proof of the General Case . . . . . . . . . . . . . . . . . 91

Appendix A.2 The Corner Problem . . . . . . . . . . . . . . . . . . . . . . . . 97

References 105



vii

List of Figures

2.1 The CAT(0) cube complex for the free median algebra on {a, b, c, d}. . . . 11

5.1 This is the two-dimensional case — [x, y] is a two-dimensional interval
and [a, b] is a one-dimensional interval within it. The coarse hyperplane
is represented by hab and Ha and Hb are the half-spaces corresponding to
a and b respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 The rank 2 overall picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Although [a, b] is one-dimensional, it contains a corner which presents

an issue (cube complex viewpoint). . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Two-dimensional configuration of a corner in a CAT(0) cube complex. . 31
5.5 The two cases we need to prove to show that coarse hyperplanes have

co-dimension 1 (in two-dimensions). . . . . . . . . . . . . . . . . . . . . . 32
5.6 This shows the set-up for our two cases; for case 1, z lies before at least

one of the coarse hyperplanes. In case 2, z is after the coarse hyperplanes,
i.e. in the top right corner. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 If ak, bk,1, bk,2, ⟨x, ak, z⟩ forms a tripod then we obtain a non-trivial coarse
3-cube, contradicting maximal dimensionality. . . . . . . . . . . . . . . . 51

6.1 The motivation for indirectly edge maximal points. . . . . . . . . . . . . 67
6.2 An intuitive view of the forwards map in the rank 2 case. . . . . . . . . . 73
6.3 A visual representation of Lemma 6.16. . . . . . . . . . . . . . . . . . . . 75

Appendix A.1 This figure is a visual depiction of Chapter A.4; it shows that
we can cut C up into three median ‘vertical’ and ‘horizontal’ sub-cubes.
(Note that v′1 = v1 here.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix A.2 The universal median algebra on the points {x, a, b, d1, d2, y}
with the relations a ≤ b and c1 ≤ c2. . . . . . . . . . . . . . . . . . . . . . 98

Appendix A.3 The central cuboids in the universal median algebra. The text
in blue represents hyperplanes. . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix A.4 This is the result of collapsing the ab and d1d2 hyperplanes in
the universal median algebra, i.e. case 3. . . . . . . . . . . . . . . . . . . . 102





ix

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been
generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself;

7. None of this work has been published before submission.





xi

Acknowledgements

To begin with, I would like to thank my main supervisor Nick Wright for all his
valuable guidance, support, and insightful feedback during the course of my PhD. I
would also like to thank my second supervisor Graham Niblo for his support and
willingness to offer assistance throughout. In addition, I would like to thank Peter
Kropholler for his warmth, kindness and enthusiasm in engaging in interesting
conversations, especially about Penrose tilings.

Thank you to all my old friends from childhood and university and the new friends I
have made during the PhD, I very much appreciate the support and encouragement
you all have given me along with the many fond memories of these past few years.

A big thanks to Maria, Barry and Imelda, my bonus family, for being a constant source
of motivation and fun; there is never a dull moment with you all and I am truly lucky
to know you.

I am deeply grateful to my wonderful mum Seyna for her unwavering love, support,
and belief in me throughout my PhD. Thank you for your patience, endless
encouragement and spurring me on throughout these years, I couldn’t have done it
without you. Thank you also to my brothers for supporting me in the way that
siblings support each other, through jokes and laughter.

Finally, to my amazing boyfriend Marcus, who I am extremely grateful to for all his
love and understanding during the past few years. Thank you for standing by me and
cheering me on — I am so appreciative of all your love and support. I am lucky to
have you by my side and in my life. Thank you also for always being there to fix my
bibliography when it went wrong, you are the reason that my thesis has a references
section!





1

Chapter 1

Introduction

Coarse median spaces (and groups) were introduced by Bowditch in Bowditch (2013a)
and are generalisations of median algebras, i.e. they satisfy the axioms of a median
algebra up to bounded distance. They are metric spaces equipped with a certain type
of structure, the coarse median, that captures the concept of ‘medianness’ in the space.
Specifically, given any three points in the space, there is a fourth point that is ‘closer’
to all three of them than any other point in the space, known as the coarse median of
the three points.

The ‘coarse’ in coarse median spaces refers to the fact that the structure capturing
medianness need not be exact, but rather can be understood only up to a certain level
of approximation. This allows for the study of metric spaces that may not have a
well-defined notion of exact medianness, but still exhibit analogous properties to
those present in median algebras.

Finite median algebras are equivalent to (vertex sets of) finite CAT(0) cube complexes,
Roller (2016), and therefore, we can informally think of coarse median spaces as
coarsened versions of CAT(0) cube complexes. More intuitively, one can view a coarse
median space (X, d, ⟨⟩) as a metric space (X, d) equipped with a ternary operator ⟨⟩
(the coarse median), where finite subsets can be approximated by finite CAT(0) cube
complexes in which the error is controlled by the metric. This comparison holds in the
‘one-dimensional’ case, where CAT(0) cube complexes are trees and hyperbolic space
is ‘coarsely tree-like.’ An alternative characterisation of Bowditch’s original definition
of a coarse median space is provided in Niblo et al. (2019), where the need to
approximate arbitrary finite subsets is replaced with only requiring subsets of
cardinality at most 4. This characterisation can be viewed as a ‘coarsening’ of the
axioms defining a median algebra, where the new coarse 4-point condition is a coarse
analogue of the 4-point condition for median algebras.

The ‘rank’ of a coarse median space can be intuitively thought of as its dimension. A
very helpful definition of rank, which we frequently refer to throughout the thesis, can
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be found in Niblo et al. (2019). Broadly, this says that a coarse median space has rank
at most n if and only if it does not contain arbitrarily large (n + 1)-dimensional coarse
cubes, i.e. one of the edges of the cube must be trivial.

The notion of a coarse median space provides a unified approach of looking at
different spaces, such as geodesic hyperbolic spaces and mapping class groups, which
Bowditch showed are coarse median spaces of rank 1 (an alternative proof of this
result was also given in Niblo et al. (2019)) and finite rank respectively, in Bowditch
(2013a), and hence we are able to view all these spaces and groups under one
umbrella. Coarse median spaces have many nice properties; for instance, coarse
medians are preserved under quasi-isometry and direct products. Bowditch also
shows that coarse medians are preserved under relative hyperbolicity (Bowditch
(2013b)) and that asymptotic cones of coarse median spaces are topological median
algebras Bowditch (2013a). Coarse median spaces therefore encompass a variety of
interesting spaces and have many applications in geometric group theory.

In this thesis, we are concerned with the structure and geometry of coarse intervals in
coarse median spaces. Coarse intervals are coarse analogues of median intervals, and
in the CAT(0) cube complex case, these constitute the set of points lying on any edge
path geodesic connecting a pair of points in the cube complex. The original definition
was introduced by Bowditch in Bowditch (2013a) and a similar definition was given in
Niblo et al. (2019), both of which are ‘coarsenings’ of the definition(s) of an interval in
a median algebra. In a CAT(0) cube complex, the median of three points is the unique
point in the intersection of the three intervals they define — this also holds coarsely in
a coarse median space (Bowditch (2013a), Niblo et al. (2019)). Coarse intervals have
not been explored in as much detail compared to coarse median spaces as a whole. At
first sight, they are difficult to understand and thus are akin to ‘black boxes’, in the
sense that we do not know what a coarse interval ‘looks like’. Given two endpoints of
the interval, x and y, we project points z in our coarse median space X onto the
interval [x, y] in order to explore what happens within.

Initially, proving that coarse intervals have polynomial growth was our motivation for
studying the structure and geometry of coarse intervals. Through exploring, we have
a deeper understanding of what coarse intervals look like and their inner structure.
The idea is to use the rank to bound the number of points in an interval in order to get
a clearer idea of its inner workings. We use the rank to ‘cut up’ the interval and obtain
polynomial growth of coarse intervals as a consequence.

More specifically, given a quasi-geodesic uniformly discrete bounded geometry coarse
median space X with finite rank coarse interval [x, y] ⊆ X, we equip [x, y] with a
coarsening of the partial ordering for median intervals given in Bowditch (2014).
Loosely speaking, this says that given two points a, b ∈ [x, y], a is ‘coarsely less than’ b
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if the minimum of a and b, ⟨x, a, b⟩, is close to a (similarly for the maximum). We then
divide our approach according to the rank of [x, y]: rank ≤ 2 and rank > 2.

Proving quadratic growth of rank 2 coarse intervals requires an important notion of a
coarse hyperplane associated to two points in a coarse median space — they are a
coarse analogue of hyperplanes in CAT(0) cube complexes. We present the definition
below:

Definition 1.1. Let L be a constant. An L-coarse hyperplane corresponding to a, b in a
coarse median space X, with d(a, b) much greater than 2L, divides the space into two
half-spaces Ha and Hb, where Ha = {z ∈ X : a∼L ⟨a, z, b⟩} and
Hb = {z ∈ X : b∼L ⟨a, z, b⟩}, respectively. The coarse hyperplane itself is then defined
to be

hab = X \ (Ha ∪ Hb),

so hab partitions the complement into two disjoint pieces.

We then use this concept to prove three important results: coarse hyperplanes
intersected with a rank 2 coarse interval have co-dimension 1 in the coarse interval,
coarse hyperplanes coarsely cover the whole coarse interval, and the intersection of a
coarse hyperplane and coarse interval is ‘almost’ a coarse interval. We then use these
results and an inductive argument to show that rank 2 coarse intervals have quadratic
growth:

Theorem 1.2. Let X be a rank 2, uniformly discrete, uniformly locally finite, quasi-geodesic
coarse median space. Then there exists a constant W such that for any coarse interval
[x, y] ⊆ X, we have #[x, y] ≤ Wd(x, y)2, where #[x, y] denotes the cardinality of [x, y].

Extending the proof given in the rank 2 case proved more difficult than expected, and
so we took inspiration from (Brodzki et al., 2009, Theorem 1.14) and its proof, which
showed that intervals in CAT(0) cube complexes have polynomial growth. For the
general rank n case, we introduce the key concept of a directly edge maximal point in
a coarsely convex subset of a coarse interval; roughly speaking, these are points that
can be thought of as ‘maximal’ points of the subset. More precisely, they are defined as
follows.

Definition 1.3. Let X be a coarse median space and S be a δ-coarsely convex subset of
[x, y]. Then a point a ∈ S is said to be directly edge maximal with parameters C1, C2 if the
following condition holds: for all n with 1 ≤ n ≤ r and u1, . . . , un ∈ S, if
a ∼C1 min(u1, . . . , un), then there exists an index i ∈ {1, . . . , n} such that a ∼C2 ui.

We then show that the length of a finite, incomparable sequence of directly edge
maximal points, an antichain, associated to a coarsely convex subset S of a coarse
interval [x, y] is bounded above by the rank of S:
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Theorem 1.4. Given a coarse median space X, constant δ, rank constant C(λ), and iterated
(n + 3)-point and symmetry constants F and G, respectively, there exists λ, E = C(λ), C1

such that for all C2 there exists M such that the following holds. Let [x, y] ⊆ X be a coarse
interval and S ⊆ [x, y] be a δ-coarsely convex subset with rank at most r > 0 with respect to
C(λ). Let n be an integer such that 1 ≤ n ≤ r + 1. Given points u1, . . . , un ∈ S which are n
M-incomparable (C1, C2)-directly edge maximal points (an M-coarse antichain), where
M = K(C2 + κ4) + 2H(0) + κ4, then we obtain the following result. Define
vi = min(u1, . . . , ûi, . . . , un) for i ∈ {1, . . . , n} and v0 = min(u1, . . . , un). Then the set
{v0, v1, . . . , vn} forms a (λ, E)− n-pod, where E is the non-triviality constant. Consequently,
we have:

#{u1, . . . , un} ≤ r,

which means that the size of any M-antichain n in S is bounded above by r, i.e. n ≤ r.

Note that an n-pod can be defined as a configuration consisting of n line segments,
each termed a ‘leg’, that extend from a common point, called the ‘centre’, to distinct
end points in space. We derive what λ, E are in the proof of the theorem stated above
(see proof of Theorem 6.9). A non-triviality constant in the context of an n-pod is a
constant that sets a minimum distance between the points in the n-pod, ensuring that
they are sufficiently spaced apart and are a non-trivial distance apart. This constant
prevents any ‘legs’ of the n-pod from collapsing.

This then leads to proving that any R-separated subset of directly edge maximal
points equipped with a partial ordering, where R-separated refers to the minimum
distance between distinct points in a set being at least R, can be decomposed into a
union of chains via Dilworth’s Lemma Dilworth (1950) and the theorem above. We
then obtain two maps, f and g; f = ( fi) maps any point u in a coarse interval to a
product of chains, which is isometrically embedded in Zr. Each chain gives the
coordinate of u in that direction, i.e. the fi provides the ith coordinate of u and can be
thought of as ‘slicing’ the interval up. The map g simply maps the coordinates of u
back into the interval by computing the minimum of these coordinates. Thus, we have
shown that rank n coarse intervals also have polynomial growth and in addition, that
the maps f and g have some nice properties, for instance, f is a quasi-morphism (in
the sense of coarse medians).

Our investigation of coarse intervals was motivated by a result from Bowditch
(Bowditch, 2014, Lemma 9.7), which proved that uniformly discrete coarse median
space of bounded geometry and finite rank have polynomial growth. However, this
result appeals to the asymptotic cone and we wanted to get more precise information
about what happens on finite scales. Our result is a tightening of Bowditch’s, but is a
constructive argument bypassing the use of asymptotic cones, thus giving us a better
insight as to what coarse intervals look like.
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Coarse intervals can be thought of as a special case of coarse convex hulls, and this is
explored in another paper of Bowditch’s, Bowditch (a). An alternative proof of
polynomial growth of coarse intervals is also given in (Bowditch, a, Theorem 1.4). The
proof of this result has more assumptions on the coarse median space — in particular,
the conditions on the space arise when considering projection maps to hyperbolic
spaces, and the polynomial growth condition depends on the parameters associated to
these hypotheses. In contrast, our argument makes much fewer assumptions on the
space: we only consider finite rank bounded geometry coarse intervals in a
quasi-geodesic coarse median space.

In addition, coarse median spaces have been studied from the perspective of intervals
in Niblo et al. (2021). This paper shows that intervals play a fundamental role in
determining the structure and geometry of coarse median spaces; for instance, the
cardinality of intervals can be used as a substitute for measuring distance. It can also
be shown that in a bounded geometry quasi-geodesic coarse median space, the metric
is determined by the interval structure, which motivates the definition of a coarse
median algebra; these can be viewed as a generalisation of discrete median algebras.
A polynomial growth result for coarse intervals is also given here, but as a converse to
Bowdtich’s result, (Bowditch, 2014, Lemma 9.7). In particular, it shows that a
polynomial bound on growth in coarse intervals does in fact characterise the rank.

Overall, we have gained a better understanding and picture of coarse intervals in this
thesis, and as a consequence, have shown that coarse intervals have polynomial
growth; however, our method of proving polynomial growth takes a very different
approach compared to those taken in Bowditch (2014), Bowditch (a), Niblo et al.
(2021). We focus on defining and using coarse hyperplanes, which we show are
powerful structures and have parallel properties (in a coarse sense) to hyperplanes in
CAT(0) cube complexes. Another very significant concept we introduce and use is that
of a directly edge maximal point, which helps give us explicit maps in mapping coarse
intervals to a product of chains, giving us coordinates for each point in a coarse
interval. These two important ideas have not been introduced or used previously, at
least not in this context, and there is certainly scope for further work when it comes to
using these concepts in going forward with investigating coarse intervals. One
example could be proving that results for directly edge maximal points also hold for
indirectly edge maximal points, which are a generalisation of directly edge maximal
points.

The structure of the thesis is as follows. In Chapters 2 and 3, we outline the necessary
background information that will be required for the thesis, where we detail
important definitions and properties associated to CAT(0) cube complexes, median
algebras and coarse median spaces. In Chapter 4, we describe the necessary
conditions needed on our coarse median space and intervals; in particular, we work
with finite rank bounded geometry coarse intervals in a quasi-geodesic coarse median
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space. In Chapter 5, we introduce and define the notion of a coarse hyperplane
associated to two points in a coarse median space and prove three main results
associated to coarse hyperplanes, enabling us to prove that rank 2 coarse intervals
have quadratic growth. In Chapter 6, we establish the notion of directly edge maximal
points and detail their role in defining maps that provide coordinates for each point in
a coarse interval. Finally, in the Appendix, we provide proofs of most of the main
results of Chapter 5 from a median point of view.
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Chapter 2

CAT(0) Cube Complexes and
Median Algebras

2.1 Metrics and Geodesics

We start by defining certain key properties of metric spaces, such as bounded
geometry and quasi-geodesicity, which are necessary conditions that we impose on
our space.

Definition 2.1 (E.g. Niblo et al. (2021)). Let (X, d) be a metric space.

1. A subset A ⊆ X is bounded if its diameter diam(A) = sup{d(x, y) : x, y ∈ A} is
finite, and A is a net in X if there exists some constant C > 0 such that for any
x ∈ X , there exists some a ∈ A such that d(a, x) ≤ C.

2. The metric space (X, d) is said to be uniformly discrete if there exists a constant
C > 0 such that for any x ̸= y ∈ X, d(x, y) > C.

3. The metric space (X, d) is said to have bounded geometry if, for any r > 0, there
exists some constant n ∈ N such that the closed ball centred at x with radius r,
#B(x, r) ≤ n for any x ∈ X.

Definition 2.2 (Niblo et al. (2019), Niblo et al. (2021)). Let (X, d), (Y, d′) be metric
spaces and L, C > 0 be constants.

1. An (L, C)-large scale Lipschitz map from (X, d) to (Y, d′) is a map f : X → Y such
that for any x, x′ ∈ X, d′( f (x), f (x′)) ≤ Ld(x, x′) + C.

2. A map f : (X, d) → (Y, d′) is bornologous if there exists an increasing map
ρ+ : R+ → R+ such that for all x, y ∈ X, d′( f (x), f (y)) ≤ ρ+(d(x, y)).



8 Chapter 2. CAT(0) Cube Complexes and Median Algebras

3. An (L, C)-quasi-isometric embedding from (X, d) to (Y, d′) is a map f : X → Y such
that for any x, x′ ∈ X, L−1d(x, x′)− C ≤ d′( f (x), f (x′)) ≤ Ld(x, x′) + C.

4. An (L, C)-quasi-isometry from (X, d) to (Y, d′) is an (L, C)-large scale Lipschitz
map f : X → Y such that there exists another (L, C)-large scale Lipschitz map
g : Y → X with f ◦ g ∼ CIdY and g ◦ f ∼ CIdX.

Definition 2.3. (X, d) is said to be quasi-geodesic if there exist constants A1 and A2 such
that for any two points x, y ∈ X, there exists a map γ : [0, N] → X with
γ(0) = x, γ(N) = y such that for any s, t ∈ [0, N],

1
A1

|s − t| − A2 ≤ d(γ(s), γ(t)) ≤ A1|s − t|+ A2.

If (X, d) is (1,0)-quasi-geodesic, then we say that X is geodesic.

2.2 CAT(0) Cube Complexes

CAT(0) cube complexes are a class of metric spaces where the curvature is
non-negative. There are two ways to define them; they are geodesic metric spaces
equipped with a metric that satisfies the CAT(0) condition, or, they are simply
connected cube complexes where every link is flag (this is a result of Gromov). They
can also be thought of as higher dimensional analogues of simplicial trees. For further
background information, one should refer to Bridson and Haefliger (1999), Chepoi
(2000), Gromov (1987), Niblo and Reeves (1998) and Sageev (1995).

A cube complex is a polyhedral complex in which cells are isometric to unit Euclidean
cubes and gluing maps are isometries between faces and cubes. One-dimensional
cubes are called edges, two-dimensional cubes are called squares and a cube complex is
finite-dimensional if there is a bound on the dimension of its cubes.

A cube complex can be equipped with a geodesic metric, in which the distance between
two points is realised by the shortest path between them Bridson and Haefliger (1999).
A geodesic metric space is said to be CAT(0) if it satisfies the CAT(0) inequality; this
means that all its geodesic triangles are slimmer than the corresponding comparison
triangles in Euclidean space. If there is a bound on the dimension of the cubes then the
associated intrinsic geodesic metric is complete.

Let v be a vertex in a cube complex. The link of v, lk(v), is the simplicial complex with
a k-simplex for each corner of a (k + 1)-cube containing v. A flag complex is a simplicial
complex with no ’empty’ or ’missing’ simplices; more formally, every clique in the
1-skeleton spans a simplex. A theorem of Gromov’s provides a combinatorial
characterisation of the CAT(0) condition Gromov (1987): a cube complex X is a CAT(0)
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cube complex if and only if it is simply connected and the link of each vertex is a flag
complex (i.e. X is locally CAT(0), also known as non-positively curved).

The vertex set of a CAT(0) cube complex can also be endowed with the edge path
metric, where the distance between a pair of points x and y is given by the minimum
number of edges required to connect them. The interval between x and y is then
defined to be the set of points lying on any edge path geodesic connecting x and y. To
be precise, given x, y ∈ V, where V is the vertex set of a CAT(0) cube complex, the
interval is given by

[x, y] = {z ∈ V : d(x, y) = d(x, z) + d(z, y)}.

Furthermore, a CAT(0) cube complex can be equipped with a set of hyperplanes where
each edge intersects only one hyperplane. It is shown in Niblo and Reeves (1998) that
hyperplanes can be treated as totally geodesic, codimension-1 subspaces; hence, they
themselves have their own natural structure as CAT(0) cube complexes (however, they
are not a sub-complex of the original CAT(0) cube complex). Each hyperplane divides
the space into two half-spaces and the metric counts the number of hyperplanes
separating two points. A pair of hyperplanes provides four possible half-space
intersections; the hyperplanes cross/intersect if and only if each of these four half-space
intersections is non-empty. An edge path connecting a point in one half-space to a
point in the other must cross H; we say that H separates the two points. If a CAT(0)
cube complex has finite dimension, then its dimension is the maximal number of
pairwise intersecting hyperplanes. A set of vertices is convex if whenever it contains
both x and y, it contains the interval [x, y]. Equivalently, a subset is convex if it is an
intersection of half spaces, and we can redefine [x, y] to be the intersection of all the
half-spaces containing both x and y.

Note 2.4. Each n-dimensional cube in a CAT(0) cube complex defines n pairwise
intersecting hyperplanes — which it crosses — and, conversely, a collection of n
pairwise intersecting hyperplanes gives rise to a unique n-cube (which crosses these
hyperplanes).

There is also the notion of midplanes Niblo and Reeves (1998) and carriers. A midplane
of a cube [− 1

2 , 1
2 ]

n is its intersection with a codimension-1 coordinate hyperplane, so
every n-cube contains n midplanes which pairwise intersect. The carrier of a
hyperplane H is the union of all closed cubes C such that H ∩ C ̸= ∅. Unlike
hyperplanes, the carrier is genuinely a sub-complex of the original CAT(0) cube
complex. We will see later on that in the coarse world, coarse hyperplanes are
coarsened versions of carriers.

More generally, hyperplanes are geometric interpretations of walls; where hyperplanes
are a special feature of CAT(0) cube complexes, walls arise more generally in sets. To
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be specific, a wall Nica (2004) in a set X is a partition of X into two subsets called
half-spaces. The set X is said to be a space with walls if X is equipped with a collection of
walls, containing the trivial wall {∅, X}, where any two distinct points are separated
by a finite, non-zero number of walls. Note that a wall separates two distinct points
x, y ∈ X if x belongs to one of the half-spaces determined by the wall, while y belongs
to the other half-space. Furthermore, observe that half-spaces are convex sets whose
complements are also convex, just as half-spaces in hyperplanes are. We will discuss
walls further in the next section on median algebras when we define the notion of
dimension in these spaces.

Our main result is motivated by a theorem (Brodzki et al., 2009, Theorem 1.14) which
states that an interval in a d-dimensional CAT(0) cube complex can be isometrically
embedded into Rd. We will show later that this also holds for coarse median intervals
using the notion of directly edge maximal points and applying Dilworth’s Lemma
Dilworth (1950); given a point in a CAT(0) cube complex, we can equip it with a set of
coordinates via hyperplanes depending on whether the point is before or after a
certain hyperplane in each chain.

2.3 Median Algebras

Median algebras are sets equipped with a ternary operation — the median operation
— satisfying a certain set of axioms. They can be thought of as algebraic abstractions
of CAT(0) cube complexes; every finite median algebra is the vertex set of a finite
CAT(0) cube complex and vice versa. In general, however, median algebras can be
larger.

Medians were first introduced by Birkhoff and Kiss in the context of lattices, and
Sholander and Isbell delved further into the relationship between median algebras
and lattices, covering semilattices and modular and distributive lattices. However, we
are interested in median algebras due to their natural connection with CAT(0) cube
complexes; Röller pioneered the link between these two objects (Roller, 2016, Theorem
10.3) and we will explore their relationship in this section. There are a number of
equivalent ways of defining median algebras Bandelt and Hedlı́ková (1983) but we
will use the following definition as seen in Kolibiar and Marcisová (1974).

Definition 2.5. Let X be a set and ⟨⟩ : X3 → X be a ternary operation on X. Then ⟨⟩ is
a median operator and the pair (X, ⟨⟩) is a median algebra if for all a, b, c, d ∈ X, we have:

(M1) Localisation: ⟨a, a, b⟩ = a;

(M2) Symmetry: ⟨a, b, c⟩ = ⟨b, c, a⟩ = ⟨b, a, c⟩;

(M3) The 4-point condition: ⟨a, b, c⟩, b, d⟩ = ⟨a, b, ⟨c, b, d⟩⟩.
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Note 2.6. Alternatively, for (M3), we can use the 5-point condition instead:

⟨a, b, ⟨c, d, e⟩⟩ = ⟨⟨a, b, c⟩, ⟨a, b, d⟩, e⟩,

for e ∈ X. The 5-point condition was introduced by Birkhoff and Kiss and the 4-point
condition followed later, defined by Kolibiar and Marcisova’. However, these two
conditions are actually equivalent and the proof of this result can be found in Kolibiar
and Marcisová (1974), (Bowditch, b, Theorem 3.2.2, 4.2.1). Note that it is much easier
to show that the 5-point condition implies the 4-point (set e to b), but the converse is
more difficult.

FIGURE 2.1: The CAT(0) cube complex for the free median algebra on {a, b, c, d}.

The figure above Niblo et al. (2019) illustrates the (M3) axiom, depicting the free
median algebra generated by {a, b, c, d}. In particular, the free median algebra is defined
as the following: let F be a median algebra, and let A ⊆ F. We say that F is free on A if
any map, ϕ : A → M, into any median algebra, M, has a unique extension to a
homomorphism, ϕ̂ : F → M (that is, with ϕ̂|A = ϕ). Observe that F is generated by A.
Furthermore, if F is free on A and F′ is free on A′, then any bijection from A to A′

induces a unique isomorphism from F to F′. Therefore, we can talk about ‘the’ free
median algebra on a set X (assuming that it exists). Note that the free median algebra
with finitely many generators is finite (Bowditch, b, Proposition 3.3.2).

We give some examples of median algebras Roller (2016) before moving onto intervals
formulated in terms of medians.

Example 2.1. (i) Let S = {0, 1}; then S has a canonical median determined by taking a
majority vote for each coordinate, i.e. the median is set to either 0 or 1, depending on
which of these two values appears more frequently. Given a, b, c ∈ S , at least two of
these elements must agree, and by (M1) and (M2), this is the median, ⟨a, b, c⟩. To show
that (M3) is satisfied, we must have either d = e, which implies that both sides of (M3)
equate to d: ⟨d, e, ⟨a, b, c⟩⟩ = ⟨d, d, ⟨a, b, c⟩⟩ = d. On the other hand, we can have
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d ̸= e, which implies that both sides of (M3) agrees with ⟨a, b, c⟩:
⟨a, ⟨b, d, e⟩, ⟨c, d, e⟩⟩ = ⟨a, b, c⟩.

(ii) Let (Xi : i ∈ I) be a family of median algebras. Then the Cartesian product Πi∈I Xi with
the median taken component-wise, i.e., ⟨(xi), (yi), (zi)⟩ = (⟨xi, yi, zi⟩) is a median
algebra.

An interval can now be restated in terms of the median operator; for any two points
x, y ∈ X, the interval between x and y is given by

[x, y] := {⟨x, z, y⟩ : z ∈ X} = {z ∈ X : ⟨x, z, y⟩ = z}.

Remark 2.7. Equality of the above two sets follows from axioms (M1)–(M3): if
c = ⟨x, z, y⟩, then

⟨x, c, y⟩ = ⟨x, ⟨x, z, y⟩, y⟩

= ⟨⟨x, y, x⟩, ⟨x, y, y⟩, z⟩

= ⟨x, y, z⟩

= c.

One can think of ⟨x, z, y⟩ as the projection of z onto the interval [x, y]. Additionally,
observe that [x, y] ∩ [y, z] ∩ [z, x] = {⟨x, y, z⟩}; the proof of this and further properties
of intervals (with their proofs) can be found in (Roller, 2016, (Int 1)-(Int 9)).

A subset Y ⊆ X is convex if [a, b] ⊆ Y for all a, b ∈ Y, i.e.
Y = {⟨x, y, z⟩ : x, y ∈ Y, z ∈ X}. The convex hull of Y is the smallest convex subset of X
containing Y. A subalgebra is a subset of X closed under the median operation; note
that any convex subset is a subalgebra. In addition, given a subset M of a median
algebra X, there exists the smallest subalgebra containing M, the median closure of M.

Remark 2.8 (E.g. Špakula and Wright (2017)). The set of vertices of a CAT(0) cube
complex gives rise to a median algebra in the following sense: the median of three
points x, y, z is the unique vertex in the intersection of [x, y] ∩ [y, z] ∩ [z, x].
Equivalently, the median of x, y, z is the unique point lying on a geodesic between x
and y, on a geodesic between y and z and a geodesic between z and x.

Note 2.9 ((Roller, 2016, Theorem 10.3)). An important thing to note — regarding the
remark above and in general — is that an infinite median algebra with finite intervals
can be naturally identified as the vertex set of an infinite dimensional CAT(0) cube
complex and vice versa. This equivalence also holds true in the finite case, but we do
not need to specify the condition of finite intervals as this already holds by definition.

There are two ways to define the rank of a median algebra. The first way is as follows:
define the median n-cube to be In = {0, 1}n, where the median operator ⟨⟩n is given
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by the majority vote on each coordinate. Then the rank of a median algebra (X, ⟨⟩) is
the supremum of all n for which there is a subalgebra of (X, ⟨⟩) isomorphic to the
median algebra (In, ⟨⟩n).

The second way of defining the rank of a median algebra relies on walls, which we
discussed earlier, and intuitively one can think of them as ‘generalised hyperplanes’.
Recall that a wall W is a partition {H−(W), H+(W)} of X into two non-empty convex
subsets. Two walls W, W ′ cross if each of the sets
{H−(W) ∩ H−(W ′)}, {H−(W) ∩ H+(W ′)}, {H+(W) ∩ H−(W ′)}, {H+(W) ∩ H+(W ′)}
is non-empty. We say that (X, µ) has rank at most n if there is no collection of n + 1
pairwise crossing walls of X.

Remark 2.10 (Niblo et al. (2019)). For the median algebra defined by the vertex set of a
CAT(0) cube complex, the rank coincides with the dimension of the cube complex.

We can also view the (M3) axiom as an associativity axiom Niblo et al. (2019): given
b ∈ X, the binary operator (a, c) 7→ a ∗b c = ⟨a, b, c⟩ is associative. It follows from the
(M2) axiom that * is commutative and iterated projections leads to the iterated
median, which was originally introduced in (Špakula and Wright, 2017, Definition 5.1)
and which we define below.

Let (X, ⟨⟩) be a median algebra with y ∈ X. The iterated median operator is defined as
follows: for x1 ∈ X, set

⟨x1; y⟩ := x1,

and for x1, . . . , xk+1 ∈ X with k ≥ 1, define

⟨x1, . . . , xk+1; y⟩ := ⟨⟨x1, . . . , xk; y⟩, xk+1, y⟩.

Note that this definition coincides with the original median operator, as
⟨x1, x2; y⟩ = ⟨x1, x2, y⟩. The set {⟨x1, . . . , xk+1; y⟩ : y ∈ X} is the convex hull of the
points xi and intuitively, one should think of the iterated median ⟨x1, . . . , xk+1; y⟩ as
the projection of y onto the convex hull of the xi. The iterated median operator is also
symmetric in x1, . . . , xk+1 and there are several other properties the iterated median
operator possesses, as seen in (Špakula and Wright, 2017, Lemmas 5.2-5.3).

Note 2.11. In terms of the * operator defined above, the iterated median operator can
be reformulated as follows:

⟨x1, . . . , xk; y⟩ = x1 ∗y x2 ∗y . . . ∗y xk.

Remark 2.12. We now provide two alternative definitions of median algebras:

1. A ternary operator defines a median if and only if it satisfies (M1), (M2) and
Isbell’s condition Isbell (1980): ⟨a, ⟨a, b, c⟩, ⟨b, c, d⟩⟩ = ⟨a, b, c⟩. This says that
⟨a, b, c⟩ is in the interval [a, ⟨b, c, d⟩].
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2. Alternatively, (X, ⟨⟩) is a median algebra if it satisfies (M1), (M2) and the
five-point condition Birkhoff and Kiss (1947) (this is also axiom (M3)).

A topological median algebra is a topological space X equipped with the structure of a
median algebra ⟨⟩ : X3 → X, such that ⟨⟩ is continuous in the induced topology. When
the topology on X comes from a metric d, then X is called a metric median algebra.

Lastly, an important definition is that of a median cube. This relies on the notion of a
median homomorphism, which is a map between median algebras that is ‘betweenness
preserving’ and respects medians. More precisely, given two median algebras
(X, ⟨⟩X), (Y, ⟨⟩Y), f : X → Y is a median homomorphism if for all x, y, z ∈ X:

f (⟨x, y, z⟩X) = ⟨ f (x), f (y), f (z)⟩Y.

A median cube is a median homomorphism ϕ : {0, 1}n → X, such that

ϕ(⟨x, y, z⟩) = ⟨ϕ(x), ϕ(y), ϕ(z)⟩.
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Chapter 3

Coarse Median Spaces

Coarse median spaces were introduced by Bowditch in 2013 and can be thought of as
’coarsened’ versions of median algebras. The ’coarse’ in coarse median spaces refers to
the fact that the structure capturing ‘medianness’ need not be exact. We will introduce
Bowditch’s definition and an alternative reformulation given by Niblo-Wright-Zhang,
along with diving into the notion of rank in a coarse median space, iterated coarse
medians and a coarse analogue of median intervals, coarse intervals.

3.1 Definitions

We start off by providing Bowditch’s original definition of a coarse median space as
seen in (Bowditch, 2013a, page 4), and then follow up with a reformulation of the
definition, which is introduced in (Niblo et al., 2019, Theorem 4.12).

Definition 3.1. Let (X, d) be a metric space and ⟨⟩ : X3 → X be a ternary operation.
Then ⟨⟩ is said to be a coarse median and (X, d, ⟨⟩) is called a coarse median space if the
following conditions hold:

(C1) There are constants K ≥ 1, H(0) ≥ 0, such that for all a, b, c, a′, b′, c′ ∈ X we have

d(⟨a, b, c⟩, ⟨a′, b′, c′⟩) ≤ K(d(a, a′) + d(b, b′) + d(c, c′)) + H(0).

(C2) There is a function H : N → [0, ∞) with the following property: suppose that
A ⊆ X with 1 ≤ |A| ≤ p < ∞. Then there is a finite median algebra (Π, ⟨⟩π) and
maps π : A → Π and σ : Π → X such that for all x, y, z ∈ Π we have

d(σ(⟨x, y, z⟩π), ⟨σ(x), σ(y), σ(z)⟩) ≤ H(p)
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and
d(a, σπa) ≤ H(p)

for all a ∈ A.

Informally, (C1) says that ⟨⟩ is coarsely Lipschitz, while (C2) says that on finite sets,
the coarse median looks like the median on a finite CAT(0) cube complex up to
bounded distance.

Two coarse median operators, ⟨⟩1, ⟨⟩2, on (X, d) are said to be uniformly close if there is
a uniform bound on the set of distances

{d(⟨x, y, z⟩1, ⟨x, y, z⟩2) : x, y, z ∈ X}.

We refer to K, H as the parameters of (X, d, ⟨⟩), which are not unique. Observe that
there is a constant κ0 > 0 (noted in Bowditch (2013a)) such that ⟨a, a, b⟩ ∼κ0 a and
⟨a1, a2, a3⟩ ∼κ0 ⟨aσ(1), aσ(2), aσ(3)⟩ for any permutation σ ∈ S3. However, we can replace
any coarse median operator by another to which it is uniformly close and which
satisfies (M1) and (M2), i.e. κ0 = 0. Therefore, without loss of generality, we may
assume that ⟨⟩ satisfies the axioms (M1) and (M2).

We now provide an alternative characterisation of coarse median spaces as introduced
in (Niblo et al., 2019, Theorem 3.1/Theorem 4.12). Here, only subsets of cardinality up
to 4 need be considered, in contrast with Bowditch, where one needs to establish
approximations for subsets of arbitrary cardinality.

Definition 3.2. Let (X, d) be a metric space and ⟨⟩ : X3 → X a ternary operation. Then
(X, d, ⟨⟩) is a coarse median space if and only if the following conditions hold:

(M1) ⟨a, a, b⟩ = a for any a, b ∈ X;

(M2) ⟨aσ(1), aσ(2), aσ(3)⟩ = ⟨a1, a2, a3⟩, for any a1, a2, a3 ∈ X and σ a permutation;

(C1)’ There exists an affine control function ρ : [0, ∞) → [0, ∞) such that for all
a, a′, b, c ∈ X,

d(⟨a, b, c⟩, ⟨a′, b, c⟩) ≤ ρ(d(a, a′)),

where ρ(t) = Kt + H(0).

(C2)’ There exists a constant κ4 > 0 such that for any a, b, c, d ∈ X, we have

⟨⟨a, b, c⟩, b, d⟩ ∼κ4 ⟨a, b, ⟨c, b, d⟩⟩.

Similarly to the median case, there is also the notion of a ‘coarse 5-point condition’:
there exists a constant κ5 > 0 such that for any a, b, c, d, e ∈ X, we have
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⟨a, b, ⟨c, d, e⟩⟩ ∼κ5 ⟨⟨a, b, c⟩, ⟨a, b, d⟩, e⟩. (3.1)

Note 3.3. The parameters for a coarse median space as defined in Definition 3.2 is
given by the 4-tuple of constants (K, H(0), κ4, κ5) satisfying the axioms in Definition
3.2 together with estimate 3.1.

Definition 3.4. 1. Two points x, y ∈ X are said to be C-close (with respect to the
metric d) if d(x, y) ≤ C. If x is C-close to y we write x∼C y.

2. Two points x, y ∈ X are said to be D-far (with respect to the metric d) if
d(x, y) ≥ D. If x is D-far from y we write x ↔D y.

Similarly to that of a median cube, we also have the concept of a coarse cube. A map f
between coarse median spaces (X, dX, ⟨⟩X), (Y, dY, ⟨⟩Y) is called an L-quasi-morphism if
for any a, b, c ∈ X,

⟨ f (a), f (b), f (c)⟩Y∼L f (⟨a, b, c⟩X),

where L > 0 is some constant. A coarse cube is then defined to be an L-quasi-morphism
ϕ : {0, 1}n → X.

3.2 The Rank of a Coarse Median Space

The rank can be intuitively thought of as the dimension of a coarse median space.
More formally, in the context of Bowditch’s original definition, a coarse median space
(X, d, ⟨⟩) is said to have rank at most n if we can choose the approximating median
algebra in condition (C2), (Π, ⟨⟩π), to have rank at most n.

A general way to characterise the rank of a coarse median space is presented in (Niblo
et al., 2019, Theorem 4.11). Informally, this says that a coarse median space has rank at
most n if and only if it does not contain arbitrarily large (n + 1)-dimensional coarse
cubes. We can now present the complete definition of a coarse median space of rank
≤ n as seen in (Niblo et al., 2019, Theorem 4.12); this is the definition we will use for
the remainder of the thesis.

Theorem 3.5. We say that (X, d, ⟨⟩) is a coarse median space of rank at most n if and only if
conditions (M1), (M2), (C1)’ and (C2)’ hold, along with

(C3)’ ∀λ > 0, ∃C = C(λ) such that for any a, b ∈ X, any e1, . . . en+1 ∈ [a, b] with
⟨ei, a, ej⟩ ∼λ a for all i ̸= j, there exists i such that ei ∼C a.

We think of condition (C3)’ as the ‘rank condition’ — one should imagine a as a corner
of an (n + 1)-coarse cube and e1, . . . , en+1 as endpoints of edges adjacent to a.



18 Chapter 3. Coarse Median Spaces

While coarse intervals are generally introduced and defined in Section 3.4, we define
below what it means for a coarse interval to have a certain rank for a given parameter.
This definition is analogous to the Theorem above, applied specifically to coarse
intervals, and is used extensively throughout the thesis.

Definition 3.6. Let X be a coarse median space and [x, y] ⊆ X a coarse interval. Then
[x, y] is said to have rank at most n for a given parameter λ if there exists a constant
C = C(λ) depending on λ, such that for any a, b ∈ [x, y], e1, . . . , en+1 ∈ [a, b] with
⟨ei, a, ej⟩ ∼λ a for all i ̸= j, there exists i such that ei ∼C a.

Note 3.7. Note that Theorem 3.5 also holds for a median algebra, where all the ‘close
to’ conditions are replaced by equality. More precisely, a median algebra (X, ⟨⟩) has
rank at most n if for any a, b ∈ X, any e1, . . . , en+1 ∈ [a, b] with ⟨ei, a, ej⟩ for all i ̸= j,
there exists i such that ei = a.

Remark 3.8 (Niblo et al. (2019)). Note that for a median algebra endowed with an
appropriate metric making it a coarse median space, the rank as a median algebra
gives an upper bound for the rank as a coarse median space, however, these need not
necessarily agree. For instance, a finite median algebra has rank 0 as a coarse median
space.

3.3 Iterated Coarse Medians

Analogous to iterated medians in median algebras, we define the iterated coarse median
operator (Niblo et al., 2019, Definition 2.15) for coarse median spaces.

Definition 3.9. Let (X, d, ⟨⟩) be a coarse median space and y ∈ X. For x1 ∈ X, define

⟨x1; y⟩ : = x1,

and for k ≥ 1 and x1, . . . , xk+1 ∈ X, define

⟨x1, . . . , xk+1; y⟩ : = ⟨⟨x1, . . . , xk; y⟩, xk+1, y⟩.

Similarly to the median case, note that we still have ⟨x, y, z⟩ = ⟨x, y; z⟩ for x, y, z ∈ X.

For further results/properties of the coarse median operator, one should refer to
(Niblo et al., 2021, Lemma 2.14, Lemma 2.15, Lemma 2.16). The results we refer to the
most in the thesis for coarse iterated medians are stated below:

Lemma 3.10. (1) Let (X, d, ⟨⟩) be a coarse median space with parameters (K, H(0), κ4, κ5).
Then there exists a constant Fn depending only on the parameters of X, such that for any
a, b, a1, . . . , an ∈ X we have:

⟨a, b, ⟨a1, . . . , an−1; an⟩⟩ ∼Fn ⟨⟨a, b, a1⟩, . . . ⟨a, b, an−1⟩; an⟩.
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(2) Let (X, d, ⟨⟩) be a coarse median space with parameters (K, H(0), κ4, κ5). Then for any
n ∈ N, there exists a constant Gn depending only on the parameters of X, such that for
any a1, . . . , an, b ∈ X and any permutation σ ∈ Sn, we have

⟨aσ(1), . . . , aσ(n); b⟩ ∼Gn ⟨a1, . . . , an; b⟩.

(3) Let (X, d) be a metric space with ternary operator ⟨⟩ satisfying (C1)’ with parameter ρ.
Then for any n there exists an increasing (affine) function function ρn depending on ρ,
such that for any a0, a1, . . . , an, b0, b1, . . . , bn ∈ X:

d(⟨a1, . . . , an; a0⟩, ⟨b1, . . . , bn; b0⟩ ≤ ρn(Σn
k=0d(ak, bk)).

3.4 Coarse Intervals

In coarse median spaces, there exist coarse analogues of intervals in median algebras;
one way to define them is as follows.

Definition 3.11 ((Niblo et al., 2019, Definition 2.20)). Given (X, ⟨⟩), a set equipped
with a ternary operator ⟨⟩, the interval between points x and y is defined to be:

[x, y] = {⟨x, y, z⟩ : z ∈ X}.

Compare this with Bowditch’s definition, which states that a λ-coarse interval between
points x and y in a coarse median space (X, d, ⟨⟩) is defined to be

[x, y]λ := {z ∈ X : ⟨x, y, z⟩∼λ z},

where λ is a constant.

Observe that [x, y]0 ⊆ [x, y], and for median algebras these two definitions of intervals
actually coincide; see Remark 2.7. However, these two notions of interval do not
always agree in a coarse median space. Throughout the thesis, we define coarse
intervals as seen in Definition 3.11. Results concerning coarse intervals can be found
in (Niblo et al., 2019, Lemma 2.21, Lemma 2.22).

Note 3.12. Given a ∈ [x, y], a ∼κ4 ⟨a, x, y⟩: since a ∈ [x, y], we can write a as
a = ⟨x, y, a′⟩ for some a′ ∈ [x, y]. This in turn implies that

⟨x, y, a⟩ = ⟨x, y, ⟨x, y, a′⟩⟩

∼κ4 ⟨⟨x, y, x⟩, y, a′⟩

= ⟨x, y, a′⟩

= a.
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Chapter 4

Prerequisites

4.1 Important Definitions

In this thesis, we assume that the coarse median spaces we study satisfy three key
properties: they are quasi-geodesic, uniformly discrete, and have bounded geometry.
These assumptions will be explicitly used in our proofs. Most of our results have been
proven for both the median and coarse median cases — we will present our results for
the median case in this thesis, but will avoid proving them here, as there are many
similarities with the proofs of our coarse versions. We will instead place the proofs of
our median statements in the Appendix.

Additionally, we will equip our coarse intervals with an adaptation of the partial
ordering described in (Bowditch, 2014, Page 7) – although this is formulated for
median algebras, we have adapted this partial ordering to coarse intervals, which is
described in Definition 4.3. Before we introduce the ordering, we define what a
distributive lattice is, as this is the context for which Bowditch’s ordering is detailed in.

Definition 4.1. A lattice (L,≤) is a partially ordered set in which every pair of
elements has a unique supremum (least upper bound or join) and infimum (greatest
upper bound or meet). Thus, given a, b ∈ L, there exist unique elements a ∨ b (the join)
and a ∧ b (the meet), such that:

• a ≤ a ∨ b and b ≤ a ∨ b,

• a ∧ b ≤ a and a ∧ b ≤ b,

• if x ≤ a and x ≤ b, then x ≤ a ∧ b, and if a ≤ x and b ≤ x, then a ∨ b ≤ x.

A lattice is distributive if the distributive law holds for all elements in the lattice. The
distributive law states that, given a, b, c ∈ L
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• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), and

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

We now formally define the ordering in both the median and coarse median cases
below.

Definition 4.2. Let X be a median algebra and let x, y ∈ X. We obtain a partial order
as follows: given a, b ∈ X, then a ≤ b iff ⟨x, a, b⟩ = a — this gives us the concept of a
minimum (with x as the basepoint). If we are in an interval, i.e. a, b ∈ [x, y], then a ≤ b
iff ⟨x, a, b⟩ = a or equivalently ⟨a, b, y⟩ = b. The points ⟨x, a, b⟩ and ⟨a, b, y⟩ define the
minimum and maximum of a, b respectively with respect to this order.

We extend the ordering above to the coarse median case:

Definition 4.3. Let X be a coarse median space and let x, y ∈ X. Fix a constant C and
consider any two points a, b ∈ X. Then we can define a coarsening of a partial order as
follows: let x ∈ X (x is the basepoint); then a ≲C b iff ⟨x, a, b⟩∼C a, so we obtain the
concept of a minimum. If we are in a coarse interval, i.e. a, b ∈ [x, y], then a ≲C b iff
⟨x, a, b⟩∼C a or alternatively, ⟨a, b, y⟩∼B b, where B = K(C + κ4) + 2H(0) + κ4 (by
application of Lemma 4.7). The points ⟨x, a, b⟩ and ⟨a, b, y⟩ define the minimum and
maximum of a, b respectively with respect to this order.

The ordering in Definition 4.2 is a partial order on median algebras, but we need to
verify that it is a partial order on coarse median spaces too. We will show in Chapter 5
that the ordering in Definition 4.3 is actually a total order on M-separated subsets of
rank 1 coarse intervals — see Lemma 5.2. We will show in a later chapter, Chapter 6,
that this ordering is also a partial order on special subsets of coarse intervals.

We now introduce a very important definition from Bowditch (2014) that appears
frequently in the thesis.

Definition 4.4. Let X be a coarse median space and A ⊆ X be finite. Define

sep(A) = min{d(x, y) : x, y ∈ A, x ̸= y},

where sep(A) is the separation constant. Then we call A a sep(A)-separated subset.

4.2 Important Lemmas

These Lemmas are used regularly within the thesis, so we compile them all in one
place here and reference them throughout. Let [x, y] be a coarse interval in a coarse
median space X and let x ∈ X be the basepoint for the relation ≲ defined in Definition
4.3.
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Lemma 4.5. For constants A and B, if we define C = f (A, B), then set
C = K(A + B) + 2H(0) + κ4 + A, such that if a ≲A b ≲B c, then a ≲C c, where a, b, c ∈ X.

Proof. Since a ≲A b, this is equivalent to ⟨x, a, b⟩ ∼A a. This then implies that

⟨x, a, c⟩ ∼KA+H(0) ⟨c, x, ⟨b, x, a⟩⟩ (using the (C1’) axiom)

∼κ4 ⟨⟨c, x, b⟩, x, a⟩ (using the (C2’) axiom)

∼KB+H(0) ⟨b, x, a⟩ (using the (C1’) axiom)

∼A a (by assumption).

Lemma 4.6. Given a ∈ [x, y] and b ∈ X, a ≲(K+1)κ4+H(0) ⟨a, b, y⟩.

Proof.

⟨x, a, ⟨y, a, b⟩⟩ ∼κ4 ⟨⟨x, a, y⟩, a, b⟩ (using the (C2’) axiom)

∼Kκ4+H(0) ⟨a, a, b⟩ (using the (C1’) axiom)

= a.

The last equality is due to the following: since a ∈ [x, y], we can write a as a = ⟨x, y, a′⟩
for some a′ ∈ [x, y] — see Note 3.12. This in turn implies that

⟨x, y, a⟩ = ⟨x, y, ⟨x, y, a′⟩⟩ (by Note 3.12)

∼κ4 ⟨⟨x, y, x⟩, y, a′⟩ (using the (C2’) axiom)

= ⟨x, y, a′⟩

= a.

Lemma 4.7. For some constant A, if we define B = f (A), then set
B = K(A + κ4) + 2H(0) + κ4, such that for any a, b ∈ [x, y] with ⟨a, b, y⟩ ∼A b, we have
a ≲B b.

Proof.

⟨x, a, b⟩ ∼KA+H(0) ⟨x, a, ⟨a, b, y⟩⟩ (using the (C1’) axiom)

∼(K+1)κ4+H(0) a,

where the last line is a consequence of Lemma 4.6.
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Chapter 5

Quadratic Growth of Rank 2 Coarse
Intervals

In this chapter, we introduce the concept of a coarse hyperplane associated to two
points in a coarse median space and use this definition to prove three results: coarse
hyperplanes have co-dimension 1 with the interval, coarse hyperplanes coarsely cover
the whole coarse interval, and the intersection of a coarse hyperplane and coarse
interval is ‘almost’ a coarse interval. We then use these findings and an inductive
argument to show that rank 2 coarse intervals have quadratic growth.

5.1 Coarse Ordering

The ordering in Definition 4.2 is a partial order on median algebras, but we need to
verify that it is a partial order on coarse median spaces too. For the purposes of this
chapter, we have shown that the ordering is actually a total order on M-separated
subsets of rank 1 coarse intervals — see Lemma 5.2 below. We will show in a later
chapter, Chapter 6, that this ordering is also a partial order on special subsets of coarse
intervals.

Note 5.1. As we are purely working with rank 2 coarse intervals throughout this
chapter, we explicitly define what it means for a coarse interval to achieve rank ≤ 2
under suitable parameters, using Theorem 3.5: given any λ > 0, there exists a constant
C = C(λ) such that for any a, b ∈ [x, y], any e1, e2, e3 ∈ [a, b] with ⟨ei, a, ej⟩ ∼λ a for all
i ̸= j, there exists i such that ei ∼C a.

Lemma 5.2. Given a coarse median space X, rank parameter C′(λ) and ordering parameter
C, there exists M such that for any rank 1 coarse interval [x, y] ⊆ X with respect to C′(λ),
any M-separated subset of [x, y] is totally ordered.
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Proof. Let a, b ∈ [x, y]. Then a ≲C b iff ⟨x, a, b⟩∼C a. Comparability is satisfied due to
the following: keeping Theorem 3.5 in mind, since [x, y] is rank 1, we know that any
bipod in this interval has a trivial side length. More formally, suppose that a, b, ⟨x, a, b⟩
form a bipod centred at ⟨x, a, b⟩; the point ⟨x, a, b⟩ ∈ [x, y] and the betweenness
condition is satisfied:

⟨⟨x, a, b⟩, a, b⟩ ∼κ4 ⟨x, a, b⟩.

By Theorem 3.5, we know that either ⟨x, a, b⟩ ∼C′(κ4) a or ⟨x, a, b⟩ ∼C′(κ4) b. Therefore,
setting C ≥ C′(κ4), we see that comparability holds: for any a, b ∈ [x, y], either a ≲C b
or b ≲C a, that is, a∼C ⟨x, a, b⟩ or b∼C ⟨x, a, b⟩. In terms of anti-symmetry, if both
a ≲C b and b ≲C a, then a∼C ⟨x, a, b⟩∼C b and we obtain a∼2C b.
For transitivity, let us assume that a ≲C b, b ≲C c and c ≲C a; then a∼C ⟨x, a, b⟩,
b∼C ⟨x, b, c⟩ and c∼C ⟨x, a, c⟩. Using the coarse four-point condition — see the (C2)’
axiom in Definition 3.2 — we obtain

a∼C ⟨x, a, b⟩

∼KC+H(0) ⟨x, a, ⟨x, b, c⟩⟩

∼κ4 ⟨⟨x, a, b⟩, x, c⟩

∼KC+H(0) ⟨a, x, c⟩

∼C c.

Now set M = 2(KC + H(0) + C) + κ4 + 1 and take an M-separated subset in [x, y] —
then for all a, b, c in this M-separated subset, if a ≲C b and b ≲C c, either a ≲C c or
c ≲C a. However, if a ≲C b, b ≲C a and c ≲C a, then by the calculation above we obtain
c∼M a∼M b∼M c, which in turn implies that a = b = c, as the distances between a, b
and c are less than M, and since we are in an M-separated subset the three points must
be equal. We have ruled out c ≲C a and so we must have a ≲C c. This choice of M
means that both anti-symmetry and transitivity hold, therefore giving us a total
ordering on M-separated subsets of [x, y].

5.2 Coarse Hyperplanes

We know how hyperplanes look and are defined in CAT(0) cube complexes, but this
has not been formally extended to the coarse median world as of yet. Since
hyperplanes are a very important structure of CAT(0) cube complexes and are a tool
used in proving quadratic growth of intervals in these spaces, we formalise the
concept of a coarse hyperplane below. The following picture gives an idea as to how a
coarse hyperplane intuitively looks in a coarse interval (in the context of CAT(0) cube
complexes):
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FIGURE 5.1: This is the two-dimensional case — [x, y] is a two-dimensional interval
and [a, b] is a one-dimensional interval within it. The coarse hyperplane is represented

by hab and Ha and Hb are the half-spaces corresponding to a and b respectively.

The definition is given more formally below.

Definition 5.3. Let L be a constant. An L-coarse hyperplane corresponding to a, b in a
coarse median space X, with d(a, b) much greater than 2L, divides the space into two
half-spaces Ha and Hb, where Ha = {z ∈ X : a∼L ⟨a, z, b⟩} and
Hb = {z ∈ X : b∼L ⟨a, z, b⟩}, respectively. The coarse hyperplane itself is then defined
to be

hab = X \ (Ha ∪ Hb),

so hab partitions the complement into two disjoint pieces.

Note that we require d(a, b) much greater than 2L so that the coarse hyperplane is
non-trivial and the half-spaces do not intersect.

Now that coarse hyperplanes have been formally defined, we want to use them to aid
us in answering the following three important questions that will enable us to prove
quadratic growth of coarse intervals:

1. In a CAT(0) cube complex, we know that hyperplanes have co-dimension 1 in
the interval. Do these coarse hyperplanes intersected with a rank ≤ n coarse
interval also have rank ≤ n − 1 in the coarse interval? (Using the
characterisation of rank as seen in Theorem 3.5.)

2. Do coarse hyperplanes coarsely cover the whole coarse interval [x, y]?
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3. Is the intersection of a coarse hyperplane and coarse interval ‘almost’ a coarse
interval, i.e. is hab ∩ [x, y] ‘almost’ a coarse interval?

We have answered the first question for rank n, although we primarily apply it in
reference to rank 2 intervals. The second question has been solved for rank 2, but our
argument naturally extends to higher rank. Question 3 has only been proven for rank
2, but this will suffice here as we use a different argument to prove polynomial growth
of rank n coarse intervals. We then combine the solutions to these three questions and
an inductive argument to prove that rank 2 coarse intervals have quadratic growth —
this is shown in Section 5.8. In Chapter 6, we detail our alternative approach in
proving that rank n coarse intervals have polynomial growth; this heavily relies on the
notion of edge maximal points and the application of Dilworth’s Lemma.

5.3 Notation and Strategy

We set-up some notation and discuss our overall strategy in proving quadratic growth
of rank 2 coarse intervals.

Let x, y be points in our quasi-geodesic coarse median space X. We know that there is
a quasi-geodesic ϕ connecting x and y, but this may not lie in the interval [x, y]. To
rectify this problem, project ϕ(i) into the interval [x, y], i.e. replace ϕ(i) by ⟨x, ϕ(i), y⟩.

The endpoints are also preserved (i.e. x and y are still the initial and end points of this
new path) and there is a uniform bound between consecutive points of the path:

d(⟨x, ϕ(i), y⟩, ⟨x, ϕ(i + 1), y⟩) ≤ Kd(ϕ(i), ϕ(i + 1)) + H(0)

≤ K(A1 + A2) + H(0),

where the first inequality follows from applying the (C1)’ axiom (see Definition 3.2).
The second inequality follows by using the right-hand inequality in the definition of a
quasi-geodesic: d(ϕ(i), ϕ(i + 1)) ≤ A1|i − (i + 1)|+ A2 = A1 + A2, where A1 and A2

are the quasi-geodesic constants.

Note 5.4. The new path ⟨x, ϕ(i), y⟩ may not necessarily be quasi-geodesic. The upper
bound follows from the (C1)’ axiom in Definition 3.2, but the problem lies with the
lower bound: the quasi-geodesic ϕ could be made up of loops or long pieces that
would project down onto a point in [x, y] — we have no control of the parameters.
Hence, the situation is more complex and one would need to demonstrate extra care in
verifying whether ⟨x, ϕ(i), y⟩ is a quasi-geodesic or not. However, this does not
present a complication for us, as we have shown above that the new path ⟨x, ϕ(i), y⟩
gives us a uniform bound between consecutive points and this is all we need.
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We summarise the method described earlier into the following lemma:

Lemma 5.5. Given a coarse median space X with x, y ∈ X and a quasi-geodesic path ϕ

connecting x and y, there exists a sequence of points ai, where i ∈ [0, N], defined as
ai = ⟨x, ϕ(i), y⟩. For all [x, y] ⊆ X, the sequence of points a0, . . . , aN is a path contained in
[x, y] with a0 = x and aN = y, where ai ∼K(A1+A2)+H(0) ai+1 for all i ∈ [0, N].

We also want to make sure that we do not forget the big picture of this chapter, so that
we can keep in mind what we are aiming to prove. The following image gives us an
overall picture to keep in mind (from a CAT(0) cube complex viewpoint):

FIGURE 5.2: The rank 2 overall picture.

The idea in the above figure is to take maximal rank ‘backwards’ coarse cubes, where
each top-right corner has ak as a vertex (apart from a0 = x). We assume the points
bk,1, ak, bk,2 form an r-pod of maximal r centred at ak — note that r = 1 or 2 here —
where ak is a point of the path described in Lemma 5.5; observe that this path does not
have to be monotone. More precisely, each r-pod is centred at ak, with
bk,1, bk,2 ∈ [x, ak]. The shaded-in orange and green represents the coarse hyperplanes
associated to [ak, bk,i]; note that each [ak, bk,i] is rank 1 (with i ∈ {1, 2}). We would then
proceed to shade-in the coarse hyperplanes in the remaining intervals, hence
indicating that these coarse hyperplanes do indeed coarsely cover [x, y] and finally
that the intersection of a coarse hyperplane and coarse interval is ‘almost’ a coarse
interval. Combining these two results along with coarse hyperplanes having
co-dimension 1 and an inductive argument would enable us to show that rank 2
coarse intervals have quadratic growth, which is one of the key results of the thesis.

However, there is a problem that can arise in our set-up which we wish to avoid:
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FIGURE 5.3: Although [a, b] is one-dimensional, it contains a corner which presents an
issue (cube complex viewpoint).

The problem with the [a, b] interval containing a corner is that we do not have control
over how ‘fat’ the hyperplanes are/can be. As seen above, the shaded blue part
represents the coarse hyperplane corresponding to a and b and we can see that it is
‘fat’. However, if we look at the corresponding hyperplane on the unshaded part of
the image then it is ‘thin’, and notice that [a, b] contains no corners here either. The
presence of corners means that branching can occur within the interval; this is already
a problem for the coarse interval hab, which is why we need to consider hab ∩ [x, y].
Therefore, to allow us some degree of control as to how ‘fat’ the coarse hyperplanes
can be, that is, to avoid branching from occurring in the interval, we will rule out this
case when proving that coarse hyperplanes have co-dimension 1.

More formally, the median definition of a corner in rank 2 is given below.

Definition 5.6. Let a, b, x, y be elements of a median algebra X. Let [a, b] ⊆ [x, y],
where [a, b] is one-dimensional. Then c = ⟨a, d, b⟩ (where d ∈ [x, y]) is a corner if the
following all hold

• a ̸= ⟨a, d, x⟩;

• b ̸= ⟨b, d, y⟩;

• c ̸= a;

• c ̸= b.

Below is a geometric interpretation of our definition of a corner:
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FIGURE 5.4: Two-dimensional configuration of a corner in a CAT(0) cube complex.

We now provide the coarse median definition of a corner in rank 2.

Definition 5.7. Let a, b, x, y be elements of a coarse median space X. Let [a, b] ⊆ [x, y],
where [a, b] has rank 1 and [x, y] has rank 2. Then c = ⟨a, d, b⟩ (where d ∈ [x, y]) is an
R-corner for R sufficiently large if the following all hold:

• a ↔R ⟨a, d, x⟩;

• b ↔R ⟨b, d, y⟩;

• c ↔R a;

• c ↔R b.

In Chapter 5.5, we will show how to overcome the corner problem for rank 2.

5.4 Coarse Hyperplanes have Co-dimension 1

The objective of this section is to answer one of the main questions of this chapter,
which is presented below. It states that coarse hyperplanes have co-dimension at least
1 with the coarse median space.

Theorem 5.8. Given a coarse median space X, rank parameter C(λ), ordering parameter G
and quasi-morphism parameter E, there exist constants R, S such that the following holds. For
all [x, y] ⊆ X, where rank [x, y] ≤ n with respect to C(λ), if [a, b] ⊆ [x, y], where a ≲G b, has
no R-corners, then an E-coarse cube in [a, b] of rank equal to the rank of [x, y] has a side of
length at most S.

The proof is divided into two cases and we describe these in detail in the following
subsections.
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5.4.1 Method

We outline our approach for showing that coarse hyperplanes have co-dimension 1.
As mentioned in Section 5.2, although we prove this result for higher rank, we focus
on applying it to rank 2 intervals.

We claim that the coarse hyperplanes intersected with the interval, hab ∩ [x, y], have
rank ≤ n − 1, where rank [x, y] ≤ n. We now dive into the details of the proof; we
have two cases as shown below along with a more general case, which is a
combination of the two cases.

FIGURE 5.5: The two cases we need to prove to show that coarse hyperplanes have
co-dimension 1 (in two-dimensions).

To be more precise, for case 1 we assume that none of the edges of the coarse cube line
up in the direction of (a subinterval of) [a, b], that is, all vertices project onto a
neighbourhood of a single point c in [a, b]. The idea is to then project the vertices of the
coarse cube in the direction of (a subinterval of) [a, b], hence lifting it one rank higher,
implying that the rank of the original coarse cube must have been one lower.

For Case 2, we assume (at least) one of the edges of the coarse cube lines up in the
direction of a subinterval of [a, b]. Since d(a, b) is bounded, this direction of the cube is
trivial, so we are done for this case. The general case is then a combination of cases 1
and 2, which we focus on in the proof of Theorem 5.8.

For all cases, we are using the characterisation of rank as outlined in Theorem 3.5.

Note 5.9. Although we do not explicitly state the rank of [a, b], we assume that there
are no R-corners in Theorem 5.8 and thus this implicitly implies that the rank of [a, b]



5.4. Coarse Hyperplanes have Co-dimension 1 33

must be 1. The lack of R-corners plays the role of the rank 1 condition here. Later in
Section 5.5, when we attempt to bound the number of corners in an interval, we will
explicitly assume that [a, b] has rank 1.

5.4.2 Proof of Case 1

Lemma 5.10. Given any coarse median space X and coarse interval [x, y] ⊆ X with
a, b ∈ [x, y], for every R, ordering parameter G, quasi-morphism parameter E and F, there
exists E′′ such that for every non-triviality parameter D′′, there exist D and L such that the
following hold. Assume that [a, b] does not have R-corners and that a ≲G b, where G is the
ordering parameter with respect to x as the basepoint. Let C = {u1, . . . , u2d} be a rank d
coarse cube in the hyperplane, that is, we have ⟨ui, uj, uk⟩ ∼E ul for i, j, k, l ∈ {1, . . . , 2d}.
Suppose that there exists a point c ∈ [a, b] such that for all i ∈ {1, . . . , 2d}, the points ui

project onto an F-neighbourhood of c. Then, we can construct a coarse cube C̃ ⊆ [x, y] with
rank d + 1 and quasi-morphism parameter E′′. For all D′′, assume that the ui are all at least D
apart, that is, for all i ∈ {1, . . . , 2d}, if i ̸= j, then d(ui, uj) ≥ D, where D is the non-triviality
parameter for C. In addition, assume that d(c, b) is non-trivial, in particular, c ↔L b, where L
is the parameter associated with the coarse hyperplane corresponding to a and b intersected
with the interval, hab ∩ [x, y].

Observe that when we project onto c ∈ [a, b], we do not want c to be close to the
endpoints of the interval; this is the same as wanting c to lie in the coarse hyperplane
associated to a and b. Before we embark on the proof, we introduce the following
lemma which we will make use of from here on.

Lemma 5.11. Given a constant P(= 2d in this case) and a C-ordering, there exists a constant
M, the separation parameter, such that P fixed points in an M-separated set with the ordering
≲C is a coarsening of a partial order.

Proof of Lemma 5.10. Since c is not a corner, this means that c fails to satisfy at least one
of the conditions in Definition 5.7. We cannot have c∼R a or b as then the ui will not be
in the coarse hyperplane, they will be in Ha and Hb respectively, which are not a part
of the coarse hyperplane. This implies that either ⟨a, ui, x⟩∼R a or ⟨b, ui, y⟩∼R b, but
these are dual cases so we will focus on ⟨a, ui, x⟩∼R a here since the ⟨b, ui, y⟩∼R b case
can be proven very similarly.

The way we prove the lemma is the following: consider the G′-coarse ordering with c
as the basepoint; then we can find an i0 (that is not necessarily unique) in {1, . . . , 2d}
such that ui0 is a maximal element with respect to the G′-ordering, where G′ is the
ordering parameter associated to the basepoint c. We also know such a ui0 exists due
to Lemma 5.11, so we have ⟨ui, ui0 , c⟩ ↔G′ ui0 for all i ̸= i0. We then project the
remaining vertices of C onto the interval [c, ui0 ], that is, we set vi = ⟨c, ui, ui0⟩. We then
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obtain a cube that lies in [c, ui0 ], which we denote Ĉ = {v1, . . . , v2d}, with non-triviality
parameter D′ and quasi-morphism parameter E′. This cube may be smaller than C but
will still be a coarse cube of the same rank so our original claim still holds. To be more
specific, we show that the rank of Ĉ = {v1, . . . , v2d} remains the same by proving that
vi ↔D′ vj; this says that we have not collapsed any edges of C when projecting its
vertices onto [c, ui0 ], hence leaving the rank unchanged.

Note 5.12. ‘Coarse medianness’ is preserved (using the coarse five-point condition),
and so Ĉ = {v1, . . . , v2d} will still be a coarse cube; we prove this below. (The
calculation below also determines E′.)

⟨vi, vj, vk⟩ ∼Kκ4+H(0) ⟨⟨c, ui0 , ui⟩, ⟨c, ui0 , uj⟩, ⟨c, vk, ui0⟩⟩

∼κ5 ⟨c, ui0 , ⟨ui, uj, ⟨c, vk, ui0⟩⟩⟩

∼κ5 ⟨ui, ⟨c, ui0 , uj⟩, ⟨c, ui0 , ⟨c, ui0 , vk⟩⟩⟩

∼Kκ4+H(0) ⟨ui, ⟨c, ui0 , uj⟩, ⟨c, ui0 , vk⟩⟩

= ⟨ui, ⟨c, ui0 , uj⟩, ⟨c, ui0 , ⟨c, ui0 , uk⟩⟩⟩

∼Kκ4+H(0) ⟨ui, ⟨c, ui0 , uj⟩, ⟨c, ui0 , uk⟩⟩

∼κ5 ⟨c, ui0 , ⟨ui, uj, uk⟩⟩

∼KE+H(0) ⟨c, ui0 , ul⟩

= vl .

Now consider an arbitrary edge {vi, vj} ∈ Ĉ. Then we can find a parallel edge
containing ui0 as a vertex since we are in a cube — if edges in the original cube are
parallel then these correspond to parallel edges in the coarse cube. Call this edge
{vk, ui0}, such that (without loss of generality)

⟨ui0 , vk, vi⟩∼E′ ui0 ,

⟨ui0 , vk, vj⟩∼E′ vk.

This is the same as saying that {vi, ui0 , vk, vj} forms a coarse 2-cube. Assume towards a
contradiction that vi∼D′ vj; then

ui0∼E′ ⟨ui0 , vk, vi⟩

∼KD′+H(0) ⟨ui0 , vk, vj⟩

∼E′ vk.

Since we have ui0 = vi0 ∼2E′+KD′+H(0) vk, this implies that
vk = ⟨c, uk, ui0⟩ ∼2E′+KD′+H(0) ui0 , which in turn signifies that ui0 ≲G′ vk (applying the
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ordering with c as the basepoint), where we set G = 2E′ + KD + H(0). However, this
is a contradiction with respect to the G′-ordering, as we chose ui0 to be maximal and so
any edge containing ui0 as a vertex cannot collapse (also because we stated earlier that
⟨ui, ui0 , c⟩ ↔G′ ui0 which prevents collapses). Therefore, we have shown that
vi ↔D′ vj and so the coarse cube Ĉ = {v1, . . . , v2d} has the same rank as C.

When we pick ui0 , it either falls into the first or second case, i.e. ⟨a, ui0 , x⟩∼R a or
⟨b, ui0 , y⟩∼R b. Without loss of generality, let us assume that ui0 satisfies the first case as
the second case is dual to this.

The reason for projecting all the vertices of C onto [c, ui0 ] is to ensure that all points are
of the ‘same type’, i.e. we either have ⟨a, ui, x⟩∼R a for all i or ⟨b, ui, y⟩∼R b for all i. We
want all our vertices to be of the same type because we can have ⟨a, ui, x⟩∼R a for
some i and for other i we could have ⟨b, ui, y⟩∼R b instead, but we require our uis to all
satisfy the same condition. As a result of the projection we have

⟨a, vi, x⟩ = ⟨a, ⟨c, ui, ui0⟩, x⟩

∼κ5⟨⟨a, c, x⟩, ⟨a, ui0 , x⟩, ui⟩

∼K(G+R)+H(0)⟨a, a, ui⟩

= a,

where the penultimate approximation follows from a ≲G c (with respect to x as the
basepoint in the ordering) and by assuming that ui0 satisfies ⟨a, ui0 , x⟩∼R a (since we
are focusing on this case). So without loss of generality, assume that the vi satisfy
⟨a, vi, x⟩∼R′ a for all i, where R′ = κ5 + K(G + R) + H(0).

To summarise, we know

A. ⟨a, vi, b⟩∼F c for all i, where c is not a corner;

B. ⟨a, vi, y⟩∼R′ vi for all i.

Let wi = ⟨b, vi, y⟩. Note that d(wi, vi) is non-trivial; this follows from d(c, b) being
non-trivial (which was stated in Lemma 5.10), hence we set wi ↔D′′ vi for all i, where
D′′ is the non-triviality parameter for C̃. We will show that we can use the wi to build
a cube C̃ that is one rank higher than C. We have four cases to prove:

(i) ⟨vi, vj, vk⟩∼E vl ;

(ii) ⟨vi, vj, wk⟩∼E′′ vl ;

(iii) ⟨wi, wj, vk⟩∼E′′ wl ;
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(iv) ⟨wi, wj, wk⟩∼E′′ wl , where i, j, k, l ∈ {1, . . . , 2d}.

Proof of the four cases:

(i) Follows as we have already assumed that C is a coarse cube.

(ii)

⟨vi, vj, wk⟩ = ⟨vi, vj, ⟨b, vk, y⟩⟩

∼K(KR′+H(0))+H(0)⟨vi, vj, ⟨b, ⟨a, vk, y⟩, y⟩⟩ (using B.)

= ⟨vi, vj, ⟨⟨a, y, vk⟩, y, b⟩⟩

∼Kκ4+H(0)⟨vi, vj, ⟨a, y, ⟨vk, y, b⟩⟩ (using 4-point)

∼κ5⟨⟨vi, vj, y⟩, ⟨vi, vj, ⟨vk, y, b⟩⟩, a⟩ (using 5-point)

∼Kκ5+H(0)⟨⟨vi, vj, y⟩, ⟨⟨vi, vj, vk⟩, ⟨vi, vj, y⟩, b⟩, a⟩ (using 5-point)

∼K(KE′+H(0))+H(0)⟨⟨vi, vj, y⟩, ⟨vl , ⟨vi, vj, y⟩, b⟩, a⟩

= ⟨a, ⟨vi, vj, y⟩, ⟨b, ⟨vi, vj, y⟩, vl⟩⟩

∼κ4⟨⟨a, ⟨vi, vj, y⟩, b⟩, ⟨vi, vj, y⟩, vl⟩ (using 4-point)

∼Kκ5+H(0)⟨⟨⟨a, b, vi⟩, ⟨a, b, vj⟩, y⟩, ⟨vi, vj, y⟩, vl⟩ (using 5-point)

∼K(2KF+H(0))+H(0)⟨⟨c, c, y⟩, ⟨vi, vj, y⟩, vl⟩ (using A.)

= ⟨c, ⟨vi, vj, y⟩, vl⟩

∼KE′+H(0)⟨c, ⟨vi, vj, y⟩, ⟨vi, vj, vk⟩⟩

∼κ5⟨vi, vj, ⟨c, y, vk⟩⟩ (using 5-point)

∼K(KF+H(0))+H(0)⟨vi, vj, ⟨y, vk, ⟨a, vk, b⟩⟩⟩ (using A. to replace c)

∼Kκ4+H(0)⟨vi, vj, ⟨⟨y, vk, a⟩, vk, b⟩⟩ (using 4-point)

∼K(KR′+H(0))+H(0)⟨vi, vj, ⟨vk, vk, b⟩⟩ (using B.)

= ⟨vi, vj, vk⟩

∼E′ vl .

(iii)

⟨wi, wj, vk⟩ = ⟨⟨b, vi, y⟩, ⟨b, vj, y⟩, vk⟩

∼κ5⟨b, y, ⟨vi, vj, vk⟩⟩ (using 5-point)

∼KE′+H(0)⟨b, y, vl⟩

= wl .
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(iv)

⟨wi, wj, wk⟩ = ⟨⟨b, vi, y⟩, ⟨b, vj, y⟩, ⟨b, vk, y⟩⟩

∼κ5⟨b, y, ⟨vi, vj, ⟨b, vk, y⟩⟩⟩ (using 5-point)

= ⟨b, y, ⟨vi, vj, wk⟩⟩

∼Kd(⟨vi ,vj,wk⟩,vl)+H(0)⟨b, y, vl⟩ (using (ii))

= wl .

If B. is replaced with ⟨b, vi, x⟩∼R′ vi and wi = ⟨a, vi, x⟩, the proof follows similarly.
Take E′′ to be the error obtained by summing up the errors in part (iv) of the proof.
Then C̃ is a coarse cube of rank d + 1 with quasi-morphism parameter E′′ and D′′ the
non-triviality parameter, as required. Observe that D′′ feeds into the size of L, as we
have built C̃ by extending C in the direction of the interval [b, y].

5.4.3 Proof of the General Case

Let C be a coarse cube contained in the coarse hyperplane corresponding to a, b and let
V be the set of vertices of C.

When we project C onto [a, b], we may see a cube of lower dimension as some vertices
of C may project onto points that are close together. Since this (lower dimension) cube
is contained in [a, b], it will be ‘small’, as d(a, b) is bounded and so this implies that we
can bound the size of anything projected onto [a, b].

Pick an edge of C, say {v1, v2}, and project it onto [a, b]; we then define w1 = ⟨a, v1, b⟩
and w2 = ⟨a, v2, b⟩. Given v ∈ V, projecting v directly onto {w1, w2} is coarsely the
same as first projecting v onto {v1, v2} and then onto {w1, w2}: since C is a coarse
cube, when we project v onto {v1, v2}, we obtain either v1 or v2. By definition of
w1, w2, we then see that ⟨v, w1, w2⟩ ∼ w1 or w2. More formally,

⟨⟨v, v1, v2⟩, w1, w2⟩ = ⟨⟨v, v1, v2⟩, ⟨a, b, v1⟩, ⟨a, b, v2⟩⟩

∼κ5 ⟨a, b, ⟨v1, v2, ⟨v, v1, v2⟩⟩⟩

∼Kκ4+H(0) ⟨a, b, ⟨⟨v2, v1, v2⟩, v1, v⟩

= ⟨a, b, ⟨v2, v1, v⟩⟩

∼κ5 ⟨⟨a, b, v2⟩, ⟨a, b, v1⟩, v⟩

= ⟨w2, w1, v⟩.
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Since C is a coarse cube, we have ⟨v, v1, v2⟩ ∼E v1 or v2, where E is the
quasi-morphism constant. Let us assume that ⟨v, v1, v2⟩ ∼E v1; then

⟨⟨v, v1, v2⟩, w1, w2⟩ ∼KE+H(0) ⟨v1, w1, w2⟩

= ⟨v1, ⟨a, b, v1⟩, ⟨a, b, v2⟩⟩

∼κ5 ⟨a, b, ⟨v1, v2, v1⟩⟩

= ⟨a, b, v1⟩

= w1.

The above calculation holds similarly when we instead assume that ⟨v, v1, v2⟩ ∼E v2.

We now introduce some necessary notation and motivation for the main argument of
the proof of Theorem 5.8.

Define u1 = ⟨v1, v2, w1⟩, u2 = ⟨v1, v2, w2⟩; then we can split {v1, v2} into three
sub-edges: it is made up of two ‘vertical’ edges {v1, u1}, {u2, v2} and one ‘horizontal’
edge {u1, u2}. Here, a ‘vertical’ edge is an edge that projects onto a point in [a, b] (see
case 1) and a ‘horizontal’ edge is an edge that projects onto a subinterval of [a, b] (see
case 2), i.e. {u1, u2, w1, w2} forms a coarse 2-cube. Additionally, {v1, v2} could be a
diagonal edge (in the sense that we can move vertically and horizontally), however, in
the corresponding CAT(0) cube complex, it may look more intricate and actually be
made up of three sub-edges.

If we take a parallel edge {x1, x2} to {v1, v2}, then we obtain a coarse 2-cube
comprised of these four points, but we can split this up into three coarse sub-2-cubes
in the same manner we split {v1, v2} into three sub-edges.

The reason we cut {v1, v2} into three pieces is because we are only looking at an edge
{w1, w2} in the projection and not something of higher dimension. In particular,
{v1, u1} represents staying at w1 (as it is a vertical edge), {u1, u2} represents moving
from w1 to w2 (as it is a horizontal edge), and {u2, v2} represents staying at w2 (as it is
a vertical edge). Note that the movement from w1 to w2 is monotone.

In order to prove Theorem 5.8, we first need the following result.

Proposition 5.13. Given C, v1, v2, u1, u2, the quasi-morphism constant E and the ordering
parameter G referenced earlier, there exists M such that the following holds. Assume that there
exists a co-dimension 1 face F of C (an (n − 1)-coarse cube) such that v1 ∈ F but v2 /∈ F.
Define q as the vertex of C opposite v1 and p as the vertex of F opposite v1. Given f ∈ F, f ′ the
corresponding point in the face of C parallel to F, and t ∈ {v1, u1, u2, v2}, define the maps ϕ, ψ
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respectively:

ϕ : F × {v1, v2} → C

( f , v1) 7→ ⟨ f , v1, q⟩ ∼ f

( f , v2) 7→ ⟨ f , v2, q⟩ ∼ f ′,

ψ : F × {v1, u1, u2, v2} → X

( f , t) 7→ ⟨ f , t, q⟩.

Then the restriction of ψ to C equals ϕ (i.e. ψ|C = ϕ) and the map ψ is an M-quasi-morphism.

Having stated Proposition 5.13, we now provide the argument for the proof of
Theorem 5.8:

Proof of Theorem 5.8. We can cut C up into three coarse sub-cubes with the same rank
as C as outlined in Proposition 5.13; more specifically, we can split C into two ‘vertical’
cubes and one ‘horizontal’ cube. This approach of splitting into ‘vertical’ and
‘horizontal’ cubes works together to give us our required result (this is a combination
of cases 1 and 2): suppose the vertical pieces of either vertical cube are non-trivial; we
know that these cubes have the same rank as C, and thus applying case 1, we see that
the vertical cubes have at least one rank lower than X, hence implying that C must
also have at least one rank lower than X. If the vertical pieces have trivial lengths,
then keeping case 2 in mind, we know by assumption that the edge {u1, u2} lines up
in the direction of {w1, w2}, and so will have bounded size (as {w1, w2} has a bound
on its size as it lies in [a, b]), that is, {u1, u2, w1, w2} would form a coarse 2-cube, hence
giving us a bound on the distance from u1 to u2 in terms of d(w1, w2). This in turn
implies that C has rank at least one lower than X.

Note 5.14. Observe that {v1, u1, u2, v2} all lie in a ‘straight’ line, in the sense that
u1 ∼ [v1, u2], u2 ∼ [u1, v2] (we also know that u1, u2 ∈ [v1, v2]). We prove this below:

1.

⟨v1, u1, u2⟩ = ⟨v1, ⟨v1, v2, w1⟩, ⟨v1, v2, w2⟩⟩

∼κ5⟨v1, v2, ⟨v1, w1, w2⟩⟩

∼Kκ5+H(0)⟨v1, v2, w1⟩

= u1.
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2.

⟨u1, u2, v2⟩ = ⟨⟨v1, v2, w1⟩, ⟨v1, v2, w2⟩, v2⟩

∼κ5⟨v1, v2, ⟨w1, w2, v2⟩⟩

= ⟨v1, v2, ⟨⟨v1, a, b⟩, ⟨v2, a, b⟩, v2⟩⟩

∼Kκ5+H(0)⟨v1, v2, ⟨a, b, ⟨v1, v2, v2⟩⟩⟩

= ⟨v1, v2, ⟨a, b, v2⟩⟩

= ⟨v1, v2, w2⟩

= u2.

We now present the proof of Proposition 5.13:

Proof of Proposition 5.13. We will show that

ψ(⟨ fi, f j, fk⟩, ⟨t1, t2, t3⟩) ∼ ⟨ψ( fi, t1), ψ( f j, t2), ψ( fk, t3)⟩,

where fi, f j, fk ∈ F, ⟨ fi, f j, fk⟩∼E fl , t1 ≲G t2 ≲G t3 with ti ∈ {v1, u1, u2, v2} and
1 ≤ i, j, k, l ≤ 2n.

The following important facts are needed before we can commence with the proof:

(i) ⟨ fi, f j, q⟩∼[ fl , q] (and fl∼[v1, ⟨ fi, f j, q⟩]).

⟨ fl , ⟨ fi, f j, q⟩, q⟩∼KE+H(0)⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, q⟩

∼κ5⟨ fi, f j, ⟨ fk, q, q⟩⟩ (by the coarse 5-point condition)

= ⟨ fi, f j, q⟩,

as required.

(ii) ⟨v1, p, u1⟩∼ v1.

⟨v1, p, u1⟩ = ⟨v1, p, ⟨v1, v2, w1⟩⟩

= ⟨p, v1, ⟨v2, v1, w1⟩⟩

∼κ4 ⟨⟨p, v1, v2⟩, v1, w1⟩

∼KE+H(0) ⟨v1, v1, w1⟩

= v1.

Actually, ⟨v1, p, t⟩ ∼ v1 for t ∈ {v1, u1, u2, v2}.
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(iii) ⟨ fl , ⟨ fi, f j, q⟩, v1⟩ ∼ ⟨ fl , ⟨ fi, f j, q⟩, u1⟩.

⟨ fl , ⟨ fi, f j, q⟩, v1⟩ ∼K(E+KE+H(0)+κ4)+H(0) ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, ⟨v1, p, u1⟩⟩

= ⟨⟨ fi, f j, fk⟩, fm, ⟨v1, p, u1⟩⟩

∼Kκ4+H(0) ⟨⟨ fi, f j, fk⟩, ⟨v1, fm, p⟩, ⟨v1, p, u1⟩⟩

= ⟨⟨ fi, f j, fk⟩, ⟨v1, ⟨ fi, f j, q⟩, p⟩, ⟨v1, p, u1⟩⟩

∼κ5 ⟨v1, p, ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, u1⟩⟩

∼κ5 ⟨⟨v1, p, ⟨ fi, f j, fk⟩⟩, ⟨v1, p, ⟨ fi, f j, q⟩⟩, u1⟩

∼2Kκ4+H(0) ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, u1⟩

∼KE+H(0) ⟨ fl , ⟨ fi, f j, q⟩, u1⟩.

Thus,

⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, u1⟩ ∼KE+H(0) ⟨ fl , ⟨ fi, f j, q⟩, u1⟩

∼(iii) ⟨ fl , ⟨ fi, f j, q⟩, v1⟩

∼(i) fl .

Similarly, this result can be generalised as in the previous case:
⟨ fl , ⟨ fi, f j, q⟩, v1⟩ ∼ ⟨ fl , ⟨ fi, f j, q⟩, t⟩ for t ∈ {v1, u1, u2, v2}.

We now proceed with the proof below. Let

a′ = ⟨ fi, t1, q⟩,

b′ = ⟨ f j, t2, q⟩,

c′ = ⟨ fk, t3, q⟩.

We know:
⟨⟨ fi, f j, fk⟩, ⟨t1, t2, t3⟩, q⟩ ∼K(E+G)+H(0) ⟨ fl , t2, q⟩.

We want:
⟨a′, b′, c′⟩ ∼M ⟨ fl , t2, q⟩.

Let m ∈ [v1, q]. Set

t = ⟨v1, m, v2⟩ ∈ [v1, v2]

f = ⟨v1, m, p⟩ ∈ [v1, p].
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Then

⟨ f , t, q⟩ = ⟨⟨v1, m, p⟩, ⟨v1, m, v2⟩, q⟩

∼κ5 ⟨v1, m, ⟨p, v2, q⟩⟩

∼KE+H(0) ⟨v1, m, q⟩

∼κ4 m.

Using the following approximation (based on the above calculation)

⟨⟨⟨a′, b′, c′⟩, v1, v2⟩, ⟨⟨a′, b′, c′⟩, v1, p⟩, q⟩ ∼KE+H(0)+κ4+κ5
⟨a′, b′, c′⟩,

we will prove the claim by showing that

⟨⟨a′, b′, c′⟩, v1, p⟩ ∼ fl , (5.1)

⟨⟨a′, b′, c′⟩, v1, v2⟩ ∼ t2. (5.2)

(5.1)

⟨⟨a′, b′, c′⟩, v1, p⟩ ∼κ5 ⟨⟨v1, p, a′⟩, ⟨v1, p, b′⟩, c′⟩

= ⟨⟨v1, p, ⟨ fi, t1, q⟩⟩, ⟨v1, p, ⟨ f j, t2, q⟩⟩, ⟨ fk, t3, q⟩⟩

∼2Kκ5+H(0) ⟨⟨⟨v1, p, fi⟩, ⟨v1, p, t1⟩, q⟩, ⟨⟨v1, p, f j⟩, ⟨v1, p, t2⟩, q⟩, ⟨ fk, t3, q⟩⟩

∼K[(K(κ4+(ii))+H(0))+(K(κ4+(ii))+H(0))]+H(0) ⟨⟨ fi, v1, q⟩, ⟨ f j, v1, q⟩, ⟨ fk, t3, q⟩⟩

∼2Kκ4+H(0) ⟨ fi, f j, ⟨ fk, t3, q⟩⟩

∼κ5 ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, t3⟩

∼KE+H(0) ⟨ fl , ⟨ fi, f j, q⟩, t3⟩

∼(iii) ⟨ fl , ⟨ fi, f j, q⟩, v1⟩

∼(i) fl .
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(5.2)

⟨⟨a′, b′, c′⟩, v1, v2⟩ ∼κ5 ⟨⟨v1, v2, a′⟩, ⟨v1, v2, b′⟩, c′⟩

= ⟨⟨v1, v2, ⟨ fi, t1, q⟩⟩, ⟨v1, v2, ⟨ f j, t2, q⟩⟩, ⟨ fk, t3, q⟩⟩

∼2Kκ5+H(0) ⟨⟨⟨v1, v2, fi⟩, ⟨v1, v2, q⟩, t1⟩, ⟨⟨v1, v2, f j⟩, ⟨v1, v2, q⟩, t2⟩, ⟨ fk, t3, q⟩⟩

∼K[(2KE+H(0))+(2KE+H(0))]+H(0) ⟨⟨v1, v2, t1⟩, ⟨v1, v2, t2⟩, ⟨ fk, t3, q⟩⟩

∼2Kκ4+H(0) ⟨t1, t2, ⟨ fk, t3, q⟩⟩

∼κ5 ⟨⟨t1, t2, t3⟩, ⟨t1, t2, q⟩, fk⟩

∼KG+H(0) ⟨t2, ⟨t1, t2, q⟩, fk⟩

∼KG+H(0) ⟨t2, t2, fk⟩

= t2.

Note 5.15. We can deduce straight away that ⟨t1, t2, q⟩ ∼G t2, as in the interval [v1, q],
t1 ≲G t2 means that ⟨v1, t1, t2⟩ ∼G t1 or equivalently, ⟨t1, t2, q⟩ ∼G′ t2, where G′ is the
constant depending on G derived from Lemma 4.7. We also know that
[v1, v2] ⊆ [v1, q], so if t1, t2 ∼ [v1, v2], then t1 ≲G t2 (in
[v1, v2]) ⇔ ⟨v1, t1, t2⟩ ∼G t1 ⇔ t1 ≲G t2 (in [v1, q]) ⇔ ⟨t1, t2, q⟩ ∼G′ t2.

Thus we have shown that coarse hyperplanes have co-dimension at least 1 with X.

5.5 Coarsened Corners

We mentioned briefly why containing corners in our intervals presents a problem for
us, i.e. we do not have control over how ‘fat’ the hyperplanes can be.

In the proof of case 1 of Theorem 5.8, we assumed that there were no R-corners. Our
previous strategy to overcome this issue was to only take the ‘upper’/‘forward’ part
of the hyperplane rather than the whole — we were sidestepping the corner problem
by considering only the forward part, but we would miss pieces of the hyperplane in
the covering process. The corner issue is an obstacle in proving that coarse
hyperplanes coarsely cover coarse intervals, thus we now turn our attention to
resolving this matter. We describe the corner problem in detail in the rank 2 case and
proceed to show how this can be rectified. We answer this problem in both the context
of CAT(0) cube complexes and coarse median spaces and present both versions of the
statements of these results in this section; the proof of the median case can be found in
the Appendix.

Below is the median formulation of our result.

Lemma 5.16. Given a CAT(0) cube complex X, let [x, y] ⊆ X be a 2-dimensional interval and
[a, b] ⊆ [x, y] be a 1-dimensional interval. Then [a, b] has at most 1 corner.
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We now state the coarsened corner problem for coarse median spaces; the remainder
of this section is devoted to proving the lemma below.

Lemma 5.17. Given a coarse median space X, rank 2 parameter C(λ), rank 1 parameter
C(λ′) and ordering parameter G, there exists R such that for any rank 2 coarse interval
[x, y] ⊆ X with respect to C(λ) and for any rank 1 coarse interval [a, b] ⊆ [x, y] with respect
to C(λ′) where a ≲G b, [a, b] has at most 1 R-corner.

Recall the definition of a coarse corner (Definition 5.7) and the (C2) axiom in
Bowditch’s definition of a coarse median space (Definition 3.1). It states that there is a
function H : N → [0, ∞) with the following property: suppose that A ⊆ X with
1 ≤ |A| ≤ p < ∞. Then there is a finite median algebra (Π, ⟨⟩π) and maps π : A → Π
and σ : Π → X such that for all x, y, z ∈ Π, we have

d(σ(⟨x, y, z⟩π), ⟨σ(x), σ(y), σ(z)⟩) ≤ H(p)

and
d(a, σπ(a)) ≤ H(p)

for all a ∈ A, i.e. that finite subsets of coarse median spaces can be approximated by
finite CAT(0) cube complexes.

Here, σ is a H(p)-quasi-morphism and without loss of generality, we may assume that
σπ(a) = a (we suppose that the image of σ contains A exactly). Now, again without
loss of generality, we can replace Π with U(A), where U(A) is the universal median
algebra associated to A; this follows from the universal property of U(A), which is
pictured in the diagram below. An advantage of replacing Π with U(A) is that we can
explicitly draw and construct it.

A Π X

U(A)

ι

π σ

π′

Thus, let us take six points {x, a, b, y, d1, d2} ∈ [x, y], where [x, y] is a rank 2 interval in
our coarse median space X, and define ci = ⟨a, di, b⟩, i = 1, 2. Assume that the
following holds in [a, b] (which we recall is rank 1): x ≲G a ≲G c1 ≲G c2 ≲G b ≲G y,
where G is the ordering parameter.

Associated to these six points, take {x′, a′, b′, y′, d′1, d′2} ∈ Π = U(A), where U(A) is
the universal median algebra on the six points {x′, a′, b′, y′, d′1, d′2} with
c′i = ⟨a′, d′i, b′⟩, i = 1, 2. Since x ≲G a ≲G c1 ≲G c2 ≲G b ≲G y coarsely holds in [a, b],
this implies the relations genuinely hold in U(A): a′ ≤ b′ and c′1 ≤ c′2, so that overall
we obtain x′ ≤ a′ ≤ c′1 ≤ c′2 ≤ b′ ≤ y′.



5.5. Coarsened Corners 45

Note the following:

• We have a total ordering on M-separated subsets of [a, b] by Lemma 5.2.

• We focus on the universal median algebra as this is the universal case.

The proof is split into three cases and these are as follows (note that we assume
c1 ↔R c2 to avoid a trivial case, where R is the coarse corner constant as seen in
Definition 5.7):

1. c2 ∼N ⟨c2, d1, y⟩ and c1 is not a corner.

2. c1 ∼P ⟨c1, d2, x⟩ and c2 is not a corner.

3. c1 ∼S ⟨y, c1, ⟨d1, c1, d2⟩⟩ and c2 ∼T ⟨x, c2, ⟨d1, c2, d2⟩⟩ and neither c1 nor c2 are
corners.

Proof of Lemma 5.17. We first need to check that the conditions of Theorem 3.5 for the
interval [c1, d2] ⊆ [x, y] holds (we could have also chosen [c2, d1] instead). We need to
show that c2, ⟨c1, d2, x⟩, ⟨y, c1, ⟨d1, c1, d2⟩⟩ are close to [c1, d2]. By definition,
⟨c1, d2, x⟩ ∈ [c1, d2] so we just need to check the remaining points.

• ⟨y, c1, ⟨d1, c1, d2⟩⟩ ∼κ4 ⟨⟨y, c1, d1⟩, c1, d2⟩ ∈ [c1, d2].

•

c2 = ⟨a, d2, b⟩

∼KG+H(0) ⟨⟨x, a, c1⟩, d2, b⟩

∼κ5 ⟨⟨d2, b, x⟩, ⟨d2, b, a⟩, c1⟩

= ⟨⟨x, d2, b⟩, c2, c1⟩

∼κ5 ⟨⟨x, c1, c2⟩, ⟨b, c1, c2⟩, d2⟩

∼2KG+H(0) ⟨c1, c2, d2⟩ ∈ [c1, d2].

We now prove that {c1, c2, ⟨c1, d2, x⟩, ⟨y, c1, ⟨d1, c1, d2⟩⟩} genuinely forms a tripod
centred at c1:

• ⟨⟨c1, d2, x⟩, c1, ⟨y, c1, ⟨d1, c1, d2⟩⟩⟩ ∼ c1:

⟨⟨c1, d2, x⟩, c1, ⟨y, c1, ⟨d1, c1, d2⟩⟩⟩ ∼κ5 ⟨⟨c1, ⟨c1, d2, x⟩, y⟩, ⟨c1, ⟨c1, d2, x⟩, c1⟩, ⟨d1, c1, d2⟩⟩

= ⟨⟨c1, ⟨c1, d2, x⟩, y⟩, c1, ⟨d1, c1, d2⟩⟩

∼Kκ4+H(0) ⟨c1, ⟨d1, c1, d2⟩, ⟨⟨y, c1, x⟩, c1, d2⟩⟩

∼K(Kκ4+H(0))+H(0) ⟨c1, ⟨d1, c1, d2⟩, ⟨c1, c1, d2⟩⟩

= ⟨c1, c1, ⟨d1, c1, d2⟩⟩

= c1.
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• ⟨c2, c1, ⟨y, c1, ⟨d1, c1, d2⟩⟩⟩ ∼ c1:

⟨c2, c1, ⟨y, c1, ⟨d1, c1, d2⟩⟩⟩ ∼κ5 ⟨⟨c1, c2, y⟩, ⟨c1, c2, c1⟩, ⟨d1, c1, d2⟩⟩

∼KG+H(0) ⟨c1, c2, ⟨d1, c1, d2⟩⟩

∼κ4 ⟨⟨c2, c1, d1⟩, c1, d2⟩

= ⟨c1, d2, ⟨⟨a, b, d1⟩, ⟨a, b, d2⟩, d1⟩⟩

∼Kκ5+H(0) ⟨c1, d2, ⟨a, b, ⟨d1, d2, d1⟩⟩⟩

= ⟨c1, d2, ⟨a, b, d1⟩⟩

= ⟨c1, d2, c1⟩

= c1.

• ⟨c2, c1, ⟨c1, d2, x⟩⟩ ∼ c1:

⟨c2, c1, ⟨c1, d2, x⟩⟩ ∼κ4 ⟨⟨c2, c1, x⟩, c1, d2⟩

∼KG+H(0) ⟨c1, c1, d2⟩

= c1.

Since we have shown that {c1, c2, ⟨c1, d2, x⟩, ⟨y, c1, ⟨d1, c1, d2⟩⟩} genuinely forms a
tripod, we can proceed with proving cases 1 and 2.

Case 1: If c2 ∼N ⟨c2, d1, y⟩, then c1 is not a corner:

⟨b, d1, y⟩ ∼KG+H(0) ⟨⟨c2, b, y⟩, d1, y⟩

∼κ4 ⟨⟨d1, y, c2⟩, y, b⟩

∼KN+H(0) ⟨c2, y, b⟩

∼G b.

Since b ∼KG+KN+G+2H(0)+κ4
⟨b, d1, y⟩, c1 is not a corner.

Case 2: If c1 ∼P ⟨c1, d2, x⟩ then c2 is not a corner:

⟨a, d2, x⟩ ∼KG+H(0) ⟨⟨x, a, c1⟩, d2, x⟩

∼κ4 ⟨⟨d2, x, c1⟩, x, a⟩

∼KP+H(0) ⟨c1, x, a⟩

∼G a.

Since a ∼KG+KP+G+2H(0)+κ4
⟨a, d2, x⟩, c2 is not a corner.

Now that we have proven cases 1 and 2, we turn our attention to case 3. This case is
slightly more complex and we now assume the following

• c1 ∼S ⟨y, c1, ⟨d1, c1, d2⟩⟩.
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• c2 ∼T ⟨x, c2, ⟨d1, c2, d2⟩⟩.

Case 3: Again, we begin by checking the conditions for the interval [x, c1] as seen in
Theorem 3.5. We need to show that a, ⟨c1, d1, x⟩, ⟨c1, d2, x⟩ are in [x, c1]. By definition,
⟨c1, d1, x⟩, ⟨c1, d2, x⟩ ∈ [x, c1]. Since a ∼G ⟨x, a, c1⟩, this tells us that a ∈ [x, c1].
Next, we show that {c1, a, ⟨c1, d1, x⟩, ⟨c1, d2, x⟩} forms a tripod at c1:

• ⟨⟨c1, d1, x⟩, c1, ⟨c1, d2, x⟩⟩ ∼ c1: let

m1 = ⟨y, c1, ⟨d1, c1, d2⟩⟩ ∼S c1

m2 = ⟨x, c2, ⟨d1, c2, d2⟩⟩ ∼T c2.

By the coarse 5-point condition, ⟨⟨c1, d1, x⟩, c1, ⟨c1, d2, x⟩⟩ ∼κ5 ⟨c1, x, ⟨c1, d1, d2⟩⟩.
We know that ⟨x, m2, c1⟩ ∼KT+H(0) ⟨x, c2, c1⟩; we obtain
c1 ∼G ⟨x, c2, c1⟩ ∼KT+H(0) ⟨x, m2, c1⟩ ∼κ4 ⟨x, c1, ⟨d1, c2, d2⟩⟩. To sum up, we have

c1 ∼G+κ4 ⟨x, c1, ⟨d1, c2, d2⟩⟩

∼κ5 ⟨d1, ⟨x, c1, c2⟩, ⟨x, c1, d2⟩⟩

∼KG+H(0) ⟨d1, c1, ⟨d2, c1, x⟩⟩

∼κ4 ⟨⟨d1, c1, d2⟩, c1, x⟩.

• ⟨a, c1, ⟨c1, d1, x⟩⟩ ∼ c1:

⟨a, c1, ⟨c1, d1, x⟩⟩ ∼κ4 ⟨⟨a, c1, x⟩, c1, d1⟩

∼KG+H(0) ⟨c1, a, d1⟩

= ⟨⟨a, d1, b⟩, a, d1⟩

∼κ4 ⟨⟨a, d1, a⟩, d1, b⟩

= ⟨a, d1, b⟩

= c1.
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• ⟨a, c1, ⟨c1, d2, x⟩⟩ ∼ c1:

⟨a, c1, ⟨c1, d2, x⟩⟩ ∼κ4 ⟨⟨a, c1, x⟩, c1, d2⟩

∼KG+H(0) ⟨a, c1, d2⟩

= ⟨a, ⟨a, d1, b⟩, d2⟩

∼κ4 ⟨⟨a, d2, b⟩, a, d1⟩

= ⟨c2, a, d1⟩

∼KG+H(0) ⟨⟨c1, c2, b⟩, a, d1⟩

∼κ5 ⟨⟨a, d1, c1⟩, ⟨a, d1, b⟩, c2⟩

= ⟨c1, c2, ⟨a, d1, c1⟩⟩

∼κ4 ⟨⟨c1, c2, a⟩, c1, d1⟩

∼KG+H(0) ⟨c1, c1, d1⟩

= c1.

All the conditions of the theorem hold, so we are in a position to show that we can
only have at most one corner. Now,

(i) we must have c1 ↔R a because then c1 would immediately fail to be a corner;

(ii) if c1 ∼P ⟨c1, d2, x⟩, then this is a case that has already been proven (see case 2);

(iii) this leaves us with c1 ∼U ⟨c1, d1, x⟩. Then c1 is not a corner as

⟨a, d1, x⟩ ∼KG+H(0) ⟨⟨a, x, c1⟩, x, d1⟩

∼κ4 ⟨a, x, ⟨c1, x, d1⟩⟩

∼KU+H(0) ⟨a, x, c1⟩

∼G a.

Set R ≥ max(KG + Km + G + 2H(0) + κ4), where m ∈ {N, P, U}. Therefore we have
shown that in a rank 2 coarse interval, we cannot have more than one R-corner
present.

5.6 The Covering Problem

Now that the corner problem has been solved for rank 2, we can alter the proof of
coarse hyperplanes having co-dimension 1 in the rank 2 case; since we know that
there is at most one corner in each rank 2 interval, we can bound the number of
corners. We then subdivide at the corners, allowing us to get rid of them and continue
with our proof as given in Section 5.4.2.
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We proceed by proving that coarse hyperplanes coarsely cover coarse intervals; we
only prove this in the coarse median case rather than for CAT(0) cube complexes, too,
as the argument requires a lot of care in dealing with the numerous parameters that
arise. Here, we assume that [ak, bk,i] is a rank 1 coarse interval, where ak is defined in
Lemma 5.5 and bk,i ∈ [x, ak] in further detail below.

Suppose x = a0, . . . , aN = y is a path from x to y, where aj∼R aj+1 and
R = K(A1 + A2) + H(0) (R is ‘small’, refer to Lemma 5.5 for more details).

Assume that the points ak, bk,1, . . . , bk,r form an r-pod of maximal r centred at ak; note
that r = 1 or 2 here. Suppose that bk,i ≲κ4 ak and that d(bk,i, ak) ≥ P (but not much
larger) for i = 1, . . . , r.

Consider a point z ∈ [x, y] that is ≳S ak but not ≳S ak+1, where
S ≥ P + κ4 + KL + H(0) (S is our largest parameter) and L is the hyperplane constant.
Then the minimum of z and ak, ⟨x, ak, z⟩, must be approximately distance S from ak,
that is, ⟨x, ak, z⟩∼S ak, but this distance must be close to S. To be more precise, by the
reverse triangle inequality, we have the following:

d(ak+1, ⟨x, ak, z⟩) ≥ d(ak+1, ⟨x, ak+1, z⟩)− d(⟨x, ak+1, z⟩, ⟨x, ak, z⟩)

> S − (KR + H(0)),

where the last inequality follows from the fact that z �S ak+1 and that aj∼R aj+1 used
in combination with the (C1’) axiom from Definition 3.2. Now, again by the reverse
triangle inequality, we have the following:

d(⟨x, ak, z⟩, ak) ≥ d(⟨x, ak, z⟩, ak+1)− d(ak+1, ak)

> S − [(K + 1)R + H(0)],

where the last inequality follows from the fact that z �S ak+1 and aj∼R aj+1.

As we are now using the ‘backwards’ cubes and the minimum of z and ak is distance
approximately S less than ak, we want to show that z is in or before one of the coarse
hyperplanes given by the edge [ak, bk,i] for i = 1, . . . , r.
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FIGURE 5.6: This shows the set-up for our two cases; for case 1, z lies before at least
one of the coarse hyperplanes. In case 2, z is after the coarse hyperplanes, i.e. in the

top right corner.

We summarise the above into a proposition below.

Proposition 5.18. Given a coarse median space X, constants R, L and P, there exists S such
that the following holds. For any coarse interval [x, y] ⊆ X, let x = a0, . . . , aN = y be a path
from x to y, where aj∼R aj+1. For each k ∈ {0, . . . , N}, assume that there exist points
bk,i ∈ [x, ak] such that ak, bk,1, . . . , bk,r form an r-pod of maximal r centered at ak, where r = 1
or 2. Suppose that bk,i ≲κ4 ak and that d(ak, bk,i) ≥ P (but not much larger than P) for
i = 1, . . . , r. Consider a point z ∈ [x, y] such that z ≳S ak but z �S ak+1; then z is in or before
at least one of the coarse hyperplanes (with associated constant L) corresponding to [ak, bk,i] for
i = 1, . . . , r.

Proof. Since z ≳S ak but z � ak+1, this implies that ⟨x, ak, z⟩ is at most S away from ak

but this distance is close to S.

We will show that it is not possible for ⟨z, ak, bk,i⟩∼L ak for i = 1, . . . , r while
⟨x, ak, z⟩∼S ak.

Assume towards a contradiction that ⟨z, ak, bk,i⟩∼L ak for i = 1, . . . , r (this says that z is
after both hyperplanes, i.e. in the top right corner of Figure 5.7). Then we will prove
that {ak, bk,1, . . . , bk,r, ⟨x, ak, z⟩} forms an (r + 1)-pod centred at ak.
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FIGURE 5.7: If ak, bk,1, bk,2, ⟨x, ak, z⟩ forms a tripod then we obtain a non-trivial coarse
3-cube, contradicting maximal dimensionality.

We need to verify that the conditions of Theorem 3.5 hold. The basepoint here is ak

and the interval we are focusing on is [x, ak]. We already know that
ak, bk,1, . . . , bk,r, ⟨x, ak, z⟩ ∈ [x, ak] by definition. Since ⟨x, ak, z⟩ ∈ [x, ak], this implies that
⟨x, ak, z⟩∼κ4⟨x, ⟨x, ak, z⟩, ak⟩ (this follows from Note 3.12). However, by the ordering
defined in Definition 4.3, this is equivalent to saying that ⟨x, ak, z⟩ ≲κ4 ak.

We are just left with proving that {ak, bk,1, . . . , bk,r, ⟨x, ak, z⟩} forms an (r + 1)-pod
centred at ak.

•

⟨bk,i, ak, ⟨x, ak, z⟩⟩∼κ4 ⟨⟨bk,i, ak, z⟩, ak, x⟩

∼KL+H(0) ⟨ak, ak, x⟩

= ak.

•

⟨bk,1, ak, bk,r⟩∼κ4+KL+H(0) ak,

Regarding the second point, we already know that these points form an r-pod by
assumption, thus we also set ⟨bk,1, ak, bk,r⟩∼κ4+KL+H(0) ak for uniformity. Now, since
d(ak, bk,i) ≥ P, we will also assume that d(⟨x, ak, z⟩, ak) ≥ P for uniformity. Putting this
altogether, suppose that P ≤ d(⟨x, ak, z⟩, ak) ≤ P + κ4 + KL + H(0), where we define
S ≥ P + κ4 + KL + H(0) (recall that z ≳ ak). We additionally impose d(bk,i, ak) ≤ S for
uniformity.

This tells us that the points ak, bk,1, . . . , bk,r, ⟨x, ak, z⟩ form a non-trivial (r + 1)-pod,
implying that we missed a dimension and so can build our original coarse cube a
dimension higher. This contradicts maximal dimensionality, which we originally
assumed.
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Theorem 5.19. Given a coarse median space X and rank parameter C(λ), for all R > 0 and
L > 0, let x = a0, . . . , aN = y be a path from x to y with aj ∼R aj+1 and let [x, y] ⊆ X be a
rank 2 interval with respect to C(λ). Then there exist constants P, S, and Q and points
bk,i ∈ [x, ak] such that S ≥ d(ak, bk,i) ≥ P and the union of the L − [ak, bk,i] hyperplanes
Q-cover [x, y].

Proof. Applying Proposition 5.18, we know that there exist points bk,i ∈ [x, ak] such
that bk,i ≲κ4 ak and that P ≤ d(ak, bk,i) ≤ S for i = 1, . . . , r, where S was defined to be
S ≥ P + κ4 + KL + H(0). We conclude from the Proposition that for any z ∈ [x, y]
satisfying z ≳S ak but z �S ak+1, then z is in or before at least one of the coarse
hyperplanes (with associated constant L) corresponding to [ak, bk,i] for i = 1, . . . , r.

Assume that
⟨z, ak, bk,i⟩∼L bk,i,

where i = 1, . . . , r (this says that z is before at least one of the hyperplanes). We will
show that z ≳S ak and z before at least one of these hyperplanes implies that z is close
to one of these hyperplanes.

We also know that z ≳S ak, i.e.

⟨x, ak, z⟩∼S ak,

⟨ak, z, y⟩∼S z.

Combining these two assumptions, we will show that z is close to either of the
hyperplanes.

Take c ∈ [ak, bk,i] with c not close to ak, bk,i (so c ∈ hakbk,i ). Note that c∼κ4 ⟨c, ak, bk,i⟩ by
Note 3.12. We now prove the two claims below:

(i) ⟨z, c, y⟩∼ z;

(ii) ⟨z, c, y⟩ is in at least one of the hyperplanes.

(i)

⟨z, c, y⟩∼KS+H(0) ⟨ak, z, y⟩

∼S z (since z ≳S ak).

The first approximation follows since d(bk,i, ak) ≤ S =⇒ d(c, ak) ≤ S. We can
now define Q = (K + 1)S + H(0)
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(ii) Consider

⟨ak, ⟨z, c, y⟩, bk,i⟩∼κ5 ⟨⟨ak, bk,i, z⟩, ⟨ak, bk,i, c⟩, y⟩

∼K(L+κ4)+H(0) ⟨bk,i, c, y⟩

∼K(Kκ4+H(0)+κ4)+Kκ4+κ4+2H(0) c (as bk,i ≲ c).

We obtain the last approximation as follows: since c ∈ [bk,i, ak], this implies that
c = ⟨ak, c′, bk,i⟩ for some c′ ∈ X. Then

⟨x, bk,i, c⟩ = ⟨x, bk,i, ⟨ak, c′, bk,i⟩⟩

∼κ4 ⟨⟨x, bk,i, ak⟩, c′, bk,i⟩

∼Kκ4+H(0) ⟨bk,i, c′, bk,i⟩ (as bk,i ≲κ4 ak)

= bk,i.

Now,

⟨bk,i, c, y⟩∼K(Kκ4+H(0)+κ4)+H(0) ⟨⟨x, bk,i, c⟩, c, y⟩

∼κ4⟨bk,i, c, ⟨x, c, y⟩

∼Kκ4+H(0)⟨bk,i, c, c⟩

= c.

This tells us that we should ensure that c is at least
L + κ5 + K(L + κ4) + K(Kκ4 + H(0) + κ4) + Kκ4 + κ4 + 3H(0) away from ak and bk,i

(which helps us to see why such a c exists) and that we should also let
P = 2[κ5 + K(L + κ4) + K(Kκ4 + H(0) + κ4) + Kκ4 + κ4 + 3H(0)] + R, i.e. more than
double the distance between c and ak, bk,i.

Therefore, we have shown that coarse hyperplanes coarsely cover coarse intervals in
the rank 2 case.

5.7 Coarse Hyperplanes are Coarsely Coarse Intervals

We now focus on answering our last question of the chapter: is the intersection of a
coarse hyperplane and coarse interval ‘almost’ a coarse interval in itself? We divide
our proof into three parts; we begin by showing that coarse hyperplanes satisfy the
‘coarse convexity property’ which is described below. We then prove an alternative
version of Lemma 5.2 and apply it to coarse hyperplanes to show that M-separated
subsets are totally ordered with respect to suitable parameters. We end with our key
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result of the section, which states that coarse hyperplanes are ‘almost’ coarse intervals
themselves — see Theorem 5.25.

5.7.1 Coarse Convexity of Coarse Hyperplanes

Below, we show that the coarse hyperplanes satisfy the ‘coarse convexity property’, in
other words, they are relatively coarsely convex.

Lemma 5.20. For any coarse median space X, ordering parameter C and hyperplane constant
L, there exists L′ > L such that the following holds. Given a rank 2 coarse interval [x, y] ⊆ X
and a rank 1 coarse interval [a, b] ⊆ [x, y], let hab,L ∩ [x, y] and hab,L′ ∩ [x, y] be the coarse
hyperplanes intersected with [x, y] corresponding to a, b with associated constants L and L′,
respectively. Then for all p, q ∈ hab,L′ ∩ [x, y] and w ∈ X, the coarse hyperplanes hab,L ∩ [x, y]
and hab,L′ ∩ [x, y] satisfy the following:

∀p, q ∈ hab,L′ ∩ [x, y], ∀w ∈ X, ⟨p, q, w⟩[x,y] := ⟨⟨p, q, w⟩, x, y⟩ ∈ hab,L ∩ [x, y].

Proof. Let p, q ∈ hab,L′ ∩ [x, y] and w ∈ X and consider ⟨p, q, w⟩. We project p, q, w and
⟨p, q, w⟩ onto [a, b] as this is the criteria for checking whether these points lie in the
hyperplanes or not.

Denote

p′ = ⟨p, a, b⟩

q′ = ⟨q, a, b⟩

w′ = ⟨⟨⟨p, q, w⟩, x, y⟩, a, b⟩.

We have

w′ = ⟨⟨⟨p, q, w⟩, x, y⟩, a, b⟩

∼κ5⟨⟨⟨p, x, y⟩, ⟨q, x, y⟩, w⟩, a, b⟩

∼2Kκ4+H(0)⟨⟨p, q, w⟩, a, b⟩

∼κ5⟨p′, q′, w⟩

= w′′,

where the second approximation follows from the fact that p, q ∼κ4 [x, y]. Without loss
of generality, p′ ≲C q′ (p′, q′ ∈ [a, b] which has rank 1), where C is the parameter
associated to the coarse ordering.
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Now, since w′′ ∈ [p′, q′] (by definition), we have

w′′ = ⟨p′, q′, w⟩∼2(κ5+Kκ4)+H(0) w′,

and so we obtain w′∼2(κ5+Kκ4)+H(0) [p′, q′].
Combining the fact that w′∼ [p′, q′], [a, b] has rank 1 and that p′ ≲C q′, we obtain the
following approximations (note that a is the basepoint with respect to the coarse
ordering here):

⟨a, w′′, p′⟩ = ⟨a, ⟨p′, q′, w⟩, p′⟩

∼κ5⟨⟨a, p′, p′⟩, ⟨a, p′, q′⟩, w⟩

= ⟨p′, ⟨a, p′, q′⟩, w⟩

∼KC+H(0)⟨p′, p′, w⟩

= p′.

Also,
⟨a, w′, p′, ⟩∼Kd(w′,w′′)+H(0) ⟨a, w′′, p′⟩.

Altogether, we obtain

⟨a, w′, p′⟩∼2Kκ5+2K2κ4+KH(0)+κ5+KC+2H(0) p′.

Similarly, we get

⟨w′′, q′, b⟩ = ⟨⟨p′, q′, w⟩, q′, b⟩

∼κ5⟨⟨p′, q′, b⟩, ⟨q′, q′, b⟩, w⟩

= ⟨⟨p′, q′, b⟩, q′, w⟩

∼KC+H(0)⟨q′, q′, w⟩

= q′.

Again,
⟨w′′, q′, b⟩∼Kd(w′,w′′)+H(0) ⟨w′, q′, b⟩.

Combining these two approximations,

⟨w′′, q′, b⟩∼2Kκ5+2K2κ4+KH(0)+κ5+KC+2H(0) q′.
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In other words, we have shown that p′∼2Kκ5+2K2κ4+KH(0)+κ5+KC+2H(0) [a, w′] and
similarly q′∼2Kκ5+2K2κ4+KH(0)+κ5+KC+2H(0) [w′, b].

The last part of this argument requires us to bound the distance between a and p′ in
terms of the distance between a and w′. To be more specific, we want to show that

d(a, p′) > L′ =⇒ d(a, w′) > L.

We prove this by looking at the contrapositive

d(a, w′) ≤ L =⇒ d(a, p′) ≤ L′.

We have the following (by the triangle inequality):

d(a, p′) ≤ d(a, ⟨a, w′, p′⟩) + d(⟨a, w′, p′⟩, p′)

= d(⟨a, a, p′⟩, ⟨a, w′, p′⟩) + d(⟨a, w′, p′⟩, p′)

≤ Kd(a, w′) + H(0) + 2Kκ5 + 2K2κ4 + KH(0) + κ5 + KC + 2H(0)

≤ KL + H(0) + 2Kκ5 + 2K2κ4 + KH(0) + κ5 + KC + 2H(0)

= KL + 2Kκ5 + 2K2κ4 + KH(0) + κ5 + KC + 3H(0).

Similarly, we want to show that

d(q′, b) > L′ =⇒ d(w′, b) > L.

Again, we prove this by looking at the contrapositive

d(w′, b) ≤ L =⇒ d(q′, b) ≤ L′.

The argument then follows in the same manner as the one for a and p′ and so we
obtain the same approximations as above.

To summarise, our aim is to show that the coarse hyperplanes hab,L′ ∩ [x, y] ∩ [x, y] and
hab,L ∩ [x, y] ∩ [x, y] have the ‘coarse convexity property’. More specifically, we require
∀L ∃L′ such that ∀a, b ∈ [x, y], ∀p, q ∈ hab,L′ ∩ [x, y], hab,L ∩ [x, y] and hab,L′ ∩ [x, y] satisfy

∀p, q ∈ hab,L′ ∩ [x, y], ∀w ∈ X, ⟨p, q, w⟩[x,y] := ⟨⟨p, q, w⟩, x, y⟩ ∈ hab,L ∩ [x, y]. (5.3)

Now, set L′ = KL + 2Kκ5 + 2K2κ4 + KH(0) + κ5 + KC + 3H(0). Then with this value
of L′, we see that if d(a, p′) > L′ then we deduce that d(a, w′) > L, and this is the
‘coarse convexity property’ as required.
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5.7.2 An Alternative Version of Lemma 5.2

We state and prove an alternative version of Lemma 5.2 and apply it to the pair of
coarse hyperplanes hab,L′ ∩ [x, y] and hab,L ∩ [x, y].

Note 5.21. • A subset B of a coarse median space X has rank 1 with respect to a
parameter C′ if the following holds: given λ > 0, there exists a constant
C′ = C′(λ, µ) such that for any a, b ∈ B, any e1, e2∼µ [a, b] with ⟨e1, a, e2⟩∼λ a,
there exists i ∈ {1, 2} such that ei ∼C′ a.

• As seen in Theorem 3.5, the endpoints of the interval also need to be contained
in the subset we are focusing on, so one needs to exercise care when considering
the rank of a subset compared to the rank of the whole space.

Lemma 5.22. Given a coarse median space X and rank parameter C′(λ, µ), there exist
λ, µ, M such that for all rank 1 coarse intervals [x, y] ⊆ X and subsets A ⊆ B ⊆ [x, y], if:

1. A and B possess the ‘coarse convexity property’ (5.3),

2. B is a rank 1 subset of X with respect to C′(λ, µ),

then M-separated subsets of A are C′(λ, µ)-totally ordered (for particular λ, µ).

Proof. We first show that comparability follows: let a, b ∈ A and assume that they are
incomparable. Then we obtain the bipod with points a, ⟨x, a, b⟩, b centred at ⟨x, a, b⟩.
The interval we are focusing on here is [⟨x, a, b⟩, ⟨a, b, y⟩]. Since A, B have the ‘coarse
convexity property’, we know that ⟨x, a, b⟩ ∈ B, and so part of the bipod does not
necessarily lie only in A, it can lie in B. We now check the conditions for Theorem 3.5
— the values of λ, µ will drop out as a result of this.

Note 5.23. We write C′(λ, µ) = C′ for ease of notation.

1. We check whether a, b ∈ [⟨x, a, b⟩, ⟨a, b, y⟩]:

• a ∈ [⟨x, a, b⟩, ⟨a, b, y⟩]:

⟨⟨x, a, b⟩, a, ⟨a, b, y⟩⟩∼κ5⟨a, b, ⟨x, a, y⟩⟩

∼Kκ4+H(0)⟨a, b, a⟩

= a.

• b ∈ [⟨x, a, b⟩, ⟨a, b, y⟩]:

⟨⟨x, a, b⟩, b, ⟨a, b, y⟩⟩∼κ5⟨a, b, ⟨x, b, y⟩⟩

∼Kκ4+H(0)⟨a, b, b⟩

= b.
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2. We show that ⟨a, ⟨x, a, b⟩, b⟩∼ ⟨x, a, b⟩:

⟨a, ⟨x, a, b⟩, b⟩ = ⟨b, a, ⟨b, a, x⟩⟩

∼κ4⟨⟨b, a, b⟩, a, x⟩

= ⟨b, a, x⟩

= ⟨x, a, b⟩.

So we obtain λ = κ4 and µ = Kκ4 + κ5 + H(0).

However, B has rank 1, so Theorem 3.5 tells us that one direction of the bipod must be
‘small.’ Thus either

a∼C′ ⟨x, a, b⟩ ⇐⇒ a ≲C′ b

or
b∼C′ ⟨x, a, b⟩ ⇐⇒ b ≲C′ a.

Hence we see that either a ≲C′ b or b ≲C′ a and so comparability of points in A follows.

Now we can proceed with the full proof.

Let a, b ∈ A ⊆ B ⊆ [x, y]. Then a ≲C′ b if and only if ⟨x, a, b⟩∼C′ a. Since A, B have the
‘coarse convexity property’ and B has rank 1, comparability follows (see the argument
above), so for any a, b ∈ A, either a ≲C′ b or b ≲C′ a, i.e. a∼C′ ⟨x, a, b⟩ or b∼C′ ⟨x, a, b⟩. If
both a ≲C′ b and b ≲C′ a, then this implies that a∼C′ ⟨x, a, b⟩∼C′ b and we obtain
a∼2C′ b.

For transitivity, let us assume that a ≲C′ b, b ≲C′ c and c ≲C′ a; then a∼C′ ⟨x, a, b⟩,
b∼C′ ⟨x, b, c⟩ and c∼C′ ⟨x, a, c⟩. Using the coarse four-point condition, we obtain

a∼C′ ⟨x, a, b⟩

∼KC′+H(0) ⟨x, a, ⟨x, b, c⟩⟩

∼κ4 ⟨⟨x, a, b⟩, x, c⟩

∼KC′+H(0) ⟨a, x, c⟩

∼C′ c.

Now set M = 2(KC + H(0) + C′) + κ4 + 1 and take an M-separated subset in A —
then for all a, b, c in this M-separated subset, if a ≲C′ b and b ≲C′ c, either a ≲C′ c or
c ≲C′ a (by comparability). However, if a ≲C′ b, b ≲C′ a and c ≲C′ a, then by the
calculation above we obtain c∼M a∼M b∼M c, which implies that a = b = c, as the
distances between a, b and c are less than M and since we are in an M-separated
subset the three points must then be equal. We have ruled out c ≲C′ a and so we must
have a ≲C′ c. This choice of M means that both antisymmetry and transitivity hold,
therefore giving us a C′(λ, µ)-total ordering on M-separated subsets of A.
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5.7.3 Application of Lemma 5.22 to hab,L′ ∩ [x, y] and hab,L ∩ [x, y]

We can now apply Lemma 5.22 to the coarse hyperplanes A = hab,L′ ∩ [x, y] and
B = hab,L ∩ [x, y] — we know that hab,L′ ∩ [x, y] ⊆ hab,L ∩ [x, y] ⊆ [x, y] and we have
also shown that they satisfy the ‘coarse convexity property’. Furthermore, since we
are working in rank 2, we have previously shown that coarse hyperplanes have
co-dimension 1 and so in particular, hab,L ∩ [x, y] has rank 1. Consequently, we see that
M-separated subsets in hab,L′ ∩ [x, y] are C′-totally ordered.

Note 5.24. Observe that for fixed M, when taking a maximal M-separated subset, all
points must be within distance M from each other.

Since M-separated subsets in hab,L′ ∩ [x, y] are totally ordered and finite, this implies
the existence of minimum and maximum elements. In particular, take a maximal
M-separated subset (which is non-empty) — then this is coarsely the whole of
hab,L′ ∩ [x, y]. More formally, we obtain the following ‘sandwiching’ result:

Theorem 5.25. Given a coarse median space X and hyperplane constant L, there exists
L′ > L (from Lemma 5.20) and M (derived from Lemma 5.22) such that the following holds.
For any rank 1 coarse interval [x, y] ⊆ X with a, b ∈ [x, y], let hab,L ∩ [x, y] and hab,L′ ∩ [x, y]
be the coarse hyperplanes intersected with [x, y] corresponding to a, b with associated
constants L and L′, respectively. Then there exist minimum and maximum points,
m0, m1 ∈ hab,L′ ∩ [x, y], such that hab,L′ ∩ [x, y] sits inside the M-neighbourhood of [m0, m1]

(this is an M-coarsening of hab,L′ ∩ [x, y]), which in turn sits in hab,L ∩ [x, y].

Note that the error for this ‘sandwiching’ result is M, the separation parameter.

5.8 Quadratic Growth of Rank 2 Coarse Intervals

We now combine our earlier results, Theorem 5.8, Lemma 5.17, Proposition 5.19 and
Theorem 5.25, along with an inductive argument to show that rank 2 coarse intervals
do indeed have quadratic growth. We can embed these coarse intervals into R2

similarly as in the case of CAT(0) cube complexes (see (Brodzki et al., 2009, Theorem
1.14)). We state our result below.

Theorem 5.26. Let X be a uniformly discrete, uniformly locally finite quasi-geodesic coarse
median space, and let C be a (rank) constant. Then there exists a constant W depending only
on C and the local finiteness, quasi-geodesicity, and coarse median parameters of X, such that
for any coarse interval [x, y] ⊆ X of rank 2 with respect to C, we have

#[x, y] ≤ Wd(x, y)2,

where #[x, y] denotes the cardinality of [x, y].
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Proof. We induct on the rank of the coarse interval. Let [x, y] be a rank 2 coarse
interval; then we have shown that we can coarsely cover [x, y] with coarse
hyperplanes that are coarsely themselves intervals and have rank 1.

We have a sequence of N + 1 points x = a0, a1, . . . , aN = y that are consecutive points
in our path connecting x and y and are at most K(A1 + A2) + H(0)-separated from
each other — see Lemma 5.5. By Proposition 5.19, there are at most two hyperplanes
hak ,bk,i ∩ [x, y], with 1 ≤ k ≤ N, i ∈ {1, 2}, associated to each point ak (except for
a0 = x), so we have at most 2N hyperplanes altogether that coarsely cover [x, y],
where N ≤ Zd(x, y) with Z = A1 + A2. By Theorem 5.8, we know that each
hak ,bk,i ∩ [x, y] has rank 1. We cover the interval [x, y] by each hak ,bk,i ∩ [x, y] with
associated coarse hyperplane constant L′ — Theorem 5.25 says that these L′

hyperplanes sit inside an interval, call this interval [sk, Sk], which in turn sits inside
each hak ,bk,i ∩ [x, y] with associated coarse hyperplane constant L. We deduce from this
that the intervals [sk, Sk] also cover the interval [x, y]. Now, the intervals [sk, Sk] are
rank 1 as they sit inside the L hyperplanes, which we know are rank 1 by Theorem 5.8.

Since the results mentioned in the previous paragraph also apply to rank 1 intervals,
we can use the same reasoning to conclude that the rank 1 intervals [sk, Sk] can be
covered by rank 0 intervals. Since there are a linear number of these rank 0 intervals,
each containing a bounded number of points due to bounded geometry, it follows that
each rank 1 interval [sk, Sk] has linear growth.

Applying the inductive hypothesis, each hak ,bk,i ∩ [x, y] has linear growth, i.e. these are
linear in d(x, y): #hak ,bk,i ∩ [x, y] ≤ ρd(sk, Sk), for some ρ. This gives us a bound on the
number of terms within each rank 1 hak ,bk,i ∩ [x, y]. Observe that
d(sk, Sk) ≤ 2Kd(x, y) + H(0): since both sk, Sk ∼ [x, y], we can rewrite them as follows

sk = ⟨x, s′k, y⟩

Sk = ⟨x, S′
k, y⟩,

for some s′k, S′
k ∈ [x, y]. We then obtain

sk = ⟨x, y, s′k⟩ ∼Kd(x,y)+H(0) ⟨x, x, s′k⟩ = x,

where we apply the (C1’) axiom from Definition 3.2. Replacing sk with Sk, we also
similarly obtain Sk ∼Kd(x,y)+H(0) x. Bringing this together, we obtain
sk ∼Kd(x,y)+H(0) x ∼Kd(x,y)+H(0) Sk, that is, d(sk, Sk) ≤ 2(Kd(x, y) + H(0)). Now, putting
all this together, we obtain #hak ,bk,i ∩ [x, y] ≤ 2ρ(Kd(x, y) + H(0)). Since X is uniformly
discrete, d(x, y) ≥ 1 for x ̸= y. This means

#hak ,bk,i ∩ [x, y] ≤ 2ρ(Kd(x, y) + H(0)) ≤ 2ρ(K + H(0))d(x, y).
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We then multiply the number of coarse hyperplanes by the cardinality of each
hak ,bk,i ∩ [x, y], which gives us our quadratic bound:

2N ∗ #hak ,bk,i ∩ [x, y] ≤ 2Zd(x, y) · (2ρKd(x, y) + 2ρH(0)d(x, y))

= 4ρZKd(x, y)2 + 4ρZH(0)d(x, y)2

= 4ρZ(K + H(0))d(x, y)2.

Let W = 4ρZ(K + H(0)). This shows that [x, y] has quadratic growth, as required.
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Chapter 6

Structure of Rank n Coarse Intervals

We now extend our result in the previous chapter to the general rank n case. The
method we use here differs from the rank 2 case, mainly due to the difficulty of
extending some of the concepts we introduced for rank 2 to higher rank. Instead, we
define the notion of a maximal edge point and apply Dilworth’s Lemma using this
concept to aid us in proving polynomial growth of rank n coarse intervals.

6.1 Maximal Edge Subsets and Dilworth’s Lemma

In this section, we introduce the concept of a maximal edge point associated to a
coarsely convex subset of a coarse interval; intuitively, these are points that can be
thought of as ‘maximal’ points of the subset. We link these maximal edge points to
antichains and then prove one of our key results: the length of any antichain in a
maximal edge subset is bounded above by the rank of the subset.

We define maximal edge points below in both the median and coarse median cases.
Suppose X is a coarse median space with parameters K, H(0), κ4, κ5 and let [x, y] be a
coarse interval in X. Let S be a coarsely convex subset of [x, y] with rank ≤ r with
respect to the rank constant C(λ) — we clarify what it means for a subset of a coarse
median space to be coarsely convex, as defined in (Bowditch, a, page 16). Finally, let
x ∈ X be the basepoint for the relation ≲.

Definition 6.1. • Given a constant δ and a subset S ⊆ X, where X is a coarse
median space, S is δ-convex if for all a, b ∈ S, [a, b] ⊆ N(S, δ), where N(S, δ)

denotes the δ-neighbourhood of S.

• A subset S ⊆ X is coarsely convex if there exists a δ such that S is δ-convex. In
other words, if a, b ∈ S and x ∈ X, then d(⟨a, b, x⟩, S) ≤ δ.

Before we dive into defining maximal edge points, we state Dilworth’s Lemma below.
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Theorem 6.2 (Dilworth’s Lemma). Let P be a finite partially ordered set. Then there exists a
partition of P into a minimum number of chains C1, C2, . . . , Ck such that the size of the largest
antichain in P is k. More generally, the size of the largest antichain in P is equal to the
minimum number of chains required to cover all elements.

6.1.1 Median Maximal Edge Points

Definition 6.3. Let X be a median algebra and S ⊆ [x, y] a convex subset. Then a point
a ∈ S is said to be a directly edge maximal point associated to S if for any u, v ∈ S, where
u, v ≥ a and a = ⟨a, u, v⟩, either a = u or a = v. Equivalently, given u, v ∈ S such that
a = min(u, v) = ⟨x, u, v⟩, then either a = u or a = v.

We now consider three points u, v, w ∈ S and show what it means for a ∈ S to be a
maximal edge point here.

a = min(u, v, w)

= ⟨u, v, w; x⟩

= ⟨u, ⟨v, w, x⟩, x⟩.

If a is directly edge maximal, then either a = u or a = ⟨v, w, x⟩. Choosing the latter, we
have a = ⟨v, w, x⟩; since a is directly edge maximal, this implies that either a = v or
a = w. More generally, if a is directly edge maximal and a = min(u1, . . . , un), where
ui ∈ S, then either a = u1 or a = u2 and so on until a = un. Therefore, a is a directly
edge maximal point in the median case if it is not the minimum of two points, or,
equivalently, if a is not the minimum of at least two points.

We show that the length of a finite, incomparable sequence of directly edge maximal
points, an antichain, associated to a convex subset S of an interval [x, y] is bounded
above by the rank of S. We focus on the cases when the rank is at most 1 and 2 as
motivation for the coarse median context, then prove this theorem more generally by
extending it to the coarse median world in the next section.

Prior to the statement of the theorem below, note the following:

• The notation ĉi in the expression c = ⟨c1, . . . , ĉi, . . . , cn⟩ means the ith term is not
present, i.e. c = ⟨c1, . . . , ci−1, ci+1, . . . , cn⟩.

• An n-pod can be defined as a configuration consisting of n line segments, each
termed a ‘leg’, that extend from a common point, called the ‘centre’, to distinct
end points in space.
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Theorem 6.4. Let X be a median algebra and [x, y] ⊆ X be an interval. Suppose that S is a
convex subset of [x, y] with rank at most r for some integer r. Let n be an integer such that
1 ≤ n ≤ r + 1. Suppose there exist points u1, . . . , un ∈ S which are n incomparable directly
edge maximal points (an antichain). Define v0 = min(u1, . . . , un) and for all
i ∈ {1, . . . , n}, vi = min(u1, . . . , ûi, . . . , un). Then the set {v0, v1, . . . , vn} forms an n-pod
centred at v0. This implies n ≤ r, that is, the size of an antichain n in S is bounded above by r:

#{u1, . . . , un} ≤ r.

Proof. rank of S ≤ 1: we first show that {v0, v1, v2} forms a 2-pod/bipod; note that
v0, v1, v2 ∈ S by convexity of S, as the vi are constructed from the ui which are
elements of S. By definition, v0 = min(u1, u2) = ⟨u1, u2, x⟩, v1 = u2, v2 = u1. We now
show the betweenness condition holds:

⟨v1, v0, v2⟩ = ⟨v1, ⟨v1, v2, x⟩, v2⟩

= ⟨v1, v2, x⟩

= v0.

Thus, the set {v0, v1, v2} forms a non-trivial bipod, where non-triviality is a
consequence of the incomparability of u1 and u2. However, applying Note 3.7 gives us
a contradiction to the rank of S ≤ 1, as {v0, v1, v2} forming a non-trivial bipod implies
that the rank of S would have needed to be at least 2 initially. Therefore, one side of the
bipod {v0, v1, v2} must be trivial, i.e. v0 = v1 or v0 = v2 for S to have rank at most 1.

rank of S ≤ 2: without loss of generality, fix i and let i, j, k ∈ {1, 2, 3}, where i ̸= j ̸= k.
Define wi = max(ui, vi) = ⟨ui, vi, y⟩ and zj = max(ui, uj) = ⟨ui, uj, y⟩. Similarly to the
rank 1 case, we begin by showing that {v0, vi, vj, vk} forms a 3-pod/tripod; note that
v0, vi, vj, vk ∈ S by convexity of S, as the vi are constructed from the ui which are
elements of S. By definition, v0 = min(ui, uj, uk) = ⟨ui, uj, uk; x⟩; we now show the
betweenness condition holds:

⟨vi, v0, vj⟩ = ⟨vi, ⟨ui, uj, uk; x⟩, vj⟩

= ⟨⟨uj, uk, x⟩, ⟨⟨ui, uj, x⟩, uk, x⟩, ⟨ui, uk, x⟩⟩

= ⟨uk, x, ⟨uj, ⟨ui, uj, x⟩, ⟨ui, uk, x⟩⟩⟩

= ⟨uk, x, ⟨ui, x, ⟨uj, uk, uj⟩⟩⟩

= ⟨uk, x, ⟨ui, x, uj⟩⟩

= ⟨ui, uj, uk; x⟩

= v0.
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We also similarly have ⟨vi, v0, vk⟩ = v0 and ⟨vj, v0, vk⟩ = v0; the proof is analogous to
the one above.

We next prove a statement that we will use for the remainder of the proof,
wi = min(ẑi, zj, zk):

min(ẑi, zj, zk) = min(zj, zk)

= ⟨zj, zk, x⟩

= ⟨⟨ui, uj, y⟩, ⟨ui, uk, y⟩, x⟩

= ⟨ui, y, ⟨uj, uk, x⟩⟩

= ⟨ui, y, vi⟩

= wi.

Note that v0 = ⟨ui, uj, uk; x⟩ = ⟨ûi, uj, uk, ui; x⟩ = ⟨vi, ui, x⟩. Suppose towards a
contradiction that v0 = vi; then this implies that

wi = ⟨ui, vi, y⟩

= ⟨ui, v0, y⟩

= ⟨ui, ⟨vi, ui, x⟩, y⟩

= ⟨⟨y, ui, x⟩, ui, vi⟩

= ⟨ui, ui, vi⟩

= ui.

By incomparability of the ui, ui ̸= zj, i.e. ui ̸= ⟨ui, uj, y⟩.

By assumption, ui is directly edge maximal in S. Observe that
ui = wi = min(ẑi, zj, zk) = min(zj, zk), where min(ẑi, zj, zk) ∈ S by convexity of S, as
the zi are constructed from elements of S. Overall, we see that
ui = min(ẑi, zj, zk) = min(zj, zk). Since ui is directly edge maximal, ui = zj or ui = zk,
i.e. ui = ⟨ui, uj, y⟩ or ui = ⟨ui, uk, y⟩. However, ui = ⟨ui, uj, y⟩ or ui = ⟨ui, uk, y⟩ is a
contradiction to incomparability, as we assumed that the ui are incomparable, i.e.
ui ̸= ⟨ui, uj, y⟩. Therefore, we must have v0 ̸= vi.

Furthermore, applying Note 3.7 gives us a contradiction to the rank of S ≤ 2, as
v0 ̸= vi implies that {v0, vi, vj, vk} forms a non-trivial tripod, meaning that the rank of
S would have needed to be at least 3 initially. Therefore, one side of the tripod
{v0, vi, vj, vk} must be trivial for S to have rank at most 2.
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6.1.2 Coarse Maximal Edge Points

We now extend the median definition of maximal edge points to the coarse median
world and divide them into direct and indirect; direct is analogous to the definition of
maximal edge points we have seen earlier for medians.

Definition 6.5. Let X be a coarse median space and S be a δ-coarsely convex subset of
[x, y]. Then a point a ∈ S is said to be directly edge maximal with parameters C1, C2 if the
following condition holds: for all n with 1 ≤ n ≤ r and u1, . . . , un ∈ S, if
a ∼C1 min(u1, . . . , un), then there exists an index i ∈ {1, . . . , n} such that a ∼C2 ui.

Observe that n = 2 would not work in Definition 6.5. While the minimum of n points
u1, . . . , un is the same as the minimum of the two points min(u1, . . . , un−1) and un, the
two-point version then only tells us that a would then be C2-close to either un or
min(u1, . . . , un−1); however, in the latter case, a might not be C2-close to any of
u1, . . . , un−1.

Note that directly edge maximal points need slightly more care to deal with than their
median counterparts; we demonstrate this in Theorem 6.9.

An interesting thing to consider is a more general notion of directly edge maximal,
which we refer to as indirectly edge maximal points. They were introduced to
guarantee the existence of a sufficient number of directly edge maximal points in
specific situations, such as the one in the figure below.

FIGURE 6.1: The motivation for indirectly edge maximal points.

Definition 6.6. Let X be a coarse median space and S be a δ-coarsely convex subset of
[x, y]. Then a point a ∈ S is said to be indirectly edge maximal with parameters
C1, C2, D1, D2 if there exist e, f ∈ S such that

• e is directly edge maximal in [e, f ] with parameters C1, C2;

• min(a, f ) ∼D1 e;
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• if there exists some b ∈ S such that min(b, f ) ∼D1 e, then b ≲D2 a.

Although we introduce and define the concept of an indirectly edge maximal point,
our focus in this chapter is to solely study the direct case, which we do from here on.

Remark 6.7. We denote the set of directly edge maximal points of a coarsely convex
subset S of an interval [x, y] by MS, which we call the maximal edge subset associated to
S.

We prove our main result for coarse medians for directly edge maximal points; we
show that the length of any antichain in the maximal edge subset associated to a
coarsely convex subset S in a coarse interval [x, y] is bounded above by the rank of S.

We will be using properties of the coarse iterated median operator as seen in Lemma
3.10. Call Fn the ‘iterated (n + 3)-point’ constant and Gn the ‘symmetry’ constant
associated to n points. In addition, we will also be making use of Theorem 3.5, which
provides equivalent notions of rank in a coarse median space; note that this theorem
also carries over to coarsely convex subsets, which we will apply below.

Note 6.8. Let X be a coarse median space. Then for any pair of points a, b ∈ X, a and b
are said to be M-incomparable, for some constant M, if the following is satisfied:

• ⟨x, a, b⟩ ↔M a;

• ⟨a, b, y⟩ ↔M b;

• ⟨x, a, b⟩ ↔M b;

• ⟨a, b, y⟩ ↔M a.

Theorem 6.9. Given a coarse median space X, coarse convexity constant δ, rank constant
C(λ), and iterated (n + 3)-point and symmetry constants F and G, respectively, there exists
λ, E = C(λ), C1 such that for all C2 there exists M such that the following holds. Let
[x, y] ⊆ X be a coarse interval and S ⊆ [x, y] be a δ-coarsely convex subset with rank at most r
with respect to C(λ). Let n be an integer such that 1 ≤ n ≤ r + 1. Given points
u1, . . . , un ∈ S which are n M-incomparable (C1, C2)-directly edge maximal points (an
M-coarse antichain), where M = K(C2 + κ4) + 2H(0) + κ4, we obtain the following result.
Define vi = min(u1, . . . , ûi, . . . , un) for i ∈ {1, . . . , n} and v0 = min(u1, . . . , un). Then the
set {v0, v1, . . . , vn} forms a (λ, E)− n-pod, where E is the non-triviality constant.
Consequently, we have:

#{u1, . . . , un} ≤ r,

which means that the size of any M-antichain, n, in S is bounded above by r, that is, n ≤ r.

Proof. Having seen the proof when [x, y] has rank at most 1 and 2 in the median
algebra case, we concentrate on proving this theorem more generally for rank r. Fix i
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and let j ∈ {1, . . . , î, . . . , n}. Define wi = max(ui, vi) = ⟨ui, vi, y⟩ and
zj = max(ui, uj) = ⟨ui, uj, y⟩.

We begin by showing that v0, v1, . . . , vn genuinely forms a λ − n-pod for some λ to be
determined; we use Theorem 3.5 to show this. Note that v0, v1, . . . , vn ∼δ S by coarse
convexity of S, as the vi are constructed from the ui which are elements of S.
Therefore, we can now prove that betweenness holds:

Denote
t = ⟨u1, . . . , ûi, ûj, . . . , un; x⟩.

Then we see that vi ∼Gr ⟨t, uj, x⟩ and vj ∼Gr ⟨t, ui, x⟩.

Next, we prove that ⟨vi, vj, x⟩ ∼ ⟨uj, vj, x⟩:

⟨vi, vj, x⟩ ∼2KGr+H(0) ⟨⟨t, uj, x⟩, ⟨t, ui, x⟩, x⟩

∼F3 ⟨t, x, ⟨uj, ui, x⟩⟩

∼κ4 ⟨⟨t, x, ui⟩, x, uj⟩

∼KGr+H(0) ⟨vj, x, uj⟩.

In addition, we also have

v0 = ⟨u1, . . . , un; x⟩ ∼Gr+1 ⟨u1, . . . , ûi, . . . , un, ui; x⟩ = ⟨vi, ui, x⟩.

Overall, we have shown that

⟨vi, vj, x⟩ ∼3KGr+F3+κ4+2H(0) ⟨vj, uj, x⟩ ∼Gr+1 v0.

Therefore, the betweenness condition holds as follows:

⟨vi, v0, vj⟩ ∼KGr+1+H(0) ⟨vi, ⟨vj, uj, x⟩, vj⟩

∼κ4 ⟨⟨vi, vj, x⟩, vj, uj⟩

∼K(3KGr+2H(0)+F3+κ4)+H(0) ⟨⟨vj, uj, x⟩, vj, uj⟩

∼κ4 ⟨vj, uj, x⟩

∼Gr+1 v0,

where λ = (K + 1)Gr+1 + K(3KGr + 2H(0) + F3 + κ4) + 2κ4 + 2H(0).

We next prove a statement that we will use for the remainder of the proof,
wi ∼ min(z1, . . . , ẑi, . . . , zn) :
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min(z1, . . . , ẑi, . . . , zn) = ⟨⟨ui, u1, y⟩, . . . , ⟨ui, un, y⟩; x⟩

∼Fr+1 ⟨ui, y, ⟨u1, . . . , ûi, . . . , un; x⟩⟩

= ⟨ui, y, vi⟩

= wi.

Now, suppose towards a contradiction that v0 ∼E vi; then this implies that

wi = ⟨ui, vi, y⟩

∼KE+H(0) ⟨ui, v0, y⟩

∼KGr+1+H(0) ⟨ui, ⟨vi, ui, x⟩, y⟩

∼κ4 ⟨⟨y, ui, x⟩, ui, vi⟩

∼κ4 ui.

Denote E′ = K(E + Gr+1) + 2H(0) + 2κ4. By M-incomparability (see Note 6.8) of the
ui, ui ↔M zj, that is, ui ↔M ⟨ui, uj, y⟩.

By assumption, ui is directly edge maximal in S with parameters (C1, C2). Observe
that ui ∼E′ wi ∼Fr+1 min(z1, . . . , ẑi, . . . , zn), where min(z1, . . . , ẑi, . . . , zn) ∈ S by coarse
convexity of S, as the zi are constructed from elements of S. Choose C1 ≥ E′ + Fr+1 —
then we see that ui ∼C1 min(z1, . . . , ẑi, . . . , zn). Since ui is directly edge maximal,
ui ∼C2 zj for some i ̸= j, i.e. ui ∼C2 ⟨ui, uj, y⟩. Note that we obtain ui ≳M uj, where
M = K(C2 + κ4) + 2H(0) + κ4, by applying Lemma 4.7 with A = C2. However,
ui ∼M ⟨ui, uj, y⟩ is a contradiction to incomparability, as we assumed that the ui are
M-incomparable. Therefore, we must have v0 ↔E vi.

Furthermore, applying Theorem 3.5 gives us a contradiction to the rank of S, as
v0 ↔E vi implies that {v0, v1, . . . , vn} forms a non-trivial n-pod (or a non-trivial
r + 1-pod), meaning that the rank of S would have needed to be at least n (or r + 1)
initially. Therefore, one side of the r + 1-pod {v0, v1, . . . , vn} must be trivial for S to
have rank at most r, as required.
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6.2 Transitivity

6.2.1 Background

Again, suppose that X is a coarse median space with parameters K, H(0), κ4, κ5 and let
[x, y] be a finite rank coarse interval in X. Let S be a coarsely convex subset of [x, y]
with associated coarse convexity constant δ and rank ≤ r with respect to the rank
constant C(λ). Suppose that MS ⊆ S is the maximal edge subset associated to S and
consider any R-separated subset in MS for some suitably large constant R, call it Y .

Theorem 6.10. Given a coarse median space X, coarse convexity constant δ and rank
parameter C(λ), there exists M (derived in the proof of Theorem 6.9) and R such that for any
coarse interval [x, y] ⊆ X and δ-coarsely convex subset S ⊆ [x, y] with rank at most r with
respect to C(λ), we have the following. Let x be the basepoint for the relation ≲M. Then, for all
R-separated subsets Y ⊆ MS, the relation ≲M has no loops of distinct points in Y . That is,
the transitive closure of ≲M is anti-symmetric on Y .

Proof. Observe that M = K(C2 + κ4) + 2H(0) + κ4, as derived from Theorem 6.9. Now,
suppose we have a loop of distinct points of size at most 2r + 1 in Y — then by
Lemma 4.5, a1 ≲C a2r+1, where C is the constant constructed by repeated application
of Lemma 4.5 and thus depends on M. We also have a2r+1 ≲M a1 as we assumed that
we have a loop of size at most 2r + 1. Putting these two inequalities together, we
obtain a1 ∼C+M a2r+1. Therefore, choosing R ≥ M + C implies that ai ∼R aj; hence, we
have chosen the separation constant R to be large enough such that there can be no
loops of size at most 2r + 1.

Suppose we have a loop
a1 ≲M a2 . . . ≲M ak ≲M a1,

where ai ∈ Y and are distinct; we know that k > 2r + 1, as we have shown above that
by our choice of R, there can be no loops of size at most 2r + 1. Assume that ai is
M-incomparable to aj, where |i − j| > 1; focusing on the ’worst case scenario’, this
then implies that a2i+1 is incomparable with a2j+1, where i, j ∈ {0, . . . , r} and i ̸= j.
However, this gives us at least r + 1 incomparable points, an antichain, and by
Theorem 6.9, we cannot have more than r M-incomparable points. This means that in
the set {a1, a3, . . . , a2r+1}, not all of the elements are incomparable and so there must
be comparable points within the set, say a2i+1 and a2j+1 are comparable. Zooming in
on our original loop above, we have the sub-sequence

a2i+1 ≲M . . . ≲M a2j+1.

Comparability now implies two things: on one hand, we can have a2j+1 ≲M a2i+1,
which means that we have a loop; however, this is a loop of length at most 2r + 1 and
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by our choice of R, this means that a2i+1 ∼R a2j+1 which implies that a2i+1 = a2j+1.
Therefore, we can have no loops in this scenario.
On the other hand, we can have a2i+1 ≲M a2j+1; this indicates that we can take a
’shortcut’ and shorten the original sequence,

a1 ≲M . . . a2i+1 ≲M a2j+1 . . . .

If this loop now has length at most 2r + 1, then we are done by our choice of R, as we
know there are no loops at most this length. If our loop still has length greater than
2r + 1, then we can repeatedly apply shortcuts and shorten the loop until it has length
at most 2r + 1 and then we are done.

Hence, there are no loops of distinct points in Y.

Observe that, by Lemma 4.5, given

a1 ≲M a2 . . . ≲M a2r+1,

we obtain a1 ≲C a2r+1, where C is the constant obtained from the proof of Theorem
6.10. Now, define the transitive closure of ≲M on Y to be ≲M+= (≲M)2r. The
transitive closure is, by definition, transitive, whereas for (≲M)2r, this is a consequence
of what is proved above, namely that we cannot have a chain of 2r + 1 points
satisfying ≲M without there being some ‘shortcuts’. Hence, (≲M)2r is the same as
(≲M)2r+k for any k ≥ 0. Moreover, if a ≲M+ b, then this implies that a ≲C b.

Reflexivity is satisfied by the original relation ≲M, transitivity is now satisfied for ≲M+

(by definition of the transitive closure) and we have shown via Theorem 6.10 that
anti-symmetry also holds — thus, we can conclude that (Y ,≲M+) forms a partially
ordered set. By Theorem 6.9, we know that the size of any antichain must be bounded
above by r, the rank of S; note that if we have an antichain in the transitive closure
then it is also an antichain for the original ordering. Applying Dilworth’s Lemma

(Theorem 6.2), we can now rewrite Y as a union of chains: Y =
r⋃

i=1
Ci.

Remark 6.11. Let X be a coarse median space and let {Ci}r
i=1 be a collection of chains as

above, where each Ci is totally ordered by the relation ≤. Note that each chain, Ci,
possesses a median structure as well as its inherited coarse median structure from X.
On each Ci, we have the following median structure: for each i ∈ {1, . . . , r}, given
a, b, c ∈ Ci, the total ordering on Ci implies, without loss of generality, that a ≤ b ≤ c.
Therefore, define ⟨a, b, c⟩Ci = b.

We have the following maps:
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FIGURE 6.2: An intuitive view of the forwards map in the rank 2 case.

Definition 6.12 ((Forwards map)). Let X be a coarse median space and {Ci}r
i=1 be a

collection of chains as defined above. Fix a constant C′ (that will be determined soon).
For each i ∈ {1, . . . , r}, define a function fi : [x, y] → Ci as follows:

for each u ∈ [x, y], there exists a point fi(u), given by the least point a ∈ Ci such that
u ≲C′ a. Now, define a function

f : [x, y] →
r

∏
i=1

Ci by f : u 7→ ( fi(u))i=1,...,r.

In addition, ∏r
i=1 Ci is isometrically embedded into Zr via the metric dCi with product

median structure inherited from Ci. Given a, b ∈ Ci, the metric dCi is defined to be

dCi(a, b) := #[a, b]Ci − 1.

Informally, the dCi metric counts the number of steps from a to b.

Definition 6.13 ((Backwards map)). Let X be a coarse median space and {Ci}r
i=1 be a

collection of chains as defined earlier. Define a function

g :
r

∏
i=1

Ci → [x, y],

where, for all (a1, . . . , ar) ∈ ∏r
i=1 Ci, we define:

g((a1, . . . , ar)) = min(a1, . . . , ar)

= ⟨a1, . . . , ar; x⟩.

Remark 6.14. For all constants R (defined in the proof of Theorem 6.10) and
R-separated subsets Y ⊆ MS, let Ci be a chain for each i ∈ {1, . . . , r}, where Ci ∈ Y .
Since each chain Ci sits in the original coarse median space X, it also carries a coarse
median structure (as noted in Remark 6.11). We now show that each chain is a rank 1
piece in S.



74 Chapter 6. Structure of Rank n Coarse Intervals

Claim Let Ci ∈ Y be a chain for each i ∈ {1, . . . , r} and ≲M+ be the partial ordering on
Y (as defined earlier). Given a, b, c ∈ Ci with a ≲M+ b ≲M+ c, we obtain b ∼ ⟨a, b, c⟩.
Hence, for each i, Ci is a coarsely-median closed subset of X.

Proof. Since a ≲M+ b ≲M+ c, this also implies that a ≲C b ≲C c (where C is defined in
the proof of Theorem 6.10). We know that a ∼C ⟨x, a, b⟩ and b ∼C ⟨x, b, c⟩. Thus

b ∼C ⟨x, b, c⟩

∼KC+H(0) ⟨x, ⟨a, b, y⟩, c⟩

∼κ5 ⟨⟨x, b, c⟩, ⟨x, y, c⟩, a⟩

∼K(C+κ4)+H(0) ⟨b, c, a⟩,

as required.

We now direct our attention to showing that f is actually a quasi-morphism —
proving the following proposition will be a stepping stone towards proving this.

Proposition 6.15. Given a coarse median space X, rank constant C(λ) and constants δ, R, let
[x, y] ⊆ X be a coarse interval and let S ⊆ [x, y] be a δ-coarsely convex subset with rank at
most r with respect to C(λ). For any R-separated subset Y ⊆ MS, suppose Ci is a chain for
each i ∈ {1, . . . , r}, where Ci ∈ Y ⊆ S. Suppose ≲M+ is the partial ordering on Y (as defined
above). Recall the function fi and the metric dCi as defined in Definition 6.12. Let a1, a2 ∈ Ci,
where a1 ≲M+ a2, and let h1, h2 ∈ S, where a1 = fi(h1), a2 = fi(h2). Then

1. fi(⟨h1, h2, y⟩) ∼ a2;

2. fi(⟨x, h1, h2⟩) ∼ a1,

where ∼ indicates close with respect to the metric dCi .

To prove this proposition, we first need to show that transitivity ‘almost’ holds
between elements of Y and S; we show this via the following lemma.

6.2.2 Proof of Transitivity

Lemma 6.16. Given a coarse median space X, rank constant C(λ) and constants δ and L,
there exists P such that the following holds. For any coarse interval [x, y] ⊆ X, let S ⊆ [x, y]
be a δ-coarsely convex subset with rank at most r with respect to C(λ). Suppose Ci is a chain
for each i ∈ {1, . . . , r}, with Ci ∈ Y ⊆ S, and that ≲M+ is the partial ordering on Y (as
defined earlier). Recall the function fi and the metric dCi as defined in Definition 6.12. Then for
any u ∈ S, a1, a2 ∈ Ci, if u ≲L a1 ≲M+ a2 := fi(u), this implies that dCi(a1, a2) ≤ P.
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FIGURE 6.3: A visual representation of Lemma 6.16.

Proof. We have the following facts:

• a1 ≲C b1 ≲C . . . ≲C bk ≲C a2, where a1, a2, bi ∈ Y for i ∈ {1, . . . , k}.

• C is the ordering error solely associated to elements of Y (derived in the proof of
Theorem 6.10).

• C′ is the ordering error associated to elements of S (introduced in Definition
6.12).

• The bis are R-separated, i.e. bi ∼R bj.

• u ∼C′ ⟨a2, u, x⟩ (since a2 = fi(u)).

• bi ∼C ⟨bi, a2, x⟩.

The first bullet point follows as the transitive closure M+ says that if
a1 ≲M+ b1 ≲M+ . . . ≲M+ bk ≲M+ a2, then this implies that a1 ≲C b1 ≲C . . . ≲C bk ≲C a2.
The last point is due to the fact that if a1 ≲M+ b1 ≲M+ . . . ≲M+ bk ≲M+ a2, then this
suggests that bi ≲M+ a2, which in turn tells us that bi ≲C a2.

The key idea in this proof lies in showing that ⟨x, bi, u⟩ ̸= ⟨x, bj, u⟩. Thus, assume
towards a contradiction that ⟨x, bi, u⟩ = ⟨x, bj, u⟩. We will show that the three
following statements hold, which will lead to a contradiction:

• bi ∼ ⟨bi, bj, ⟨bi, u, y⟩⟩;

• bi is ‘far’ from bj;

• bi is ‘far’ from ⟨bi, u, y⟩.
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The second point holds as we already know that the bis are R-separated, i.e. bi ↔R bj.
We thus turn our attention to proving that the remaining two points hold.

Focusing on the first point, bi ∼ ⟨bi, bj, ⟨bi, u, y⟩⟩, we begin by showing that
⟨⟨x, bi, u⟩, bi, ⟨bi, u, y⟩⟩ ∼ bi:

⟨⟨x, bi, u⟩, bi, ⟨bi, u, y⟩⟩ ∼κ5 ⟨bi, u, ⟨x, bi, y⟩⟩

∼Kκ4+H(0) ⟨bi, u, bi⟩

= bi.

We now prove that ⟨⟨x, bi, u⟩, bi, ⟨bi, u, y⟩⟩ ∼ ⟨bi, bj, ⟨bi, u, y⟩⟩:

⟨⟨x, bi, u⟩, bi, ⟨bi, u, y⟩⟩ = ⟨bi, ⟨x, bj, u⟩, ⟨bi, u, y⟩⟩

∼Kκ4+H(0) ⟨⟨bi, x, y⟩, ⟨x, bj, u⟩, ⟨bi, u, y⟩⟩

∼κ5 ⟨bi, y⟨x, u, ⟨bj, x, u⟩⟩⟩

∼Kκ4+H(0) ⟨bi, y⟨x, u, bj⟩⟩

∼κ5 ⟨⟨x, bi, y⟩, ⟨u, bi, y⟩, bj⟩

∼Kκ4+H(0) ⟨bi, bj, ⟨bi, u, y⟩⟩.

Combining the two calculations above, we can now conclude that bi ∼Kκ4+H(0)+κ5

⟨⟨x, bi, u⟩, bi, ⟨bi, u, y⟩⟩ = ⟨⟨x, bj, u⟩, ⟨bi, u, y⟩, bi⟩ ∼3(Kκ4+H(0))+2κ5
⟨bi, bj, ⟨bi, u, y⟩⟩, i.e.

bi ∼4(Kκ4+H(0))+3κ5
⟨bi, bj, ⟨bi, u, y⟩⟩, proving that the first points holds.

Now we focus on proving the last point holds, bi is ‘far’ from ⟨bi, u, y⟩. Observe that
d(⟨x, bi, u⟩, u) must be greater than C′, as if ⟨x, bi, u⟩ ∼C′ u, this implies that u ≲C′ bi;
this contradicts the fact that a2 = fi(u) and a2 ≳C bi. Thus we must have
d(⟨x, bi, u⟩, u) > C′.

We now show that {bi, ⟨bi, y, u⟩, ⟨bi, x, u⟩, u} forms a coarse square:

(i) ⟨bi, ⟨x, bi, u⟩, u⟩ ∼κ4 ⟨x, bi, u⟩.

(ii) ⟨bi, ⟨bi, u, y⟩, u⟩ ∼κ4 ⟨bi, u, y⟩.

(iii)

⟨⟨x, bi, u⟩, bi, ⟨bi, u, y⟩⟩ ∼κ4 ⟨bi, u, ⟨x, bi, y⟩⟩

∼Kκ4+H(0) ⟨bi, u, bi⟩

= bi.
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(iv)

⟨⟨x, bi, u⟩, u, ⟨bi, u, y⟩⟩ ∼κ4 ⟨bi, u, ⟨x, u, y⟩⟩

∼Kκ4+H(0) ⟨bi, u, u⟩

= u.

We have now shown that {bi, ⟨bi, u, y⟩, ⟨x, bi, u⟩, u} forms a (Kκ4 + H(0) + κ4)-coarse
square, so if

bi ∼C2 ⟨bi, u, y⟩ =⇒ u ∼C′ ⟨x, bi, u⟩,

where C′ ≥ K(C2 + κ4) + 2H(0) + κ4 (by Lemma 4.7).

The statement above is equivalent to the contrapositive:

d(u, ⟨x, bi, u⟩) > C′︸ ︷︷ ︸
we know this has to hold

=⇒ d(bi, ⟨bi, u, y⟩) > C2.

Therefore, we have shown that the third point holds true. Bringing all three points
together, we have proven that {bi, bj, ⟨bi, u, y⟩} forms a non-trivial bipod centred at bi.
However, this is a contradiction to maximality of bi, and therefore our initial
assumption, ⟨x, bi, u⟩ = ⟨x, bj, u⟩, was incorrect. Hence, we must actually have that
⟨x, bi, u⟩ ̸= ⟨x, bj, u⟩ for all i ̸= j.

Lastly, having obtained a lower bound of C′ for d(u, ⟨bi, x, u⟩), we now obtain an
upper bound:

⟨x, bi, u⟩ ∼KC+H(0) ⟨x, ⟨bi, a1, y⟩, u⟩

∼κ5 ⟨⟨x, u, a1⟩, ⟨x, u, y⟩, bi⟩

∼K(L+κ4)+H(0) ⟨u, u, bi⟩

= u.

Therefore, d(⟨x, bi, u⟩, u) is bounded, implying that there is a bounded (and thus finite)
number P of ⟨x, bi, u⟩s and thus bis, and so d(a1, a2) is bounded under dCi . More
precisely, we use bounded geometry, as demonstrated below:
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P ≥ #BK(C+L+κ4)+κ5+2H(0)(u)

≥ #{⟨b1, x, u⟩, . . . , ⟨bk, x, u⟩}

= #{b1, b2, . . . , bk}

= k

= dC⟩(a1, a2)− 1.

6.2.3 Application of Transitivity

We can now focus on proving Proposition 6.15.

Proof of Proposition 6.15. Before we launch into the proof, we set the following
convention: a ≳C b ⇐⇒ b ≲C a. Note that a1 is the least upper bound for h1 and a2 is
the least upper bound for h2.

1. Observe that ⟨h1, h2, y⟩ ≳A h1 and ⟨h1, h2, y⟩ ≳A h2 by Lemma 4.6, where
A = (K + 1)κ4 + H(0). We know that a2 ≳C′ h2 and that for all c ∈ Ci that is an
upper bound, i.e. for all c ∈ Ci, c ≳C′ h2 =⇒ a2 ≲M+ c =⇒ a2 ≲C c.

Thus,
a2 ≳M+ a1 ≳C′ h1 =⇒ a2 ≳B h1

by Lemma 4.5, where B = K(C′ + M+) + 2H(0) + κ4 + C′.

Need to show:

(i) a2 ≳L ⟨h1, h2, y⟩ for some constant L:

⟨x, a2, ⟨h1, h2, y⟩⟩ ∼κ5 ⟨⟨x, a2, h1⟩, ⟨x, a2, h2⟩, y⟩

∼K(B+C′)+H(0) ⟨h1, h2, y⟩.

Hence, L = K(B + C′) + H(0) + κ5.

(ii) a2 is coarsely an upper bound for ⟨h1, h2, y⟩: suppose
fi(h2) = a2 ≲M+ fi(⟨h1, h2, y⟩). Then

⟨h1, h2, y⟩ ≲L a2 ≲M+ fi(⟨h1, h2, y⟩) =⇒ dCi(a2, fi(⟨h1, h2, y⟩)) ≤ P,

i.e. fi(⟨h1, h2, y⟩) ∼P a2, by applying Lemma 6.16.
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(iii) a2 is coarsely the least upper bound for ⟨h1, h2, y⟩: suppose
fi(⟨h1, h2, y⟩) ≲M+ fi(h2) = a2. Then

h2 ≲A ⟨h1, h2, y⟩ ≲C′ fi(⟨h1, h2, y⟩) ≲M+ fi(h2) = a2.

We have h2 ≲A ⟨h1, h2, y⟩ ≲C′ fi(⟨h1, h2, y⟩), and so by application of
Lemma 4.5, we obtain h2 ≲L′ fi(⟨h1, h2, y⟩), where
L′ = K(A + C′) + 2H(0) + κ4 + A. Now,

h2 ≲L′ fi(⟨h1, h2, y⟩) ≲M+ fi(h2) = a2 =⇒ dCi( fi(⟨h1, h2, y⟩), fi(h2)) ≤ P′,

i.e. fi(⟨h1, h2, y⟩) ∼P′ fi(h2) = a2, by applying Lemma 6.16.

Therefore, overall we obtain dCi( fi(⟨h1, h2, y⟩), fi(h2)) ≤ max(P, P′), i.e.
fi(⟨h1, h2, y⟩) ∼max(P,P′) fi(h2) = a2.

2. Similarly, observe that ⟨x, h1, h2⟩ ≲A h1 and ⟨x, h1, h2⟩ ≲A h2 by Lemma 4.6,
where A = (K + 1)κ4 + H(0). We again know that a1 ≳C′ h1 and that for all
d ∈ Ci, d ≳C′ h1 =⇒ a1 ≲M+ d =⇒ a1 ≲C d.

Need to show:

(i) a1 ≳U ⟨x, h1, h2⟩ for some constant U:

⟨x, a1, ⟨x, h1, h2⟩⟩ ∼κ4 ⟨⟨x, a1, h1⟩, x, h2⟩

∼KC′+H(0) ⟨h1, x, h2⟩.

Thus, U = KC′ + H(0) + κ4.

(ii) a1 is coarsely an upper bound for ⟨x, h1, h2⟩: suppose
fi(h1) = a1 ≲M+ fi(⟨x, h1, h2⟩). Then

⟨x, h1, h2⟩ ≲U a1 ≲M+ fi(⟨x, h1, h2⟩) =⇒ dCi(a1, fi(⟨x, h1, h2⟩)) ≤ Q,

i.e. fi(⟨x, h1, h2⟩) ∼Q a1, by applying Lemma 6.16.

(iii) a1 is coarsely the least upper bound for ⟨x, h1, h2⟩: suppose
fi(⟨x, h1, h2⟩) ≲M+ fi(h1) = a1. Let b = fi(⟨x, h1, h2⟩). If we show that
b ≳U′ h1 or b ≳U′ h2, then this will suffice to prove that b ∼ a1 in the dCi

metric.

Since ⟨x, h1, h2⟩ ≲C′ b, this is equivalent to ⟨x, ⟨x, h1, h2⟩, b⟩ ∼C′ ⟨x, h1, h2⟩
and ⟨⟨x, h1, h2⟩, b, y⟩ ∼C′′ b, where C′′ is the constant derived from Lemma
4.7.

Let us consider {b, ⟨b, h1, y⟩, ⟨b, h2, y⟩} — we show that this set forms a
non-trivial bipod. Note that b, h1, h2 ∼δ S by coarse convexity of S; we now
check that {b, ⟨b, h1, y⟩, ⟨b, h2, y⟩} genuinely forms a bipod centred at b.
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b ∼C′′ ⟨b, y, ⟨x, h1, h2⟩⟩

∼Kκ4+H(0) ⟨b, y, ⟨h1, h2, ⟨x, h1, h2⟩⟩⟩

∼K(Kκ4+H(0))+H(0) ⟨b, y, ⟨b, y, ⟨h1, h2, ⟨x, h1, h2⟩⟩⟩⟩

∼Kκ5+H(0) ⟨b, y, ⟨⟨b, y, h1⟩, ⟨b, y, h2⟩, ⟨x, h1, h2⟩⟩⟩

∼κ5 ⟨⟨b, y, ⟨b, y, h1⟩⟩, ⟨b, y, ⟨x, h1, h2⟩⟩, ⟨b, y, h2⟩⟩

∼K(κ4+C′′)+H(0) ⟨⟨b, y, h1⟩, b, ⟨b, y, h2⟩⟩.

Thus, we see that {b, ⟨b, h1, y⟩, ⟨b, h2, y⟩} forms a non-trivial bipod.
However, b ∈ Ci implies that b is directly edge maximal, and so one side of
the bipod must be trivial. This means that either b ∼U′ ⟨b, h1, y⟩ or
b ∼U′ ⟨b, h2, y⟩.
If b ∼U′ ⟨b, h1, y⟩, then this is equivalent to b ≳U′ h1. Hence,

h1 ≲U′ b ≲M+ a1 = fi(h1) =⇒ dCi(b, a1) ≤ Q′,

i.e. fi(⟨x, h1, h2⟩) ∼Q′ a1, by applying Lemma 6.16.

If b ∼U′ ⟨b, h2, y⟩, then this is equivalent to b ≳U′ h2; but b ∈ Ci, and from
the proof of the first statement, 1., above, this implies the following

h2 ≲U′ b ≲M+ a1 ≲M+ a2 = fi(h2).

Since ≲M+ is genuinely transitive, we can simplify the above sequence:

h2 ≲U′ b ≲M+ a2 =⇒ dCi(b, a2) ≤ Q′ =⇒ dCi(b, a1) ≤ Q′,

i.e. fi(⟨x, h1, h2⟩) ∼Q′ a1, by applying Lemma 6.16.

Therefore, overall we obtain dCi( fi(⟨h1, h2, y⟩), fi(h2)) ≤ max(Q, Q′), i.e.
fi(⟨h1, h2, y⟩) ∼max(Q,Q′) fi(h2) = a2.

We now turn our attention to showing that fi is a quasi-morphism.

Theorem 6.17. Given a coarse median space X, rank constant C(λ) and coarse convexity
constant δ, let [x, y] ⊆ X be a coarse interval and let S be a δ-coarsely convex subset with rank
at most r with respect to C(λ). Suppose Ci is a chain for each i ∈ {1, . . . , r}, with
Ci ∈ Y ⊆ S. Recall the function fi and the metric dCi as defined in Definition 6.12. Given
j ∈ {1, 2, 3}, let hj ∈ S and fi(hj) = aj, where aj ∈ Ci. Then fi is a quasi-morphism,

fi(⟨h1, h2, h3⟩) ∼ ⟨ fi(h1), fi(h2), fi(h3)⟩Ci ,
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where ∼ indicates close with respect to the metric dCi and ⟨⟩Ci is defined in Remark 6.11.

Proof. We show that fi(⟨h1, h2, h3⟩) ∼ a2.

We again use the following convention: a ≳C b ⇐⇒ b ≲C a. Note that a1 is the least
upper bound for h1, a2 is the least upper bound for h2 and a3 is the least upper bound
for h3. From Proposition 6.15, we also know that fi(⟨h1, h2, y⟩) ∼max(P,P′) a2 and that
fi(⟨x, h1, h2⟩) ∼max(Q,Q′) a1 in the dCi metric.

Need to show:

(i) a2 ≳J ⟨h1, h2, h3⟩ for some constant J:

⟨⟨h1, h2, h3⟩, ⟨h1, h2, y⟩, y⟩ ∼κ5 ⟨h1, h2, ⟨h3, y, y⟩⟩

= ⟨h1, h2, y⟩.

Hence, ⟨h1, h2, h3⟩ ≲κ5 ⟨h1, h2, y⟩. By the proof of Proposition 6.15(1i), we know
that ⟨h1, h2, y⟩ ≲L a2, where L is determined in the proof. Thus, we have

⟨h1, h2, h3⟩ ≲κ5 ⟨h1, h2, y⟩ ≲L a2,

and so ⟨h1, h2, h3⟩ ≲J a2, where J = K(κ5 + L) + 2H(0) + κ4 + κ5 by applying
Lemma 4.5.

(ii) a2 is coarsely an upper bound for ⟨h1, h2, h3⟩: suppose
fi(h2) = a2 ≲M+ fi(⟨h1, h2, h3⟩). Then

⟨h1, h2, h3⟩ ≲J a2 ≲M+ fi(⟨h1, h2, h3⟩) =⇒ dCi(a2, fi(⟨h1, h2, h3⟩)) ≤ T,

i.e. fi(⟨h1, h2, h3⟩) ∼T a2, by applying Lemma 6.16.

(iii) a2 is coarsely the least upper bound for ⟨h1, h2, h3⟩: suppose
fi(⟨h1, h2, h3⟩) ≲M+ fi(h2) = a2. Let e = fi(⟨h1, h2, h3⟩). If we show that e ≳J′ h2

or e ≳J′ h3, then this will suffice to prove that e ∼ a2 in the dCi metric.

Since ⟨h1, h2, h3⟩ ≲C′ e, this is equivalent to ⟨x, ⟨h1, h2, h3⟩, e⟩ ∼C′ ⟨h1, h2, h3⟩ and
⟨⟨h1, h2, h3⟩, e, y⟩ ∼C′′ e, where C′′ is the constant derived from Lemma 4.7.

Let us consider {e, ⟨e, h2, y⟩, ⟨e, h3, y⟩} — we show that this set forms a
non-trivial bipod. Note that e, h2, h3 ∼δ S by coarse convexity of S; we now check
that {e, ⟨e, h2, y⟩, ⟨e, h3, y⟩} genuinely forms a non-trivial bipod centred at e.
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e ∼C′′ ⟨e, y, ⟨h1, h2, h3⟩⟩

∼Kκ4+H(0) ⟨e, y, ⟨h2, h3, ⟨h1, h2, h3⟩⟩⟩

∼K(Kκ4+H(0))+H(0) ⟨e, y, ⟨e, y, ⟨h2, h3, ⟨h1, h2, h3⟩⟩⟩⟩

∼Kκ5+H(0) ⟨e, y, ⟨⟨e, y, h2⟩, ⟨e, y, h3⟩, ⟨h1, h2, h3⟩⟩⟩

∼κ5 ⟨⟨e, y, ⟨e, y, h2⟩⟩, ⟨e, y, ⟨h1, h2, h3⟩⟩, ⟨e, y, h3⟩⟩

∼K(κ4+C′′)+H(0) ⟨⟨e, y, h2⟩, e, ⟨e, y, h3⟩⟩.

Thus, we have shown that {e, ⟨e, h2, y⟩, ⟨e, h3, y⟩} forms a non-trivial bipod.
However, e ∈ Ci implies that e is directly edge maximal, and so one side of the
bipod must be trivial. This means that either e ∼J′ ⟨e, h2, y⟩ or e ∼J′ ⟨e, h3, y⟩.

If e ∼J′ ⟨e, h2, y⟩, then this is equivalent to e ≳J′ h2. Hence,

h2 ≲J′ e ≲M+ a2 = fi(h2) =⇒ dCi(e, a2) ≤ T′,

i.e. fi(⟨h1, h2, h3⟩) ∼T′ a2, by applying Lemma 6.16.

If e ∼J′ ⟨e, h3, y⟩, then this is equivalent to e ≳J′ h3; but e ∈ Ci, so this implies the
following

h3 ≲J′ e ≲M+ a2 ≲M+ a3 = fi(h3).

Since ≲M+ is genuinely transitive, we can simplify the above sequence:

h3 ≲J′ e ≲M+ a3 =⇒ dCi(e, a3) ≤ T′ =⇒ dCi(e, a2) ≤ T′,

i.e. fi(⟨h1, h2, h3⟩) ∼T′ a2, by applying Lemma 6.16.

Overall, we obtain

fi(⟨h1, h2, h3⟩) ∼max(T,T′) a2 = ⟨a1, a2, a3⟩Ci = ⟨ fi(h1), fi(h2), fi(h3)⟩Ci ,

where a2 = ⟨a1, a2, a3⟩Ci , as we know that each Ci has a median structure (as defined in
Remark 6.11).

Now that we have shown that fi is a max(T, T′)-quasi-morphism, we use this to prove
that f is a quasi-morphism itself.

Corollary 6.18. Given a coarse median space X, rank constant C(λ) and coarse convexity
constant δ, let [x, y] ⊆ X be a coarse interval and let S be a δ-coarsely convex subset with rank
at most r with respect to C(λ). Suppose Ci is a chain for each i ∈ {1, . . . , r}, with
Ci ∈ Y ⊆ S. Recall the function f and the metric dCi as defined in Definition 6.12. Then for all
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p, q, t ∈ S, f is a quasi-morphism,

f (⟨p, q, t⟩) ∼ ⟨ f (p), f (q), f (t)⟩Ci ,

where ∼ indicates close with respect to the metric dCi and ⟨⟩Ci is defined in Remark 6.11.

Proof.

f (⟨p, q, t⟩) = ( fi(⟨p, q, t⟩))i=1,...,r

= ( f1(⟨p, q, t⟩), . . . , fr(⟨p, q, t⟩))

∼rmax(T,T′) (⟨ f1(p), f1(q), f1(t)⟩, . . . , ⟨ fr(p), fr(q), fr(t)⟩)

= (⟨ fi(p), fi(q), fi(t)⟩)i=1,...,r

= ⟨( fi(p))i=1,...,r, ( fi(q))i=1,...,r, ( fi(t))i=1,...,r)⟩

= ⟨ f (p), f (q), f (t)⟩,

where the approximation is a consequence of fi being a max(T, T′)-quasi-morphism
and the penultimate equality follows by definition of the product median.

We prove that f is bornologous - it suffices to show that the fi are bornologous, as f
being bornologous is an immediate consequence of this.

Theorem 6.19. Given a coarse median space X, rank constant C(λ) and coarse convexity
constant δ, let [x, y] ⊆ X be a coarse interval and let S be a δ-coarsely convex subset with rank
at most r with respect to C(λ). Suppose Ci is a chain for each i ∈ {1, . . . , r}, with
Ci ∈ Y ⊆ S. Recall the functions fi defined in Definition 6.12 for each i ∈ {1, . . . , r}. Let
h1, h2 ∈ S with a1 = fi(h1), a2 = fi(h2), where a1, a2 ∈ Ci. Then the maps fi are bornologous
for i ∈ {1, . . . , r}.

Proof. Bornologous is the condition that for all A there exists a B such that
d(h1, h2) ≤ A implies that dCi( fi(h1), fi(h2)) ≤ B.

Hence, assume that h1 and h2 are close for some distance A, i.e. h1 ∼A h2. Without loss
of generality, let a1 ≲M+ a2. We have h2 ∼A h1 ≲C′ a1 =⇒ h2 ≲L a1 for some constant
L. Putting this altogether, we obtain

h2 ≲L a1 ≲M+ a2 =⇒ dCi(a1, a2) ≤ B,

i.e. dCi( fi(h1), fi(h2)) ≤ B for some constant B by Lemma 6.16.

We also prove that g is large scale Lipschitz.

Theorem 6.20. Given a coarse median space X, rank constant C(λ) and coarse convexity
constant δ, let [x, y] ⊆ X be a coarse interval and let S be a δ-coarsely convex subset with rank
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at most r with respect to C(λ). Suppose Ci is a chain for each i ∈ {1, . . . , r}, with
Ci ∈ Y ⊆ S. Recall the backwards map g defined in Definition 6.13:

g :
r

∏
i=1

Ci → [x, y], (a1, . . . , ar) 7→ ⟨a1, . . . , ar; x⟩,

where (a1, . . . , ar) ∈ ∏r
i=1 Ci. Then g is large scale Lipschitz.

Proof. Given a = (a1, . . . , ar), a′ = (a′1, . . . , a′r) ∈ ∏r
i=1 Ci, we have

d(g(a), g(a′)) = d(⟨a1, . . . , ar; x⟩, ⟨a′1, . . . , a′r; x⟩)

≤ KΣr
j=1d(aj, a′j) + H(0)

for j ∈ {1, . . . , r}, where the inequality is a consequence of Lemma 3.10(3).

Finally, we prove that f g ∼ id on im( f ).

Theorem 6.21. Given a coarse median space X, rank constant C(λ) and coarse convexity
constant δ, let [x, y] ⊆ X be a coarse interval and let S be a δ-coarsely convex subset with rank
at most r with respect to C(λ). Suppose Ci is a chain for each i ∈ {1, . . . , r}, with
Ci ∈ Y ⊆ S. Recall the forwards and backwards maps f and g introduced in Definitions 6.12
and 6.13, respectively. Additionally, recall the metric dCi defined in Definition 6.12. Given
(a1, . . . , ar), where each ai ∈ Ci, then f g(a1, . . . , ar) ∼ (a1, . . . , ar), that is, f g ∼ id on
im( f ), where ∼ indicates close with respect to the metric dCi .

Proof. By definition, ai = fi(u), where u ∈ S for i ∈ {1, . . . , r}, gives us a point in the
image.

We are aiming to show that f g(a1, . . . , ar) is close to (a1, . . . , ar), which is the same as
saying that for each coordinate i, the ith coordinate of f g(a1, . . . , ar), which is
fi(g(a1, . . . , ar)), is close to the ith coordinate ai of the point (a1, . . . , ar).

Now, g(a1, . . . , ar) is defined as the minimum of (a1, . . . , ar), i.e.
g(a1, . . . , ar) = ⟨a1, . . . , ar; x⟩. Since fi is a max(T, T′)-quasi-morphism (Theorem 6.17),
fi(g(a1, . . . , ar)) = fi(⟨a1, . . . , ar; x⟩) ∼Hr(max(T,T′)) ⟨ fi(a1), . . . , fi(ar); fi(x)⟩Ci , where
Hr(max(T, T′)) is derived by induction by application of the coarse iterated median,
depending only on the parameters of X and max(T, T′).

We show that ⟨ fi(a1), . . . , fi(ar); fi(x)⟩Ci cannot be (much) smaller than ai, and hence is
close to ai which is what we are aiming to prove; that is, fi(aj) ∼ ai for i ̸= j. Now, if
we assume that ai ≤ fi(aj), and by definition, we also know that u ≲C′ ai, then putting
these two together, we obtain u ≲C′ ai ≤ fi(aj). Applying Lemma 6.16, we obtain
ai ∼P fi(aj) and we are done. Thus, we assume the reverse inequality, fi(aj) ≤ ai, and
then apply Lemma 6.16 to deduce that these two points are close. Note that fi(ai) = ai:
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if ai ≲ M+ fi(ai), then by definition, fi(ai) is the least point in Ci such that ai ≲C′ fi(ai).
However, ai ≲C′ ai, and so fi(ai) ≲M+ ai, implying that fi(ai) = ai.

Note that aj and fi(aj) are in different chains, but by definition of fi, it always takes
points — in this case aj — to something satisfying aj ≲C′ fi(aj). Now notice that ai

itself was defined to be fi(u), while aj is f j(u) (here is where we are using the fact that
(a1, . . . , ar) is in the image). Hence, we are assuming that fi(aj) ≤ ai = fi(u), and so
Lemma 6.16 will apply as long as we can show that u ≲L fi(aj) = fi( f j(u)) for some
constant L. This holds, since fi, f j always take points to something greater (with
constant C′) by definition. More precisely, f j(u) is by definition the least point in Cj

such that u ≲C′ f j(u). The point fi( f j(u)) is by definition the least point in Ci such that
f j(u) ≲C′ fi( f j(u)). Putting these two together and applying Lemma 4.5, we obtain
u ≲L fi( f j(u)), where L = 2KC′ + 2H(0) + κ4 + C′.

Therefore, by Lemma 6.16, we conclude that fi(aj) ∼P ai. This implies that
⟨ fi(a1), . . . , fi(ar); fi(x)⟩Ci ∼ρr(P) ai, where we apply Lemma 3.10(3) and rewrite
ai = ⟨ai, . . . , ai; ai⟩. Hence, f g(a1, . . . , ar) ∼ (a1, . . . , ar), as required. To be exact:

fi(g(a1, . . . , ar)) ∼Hr(max(T,T′))

∼ρr(P) ⟨ fi(a1), . . . , fi(ar); fi(x)⟩Ci

Therefore,

f (g(a1, . . . , ar) = f (⟨a1, . . . , ar; x⟩)

= ( fi(⟨a1, . . . , ar; x⟩))r
i=1

∼rHr(max(T,T′)) (⟨ fi(a1), . . . , fi(ar); fi(x)⟩)r
i=1

∼rρr(P) (ai)
r
i=1.
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Appendix A

Appendix

We devote the Appendix to stating and proving median versions of most of our
results for coarse median spaces; initially, the statements and proofs of our median
results were used as motivation for the coarse median case and on most occasions, we
could ‘coarsen’ the proof of the median case to provide us with a backbone (or more)
for the proofs of the coarse median results. The proofs use similar techniques to ones
in the coarse cases, but also provide good intuition when thinking about the coarse
world, thus they are presented here for completeness and for clarity.

A.1 Co-dimension 1 of Coarse Hyperplanes

We begin by proving that coarse hyperplanes have co-dimension 1 in finite CAT(0)
cube complexes, which we state below.

Theorem A.1. Given a finite CAT(0) cube complex X and [x, y] ⊆ X, where rank [x, y] ≤ n,
consider the interval [a, b] ⊆ [x, y], where a ≤ b, has no corners (as defined in Definition 5.6).
Then a cube in [a, b] of rank equal to the rank of [x, y] has a side that becomes trivial.

The set-up for proving the theorem above is analogous to the set-up described in
Section 5.4.1.

A.1.1 Proof of Case 1

Case 1 is much simpler to prove in the context of CAT(0) cube complexes compared to
case 2. The proof is given below:

Lemma A.2. Let X be a CAT(0) cube complex. Take the coarse hyperplane corresponding to
a, b in the interval [x, y], where a, b, x, y ∈ X. Let C = {u1, . . . , u2d} be a rank d median cube
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in the hyperplane, that is, we have ⟨ui, uj, uk⟩ = ul for i, j, k, l ∈ {1, . . . , 2d}. Assume that
[a, b] has no corners and that a ≤ b. Suppose also that the ui project onto a point c ∈ [a, b] for
all i and assume that d(c, b) is non-trivial, that is, c ̸= a, b. Then we can construct a median
cube C̃ ⊆ [x, y] with rank d + 1.

Observe that when we project onto c ∈ [a, b], we do not want c to be close to the
endpoints of the interval; this is the same as wanting c to lie in the coarse hyperplane
associated to a and b.

Proof of Lemma A.2. Since c is not a corner, this means that c fails to satisfy at least one
of the conditions in Definition 5.6. We cannot have c = a or b as then the ui will not be
in the coarse hyperplane, they will be in Ha and Hb respectively which are not a part
of the coarse hyperplane. This implies that either ⟨a, vi, x⟩ = a or ⟨b, vi, y⟩ = b, but
these are dual cases so we will focus on ⟨a, vi, x⟩ = a here since the case ⟨b, vi, y⟩ = b
can be proven very similarly.

The way we prove the lemma is the following: applying the ordering from Definition
4.2, set c as the new basepoint; then we can find an i0 (that is not necessarily unique) in
{1, . . . , 2d} such that ui0 is a maximal element with respect to this ordering, so we have
⟨ui, ui0 , c⟩ ̸= ui0 for all i ̸= i0. We then project the remaining vertices of C onto the
interval [c, ui0 ], i.e. we set vi = ⟨c, ui, ui0⟩ where {ui, uj} forms an edge of C. We then
obtain a cube that lies in [c, ui0 ] which we denote Ĉ = {v1, . . . , v2d}. This cube may be
smaller than C but will still be a median cube of the same rank so our original claim
still holds. To be more specific, we show that the rank of Ĉ remains the same by
proving that vi ̸= vj; this says that we have not collapsed any edges of C when
projecting its vertices onto [c, vi0 ], hence leaving the rank unchanged.

Note A.3. ‘Medianness’ is preserved (using the five-point condition), and so Ĉ will still
be a median cube; we prove this below.

⟨vi, vj, vk⟩ = ⟨⟨c, ui0 , ui⟩, ⟨c, ui0 , uj⟩, ⟨c, vk, ui0⟩⟩

= ⟨c, ui0 , ⟨ui, uj, ⟨c, vk, ui0⟩⟩⟩

= ⟨ui, ⟨c, ui0 , uj⟩, ⟨c, ui0 , ⟨c, ui0 , vk⟩⟩⟩

= ⟨ui, ⟨c, ui0 , uj⟩, ⟨c, ui0 , vk⟩⟩

= ⟨ui, ⟨c, ui0 , uj⟩, ⟨c, ui0 , ⟨c, ui0 , uk⟩⟩⟩

= ⟨ui, ⟨c, ui0 , uj⟩, ⟨c, ui0 , uk⟩⟩

= ⟨c, ui0 , ⟨ui, uj, uk⟩⟩

= ⟨c, ui0 , ul⟩

= vl .
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Now consider an arbitrary edge {vi, vj} ∈ [c, ui0 ]. Then we can find a parallel edge
containing ui0 as a vertex (since we are in a cube), call this edge {vk, ui0}, such that
(without loss of generality)

⟨ui0 , vk, vi⟩ = ui0

⟨ui0 , vk, vj⟩ = vk.

This is the same as saying that {vi, ui0 , vk, vj} forms a median square. Assume towards
a contradiction that vi = vj; then

ui0 = ⟨ui0 , vk, vi⟩

= ⟨ui0 , vk, vj⟩

= vk.

Since we have ui0 = vi0 = vk, this implies that ⟨c, uk, ui0⟩ = ui0 which in turn signifies
that ui0 ≤ vk (applying the ordering with c as the basepoint). However, this is a
contradiction as we chose ui0 to be maximal and so any edge containing ui0 as a vertex
cannot collapse (also because we stated earlier that ⟨ui, ui0 , c⟩ ̸= ui0 which prevents
collapses). Therefore, we have shown that vi ̸= vj and so the cube Ĉ has the same rank
as C.

When we pick ui0 , it either falls into the first or second case, i.e. ⟨a, ui0 , x⟩ = a or
⟨b, ui0 , y⟩ = b. Without loss of generality, let us assume that ui0 satisfies the first case as
the second case is dual to this.

The reason for projecting all the vertices of C onto [c, ui0 ] is to ensure that all points are
of the ‘same type’, i.e. we either have ⟨a, ui, x⟩ = a for all i or ⟨b, ui, y⟩ = b for all i. We
want all our vertices to be of the same type because we can have ⟨a, ui, x⟩ = a for some
i and for other i, ⟨b, ui, y⟩ = b instead, but we require our uis to all satisfy the same
condition. As a result of the projection, we have

⟨a, vi, x⟩ = ⟨a, ⟨c, ui, ui0⟩, x⟩

= ⟨⟨a, c, x⟩, ⟨a, ui0 , x⟩, ui⟩

= ⟨a, a, ui⟩

= a,

where the penultimate equality follows from a ≤ c (with respect to x as the basepoint
in the ordering) and by assuming that ui0 satisfies ⟨a, ui0 , x⟩ = a (since we are focusing
on this case). So without loss of generality, assume that the vi satisfy ⟨a, vi, x⟩ = a for
all i.
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To summarise, we know

A. ⟨a, vi, b⟩ = c for all i, where c is not a corner;

B. ⟨a, vi, y⟩ = vi for all i.

Let wi = ⟨b, vi, y⟩. Observe that d(wi, vi) is non-trivial; this follows from d(c, b) being
non-trivial (which was stated in Lemma A.2), hence we set wi ̸= vi for all i. Then we
will show that we can use the wi to build a cube C̃ that is one dimension higher than
C. We have four cases to prove:

(i) ⟨vi, vj, vk⟩ = vl ;

(ii) ⟨vi, vj, wk⟩ = vl ;

(iii) ⟨wi, wj, vk⟩ = wl ;

(iv) ⟨wi, wj, wk⟩ = wl , where i, j, k, l ∈ {1, . . . , 2d}.

(i) Follows as we have already assumed that C is a median cube.

(ii)

⟨vi, vj, wk⟩ = ⟨vi, vj, ⟨b, vk, y⟩⟩

= ⟨vi, vj, ⟨b, ⟨a, vk, y⟩, y⟩⟩ (using B.)

= ⟨vi, vj, ⟨⟨a, y, vk⟩, y, b⟩⟩

= ⟨vi, vj, ⟨a, y, ⟨vk, y, b⟩⟩ (using 4-point)

= ⟨⟨vi, vj, y⟩, ⟨vi, vj, ⟨vk, y, b⟩⟩, a⟩ (using 5-point)

= ⟨⟨vi, vj, y⟩, ⟨⟨vi, vj, vk⟩, ⟨vi, vj, y⟩, b⟩, a⟩ (using 5-point)

= ⟨⟨vi, vj, y⟩, ⟨vl , ⟨vi, vj, y⟩, b⟩, a⟩

= ⟨a, ⟨vi, vj, y⟩, ⟨vl , ⟨vi, vj, y⟩, b⟩⟩

= ⟨⟨a, ⟨vi, vj, y⟩, b⟩, ⟨a, ⟨vi, vj, y⟩, ⟨vi, vj, y⟩⟩, vl⟩ (using 5-point)

= ⟨⟨⟨a, b, vi⟩, ⟨a, b, vj⟩, y⟩, ⟨vi, vj, y⟩, vl⟩ (using 5-point)

= ⟨⟨c, c, y⟩, ⟨vi, vj, y⟩, vl⟩ (using A.)

= ⟨c, ⟨vi, vj, y⟩, vl⟩

= ⟨c, ⟨vi, vj, y⟩, ⟨vi, vj, vk⟩⟩

= ⟨vi, vj, ⟨c, y, vk⟩⟩ (using 5-point)

= ⟨vi, vj, ⟨⟨a, vk, b⟩, y, vk⟩⟩ (using A. to replace c)

= ⟨vi, vj, ⟨⟨a, vk, y⟩, ⟨vk, y, vk⟩, b⟩⟩ (using 5-point)

= ⟨vi, vj, ⟨vk, vk, b⟩⟩ (using B.)

= ⟨vi, vj, vk⟩

= vl .
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(iii)

⟨wi, wj, vk⟩ = ⟨⟨b, vi, y⟩, ⟨b, vj, y⟩, vk⟩

= ⟨b, y, ⟨vi, vj, vk⟩⟩ (using 5-point)

= ⟨b, y, vl⟩

= wl .

(iv)

⟨wi, wj, wk⟩ = ⟨⟨b, vi, y⟩, ⟨b, vj, y⟩, ⟨b, vk, y⟩⟩

= ⟨b, y, ⟨vi, vj, ⟨b, vk, y⟩⟩⟩ (using 5-point)

= ⟨b, y, ⟨vi, vj, wk⟩⟩

= ⟨b, y, vl⟩ (using (ii))

= wl .

If B. is replaced with ⟨b, vi, x⟩ = vi and wi = ⟨a, vi, x⟩, the proof follows similarly. Thus
C̃ is a median cube of rank d + 1 as required.

A.1.2 Proof of the General Case

Let C be a median cube contained in the coarse hyperplane corresponding to a, b and
let V be the set of vertices of C.

When we project C onto [a, b] we may see a cube of lower dimension as some vertices
of C may project onto the same point. Since this (lower dimension) cube is contained
in [a, b], it will be ‘small’ as d(a, b) is bounded and so this implies that we can bound
the size of anything projected onto [a, b].

Pick an edge of C, say {v1, v2}, and project down onto [a, b]; we then define
w1 = ⟨a, v1, b⟩ and w2 = ⟨a, v2, b⟩. Given v ∈ V, projecting v directly onto {w1, w2} is
the same as first projecting v onto {v1, v2} and then onto {w1, w2}: since C is a median
cube, when we project v onto {v1, v2}, we obtain either v1 or v2. By definition of
w1, w2, we then see that ⟨v, w1, w2⟩ = w1 or w2. More formally,
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⟨⟨v, v1, v2⟩, w1, w2⟩ = ⟨⟨v, v1, v2⟩, ⟨a, b, v1⟩, ⟨a, b, v2⟩⟩

= ⟨a, b, ⟨v1, v2, ⟨v, v1, v2⟩⟩⟩

= ⟨a, b, ⟨⟨v2, v1, v2⟩, v1, v⟩

= ⟨a, b, ⟨v2, v1, v⟩⟩

= ⟨⟨a, b, v2⟩, ⟨a, b, v1⟩, v⟩

= ⟨w2, w1, v⟩.

Since C is a median cube, we have ⟨v, v1, v2⟩ = v1 or v2. Let us assume that
⟨v, v1, v2⟩ = v1; then

⟨⟨v, v1, v2⟩, w1, w2⟩ = ⟨v1, w1, w2⟩

= ⟨v1, ⟨a, b, v1⟩, ⟨a, b, v2⟩⟩

= ⟨a, b, ⟨v1, v2, v1⟩⟩

= ⟨a, b, v1⟩

= w1.

The above calculation holds similarly when we instead assume that ⟨v, v1, v2⟩ = v2.

We now introduce some necessary notation and motivation for the main argument of
the proof of Theorem A.1.

Define u1 = ⟨v1, v2, w1⟩, u2 = ⟨v1, v2, w2⟩; then we can split {v1, v2} into three
sub-edges: it is made up of two ‘vertical’ edges {v1, u1}, {u2, v2} and one ‘horizontal’
edge {u1, u2}. Here, a ‘vertical’ edge is an edge that projects onto a point in [a, b] (see
case 1) and a ‘horizontal’ edge is an edge that projects onto a subinterval of [a, b] (see
case 2), i.e. {u1, u2, w1, w2} forms a median square. Additionally, {v1, v2} could be a
diagonal edge, however in the corresponding CAT(0) cube complex it may look more
intricate and be made up of three sub-edges.

If we take a parallel edge {x1, x2} to {v1, v2} then we obtain a median square
comprised of these four points, but we can split this up into three median sub-squares
in the same manner we split {v1, v2} into three sub-edges.

The reason we cut {v1, v2} into three pieces is because we are only looking at an edge
{w1, w2} in the projection and not something of higher dimension. In particular,
{v1, u1} represents staying at w1 (as it is a vertical edge), {u1, u2} represents moving
from w1 to w2 (as it is a horizontal edge), and {u2, v2} represents staying at w2 (as it is
a vertical edge). Note that the movement from w1 to w2 is monotone.
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In order to prove Theorem A.1, we first need the following result.

Proposition A.4. Let F be a co-dimension 1 face of C (so an (n − 1)-cube) that contains v1

but not v2. Let q be the point in C opposite v1 and p be the point in F opposite v1. Define the
maps ϕ, ψ:

ϕ : F × {v1, v2} → C

( f , v1) 7→ ⟨ f , v1, q⟩ ∼ f

( f , v2) 7→ ⟨ f , v2, q⟩ ∼ f ′,

where f ∈ F and f ′ is the point in the parallel face to f ;

ψ : F × {v1, u1, u2, v2} → X

( f , t) 7→ ⟨ f , t, q⟩,

where f ∈ F, t ∈ {v1, u1, u2, v2}. Then ψ|C = ϕ and ψ is a median morphism.

FIGURE A.1: This figure is a visual depiction of Chapter A.4; it shows that we can cut
C up into three median ‘vertical’ and ‘horizontal’ sub-cubes. (Note that v′1 = v1 here.)

Having stated Proposition A.4, we now provide the argument for the proof of
Theorem A.1:

Proof. We can cut C up into three median sub-cubes with the same rank as C as seen in
Proposition A.4; specifically, we can split C into two ‘vertical’ cubes and one
‘horizontal’ cube. This approach of splitting into ‘vertical’ and ‘horizontal’ cubes
works together to give us our required result (this is a blend of cases 1 and 2): suppose
the vertical pieces of either vertical cube are non-trivial; we know that these cubes
have the same rank as C, and thus applying case 1 we see that the vertical cubes have
one rank lower than X, hence implying that C must also have one rank lower than X.
If the vertical pieces are trivial, then keeping case 2 in mind, we know by assumption
that the edge {u1, u2} lines up in the direction of {w1, w2} and so will have bounded
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size (as {w1, w2} has a bound on its size as it lies in [a, b]), i.e. {u1, u2, w1, w2} would
form a median square, hence giving us a bound on the distance from u1 to u2 in terms
of d(w1, w2). This in turn implies that C has rank (at most) one lower than X.

Note A.5. Observe that {v1, u1, u2, v2} all lie in a straight line, in the sense that
u1 ∈ [v1, u2], u2 ∈ [u1, v2] (we also know that u1, u2 ∈ [v1, v2]). We prove this below:

1.

⟨v1, u1, u2⟩ = ⟨v1, ⟨v1, v2, w1⟩, ⟨v1, v2, w2⟩⟩

= ⟨v1, v2, ⟨v1, w1, w2⟩⟩

= ⟨v1, v2, w1⟩

= u1.

2.

⟨u1, u2, v2⟩ = ⟨⟨v1, v2, w1⟩, ⟨v1, v2, w2⟩, v2⟩

= ⟨v1, v2, ⟨w1, w2, v2⟩⟩

= ⟨v1, v2, ⟨⟨v1, a, b⟩, ⟨v2, a, b⟩, v2⟩⟩

= ⟨v1, v2, ⟨a, b, ⟨v1, v2, v2⟩⟩⟩

= ⟨v1, v2, ⟨a, b, v2⟩⟩

= ⟨v1, v2, w2⟩

= u2.

We now present the proof of the above proposition.

One way of proving the proposition above would be to explicitly show that cutting C
into three gives us three median sub-cubes of the same dimension. However, this
would have yielded around 68 cases in total which is not efficient.

Proof of Proposition A.4. We will show that

ψ(⟨ fi, f j, fk⟩, ⟨t1, t2, t3⟩) = ⟨ψ( fi, t1), ψ( f j, t2), ψ( fk, t3)⟩,

where fi, f j, fk ∈ F, ⟨ fi, f j, fk⟩ = fl , t1 ≤ t2 ≤ t3 with ti ∈ {v1, u1, u2, v2} and
1 ≤ i, j, k, l ≤ 2n.

The following important facts are needed before we can commence with the proof:
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(i) ⟨ fi, f j, fq⟩ ∈ [ fl , q] (⇔ fl ∈ [v1, ⟨ fi, f j, q⟩]).

⟨ fl , ⟨ fi, f j, q⟩, q⟩ = ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, q⟩

= ⟨ fi, f j, ⟨ fk, q, q⟩⟩ (by 5-point condition)

= ⟨ fi, f j, q⟩,

as required.

(ii) ⟨v1, p, u1⟩ = v1.

⟨v1, p, u1⟩ = ⟨v1, p, ⟨v1, v2, w1⟩⟩ (by definition of u1)

= ⟨p, v1, ⟨v2, v1, w1⟩⟩

= ⟨⟨p, v1, v2⟩, v1, w1⟩ (using 4-point condition)

= ⟨v1, v1, w1⟩

= v1.

Actually, ⟨v1, p, t⟩ = v1 for t ∈ {v1, u1, u2, v2}.

(iii) ⟨ fl , ⟨ fi, f j, q⟩, v1⟩ = ⟨ fl , ⟨ fi, f j, q⟩, u1⟩.

⟨ fl , ⟨ fi, f j, q⟩, v1⟩ = ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, ⟨v1, p, u1⟩⟩ (by (ii))

= ⟨⟨ fi, f j, fk⟩, ⟨v1, ⟨ fi, f j, q⟩, p⟩, ⟨v1, p, u1⟩⟩

(as ⟨ fi, f j, q⟩ = fm for some m and so will lie in [v1, p])

= ⟨v1, p, ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, u1⟩⟩ (by 5-point)

= ⟨⟨v1, p, ⟨ fi, f j, fk⟩⟩, ⟨v1, p, ⟨ fi, f j, q⟩⟩, u1⟩ (by 5-point)

= ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, u1⟩

= ⟨ fl , ⟨ fi, f j, q⟩, u1⟩.

Thus,

⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, u1⟩ = ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, v1⟩

= ⟨ fi, f j, fk⟩

= fl (by (i)).

This result can be generalised similarly to the previous case:
⟨ fl , ⟨ fi, f j, q⟩, v1⟩ = ⟨ fl , ⟨ fi, f j, q⟩, t⟩, for t ∈ {v1, u1, u2, v2}.

We proceed with the proof below. Let
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a′ = ⟨ fi, t1, q⟩,

b′ = ⟨ f j, t2, q⟩,

c′ = ⟨ fk, t3, q⟩.

We know:
⟨⟨ fi, f j, fk⟩, ⟨t1, t2, t3⟩, q⟩ = ⟨ fl , t2, q⟩.

We want:
⟨a′, b′, c′⟩ = ⟨ fl , t2, q⟩.

Let m ∈ [v1, q]. Set

t = ⟨v1, m, v2⟩ ∈ [v1, v2]

f = ⟨v1, m, p⟩ ∈ [v1, p].

Then

⟨ f , t, q⟩ = ⟨⟨v1, m, p⟩, ⟨v1, m, v2⟩, q⟩

= ⟨v1, m, ⟨p, v2, q⟩⟩

= ⟨v1, m, q⟩

= m.

Using the following identity (based on the above calculation)

⟨⟨⟨a′, b′, c′⟩, v1, v2⟩, ⟨⟨a′, b′, c′⟩, v1, p⟩, q⟩ = ⟨a′, b′, c′⟩,

we will prove the claim by showing that

1.

⟨⟨a′, b′, c′⟩, v1, p⟩ = fl .

2.

⟨⟨a′, b′, c′⟩, v1, v2⟩ = t2.
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1.

⟨⟨a′, b′, c′⟩, v1, p⟩ = ⟨⟨v1, p, a′⟩, ⟨v1, p, b′⟩, c′⟩ (by 5-point)

= ⟨⟨v1, p, ⟨ fi, t1, q⟩⟩, ⟨v1, p, ⟨ f j, t2, q⟩⟩, ⟨ fk, t3, q⟩⟩

= ⟨⟨⟨v1, p, fi⟩, ⟨v1, p, t1⟩, q⟩, ⟨⟨v1, p, f j⟩, ⟨v1, p, t2⟩, q⟩, ⟨ fk, t3, q⟩⟩ (by 5-point)

= ⟨⟨ fi, v1, q⟩, ⟨ f j, v1, q⟩, ⟨ fk, t3, q⟩⟩

= ⟨ fi, f j, ⟨ fk, t3, q⟩⟩

= ⟨⟨ fi, f j, fk⟩, ⟨ fi, f j, q⟩, t3⟩ (by 5-point)

= ⟨ fl , ⟨ fi, f j, q⟩, t3⟩

= ⟨ fl , ⟨ fi, f j, q⟩, v1⟩ (using fact (iii))

= fl (using fact (i)).

2.

⟨⟨a′, b′, c′⟩, v1, v2⟩ = ⟨⟨v1, v2, a′⟩, ⟨v1, v2, b′⟩, c′⟩ (by 5-point)

= ⟨⟨v1, v2, ⟨ fi, t1, q⟩, ⟨v1, v2, ⟨ f j, t2, q⟩⟩, ⟨ fk, t3, q⟩⟩ (by 5-point)

= ⟨⟨⟨v1, v2, fi⟩, ⟨v1, v2, q⟩, t1⟩, ⟨⟨v1, v2, f j⟩, ⟨v1, v2, q⟩, t2⟩, ⟨ fk, t3, q⟩⟩

= ⟨⟨v1, v2, t1⟩, ⟨v1, v2, t2⟩, ⟨ fk, t3, q⟩⟩

= ⟨t1, t2, ⟨ fk, t3, q⟩⟩

= ⟨⟨t1, t2, t3⟩, ⟨t1, t2, q⟩, fk⟩ (by 5-point)

= ⟨t2, ⟨t1, t2, q⟩, fk⟩

= ⟨t2, t2, fk⟩

= t2.

Note A.6. We can deduce straight away that ⟨t1, t2, q⟩ = t2 as in the interval [v′1, q],
t1 ≤ t2 means that ⟨v′1, t1, t2⟩ = t1 or equivalently ⟨t1, t2, q⟩ = t2. We also know that
[v′1, v2] ⊆ [v′1, q], so if t1, t2 ∈ [v′1, v2] then t1 ≤ t2 (in
[v′1, v2]) ⇔ ⟨v′1, t1, t2⟩ = t1 ⇔ t1 ≤ t2 (in [v′1, q]) ⇔ ⟨t1, t2, q⟩ = t2.

Thus we have shown that coarse hyperplanes have co-dimension at most 1 with X.

A.2 The Corner Problem

We state and prove the median formulation of the corner problem below, which is
again very similar to the coarse version.

Lemma A.7. Let X be a CAT(0) cube complex. Let [x, y] be a two-dimensional interval and
let [a, b] be a one-dimensional interval contained in [x, y], where a, b, x, y ∈ X. Then [a, b] has
at most 1 corner.
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We begin by constructing the universal median algebra on the six points
{x, a, b, y, d1, d2} with ci = ⟨a, di, b⟩, i = 1, 2. We have the following two relations: a ≤ b
and c1 ≤ c2, so that overall we obtain x ≤ a ≤ c1 ≤ c2 ≤ b ≤ y.

Note A.8. • We have a total ordering on [a, b] as a result of it being
one-dimensional and by applying the ordering outlined in Definition 4.2.

• We focus on the universal median algebra as this is the universal case (for any
median algebra M with these points and relations there exists a unique map
from the universal median algebra to M).

To construct a diagram of the universal median algebra described above, begin by
considering the free median algebra case (so we use the same six points but without
any relations) and note down all possible hyperplanes. Then impose the two relations
given above which allows us to throw away any hyperplanes that don’t satisfy these
relations. Finally, use the equivalence between finite median algebras and finite
CAT(0) cube complexes to build the CAT(0) cube complex consisting of the
hyperplanes that satisfy the two relations. This yields the image below.

FIGURE A.2: The universal median algebra on the points {x, a, b, d1, d2, y} with the
relations a ≤ b and c1 ≤ c2.



A.2. The Corner Problem 99

Collapsing any of the a, d1, d2 hyperplanes will immediately cause c1 to not be a
corner, so we avoid collapsing these for now as they are trivial cases.

The proof is split into three cases and are as follows (note that we assume c1 ̸= c2 to
avoid a trivial case):

1. Collapsing the ab and abd2 hyperplanes (so c2 = ⟨c2, d1, y⟩ and c1 is not a corner).

2. Collapsing the d2 and d1d2 hyperplanes (so c1 = ⟨c1, d2, x⟩ and c2 is not a corner).

3. Collapsing the ab and d1d2 hyperplanes (so c1 = ⟨y, c1, ⟨d1, c1, d2⟩ and
c2 = ⟨x, c2, ⟨d1, c2, d2⟩⟩ and neither c1 nor c2 are corners).

The central cuboids of the universal median algebra — which are duals of each other
— are sufficient enough to focus on cases 1 and 2.

FIGURE A.3: The central cuboids in the universal median algebra. The text in blue
represents hyperplanes.

Proof. We first need to check the conditions of Note 3.7 for the interval [c1, d2] (we
could have also chosen [c2, d1] instead). We need to show that
c2, ⟨c1, d2, x⟩, ⟨y, c1, ⟨d1, c1, d2⟩ are in [c1, d2]. By definition, ⟨c1, d2, x⟩ ∈ [c1, d2] so we just
need to check the remaining points.

• ⟨y, c1, ⟨d1, c1, d2⟩ = ⟨⟨y, c1, d1⟩, c1, d2⟩ ∈ [c1, d2].
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•

c2 = ⟨a, d2, b⟩

= ⟨⟨x, a, c1⟩, d2, b⟩

= ⟨⟨d2, b, x⟩, ⟨d2, b, a⟩, c1⟩

= ⟨⟨x, d2, b⟩, c2, c1⟩

= ⟨⟨x, c1, c2⟩, ⟨b, c1, c2⟩, d2⟩

= ⟨c1, c2, d2⟩ ∈ [c1, d2].

We now prove that {c1, c2, ⟨c1, d2, x⟩, ⟨y, c1, ⟨d1, c1, d2⟩} forms a tripod centred at c1:

• ⟨⟨c1, d2, x⟩, c1, ⟨y, c1, ⟨d1, c1, d2⟩⟩⟩ = c1;

⟨⟨c1, d2, x⟩, c1, ⟨y, c1, ⟨d1, c1, d2⟩⟩⟩ = ⟨⟨c1, ⟨c1, d2, x⟩, y⟩, ⟨c1, ⟨c1, d2, x⟩, c1⟩, ⟨d1, c1, d2⟩⟩

= ⟨c1, ⟨d1, c1, d2⟩, ⟨⟨c1, y, c1⟩, ⟨c1, y, x⟩, d2⟩⟩

= ⟨c1, ⟨d1, c1, d2⟩, ⟨c1, c1, d2⟩⟩

= ⟨c1, c1, ⟨d1, c1, d2⟩⟩

= c1.

• ⟨c2, c1, ⟨y, c1, ⟨d1, c1, d2⟩⟩⟩ = c1;

⟨c2, c1, ⟨y, c1, ⟨d1, c1, d2⟩⟩⟩ = ⟨⟨c1, c2, y⟩, ⟨c1, c2, c1⟩, ⟨d1, c1, d2⟩⟩

= ⟨c1, c2, ⟨d1, c1, d2⟩⟩

= ⟨⟨c1, c2, d1⟩, ⟨c1, c2, c1⟩, d2⟩

= ⟨c1, d2, ⟨c1, c2, d1⟩⟩

= ⟨c1, d2, ⟨⟨a, b, d1⟩, ⟨a, b, d2⟩, d1⟩⟩

= ⟨c1, d2, ⟨a, b, ⟨d1, d2, d1⟩⟩⟩

= ⟨c1, d2, ⟨a, b, d1⟩⟩

= ⟨c1, d2, c1⟩

= c1.

• ⟨c2, c1, ⟨c1, d2, x⟩⟩ = c1;

⟨c2, c1, ⟨c1, d2, x⟩⟩ = ⟨c1, c2, c1⟩, ⟨c1, c2, x⟩, d2⟩

= ⟨c1, c1, d2⟩

= c1.

Since we have shown that {c1, c2, ⟨c1, d2, x⟩, ⟨y, c1, ⟨d1, c1, d2⟩} forms a tripod, we can
proceed to proving cases 1 and 2.
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Case 1: If c2 = ⟨c2, d1, y⟩, then c1 is not a corner:

⟨b, d1, y⟩ = ⟨c2, b, y⟩, d1, y⟩

= ⟨d1, y, ⟨c2, y, b⟩⟩

= ⟨⟨d1, y, c2⟩, y, b⟩

= ⟨c2, y, b⟩

= b.

Since b = ⟨b, d1, y⟩, c1 is not a corner.

Case 2: If c1 = ⟨c1, d2, x⟩, then c2 is not a corner:

⟨a, d2, x⟩ = ⟨⟨x, a, c1⟩, d2, x⟩

= ⟨d2, x, ⟨c1, x, a⟩⟩

= ⟨⟨d2, x, c1⟩, x, a⟩

= ⟨c1, x, a⟩

= a.

Since a = ⟨a, d2, x⟩, c2 is not a corner.

Now that we have proven cases 1 and 2, we turn our attention to case 3. The two
central cuboids are not enough to tell us about case 3, so we focus on the whole
universal median algebra. After collapsing the ab and d1d2 hyperplanes we are left
with the below picture
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FIGURE A.4: This is the result of collapsing the ab and d1d2 hyperplanes in the univer-
sal median algebra, i.e. case 3.

We assume the following:

• c1 = ⟨y, c1, ⟨d1, c1, d2⟩⟩.

• c2 = ⟨x, c2, ⟨d1, c2, d2⟩⟩.

Case 3: Again, we begin by checking the conditions for the interval [x, c1] as seen in
Note 3.7. We need to show that a, ⟨c1, d1, x⟩, ⟨c1, d2, x⟩ are in [x, c1]. By definition,
⟨c1, d1, x⟩, ⟨c1, d2, x⟩ ∈ [x, c1]. Since a = ⟨x, a, c1⟩ (due to the ordering seen early on),
this tells us that a ∈ [x, c1]. Next, we show the remaining part of the condition, namely

• ⟨⟨c1, d1, x⟩, c1, ⟨c1, d2, x⟩⟩ = c1; let

m1 = ⟨y, c1, ⟨d1, c1, d2⟩⟩ = c1

m2 = ⟨x, c2, ⟨d1, c2, d2⟩⟩ = c2.

By the 5-point condition, ⟨⟨c1, d1, x⟩, c1, ⟨c1, d2, x⟩⟩ = ⟨c1, x, ⟨c1, d1, d2⟩⟩.
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We know that ⟨x, m2, c1⟩ = ⟨x, c2, c1⟩ ⇐⇒ ⟨x, c1, ⟨d1, c2, d2⟩⟩ = c1. To sum up, we
have

c1 = ⟨x, c1, ⟨d1, c2, d2⟩⟩

= ⟨d1, ⟨x, c1, c2⟩, ⟨x, c1, d2⟩⟩

= ⟨d1, c1, ⟨d2, c1, x⟩⟩

= ⟨⟨d1, c1, d2⟩, c1, x⟩

= ⟨x, c1, ⟨d1, c1, d2⟩⟩.

• ⟨a, c1, ⟨c1, d1, x⟩⟩ = c1;

⟨a, c1, ⟨c1, d1, x⟩⟩ = ⟨⟨a, c1, c1⟩, ⟨a, c1, x⟩, d1⟩

= ⟨c1, a, d1⟩

= ⟨⟨a, d1, b⟩, a, d1⟩

= ⟨b, ⟨a, d1, a⟩, ⟨a, d1, d1⟩⟩

= ⟨b, a, d1⟩

= c1.

• ⟨a, c1, ⟨c1, d2, x⟩⟩ = c1;

⟨a, c1, ⟨c1, d2, x⟩⟩ = ⟨⟨a, c1, c1⟩, ⟨a, c1, x⟩, d2⟩

= ⟨c1, a, d2⟩

= ⟨⟨a, d1, b⟩, a, d2⟩

= ⟨⟨a, d2, a⟩, ⟨a, d2, b⟩, d1⟩

= ⟨a, c2, d1⟩

= ⟨a, ⟨c1, c2, b⟩, d1⟩

= ⟨⟨a, d1, c1⟩, ⟨a, d1, b⟩, c2⟩

= ⟨c1, c2, ⟨a, d1, c1⟩⟩

= ⟨⟨c1, c2, a⟩, ⟨c1, c2, c1⟩, d1⟩

= ⟨c1, c1, d1⟩

= c1.

All the conditions of the theorem have been met, so we are in a position to show that
we can only have at most one corner. Now,

(i) we must have c1 ̸= a (i.e. the a hyperplane cannot collapse) because then c1

would immediately fail to be a corner;
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(ii) if c1 = ⟨c1, d2, x⟩ (i.e. the d2 hyperplane collapses), then this is a case that has
already been proven (see case 2);

(iii) this leaves us with c1 = ⟨c1, d1, x⟩ (i.e. the d1 hyperplane collapses). Then c1 is
not a corner as

⟨a, d1, x⟩ = ⟨⟨a, x, c1⟩, x, d1⟩

= ⟨a, x, ⟨c1, x, d1⟩⟩

= ⟨a, x, c1⟩

= a.

Therefore we have shown that in the two-dimensional case, we cannot have more than
one corner present.
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