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MYELOID NEOPLASIA
The JAK2 46/1 haplotype influences PD-L1 expression
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Miguel Manzanares2,4,*

1Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de
Investigación Biomédica en Red de Oncología, Madrid, Spain; 2Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa, Centro
Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; 3Department of Biotechnology, Facultad de Ciencias Experimentales,
Universidad Francisco de Vitoria, Madrid, Spain; 4Functional Genomics Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain;
5Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; and 6Department of Human Genetics, Faculty of
Medicine, University of Southampton, Southampton, United Kingdom
m
 http://ashpublications.org/blood/article-pdf/145/19/219
KEY PO INT S

• PD-L1 expression is
increased in 46/1
haplotype carriers.

• 3D chromatin structure
differs between JAK2
haplotypes, and
noncoding elements in
the JAK2 loci regulate
both JAK2 and PD-L1
expression.
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Although described more than a decade ago, the mechanism by which the JAK2 46/1
haplotype increases the risk of developing JAK2-mutated myeloproliferative neoplasms
(MPNs) remains unexplained. Inflammation and immunity are linked to MPN development
and thus could be relevant to the mechanism by which 46/1 mediates its effect. Here, we
show that programmed death-1 receptor ligand (PD-L1) expression is elevated in 46/1
haplotype, both in healthy carriers and in CD34+ cells from patients with MPN. Using circular
chromosome conformation capture, we observed that PD-L1 and the neighboring PD-L2 loci
physically interact with JAK2 in a manner that differs between 46/1 and nonrisk haplotypes.
CRISPR/Cas9 genome editing identified a region within JAK2 intron 2 that influences both
JAK2 and PD-L1 expression. We suggest that increased PD-L1 expression may be relevant to
the mechanism by which 46/1 leads to an increased inherited risk of developing MPN.
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Introduction
Classic Philadelphia-negative myeloproliferative neoplasms
(MPNs) are clonal hematopoietic stem cell disorders charac-
terized by the proliferation of ≥1 cell lineage.1 A key compo-
nent in their pathogenesis is aberrant cytokine pathway
signaling, caused in most cases by coding mutations in JAK2,
CALR, and MPL.1

The great majority of MPN cases are sporadic (with no familial
aggregation); however, several common inherited genetic vari-
ants have been associated with an increased inherited risk of
developing an MPN.2,3 Of these, the JAK2 46/1 haplotype, a
>200 kb region at 9p24.1, which includes the JAK2, INSL4, and
INSL6 genes, is probably the most relevant, because it explains
~28% of the population-attributable risk of developing an
MPN.4 This common low penetrance haplotype accounts for a
quarter of JAK2 alleles in the general population but as many as
70% to 80% of mutated JAK2 alleles in MPNs. 46/1 was
described more than a decade ago but, despite its obvious
importance and clinical associations (eg, association with
increased JAK2 V617F allele burden in polycythemia vera and
lower constitutional symptoms/better survival in myelofi-
brosis),5,6 the mechanism by which it exerts its effects remains
unclear.4,7,8 Two nonexclusive hypotheses have been proposed:
the hypermutability of JAK2 on the 46/1 haplotype; and the
UME 145, NUMBER 19
“fertile ground” hypothesis, in which JAK2 V617F is proposed to
have a selective advantage if it is acquired on 46/1.3,9

Although not part of the 46/1 haplotype, the gene encoding
CD274/programmed death-1 receptor ligand (PD-L1; hereafter
referred to as PD-L1) is also located at 9p24.1, ~320 kb prox-
imal to JAK2. This is of interest because PD-L1 is overexpressed
in JAK2 V617F-mutated MPN cases, potentially leading to
immune escape.10 Furthermore, PD-L1 is expressed on disease-
initiating MPN stem cells and the degree of PD-L1 expression in
CD34+ cells has been linked to JAK2 V617F mutational
burden.11,12 Because both the presence and mutational burden
of JAK2 V617F is strongly associated with 46/1,4,7,8,13 we aimed
to explore whether there was any relationship between 46/1
and PD-L1 expression, which could, for example, be driven by
long-range cis-regulatory elements within the region or struc-
tural alterations to chromatin, independent of JAK2 V617F
status.

Study design
Patients and samples
Peripheral blood was collected from healthy blood donors after
informed consent was obtained. Frozen CD34+ cells from JAK2
V617F-positive patients with MPN were obtained from the
Hospital Universitario 12 de Octubre Biobank. This study was
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conducted according to the biomedical research guidelines of
the Declaration of Helsinki and approved by the Ethics Com-
mittee of Hospital Universitario 12 de Octubre (no. 16/096).
TaqMan single nucleotide polymorphism (SNP) genotyping
analysis (C_31941696_10; Thermo Fisher) was used for hap-
lotyping (see the supplemental Methods, available on the
Blood website).

PD-L1 protein levels
PD-L1 expression in leukocyte populations and cell lines (K562
and HEL) was studied by flow cytometry. For CD34+ cells from
patients with MPN, PD-L1 enzyme-linked immunosorbent assay
was used (Thermo Scientific; catalog no. BMS2327). For further
details, see the supplemental Methods.

4C-Seq
Circular chromosome conformation capture (4C) technology
allows for the identification of interactions that take place
between a defined genomic region (viewpoint [VP]) and the rest
of the genome. The protocol we used is described in the
supplemental Methods; in brief, we designed primers to study 7
VP around and within the 46/1 JAK2 haplotype, selected by the
presence of markers of regulatory activity. 4C followed by deep
sequencing (4C-Seq) was performed, as previously described,14

on 107 granulocytes purified from peripheral blood by Ficoll
gradient (Ficoll-Paque PLUS; GE Healthcare; 2 nullizygous for
the 46/1 haplotype and 2 homozygous for the 46/1 haplotype).
Quantification of the interactions between each VP and the
PD-L1 and PD-L2 regions (chr9:5447958-5470872 and
chr9:5507588-5570246, respectively) were performed by
calculating the sum of the normalized reads counts for each
sample within the regions of interest. To study significant con-
tacts, the frequency of captured sites per window was used to fit
a distance decreasing monotone function, and z scores were
calculated from its residuals using a modified version of 4C-
Seq.15 Significant contacts were considered in cases in which
the z score was >2 in both replicates and deviated significantly
(adjusted P < .05) from its normal cumulative distribution in at
least one of the replicates. After data analysis, processed reads
and interactions were visualized using the WashU Epigenome
Browser (https://epigenomegateway.wustl.edu/).
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Figure 1. JAK2 46/1 haplotype influences PD-L1 expression
levels. (A) The percentage of PD-L1–expressing cells, measured by
flow cytometry, in different peripheral blood cell populations from
healthy donors (46/1 nullizygous [blue] and 46/1 homozygous [red];
n = 37 each). *P < .05 (nonparametric Kruskal-Wallis test). (B) PD-L1
protein levels, determined by enzyme-linked immunosorbent assay
and expressed as PD-L1/total protein (pg/μg) in CD34+ cells
obtained from bone marrow of JAK2-positive patients with MPN
(46/1 nullizygous [blue], n = 11; 46/1 homozygous [red], n = 9). Error
bars indicate standard error of the mean. B, B lymphocytes; NK,
natural killer cells; NKT, natural killer T cells; T, T lymphocytes.

PD-L1 EXPRESSION AS A DRIVER OF MPN INHERITED RISK
Cell culture and transfection and CRISPR
experiments
K562 and HEL cell lines were cultured as described in the
supplemental Methods. For genome editing, K562 cells were
transfected with the CRISPR/Cas9 gene-editing tool as
described.16 A total of 5 × 105 K562 cells were plated in 6
multiwell plates (MW6) and transfected with 1.25 μg of each
plasmid using lipofectamine 3000, following the manufacturer’s
instructions. For HEL cells, 5 × 106 cells were electroporated
with 35 μg of each plasmid using the Bio-Rad Gene Pulser II
with the following conditions: 975 μF, 264 mV, and 22 milli-
seconds. Forty-eight hours after transfection, single GFP+ cells
were sorted using a FACSAria Fusion (BSC II). Clones were
grown, and DNA was extracted and genotyped using Quick-
Extract Solution (Lucigen). For HEL cells, 2 rounds of electro-
poration were performed to obtain high deletion efficiency.
K562 cells were treated with 10 ng/mL of human interferon
gamma overnight (PeproTech; catalog no. 300-02). Guides and
primers used for genotyping are described in supplemental
Table 4. For quantitative polymerase chain reaction methods,
see the supplemental Methods.

Statistics
Student t test or 1-way analysis of variance (GraphPad PRISM
8.4.3) were used for independent samples, depending on the
experimental design.

Results and discussion
To explore the possibility that PD-L1 expression is influenced by
JAK2 haplotype status, we performed flow cytometry to measure
PD-L1 levels in different peripheral blood cell populations from a
cohort of healthy individuals selected as either homozygous or
nullizygous for 46/1 (n = 37 each). As shown in Figure 1A, there is a
clear tendency toward overexpression of PD-L1 in all cell types in
46/1 homozygotes, which was statistically significant for natural
killer lymphocytes and monocytes. We also studied PD-L1 levels in
CD34+ cells from JAK2 V617F-positive patients with MPN (nullizy-
gous, n = 11; homozygous, n = 9) and observe a clear tendency
towardhigher expression in 46/1homozygotes as shownpreviously
(Figure 1B).12
*

T 
ce

lls

B ce
lls

NKT 
ce

lls

Gra
nu

lo
cy

te
s

M
ono

cy
te

s

Cell type

0.0

0.1

0.2

0.3

0.4

B

46
/1

 n
ull

izy
gous

46
/1

 h
om

ozy
gous

CD34+ cells

PD
L1

/P
ro

t t
ot

al
 (p

g/
ug

)

46/1 nullizygous

46/1 homozygous

8 MAY 2025 | VOLUME 145, NUMBER 19 2197

n.pdf by guest on 12 M
ay 2025

https://epigenomegateway.wustl.edu/


JAK2 INSL4

INSL6

HVP2I 
0000 4400000 4500000 4600000 4700000 4800000 4900000 5000000 5100000 5200000 5300000 5400000 5500000 5600000 5700000 5800000

HVP3I

HVP4I

HVP8I

HVP10I

HVP5I

HVP6I

PD-L1PD-L2 RIC1

VP2

VP3

VP4

VP8

VP10

VP5

VP6

46/1 homozygous

46/1 nullizygous

46/1 homozygous

46/1 nullizygous

46/1 homozygous

46/1 nullizygous

46/1 homozygous

46/1 nullizygous

46/1 homozygous

46/1 nullizygous

46/1 homozygous

46/1 nullizygous

46/1 homozygous

46/1 nullizygous

46/1 haplotype PD-L1/2 locus

HGLIS3 SLC1A1 CDC37L1 RCL1 JAK2 INSL4 RLN2 CD274
CD274
CD274

PDCD1LG2

KIAA1432 ML
KKIAA1432

KIAA1432
RLN2

RLN1
PLGRKT ERMP1

chr9

RCL1 INSL6

MIR101-2

RCL1
RCL1

SPATA6L AK3
AK3
AK3
AK3
AK3

PPAPDC2

0.00

0.01

0.02

0.03

0.04

PD-L1 PD-L2

Hom HomNull Null

0.00

0.01

0.02

0.03

0.04

Hom HomNull Null

0.00

0.02

0.04

0.06

Hom HomNull Null

0.00

0.01

0.02

0.03

Hom HomNull Null

0.00

0.01

0.02

0.03

Hom HomNull Null

0.00

0.01

0.02

0.03

Hom HomNull Null

0.00

0.01

0.02

0.03

0.04

Hom HomNull Null

No
rm

al
ize

d 
re

ad
 co

un
ts

No
rm

al
ize

d 
re

ad
 co

un
ts

No
rm

al
ize

d 
re

ad
 co

un
ts

No
rm

al
ize

d 
re

ad
 co

un
ts

No
rm

al
ize

d 
re

ad
 co

un
ts

No
rm

al
ize

d 
re

ad
 co

un
ts

No
rm

al
ize

d 
re

ad
 co

un
ts

Figure 2. Chromatin contacts of JAK2 with the PD-L1 locus differ between the nonrisk and the 46/1 haplotype. Visualization of a 1.6 Mb region from human chro-
mosome 9, spanning the JAK2 and PDL1/2 loci (hg19 chr9:4300000-5900000). Chromatin interactions established from the 7 distinct genomic regions or viewpoints (VP2, VP3,
VP4, VP8, VP10, VP5, and VP6; genomic coordinates in supplemental Table 2) are shown as spider plots. Healthy individuals who were 46/1 nullizygous (green and light green,
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Figure 3. JAK2 haplotype regulates PD-L1 expression as shown by CRISPR/Cas9 deletion. (A) Genomic locus of JAK2, indicating the region of intron 2 that was deleted
to test its regulatory activity (hg19 chr9:5006961-5018796) based on the location of strongly linked 46/1 SNPs (see the supplemental Methods; supplemental Table 3).
(B) Expression of JAK2 (left), PD-L1 (middle), and RIC1 (right) in control (green), heterozygous (red), and homozygous (blue) intron 2 element (E_i2) deleted K562 clones. (C)
Expression of JAK2 (left), PD-L1 (middle), and RIC1 (right) in control (green), heterozygous (red), and homozygous (blue) intron 2 element (E_i2) deleted K562 clones treated
overnight with 10 ng/mL of interferon gamma. In panels B-C, mRNA levels were normalized usingGAPDH as an endogenous control, and data were analyzed by 1-way analysis
of variance followed by Tukey multiple comparison test; *P < .05; **P < .01; ***P < .005; ****P < .001. Het, hetrorozygous; Hom, homozygous; IFN-γ, interferon gamma; mRNA,
messenger RNA.
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Because the PD-L1 locus lies in close proximity to the JAK2
gene and the 46/1 haplotype block, we hypothesized that
transcriptional regulatory elements located within the haplo-
type might physically interact with PD-L1 and influence its
expression. Therefore, we selected 7 regions (VPs) within or in
the immediate vicinity of the haplotype (see the supplemental
Methods for details) to map long-distance chromatin inter-
actions through 4C-Seq. Using neutrophils from 46/1 nulli-
zygous (n = 2) and 46/1 homozygous (n = 2) healthy donors,
Figure 2 (continued) n = 2) or 46/1 homozygous (blue and light blue, n = 2) are show
corresponding to the 46/1 haplotype and the PDL-1/2 loci are boxed. Black horizontal arr
of all genes in the region, and the names of those referred to in this study are included.
both PD-L1 (red) and PD-L2 (blue). As indicated, the left column for each locus represen
there is a marked reduction in normalized read counts between VP2 and PD-L1 on comp
interaction between VP2 and PD-L2, but this is much more modest.

PD-L1 EXPRESSION AS A DRIVER OF MPN INHERITED RISK
we found that the JAK2 locus has contacts with both the PD-
L1 and PD-L2 loci. Furthermore, the three-dimensional (3D)
chromatin interactions between the JAK2 and PDL1/2 regions
differed between 46/1 homozygotes and 46/1 nullizygotes
(Figure 2).

Finally, we aimed to identify putative transcriptional cis-
regulatory elements present in the JAK2 haplotype that
could be involved in the regulation of PD-L1. We selected a 12
n for each VP, with differences between them around PD-L1/2 indicated. Regions
ows below the University of California Santa Cruz browser view indicate the position
On the right of each spider plot, normalized read counts (or contacts) are shown for
ts 46/1 homozygous (Hom) and right column 46/1 nullizygous (Null). As an example,
arison of 46/1 homozygotes with 46/1 nullizygotes. There is also a reduction in the

8 MAY 2025 | VOLUME 145, NUMBER 19 2199
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kb region located in JAK2 intron 2, based on the location of
strongly linked 46/1 SNPs (E_i2; Figure 3A; supplemental
Methods), and deleted it with CRISPR/Cas9 in the myeloid
cell line K562. Correctly deleted cells, both heterozygous
and homozygous, together with nondeleted controls
(supplemental Figure 3A), were isolated, and the expression of
JAK2, PD-L1, and RIC1 (a gene neighboring the PD-L1/2 locus
with minimal JAK2 contacts; Figure 2) was measured.
Expression of PD-L2 is barely detectable in myeloid cells, so
we did not include it in the analysis. Deletion of E_i2, either 1
or 2 copies, led to a strong reduction of JAK2 messenger RNA
levels, and PD-L1 expression was also reduced but only when
both alleles were deleted (Figure 3B). RIC1 expression did not
change in either heterozygous or homozygous deleted clones.
Because the expression of PD-L1 in K562 cells is low, we
increased its levels by stimulating cells with interferon
gamma17,18 (supplemental Figure 3B), observing the same
reduction in JAK2 and PD-L1 expression in the deleted cells
(Figure 3C). In addition, analysis of protein levels by flow
cytometry confirmed a decrease of PD-L1 in the homozygous
clone (supplemental Figure 3C). In addition, we studied the
effect of E_i2 deletion in HEL cells, an MPN line that contains
multiple copies of JAK2 V617F.19 We quantified the degree of
deletion of JAK2 in multiple clones (supplemental Figure 3D-
E) and observed that edited HEL cells have lower levels of PD-
L1 protein (supplemental Figure 3F). Thus, our data identified
a regulatory element located in the JAK2 haplotype that
influences PD-L1 expression.

It has been shown that only a minority of patients with clonal
hematopoiesis of indeterminate potential associated with the
JAK2 V617F mutation develop an MPN and that inflammation/
immunity as well as constitutional genetics plays a central role in
MPN progression.20-23 In this context, the PD1/PD-L1 axis has
been implicated in playing a key role in MPN development after
acquisition of JAK2 V617F.10 We have shown that the JAK2 46/
1 haplotype influences PD-L1 expression levels, and this may be
mediated by interacting transcriptional regulatory elements
within the JAK2 locus. Further investigations are needed to
confirm our hypothesis that increased PD-L1 expression is part
of the mechanisms by which 46/1 leads to an increased
inherited risk of developing MPN.
2200 8 MAY 2025 | VOLUME 145, NUMBER 19
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