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In multivariate time series forecasting, the most popular strategy for modeling the relationship 
between multiple time series is the construction of graph, where each time series is represented 
as a node and related nodes are connected by edges. However, the relationship between multiple 
time series is typically complicated, e.g. the sum of outflows from upstream nodes may be equal 
to the inflows of downstream nodes. Such relations widely exist in many real-world scenarios for 
multivariate time series forecasting, yet are far from well studied. In these cases, graph might 
be insufficient for modeling the complex dependency between nodes. To this end, we explore a 
new framework to model the inter-node relationship in a more precise way based our proposed 
inductive bias, Functional Relation Field, where a group of functions parameterized by neural 
networks are learned to characterize the dependency between multiple time series. Essentially, 
these learned functions then form a “field”, i.e. a particular set of constraints, to regularize the 
training loss of the backbone prediction network and enforce the inference process to satisfy these 
constraints. Since our framework introduces the relationship bias in a data-driven manner, it is 
flexible and model-agnostic such that it can be applied to any existing multivariate time series 
prediction networks for boosting performance. The experiment is conducted on one toy dataset to 
show our approach can well recover the true constraint relationship between nodes. And various 
real-world datasets are also considered with different backbone prediction networks. Results show 
that the prediction error can be reduced remarkably with the aid of the proposed framework.

1. Introduction

Multivariate time series forecasting has surged recently due to its strong expressiveness of the spatio-temporal dependence among 
the data and its enormous popularity in vast application areas, such as the prediction of urban traffic, computer network flow, cloud 
micro-services calling flow, and rigid body motion, to name a few [1–5]. Fig. 1 sketches the task of multivariate time series forecast-

ing. The most popular and straightforward strategy for modeling the relationship between multiple time series is the introduction of 
graph, where each time series is represented as a node and related nodes are connected by edges. This particular inductive bias for 
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Fig. 1. Multivariate time series forecasting. We have 𝑡 times steps of observed data for four time series. The task is to predict the future 𝑘 steps for all the time series.

multivariate time series prediction results in the so called spatial-temporal graph neural networks [2]. The graph structure is either 
given apriori (e.g. in traffic flow prediction, each road as a node has connected roads forming the graph) or learned based the simi-

larity between nodes [6,3,7]. However, in practice, the relationship between multiple time series is typically more complicated. For 
instance, there often exist physical constraints among the nodes, ranging from the equality between the inflow and the outflow for a 
node in a traffic network to the geometric constraints of the rigid body motion, even more complicated dependencies in video-related 
multi-modal learning [8]. Such relations widely exist in many real-world multivariate time series forecasting scenarios, yet are far 
from well studied. In these cases, graph might not be sufficient for characterizing the dependency between nodes.

As a remedy, in this work, we explore a new framework to model the inter-node relationship in a more precise manner than graph,

Functional Relation Field (FRF), where a group of functions parameterized by neural networks are learned to characterize the 
dependency between multiple time series explicitly. These learned functions are versatile: first they can then be used to discover the 
underlying graph structure by identifying the most relevant neighbors of the target node; and on the other hand, the learned functions 
will form a “field” where the nodes in the backbone prediction networks are further enforced to satisfy the constraints defined by these 
functions during both training and inference processes. Different from the traditional graph neural networks assuming similar time 
series only have edge connections, our framework models the dependency between nodes through an explicit functional relationship, 
e.g. a linear form to enforce the constraints between the flows between target and dependent nodes.

In our framework, we mainly solve the following two issues: (i) How to learn the functional field? We need to select the dependent 
nodes that have a relationship with the target node, and express the constraint in a functional form; (ii) How to guarantee the constraint 
satisfaction? The (functional) constraints relationship should be maintained in the predicted output in both the training and inference 
process.

To address these issues, we propose a two-stage approach that can discover the functional relations (i.e. constraints) from data 
and further integrate the constraints seamlessly when forecasting the multivariate time series. Specifically, we first train a neural 
network with a selected target node as its output and all the other nodes as dependent variables (i.e. the input of this neural network), 
and identify the most relevant dependent nodes based on this trained network. We then re-train it to learn the relationship among the 
target and the discovered relevant nodes. Next, we incorporate these functional constraints into the network backbones by imposing 
them to the predicted output during both training and test process. More precisely, the output of the network could be guaranteed to 
satisfy the constraints by utilizing the constraint-satisfied transformation and loss minimization. We compare the proposed approach 
with SVM, fully connected networks, fully connected LSTM, and five backbone models (i.e., STGCN [2], AGCRN [3], Autoformer [9], 
FEDformer [10], SCINet [11]). Experimental results show that our approach significantly improves the performance over the original 
network backbones and other baseline models.

Organization. The paper is organized as follows. We first review the related works in the following and compare them with 
our approach. Sec. 2 describes the proposed functional relation field, from a motivated example to a more general take. The two-

stage procedure is also elaborated in this part, Sec. 2.1 and, Sec. 2.2, respectively. Intensive experimental results on both synthetic 
and real-world tasks are presented in Sec. 3, including the experimental settings, prediction results, visualization, computational 
complexity analysis and ablation study. Finally, Sec. 4 concludes the paper.

Related work

Univariate time series forecasting. Recently, much research focuses on time series forecasting with deep learning models due 
to their powerful representational capability and prediction performance, including feed-forward neural network, RNN [12] and 
its variants LSTM [13] and GRU [14]. The transformer architecture and its variants [15–20,9,10] also made much progress on 
univariate time-series forecasting on learning long-range dependence. In order to model the trend and seasonality of time series in 
an interpretable way, N-beats [21] network that stacked very deep full-connection network based on backward and forward residual 
links has improved the multi-horizon prediction accuracy significantly. Moreover, DeepAR [22] and Deep State-Space Model (DSSM) 
[23] stack multi-layer LSTM network to generate parameters of one-step-ahead Gaussian predictive distributions for multi-horizon 
prediction.

Multivariate time series forecasting. Spatio-temporal graph neural networks [2,24–26] have been proposed to model the 
2

spatial correlation and temporal dependency in multivariate time series. Apart from capturing the temporal dependence, these 
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methods further model the spatial dependence among all time series via graph neural networks, leveraging the information from 
the neighboring time series to help forecasting the target one. It is well known that an informative graph structure is important to 
the graph time series forecasting. Therefore, many algorithms [3,27,7] were proposed to discovery the underlying graph structure. 
AGCRN [3] assumed the graph structure is unknown and adopted an adaptive approach to learn the embedding vectors for all nodes, 
and then replaced the adjacency matrix in graph convolutions with a function of the node embeddings. However, the similarity graph 
calculated with the learned node embedding is a dense and continuous graph instead of a sparse and discrete graph. Therefore, GTS 
[7] formulated the graph structure learning problem as a probabilistic graph model to learn the discrete graph through optimizing 
the mean performance over the graph distribution.

However, these graph-based approaches ignore the underlying constraints among the nodes, e.g. the equality between the inflow 
and the outflow for a node in a traffic network. Such relations widely exist in many real-world multivariate time series forecasting 
scenarios, yet are far from well studied. In these cases, graph might not be sufficient for characterizing the dependency between 
nodes. Different from these approaches, we precisely and explicitly characterize the underlying constraints (expressed as functional 
relations) between the multiple time series. This new inductive bias can be applied to different backbone networks to regularize both 
training and test process.

2. Methodology: functional relation field

Multivariate time series forecasting. Suppose we have 𝑁 time series {𝑥𝑖}𝑁𝑖=1 with length 𝑇 , written compactly as 𝑋 ∈ℝ𝑁×𝑇 . 
Each time series can be denoted as a node, where 𝑥𝑖,𝑡 ∈ℝ for each node 𝑖 and time step 𝑡. 𝑥𝑡 ∈ℝ𝑁 is the time slice of 𝑋 at the 𝑡-th 
time step. The multi-step forecasting problem of a multivariate time series can be formulated as predicting the future 𝑀 frames of 
the multivariates given the last 𝐻 time slices:

𝑦̂𝑡+1∶𝑡+𝑀 =𝐺Θ(𝑥𝑡−𝐻+1∶𝑡), (1)

where 𝑦̂𝑡+1∶𝑡+𝑀 represent predicted values at the future time steps, 𝑀 is the number of future steps, and we call 𝐺(⋅) backbone 
prediction network. Note that here we use 𝑦 to denote the output so as to differentiate it from the input 𝑥. And the loss function for 
learning the parameters of 𝐺(⋅) is defined as

min
Θ

(Θ) = 1
𝑀

‖𝑦𝑡+1∶𝑡+𝑀 −𝐺Θ(𝑥𝑡−𝐻+1∶𝑡)‖22 (2)

Forecasting with functional relations. In many real-world scenarios, the relationship between multiple time series is typically 
complicated, graph might not be sufficient for modeling their dependency, particularly for the cases values of multivariate time series 
at each time step are subject to some intrinsic constraints. Existing methods have not incorporated these constraints into their models. 
In this work, we intend to show that models with the account of constraints (expressed with functional relationship) are superior to 
those without constraints in terms of prediction performance. As an example, suppose that the flow in a computer network satisfies 
the homogeneous linear constraints, at each time step 𝑡, the following linear constraints hold for slice 𝑥𝑡 :

𝐴𝑥𝑡 = 0,∀𝑡, (3)

where 𝐴 ∈ℝ𝑚×𝑁 is a matrix that is constant across time. In other more complex cases, the constraints can be non-homogeneous, non-

linear, or even intertemporal. Here, we concentrate on time-invariant constraints that is not intertemporal. As such, the constraints 
can be described by a set of functions  with size 𝑚, i.e. functional relation field,

 = {𝑓1, 𝑓2, ..., 𝑓𝑚}. 𝑓𝑖(𝑥𝑡) = 0, ∀𝑖, ∀𝑡. (4)

In the linear constraints case, each functional constraint 𝑓𝑖(𝑥𝑡) = 0 corresponds to 𝐴𝑇
𝑖,∶𝑥𝑡 = 0, where 𝐴𝑖,∶ denotes the 𝑖-th row of the 

matrix 𝐴.

Based on the constraints defined above, we consider the following constrained multivariate time series prediction problem,

min
Θ

(Θ) = 1
𝑀

‖𝑦𝑡+1∶𝑡+𝑀 − 𝑦̂𝑡+1∶𝑡+𝑀‖22,
𝑠.𝑡. 𝑓𝑖(𝑦̂𝑡+𝜏 ) = 0, 1 ≤ 𝜏 ≤𝑀, 1 ≤ 𝑖 ≤𝑚.

(5)

However, in most real-world scenarios, neither the functional form 𝑓𝑖 nor the specific weights variables involved in the constraints 
are given, and therefore one of our objectives is to extract such information from the data and solve the problem (5). We now 
elaborate the functional relation field for multivariate times series prediction in the following.

The schematic diagram of the proposed framework is depicted in Fig. 2, including two parts. The first part displayed in the 
upper panel of Fig. 2 shows how we learn the functional relations, i.e. the constraints between nodes. Assuming that the constraints 
are unknown, we aim to find the constrained nodes and the specific functional form for these constraints. The constraint function 
in this paper is approximated by a neural network, named as functional relation network or constraint network. After training the 
functional relation network, we can identify the most relevant nodes for the target node and produce a more informative graph 
structure. Then we can proceed to integrate the learned constraints into the backbone graph neural networks for multivariate time 
series prediction. We enforce these constraints to the output of spatio-temporal graph neural networks during both training and test 
3

phases, as shown in the bottom panel of Fig. 2. In the training phase, the learned functional relations (i.e. constraints) are used as 
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Fig. 2. The schematic diagram of functional relation field framework. The two subfigures denote the two stages. Stage 1: upper panel. For each target node, we 
train a functional relation network (i.e. constraint network) to first identify its dependent nodes and then obtain the explicit functional relationship. For instance, for 
node 𝑥1 , we first figure out its dependent nodes are {𝑥2, 𝑥3}, and then obtain the constraint as 𝑥1 = 𝑔̃(𝑥2, 𝑥3; 𝜃1). Stage 2: bottom panel. The learned constraints are 
incorporated in the backbone prediction network (cf. Section 2.2) for both training and test phases to improve the forecasting performance. In the training phase, 
the learned functional relations (i.e. constraints) are used as a regularization term to achieve constraint satisfaction; while in test phase, iterative projections are 
implemented to enforce the output of the backbone to satisfy the constraints.

a regularization term to achieve constraint satisfaction; During the inference process we add a constraint-satisfaction transformation 
iteratively to the output of the backbone such that it satisfy the constraints. Altogether, we refer to the proposed framework as 
functional relation field-enhanced spatio-temporal graph networks (FRF-STG). It is model-agnostic and can be applied to different 
backbone graph networks. In the following, we will describe the two stages including learning functional relation network and how 
to apply the constraints induced by the functional relation between nodes in more details.

2.1. Learning the functional relation network

We start with discussing the first question: how to learn the unknown constraints (i.e. the functional relations) from the multivariate 
time series data? As demonstrated in Fig. 2(a), we assume that there exists a constraint for each node. We first discover the relevant 
nodes involved in these constraints and then express the constraint functions via neural networks.

Identifying constrained nodes and their relevant nodes. Here we consider a simplified case where the functional relation 
between nodes can be formulated as:

𝑥𝑡,𝑖 = 𝑔𝑖(𝑥𝑡,∖𝑖),∀𝑡 (6)

i.e. for each target node 𝑖, we use a constraint network 𝑔𝑖 to approximate the function relation taking all the remaining (𝑁 −1) nodes 
as input. We then train the constraint network to predict the value of the 𝑖-th node with the loss function:

𝑝𝑟𝑒𝑑,(𝑖) = ‖𝑥̂𝑡,𝑖 − 𝑥𝑡,𝑖‖2 (7)

where 𝑥̂𝑡,𝑖 and 𝑥𝑡,𝑖 represent the estimated and observed values of node 𝑖 at time step 𝑡. Second, a threshold 𝜖𝑒𝑟𝑟 is set, and we treat 
𝑥𝑖 as a constrained node if both the training and validation error are smaller than 𝜖𝑒𝑟𝑟. Otherwise, 𝑥𝑖 is unpredictable with the other 
nodes, indicating it has weak dependency with other nodes. Then, to identify the most relevant nodes set 𝑖 for target node 𝑖, we 
introduce the sensitivity of input change to the output for the trained constraint network, measured by the absolute value of the 
partial derivative:

𝛿𝑖,𝑗 =
|||||
𝜕𝑔𝑖

𝜕𝑥𝑡,𝑗

|||||
, 𝑗 ≠ 𝑖 (8)

We calculate the average gradients over the training and the validation set for node 𝑗. Then, we specify another threshold 𝜖𝑔𝑟𝑎𝑑 here 
and consider the node 𝑗 as the most relevant node of target 𝑖 if 𝛿𝑖,𝑗 is larger than 𝜖𝑔𝑟𝑎𝑑 . Besides, if the cardinality of 𝑖 is larger than 
the scale threshold 𝑆 , we further shrink 𝑖 by only keeping the top-𝑆 nodes with the largest 𝛿𝑖,𝑗 .

Retraining the functional relation network. Since we filter out the irrelevant nodes for the discovered constrained node 𝑥𝑖 , it 
is necessary to re-train the constraint network using the relevant nodes in 𝑖 as inputs, denoted as 𝑥𝑡,𝑖

= {𝑥𝑡,𝑖𝑗 |𝑗 ∈𝑖},
4

𝑥̂𝑡,𝑖 = 𝑔̃𝑖(𝑥𝑡,𝑖
). (9)
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Regarding the architecture of the functional relation network 𝑔̃𝑖, we adopt a simple attention-based structure for each node 𝑖 using 
weighted average of the relevant nodes to represent the target node, described as follows.

𝛼𝑡,𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(MLP𝑖(𝑥𝑡,𝑖
)), 𝑥̂𝑡,𝑖 = 𝛼𝑇

𝑡,𝑖
𝑥𝑡,𝑖

, (10)

where 𝛼𝑡,𝑖 is the attention weight vector generated from the relevant nodes 𝑥𝑡,𝑖
, and 𝑥̂𝑡,𝑖 is the reconstructed input with the constraint 

nodes. Other alternatives for designing the functional relation network are also possible.

2.2. Integrating the constraints into the backbone networks

The constraints learned by the functional relation network are versatile. A naive usage is to construct meaningful graph structure 
by drawing edges between the identified target and its dependent nodes. Secondly, we propose to incorporate the learned constraints 
into the backbone prediction network in both training and test process through constraint-satisfaction loss minimization and constraint-

satisfaction transformation, respectively. Both of them are used to guarantee that the constraints are maintained in the outputs of the 
backbone network.

Constraint satisfaction in training phase. We expect the output of the backbone network, 𝑦̂ = {𝑦̂𝑡+1, 𝑦̂𝑡+2..., 𝑦̂𝑡+𝑀}, to satisfy 
the learned constraints that could reveal the underlying structure of the multivariate time series. A straightforward yet effective 
way of implementing the constraint satisfaction is loss minimization over the functional relation network based on the output of the 
backbone prediction network,

𝐹𝑅𝐹 (𝑦̂) =
𝑁∑
𝑖=1

𝑀∑
𝜏=1

‖𝑦̂𝑡+𝜏,𝑖 − 𝑔̃({𝑦̂𝑡+𝜏,𝑗}, 𝑗 ∈𝑖)‖22 (11)

Therefore, the overall loss function for training the backbone prediction network includes two terms,

𝑡𝑜𝑡𝑎𝑙 = (𝑦̂, 𝑦) + 𝜆𝐹𝑅𝐹 (𝑦̂), (12)

where 𝜆 is a tradeoff coefficient for balancing the supervised term and constraint satisfaction.

Constraint satisfaction in testing phase. Furthermore, although the constraints are fully utilized during training, there is no guarantee 
that the constraints hold for the outputs during the inference process. Therefore, it is necessary to perform constraint-satisfaction 
transformation on outputs of the prediction networks.

Let us first consider the linear constraint 𝐴𝑥𝑡 = 0, ∀𝑡. Suppose that 𝑦̂= {𝑦̂𝑡+1, 𝑦̂𝑡+2..., 𝑦̂𝑡+𝑀} and 𝑦 = {𝑦𝑡+1, 𝑦𝑡+2, ..., 𝑦𝑡+𝑀} denote the 
predicted output of the backbone network and the ground truth, respectively. To make the output 𝑦̂𝑡+𝜏 to satisfy the linear constraint, 
we can project the predicted output onto the hyperplane 𝐴𝑥𝑡 = 0 as 𝑦̃𝑡+𝜏 with a closed-form solution,

𝑦̃𝑡+𝜏 = 𝑦̂𝑡+𝜏 −𝐴𝑇 (𝐴𝐴𝑇 )−1𝐴𝑦̂𝑡+𝜏 . (13)

On the other hand, for non-linear constraint set 𝑓 (𝑦) = (𝑓1(𝑦), ..., 𝑓𝑚(𝑦))𝑇 = 0, where each constraint 𝑓𝑖(𝑦) = 0 represents 𝑦𝑖 −
𝑔̃𝑖(𝑦𝑡,𝑖

) = 0, there are no analytical solutions, but we can solve an optimization problem with nonlinear equality constraints, i.e. 
finding the nearest projection point on the plane 𝑓 (𝑦) = 0 given the reference point 𝑦̂𝑡+𝜏 for 𝜏 = 1, … , 𝑚

min
𝑦̃𝑡+𝜏

‖𝑦̃𝑡+𝜏 − 𝑦̂𝑡+𝜏‖22, s.t. 𝑓 (𝑦̃𝑡+𝜏 ) = 0. (14)

A simple approximate method for solving this equality-constrained quadratic programming is to conduct iterative projections. 
Denote  = 𝜕𝑓

𝜕𝑥
as the Jacobian matrix. Assuming 𝑦̂𝑡+𝜏 ≈ 𝑦̃𝑡+𝜏 , closed to the surface 𝑓 (𝑥) = 0. We derive the first-order Taylor 

expansion of 𝑓 (𝑥) at 𝑦̂𝑡+𝜏 as

𝑓 (𝑥) ≈ 𝑓 (𝑦̂𝑡+𝜏 ) +  𝑇 ⋅ (𝑥− 𝑦̂𝑡+𝜏 ). (15)

Equating 𝑓 (𝑥) to zero with 𝑥 = 𝑦̃𝑡+𝜏 yields

𝑦̃𝑡+𝜏 = 𝑦̂𝑡+𝜏 −  ( 𝑇 )−1𝑓 (𝑦̂𝑡+𝜏 ). (16)

Then we can repeat the above transformation several times (e.g. number of projections 𝐾 = 10 times used in our experiments) until 
the constraints are well satisfied by evaluating whether 𝐹 (𝑥) =

∑𝑚

𝑗=1 |𝑓𝑗 (𝑥)| is small enough.

2.3. Functional relation field-enhanced spatio-temporal graph networks

In this part, we integrate the proposed functional relation field framework into five representative backbone models, STGCN [2], 
AGCRN [3], Autoformer [9], FEDformer [10] and SCINet [11] to boost their prediction performance, referred as FRF-STGCN, FRF-

AGCRN, FRF-Autoformer, FRF-FEDformer and FRF-SCINet, respectively. In the first stage, we learn the functional relation network, 
based on which the most relevant nodes can be identified. And the resultant graph structure could be used for the five backbone 
5

networks. In the second stage, we enforce the learned constraints in the training and inference process, as described in Fig. 2.
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Since different backbone networks have their own specific design, we need adapt FRF to these backbones. For the constraint 
satisfaction of output, in AGCRN and SCINet, the networks produce all the prediction results at multiple time steps in one batch, and 
therefore, the constraint-satisfied transformation is applied to the prediction at each time step respectively for 𝐾 times as described 
in Eq. (16). For STGCN, we apply the above transformation sequentially to each future time step, obtain the transformed predictions, 
and then feed the predictions to STGCN to produce the predictions at the next time step. We repeat this procedure until we finish the 
multi-step forecasting task.

Algorithm 1 Training and inference of FRF.

1: Input: Trained function relation networks 𝑓 , 𝜆 and 𝐾 .

2: Output: constraint-satisfied output 𝑦̃𝑡+𝜏
# Training Phase

3: repeat

4: Forward on backbone network to obtain 𝑦̂𝑡+𝜏
5: Back-propagate with the loss 𝑡𝑜𝑡𝑎𝑙 in Eq. (12) and run Adam.

6: until stopping criteria is met

# Inference Phase

7: Forward on the trained backbone network to obtain 𝑦̂𝑡+𝜏
8: for 𝑘 = 0 to K do

9: Calculate 𝑦̃𝑡+𝜏 by Eq. (16)

10: end for

2.4. Limitation

Our model assumes static, time-invariant constraints between nodes. This might limit its applicability in the scenarios where the 
relationships or dependencies between time series evolve frequently. While it is true that dynamic relationship may be better than 
static constraints, there are two considerations why we chose to investigate the static relationship. On the one hand, in the considered 
applications, the relationship might be stationary in reality. For instance, the MiniApp calling relationship rarely changes over time 
in almost one or two years to maintain the stability of the whole online payment system, see Sec. 3.1 for more details. For traffic 
flow prediction, the road network and traffic condition is also unchanged given a fixed network topology. Therefore, we assume the 
stationary relationship is realistic and efficient for many real-world forecasting tasks, at least for those considered and similar ones in 
our paper. On the other hand, we adopt static relationship due to the computational advantage. Concretely, non-linear optimization 
for satisfying the constraints has no analytical solution and thus a simple approximation method for solving this problem is to conduct 
iterative projections, as shown in Eq. (16). It is extremely challenging to solve the non-linear programming problems with changing 
variables. The dynamic relationship modeling will be taken as a key point for future exploration.

3. Experiments

In this section, we conduct experiments on five datasets including one synthetic graph dataset, two real-word MiniApp calling 
flow datasets and two traffic flow datasets to demonstrate the effectiveness of FRF on learning the underlying relationship between 
nodes and boosting the prediction performance of the backbone networks. The code for reproducibility is online, https://github .
com /zhanxingzhu /Functional _Relation _Field _Time _Series/.

The baseline models. We first compare our framework with two traditional forecasting models including Historical Average 
(HA) and Support Vector Regression (SVR). Then, we also implement experiments using two popular deep learning models, including 
Feed-Forward Neural Network (FNN) and Full-Connected LSTM (FC-LSTM [28]). We select the widely used graph time series model 
STGCN [2], AGCRN [3], and the univariate time series forecasting models based on transformer architectures Autoformer [9], 
FEDformer [10] and another state-of-the-art univariate prediction model SCINet [11]) as our backbone networks. To demonstrate 
that our proposed FRF can consistently improve the graph structure learning models, we also incorporate the FRF into two more 
approaches involved with graph structure learning GTS [7] and NRI [29]. The first one GTS learns the graph structures and performs 
forecasting simultaneously with a GNN. The second model neural relational inference (NRI) is an unsupervised one that learns to 
infer interactions and forecasting with an LSTM.

3.1. Datasets

Binary tree dataset. We first generate a synthetic graph time series dataset. The graph structure for this dataset is a complete 
binary tree with 255 nodes. For each leaf node 𝑖, its value is a noisy sinusoidal wave across time, 𝑥𝑖,𝑡 = 𝑛𝑖,𝑡𝐴𝑖 sin(

2𝜋𝑡
𝑇𝑖

+ 𝜙), where 𝑛𝑖,𝑡
follows a uniform distribution, i.e., 𝑛𝑖,𝑡 ∼ (0.95, 1.05). We sort all leaf nodes from left to right in an increasing order of their periods. 
For a non-leaf node 𝑝, we denote its left and right child as 𝑙 and 𝑟. We further set the value of node 𝑝 to be the geometric mean 
of its two children 𝑙 and 𝑟, 𝑥𝑝,𝑡 =

√
𝑥𝑙,𝑡 ⋅ 𝑥𝑟,𝑡. We sample one point every 5 minutes, so there are 288 points per day. We generate 

the data for 40 days, including 30 days for training (i.e., 30 × 288 = 8640 time points), 5 days for validation, and 5 days for testing. 
We intentionally design this dataset since the true graph structure is available for these different time series and the constraints 
6

between nodes are explicit, and thus it is a suitable testbed to compare the superiority of FRF over those models without FRF. In 

https://github.com/zhanxingzhu/Functional_Relation_Field_Time_Series/
https://github.com/zhanxingzhu/Functional_Relation_Field_Time_Series/
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Table 1

Model performance on BinaryTree and MiniApp datasets. “(T)” and “(L)” represent 
the models with true and learned constraints, respectively. Bold font is used to show 
the advantage over backbones. “-” represents that the ground truth of the functional 
relationship is not available.

Methods
Binary tree MiniApp 1 MiniApp 2

MAE RMSE MAE RMSE MAE RMSE

HA 12.64 19.19 3.97 9.77 11.02 35.23

SVR 8.71 14.00 2.56 7.06 6.83 21.68

FNN 5.77 10.04 2.09 6.26 5.43 16.84

FC-LSTM 17.08 22.83 2.05 4.08 8.14 19.64

STGCN 2.65 5.82 1.90 5.26 4.50 14.14

FRF-STGCN (T) 2.40 5.68 - - - -

FRF-STGCN (L) 2.50 5.71 1.21 3.32 4.19 11.11

AGCRN 2.56 5.77 0.41 1.17 1.43 3.79

FRF-AGCRN (T) 2.30 5.54 - - - -

FRF-AGCRN (L) 2.37 5.57 0.35 0.92 1.33 3.39

Autoformer 8.54 13.16 1.03 2.79 2.69 6.85

FRF-Autoformer (T) 8.34 12.79 - - - -

FRF-Autoformer (L) 8.34 12.83 0.77 2.18 2.46 5.70

FEDformer 8.54 13.24 0.60 1.80 2.08 5.13

FRF-FEDformer (T) 8.10 12.80 - - - -

FRF-FEDformer (L) 8.29 12.99 0.58 1.76 2.03 4.98

SCINet 5.43 9.37 0.52 1.51 1.78 3.88

FRF-SCINet (T) 5.36 9.34 - - - -

FRF-SCINet (L) 5.37 9.27 0.47 1.34 1.71 3.65

the experiments, for the backbone with FRF, we assume the constraints are unknown and learn them using the proposed method in 
Section 2.1.

MiniApp calling flow dataset 1 and 2. These two datasets are real-word flow data from two popular online payment MiniApps, 
attached in the web page https://drive .google .com /file /d /1R4 -LeYv2GCF5zzyYeqymU534GXn8nDpV /view ?usp =share _link. For the 
two MiniApps, there are 𝑁 = 30, 23 filtered pages linking to each other in the calling process, which produces visiting request flow 
from one page to another, constituting a graph with 𝑁 = 30, 23 nodes. We aggregate the flow with averaged value every 5 minutes 
for each node, so there are 288 points per day. For the first MiniApp, we collect 21 days of data, including 15 days for training, 3 
days for validation, and 3 days for test. For the second one, 24 days of data are collected, including 18 days for training, 3 days for 
validation, and 3 days for testing.

PEMSD4 and PEMSD8 traffic datasets. This benchmark dataset is widely used for multi-variate time series prediction, describing 
the traffic speed in San Francisco Bay Area with 307 sensors on 29 roads (https://paperswithcode .com /dataset /pemsd4). The other 
one consists of 170 detectors on 8 roads in San Bernardino area (https://paperswithcode .com /dataset /pemsd8).

3.2. Results

Overall prediction performance Table 1, 2 and 3 summarizes the performance of all the compared models on the five datasets, 
including the proposed FRF approach coupled with STGCN, AGCRN, Autoformer, FEDformer and SCINet, denoted as FRF-STGCN 
and FRF-AGCRN, FRF-Autoformer, FRF-FEDformer and FRF-SCINet, respectively. To conduct a fair comparison with these backbone 
networks, we only tune the parameters of FRF while keeping the other hyper-parameters setting the same as the original backbone 
networks. We conduct experiments on Binary tree, MiniApp1 and MiniApp2 datasets using the opensourced code (https://github .
com /chaoshangcs /GTS .git) for GTS and (https://github .com /ethanfetaya /NRI .git) for NRI shown in Table 3, demonstrating that 
FRF can also improve the forecasting performance on GTS. For the binary tree dataset, we predict the future 12 time steps and 
evaluate the performance in terms of three metrics (MAE, RMSE, MAPE). Since the underlying true constraints are known, we report 
the experimental results of our models with both true and learned constraints, denoted as “T” and “L”. We can observe that deep 
learning-based models typically outperform the traditional ones, as expected. Furthermore, the proposed functional relation field 
can further improve the performance of the original backbone models. Regardless of the differences between the two backbone 
networks, FRF can consistently improve the prediction accuracy for both of the backbones, indicating that the FRF framework could 
be potentially applied to a wide variety of backbones.

For the two MiniApp datasets, we omit the metric MAPE since the scale of data changes dramatically across time such that MAPE 
fails to characterize the performance of different models. Due to the error accumulation problem for multi-step prediction in STGCN, 
the performance of this model pales in comparison with its non-iterative counterpart. As a result, we only report the results of the 
non-iterative version of STGCN. Since the underlying true constraint relationship between nodes is not available, we only report the 
7

FRF with learned constraints. We can easily observe that augmentation of the proposed FRF can consistently boost the performance 

https://drive.google.com/file/d/1R4-LeYv2GCF5zzyYeqymU534GXn8nDpV/view?usp=share_link
https://paperswithcode.com/dataset/pemsd4
https://paperswithcode.com/dataset/pemsd8
https://github.com/chaoshangcs/GTS.git
https://github.com/chaoshangcs/GTS.git
https://github.com/ethanfetaya/NRI.git
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Table 2

Model performance on two traffic datasets, PeMSD4 and PeMSD8. “-” repre-

sents the value is too large and thus ignored.

Model Type Methods
PEMSD4 PEMSD8

MAE RMSE MAE RMSE

Multivariate

STGCN [2] 21.61 35.25 17.28 27.19

FRF-STGCN 20.70 33.90 16.46 26.05

AGCRN [3] 19.81 32.58 16.52 26.12

FRF-AGCRN 19.59 31.85 16.04 25.28

Univariate

Autoformer 21.42 34.09 18.49 28.78

FRF-Autoformer 21.24 33.93 18.23 28.66

FEDFormer 21.59 34.23 18.52 29.23

FRF-FEDFormer 21.29 33.82 18.15 28.61

SCINet [11] 19.27 31.27 15.71 24.60

FRF-SCINet 19.15 31.09 15.67 24.57

Table 3

Performance comparison of FRF enhanced GTS and NRI networks on BinaryTree and 
MiniApp datasets. NRI FRF-AGCRN is the state-of-the-art model, i.e. AGCRN after 
incorporating our proposed FRF.

Methods
Binary tree MiniApp 1 MiniApp 2

MAE RMSE MAE RMSE MAE RMSE

GTS 5.85 9.19 1.92 2.32 3.88 7.26

FRF-GTS (L) 5.70 8.33 1.77 1.84 2.70 5.14

FRF-GTS (T) 5.67 8.21 - - - -

NRI 22.77 30.15 2.50 6.89 8.04 16.92

FRF-NRI (L) 21.63 28.70 2.47 6.88 7.98 14.35

FRF-NRI (T) 19.61 25.69 - - - -

FRF-AGCRN (SOTA) 2.30 5.54 0.35 0.92 1.33 3.39

Fig. 3. The learned constraints of the Binary Tree dataset by connecting each constrained node with their most related nodes. We use 𝑆 = 2, 3, 4 for every node to plot 
this figure, so there are lack of connections when 𝑆 = 2 and some redundant connections when 𝑆 = 4.

of the five backbone networks. Specifically, FRF improves STGCN by 36.3% and 6.9% on the two datasets, also improves AGCRN by 
14.6% and 7.0%, respectively.

For traffic datasets PEMSD4 and PEMSD8, one particular reason we choose SCINet as the baseline is that the reported results can 
achieve state-of-the-art prediction performance on this task (Table 2). We can observe that even comparing such a strong baseline, 
FRF framework can still improve its performance of with a margin 0.6% and 0.3% on both datasets, respectively. For other backbones, 
we again see that FRF further improves the prediction performance, showing the effectiveness of FRF as a model-agnostic framework.

Table 3 shows the prediction results on Binary tree, MiniApp1 and MiniApp2 dataset using the FRF enhanced on GTS and NRI. 
We can easily observe that FRF can consistently improve the prediction performance of NRI for these datasets.

3.3. Learning the relationship between nodes

We further test whether FRF could discover the underlying true constraints between nodes. First, we investigate whether we can 
reliably estimate the target node given the values of constraint nodes. To be exact, we compute 𝑥̂𝑡,𝑖 = 𝑔̃({𝑥𝑡,𝑖

}) and compare 𝑥̂𝑡,𝑖
with 𝑥𝑡,𝑖 in terms of Mean Absolute Percentage Errors (MAPE), where a large MAPE indicates the time-invariant constraint is weak. 
Through our experiments, the achieved MAPEs for the considered BinaryTree, MiniApp1, MiniApp2, PEMSD4, PEMSD8 datasets 
are small, i.e. 10%, 0.8%, 1%, 2%, 7%, respectively. Since a smaller MAPE means the strong constraint relationship between nodes, 
therefore the proposed FRF is applicable to the backbone network for boosting its prediction performance. On the other hand, we 
compare the prediction performance of the proposed algorithm when using the true and estimated constraints, showing the results in 
Table 1. We can observe that the performance based on both the true and estimated constraints is almost the same, indicating that the 
8

constraints are accurately learned. Therefore, using the learned constraints can well regularize the predictions given by the original 
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Fig. 4. Flow visualization of learned relation and origin one for MiniApp1 dataset. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 5. The learned tree structure from the constraint networks with different number of layers. We use 𝑆 = 4 for every node and the number of full-connected layers 
is 𝐿 = 2, 3, 4 from the left to right panel as well as a four-layer attention network to demonstrate the sensitivity of constraint architectures.

network backbones as well as further improve the forecasting performance. Additionally, we visualize the learned constraints by 
connecting each constrained node with its most relevant neighbors as a graph, shown in Fig. 3. The structure of the binary tree is 
well recovered, although some extra edges are involved.

For realworld data, we compare the learned functional relation and origin one for MiniApp1 dataset. In this paper, the “origin 
graph” or “origin relation” indicates the relation extracted from prior knowledge which can be real road network in traffic graphs, 
or the calling relationship in cloud service. We now show that the learned relation is more informative than the original relation and 
could potentially help to improve the prediction performance. In Fig. 4, we present the flows of two target nodes and its relevant 
nodes learned from FRF or based on original relation. We can observe that the flow of the target node has the same pattern and 
scale as the relevant nodes on the learned function, while it has a significantly different pattern from the origin graph. The results 
demonstrate that the relation learned from FRF has captured more informative and effective flow relationship than the original 
relation relying on prior information.

3.4. Network architecture and hyperparameter configuration

The architecture of constraint network. We compare both fully-connected neural networks (including 2/3/4-layer) and a self-

attention network introduced in Eq (10). The results on Binary Tree are shown in Fig. 5. We can observe that for fully-connected 
networks, the more layers we used, the more accurate the learned constraint relation is. As we further increase the number of layers 
of networks, the results saturate and are comparable with the attention network. This indicates the prediction results are stable and 
consistent across different network architectures.

In the following, we describe how we configure the hyper-parameters involving in the training of the constraint network. Gen-

erally we set the parameters according to some rules of thumb (described in the following) and finally tune them on the validation 
data to achieve the best performance. Through the experiments, the rules of thumb we have found could apply to all the tasks and 
datasets we have considered, which could be potentially generalizable to other tasks for users interested.

The cardinality of the neighborhood, 𝑆. We typically choose 𝑆 as 10% − 20% of the total number of nodes to achieve a good 
coverage of the neighbors. For Binary Tree dataset, we set 𝑆 = 4 to recover the functional relations shown in Fig. 3. We set 𝑆 = 6 for 
two MiniApp flow calling datasets. For traffic dataset PEMSD4 with 307 nodes and PEMSD8 with 170 nodes, the best performance is 
obtained when 𝑆 = 30.

Regularization coefficient 𝜆 and number of iterations 𝐾 . In the training stage, we only tune the tradeoff coefficient 𝜆 and the 
number of iterations 𝐾 while keeping all other parameters the same as SOTA settings in the benchmarks. The detailed settings are 
shown in Table 4.

Hyperparameter sensitivity of error threshold 𝜖𝑒𝑟𝑟, 𝜆 and 𝐾 . FRF enhanced models introduce additional three kinds of hy-

perparameters including validation error threshold 𝜖𝑒𝑟𝑟, the loss tradeoff coefficient 𝜆 and the number of output transformation 𝐾 . 
Therefore, we conduct hyper-parameters sensitivity experiments on binary tree dataset using backbone AGCRN as shown in Fig. 6. 
We can observe that the performance slightly improves when the 𝜖𝑒𝑟𝑟 increases due to more constraints are discovered, while the 
performance decreases with large 𝜖𝑒𝑟𝑟 because of the introduced noise. Even more, the FRF enhanced model performs worse than 
backbone network when 𝜖𝑒𝑟𝑟 = 5.0. Consistently, FRF enhanced model performs better when 𝜆 = 0.1 and worse than backbone with 
large 𝜆. For the number of iterations 𝐾 , the larger 𝐾 improves the backbone more significantly than smaller one since iterating 
more times makes the non-linear constraint optimization problem more accurate. We suggest users set 𝐾 = 10 which typically could 
9

achieve satisfying prediction performance in various tasks.
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Table 4

Detailed hyper-parameter settings of all graph time series and univariate backbone networks for the five 
datasets.

Methods
Binary tree MiniApp 1 MiniApp 2 PEMSD4 PEMSD8

𝜆 𝐾 𝜆 𝐾 𝜆 𝐾 𝜆 𝐾 𝜆 𝐾

FRF-STGCN 0.1 10 0.01 5 0.01 10 0.01 5 0.001 10

FRF-AGCRN 0.1 10 0.01 5 0.01 10 0.01 5 0.1 10

FRF-Autoformer 0.01 20 0.001 5 0.001 5 0.001 5 0.001 10

FRF-FEDformer 0.01 20 0.001 5 0.001 5 0.001 5 0.001 10

FRF-SCINet 0.01 10 0.001 5 0.001 5 0.0001 5 0.0001 5

Fig. 6. Performance comparison of three kinds of hyper-parameters including 𝜖𝑒𝑟𝑟 , 𝜆𝑅 and 𝐾 on Binary Tree dataset with the state-of-the-art backbone AGCRN.

Fig. 7. Performance comparison of 𝜖𝑒𝑟𝑟 on PEMSD4 and PEMSD8 dataset for the backbone AGCRN.

Table 5

The computational time of relation network pre-training and re-training, training regularized 
backbone network, and inference time of FRF with different number of iterations 𝐾 . The times 
is recorded every epoch in seconds.

Datasets
# Relation net (s) # Train time (s) # Inference time (s)

Pretrain Retrain w.o. 𝜆 w. 𝜆 𝐾 = 0 5 10 20

Binary tree 2384.25 63.96 10.14 10.65 0.64 1.54 2.47 4.23

MiniApp1 487.69 10.95 3.89 4.15 0.28 0.33 0.38 0.49

MiniApp2 388.41 11.78 4.57 4.89 0.06 0.33 0.40 0.52

For the binary tree dataset and MiniApp calling flow datasets involving strong constraint relationships, we set 𝜖𝑒𝑟𝑟 = 0.01 to filter 
the constraint nodes. However, for traffic dataset PEMSD4 and PEMSD8 with relatively weak constraints, we set 𝜖𝑒𝑟𝑟 = 0.025 to 
achieve the best performance. The hyper-parameters sensitivity experiments of 𝜖𝑒𝑟𝑟 on PEMSD4 and PEMSD8 datasets are shown in 
Fig. 7.

3.5. Computational complexity analysis

In this part, we perform experiments on Nividia A100-80G GPU then report the computational time of all the stages of our FRF 
enhanced models in practical settings, as shown in Table 5.

We can observe that the pretraining of the constraint network takes the longest time especially when the number of nodes is 
large, since the pretraining requires all the other nodes as input when identifying the target node and its related neighbors. Although 
learning the relation function costs much time, it is only calculated once in the whole process. The time for re-training is short and 
thus can be ignored. The computational time of Eq. (16) is also negligible. Though the inference time increases with the number of 
iterations 𝐾 , it is only in the scale of seconds.

On one hand, the computational complexity increases in the forecasting network training caused by the 𝐾 iterations of output 
constraint satisfaction. The 𝐾 is usually set as a small number 5 or 10, which is computationally cheap. And the main time-consuming 
operations origin from forward and back propagation of backbones rather than the output constraint. On the other hand, we need to 
10

train the constraint network for all time series. Fortunately, the constraint network is a simple two-layer attention network, which 
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Table 6

Ablation study on the explicit graph, constraint graph learned from a constraint network, and 
constraint satisfaction components using STGCN as the backbone network.

#
Explicit 
Graph

Constraint 
Graph

Constraint 
Satisfaction

PeMSD4 PeMSD8

MAE RMSE MAE RMSE

1 ✓ × × 21.61 35.25 17.28 27.19
2 × ✓ × 21.26 35.13 16.79 26.61
3 × ✓ ✓ 20.70 33.90 16.46 26.05

Table 7

Ablation study on constraint-satisfaction loss minimization and constraint-satisfaction trans-

formation. The backbone AGCRN is used for Binary Tree, MiniApp2; and SCINet for PEMSD4.

#
FRF 
Training

FRF 
Inference

Binary Tree MiniApp2 PEMSD4

MAE RMSE MAE RMSE MAE RMSE

1 × × 2.56 5.77 1.43 3.79 19.27 31.27

2 ✓ × 2.51 5.68 1.38 3.66 19.20 31.16

3 × ✓ 2.33 5.58 1.45 3.74 19.22 31.15

4 ✓ ✓ 2.30 5.54 1.33 3.29 19.15 31.09

only has a small number of parameters but effective enough to capture the complex functional relations. For example, in MiniApp1 
task, each constraint network only has around 3,000 parameters, the training time is in the scale of seconds. Thus, we believe 
training a constraint network is fast and does not require much computational resources. The small size of the constraint networks is 
amenable to large-scale multi-variate time series.

3.6. Ablation study

We first conduct an ablation study on the constraint graph learned from constraint network using the STGCN as backbone 
network in Table 6. We can observe that the constraint graph performs better than explicit graph extracted from prior knowledge on 
both traffic and MiniApp datasets. In addition, for backbone networks without explicit graph structure such as AGCRN and SCINet, 
we investigate the effectiveness of constraint-satisfaction loss minimization and constraint-satisfaction transformation as shown in 
Table 7, finding that both of the two components contribute to the forecasting performance. Specifically, for the backbone network 
AGCRN which achieves the state-of-the-art performance on binary tree dataset, FRF enhances the backbone by 1.95% in training 
phase and by 9.0% in inference phase, while the combination of two components improves the performance by 10.16% in total.

4. Conclusion

In this paper, we have proposed to enhance the multivariate time series forecasting with a new inductive bias, function relation 
field (FRF), which is model-agnostic. FRF can discover the intrinsic graph structure, as well as improve flow forecasting performance 
by applying constraint function relationship to the output in training and testing phases. The constraints learned by FRF can be 
incorporated into existing backbone networks, consistently improving the prediction performance. Experimental results show that the 
proposed FRF framework can reliably learn the constraints from the time-series data and restore the graph structure. Moreover, these 
constraints in turn help improve the prediction accuracy by a notable margin, regardless of the diversity of the network architecture 
in different backbone models. We expect that this FRF inductive bias could be potentially employed in other multivariate settings 
beyond times series scenarios. In the future, we will consider how to incorporate dynamic constraints to our framework such that 
it can be extended to more challenging tasks, for instance, modeling the functional relations with a slightly changing manner. It is 
worthy of considering to improve the efficiency and optimization of the neural network [30], which is important when deploying 
the proposed framework on real-world datasets.
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