
Coinduction in Uniform: Foundations
for Corecursive Proof Search

with Horn Clauses

Henning Basold1(B), Ekaterina Komendantskaya2(B), and Yue Li2

1 CNRS, ENS Lyon, Lyon, France
henning.basold@ens-lyon.fr

2 Heriot-Watt University, Edinburgh, UK
{ek19,yl55}@hw.ac.uk

Abstract. We establish proof-theoretic, constructive and coalgebraic
foundations for proof search in coinductive Horn clause theories. Opera-
tional semantics of coinductive Horn clause resolution is cast in terms of
coinductive uniform proofs; its constructive content is exposed via sound-
ness relative to an intuitionistic first-order logic with recursion controlled
by the later modality; and soundness of both proof systems is proven rel-
ative to a novel coalgebraic description of complete Herbrand models.

Keywords: Horn clause logic · Coinduction · Uniform proofs ·
Intuitionistic logic · Coalgebra · Fibrations · Löb modality

1 Introduction

Horn clause logic is a Turing complete and constructive fragment of first-order
logic, that plays a central role in verification [22], automated theorem proving [52,
53,57] and type inference. Examples of the latter can be traced from the Hindley-
Milner type inference algorithm [55,73], to more recent uses of Horn clauses in
Haskell type classes [26,51] and in refinement types [28,43]. Its popularity can
be attributed to well-understood fixed point semantics and an efficient semi-
decidable resolution procedure for automated proof search.

According to the standard fixed point semantics [34,52], given a set P of
Horn clauses, the least Herbrand model for P is the set of all (finite) ground
atomic formulae inductively entailed by P . For example, the two clauses below
define the set of natural numbers in the least Herbrand model.

κnat0 : nat 0
κnats : ∀x.natx → nat (s x)

This work is supported by the European Research Council (ERC) under the EU’s
Horizon 2020 programme (CoVeCe, grant agreement No. 678157) and by the EPSRC
research grants EP/N014758/1, EP/K031864/1-2.

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 783–813, 2019.
https://doi.org/10.1007/978-3-030-17184-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_28

784 H. Basold et al.

Formally, the least Herbrand model for the above two clauses is the set of ground
atomic formulae obtained by taking a (forward) closure of the above two clauses.
The model for nat is given by N = {nat 0, nat (s 0), nat (s (s 0)), . . .}.

We can also view Horn clauses coinductively. The greatest complete Herbrand
model for a set P of Horn clauses is the largest set of finite and infinite ground
atomic formulae coinductively entailed by P . For example, the greatest complete
Herbrand model for the above two clauses is the set

N ∞ = N ∪ {nat (s (s (· · ·)))},

obtained by taking a backward closure of the above two inference rules on the set
of all finite and infinite ground atomic formulae. The greatest Herbrand model is
the largest set of finite ground atomic formulae coinductively entailed by P . In
our example, it would be given by N already. Finally, one can also consider the
least complete Hebrand model, which interprets entailment inductively but over
potentially infinite terms. In the case of nat, this interpretation does not differ
from N . However, finite paths in coinductive structures like transition systems,
for example, require such semantics.

The need for coinductive semantics of Horn clauses arises in several scenarios:
the Horn clause theory may explicitly define a coinductive data structure or a
coinductive relation. However, it may also happen that a Horn clause theory,
which is not explicitly intended as coinductive, nevertheless gives rise to infinite
inference by resolution and has an interesting coinductive model. This commonly
happens in type inference. We will illustrate all these cases by means of examples.

Horn Clause Theories as Coinductive Data Type Declarations. The following
clause defines, together with κnat0 and κnats, the type of streams over natural
numbers.

κstream : ∀xy.natx ∧ stream y → stream (scons x y)

This Horn clause does not have a meaningful inductive, i.e. least fixed point,
model. The greatest Herbrand model of the clauses is given by

S = N ∞ ∪ {stream(scons x0 (scons x1 · · ·)) | natx0,natx1, . . . ∈ N ∞}

In trying to prove, for example, the goal (streamx), a goal-directed proof
search may try to find a substitution for x that will make (streamx) valid
relative to the coinductive model of this set of clauses. This search by resolu-

tion may proceed by means of an infinite reduction streamx
κstream:[scons y x′/x]�

nat y ∧ streamx′ κnat0:[0/y]� streamx′ κstream:[scons y′ x′′/x′]� · · · , thereby gen-
erating a stream Z of zeros via composition of the computed substitutions:
Z = (scons 0 x′)[scons 0x′′/x′] · · · . Above, we annotated each resolution step
with the label of the clause it resolves against and the computed substitution. A
method to compute an answer for this infinite sequence of reductions was given
by Gupta et al. [41] and Simon et al. [69]: the underlined loop gives rise to the

Coinduction in Uniform 785

circular unifier x = scons 0 x that corresponds to the infinite term Z. It is proven
that, if a loop and a corresponding circular unifier are detected, they provide an
answer that is sound relative to the greatest complete Herbrand model of the
clauses. This approach is known under the name of CoLP.

Horn Clause Theories in Type Inference. Below clauses give the typing rules of
the simply typed λ-calculus, and may be used for type inference or type checking:

κt1 : ∀xΓ a.varx ∧ findΓ xa → typedΓ xa

κt2 : ∀xΓ amb. typed [x : a|Γ]mb → typedΓ (λxm) (a → b)
κt3 : ∀Γ amn b. typedΓ m (a → b) ∧ typedΓ na → typedΓ (app mn) b

It is well known that the Y -combinator is not typable in the simply-typed
λ-calculus and, in particular, self-application λx. x x is not typable either. How-
ever, by switching off the occurs-check in Prolog or by allowing circular unifiers
in CoLP [41,69], we can resolve the goal “typed [] (λx (app xx)) a” and would
compute the circular substitution: a = b → c, b = b → c suggesting that an
infinite, or circular, type may be able to type this λ-term. A similar trick would
provide a typing for the Y -combinator. Thus, a coinductive interpretation of the
above Horn clauses yields a theory of infinite types, while an inductive interpre-
tation corresponds to the standard type system of the simply typed λ-calculus.

Horn Clause Theories in Type Class Inference. Haskell type class inference does
not require circular unifiers but may require a cyclic resolution inference [37,51].
Consider, for example, the following mutually defined data structures in Haskell.

data OddList a = OCons a (EvenList a)
data EvenList a = Ni l | ECons a (OddList a)

This type declaration gives rise to the following equality class instance declara-
tions, where we leave the, here irrelevant, body out.

instance (Eq a , Eq (EvenList a)) => Eq (OddList a) where
instance (Eq a , Eq (OddList a)) => Eq (EvenList a) where

The above two type class instance declarations have the shape of Horn clauses.
Since the two declarations mutually refer to each other, an instance inference
for, e.g., Eq (OddList Int) will give rise to an infinite resolution that alternates
between the subgoals Eq (OddList Int) and Eq (EvenList Int). The solution
is to terminate the computation as soon as the cycle is detected [51], and this
method has been shown sound relative to the greatest Herbrand models in [36].
We will demonstrate this later in the proof systems proposed in this paper.

The diversity of these coinductive examples in the existing literature shows
that there is a practical demand for coinductive methods in Horn clause logic,
but it also shows that no unifying proof-theoretic approach exists to allow for a
generic use of these methods. This causes several problems.

Problem 1. The existing proof-theoretic coinductive interpretations
of cycle and loop detection are unclear, incomplete and not uniform.

786 H. Basold et al.

Table 1. Examples of greatest (complete) Herbrand models for Horn clauses
γ1, γ2, γ3. The signatures are {a} for the clause γ1 and {a, f} for the others.

To see this, consider Table 1, which exemplifies three kinds of circular phenom-
ena in Horn clauses: The clause γ1 is the easiest case. Its coinductive models
are given by the finite set {p a}. On the other extreme is the clause γ3 that,
just like κstream, admits only an infinite formula in its coinductive model. The
intermediate case is γ2, which could be interpreted by an infinite set of finite
formulae in its greatest Herbrand model, or may admit an infinite formula in
its greatest complete Herbrand model. Examples like γ1 appear in Haskell type
class resolution [51], and examples like γ2 in its experimental extensions [37].
Cycle detection would only cover computations for γ1, whereas γ2, γ3 require
some form of loop detection1. However, CoLP’s loop detection gives confusing
results here. It correctly fails to infer p a from γ3 (no unifier for subgoals p a and
p (f a) exists), but incorrectly fails to infer p a from γ2 (also failing to unify p a
and p (f a)). The latter failure is misleading bearing in mind that p a is in fact in
the coinductive model of γ2. Vice versa, if we interpret the CoLP answer x = f x
as a declaration of an infinite term (f f . . .) in the model, then CoLP’s answer
for γ3 and p x is exactly correct, however the same answer is badly incomplete for
the query involving p x and γ2, because γ2 in fact admits other, finite, formulae
in its models. And in some applications, e.g. in Haskell type class inference, a
finite formula would be the only acceptable answer for any query to γ2.

This set of examples shows that loop detection is too coarse a tool to give
an operational semantics to a diversity of coinductive models.

Problem 2. Constructive interpretation of coinductive proofs in
Horn clause logic is unclear. Horn clause logic is known to be a construc-
tive fragment of FOL. Some applications of Horn clauses rely on this property
in a crucial way. For example, inference in Haskell type class resolution is con-
structive: when a certain formula F is inferred, the Haskell compiler in fact
constructs a proof term that inhabits F seen as type. In our earlier example
Eq (OddList Int) of the Haskell type classes, Haskell in fact captures the cycle
by a fixpoint term t and proves that t inhabits the type Eq (OddList Int).

1 We follow the standard terminology of [74] and say that two formulae F and G form
a cycle if F = G, and a loop if F [θ] = G[θ] for some (possibly circular) unifier θ.

Coinduction in Uniform 787

Fig. 1. Cube of logics covered by CUP

Although we know from [36] that these computations are sound relative to great-
est Herbrand models of Horn clauses, the results of [36] do not extend to Horn
clauses like γ3 or κstream, or generally to Horn clauses modelled by the greatest
complete Herbrand models. This shows that there is not just a need for coinduc-
tive proofs in Horn clause logic, but constructive coinductive proofs.

Problem 3. Incompleteness of circular unification for irregular coin-
ductive data structures. Table 1 already showed some issues with incomplete-
ness of circular unification. A more famous consequence of it is the failure of cir-
cular unification to capture irregular terms. This is illustrated by the following
Horn clause, which defines the infinite stream of successive natural numbers.

κfrom : ∀x y. from (s x) y → fromx (scons x y)

The reductions for from 0 y consist only of irregular (non-unifiable) formulae:

from 0 y
κfrom:[scons 0 y′/y]� from (s 0) y′ κfrom:[scons (s 0) y′′/y′]� · · ·

The composition of the computed substitutions would suggest an infinite term
as answer: from 0 (scons 0 (scons (s 0) . . .)). However, circular unification no
longer helps to compute this answer, and CoLP fails. Thus, there is a need for
more general operational semantics that allows irregular coinductive structures.

A New Theory of Coinductive Proof Search in Horn Clause Logic

In this paper, we aim to give a principled and general theory that resolves
the three problems above. This theory establishes a constructive foundation for
coinductive resolution and allows us to give proof-theoretic characterisations of
the approaches that have been proposed throughout the literature.

To solve Problem 1, we follow the footsteps of the uniform proofs by Miller
et al. [53,54], who gave a general proof-theoretic account of resolution in first-
order Horn clause logic (fohc) and three extensions: first-order hereditary Har-
rop clauses (fohh), higher-order Horn clauses (hohc), and higher-order heredi-
tary Harrop clauses (hohh). In Sect. 3, we extend uniform proofs with a general
coinduction proof principle. The resulting framework is called coinductive uni-
form proofs (CUP). We show how the coinductive extensions of the four logics of
Miller et al., which we name co-fohc, co-fohh, co-hohc and co-hohh, give a precise

788 H. Basold et al.

proof-theoretic characterisation to the different kinds of coinduction described
in the literature. For example, coinductive proofs involving the clauses γ1 and
γ2 belong to co-fohc and co-fohh, respectively. However, proofs involving clauses
like γ3 or κstream require in addition fixed point terms to express infinite data.
These extentions are denoted by co-fohcfix, co-fohhfix, co-hohcfix and co-hohhfix.

Section 3 shows that this yields the cube in Fig. 1, where the arrows show the
increase in logical strength. The invariant search for regular infinite objects done
in CoLP is fully described by the logic co-fohcfix, including proofs for clauses like
γ3 and κstream. An important consequence is that CUP is complete for γ1, γ2,
and γ3, e.g. p a is provable from γ2 in CUP, but not in CoLP.

In tackling Problem 3, we will find that the irregular proofs, such as those
for κfrom, can be given in co-hohhfix. The stream of successive numbers can be
defined as a higher-order fixed point term sfr = fix f. λx. scons x (f (s x)), and
the proposition ∀x. fromx (sfr x) is provable in co-hohhfix. This requires the use
of higher-order syntax, fixed point terms and the goals of universal shape, which
become available in the syntax of Hereditary Harrop logic.

In order to solve Problem 2 and to expose the constructive nature of the
resulting proof systems, we present in Sect. 4 a coinductive extension of first-
order intuitionistic logic and its sequent calculus. This extension (iFOL�) is
based on the so-called later modality (or Löb modality) known from provability
logic [16,71], type theory [8,58] and domain theory [20]. However, our way of
using the later modality to control recursion in first-order proofs is new and
builds on [13,14]. In the same section we also show that CUP is sound relative
to iFOL�, which gives us a handle on the constructive content of CUP. This
yields, among other consequences, a constructive interpretation of CoLP proofs.

Section 5 is dedicated to showing soundness of both coinductive proof systems
relative to complete Herbrand models [52]. The construction of these models is
carried out by using coalgebras and category theory. This frees us from having to
use topological methods and will simplify future extensions of the theory to, e.g.,
encompass typed logic programming. It also makes it possible to give original
and constructive proofs of soundness for both CUP and iFOL� in Sect. 5. We
finish the paper with discussion of related and future work.

Originality of the Contribution

The results of this paper give a comprehensive characterisation of coinductive
Horn clause theories from the point of view of proof search (by expressing coin-
ductive proof search and resolution as coinductive uniform proofs), constructive
proof theory (via a translation into an intuitionistic sequent calculus), and coal-
gebraic semantics (via coinductive Herbrand models and constructive soundness
results). Several of the presented results have never appeared before: the coin-
ductive extension of uniform proofs; characterisation of coinductive properties of
Horn clause theories in higher-order logic with and without fixed point operators;
coalgebraic and fibrational view on complete Herbrand models; and soundness of
an intuitionistic logic with later modality relative to complete Herbrand models.

Coinduction in Uniform 789

2 Preliminaries: Terms and Formulae

In this section, we set up notation and terminology for the rest of the paper.
Most of it is standard, and blends together the notation used in [53] and [11].

Definition 1. We define the sets T of types and P of proposition types by the
following grammars, where ι and o are the base type and base proposition type.

T � σ, τ ::= ι |σ → τ P � ρ ::= o |σ → ρ, σ ∈ T

We adapt the usual convention that → binds to the right.

Fig. 2. Well-formed terms

Fig. 3. Well-formed formulae

Definition 2. A term signature Σ is a set of pairs c : τ , where τ ∈ T, and a
predicate signature is a set Π of pairs p : ρ with ρ ∈ P. The elements in Σ and
Π are called term symbols and predicate symbols, respectively. Given term and
predicate signatures Σ and Π, we refer to the pair (Σ,Π) as signature. Let Var
be a countable set of variables, the elements of which we denote by x, y, . . . We
call a finite list Γ of pairs x : τ of variables and types a context. The set ΛΣ of
(well-typed) terms over Σ is the collection of all M with Γ � M : τ for some
context Γ and type τ ∈ T, where Γ � M : τ is defined inductively in Fig. 2. A
term is called closed if � M : τ , otherwise it is called open. Finally, we let Λ−

Σ

denote the set of all terms M that do not involve fix.

Definition 3. Let (Σ,Π) be a signature. We say that ϕ is a (first-order) formula
in context Γ , if Γ � ϕ is inductively derivable from the rules in Fig. 3.

790 H. Basold et al.

Definition 4. The reduction relation −→ on terms in ΛΣ is given as the
compatible closure (reduction under applications and binders) of β- and fix-
reduction:

(λx.M)N −→ M [N/x] fix x.M −→ M [fix x.M/x]

We denote the reflexive, transitive closure of −→ by . Two terms M and
N are called convertible, if M ≡ N , where ≡ is the equivalence closure of −→.
Conversion of terms extends to formulae in the obvious way: if Mk ≡ M ′

k for
k = 1, . . . , n, then p M1 · · · Mn ≡ p M ′

1 · · · M ′
n.

We will use in the following that the above calculus features subject reduction
and confluence, cf. [61]: if Γ � M : τ and M ≡ N , then Γ � N : τ ; and M ≡ N
iff there is a term P , such that M P and N P .

The order of a type τ ∈ T is given as usual by ord(ι) = 0 and ord(σ → τ) =
max{ord(σ) + 1, ord(τ)}. If ord(τ) ≤ 1, then the arity of τ is given by ar(ι) = 0
and ar(ι → τ) = ar(τ)+1. A signature Σ is called first-order, if for all f : τ ∈ Σ
we have ord(τ) ≤ 1. We let the arity of f then be ar(τ) and denote it by ar(f).

Definition 5. The set of guarded base terms over a first-order signature Σ is
given by the following type-driven rules.

x : τ ∈ Γ ord(τ) ≤ 1
Γ �g x : τ

f : τ ∈ Σ

Γ �g f : τ

Γ �g M : σ → τ Γ �g N : σ

Γ �g M N : τ

f : σ ∈ Σ ord(τ) ≤ 1 Γ, x : τ, y1 : ι, . . . , yar(τ) : ι �g Mi : ι 1 ≤ i ≤ ar(f)

Γ �g fix x. λ y . f M : τ

General guarded terms are terms M , such that all fix-subterms are guarded base
terms, which means that they are generated by the following grammar.

G ::= M (with �g M : τ for some type τ) | c ∈ Σ |x ∈ Var |GG |λx.G

Finally, M is a first-order term over Σ with Γ � M : τ if ord(τ) ≤ 1 and the
types of all variables occurring in Γ are of order 0. We denote the set of guarded
first-order terms M with Γ � M : ι by ΛG,1

Σ (Γ) and the set of guarded terms in
Γ by ΛG

Σ(Γ). If Γ is empty, we just write ΛG,1
Σ and ΛG

Σ , respectively.

Note that an important aspect of guarded terms is that no free variable
occurs under a fix-operator. Guarded base terms should be seen as specific fixed
point terms that we will be able to unfold into potentially infinite trees. Guarded
terms close guarded base terms under operations of the simply typed λ-calculus.

Example 6. Let us provide a few examples that illustrate (first-order) guarded
terms. We use the first-order signature Σ = {scons : ι → ι → ι, s : ι → ι, 0 : ι}.

1. Let sfr = fix f. λx. scons x (f (s x)) be the function that computes the
streams of numerals starting at the given argument. It is easy to show that
�g sfr : ι → ι and so sfr 0 ∈ ΛG,1

Σ .

Coinduction in Uniform 791

2. For the same signature Σ we also have x : ι �g x : ι. Thus x ∈ ΛG,1
Σ (x : ι)

and s x ∈ ΛG,1
Σ (x : ι).

3. We have x : ι → ι �g x 0 : ι, but (x 0) �∈ ΛG,1
Σ (x : ι → ι).

The purpose of guarded terms is that these are productive, that is, we can
reduce them to a term that either has a function symbol at the root or is just
a variable. In other words, guarded terms have head normal forms: We say that
a term M is in head normal form, if M = f

#—

N for some f ∈ Σ or if M = x
for some variable x. The following lemma is a technical result that is needed to
show in Lemma 8 that all guarded terms have a head normal form.

Lemma 7. Let M and N be guarded base terms with Γ, x : σ �g M : τ and
Γ �g N : σ. Then M [N/x] is a guarded base term with Γ �g M [N/x] : τ .

Lemma 8. If M is a first-order guarded term with M ∈ ΛG,1
Σ (Γ), then M

reduces to a unique head normal form. This means that either (i) there is a
unique f ∈ Σ and terms N1, . . . , Nar(f) with Γ �g Nk : ι and M f

#—

N , and

for all L if M f
#—

L, then
#—

N ≡ #—

L; or (ii) M x for some x : ι ∈ Γ .

We end this section by introducing the notion of an atom and refinements
thereof. This will enable us to define the different logics and thereby to analyse
the strength of coinduction hypotheses, which we promised in the introduction.

Definition 9. A formula ϕ of the shape � or p M1 · · · Mn is an atom and a

– first-order atom, if p and all the terms Mi are first-order;
– guarded atom, if all terms Mi are guarded; and
– simple atom, if all terms Mi are non-recursive, that is, are in Λ−

Σ .

First-order, guarded and simple atoms are denoted by At1, Atg
ω and Ats

ω. We
denote conjunctions of these predicates by Atg

1 = At1∩Atg
ω and Ats

1 = At1∩Ats
ω.

Note that the restriction for Atg
ω only applies to fixed point terms. Hence, any

formula that contains terms without fix is already in Atg
ω and Atg

ω ∩Ats
ω = Ats

ω.
Since these notions are rather subtle, we give a few examples

Example 10. We list three examples of first-order atoms.

1. For x : ι we have stream x ∈ At1, but there are also “garbage” formulae like
“stream (fix x. x)” in At1. Examples of atoms that are not first-order are
p M , where p : (ι → ι) → o or x : ι → ι � M : τ .

2. Our running example “from 0 (sfr 0)” is a first-order guarded atom in Atg
1.

3. The formulae in Ats
1 may not contain recursion and higher-order features.

However, the atoms of Horn clauses in a logic program fit in here.

792 H. Basold et al.

3 Coinductive Uniform Proofs

This section introduces the eight logics of the coinductive uniform proof frame-
work announced and motivated in the introduction. The major difference of
uniform proofs with, say, a sequent calculus is the “uniformity” property, which
means that the choice of the application of each proof rule is deterministic and
all proofs are in normal form (cut free). This subsumes the operational semantics
of resolution, in which the proof search is always goal directed. Hence, the main
challenge, that we set out to solve in this section, is to extend the uniform proof
framework with coinduction, while preserving this valuable operational property.

We begin by introducing the different goal formulae and definite clauses that
determine the logics that were presented in the cube for coinductive uniform
proofs in the introduction. These clauses and formulae correspond directly to
those of the original work on uniform proofs [53] with the only difference being
that we need to distinguish atoms with and without fixed point terms. The
general idea is that goal formulae (G-formulae) occur on the right of a sequent,
thus are the goal to be proved. Definite clauses (D-formulae), on the other hand,
are selected from the context as assumptions. This will become clear once we
introduce the proof system for coinductive uniform proofs.

Definition 11. Let Di be generated by the following grammar with i ∈ {1, ω}.

Di ::= Ats
i | G → D | D ∧ D | ∀x : τ.D

Table 2. D- and G-formulae for coinductive uniform proofs.

The sets of definite clauses (D-formulae) and goals (G-formulae) of the four
logics co-fohc, co-fohh, co-hohc, co-hohh are the well-formed formulae of the
corresponding shapes defined in Table 2. For the variations co-fohhfix etc. of these
logics with fixed point terms, we replace upper index “s” with “g” everywhere in
Table 2. A D-formula of the shape ∀ #—x .A1∧· · ·∧An → A0 is called H-formula or
Horn clause if Ak ∈ Ats

1, and Hg-formula if Ak ∈ Atg
1. Finally, a logic program

(or program) P is a set of H-formulae. Note that any set of D-formulae in fohc
can be transformed into an intuitionistically equivalent set of H-formulae [53].

Coinduction in Uniform 793

We are now ready to introduce the coinductive uniform proofs. Such proofs
are composed of two parts: an outer coinduction that has to be at the root of
a proof tree, and the usual the usual uniform proofs by Miller et al. [54]. The
latter are restated in Fig. 4. Of special notice is the rule decide that mimics the
operational behaviour of resolution in logic programming, by choosing a clause
D from the given program to resolve against. The coinduction is started by
the rule co-fix in Fig. 5. Our proof system mimics the typical recursion with a
guard condition found in coinductive programs and proofs [5,8,19,31,40]. This
guardedness condition is formalised by applying the guarding modality 〈 〉 on
the formula being proven by coinduction and the proof rules that allow us to
distribute the guard over certain logical connectives, see Fig. 5. The guarding
modality may be discharged only if the guarded goal was resolved against a clause
in the initial program or any hypothesis, except for the coinduction hypotheses.
This is reflected in the rule decide〈〉, where we may only pick a clause from P ,
and is in contrast to the rule decide, in which we can pick any hypothesis. The
proof may only terminate with the initial step if the goal is no longer guarded.

Note that the co-fix rule introduces a goal as a new hypothesis. Hence,
we have to require that this goal is also a definite clause. Since coinduction
hypotheses play such an important role, they deserve a separate definition.

Definition 12. Given a language L from Table 2, a formula ϕ is a
coinduction goal of L if ϕ simultaneously is a D- and a G-formula of L.

Note that the coinduction goals of co-fohc and co-fohh can be transformed
into equivalent H- or Hg-formulae, since any coinduction goal is a D-formula.

Let us now formally introduce the coinductive uniform proof system.

Fig. 4. Uniform proof rules

794 H. Basold et al.

Fig. 5. Coinductive uniform proof rules

Definition 13. Let P and Δ be finite sets of, respectively, definite clauses and
coinduction goals, over the signature Σ, and suppose that G is a goal and ϕ
is a coinduction goal. A sequent is either a uniform provability sequent of the
form Σ;P ;Δ =⇒ G or Σ;P ;Δ D=⇒ A as defined in Fig. 4, or it is a coinductive
uniform provability sequent of the form Σ;P � ϕ as defined in Fig. 5. Let L be
a language from Table 2. We say that ϕ is coinductively provable in L, if P is a
set of D-formulae in L, ϕ is a coinduction goal in L and Σ;P � ϕ holds.

The logics we have introduced impose different syntactic restrictions on D-
and G-formulae, and will therefore admit coinduction goals of different strength.
This ability to explicitly use stronger coinduction hypotheses within a goal-
directed search was missing in CoLP, for example. And it allows us to account for
different coinductive properties of Horn clauses as described in the introduction.
We finish this section by illustrating this strengthening.

The first example is one for the logic co-fohc, in which we illustrate the
framework on the problem of type class resolution.

Example 14. Let us restate the Haskell type class inference problem discussed
in the introduction in terms of Horn clauses:

κi : eq i
κodd : ∀x. eq x ∧ eq (even x) → eq (odd x)
κeven : ∀x. eq x ∧ eq (odd x) → eq (even x)

To prove eq (odd i) for this set of Horn clauses, it is sufficient to use this
formula directly as coinduction hypothesis, as shown in Fig. 6. Note that this
formula is indeed a coinduction goal of co-fohc, hence we find ourselves in the
simplest scenario of coinductive proof search. In Table 1, γ1 is a representative
for this kind of coinductive proofs with simplest atomic goals.

It was pointed out in [37] that Haskell’s type class inference can also give rise
to irregular corecursion. Such cases may require the more general coinduction

Coinduction in Uniform 795

Fig. 6. The co-fohc proof for Horn clauses arising from Haskell Type class examples.
ϕ abbreviates the coinduction hypothesis eq (odd i). Note its use in the branch ♠.

hypothesis (e.g. universal and/or implicative) of co-fohh or co-hohh. The below
set of Horn clauses is a simplified representation of a problem given in [37]:

κi : eq i
κs : ∀x. (eq x) ∧ eq (s (g x)) → eq (s x)
κg : ∀x. eq x → eq (g x)

Trying to prove eq (s i) by using eq (s i) directly as a coinduction hypothesis
is deemed to fail, as the coinductive proof search is irregular and this coinduction
hypothesis would not be applicable in any guarded context. But it is possible
to prove eq (s i) as a corollary of another theorem: ∀x. (eq x) → eq (s x).
Using this formula as coinduction hypothesis leads to a successful proof, which
we omit here. From this more general goal, we can derive the original goal by
instantiating the quantifier with i and eliminating the implication with κi. This
second derivation is sound with respect to the models, as we show in Theorem 34.

We encounter γ2 from Table 1 in a similar situation: To prove p a, we first
have to prove ∀x. p x in co-fohh, and then obtain p a as a corollary by appealing
to Theorem 34. The next example shows that we can cover all cases in Table 1
by providing a proof in co-hohhfix that involves irregular recursive terms.

Example 15. Recall the clause ∀x y. from (s x) y → from x (scons x y)
that we named κfrom in the introduction. Proving ∃y. from 0 y is again not
possible directly. Instead, we can use the term sfr = fix f. λx. scons x (f (s x))
from Example 6 and prove ∀x. from x (sfr x) coinductively, as shown in Fig. 7.
This formula gives a coinduction hypothesis of sufficient generality. Note that
the correct coinduction hypothesis now requires the fixed point definition of an

796 H. Basold et al.

infinite stream of successive numbers and universal quantification in the goal.
Hence the need for the richer language of co-hohhfix. From this more general goal
we can derive our initial goal ∃ y.from 0 y by instantiating y with sfr 0.

Fig. 7. The co-hohhfix proof for ϕ = ∀x. from x (sfr x). Note that the last step of the
leftmost branch involves from c (scons c (sfr (s c))) ≡ from c (sfr c).

There are examples of coinductive proofs that require a fixed point definition
of an infinite stream, but do not require the syntax of higher-order terms or
hereditary Harrop formulae. Such proofs can be performed in the co-fohcfix logic.
A good example is a proof that the stream of zeros satisfies the Horn clause
theory defining the predicate stream in the introduction. The goal (stream s0),
with s0 = fix x. scons 0 x can be proven directly by coinduction. Similarly, one
can type self-application with the infinite type a = fix t. t → b for some given
type b. The proof for typed [x : a] (app x x) b is then in co-fohcfix. Finally, the
clause γ3 is also in this group. More generally, circular unifiers obtained from
CoLP’s [41] loop detection yield immediately guarded fixed point terms, and
thus CoLP corresponds to coinductive proofs in the logic co-fohcfix. A general
discussion of Horn clause theories that describe infinite objects was given in [48],
where the above logic programs were identified as being productive.

4 Coinductive Uniform Proofs and Intuitionistic Logic

In the last section, we introduced the framework of coinductive uniform proofs,
which gives an operational account to proofs for coinductively interpreted logic
programs. Having this framework at hand, we need to position it in the existing
ecosystem of logical systems. The goal of this section is to prove that coinductive
uniform proofs are in fact constructive. We show this by first introducing an
extension of intuitionistic first-order logic that allows us to deal with recursive

Coinduction in Uniform 797

Fig. 8. Intuitionistic rules for standard connectives

proofs for coinductive predicates. Afterwards, we show that coinductive uniform
proofs are sound relative to this logic by means of a proof tree translation. The
model-theoretic soundness proofs for both logics will be provided in Sect. 5.

We begin by introducing an extension of intuitionistic first-order logic with
the so-called later modality, written �. This modality is the essential ingredient
that allows us to equip proofs with a controlled form of recursion. The later
modality stems originally from provability logic, which characterises transitive,
well-founded Kripke frames [30,72], and thus allows one to carry out induction
without an explicit induction scheme [16]. Later, the later modality was picked up
by the type-theoretic community to control recursion in coinductive program-
ming [8,9,21,56,58], mostly with the intent to replace syntactic guardedness
checks for coinductive definitions by type-based checks of well-definedness.

Formally, the logic iFOL� is given by the following definition.

Definition 16. The formulae of iFOL� are given by Definition 3 and the rule:

Γ � ϕ

Γ � � ϕ

Conversion extends to these formulae in the obvious way. Let ϕ be a formula and
Δ a sequence of formulae in iFOL�. We say ϕ is provable in context Γ under
the assumptions Δ in iFOL�, if Γ | Δ � ϕ holds. The provability relation � is
thereby given inductively by the rules in Figs. 8 and 9.

Fig. 9. Rules for the later modality

798 H. Basold et al.

The rules in Fig. 8 are the usual rules for intuitionistic first-order logic and
should come at no surprise. More interesting are the rules in Fig. 9, where the rule
(Löb) introduces recursion into the proof system. Furthermore, the rule (Mon)
allows us to to distribute the later modality over implication, and consequently
over conjunction and universal quantification. This is essential in the translation
in Theorem 18 below. Finally, the rule (Next) gives us the possibility to proceed
without any recursion, if necessary.

Note that so far it is not possible to use the assumption �ϕ introduced in
the (Löb)-rule. The idea is that the formulae of a logic program provide us the
obligations that we have to prove, possibly by recursion, in order to prove a
coinductive predicate. This is cast in the following definition.

Definition 17. Given an Hg-formula ϕ of the shape ∀ #—x . (A1 ∧ · · · ∧ An) → ψ,
we define its guarding ϕ to be ∀ #—x . (� A1 ∧ · · · ∧� An) → ψ. For a logic program
P , we define its guarding P by guarding each formula in P .

The translation given in Definition 17 of a logic program into formulae
that admit recursion corresponds unfolding a coinductive predicate, cf. [14]. We
show now how to transform a coinductive uniform proof tree into a proof tree
in iFOL�, such that the recursion and guarding mechanisms in both logics
match up.

Theorem 18. If P is a logic program over a first-order signature Σ and the
sequent Σ;P � ϕ is provable in co-hohhfix, then P � ϕ is provable in iFOL�.

To prove this theorem, one uses that each coinductive uniform proof tree
starts with an initial tree that has an application of the co-fix-rule at the
root and that eliminates the guard by using the rules in Fig. 5. At the leaves
of this tree, one finds proof trees that proceed only by means of the rules in
Fig. 4. The initial tree is then translated into a proof tree in iFOL� that starts
with an application of the (Löb)-rule, which corresponds to the co-fix-rule, and
that simultaneously transforms the coinduction hypothesis and applies introduc-
tion rules for conjunctions etc. This ensures that we can match the coinduction
hypothesis with the guarded formulae of the program P .

The results of this section show that it is irrelevant whether the guarding
modality is used on the right (CUP-style) or on the left (iFOL�-style), as the
former can be translated into the latter. However, CUP uses the guarding on the
right to preserve proof uniformity, whereas iFOL� extends a general sequent
calculus. Thus, to obtain the reverse translation, we would have to have an
admissible cut rule in CUP. The main ingredient to such a cut rule is the ability to
prove several coinductive statements simultaneously. This is possible in CUP by
proving the conjunction of these statements. Unfortunately, we cannot eliminate
such a conjunction into one of its components, since this would require non-
deterministic guessing in the proof construction, which in turn breaks uniformity.
Thus, we leave a solution of this problem for future work.

Coinduction in Uniform 799

5 Herbrand Models and Soundness

In Sect. 4 we showed that coinductive uniform proofs are sound relative to the
intuitionistic logic iFOL�. This gives us a handle on the constructive nature of
coinductive uniform proofs. Since iFOL� is a non-standard logic, we still need
to provide semantics for that logic. We do this by interpreting in Sect. 5.4 the
formulae of iFOL� over the well-known (complete) Herbrand models and prove
the soundness of the accompanying proof system with respect to these mod-
els. Although we obtain soundness of coinductive uniform proofs over Herbrand
models from this, this proof is indirect and does not give a lot of information
about the models captured by the different calculi co-fohc etc. For this reason,
we will give in Sect. 5.3 a direct soundness proof for coinductive uniform proofs.
We also obtain coinduction invariants from this proof for each of the calculi,
which allows us to describe their proof strength.

5.1 Coinductive Herbrand Models and Semantics of Terms

Before we come to the soundness proofs, we introduce in this section (complete)
Herbrand models by using the terminology of final coalgebras. We then utilise
this description to give operational and denotational semantics to guarded terms.
These semantics show that guarded terms allow the description and computation
of potentially infinite trees.

The coalgebraic approach has been proven very successful both in logic and
programming [1,75,76]. We will only require very little category theoretical
vocabulary and assume that the reader is familiar with the category Set of
sets and functions, and functors, see for example [12,25,50]. The terminology of
algebras and coalgebras [4,47,64,65] is given by the following definition.

Definition 19. A coalgebra for a functor F : Set → Set is a map c : X → FX.
Given coalgebras d : Y → FY and c : X → FX, we say that a map h : Y → X
is a homomorphism d → c if Fh ◦ d = c ◦ h. We call a coalgebra c : X → FX
final, if for every coalgebra d there is a unique homomorphism h : d → c. We will
refer to h as the coinductive extension of d.

The idea of (complete) Herbrand models is that a set of Horn clauses deter-
mines for each predicate symbol a set of potentially infinite terms. Such terms
are (potentially infinite) trees, whose nodes are labelled by function symbols and
whose branching is given by the arity of these function symbols. To be able to
deal with open terms, we will allow such trees to have leaves labelled by variables.
Such trees are a final coalgebra for a functor determined by the signature.

Definition 20. Let Σ be first-order signature. The extension of a first-order
signature Σ is a (polynomial) functor [38] �Σ� : Set → Set given by

�Σ�(X) =
∐

f∈Σ Xar(f),

where ar : Σ → N is defined in Sect. 2 and Xn is the n-fold product of X. We
define for a set V a functor �Σ�+V : Set → Set by (�Σ�+V)(X) = �Σ�(X)+V ,
where + is the coproduct (disjoint union) in Set.

800 H. Basold et al.

To make sense of the following definition, we note that we can view Π as a
signature and we thus obtain its extension �Π�. Moreover, we note that the final
coalgebra of �Σ� + V exists because �Σ� is a polynomial functor.

Definition 21. Let Σ be a first-order signature. The coterms over Σ are the
final coalgebra rootV : Σ∞(V) → �Σ�(Σ∞(V)) + V . For brevity, we denote the
coterms with no variables, i.e. Σ∞(∅), by root : Σ∞ → �Σ�(Σ∞), and call it the
(complete) Herbrand universe and its elements ground coterms. Finally, we let
the (complete) Herbrand base B∞ be the set �Π�(Σ∞).

The construction Σ∞(V) gives rise to a functor Σ∞ : Set → Set, called
the free completely iterative monad [5]. If there is no ambiguity, we will drop the
injections κi when describing elements of Σ∞(V). Note that Σ∞(V) is final with
property that for every s ∈ Σ∞(V) either there are f ∈ Σ and #—

t ∈ (Σ∞(V))ar(f)

with rootV (s) = f(#—
t), or there is x ∈ V with rootV (s) = x. Finality allows us

to specify unique maps into Σ∞(V) by giving a coalgebra X → �Σ�(X) + V . In
particular, one can define for each θ : V → Σ∞ the substitution t[θ] of variables
in the coterm t by θ as the coinductive extension of the following coalgebra.

Σ∞(V) rootV−−−−→ �Σ�(Σ∞(V)) + V
[id,root◦θ]−−−−−−→ �Σ�(Σ∞(V))

Now that we have set up the basic terminology of coalgebras, we can give
semantics to guarded terms from Definition 5. The idea is that guarded terms
guarantee that we can always compute with them so far that we find a function
symbol in head position, see Lemma 8. This function symbol determines then
the label and branching of a node in the tree generated by a guarded term. If
the computation reaches a constant or a variable, then we stop creating the tree
at the present branch. This idea is captured by the following lemma.

Lemma 22. There is a map [[−]]1 : ΛG,1
Σ (Γ) → Σ∞(Γ) that is unique with

1. if M ≡ N , then [[M]]1 = [[N]]1, and
2. for all M , if M f

#—

N then rootΓ ([[M]]1) = f
(# —

[[N]]1
)
, and if M x then

rootΓ ([[M]]1) = x.

Proof (sketch). By Lemma 8, we can define a coalgebra on the quotient of
guarded terms by convertibility c : ΛG,1

Σ (Γ)/≡ → �Σ�
(
ΛG,1

Σ (Γ)/≡
)

+ Γ with

c[M] = f [
#—

N] if M f
#—

N and c[M] = x if M x. This yields a homo-

morphism h : ΛG,1
Σ (Γ)/≡ → Σ∞(Γ) and we can define [[−]]1 = h ◦ [−]. The rest

follows from uniqueness of h.

5.2 Interpretation of Basic Intuitionistic First-Order Formulae

In this section, we give an interpretation of the formulae in Definition 3, in
which we restrict ourselves to guarded terms. This interpretation will be relative
to models in the complete Herbrand universe. Since we later extend these models
to Kripke models to be able to handle the later modality, we formulate these
models already now in the language of fibrations [17,46].

Coinduction in Uniform 801

Definition 23. Let p : E → B be a functor. Given an object I ∈ B, the fibre
EI above I is the category of objects A ∈ E with p(A) = I and morphisms
f : A → B with p(f) = idI . The functor p is a (split) fibration if for every
morphism u : I → J in B there is functor u∗ : EJ → EI , such that id∗

I = IdEI

and (v ◦ u)∗ = u∗ ◦ v∗. We call u∗ the reindexing along u.

To give an interpretation of formulae, consider the following category Pred.

Pred =

{
objects : (X, P) withX ∈ Set and P ⊆ X
morphisms : f : (X, P) → (Y, Q) is a map f : X → Y with f(P) ⊆ Q

The functor P : Pred → Set with P(X,P) = X and P(f) = f is a split fibration,
see [46], where the reindexing functor for f : X → Y is given by taking preimages:
f∗(Q) = f−1(Q). Note that each fibre PredX is isomorphic to the complete
lattice of predicates over X ordered by set inclusion. Thus, we refer to this
fibration as the predicate fibration.

Let us now expose the logical structure of the predicate fibration. This will
allow us to conveniently interpret first-order formulae over this fibration, but it
comes at the cost of having to introduce a good amount of category theoretical
language. However, doing so will pay off in Sect. 5.4, where we will construct
another fibration out of the predicate fibration. We can then use category theo-
retical results to show that this new fibration admits the same logical structure
and allows the interpretation of the later modality.

The first notion we need is that of fibred products, coproducts and exponents,
which will allow us to interpret conjunction, disjunction and implication.

Definition 24. A fibration p : E → B has fibred finite products (1,×), if each
fibre EI has finite products (1I ,×I) and these are preserved by reindexing: for
all f : I → J , we have f∗(1J) = 1I and f∗(A ×J B) = f∗(A) ×I f∗(B). Fibred
finite coproducts and exponents are defined analogously.

The fibration P is a so-called first-order fibration, which allows us to interpret
first-order logic, see [46, Def. 4.2.1].

Definition 25. A fibration p : E → B is a first-order fibration if2

– B has finite products and the fibres of p are preorders;
– p has fibred finite products (�,∧) and coproducts (⊥,∨) that distribute;
– p has fibred exponents →; and
– p has existential and universal quantifiers ∃I,J � π∗

I,J � ∀I,J for all projections
πI,J : I × J → I.

A first-order λ-fibration is a first-order fibration with Cartesian closed base B.

2 Technically, the quantifiers should also fulfil the Beck-Chevalley and Frobenius con-
ditions, and the fibration should admit equality. Since these are fulfilled in all our
models and we do not need equality, we will not discuss them here.

802 H. Basold et al.

The fibration P : Pred → Set is a first-order λ-fibration, as all its fibres are
posets and Set is Cartesian closed; P has fibred finite products (�,∩), given by
�X = X and intersection; fibred distributive coproducts (∅,∪); fibred exponents
⇒, given by (P ⇒ Q) = { #—

t | if #—
t ∈ P , then #—

t ∈ Q}; and universal and
existential quantifiers given for P ∈ PredX×Y by

∀X,Y P = {x ∈ X | ∀y ∈ Y. (x, y) ∈ P} ∃X,Y P = {x ∈ X | ∃y ∈ Y. (x, y) ∈ P}.

The purpose of first-order fibrations is to capture the essentials of first-order
logic, while the λ-part takes care of higher-order features of the term language.
In the following, we interpret types, contexts, guarded terms and formulae in
the fibration P : Pred → Set: We define for types τ and context Γ sets �τ� and
�Γ �; for guarded terms M with Γ � M : τ we define a map �M� : �Γ � → �τ� in
Set; and for a formula Γ � ϕ we give a predicate �ϕ� ∈ Pred�Γ �.

The semantics of types and contexts are given inductively in the Cartesian
closed category Set, where the base type ι is interpreted as coterms, as follows.

We note that a coterm t ∈ Σ∞(V) can be seen as a map (Σ∞)V → Σ∞ by
applying a substitution in (Σ∞)V to t: σ �→ t[σ]. In particular, the semantics of a
guarded first-order term M ∈ ΛG,1

Σ (Γ) is equivalently a map [[M]]1 : �Γ � → Σ∞.
We can now extend this map inductively to �M� : �Γ � → �τ� for all guarded
terms M ∈ ΛG

Σ(Γ) with Γ � M : τ by

�M�(γ)
(#—

t
)

= [[M #—x]]1
([

#—x �→ #—
t
]) �g M : τ with ar(τ) =

∣
∣ #—
t
∣
∣ =

∣
∣ #—x

∣
∣

�c�(γ)
(#—

t
)

= c
#—
t

�x�(γ) = γ(x)

�M N�(γ) = �M�(γ)
(
�N�(γ)

)

�λx.M�(γ)(t) = �M�(γ[x �→ t])

Lemma 26. The mapping �−� is a well-defined function from guarded terms to
functions, such that Γ � M : τ implies �M� : �Γ � → �τ�.

Since P : Pred → Set is a first-order fibration, we can interpret inductively
all logical connectives of the formulae from Definition 3 in this fibration. The only
case that is missing is the base case of predicate symbols. Their interpretation
will be given over a Herbrand model that is constructed as the largest fixed point
of an operator over all predicate interpretations in the Herbrand base. Both the
operator and the fixed point are the subjects of the following definition.

Definition 27. We let the set of interpretations I be the powerset P(B∞) of
the complete Herbrand base. For I ∈ I and p ∈ Π, we denote by I|p the
interpretation of p in I (the fibre of I above p)

I|p =
{ #—

t ∈ (Σ∞)ar(p)
∣
∣ p(#—

t) ∈ I
}
.

Coinduction in Uniform 803

Given a set P of Hg-formulae, we define a monotone map ΦP : I → I by

ΦP (I) = {[[ψ]]1[θ] | (∀ #—x .
∧n

k=1 ϕk → ψ) ∈ P, θ : | #—x | → Σ∞,∀k. [[ϕk]]1[θ] ∈ I},

where [[−]]1[θ] is the extension of semantics and substitution from coterms to the
Herbrand base by functoriality of �Π�. The (complete) Herbrand model MP of
P is the largest fixed point of ΦP , which exists because I is a complete lattice.

Given a formula ϕ with Γ � ϕ that contains only guarded terms, we define
the semantics of ϕ in Pred from an interpretation I ∈ I inductively as follows.

�Γ � p
—

M�I =
(

—

�M�
)∗

(I|p)
�Γ � ��I = ��Γ �

�Γ � ϕ � ψ�I = �Γ � ϕ�I � �Γ � ψ�I � ∈ {∧,∨,→}
�Γ � Qx : τ. ϕ�I = Q�Γ �,�τ� �Γ, x : τ � ϕ�I Q ∈ {∀,∃}

Lemma 28. The mapping �−�I is a well-defined function from formulae to pred-
icates, such that Γ � ϕ implies �ϕ�I ⊆ �Γ � or, equivalently, �ϕ�I ∈ Pred�Γ �.

This concludes the semantics of types, terms and formulae. We now turn to
show that coinductive uniform proofs are sound for this interpretation.

5.3 Soundness of Coinductive Uniform Proofs for Herbrand Models

In this section, we give a direct proof of soundness for the coinductive uniform
proof system from Sect. 3. Later, we will obtain another soundness result by
combining the proof translation from Theorem 18 with the soundness of iFOL�
(Theorems 39 and 42). The purpose of giving a direct soundness proof for uniform
proofs is that it allows the extraction of a coinduction invariant, see Lemma 32.

The main idea is as follows. Given a formula ϕ and a uniform proof π for
Σ;P � ϕ, we construct an interpretation I ∈ I that validates ϕ, i.e. �ϕ�I = �,
and that is contained in the complete Herbrand model MP . Combining these
two facts, we obtain that �ϕ�MP

= �, and thus the soundness of uniform proofs.
To show that the constructed interpretation I is contained in MP , we use

the usual coinduction proof principle, as it is given in the following definition.

Definition 29. An invariant for K ∈ I is a set I ∈ I, such that K ⊆ I and I
is a ΦP -invariant, that is, I ⊆ ΦP (I). If K has an invariant, then K ⊆ MP .

Thus, our goal is now to construct an interpretation together with an invari-
ant. This invariant will essentially collect and iterate all the substitutions that
appear in a proof. For this we need the ability to compose substitutions of
coterms, which we derive from the monad [5] (Σ∞, η, μ) with μ : Σ∞Σ∞ ⇒ Σ∞.

Definition 30. A (Kleisli-)substitution θ from V to W , written θ : V W , is
map V → Σ∞(W). Composition of θ : V W and δ : U V is given by

θ � δ = U
δ−→ Σ∞(V)

Σ∞(θ)−−−−→ Σ∞(Σ∞(W))
μW−−→ Σ∞(W).

804 H. Basold et al.

The notions in the following definition will allow us to easily organise and
iterate the substitutions that occur in a uniform proof.

Definition 31. Let S be a set with S = {1, . . . , n} for some n ∈ N. We call
the set S∗ of lists over S the set of substitution identifiers. Suppose that we
have substitutions θ0 : V ∅ and θk : V V for each k ∈ S. Then we can
define a map Θ : S∗ → (Σ∞)V , which turns each substitution identifier into a
substitution, by iteration from the right:

Θ(ε) = θ0 and Θ(w : k) = Θ(w) � θk

After introducing these notations, we can give the outline of the soundness
proof for uniform proofs relative to the complete Herbrand model. Given an
Hg-formula ∀ #—x . ϕ, we note that a uniform proof π for Σ;P � ∀ #—x . ϕ starts with

#—c : ι, Σ;P ;Δ =⇒ 〈ϕ[#—c / #—x]〉 #—c : ι /∈ Σ ∀R〈〉
Σ;P ;∀ #—x . ϕ =⇒ 〈∀ #—x . ϕ〉

co-fix
Σ;P � ∀ #—x . ϕ

where the eigenvariables in #—c are all distinct. Let Σc be the signature #—c : ι, Σ
and C the set of variables in #—c . Suppose the following is a valid subtree of π.

Σc;P ;Δ
ϕ[

#—
N/ #—x]

=====⇒ A ∀L
Σc;P ;Δ

∀ #—x . ϕ∈Δ
=====⇒ A

decide
Σc;P ;Δ =⇒ A

This proof tree gives rise to a substitution δ : C C by δ(c) = �Nc�, which we
call an agent of π. We let D ⊆ Atg

1 be the set of atoms that are proven in π:

D = {A | Σc;P ;Δ =⇒ 〈A〉 or Σc;P ;Δ =⇒ A appears in π}
From the agents and atoms in π we extract an invariant for the goal formula.

Lemma 32. Suppose that ϕ is an Hg-formula of the form ∀ #—x .A1 ∧ · · · ∧ An →
A0 and that there is a proof π for Σ;P � ϕ. Let D be the proven atoms in π and
θ0, . . . , θs be the agents of π. Define Ac

k = Ak[#—c / #—x] and suppose further that I1
is an invariant for {Ac

k[Θ(ε)] | 1 ≤ k ≤ n}. If we put

I2 =
⋃

w∈S∗
D [Θ (w)]

then I1 ∪ I2 is an invariant for Ac
0[Θ(ε)].

Once we have Lemma 32 the following soundness theorem is easily proven.

Theorem 33. If ϕ is an Hg-formula and Σ;P � ϕ, then �ϕ�MP
= �.

Finally, we show that extending logic programs with coinductively proven
lemmas is sound. This follows easily by coinduction.

Coinduction in Uniform 805

Theorem 34. Let ϕ be an Hg-formula of the shape ∀ #—x . ψ1 → ψ2, such that,
for all substitutions θ if [[ψ1]]1[θ] ∈ MP,ϕ, then [[ψ1]]1[θ] ∈ MP . Then Σ;P � ϕ
implies MP∪{ϕ} = MP , that is, P ∪ {ϕ} is a conservative extension of P with
respect to the Herbrand model.

As a corollary we obtain that, if there is a proof for Σ;P � ϕ, then a proof
for Σ;P,ϕ � ψ is sound with respect to MP . Indeed, by Theorem 34 we have
that MP = MP∪ϕ and by Theorem 33 that Σ;P,ϕ � ψ is sound with respect
to MP∪{ϕ}. Thus, the proof of Σ;P,ϕ � ψ is also sound with respect to MP .
We use this property implicitly in our running examples, and refer the reader
to [15,49] for proofs, further examples and discussion.

5.4 Soundness of iFOL� over Herbrand Models

In this section, we demonstrate how the logic iFOL� can be interpreted over
Herbrand models. Recall that we obtained a fixed point model from the mono-
tone map ΦP on interpretations. In what follows, it is crucial that we construct
the greatest fixed point of ΦP by iteration, c.f. [6,32,77]: Let Ord be the class
of all ordinals equipped with their (well-founded) order. We denote by Ordop

the class of ordinals with their reversed order and define a monotone function←−
ΦP : Ordop → I, where we write the argument ordinal in the subscript, by

(←−
ΦP

)
α

=
⋂

β<α
ΦP

(←−
ΦP β

)
.

Note that this definition is well-defined because < is well-founded and because
ΦP is monotone, see [14]. Since I is a complete lattice, there is an ordinal α such
that

←−
ΦP α = ΦP

(←−
ΦP α

)
, at which point

←−
ΦP α is the largest fixed point MP of ΦP .

In what follows, we will utilise this construction to give semantics to iFOL�.
The fibration P : Pred → Set gives rise to another fibration as follows. We let

Pred be the category of functors (monotone maps) with fixed predicate domain:

Pred =

⎧
⎪⎨

⎪⎩

objects: u : Ordop → Pred, such that P ◦ u is constant
morphisms: u → v are natural transformations f : u ⇒ v,

such that Pf : P ◦ u ⇒ P ◦ v is the identity

The fibration P : Pred → Set is defined by evaluation at any ordinal (here 0),
i.e. by P(u) = P(u(0)) and P(f) = (Pf)0, and reindexing along f : X → Y by
applying the reindexing of P point-wise, i.e. by f#(u)α = f∗(uα).

Note that there is a (full) embedding K : Pred → Pred that is given by
K(X,P) = (X,P) with Pα = P . One can show [14] that P is again a first-order
fibration and that it models the later modality, as in the following theorem.

Theorem 35. The fibration P is a first-order fibration. If necessary, we denote
the first-order connectives by �̇, ∧̇ etc. to distinguish them from those in Pred.
Otherwise, we drop the dots. Finite (co)products and quantifiers are given point-
wise, while for X ∈ Set and u, v ∈ PredX exponents are given by

(v ⇒̇ u)α =
⋂

β≤α
(vβ ⇒ uβ).

806 H. Basold et al.

There is a fibred functor � : Pred → Pred with π ◦ � = π given on objects by

(� u)α =
⋂

β<α
uβ

and a natural transformation next : Id ⇒ � from the identity functor to �. The
functor � preserves reindexing, products, exponents and universal quantification:
�(f#u) = f#(� u), �(u∧v) = � u∧� v, �(uv) → (� u)� v, �

(∀nu
)

= ∀n(� u).
Finally, for all X ∈ Set and u ∈ PredX , there is löb : (� u ⇒̇ u) → u in PredX .

Using the above theorem, we can extend the interpretation of formulae to
iFOL� as follows. Let u : Ordop → I be a descending sequence of interpreta-
tions. As before, we define the restriction of u to a predicate symbol p ∈ Π by(
u|p

)
α

= uα|p =
{ #—

t
∣
∣ p

(#—
t
) ∈ uα

}
. The semantics of formulae in iFOL� as

objects in Pred is given by the following iterative definition.

�Γ � p
—

M�u =
(

—

�M�
)#

(u|p)
�Γ � ��u = �̇�Γ �

�Γ � ϕ � ψ�u = �Γ � ϕ�u � �Γ � ψ�u � ∈ {∧,∨,→}
�Γ � Qx : τ. ϕ�u = Q�Γ �,�τ� �Γ, x : τ � ϕ�u Q ∈ {∀,∃}

�Γ � � ϕ�u = ��Γ � ϕ�u

The following lemma is the analogue of Lemma 28 for the interpretation of
formulae without the later modality.

Lemma 36. The mapping �−�u is a well-defined map from formulae in iFOL�
to sequences of predicates, such that Γ � ϕ implies �ϕ�u ∈ Pred�Γ �.

Lemma 37. All rules of iFOL� are sound with respect to the interpretation
�−�u of formulae in Pred, that is, if Γ | Δ � ϕ, then

(∧
ψ∈Δ�ψ�u ⇒̇ �ϕ�u

)
= �̇.

In particular, Γ � ϕ implies �ϕ�u = �̇.

The following lemma shows that the guarding of a set of formulae is valid in
the chain model that they generate.

Lemma 38. If ϕ is an H-formula in P , then �ϕ�←−−
ΦP

= �̇.

Combining this with soundness from Lemma 37, we obtain that provability
in iFOL� relative to a logic program P is sound for the model of P .

Theorem 39. For all logic programs P , if Γ | P � ϕ then �ϕ�←−−
ΦP

= �̇.

The final result of this section is to show that the descending chain model,
which we used to interpret formulae of iFOL�, is sound and complete for the
fixed point model, which we used to interpret the formulae of coinductive uniform
proofs. This will be proved in Theorem 42 below. The easiest way to prove this
result is by establishing a functor Pred → Pred that maps the chain

←−
ΦP to

the model MP , and that preserves and reflects truth of first-order formulae
(Proposition 41). We will phrase the preservation of truth of first-order formulae
by a functor by appealing to the following notion of fibrations maps, cf. [46, Def.
4.3.1].

Coinduction in Uniform 807

Definition 40. Let p : E → B and q : D → A be fibrations. A fibration map
p → q is a pair (F : E → D, G : B → A) of functors, s.t. q ◦ F = G ◦ p and F
preserves Cartesian morphisms: if f : X → Y in E is Cartesian over p(f), then
F (f) is Cartesian over G(p(f)). (F,G) is a map of first-order (λ-)fibrations, if
p and q are first-order (λ-)fibrations, and F and G preserve this structure.

Let us now construct a first-order λ-fibration map Pred → Pred. We note
that since every fibre of the predicate fibration is a complete lattice, for every
chain u ∈ PredX there exists an ordinal α at which u stabilises. This means
that there is a limit lim u of u in PredX , which is the largest subset of X, such
that ∀α. lim u ⊆ uα. This allows us to define a map L : Pred → Pred by

L(X,u) = (X, lim u)
L(f : (X,u) → (Y, v)) = f.

In the following proposition, we show that L gives us the ability to express
first-order properties of limits equivalently through their approximating chains.
This, in turn, provides soundness and completeness for the interpretation of the
logic iFOL� over descending chains with respect to the largest Herbrand model.

Proposition 41. L : Pred → Pred, as defined above, is a map of first-order
fibrations. Furthermore, L is right-adjoint to the embedding K : Pred → Pred.
Finally, for each p ∈ Π and u ∈ PredB∞ , we have L

(
u|p

)
= L(u)|p.

We get from Proposition 41 soundness and completeness of
←−
ΦP for Herbrand

models. More precisely, if ϕ is a formula of plain first-order logic (�-free), then
its interpretation in the coinductive Herbrand model is true if and only if its
interpretation over the chain approximation of the Herbrand model is true.

Theorem 42. If ϕ is �-free (Definition 3) then �ϕ�←−−
ΦP

= �̇ if and only if
�ϕ�MP

= �.

Proof (sketch). First, one shows for all �-free formulae ϕ that L(�ϕ�←−−
ΦP

) =
�ϕ�MP

by induction on ϕ and using Proposition 41. Using this identity and
K � L, the result is then obtained from the following adjoint correspondence.

6 Conclusion, Related Work and the Future

In this paper, we provided a comprehensive theory of resolution in coinductive
Horn-clause theories and coinductive logic programs. This theory comprises of a
uniform proof system that features a form of guarded recursion and that provides

808 H. Basold et al.

operational semantics for proofs of coinductive predicates. Further, we showed
how to translate proofs in this system into proofs for an extension of intuitionistic
FOL with guarded recursion, and we provided sound semantics for both proof
systems in terms of coinductive Herbrand models. The Herbrand models and
semantics were thereby presented in a modern style that utilises coalgebras and
fibrations to provide a conceptual view on the semantics.

Related Work. It may be surprising that automated proof search for coinductive
predicates in first-order logic does not have a coherent and comprehensive theory,
even after three decades [3,60], despite all the attention that it received as pro-
gramming [2,29,42,44] and proof [33,35,39,40,45,59,64–67] method. The work
that comes close to algorithmic proof search is the system CIRC [63], but it can-
not handle general coinductive predicates and corecursive programming. Induc-
tive and coinductive data types are also being added to SMT solvers [24,62].
However, both CIRC and SMT solving are inherently based on classical logic
and are therefore not suited to situations where proof objects are relevant, like
programming, type class inference or (dependent) type theory. Moreover, the
proposed solutions, just like those in [41,69] can only deal with regular data,
while our approach also works for irregular data, as we saw in the from-example.

This paper subsumes Haskell type class inference [37,51] and exposes that
the inference presented in those papers corresponds to coinductive proofs in
co-fohc and co-hohh. Given that the proof systems proposed in this paper are
constructive and that uniform proofs provide proofs (type inhabitants) in normal
form, we could give a propositions-as-types interpretation to all eight coinductive
uniform proof systems. This was done for co-fohc and co-hohh in [37], but we
leave the remaining cube from the introduction for future work.

Future Work. There are several directions that we wish to pursue in the future.
First, we know that CUP is incomplete for the presented models, as it is intu-
itionistic and it lacks an admissible cut rule. The first can be solved by moving
to Kripke/Beth-models, as done by Clouston and Goré [30] for the propositional
part of iFOL�. However, the admissible cut rule is more delicate. To obtain
such a rule one has to be able to prove several propositions simultaneously by
coinduction, as discussed at the end of Sect. 4. In general, completeness of recur-
sive proof systems depends largely on the theory they are applied to, see [70]
and [18]. However, techniques from cyclic proof systems [27,68] may help. We also
aim to extend our ideas to other situations like higher-order Horn clauses [28,43]
and interactive proof assistants [7,10,23,31], typed logic programming, and logic
programming that mix inductive and coinductive predicates.

Acknowledgements. We would like to thank Damien Pous and the anonymous
reviewers for their valuable feedback.

Coinduction in Uniform 809

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. TCS 342(1), 3–27 (2005). https://doi.org/10.1016/j.tcs.2005.06.002

2. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: POPL 2013, pp. 27–38 (2013). https://doi.org/10.
1145/2429069.2429075

3. Aczel, P.: Non-well-founded sets. Center for the Study of Language and Informa-
tion, Stanford University (1988)

4. Aczel, P.: Algebras and coalgebras. In: Backhouse, R., Crole, R., Gibbons, J. (eds.)
Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.
LNCS, vol. 2297, pp. 79–88. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-47797-7 3

5. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative
theories: a coalgebraic view. TCS 300(1–3), 1–45 (2003). https://doi.org/10.1016/
S0304-3975(02)00728-4

6. Adámek, J.: On final coalgebras of continuous functors. Theor. Comput. Sci.
294(1/2), 3–29 (2003). https://doi.org/10.1016/S0304-3975(01)00240-7

7. P.L. group on Agda: Agda Documentation. Technical report, Chalmers and
Gothenburg University (2015). http://wiki.portal.chalmers.se/agda/, version
2.4.2.5

8. Appel, A.W., Melliès, P.A., Richards, C.D., Vouillon, J.: A very modal model of a
modern, major, general type system. In: POPL, pp. 109–122. ACM (2007). https://
doi.org/10.1145/1190216.1190235

9. Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In:
ICFP, pp. 197–208. ACM (2013). https://doi.org/10.1145/2500365.2500597

10. Baelde, D., et al.: Abella: a system for reasoning about relational specifications. J.
Formaliz. Reason. 7(2), 1–89 (2014). https://doi.org/10.6092/issn.1972-5787/4650

11. Barendregt, H., Dekkers, W., Statman, R.: Lambda Calculus with Types. Cam-
bridge University Press, Cambridge (2013)

12. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall Inter-
national Series in Computer Science, 2nd edn. Prentice Hall, Upper Saddle River
(1995). http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html

13. Basold, H.: Mixed inductive-coinductive reasoning: types, programs and logic.
Ph.D. thesis, Radboud University Nijmegen (2018). http://hdl.handle.net/2066/
190323

14. Basold, H.: Breaking the Loop: Recursive Proofs for Coinductive Predicates in
Fibrations. ArXiv e-prints, February 2018. https://arxiv.org/abs/1802.07143

15. Basold, H., Komendantskaya, E., Li, Y.: Coinduction in uniform: foundations for
corecursive proof search with horn clauses. Extended version of this paper. CoRR
abs/1811.07644 (2018). http://arxiv.org/abs/1811.07644

16. Beklemishev, L.D.: Parameter free induction and provably total com-
putable functions. TCS 224(1–2), 13–33 (1999). https://doi.org/10.1016/S0304-
3975(98)00305-3

17. Bénabou, J.: Fibered categories and the foundations of naive category theory. J.
Symb. Logic 50(1), 10–37 (1985). https://doi.org/10.2307/2273784

18. Berardi, S., Tatsuta, M.: Classical system of Martin-Löf’s inductive definitions is
not equivalent to cyclic proof system. In: Esparza, J., Murawski, A.S. (eds.) FoS-
SaCS 2017. LNCS, vol. 10203, pp. 301–317. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54458-7 18

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1007/3-540-47797-7_3
https://doi.org/10.1007/3-540-47797-7_3
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(01)00240-7
http://wiki.portal.chalmers.se/agda/
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.6092/issn.1972-5787/4650
http://www.tac.mta.ca/tac/reprints/articles/22/tr22abs.html
http://hdl.handle.net/2066/190323
http://hdl.handle.net/2066/190323
https://arxiv.org/abs/1802.07143
http://arxiv.org/abs/1811.07644
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.2307/2273784
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1007/978-3-662-54458-7_18

810 H. Basold et al.

19. Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types
qua fixed points on universes. In: LICS, pp. 213–222. IEEE Computer Society
(2013). https://doi.org/10.1109/LICS.2013.27

20. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in syn-
thetic guarded domain theory: step-indexing in the topos of trees. In: Proceedings
of LICS 2011, pp. 55–64. IEEE Computer Society (2011). https://doi.org/10.1109/
LICS.2011.16

21. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
dependent type theory with coinductive types. In: Jacobs, B., Löding, C. (eds.)
FoSSaCS 2016. LNCS, vol. 9634, pp. 20–35. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49630-5 2. https://arxiv.org/abs/1601.01586

22. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

23. Blanchette, J.C., Meier, F., Popescu, A., Traytel, D.: Foundational nonuniform
(co)datatypes for Higher-Order Logic. In: LICS 2017, pp. 1–12. IEEE Computer
Society (2017). https://doi.org/10.1109/LICS.2017.8005071

24. Blanchette, J.C., Peltier, N., Robillard, S.: Superposition with datatypes and
codatatypes. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS
(LNAI), vol. 10900, pp. 370–387. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94205-6 25

25. Borceux, F.: Handbook of Categorical Algebra. Basic Category Theory, vol. 1.
Cambridge University Press, Cambridge (2008)

26. Bottu, G., Karachalias, G., Schrijvers, T., Oliveira, B.C.D.S., Wadler, P.: Quanti-
fied class constraints. In: Haskell Symposium, pp. 148–161. ACM (2017). https://
doi.org/10.1145/3122955.3122967

27. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011). https://doi.org/10.1093/logcom/exq052

28. Burn, T.C., Ong, C.L., Ramsay, S.J.: Higher-order constrained horn clauses for ver-
ification. PACMPL 2(POPL), 11:1–11:28 (2018). https://doi.org/10.1145/3158099

29. Capretta, V.: General Recursion via Coinductive Types. Log. Methods Comput.
Sci. 1(2), July 2005. https://doi.org/10.2168/LMCS-1(2:1)2005

30. Clouston, R., Goré, R.: Sequent calculus in the topos of trees. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 133–147. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46678-0 9

31. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). https://doi.
org/10.1007/3-540-58085-9 72

32. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pac.
J. Math. 82(1), 43–57 (1979). http://projecteuclid.org/euclid.pjm/1102785059

33. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time μ-calculus.
In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 26

34. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. J. Assoc. Comput. Mach. 23, 733–742 (1976). https://doi.org/10.1145/
321978.321991

35. Endrullis, J., Hansen, H.H., Hendriks, D., Polonsky, A., Silva, A.: A coinductive
framework for infinitary rewriting and equational reasoning. In: RTA 2015, pp.
143–159 (2015). https://doi.org/10.4230/LIPIcs.RTA.2015.143

https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1007/978-3-662-49630-5_2
https://arxiv.org/abs/1601.01586
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1109/LICS.2017.8005071
https://doi.org/10.1007/978-3-319-94205-6_25
https://doi.org/10.1007/978-3-319-94205-6_25
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1145/3158099
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1007/978-3-662-46678-0_9
https://doi.org/10.1007/978-3-662-46678-0_9
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9_72
http://projecteuclid.org/euclid.pjm/1102785059
https://doi.org/10.1007/11944836_26
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991
https://doi.org/10.4230/LIPIcs.RTA.2015.143

Coinduction in Uniform 811

36. Farka, F., Komendantskaya, E., Hammond, K.: Coinductive soundness of corecur-
sive type class resolution. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOP-
STR 2016. LNCS, vol. 10184, pp. 311–327. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63139-4 18

37. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp.
126–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29604-3 9

38. Gambino, N., Kock, J.: Polynomial functors and polynomial monads. Math.
Proc. Cambridge Phil. Soc. 154(1), 153–192 (2013). https://doi.org/10.1017/
S0305004112000394

39. Giesl, J., et al.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reason. 58(1), 3–31 (2017). https://doi.org/10.1007/s10817-
016-9388-y

40. Giménez, E.: Structural recursive definitions in type theory. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 397–408. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055070

41. Gupta, G., Bansal, A., Min, R., Simon, L., Mallya, A.: Coinductive logic program-
ming and its applications. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol.
4670, pp. 27–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74610-2 4

42. Hagino, T.: A typed lambda calculus with categorical type constructors. In: Pitt,
D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science.
LNCS, vol. 283, pp. 140–157. Springer, Heidelberg (1987). https://doi.org/10.1007/
3-540-18508-9 24

43. Hashimoto, K., Unno, H.: Refinement type inference via horn constraint optimiza-
tion. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 199–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 12

44. Howard, B.T.: Inductive, coinductive, and pointed types. In: Harper, R., Wexelblat,
R.L. (eds.) Proceedings of ICFP 1996, pp. 102–109. ACM (1996). https://doi.org/
10.1145/232627.232640

45. Hur, C.K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization
in coinductive proof. In: Proceedings of POPL 2013, pp. 193–206. ACM (2013).
https://doi.org/10.1145/2429069.2429093

46. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North Holland, Amsterdam (1999)

47. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781316823187.
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

48. Komendantskaya, E., Li, Y.: Productive corecursion in logic programming. J.
TPLP (ICLP 2017 post-proc.) 17(5–6), 906–923 (2017). https://doi.org/10.1017/
S147106841700028X

49. Komendantskaya, E., Li, Y.: Towards coinductive theory exploration in horn clause
logic: Position paper. In: Kahsai, T., Vidal, G. (eds.) Proceedings 5th Workshop on
Horn Clauses for Verification and Synthesis, HCVS 2018, Oxford, UK, 13th July
2018, vol. 278, pp. 27–33 (2018). https://doi.org/10.4204/EPTCS.278.5

50. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic. Cam-
bridge University Press, Cambridge (1988)

51. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate with class: extensible
generic functions. In: ICFP 2005, pp. 204–215. ACM (2005). https://doi.org/10.
1145/1086365.1086391

https://doi.org/10.1007/978-3-319-63139-4_18
https://doi.org/10.1007/978-3-319-63139-4_18
https://doi.org/10.1007/978-3-319-29604-3_9
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/BFb0055070
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1145/232627.232640
https://doi.org/10.1145/232627.232640
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1017/CBO9781316823187
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
https://doi.org/10.1017/S147106841700028X
https://doi.org/10.1017/S147106841700028X
https://doi.org/10.4204/EPTCS.278.5
https://doi.org/10.1145/1086365.1086391
https://doi.org/10.1145/1086365.1086391

812 H. Basold et al.

52. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg
(1987). https://doi.org/10.1007/978-3-642-83189-8

53. Miller, D., Nadathur, G.: Programming with Higher-order logic. Cambridge Uni-
versity Press, Cambridge (2012)

54. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Logic 51(1–2), 125–157 (1991). https://
doi.org/10.1016/0168-0072(91)90068-W

55. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

56. Møgelberg, R.E.: A type theory for productive coprogramming via guarded
recursion. In: CSL-LICS, pp. 71:1–71:10. ACM (2014). https://doi.org/10.1145/
2603088.2603132

57. Nadathur, G., Mitchell, D.J.: System description: Teyjus—a compiler and abstract
machine based implementation of λProlog. CADE-16. LNCS (LNAI), vol. 1632, pp.
287–291. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 25

58. Nakano, H.: A modality for recursion. In: LICS, pp. 255–266. IEEE Computer
Society (2000). https://doi.org/10.1109/LICS.2000.855774

59. Niwinski, D., Walukiewicz, I.: Games for the μ-Calculus. TCS 163(1&2), 99–116
(1996). https://doi.org/10.1016/0304-3975(95)00136-0

60. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

61. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977). https://doi.org/10.1016/0304-3975(77)90044-5

62. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8 5

63. Roşu, G., Lucanu, D.: Circular coinduction: a proof theoretical foundation. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–
144. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2 10

64. Rutten, J.: Universal coalgebra: a theory of systems. TCS 249(1), 3–80 (2000).
https://doi.org/10.1016/S0304-3975(00)00056-6

65. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

66. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In:
Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 357–371.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 25

67. Santocanale, L.: μ-bicomplete categories and parity games. RAIRO - ITA 36(2),
195–227 (2002). https://doi.org/10.1051/ita:2002010

68. Shamkanov, D.S.: Circular proofs for the Gödel-Löb provability logic. Math. Notes
96(3), 575–585 (2014). https://doi.org/10.1134/S0001434614090326

69. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: extending
logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73420-8 42

70. Simpson, A.: Cyclic arithmetic is equivalent to Peano arithmetic. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 283–300. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 17

71. Smoryński, C.: Self-Reference and Modal Logic. Universitext. Springer, New York
(1985). https://doi.org/10.1007/978-1-4613-8601-8

https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1007/3-540-48660-7_25
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1051/ita:2002010
https://doi.org/10.1134/S0001434614090326
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/978-1-4613-8601-8

Coinduction in Uniform 813

72. Solovay, R.M.: Provability interpretations of modal logic. Israel J. Math. 25(3),
287–304 (1976). https://doi.org/10.1007/BF02757006

73. Sulzmann, M., Stuckey, P.J.: HM(X) type inference is CLP(X) solving. J. Funct.
Program. 18(2), 251–283 (2008). https://doi.org/10.1017/S0956796807006569

74. Terese: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)
75. Turner, D.A.: Elementary strong functional programming. In: Hartel, P.H., Plas-

meijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, pp. 1–13. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60675-0 35

76. van den Berg, B., de Marchi, F.: Non-well-founded trees in categories. Ann. Pure
Appl. Logic 146(1), 40–59 (2007). https://doi.org/10.1016/j.apal.2006.12.001

77. Worrell, J.: On the final sequence of a finitary set functor. Theor. Comput. Sci.
338(1–3), 184–199 (2005). https://doi.org/10.1016/j.tcs.2004.12.009

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BF02757006
https://doi.org/10.1017/S0956796807006569
https://doi.org/10.1007/3-540-60675-0_35
https://doi.org/10.1016/j.apal.2006.12.001
https://doi.org/10.1016/j.tcs.2004.12.009
http://creativecommons.org/licenses/by/4.0/

	Coinduction in Uniform: Foundations for Corecursive Proof Search with Horn Clauses
	1 Introduction
	2 Preliminaries: Terms and Formulae
	3 Coinductive Uniform Proofs
	4 Coinductive Uniform Proofs and Intuitionistic Logic
	5 Herbrand Models and Soundness
	5.1 Coinductive Herbrand Models and Semantics of Terms
	5.2 Interpretation of Basic Intuitionistic First-Order Formulae
	5.3 Soundness of Coinductive Uniform Proofs for Herbrand Models
	5.4 Soundness of iFOL`3́9`42`"̇613A``45`47`"603A over Herbrand Models

	6 Conclusion, Related Work and the Future
	References

