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Abstract: Quasi-zero stiffness (QZS) has become a promising way of realizing low-
frequency vibration isolation, where magnetic springs have been widely adopted for
constructing negative stiffness. However, existing single-layer magnetic springs often have
a small-amplitude negative stiffness, so the loading capacity is low. In order to address this
issue, this paper presents novel Halbach-cylinder magnetic springs (HCMSs) by using the
Halbach array. Firstly, stiffness formulas of basic single-layer magnetic springs are analyti-
cally built based on the Amperian current model. The stiffness of the HCMS is derived from
combining multiple single-layer magnetic springs. Then, nonlinear stiffness characteristics
of both single-layer magnetic springs and HCMSs are investigated in terms of the ampli-
tude, the uniformity, and the displacement range of negative stiffness. Analytical results
show that HCMSs can generate negative stiffness with different equilibrium positions,
and the amplitude of negative stiffness of HCMSs is much larger than that of single-layer
magnetic springs. The amplitude of negative stiffness is in conflict with the uniformity,
so a trade-off design is needed. In addition, increasing the number of layers of Halbach
cylinders can be adopted to realize larger-amplitude and wider-range negative stiffness.
This study will provide new insights into designing QZS with heavy-load capacity.

Keywords: quasi-zero stiffness; heavy load; large-amplitude negative stiffness; magnetic
spring; Halbach arrays; Halbach-cylinder magnetic spring

1. Introduction
Vibration exists widely in nature, which is often defined as the mechanical movement

of an object oscillating around an equilibrium position. However, vibration is undesir-
able in many domains, and unwanted vibrations can cause serious harm to mechanical
systems, human health, and so on. For example, vibrations of vehicle seats often reduce
ride comfort [1], vibrations of machine tools will reduce the manufacturing precision [2],
and earthquake-induced vibrations will damage buildings [3]. In particular, mechanical
vibrations are often a byproduct of mechanical systems, and it is impossible to eliminate vi-
bration sources in practice. Vibration isolation can prevent vibration transmission between
different components, so it is important to implement vibration isolators. Nowadays, linear
isolators are always employed to reduce mechanical vibrations. According to the linear
isolation theory, however, vibrations cannot be suppressed when the excitation frequency
is less than

√
2ωn (ωn is the natural frequency of the mechanical system) [4]. This is a

significant drawback of linear isolators since many systems require low-frequency vibration
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isolation. One possible strategy for extending isolation ability to low-frequency bands is to
reduce the stiffness of the system, but this approach will lead to low loading capacity and
system instability. Therefore, innovative structures are needed to realize low-frequency or
ultra-low-frequency vibration isolation.

In recent years, quasi-zero stiffness (QZS) vibration isolators have been proven to be
an effective and feasible means to solve low-frequency vibration problems. The concept
of QZS was first proposed by Alabuzhev [5] and is described as positive stiffness and
negative stiffness. QZS has the unique feature of high static and low dynamic (HSLD)
stiffness near the static equilibrium position, which can greatly reduce the dynamic stiffness
without reducing the static stiffness. Therefore, QZS can be utilized to realize low-frequency
vibration control and solve the contradiction between low natural frequency and small
static deformation. In particular, the key point of QZS is to design proper negative-stiffness
structures [6,7]. According to the literature, there are some ways of achieving negative
stiffness. The first way is to use oblique springs. Carrella et al. [8] built a QZS-based
vibration isolation system consisting of a vertical spring and two oblique springs in parallel.
The second way is to use a spring and a rod. Liu et al. [9] proposed a QZS vibration isolator
based on the ‘spring–rod’ structure. The third way is to use buckling beams. Liu et al. [10]
built a large negative stiffness under small displacement by utilizing the Euler buckling
beam. The fourth way is to use cams. Li et al. [11] built a QZS vibration isolator by using a
cam structure whose profile was designed to follow the force–displacement relation of QZS.
The fifth way is to use magnets. Chen et al. [12] used a pair of magnetic rings to generate
QZS for low-frequency simultaneous vibration isolation and energy harvesting. To date,
QZS has shown great potential in the field of low-frequency vibration isolation.

In recent years, the implementation of permanent magnets in QZS vibration isola-
tors has attracted significant attention from many scholars. Among different kinds of
negative-stiffness structures, the magnetic spring is commonly built by using a mobile
magnet and a stationary magnet, which utilizes the repulsive or attractive forces between
two permanent magnets to achieve negative stiffness. Zhu and Chai [13] gave a comprehen-
sive review on magnetic negative stiffness in vibration isolation systems from theoretical
models to engineering applications. Generally speaking, the shapes of magnetic springs
can be rectangular [14] or circular [15] according to the shapes of the permanent mag-
nets. For example, Akoun and Yonnet [16] proposed an analytical model to calculate the
magnetic force between two three-dimensional rectangular permanent magnets based on
the surface charge model. Zheng et al. [17] designed an HSLD stiffness isolator using a
negative-stiffness magnetic spring, and the magnetic force between the inner and the outer
magnets was then calculated based on the Amperian current model. Magnetic springs have
the outstanding advantages of compact design, efficient space utilization, no mechanical
friction, and fewer vibration transmission paths. In particular, the stiffness characteristics
can be adjusted by varying the distance or orientation of the magnets. Therefore, magnetic
spring-based QZS vibration isolators find promising vibration control applications across
numerous fields [18,19]. More importantly, the loading capacity of a QZS vibration isolator
strongly depends on the static positive stiffness. In most existing works, small payloads are
always considered. However, there are still many heavy-load applications in practice, such
as vehicle suspensions [20] and offshore platforms [21]. In these cases, a large-amplitude
negative stiffness is always needed to match the large positive stiffness in order to generate
the QZS. However, for existing single-layer magnetic rings, the negative stiffness near
the equilibrium position is not always enough for heavy payloads. Therefore, it is very
important to study novel magnetic structures with large-amplitude negative stiffness.

The Halbach array has been proposed to greatly increase the magnetic force in a
limited space, which is a special arrangement of permanent magnets that enhances the
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magnetic field on one side of the array [22,23]. In the literature, there are two main
types of Halbach arrays, namely flat Halbach arrays [24,25] and Halbach cylinders [26].
In particular, Halbach cylinders are more suitable for compact design than flat Halbach
arrays. The Halbach array offers a prior advantage over conventional layouts of magnets
in terms of its concentrated magnetic-field intensity. Therefore, it is promising to introduce
Halbach cylinders for designing novel magnetic springs. To the best of our knowledge,
the application of Halbach arrays in QZS vibration isolators has not yet been reported. In
particular, there are three key questions to be answered.

(1) Can single-layer magnetic springs definitely generate negative stiffness or not?
Can Halbach array-based magnetic springs definitely generate large-amplitude negative
stiffness or not?

(2) What kinds of Halbach array-based magnetic springs can generate large-amplitude
negative stiffness? How can we select the optimal structural configuration?

(3) What are the effects of geometric parameters on negative stiffness metrics of
Halbach array-based magnetic springs? How can we determine the geometric parameters?

To date, existing studies have seldom been carried out on Halbach array-based mag-
netic springs. Therefore, the motivation of this paper is to reveal nonlinear stiffness
characteristics of Halbach array-based magnetic springs and investigate new magnetic
springs with large-amplitude negative stiffness. Under the above-mentioned background,
the novelty of the paper is to present the Halbach-cylinder magnetic spring (HCMS) for
heavy-load QZS by using Halbach cylinders. The HCMS is composed of two coaxial Hal-
bach cylinders, where the outer cylinder is fixed and the inner cylinder can move freely. Key
metrics of the HCMS include the amplitude, the uniformity, and the displacement range of
negative stiffness near the equilibrium position. The main challenges include deriving an
analytical formula for nonlinear stiffness and designing proper structural configurations.

In summary, the main contributions of this work can be outlined as follows:
(1) The idea of Halbach array-based magnetic springs is introduced, so it is possible to

generate large-amplitude negative stiffness by using magnetic structures.
(2) The magnetic forces and stiffness of all sixteen structures in four types of circular

magnetic springs (CMSs) are obtained, which are used as cell units for building HCMSs.
(3) HCMSs are first proposed and the ‘N-M’-type HCMS is testified to generate larger

negative stiffness than traditional magnetic rings.
The objective of this paper is to seek novel magnetic negative stiffness structures for

heavy loads and provide a “building block” methodology for designing large-amplitude
magnetic springs in engineering applications. The rest of this paper is organized as follows.
Force and stiffness formulas of circular magnetic springs (CMSs) are analytically derived
in Section 2. Based on them, the nonlinear stiffness of the ‘N-M’-type HCMS is built in
Section 3. In Sections 4 and 5, the effects of geometric parameters on the nonlinear negative
stiffness of basic CMSs and the 3-3-type HCMS are revealed, respectively. Then, a potential
solution to HCMSs with larger-amplitude and wider-range negative stiffness is explored in
Section 6. Finally, some conclusions are made in Section 7.

2. Force and Stiffness Characteristics of Circular Magnetic Springs
In this paper, the structure of the HCMS can be looked at as the combination of multiple

pairs of coaxial magnetic rings. Therefore, it is necessary to investigate the characteristics
of each kind of coaxial magnetic ring.

2.1. DifferentConfigurations of Circular Magnetic Springs

A pair of coaxial magnetic rings forms a circular magnetic spring (CMS), including the
inner and outer magnetic rings, and is also called the single-layer CMS. Each magnetic ring
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can be radially or axially magnetized, so either the inner or the outer magnetic ring has
two classes of main magnetizations. In total, there are four types of configurations for CMSs,
including Type I (radial–radial magnetization), Type II (axial–axial magnetization), Type III
(radially–axially perpendicular magnetization), and Type IV (axially–radially perpendicular
magnetization). Furthermore, both the inner and the outer magnetic rings have two of
their own magnetization directions, so each type of configuration has four structures. Here,
one basic structure of each basic configuration is chosen optionally for a benchmark, and
its denotation is listed in Table 1, where the arrows indicate the magnetization directions.
Inside and outside radii of the inner magnetic ring are denoted as R1 and R2. Inside and
outside radii of the outer magnetic ring are denoted as R3 and R4. Magnetic forces and
stiffness of the four basic CMSs are denoted as F1 ∼ F4 and K1 ∼ K4, respectively.

Table 1. Four types of structural configurations for CMSs.

Description Type Basic Structure Denotation Magnetic Force Stiffness

Radial–radial
magnetization Type I
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2.1. DifferentConfigurations of Circular Magnetic Springs

A pair of coaxial magnetic rings forms a circular magnetic spring (CMS), including 
the inner and outer magnetic rings, and is also called the single-layer CMS. Each mag-
netic ring can be radially or axially magnetized, so either the inner or the outer magnetic 
ring has two classes of main magnetizations. In total, there are four types of configura-
tions for CMSs, including Type I (radial–radial magnetization), Type II (axial–axial 
magnetization), Type III (radially–axially perpendicular magnetization), and Type IV
(axially–radially perpendicular magnetization). Furthermore, both the inner and the 
outer magnetic rings have two of their own magnetization directions, so each type of
configuration has four structures. Here, one basic structure of each basic configuration is 
chosen optionally for a benchmark, and its denotation is listed in Table 1, where the ar-
rows indicate the magnetization directions. Inside and outside radii of the inner magnetic 
ring are denoted as 1R and 2R . Inside and outside radii of the outer magnetic ring are 
denoted as 3R and 4R . Magnetic forces and stiffness of the four basic CMSs are denoted 
as 1 4~F F and 1 4~K K , respectively.

Table 1. Four types of structural configurations for CMSs.

Description Type Basic Structure Denotation Magnetic Force Stiffness

Radial–radial magnetization Type I OUT ←  IN ← 1F 1K

Axial–axialmagnetization Type II OUT ↑  IN ↑ 2F 2K

Perpendicular magnetization
(radial–axial)

Type III OUT →  IN ↑ 3F 3K

Perpendicular magnetization
(axial–radial)

Type IV OUT ↑  IN → 4F 4K

Next, all sixteen structures of CMS are summarized in Table 2. According to Table 1,
the magnetic forces and stiffness of the other three structures in each type of CMS can be 
obtained by referring to the basic structure.

OUT← IN← F1 K1

Axial–axialmagnetization Type II
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the inner and outer magnetic rings, and is also called the single-layer CMS. Each mag-
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tions for CMSs, including Type I (radial–radial magnetization), Type II (axial–axial 
magnetization), Type III (radially–axially perpendicular magnetization), and Type IV
(axially–radially perpendicular magnetization). Furthermore, both the inner and the 
outer magnetic rings have two of their own magnetization directions, so each type of
configuration has four structures. Here, one basic structure of each basic configuration is 
chosen optionally for a benchmark, and its denotation is listed in Table 1, where the ar-
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ring are denoted as 1R and 2R . Inside and outside radii of the outer magnetic ring are 
denoted as 3R and 4R . Magnetic forces and stiffness of the four basic CMSs are denoted 
as 1 4~F F and 1 4~K K , respectively.

Table 1. Four types of structural configurations for CMSs.

Description Type Basic Structure Denotation Magnetic Force Stiffness

Radial–radial magnetization Type I OUT ←  IN ← 1F 1K

Axial–axialmagnetization Type II OUT ↑  IN ↑ 2F 2K

Perpendicular magnetization
(radial–axial)

Type III OUT →  IN ↑ 3F 3K

Perpendicular magnetization
(axial–radial)

Type IV OUT ↑  IN → 4F 4K

Next, all sixteen structures of CMS are summarized in Table 2. According to Table 1,
the magnetic forces and stiffness of the other three structures in each type of CMS can be 
obtained by referring to the basic structure.

OUT ↑ IN ↑ F2 K2

Perpendicular
magnetization
(radial–axial)

Type III
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magnetization), Type III (radially–axially perpendicular magnetization), and Type IV
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ring are denoted as 1R and 2R . Inside and outside radii of the outer magnetic ring are 
denoted as 3R and 4R . Magnetic forces and stiffness of the four basic CMSs are denoted 
as 1 4~F F and 1 4~K K , respectively.

Table 1. Four types of structural configurations for CMSs.

Description Type Basic Structure Denotation Magnetic Force Stiffness

Radial–radial magnetization Type I OUT ←  IN ← 1F 1K

Axial–axialmagnetization Type II OUT ↑  IN ↑ 2F 2K

Perpendicular magnetization
(radial–axial)

Type III OUT →  IN ↑ 3F 3K

Perpendicular magnetization
(axial–radial)

Type IV OUT ↑  IN → 4F 4K

Next, all sixteen structures of CMS are summarized in Table 2. According to Table 1,
the magnetic forces and stiffness of the other three structures in each type of CMS can be 
obtained by referring to the basic structure.

OUT→ IN ↑ F3 K3

Perpendicular
magnetization
(axial–radial)

Type IV
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chosen optionally for a benchmark, and its denotation is listed in Table 1, where the ar-
rows indicate the magnetization directions. Inside and outside radii of the inner magnetic 
ring are denoted as 1R and 2R . Inside and outside radii of the outer magnetic ring are 
denoted as 3R and 4R . Magnetic forces and stiffness of the four basic CMSs are denoted 
as 1 4~F F and 1 4~K K , respectively.

Table 1. Four types of structural configurations for CMSs.

Description Type Basic Structure Denotation Magnetic Force Stiffness

Radial–radial magnetization Type I OUT ←  IN ← 1F 1K

Axial–axialmagnetization Type II OUT ↑  IN ↑ 2F 2K

Perpendicular magnetization
(radial–axial)

Type III OUT →  IN ↑ 3F 3K

Perpendicular magnetization
(axial–radial)

Type IV OUT ↑  IN → 4F 4K

Next, all sixteen structures of CMS are summarized in Table 2. According to Table 1,
the magnetic forces and stiffness of the other three structures in each type of CMS can be 
obtained by referring to the basic structure.

OUT ↑ IN→ F4 K4

Next, all sixteen structures of CMS are summarized in Table 2. According to Table 1,
the magnetic forces and stiffness of the other three structures in each type of CMS can be
obtained by referring to the basic structure.

Specifically, all denotations in Tables 1 and 2 are explained as follows: ‘OUT←’ indi-
cates that the magnetization direction of the outer magnetic ring is radially outward from
the inside. ‘OUT→’ indicates that the magnetization direction of the outer magnetic ring is
radially inward from the outside. ‘OUT↑’ indicates that the magnetization direction of the
outer magnetic ring is axially from bottom to top. ‘OUT↓’ indicates that the magnetization
direction of the outer magnetic ring is axially from top to bottom. ‘IN→’ indicates that
the magnetization direction of the inner magnetic ring is radially outward from the inside.
‘IN←’ indicates that the magnetization direction of the inner magnetic ring is radially
inward from the outside. ‘IN↑’ indicates that the magnetization direction of the inner
magnetic ring is axially from bottom to top. ‘IN↓’ indicates that the magnetization direction
of the inner magnetic ring is axially from top to bottom.
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Table 2. Magnetic force and stiffness of each configuration of CMSs.

Type All Denotations Magnetic Force Stiffness

Type I

OUT← IN←
OUT← IN→
OUT→ IN←
OUT→ IN→

F1
−F1
−F1
F1

K1
−K1
−K1
K1

Type II

OUT ↑ IN ↑
OUT ↑ IN ↓
OUT ↓ IN ↑
OUT ↓ IN ↓

F2
−F2
−F2
F2

K2
−K2
−K2
K2

Type III

OUT→ IN ↑
OUT→ IN ↓
OUT← IN ↑
OUT← IN ↓

F3
−F3
−F3
F3

K3
−K3
−K3
K3

Type IV

OUT ↑ IN→
OUT ↑ IN←
OUT ↓ IN→
OUT ↓ IN←

F4
−F4
−F4
F4

K4
−K4
−K4
K4

2.2. Magnetic Force and Stiffness of Each Basic CMS

Generally speaking, different configurations of CMSs will have different stiffness
characteristics. In order to reveal them in detail, it is necessary to obtain the magnetic force
and stiffness between the inner and outer magnetic rings. The Amperian current model is
more suitable for calculating forces between magnets [27], so it is adopted to analytically
calculate the magnetic force and stiffness (i.e., F1 ∼ F4 and K1 ∼ K4) in this paper.

2.2.1. Type I CMSs

The detailed structure of Type I CMSs is shown in Figure 1a, where the inner magnetic
ring is unconstrained and the outer magnetic ring is fixed. The heights of the inner and
outer magnetic rings are denoted as 2h1, 2h2 and the residual flux densities of the inner and
outer magnetic rings are denoted as Br1 , Br2 . The middle position of the outer magnetic
ring is defined as the horizontal axis, and the distance between the two magnetic rings is
denoted as z.
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Figure 1. Schematic of Type I CMS: (a) structural configuration, (b) surface current directions, and 
(c) calculation of ( )11F z′ .

Furthermore, the upper and lowersurfaces of the inner magnetic ring are denoted as 
1 and 2, and the counterparts of the outer magnetic ring are denoted as 1′ and 2′, respec-
tively.The radial force between the two surfaces is equal to zero due to the circular 
symmetry. The axial force between two surfaces is denoted as ( )svF z′ { }( ), 1, 2s v∈ , and

( )svh z′ is the axial distance between two surfaces. Then, the magnetic force of Type I 
CMSs can be represented as the sum of the four axial forces.

( ) ( )
2 2

1 1 2
1 1

, 2 , 2 sv
s v

F z h h F z′
= =

= (2)

Next, the calculation of ( )11F z′ is selected as an example. The current directions of 
surface 1 and 1′ are shown in Figure 1b by using the right-hand rule. Their surface cur-
rent densities are calculated as follows, based on Equation (1):

1 2U 0 L 0,r rj B j Bμ μ= = (3)

As shown in Figure 1c, a small current element U 1 1dj dr− l in the position Q
( )1 11, ,r hα ′ of surface 1 and one L 2 2dj dr l in the position P ( )2 , , 0r β of surface 1′ are se-
lected, respectively, where 1 1 2 2d , dr d r dα β= =l l , α β， are the included angles be-
tween Q, P and the y axis, d dα β， denote the infinitesimal increments of α β， , and 

1 2r r， are the radii of Q and P points. According to the Biot–Savart law [28],the magnetic 
flux density at point Q produced by point P can be represented as Equation (4).β ，

0 L 2 2 11
11 3

11

d
4
j dr

d
μ

π
′

′
′

×
=

l PQB
PQ

(4)

Here, 11′PQ is the vector from point P to point Q, where

( )2 2 2
11 1 2 11 1 22 cosr r h r r β α′ ′= + + − −PQ and 11 1 2=h h z h′ + − .

Then, the axial magnetic force exerted on U 1 1dj dr− l by L 2 2dj dr l can be written as
Equation (5) by using Equations (3) and (4).（

( ) ( )
1 1 1 2 11 1 2

11 3
0 11

cos

4
r rB B r r h dr dr d d

dF z
β α α β

πμ
′

′
′

−
=

PQ
(5)

By performing integration on both sides of Equation (5), we will have

Figure 1. Schematic of Type I CMS: (a) structural configuration, (b) surface current directions, and
(c) calculation of F11′(z).

According to the Amperian current model [27], the magnetic force of two magnets is
equivalent to the interaction between equivalent currents distributed on the magnets. For
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the magnetic ring with radial magnetization, the equivalent current only distributes on its
upper and lower surfaces, and the surface current density can be written as

J = −n× B/µ0 (1)

where n is the unit vector normal to the surface, B is the magnetic-field vector,
µ0 = 4π × 10−7 V·s/(A·m) is the permeability of the vacuum, and ‘×’ denotes the vec-
tor product.

Furthermore, the upper and lowersurfaces of the inner magnetic ring are denoted as 1
and 2, and the counterparts of the outer magnetic ring are denoted as 1′ and 2′, respectively.
The radial force between the two surfaces is equal to zero due to the circular symmetry. The
axial force between two surfaces is denoted as Fsv′(z)(s, v ∈ {1, 2}), and hsv′(z) is the axial
distance between two surfaces. Then, the magnetic force of Type I CMSs can be represented
as the sum of the four axial forces.

F1(z, 2h1, 2h2) =
2

∑
s=1

2

∑
v=1

Fsv′(z) (2)

Next, the calculation of F11′(z) is selected as an example. The current directions of
surface 1 and 1′ are shown in Figure 1b by using the right-hand rule. Their surface current
densities are calculated as follows, based on Equation (1):

jU = Br1 /µ0, jL = Br2 /µ0 (3)

As shown in Figure 1c, a small current element −jUdr1dl1 in the position Q(r1, α, h11′)

of surface 1 and one jLdr2dl2 in the position P(r2, β, 0) of surface 1′ are selected, respectively,
where |dl1| = r1dα, |dl2| = r2dβ, α, β are the included angles between Q, P and the y axis,
dα, dβ denote the infinitesimal increments of α, β, and r1, r2 are the radii of Q and P points.
According to the Biot–Savart law [28], the magnetic flux density at point Q produced by
point P can be represented as Equation (4).

dB11′ =
µ0 jLdr2dl2 × PQ11′

4π|PQ11′|3
(4)

Here, PQ11′ is the vector from point P to point Q, where

|PQ11′| =
√

r2
1 + r2

2 + h2
11′ − 2r1r2 cos(β− α) and h11′ = h1 + z− h2.

Then, the axial magnetic force exerted on −jUdr1dl1 by jLdr2dl2 can be written as
Equation (5) by using Equations (3) and (4).

dF11′(z) =
Br1 Br1 r1r2h11′ cos(β− α)dr1dr2dαdβ

4πµ0|PQ11′ |3
(5)

By performing integration on both sides of Equation (5), we will have

F11′(z) =
Br1 Br2

4πµ0

R2∫
R1

R4∫
R3

2π∫
0

2π∫
0

r1r2h11′

|PQ11′ |3
cos(β− α)dr1dr2dαdβ (6)

Similar to F11′(z), other axial magnetic forces, including F12′(z), F21′(z), and F22′(z),
can also be calculated as

Fsv′(z) =
Br1 Br2

4πµ0

R2∫
R1

R4∫
R3

2π∫
0

2π∫
0

(−1)s+v r1r2hsv′

|PQsv′ |3
cos(β− α)dr1dr2dαdβ (7)
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where hsv′ = z − (−1)sh1 + (−1)vh2 and |PQsv′ | =
√

r2
1 + r2

2 + h2
sv′ − 2r1r2 cos(β− α),

s, v ∈ {1, 2}.
According to the directions of two surface currents, F11′, F22′ are the repulsive forces

and F12′, F21′ are the attractive forces. By combining Equations (2) and (7), F1(z, 2h1, 2h2)

can be calculated as

F1(z, 2h1, 2h2) =
Br1 Br2

4πµ0

2

∑
s=1

2

∑
v=1

R2∫
R1

R4∫
R3

2π∫
0

2π∫
0

(−1)s+v r1r2hsv′

|PQsv′ |3
cos(β− α)dr1dr2dαdβ (8)

Then, the stiffness K1 can be obtained as

K1(z, 2h1, 2h2) = −
dF1

dz
=

Br1 Br2

4πµ0

2

∑
s=1

2

∑
v=1

R2∫
R1

R4∫
R3

2π∫
0

2π∫
0

(−1)s+v
r1r2

(
3h2

sv′ − |PQsv′ |2
)

|PQsv′ |5
cos(β− α)dr1dr2dαdβ (9)

2.2.2. Type II CMSs

The detailed structure of Type II CMSs is shown in Figure 2a, where the geometric
configuration is similar to that in Figure 1a.The inner and outer surfaces of the inner and
outer magnetic rings are denoted as 3, 3′, 4, and 4′, respectively. The radial force between
the two surfaces is also equal to zero due to the circular symmetry. The axial force between
two surfaces is denoted as Fsv′(z) (s, v ∈ {3, 4}) and then the magnetic force of Type II
CMSs can be calculated as

F2(z, 2h1, 2h2) =
4

∑
s=3

4

∑
v=3

Fsv′(z) (10)
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( ) ( )
2 4

1 2

1 3

2 2
1 2 11

11 1 23
0 0 0 11

cos
4

R R
r r

R R

B B rr hF z drdr d d
π π

β α α β
πμ

′
′

′

= −    PQ
(6)

Similar to ( )11F z′ , other axial magnetic forces, including ( )12F z′ , ( )21F z′ , and

( )22F z′ , can also be calculated as

( ) ( ) ( )
2 4

1 2

1 3

2 2
1 2

1 23
0 0 0

1 cos
4

R R
s vr r sv

sv
R R sv

B B rr hF z drdr d d
π π

β α α β
πμ

+ ′
′

′

= − −    PQ
(7)

where ( ) ( )1 21 1s v
svh z h h′ = − − + − and ( ) { }2 2 2

1 2 1 22 cos , , 1, 2sv svr r h rr s vβ α′ ′= + + − − ∈PQ .

According to the directions of two surface currents, 11 22,F F′ ′ are the repulsive 
forces and 12 21,F F′ ′ are the attractive forces. By combining Equations (2) and (7), 

( )1 1 2, 2 , 2F z h h can be calculated as

( ) ( ) ( )
2 4

1 2

1 3

2 22 2
1 2

1 1 2 1 23
1 10 0 0

,2 ,2 1 cos
4

R R
s vr r sv

s v R R sv

B B rr hF z h h drdr d d
π π

β α α β
πμ

+ ′

= = ′

= − −    PQ
(8)

Then, the stiffness 1K can be obtained as

( ) ( )
( )

( )
2 4

1 2

1 3

222 22 2 1 21
1 1 2 1 25

1 10 0 0

3
, 2 ,2 1 cos

4

R R
sv svs vr r

s v R R sv

r r hB BdFK z h h dr dr d d
dz

π π

β α α β
πμ

′ ′+

= = ′

−
= − = − −    

PQ

PQ
(9)

2.2.2. Type II CMSs

The detailed structure of Type II CMSs is shown in Figure 2a, where the geometric 
configuration is similar to that in Figure 1a.The inner and outer surfaces of the inner and 
outer magnetic rings are denoted as 3, 3′, 4, and 4′, respectively. The radial force between 
the two surfaces is also equal to zero due to the circular symmetry. The axial force be-
tween two surfaces is denoted as ( )svF z′ { }( ), 3, 4s v∈ and then the magnetic force of 
Type II CMSs can be calculated as

( ) ( )
4 4

2 1 2
3 3

, 2 , 2 sv
s v

F z h h F z′
= =

= (10)

Figure 2. Schematic of Type II CMS: (a) structural configuration, (b) surface current directions, and 
(c) calculation of ( )33F z′ .

Figure 2. Schematic of Type II CMS: (a) structural configuration, (b) surface current directions, and
(c) calculation of F33′(z).

Next, the calculation of F33′(z) is selected as an example. The current directions of
surface 3 and 3′ are shown in Figure 2b by using the right-hand rule. hsv′(z) is the axial
distance between the two surfaces. The axial magnetic force exerted on jIR1dφdz1 at point
N by jOR3dψdz2 at point M is

dF33′(z) = jIR1dφdz1 × dB33′ (11)

where dB33′ = µ0 jOR3dψz2 ×MN33′/
(

4π|MN33′|3
)

is the magnetic flux density at point

M produced by jOR3dψdz2 at point N; |MN33′| =
√

R2
1 + R3

2 + h2
33′ − 2R1R3 cos(ψ− φ) is
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the vector from point M to point N; and h33′ = z1 + z− z2 is the axial distance from surface
3 to surface 3′.

The axial magnetic force F33′(z) can be obtained as

F33′(z) = −
Br1 Br2

4πµ0

2π∫
0

2π∫
0

h1∫
−h1

h2∫
−h2

R1R3h33′ cos(ψ− φ)

|MN33′|3
dz1dz2dφdψ (12)

Similar to F33′(z), axial magnetic forces F34′(z), F43′(z), and F44′(z) can also be calcu-
lated as

Fsv′(z) = −(−1)s+v Br1 Br2

4πµ0

2π∫
0

2π∫
0

h1∫
−h1

h2∫
−h2

Rs−2Rvhsv′ cos(ψ− φ)

|MNsv′ |
dz1dz2dφdψ (13)

where |MNsv′ | =
√

R2
s + R2

v + h2
sv′ − 2Rs−2Rv cos(ψ− φ) and hsv′ = z− (−1)sz1 + (−1)vz2,

s, v ∈ {3, 4}.
Combining Equations (10) and (11), F2(z, 2h1, 2h2) can be rewritten as

F2(z, 2h1, 2h2) = −
Br1 Br2

4πµ0

4

∑
s=3

4

∑
v=3

h1∫
−h1

h2∫
−h2

2π∫
0

2π∫
0

(−1)s+v Rs−2Rvhsv′

|MNsv′ |3
cos(ψ− φ)dz1dz2dφdψ (14)

Then, the stiffness K2 can be obtained as

K2(z, 2h1, 2h2) = −
Br1 Br2

4πµ0

4

∑
s=3

4

∑
v=3

h1∫
−h1

h2∫
−h2

2π∫
0

2π∫
0

(−1)s+v

(
|MNsv′ |2 − 3h2

sv′

)
Rs−2Rv

|MNsv′ |3
cos(ψ− φ)dz1dz2dφdψ (15)

2.2.3. Type III CMSs and Type IV CMSs

The structures of Type III and Type IV CMSs are shown in Figure 3. By referring to the
above calculation method, F3(z, 2h1, 2h2) and K3 can be formulated as

F3(z, 2h1, 2h2) =
Br1 Br2

4πµ0

4

∑
s=3

2

∑
v=1

2π∫
0

2π∫
0

R4∫
R3

h1∫
−h1

(−1)s+v r2Rs−2hsv′

|MNsv′ |3
cos(φ− β)dβdφdr2dz1 (16)

K3(z, 2h1, 2h2) =
Br1 Br2

4πµ0

4

∑
s=3

2

∑
v=1

2π∫
0

2π∫
0

R4∫
R3

h1∫
−h1

(−1)s+v r2Rs−2hsv′

|MNsv′ |3
cos(φ− β)dβdφdr2dz1 (17)

where |MNsv′ | =
√

R2
s−2 + r2

2 + h2
sv′ − 2Rs−2r2 cos(φ− β) and hsv′ = z1 + z + (−1)vh2,

s ∈ {3, 4}, v ∈ {1, 2}.
Similarly, F4(z, 2h1, 2h2) and K4 can also be formulated as

F4(z, 2h1, 2h2) = −
Br1 Br2

4πµ0

2

∑
s=1

4

∑
v=3

2π∫
0

2π∫
0

R2∫
R1

h2∫
−h2

(−1)s+v r1Rvhsv′

|MNsv′ |3
cos(ψ− α)dψdαdr1dz2 (18)

K4(z, 2h1, 2h2) =
Br1 Br2

4πµ0

2

∑
s=1

4

∑
v=3

2π∫
0

2π∫
0

R2∫
R1

h2∫
−h2

(−1)s+v

(
|MNsv′ |2−3h2

sv′

)
r1Rv

|MNsv′ |5
cos(ψ− α)dψdαdr1dz2 (19)
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where |MNsv′ | =
√

R2
v + r2

1 + h2
sv′ − 2Rvr1 cos(ψ− φ) and hsv′ = z − z2 + (−1)sh1,

s ∈ {1, 2}, v ∈ {3, 4}.
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Figure 3. Structures of (a) Type III and (b)Type IV CMSs.

Similarly, ( )4 1 2, 2 , 2F z h h and 4K can also be formulated as

( ) ( ) ( )
2 2

1 2

1 2

2 22 4
1

4 1 2 1 23
1 30 0 0 -

,2 ,2 1 cos
4

R h
s vr r v sv

s v R h sv

B B rR hF z h h d d drdz
π π

ψ α ψ α
πμ

+ ′

= = ′

= − − −    MN
(18)

( ) ( )
( )

( )
2 2

1 2

1 2

22
2 22 4 1

4 1 2 1 25
1 30 0 0 -

-3
,2 ,2 1 cos

4

R h
sv sv vs vr r

s v R h sv

h rRB B
K z h h d d drdz

π π

ψ α ψ α
πμ

′ ′+

= = ′

= − −   
MN

MN (19)

where ( )2 2 2
1 12 cossv v sv vR r h R r ψ ϕ′ ′= + + − −MN and

( ) { } { }2 11 , 1,2 3,4s
svh z z h s v′ = − + − ∈ ∈， .

Finally, the bullet list of key variables in the above equations is shown in Table 3.

Table 3. The bullet list of key variables.

Symbol Physical Meaning Unit
B The magnetic-field vector −

1r
B The residual flux density of the inner magnetic ring T

2r
B The residual flux densityof the outer magnetic ring T

( )svF z′ The axial force between the surface s and the surface 
'v N

1h The half-height of the inner magnetic ring m
2h The half-height of the outer magnetic ring m

J The surface current density vector −
Uj The surface current density of surface 1 A/m2

Lj The surface current density of surface 1′ A/m2

Ij The surface current density of surface 3 A/m2

Oj The surface current density of surface 3′ A/m2

n The unit normal vector −
1R The inside radius of the inner magnetic ring m
2R Theoutside radius of the inner magnetic ring m
3R The inside radius of the outer magnetic ring m
4R Theoutside radius of the outer magnetic ring m

1r The radius of the Q point m
2r The radius of the P point m

× The vector product −

Figure 3. Structures of (a) Type III and (b)Type IV CMSs.

Finally, the bullet list of key variables in the above equations is shown in Table 3.

Table 3. The bullet list of key variables.

Symbol Physical Meaning Unit

B The magnetic-field vector −
Br1 The residual flux density of the inner magnetic ring T
Br2 The residual flux density of the outer magnetic ring T

Fsv′ (z) The axial force between the surface s and the surface v′ N
h1 The half-height of the inner magnetic ring m
h2 The half-height of the outer magnetic ring m
J The surface current density vector −

jU The surface current density of surface 1 A/m2

jL The surface current density of surface 1′ A/m2

jI The surface current density of surface 3 A/m2

jO The surface current density of surface 3′ A/m2

n The unit normal vector −
R1 The inside radius of the inner magnetic ring m
R2 Theoutside radius of the inner magnetic ring m
R3 The inside radius of the outer magnetic ring m
R4 Theoutside radius of the outer magnetic ring m
r1 The radius of the Q point m
r2 The radius of the P point m
× The vector product −
µ0 The permeability of the vacuum V·s/(A·m)
α The included angles between Q and the y axis rad
β The included angles between P and the y axis rad

3. Analytical Stiffness of Halbach-Cylinder Magnetic Spring
3.1. Basic Configuration of an HCMS

A Halbach array is a special arrangement of permanent magnets that enhances the
magnetic field on one side of the array, while canceling the field to near zero on the other
side. This is achieved by having a spatially rotating pattern of magnetization, which can be
understood by observing the magnetic flux distribution shown in Figure 4. In Figure 4a, the
pattern of magnetization rotates clockwise, so that the left magnetic field is enhanced while
the right field is canceled. In Figure 4b, the pattern of magnetization rotates anticlockwise,
so that the right magnetic field is enhanced while the left field is canceled. To date, two
types of Halbach arrays have been proposed, namely the flat Halbach array [24] and the
Halbach cylinder [26].
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each ‘ -N M ’-type HCMS, both the inner and the outer Halbach cylinders have four dif-
ferent configurations according to the magnetization directions, leading to sixteen 

Figure 4. Formation mechanism of Halbach array: (a) left-side enhancement and (b) right-
side enhancement.

Based on the mechanism in Figure 4, two coaxialHalbach cylinders are utilized to
build an HCMS in this paper. That is to say, the HCMS is composed of the inner Halbach
cylinder and the outer Halbach cylinder. In order to generate a larger magnetic force
of the HCMS, the magnetization direction of the outer Halbach cylinder should change
anticlockwise from top to bottom, while it should change clockwise for the inner Halbach
cylinder. According to Figure 4, the magnetic field between the inner and outer Halbach
cylinders can be greatly enhanced.

In this paper, an HCMS is denoted as an ‘N-M’ type (N, M should be odd), which
means that the outer Halbach cylinderconsists of N-layer magnetic rings and the inner
Halbach cylinderconsists of M-layer magnetic rings. Then, there are total NM CMSs in
the HCMS. Therefore, the magnetic force and stiffness of the ‘N-M’-type HCMS can be
written as

FH(z) =
NM
∑

i=1
F̃i(z)

KH(z) = −∂FH(z)/∂z
(20)

where F̃i(z) is the magnetic force of the ith CMS, which can refer to Section 2. As for each
‘N-M’-type HCMS, both the inner and the outer Halbach cylinders have four different
configurations according to the magnetization directions, leading to sixteen structures. A
representative structure of the 3-3-type HCMS is shown in Figure 5. The vertical center po-
sition of the outer Halbach cylinder is denoted as the horizontal axis, and the displacement
between the inner and outer Halbach cylinders is denoted as z.
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Figure 5. Schematic structure of the 3-3-type HCMS.
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3.2. Stiffness Formulationof the 3-3-Type HCMS

As for the 3-3-type HCMS in Figure 5, its magnetic force can be calculated as

F3-3
H (z) =

C

∑
i=A

C′

∑
j=A′

Fij(z) (21)

where Fij(z) denotes the magnetic force of the CMS, consisting of the i and j magnetic rings.
Furthermore, Fij(z) can be calculated using Equation (22) based on Table 2.

FAA′ = F2(z + H1 + H2 − H4 − H5, 2H1, 2H4)

FAB′ = −F3(z + H1 + H2, 2H1, 2H5)

FAC′ = −F2(z + H1 + H2 + H5 + H6, 2H1, 2H6)

FBA′ = −F4(z− H4 − H5, 2H2, 2H4)

FBB′ = F1(z, 2H2, 2H5)

FBC′ = F4(z + H5 + H6, 2H2, 2H6)

FCA′ = −F2(z− H2 − H3 − H4 − H5, 2H3, 2H4)

FCB′ = F3(z− H2 − H3, 2H3, 2H5)

FCC′ = F2(z + H4 + H5 − H2 − H3, 2H3, 2H6)

(22)

By combining Equations (21) and (22), F3-3
H (z) can be written as

F3-3
H (z) = F2(z + H1 + H2 − H4 − H5, 2H1, 2H4)− F3(z + H1 + H2, 2H1, 2H5)−

F2(z + H1 + H2 + H5 + H6, 2H1, 2H6)− F4(z− H4 − H5, 2H2, 2H4)+

F1(z, 2H2, 2H5) + F4(z + H5 + H6, 2H2, 2H6)− F2(z− H2 − H3 − H4 − H5, 2H3, 2H4)

+F3(z− H2 − H3, 2H3, 2H5) + F2(z + H4 + H5 − H2 − H3, 2H3, 2H6)

(23)

Then, the stiffness formulation of the 3-3-type HCMS can be written as

K3-3
H (z) = K2(z + H1 + H2 − H4 − H5, 2H1, 2H4)− K3(z + H1 + H2, 2H1, 2H5)−

K2(z + H1 + H2 + H5 + H6, 2H1, 2H6)− K4(z− H4 − H5, 2H2, 2H4)+

K1(z, 2H2, 2H5) + K4(z + H5 + H6, 2H2, 2H6)− K2(z− H2 − H3 − H4 − H5, 2H3, 2H4)

+K3(z− H2 − H3, 2H3, 2H5) + K2(z + H4 + H5 − H2 − H3, 2H3, 2H6)

(24)

Finally, the stiffness characteristics of the 3-3-type HCMS can be analytically investi-
gated based on Equations (9), (15), (17), (19) and (24).

4. Parametric Analysis of Negative Stiffness of Basic CMSs
In this section, the analytical formulas in Section 2 are utilized to reveal the stiffness

characteristics of each basic CMS. Geometric parameter values of the CMS are listed in
Table 4 and Br1 = Br2 = 1 T.

Table 4. Parameter values of the CMS.

Parameter R1 R2 R3 R4 h1 h2

Value 10 mm 17.5 mm 22.5 mm 30 mm 10 mm 10 mm

4.1. Stiffness Curves of the Four Basic CMSs

Magnetic force curves of the four basic CMSs are calculated and shown in Figure 6.
The following can be seen: (i) In Figure 6a,b, The force equilibrium positions of Type I
and Type II CMSs are located on the horizontal axis (i.e., z = 0). However, the magnetic
force of the Type III CMS in Figure 6c reaches the maximum positive value (repulsive force)
at z = 0 and the magnetic force of the Type IV CMS in Figure 6d reaches the maximum
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negative value (attractive force) at z = 0. (ii) Magnetic force curves of Type I and Type II
CMSs have asimilar sine-like shape, and the latter has the larger peak value. (iii) Magnetic
force curves of Type III and Type IV CMSs are symmetrical in terms of the axis of z = 0,
but the directions are reversed.
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Next, the stiffness curves of four basic CNSs are calculated and shown in Figure 7.
The following can be seen: (i) All stiffness curves are nonlinear. (ii) Both Type I and
Type II CMSs have symmetrical negative stiffness near z = 0. The stiffness of Type
III CMSs is negative when z ∈ [−10, 0], and the stiffness of Type IV CMSs is negative
when z ∈ [0, 10]. (iii) Type II CMSs have the largest negative stiffness and the widest
displacement range of negative stiffness, but Type IV CMSs have the best uniformity of
negative stiffness. Therefore, it can be concluded that any CMS has negative stiffness with
different displacement ranges.

Considering the equilibrium position, Type II CMSs may be the most suitable for
compact design. In real-world applications, the amplitude, the displacement range, and
the uniformity of negative stiffness are three important metrics of QZS vibration isolators.
Consequently, it is valuable to investigate the effects of key geometric parameters on the
three metrics of K2, including the coaxial thickness, the radial thickness, and the gap
between the two magnetic rings. R1 and R4 are fixed.
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Figure 7. Stiffness curves of the four basic CMSs.

4.2. Effects of the Axial Thicknesson K2

Firstly, the axial thickness (h2= 5mm) of the outer magnet is fixed, and the axial
thickness (h1) of the inner magnet is defined as h1 = a× h2. Here, a is the axial thickness
ratio, which is chosen as {0.4, 0.6, 0.8, 1.0, 1.2}. In this case, the curves of K2 are plotted in
Figure 8a. It can be seen that (i) as a increases, the displacement range and uniformity of
negative stiffness also increase, and (ii) as a increases, the amplitude of negative stiffness
first increases and then decreases. It will reach the maximum value when a = 1.0. Further-
more, K2, with different axial thicknesses (a = 1.0),is calculated as shown in Figure 8b. The
results show that (i) as the axial thickness increases, the displacement range of negative
stiffness will also increase, and the uniformity hardly changes, and (ii) as the axial thickness
increases, the amplitude of negative stiffness first increases and then decreases.
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Figure 8. Effects of (a) the relative and (b) the absolute axial thickness on K2.

4.3. Effects of the Radial Thickness Ratio on K2

Secondly, the radial thickness of the inner magnetic ring and the gap are fixed. That
is to say, R1 ∼ R3 are fixed and R4 = R3 + g× (R2 − R1). Here, g is the radial thickness
ratio, which is chosen as {0.4, 0.6, 0.8, 1.0, 1.2}. In this case, the curves of K2 are plotted in
Figure 9. It can be seen that (i) with the increase in g, the displacement range of negative
stiffness hardly changes, and (ii) with the increase in g, the amplitude of negative stiffness
will also increase, but the uniformity of negative stiffness will decrease.
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Figure 9. Effects of g on K2.

4.4. Effects of the Gap (d) on K2

Thirdly, the coaxial and radial thicknesses of the two magnetic rings are fixed. That is
to say, h1, h2, R1, R2, R4 − R3 are fixed and R3 = R2 + d. Here, the values of d are chosen as
{2, 4, 6, 8, 10}. In this case, the curves of K2 are plotted in Figure 10. It can be seen that both
the displacement range and the uniformity of negative stiffness will increase with d, but
the amplitude will decrease with d.
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By referring to Figures 7–10, it can be concluded that (i) the amplitude of negative
stiffness conflicts with the uniformity of negative stiffness, and there should be a trade-off
design in practice, and that (ii) two magnetic rings with the same optimal coaxial thickness
can lead to the largest amplitude of negative stiffness.

5. Parametric Analysis of Negative Stiffness of the 3-3-Type HCMS
In this section, the analytical formulas in Section 3 are utilized to reveal the stiffness

characteristics of the 3-3-type HCMS. Its geometric parameter values are listed in Table 5
and Br1 = Br2 = 1.

Table 5. Parameter values of the 3-3-type HCMS.

Parameter R1 R2 R3 R4 H1 ∼ H6

Value 10 mm 17.5 mm 22.5 mm 30 mm 5 mm
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5.1. Validation of the Analytical Model by Finite Element Modeling

In order to validate the analytical formulas of magnetic force and stiffness in
Equations (23) and (24), COMSOL Multiphysics® software (v6.3, COMSOL, Inc., Stock-
holm, Sweden) is utilized for finite element simulations on magnetic forces (stiffness cannot
be directly simulated). The finite element model (FEM) of the 3-3-type HCMS in Figure 5 is
built as shown in Figure 11a, where the inner and outer Halbach cylinders are automatically
meshed by using the tetrahedral elements. Then, parametric-sweep simulations are carried
out over the distance z and the corresponding forces are simulated and recorded. At the
same time, magnetic force and stiffness curves of the same 3-3-type HCMSare calculated by
using the analytical formulas. Next, the analytical and simulated magnetic force curves are
compared in Figure 11b, and the stiffness curve is shown in Figure 11b. The following can
be seen: (i) As for the magnetic force, the analytical and simulation results are almost con-
sistent. This indicates that the proposed analytical model is accurate and feasible. (ii) The
magnetic force is equal to zero at z = 0. That is to say, the force equilibrium position is
located on the horizontal axis. The magnetic force curve has a sine-like shape near the
equilibrium position. (iii) The stiffness curve is symmetrical in terms of the axis of z = 0.
In particular, the stiffness is negative near the equilibrium position, which proves that the
3-3-type HCMS can generate a negative stiffness.
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Figure 11. (a) FEM, (b) magnetic force, and (c) stiffness of the 3-3-type HCMS.
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Figure 11. (a) FEM, (b) magnetic force, and (c) stiffness of the 3-3-type HCMS.

5.2. Comparison of the 3-3-Type HCMS with a Traditional Single-Layer CMS

In order to validate the superiority of the 3-3-type HCMS, traditional Type I CMSs
and Type II CMSs with the same geometric dimensions are also considered and compared.
Then, their stiffness curves are compared in Figure 12. It is obvious that the amplitude
of negative stiffness of the 3-3-type HCMS at z = 0 is almost five times that of Type I
CMSs and Type II CMSs. The results verify that a large-amplitude negative stiffness can
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be generated by the HCMS. Furthermore, it is valuable to investigate the effects of key
geometric parameters on the three metrics of K3-3

H .
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5.3. Effects of Geometric Parameters on K3-3
H

Firstly, H1 = H2 = H3 = H= 5 mm and H4 = H5 = H6 = a × H. The relation
curve between K3-3

H and a is plotted in Figure 13a. Secondly, R1 ∼ R3 are fixed and
R4 = R3 + g× (R2 − R1). The relation curve between K3-3

H and g is plotted in Figure 13b.
Thirdly, H1 ∼ H6, R1, R2, R4 − R3 are fixed and R3 = R2 + d. The relation curve between
K3-3

H and d is plotted in Figure 13c. Compared with Figures 8–10, similar trends can be seen
in Figure 13.
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5.4. Nonlinear Stiffness Characteristics of All 3-3-Type HCMSs

As mentioned before, each ‘N-M’-type HCMS has sixteen structural configurations.
Here, all structural configurations of the 3-3-type HCMS are shown in Figure 14. It can be
seen that the first structural configuration matches the one shown in Figure 5. The same
geometric values in Table 4 are adopted, and the stiffness curves are plotted in Figure 15.
The results show the following: (i) There are only eight different nonlinear stiffness curves
due to the structural duality. (ii) Each 3-3-type HCMS has negative stiffness, but the
displacement range of negative stiffness is different. Furthermore, the configurations on
the main diagonal (i.e., the diagonal, red dotted line) have negative stiffness near z = 0
and are useful for compact design. (iii) The amplitude of negative stiffness of any 3-3-type
HCMS is larger than that of a single-layer magnetic spring. Both the first and the eleventh
3-3-type HCMS have the largest amplitude of negative stiffness at z = 0.
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Figure 14. Sixteen structural configurations of the 3-3-type HCMS.
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Figure 15. Stiffness curves of (a) 1st to 4th, (b) 5th to 8th, (c) 9th to 12th, and (d) 13th to 16th
3-3-type HCMSs.

5.5. A Case Study on Optimizing the Structure of the 3-3-Type HCMS

As shown above, the nonlinear negative stiffness characteristics of 3-3-type HCMSs
are related to many geometric parameters. Generally speaking, it is complex to optimally
design its structure due to the multi-variable optimization. In engineering applications,
however, some geometric parameters can be determined in advance. Taking the 3-3-type
HCMS in Figure 5 as an example, it can be seen that R1, R4 are limited by the working
space and d should be as small as possible in terms of installation. Once R1, R4, d are
fixed, there are only two parameters to be optimized, namely R2 and H. Here, we choose
R1 = 10 mm, R4 = 30 mm, and d = 2 mm. Then, the stiffness curve at z = 0 with respect
to R2 and H is shown in Figure 16. The result shows that R2 = 14 mm and H = 11 mm can
be selected to obtain the maximum-amplitude negative stiffness.
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Figure 16.The stiffness surfacewith respect to 2R and H ( 0z = ).

6. Potential Solution for HCMSs with Larger-Amplitude and 
Wider-Range Negative Stiffness

In real-world applications, a larger-amplitude and wider-range negative stiffness is 
desirable. To address this challenge, the number of layers of the Halbach cylinder is in-
creased to look for potential solutions. Here, the 5-3-type and 3-5-type HCMSs are shown 
in Figure 17. As for these two HCMSs, two cases are considered. The first one is that each
magnetic ring in the outer and inner Halbach cylinders has the same height (i.e., 10mm ), 
which is denoted as Type I. The other one is that the total heights of the outer and inner 
Halbach cylinders are the same (i.e., 30mm ), which is denoted as Type II. Other geo-
metric parameter values can be found in Table 4. Then, stiffness curves of the 5-3-type 
and 3-5-type HCMSs are compared with that of the 3-3-type HCMS, as shown in Figure 
18. The results show that (i) under the same volume, increasing the layer number of ei-
ther the outer Halbach cylinder or the inner Halbach cylinder cannot enlarge the ampli-
tude and the displacement range of negative stiffness; (ii) by keeping the same height of 
magnetic rings, increasing the layer number of either the outer Halbach cylinder or the
inner Halbach cylinder can enlarge the amplitude and the
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6. Potential Solution for HCMSs with Larger-Amplitude and
Wider-Range Negative Stiffness

In real-world applications, a larger-amplitude and wider-range negative stiffness
is desirable. To address this challenge, the number of layers of the Halbach cylinder is
increased to look for potential solutions. Here, the 5-3-type and 3-5-type HCMSs are
shown in Figure 17. As for these two HCMSs, two cases are considered. The first one
is that each magnetic ring in the outer and inner Halbach cylinders has the same height
(i.e., 10 mm), which is denoted as Type I. The other one is that the total heights of the outer
and inner Halbach cylinders are the same (i.e., 30 mm), which is denoted as Type II. Other
geometric parameter values can be found in Table 4. Then, stiffness curves of the 5-3-type
and 3-5-type HCMSs are compared with that of the 3-3-type HCMS, as shown in Figure 18.
The results show that (i) under the same volume, increasing the layer number of either the
outer Halbach cylinder or the inner Halbach cylinder cannot enlarge the amplitude and
the displacement range of negative stiffness; (ii) by keeping the same height of magnetic
rings, increasing the layer number of either the outer Halbach cylinder or the inner Halbach
cylinder can enlarge the amplitude and the displacement range of negative stiffness; and
(iii) the 5-3 Type II HCMS is better than the 3-5 Type II HCMS in terms of compact design
and the amplitude of negative stiffness.

Despite the above promising characteristics, there are still the following disadvantages
or limitations that deserve to be considered.

(1) Compared with traditional single-layer magnetic springs, more magnetic rings
are utilized in the structure of HCMSs. In this case, the total weight and volume of the
magnetic spring will increase. At the same time, it needs to manufacture magnetic rings
with different magnetization directions, leading to high costs.

(2) The performance of QZS is sensitive to its structural integrity, which will impose
strict demands on manufacturing and assembling magnets. As for the HCMS, there are
multiple magnetic rings. Therefore, higher manufacturing and assembling precision is
required. In return, the performance of the HCMS is susceptible to manufacturing or
assembling errors in practice.

(3) Both the design and the performance of HCMSs depend strongly on the material
properties of the magnets. In engineering applications, however, the possibility of demag-
netization or even complete loss of magnetism may happen in magnets due to long-term
service or severe working conditions.

(4) As for the HCMS, there is a conflict between the amplitude and the uniformity of
negative stiffness. The reason may be because only an inner Halbach cylinder is used.
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7. Conclusions
QZS is very promising for low-frequency vibration isolation due to the nonlinear HSLD

stiffness, and a large-amplitude negative stiffness is needed for heavy-load applications.
Thanks to the advantage of nocontact, magnetic springs have been widely utilized to obtain
negative stiffness. However, the negative stiffness of existing magnetic springs is often not
enough for heavy-load applications. To overcome this issue, this paper investigated novel
magnetic springs with large-amplitude negative stiffness by introducing Halbach arrays.
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The key outcome of this paper is to present a “building block” methodology for designing
magnetic springs with specific requirements. Based on this, many variants of HCMSs can
be easily analyzed and optimized. The main highlights of this paper include the following:

(1) The analytical stiffness formula of the HMCS is built based on the Amperian current
model and the Biot–Savart law.

(2) HCMSs can generate negative stiffness with different equilibrium positions, and the
amplitude of negative stiffness of HCMSs is much larger than that of existing single-layer
magnetic springs.

(3) It is difficult to increase the amplitude and the uniformity of negative stiffness
simultaneously, so a trade-off strategy is needed to design the HCMS.

(4) Increasing the layer number of Halbach cylinders can result in larger-amplitude
and wider-range negative stiffness.

In future, novel HCMS configurations consisting of an outer cylinder and multiple
inner cylinders can be investigated to deal with the conflict between the amplitude and the
uniformity of negative stiffness. In addition, HCMS-integrated QZS will be designed and
tested for heavy-load applications.
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