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Abstract
This paper introduces an event-based computing paradigm, where workers only perform
computation in response to external stimuli (events). This approach is best employed on
hardware with many thousands of smaller compute cores with a fast, low-latency inter-
connect, as opposed to traditional computers with fewer and faster cores. Event-based
computing is timely because it provides an alternative to traditional big computing,
which suffers from immense infrastructural and power costs. This paper presents four
case study applications, where an event-based computing approach finds solutions to
orders of magnitude more quickly than the equivalent traditional big compute approach,
including problems in computational chemistry and condensed matter physics.

K E Y W O R D S
computer architecture, distributed shared memory systems, electronic engineering computing, message passing,
multi-threading, network-on-chip, parallel architectures, parallel memories, parallel processing

1 | INTRODUCTION

Conventional von Neumann machines exhibit a bottleneck
when fetching data: processors have become faster, while
memory access speeds have stagnated. The efforts of opti-
mising compilers aside, this bottleneck causes processors to
idle, waiting for instructions and data to be retrieved. This
idling inhibits conventional machines from keeping up with
humanity's increasing demand to solve increasingly massive
problems increasingly quickly. One consequence is a tremen-
dous energy inefficiency, which is particularly detrimental when
one considers the increasing demand for energy on a global
scale. Massive engineering problems solved on conventional
architectures consume millions of core-hours and watts, at a
huge cost, and the problems humanity needs to be solved are
only getting larger. This severely limits the potential for exas-
cale computing: Conventional architectures do not scale. It

is critical to address these issues, otherwise humanity will not
be able to keep pace with the scale of computational problems
it needs to solve.

Power dissipation is a major challenge for conventional
computers in a heavily loaded computing system (the dark-
silicon problem): It is not possible to power the entirety of a
state-of-the-art chip at once, because it is not possible to get
the electrical power in and consequent heat out fast enough
without the chip failing [1]. Systems with multiple smaller
processors have demonstrated greater power efficiency than
equivalent systems with larger processors [2, 3]. However, the
traditional argument against using a system with many smaller
cores is the relative cost of communication and computation—
moving data is traditionally orders of magnitude more expen-
sive than computing it.

To combat these issues, there is an increasing demand for
alternative hardware designs and architectures for tackling
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massive engineering problems. Field-Programmable Gate Ar-
rays (FPGAs) are uniquely positioned to facilitate rapid
exploration of the space of alternative hardware architectures.
FPGAs and other programmable logic devices are commonly
used to deploy a static configuration of hardware and have
been used to create diverse application-specific flexible archi-
tectures. Such configurations may be adapted to include soft
microprocessors (softcores) that facilitate more general
computation. Clusters of softcores have been deployed in
FPGAs to rapidly solve large problems that are amenable to
parallelisation. These multiple softcore approaches have been
shown to alleviate the power-dissipation problem [2], and
improve intercore communication speed by using a parallel
hardware communications fabric. In approaches like this,
where both communication and computation could reasonably
bottleneck, it is no longer feasible to separate the computation
from the communications—the computer becomes the
network.

This paper introduces event-based computing as a
computing paradigm in Section 2. Section 2 also introduces
event storms as a common computing pattern that occurs in
event-based systems, discusses how recent developments in
hardware can be exploited to efficiently perform event-based
computing, and introduces an example trivial application to
illustrate the concepts. The key point of this paper is to
demonstrate the efficacy of event-based computing for
large, industrially important high-throughput computing
problems: Section 3 introduces a portfolio of these problems,
shows how event-based computing dramatically improves
performance scaling in those problems, and explains how it
does so. Lastly, the paper concludes with discussion of the next
steps for event-based computing, and how future de-
velopments might adapt it to solve further problems.

2 | EVENT-BASED COMPUTING

In the event-based computing paradigm, event consumers
perform work in response to external stimuli (events). Each
consumer (worker) views and operates on a subspace of the
problem, conditionally modulating the local substate as a
consequence and communicates in a local neighbourhood.
Event-based computing describes a family of approaches
across the hardware/software computing stack, which can be
classified taxonomically:

� Implemented at the software level using traditional compute
platforms (examples: [4, 5]): Where powerful, high-clock
rate (GHz) cores use massive (≈100 Gb) memory re-
sources to perform local computing and communicate using
expensive choreographed communication stacks.

� Implemented on Graphics Processing Units (examples:
[6, 7]): Where a wide Single Instruction Multiple Data
(SIMD) computing supports massively-parallel homoge-
neous computing. While MIMD GPU computing is also
possible, GPU architectures generally perform better in a
SIMD context [8].

� Implemented on softcore machines (examples: Anton [9],
SpiNNaker [10], POETS [2]): Where many small (hundreds
of MHz) softcores are networked into a fast bespoke
communications fabric. Each softcore is connected to its
own memory, resulting in a distributed memory architecture.
Compared with GPU processing, these softcores tend to be
more flexible in the instructions they support. These ar-
chitectures exist on a scale, where the application specificity
is traded off against performance, and are typically realised
either on Application-Specific Integrated Circuits (ASICs,
fast, and low-energy) or Field-Programmable Gate Arrays
(FPGAs, easier to modify, and cheaper design/deployment
cycle).

This paper is not about general event-based computing,
but focuses on the last entry in this taxonomy, which uses a
massive quantity (>104) of compute cores with a limited in-
struction and data footprint relative to traditional computing
platforms. Under such architectures, compute workers have no
concept of the global state or synchronisation, and each worker
views and operates only on a tiny problem subspace. For
certain classes of problems, these workers can operate
concurrently, computing with ‘stale’ data with no impact on the
final result. In particular cases, it is more performant to send
state updates to all neighbours than to explicitly choreograph
data flow such that all data is up to date all the time—the
receivers compute whether the state update is relevant to
them in parallel on the receipt.

Event-based computing on bespoke hardware has pri-
marily been driven by neuromorphic compute systems and
brain-inspired computing, which itself has arisen from early
innovations in bespoke parallel hardware [11]. Despite the
availability of traditional parallel architectures, neuromorphic
systems have demanded numerous smaller processing elements
(ala neurons) over the few complex processing elements pro-
vided by these architectures, hence the push for bespoke
hardware solutions. Execution time was the primary motiva-
tion for this decision [12], which continues to be a design
driver in modern neuromorphic computing. More recent
research is broad, encompassing a series of different chip
design ideas. These include: the development of mixed-mode
VLSI devices to model integrate-and-fire neurons in
real-time [13] and neuromorphic bio-hybrid systems where
hardware directly interacts with cell cultures [14]. The first
ASIC-based deep learning processing architecture, DianNao,
emerged in 2014 and accelerated both deep neural network and
convolutional neural network inference [15]. More recent chip
developments have integrated random number generation and
function accelerators to speed up the computation of oft-
complex brain-inspired algorithms used in neuromorphic
computing [16].

Larger-scale projects have recently emerged due to ad-
vances in chip research, coupled with advances in fabrication
and reconfigurable hardware. The SpiNNaker project [10] is
one such project, as it has produced a high-performance
massively parallel platform for the simulation of neural net-
works in real time. The architecture of SpiNNaker is a network
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of ARM9 processors whose communication is brokered by
neurobiology-inspired packet-switched routers. These pro-
cessors host the ‘behaviours’ of neurons; sending ‘spikes’ to
other associated neurons when sufficiently stimulated, and
these neurons have no concept of the global state—an
appropriate fit for event-based computing. The success of
SpiNNaker has spawned a series of projects adapting this
concept in the neuromorphic computing space. These include
research projects like the direct successor, SpiNNaker 2 [10,
17], as well as industry projects like the development of Intel's
Loihi 2 [18], which boasts a simulation capacity of one million
neurons per chip. As with neuromorphic computing, the fields
of vision and image processing have undergone a similar path
with bespoke hardware solutions [19, 20].

Note that, throughout these research trajectories, the
emphasis has been on architectures with many simple compute
units over few complex ones—we posit that such architectures
can be used to solve other similar classes of problems. This
paper demonstrates that the event-based computing paradigm
works well on applications beyond the targets of neuromorphic
compute systems. In particular, large problems are amenable to
parallelisation, but have critical communication components to
them, including Dissipative Particle Dynamics (DPD) and
micromagnetics, amongst others. It does not perform well for
small problems, as dividing workload into many small workers
itself takes time. It also does not perform well for problems
that are massively parallel, but with components that do not
communicate often, as the low communication requirement
means the computing power of a traditional approach is un-
fettered. A useful way to visualise suitable applications is to
think of a wire mesh model with a computing unit associated
with every vertex of the mesh. The individual computing load
is light, but there are many thousands/millions of them, and
they have a complex, nuanced communication pattern. The
‘solution’ is an emergent property of the entire mesh.

2.1 | Hardware for event-based computing

Event-based computing fundamentally requires a large number
(millions) of computing cores connected by a fast network.
Early attempts at event-based computing architectures man-
ifested as Massively Parallel Processor Arrays, including
Ambric's Am2045 (for video processing) [21, 22] and Pico-
Chip's picoArray (for wireless telecommunication infrastruc-
ture). More recent event-based computing hardware maintains
this application-specific nature, like the neuromorphic ma-
chines SpiNNaker 2 [10, 17] and Loihi 2 [18]. Demonstrating
the efficacy of event-based computing on a variety of prob-
lems, using a single hardware platform, requires a machine that
is more general-purpose than these while still possessing
architectural attributes that align it closely with the numerical
structure of the underlying application.

While traditional desktop machines are less suited to
these requirements, general-purpose graphics processing units
(GPGPUs) are a natural choice. However, when problems
exceed the number of computing cores available on a

GPGPU, multiple GPGPUs must be networked together,
which introduces undesirable networking bottlenecks.
Furthermore, while GPGPUs excel when problems can be
discretised into regular two-dimensional or three-dimensional
grids, they generally perform less well when the application
graph is irregular and is at a higher dimension (e.g. 3D finite-
element analysis), particularly when nodes in the application
graph have widely varying degrees (e.g. neuromorphic simu-
lation [23]).

Field-Programmable Gate Arrays (FPGAs) provide an
alternative platform on which to rapidly prototype alternative
hardware architectures. The use of FPGAs gives event-based
computing clusters more flexibility in the applications that
can be run:

� If the application will not fit onto a single FPGA, then
multiple FPGAs can be networked together more effectively
than the equivalent GPGPU system [24].

� GPGPU approaches are significantly less energy-efficient
than equivalent FPGA solutions [25]. The interaction be-
tween processors and off-chip memory is an energy-
expensive process in most FPGA solutions, so the design
of memory systems is particularly performance-critical [26].

� If an application is particularly floating-point intensive, the
architecture can be adapted to accommodate that, by
trading footprint between compute cores and floating-
point units [2].

� The softcores can be programmed for more general
computing, or streamlined to operate based ofn the needs of
a specific application.

Neuromorphic compute solutions are commonly based
around Application-Specific Integrated Circuits (ASICs), which
are fundamentally integrated circuits (ICs) designed with a
particular end use in mind [27], as opposed to ICs like memory
systems. ASICs, when compared with FPGA solutions have a
smaller physical size and power consumption [25], but greater
turnaround times and economic design and manufacture costs
at smaller scales [28]. The rapid rate of technology evolution
makes it difficult to pin down these tradeoffs into hard
numbers, but recent studies in a neuromorphic computing
context find a factor 2.8–6.3 performance improvement, and
an 8.7 area improvement in favour of ASICs [29]. FPGAs are
naturally more attractive in research contexts, where rapid
prototyping is important and economically-constrained.
Smaller-scale deployments may be tolerated, whereas ASICs
are favoured in large-scale deployments and where power
dissipation is a crucial issue.

Lastly, it is worth noting that hybrid ASIC-FPGA solutions
explore tradeoffs across this spectrum. By embedding an
FPGA into an ASIC directly, communication between the two
can be greatly improved compared to having them on separate
cards [28]. The flexibility of the FPGA contributes to the
design process, as it allows system designers to define more
‘frozen’ areas of the architecture (ASIC), with the ability to
adapt more flexible FPGA components. Economic consider-
ations (e.g. semiconductor processing, assembly of multiple
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separate chips, and power dissipation), while nuanced in its
own right, can be traded off in a hybrid design [25, 28].

The studies in this paper use the Partially-Ordered Event-
Triggered Systems (POETS) platform [2], which consists of a
network-optimised FPGA cluster containing thousands of
RISC-V cores and is capable of solving different types
of problems in an event-based manner. The development of
POETS is ongoing; custom enhancements to these cores, with
a view to improving performance on certain applications
(inspired by research in other fields [16]), are being explored
[30]. We emphasise that the development of event-based
computing hardware is not the key point of this paper - our
focus is on demonstrating its potential for solving a variety of
pertinent big computing problems.

2.2 | How does it work?

Event-based computing is different from other message-based
systems. It is ideally suited and intended for simulation prob-
lems based on large graphs (application graphs), where small,
independent tasks (devices) are connected by edges carrying
small, atomic, and asynchronous messages (events)—two
small examples of this are shown in Figure 1. Problems like
this include neural simulations and state changes in finite
element methods—other examples are discussed later. The
application graph may represent the physical topology of the

system under simulation (in which case the topology is arbi-
trary, like an electronic circuit), but this is not always the case.
In this representation, a device operates on a particularly small,
non-overlapping region of that space. Compute workers
(hardware) typically host multiple devices (software).

For example, consider a two-dimensional space tiled with
identical squares, where each square can interact with each of
the four neighbours in its immediate vicinity. Each square
could be a device in the application graph, which in this case is
highly regular (Figure 1 top), but this is not necessary in the
general case (Figure 1 bottom). The event-based computing
paradigm is not constrained by dimensionality. The arbitrary
topology is problem specific, and application graphs are
mapped onto the fixed hardware platform by initialisation
software and routing infrastructure.

Each device maintains a small state independent of its
neighbours, and the behaviour of each device is defined by a
set of small sections of an executable code (handlers), which
react to events. On receipt of an event, the device executes the
appropriate handler. During the course of this execution, the
device may modify its own state and/or emit events of its own.
Thereafter it returns to quiescence, awaiting the arrival of
another event. Consequently, the entire computing trajectory
of this event-based computing paradigm is asynchronous—
no communication choreography is imposed on the problem,
and the solution is an emergent property of the system, once
all devices return to quiescence. This is unlike the traditional
big computing systems, which require human-designed cho-
reography (computers are deterministic), and it may not be
necessary in some problems (see the Heat Equation example
below).

The operation of an event-based computing system may be
described given the following definitions:

define Id: Set # Used to identify a single
device
define DeviceState: Set
define Devices: Map(Id -> (DeviceState, Set
(Pin)))
define Edge: Set(Id, Pin, Id, Pin)
define Events: Set
routine OnRecv: DeviceState, Pin, Event ->
DeviceState
routine CalcRTS: DeviceState -> Bool
routine OnSend: DeviceState -> DeviceState,
Pin, Event

Each device is a member of the devices set; it has an Id, a
DeviceState, and a set of pins connected to it, where a pin
either sends events to other devices along an edge (acting as an
output), or receives events along an edge (acting as an input).
The three routines define behaviours executed by application-
level handlers:

OnRecv: When an event is received on a pin, the handler
transforms the state of the device; the handler defines how the
state is transformed.

CalcRTS: The handler determines whether the device
should send (and to whom) based on the state of the device.

F I GURE 1 Two application graphs, showing how different problem
domains can be represented as application graphs. Event-based approaches
can be applied to regular and irregular problem geometries. Top: A regular
two-dimensional geometry discretised into devices ‘A’ to ‘L’ and
represented as an application graph with connecting edges, along which
events travel. Bottom: An irregular discretisation represented as another
application graph. A planar example is shown here; planarity is not required
in the general case.
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OnSend: Sends an event to a device using a pin. The
handler defines the content of the event and the pin to send on
from the device state. The handler might also modify this state.

A model of the interaction of devices in an event-based
system given these definitions may be described thus:

Colloquially, OnSend is called when an event is received by
a device on a pin—this may change the state of the device.
That device may wish to send data: This decision can be
computed by its state. If the device does wish to send data,
OnRecv is called, sending events along each edge connected to
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the output pin. Once the event arrives at its destination,
OnSend is called by the recipient. On the sending device, the
OnRecv logic may further modify its state, which may result in
further events being sent to other devices. Using this frame-
work, it is possible to describe a variety of communication
patterns and behaviours to define the logic for different
applications.

The algorithm presented above is a serialised model of the
behaviour of our event-based computing approach. Critically,
in the real system:

� The behaviour of each device is asynchronous with every
other device, and

� Events must traverse the hardware network, from the
sending device to the receiving device. Consequently, they
take time to arrive at their destination, which is subject to
network conjestion and receiver behaviour.

It is also worth emphasising that the stochastic_choice is
determined by the hardware. Section 2.4 describes how this
approach is used to find the temperature distribution in a plate,
and Section 3 describes a series of applications implemented
using this paradigm.

2.3 | A storm of events

Events triggering handlers, which in turn emit more events,
can quickly lead to an event storm—a bounded exponential
growth of events. Counter-intuitively, this storm is not
dangerous, as most event-based computing architectures
contain a throttling mechanism to prevent the network be-
tween workers from being overloaded. Consequently, the sys-
tem goes as fast as the physical network permits, all the time, as
a function of local congestion.

To introduce this, consider a problem where space is dis-
cretised into devices such as in Figure 1 (top), and each device
is initialised with the same scalar state value. A small change is
introduced to each corner device of the space (‘A’, ‘C’, ‘J’, and
‘L’: four devices in all), slightly altering their states. In this
example problem, these perturbed devices send their updated
state to their neighbour, each of which then adjust its own state
to the local average. Those devices then send their new state to
their neighbours, if it has changed significantly, beyond a small
tolerance value that is specific to the application. All devices act
asynchronously and simultaneously, and each event may spawn
more events when it is received by a device. Eventually, all
devices hold the same, averaged state value.

Figure 2 illustrates the transient behaviour of an event
storm—it shows the rate of outgoing events, for each device,
for the aforementioned problem on a 512 by 512 grid. A storm
of events emerges abruptly because each device acts as fast as it
can, when it is notified of a state change from one of its
neighbours. As abruptly as it starts, the grid of state values
discovers, on the basis of local information alone, that it is in
equilibrium, so all event traffic ceases (every incoming event
causes no state change and therefore no consequent emission

of events). This sudden stop is shown by the sudden ‘silence’
of traffic at the end of Figure 2.

As with any application on any compute system, there is
always a performance bottleneck. An event storm occurs when
events are, on the whole, created and sent faster than they are
processed. In this case, event-based architectures typically
throttle the network in such a way that events are not dropped,
though some domain-specific event-based architectures permit
dropping of events, and have mechanisms for recovering
dropped events [3, 10]. In an application that is more compute-
intensive, an event storm does not emerge because some
aspect of the computing system, for example, the floating point
unit or the memory subsystem, is the bottleneck.

2.4 | Heat equation example

Consider the problem of using the heat equation to find the
temperature distribution in a plate, where symbols have their
usual meanings:

∂u
∂t
¼ α
�
∂2u
∂x2 þ

∂2u
∂y2

�

: ð1Þ

Applying a central differencing scheme to discretised space
and an Euler integration method to this equation yields:

F I GURE 2 Network activity during an event storm, caused by the
application described in the ‘Storm of Events’ Section. Data available at
reference [31]. Shows the event send rate for all 1024 workers as a function
of time—each translucent line corresponds to one worker. After the brief
compute-bound startup, a storm of events emerges as devices share their
state with their neighbours. All workers are active at the start of the
problem, as the packet storm develops and taxes the inter worker network
(0–2000 s). As the system tends to equilibrium (2000–6250 s), the local
event traffic becomes more irregular. The system converges suddenly,
shown by the sudden ‘silence’ of activity at the end of the computation.
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umþ1
i;j ≈ umi;j þ

α δ t
δx δ y

�
umiþ1;j þ umi−1;j þ umi;jþ1 þ umi;j−1 − 4umi;j

�
;

ð2Þ

where i, j, and m denote discretisation in the x, y, and t di-
mensions, respectively.

In a traditional computing approach, one can solve this
using Gauss–Seidl, Jacobi, or other iterative linear algebra so-
lution methods (shown in Figure 3, left). Whichever we
choose, the software must choose an order to update elements
in (with an associated cost), ideally in a manner sympathetic to
the architecture. In the problem we have constructed, however,
the order of updates is entirely irrelevant, as different nu-
merical dynamics always converge to the same result—
the temperature across the plate will be constant.

Now consider an event-based approach that creates an
event storm (Figure 3, right). Each of these discrete points (i, j )
is mapped onto its own thread. Since updates are performed
asynchronously (because order does not matter here), there are
fewer synchronisation overheads. Fundamentally, the software
engineer needs to neither know nor care about updating the
ordering. When the event storm described in the previous
section ends, each thread (i, j ) holds the physically realistic
solution at the point of concern.

An event-based computing approach to solve this problem
would first break up the plate into a wire mesh. This mesh is
the application graph, where the nodes (devices) represent
discrete sections of the problem, and the edges represent the
communication between those nodes. In the general case, the
mesh is arbitrary—the degree is low for spatial discretisation
problems like this one, but is high for problems like
neuromorphic simulation. Using the model introduced in
Section 2.2, devices implemented in the following way would
solve the heat equation problem:

Device State: Each device stores its local temperature,
as well as the temperature of each of its neighbouring de-
vices. It would also store a boolean, update, showing
whether the last update was significant with respect to some
threshold.

Events: Events would each contain the temperature of the
device that sends it.

OnRecv: The temperature of the message is stored in the
device state under the appropriate neighbour. Then, the local
temperature is updated based on an average of the tempera-
tures of its neighbours. If the change from this update was
significant, set update to true.

CalcRTS: Just returns the value of update from the device
state.

OnSend: Sends an event with the current temperature to
all neighbours, and sets the update to false (since no further
event needs to be sent, until more temperature data is passed
to the device).

Given the code descriptions of these behaviours, an initial
state and a mapping of the application graph to the hardware
compute as described in Section 2.5, these descriptions are
compiled into a set of binaries to be deployed onto the
hardware and are executed to solve the defined problem.
Further information about event-based computing and the
POETS approach can be found at https://poets-project.org.

2.5 | Mapping an application to hardware

The event-based computing hardware, described in Section 2.1,
distributes compute workers (e.g. cores) over a network. Such a
network can be modelled as a hardware graph: a graph
GH(NH, EH), where nodes (NH) are compute workers con-
nected by edges (EH). Application graphs can also be modelled
similarly: GA (NA, EA), where nodes (NA) are devices, con-
nected by weighted edges (EA), which carry events.

As compute workers typically host multiple devices, one
key challenge in event-based computing is to map the devices
NA onto workers NH efficiently. A balance must be reached
between loading the compute workers with as few devices as
possible (balancing the quantity of NA mapped to each NH),
while also placing devices as close together as possible to
minimise communication delay (having as few EA overlapping
EH as possible). The former encourages devices to be spread
apart over the hardware graph, whereas the latter encourages
clustering.

Figure 4 shows a mapping of an example of the application
graph with 16 devices onto a hardware graph with four
compute workers. The mapping balances the load of each
worker while reducing the number of edges in the application
graph that travel between hardware nodes. In the general case,
where application graphs can be highly irregular, effective so-
lutions require numerical optimisation techniques. Simulated
annealing [32, 33], an iterative optimisation method, is
commonly used to obtain effective solutions to modern
placement problems [34–36], though graph partitioning ap-
proaches are also effective.

F I GURE 3 Three different methods that can be used to iteratively
solve the heat equation. Left: Common traditional computing methods
where the solution trajectory is defined by the programmer—Jacobi (only
values from m are used to find values for m+1) and Gauss–Seidl methods
(values from m or m+1 can be used to find values for m+1, depending on
what is available). Right: An event storm, where the stochastic solution
trajectory is defined to go as fast as the hardware can support.
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2.6 | Developing applications for event-
based hardware

To create an efficient application to run on event-based
hardware, it is not sufficient to port the code of a tradi-
tional computing application. Much of the design behind
event-based applications follow common principles in
distributed and asynchronous computing [37], though each
architecture has its own approach for handling events, typi-
cally defined by the needs of the applications that are to be
executed upon it.

Data choreography patterns, other than the event storm
shown in Section 2.3, exist in event-based computing. Some
applications benefit from (very infrequent) communication
with a global overseer process to collect system telemetry.
Globally-Asynchronous, Locally-Synchronous (GALS) ap-
proaches are sometimes employed when problems are stiff
[38], such as the DPD example presented in Section 3. With
reference to the model presented in Section 2.2, GALS syn-
chronisation can be implemented by augmenting the device
state with the following fields:

value_present The ‘value’ of the device (e.g. tem-
perature in the heat equation example in Section 2.4).

t_present The ‘time step’ corresponding to value.
value_present_adj[] The values of all neigh-

bouring devices at t_present, if known.
value_future_adj[] The values of all neighbouring

devices at the ‘next time step’, if known.
where ‘time’ is a discrete construct used to step an iterative

process forward. Handlers can be defined as follows (events
now hold a value and a time step):

OnRecv: Store the incoming neighbour value in either
value_present_adj[] if the incoming time step equals
t_present, or in value_future_adj[] if it is one
greater. In this scheme, it is not possible for the incoming time
value to be any other value.

CalcRTS: If value_present_adj[] is fully popu-
lated, this device will send to its neighbours (and update its
own state).

OnSend: In order:

1. Compute a new value for value_present at the next
time step, using neighbour values in value_
present_adj[].

2. Update t_present to the next time step.
3. Replace value_present_adj[] with val-

ue_future_adj[], and clear value_future_adj
[].

4. Send one event to all neighbours with value_present
and t_present.

5. Run CalcRTS again.

This approach increases the per-device memory footprint,
but prevents neighbouring devices from drifting apart during
execution.

3 | EXEMPLAR APPLICATIONS

Machine architecture design efforts are typically focussed on
pre-emptively identifying potential bottlenecks and accelerating
or avoiding them. This section presents four examples where
bottlenecks constrain performance on the traditional big
computing systems are to be linear with respect to problem
size, but where different event-based computing approaches
result in superior and sub-linear scaling behaviour. Each
example presents a graph, which compares the measured
application performance against problem size for both event-
based and traditional computing approaches.

3.1 | Dissipative particle dynamics

Dissipative Particle Dynamics (DPD) is a particle-based
Newtonian march-in-time simulation scheme that was devel-
oped to allow simulations of complex fluids on near-
macroscopic length scales, while retaining near-molecular fi-
delity [39]. In DPD, particles do not represent atoms, but
groups of atoms or molecules—a particle might consist of
several water molecules or several atomic groups within a
larger molecule. Compared with molecular dynamics, this

F I GURE 4 A regular 4 � 4 device graph (left), a regular 2 � 2 hardware graph (middle), and one possible mapping of this device graph onto this hardware
graph (right). In this mapping, each hardware node is loaded with four devices, and eight edges in the application graph will send events over edges in the
hardware graph. Application and hardware graphs may be irregular in practice.
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choice sacrifices some atomistic details, for example, H-bonds
of molecules and ligands, but significantly reduces compute
load. DPD is best suited to exploring the properties and dy-
namics of complex fluids and soft matter on length scales
much larger than the atomic, for example, supramolecular
aggregates such as phospholipid membranes and vesicles,
polymeric mixtures, and soft surfaces. On these scales, the fine
details of intermolecular interactions are hidden within material
constants and fluid viscosity. While short-range interactions are
of critical importance, the forces between particles must be
soft (capped as the distance between particles tends to zero),
which increases the size and time scales of systems that can be
simulated using reasonable computational resources. DPD
simulations are most commonly performed in a simulation box
with a constant volume, constant number of particles, and
constant temperature. The simulation box is subject to periodic
boundary conditions to avoid artefacts due to hard walls; a
particle that moves beyond any boundary of the simulation box
instantly re-appears at the opposite face.

DPD is commonly used to simulate dynamic chemical
and biological systems whose interesting behaviour emerges
on micrometer length scales and over timescales of hundreds
of microseconds. This requires following the evolution of
tens of millions of particles for millions of integration steps.
This leads naturally to the use of a parallel version of DPD
and the communication cost involved in calculating the inter-
particle interactions constitutes the main bottleneck in
applying DPD. Figure 5 shows how event-based and tradi-
tional computing approaches scale with bead count (and
consequently box size) in an oil-water mixing problem. At 217

beads, the event-based approach takes two orders of magni-
tude less wall clock time to achieve relaxation. Problems
larger than this require that multiple devices are mapped onto
compute workers, because the number of devices in the
problem is greater than the number of cores. Between 217

and 220 beads, each core hosts either one or two devices.
Another step exists just after 220, where some cores have to
host three devices in order for the application to fit onto the
hardware.

The time-to-relaxation data for the traditional approach,
presented in Figure 5, was obtained from the Open Source
Polymer Research Engine-Dissipative Particle Dynamics
(OSPREY-DPD) simulation engine [40] on the traditional
high-performance computing hardware. The event-based
implementation is described in Ref. [41], without angle
bonds. The three-dimensional application graph is mapped
onto the two-dimensional hardware graph using a graph par-
titioning approach [42].

3.2 | Petri net simulation

The standard form of Petri nets (bipartite graphs containing
places and transitions, annotated with tokens and directed arcs,
respectively) is principally used for modelling concurrency and
choice in distributed systems. Most Petri net models are de-
scriptions of systems/communication mechanisms condensed

into a small number of places and transitions. Static dataflow
structures are one form of the Petri net model that have gained
popularity within the field [43]; these models with behavioural
equivalence of registers, combinational logic and communica-
tions channels. Once generated, simulation and verification of
logic are considerably simplified due to the relatively simple
nature of the Petri net formalism. Figure 6 shows a fragment of
two Muller pipelines, with a synchroniser. This design is an
eloquent benchmark for an activity, as exactly half of the
pipeline resources are occupied and half vacant, leading to half
of the transitions being active at the initial marking and a large
amount of continual activity during simulation—a significant
simulation load.

Petri nets with maximum firing execution policies show
significant simulation speed improvements; specifically,
simulation speeds of standard Petri nets with single firing
execution policies dramatically improved in applications
requiring maintenance of local causality only. Figure 7 shows
how event-based and traditional compute approaches scale
with the number of places for the Muller pipeline problem.
Note the scaling behaviour is similar to the DPD example,
but the problem does not serialise for the problem sizes
considered here. The order-of-magnitude runtime improve-
ment with event-based computing allows for much faster
design iteration.

Both the traditional approach and event-based version run
virtually identical C code to update the state. The code is
written in a runtime environment/Petri net model breakdown.
Thus, the code is essentially a runtime environment that knows
the execution policies of Petri net models, and the actual Petri
net is then provided as a model instance (the Petri net itself is
not hardcoded and can be easily swapped out for a different
model). The ‘traditional’ approach uses one worker, which
handles all places and transitions in the Petri net model. In the
event-based computing approach, the runtime environment is

F I GURE 5 Run-time versus problem size for event-based (solid) and
traditional computing (dashed) dissipative-particle dynamics
implementations of oil-water mixing.
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written to all devices, but the Petri net model is discretised such
that each device governs a small section of the Petri net.
Events are used to transport tokens (used by transitions) from
one subsection (held by a device) of the Petri net to another
(held by another device). GALS synchronisation, as described
in Section 2.6, is employed here to prevent tokens from
arriving out of sequence. The one-dimensional application
graph is mapped onto the two-dimensional hardware graph in
such a way that places adjacent devices together in the hard-
ware graph.

3.3 | Genomic imputation

The first and perhaps most important stage in understanding
heritable medical conditions is the process of identifying the
underlying causal genes. Whilst DNA sequencing was the first
technology used to map the human genome at the turn of the
millennium [44, 45], whole genome sequencing remains pro-
hibitively expensive for experiments requiring samples from

many participants. As such, a secondary technology was
developed called Genotyping-By-Chip. This technology sam-
ples markers distributed across the entire genome and critically,
is an order of magnitude cheaper than the next generation
sequencing.

Genotyping-By-Chip has enabled experiments such as
Genome Wide Association Studies [46], a methodology to
genetically sample populations as a whole. By separating
samples based on observable traits, genetic loci with signifi-
cant statistical correlation to those traits are obtained. The
accuracy of the results is inherently tied to the number of
haplotypes used in the study, H (each participant provides two
haplotypes - a group of alleles - to pass on), and the number
of markers in the technology, M. This has driven exponential
trends in both values, with studies a decade ago consisting of
103 haplotypes and 2.1 � 106 markers [47]. Current studies
consist of 2.4 � 108 M [48] markers and within the next
decade, studies are expected to contain 106 haplotypes. A
challenge for Genome Wide Association Studies is that they
are rapidly superseded by newer studies with higher partici-
pation on better technology. Moreover, two major companies
provide the technology and the markers locations chosen by
each are proprietary.

To address these issues, a technique known as Genomic
Imputation was developed to statistically infer new markers
from samples taken using older technology [49]. This im-
proves the relevance of study results and allows for meta-
analyses between studies. The method uses a customised
Hidden Markov Modelling typically implemented as a for-
ward/backward dynamic programming algorithm. This scales
as O

�
H2M

�
in traditional computing, presenting a significant

challenge to the field due to the exponential trends in H and
M. Figure 8 shows how event-based and traditional
computing approaches scale with marker pool size. By
considerably improving the runtime of large genomic

F I GURE 6 A fragment of two Muller pipeline Petri Nets with a
synchroniser.

F I GURE 7 Run-time versus problem size for event-based (solid line)
and traditional computing (dashed line) implementations of Muller pipeline
Petri net problems.

F I GURE 8 Run-time versus problem size for event-based (solid-line)
and traditional computing (dashed-line) implementations for a Genomic
Imputation problem.
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imputation problems, as event-based computing has done
here with a three-orders-of-magnitude decrease, greatly fa-
cilitates the incorporation of earlier studies and ‘future-
proofing’ of today's research.

As with the Petri net example, both approaches run
virtually identical C code to update the state. In the event-
based computing approach, each cell in the reference table is
mapped to a single device, which performs the forward/
backward dynamic programming algorithm ([50]) to calculate
the cell value. The device then broadcasts its value to all cells in
the next column. In the ‘traditional’ implementation, cells are
calculated one after another via iteration. As the application
graph is a two-dimensional array of cells, it maps directly onto
the regular two-dimensional hardware graph.

3.4 | Magnetic simulation

To store data in computers, data systems magnetise regions of
material either ‘up’ or ‘down’, into small (50 nm) magnetised
domains. One alternative to these magnetic domains are
magnetic skyrmions [51], which are particle-like structures in
the magnetic moment field of a helimagnetic material. Since
skyrmions are of the order of nanometres in size (<10 nm,
potentially atomic-spacing) [52], they are a promising replace-
ment for magnetic domains to increase storage density. The
process of flipping a skyrmion from ‘up’ to ‘down’ takes orders
of magnitude less energy than with magnetic domains, result-
ing in a significant energy saving.

Skyrmions and other small particle-like structures like
magnons also motivate the design of small logic-gate devices
[53]. However, these structures are only stable in limited re-
gions of the parameter space, defined by the strength of an
external magnetic field and the properties of the material.

A micromagnetic model is one approach for analysing
skyrmions in a magnetic field [54]: The model discretises space
(using a finite-element scheme) to solve problems on different
materials and geometries. A numerical approach is funda-
mental in solving micromagnetic problems of value, as race-
track and logic systems both have a complicated geometry and
an irregular field distribution over that geometry. Presenting
computing technology imposes a practical restriction on the
size of these models, as problems of interest, most of which are
large, often take weeks to solve on conventional computers.
Figure 9 shows that event-based computing significantly re-
duces the execution time of these models, enabling rapid
development of spintronic devices, eventually enabling next-
generation exascale computing systems.

The time-to-relaxation data for the traditional approach,
presented in Figure 9, was obtained from Fidimag: a finite
difference atomistic and micromagnetic simulation engine [55]
on the traditional high-performance computing hardware. The
event-based implementation uses GALS synchronisation, as
described in Section 2.6, as the governing differential equations
are stiff. As with the genomic imputation example, the two-
dimensional application graph maps directly onto the two-
dimensional hardware graph.

3.5 | Comments on scaling behaviour

Each of the Figures 5 and 7–9 showcase an application where
execution time scales linearly with problem size using tradi-
tional computing methods (the dashed line). The scaling of
event-based approaches shown by those figures (solid line)
starts sub-linear and linearises as the hardware is overloaded.
Figure 5 in particular demonstrates this—the scaling is flat up
to 217 beads, but linearises as the problem size increases
because each compute worker holds multiple devices. The
hardware of the event-based system is best improved by
increasing its size, effectively increasing the problem size at
which the linear scaling occurs. Unlike with traditional
computing (where expensive advancements in chip design and
thermal regulation are required), event-based computing so-
lutions simply need ‘more of the same’ hardware in order to
scale, allowing for incremental improvement without further
architectural exploration.

In each of the four applications above, the event-based
solution demonstrates orders-of-magnitude reduction in
execution times—this is incredibly significant for addressing
the power and execution issues that inhibit exascale computing
efforts. Event-based computing is not about shaving millisec-
onds off second-long problems; it is about orders-of-
magnitude improvements in week or month-long runtimes.

3.5.1 | Comments on traditional parallel
approaches

Figure 10 shows the time-to-relaxation data presented in
Figure 9, Section 3.4, with up to eight compute workers oper-
ating in parallel on a traditional computing platform. As the
number of compute workers doubles, the time to relaxation
halves. The execution times of these traditional approaches can

F I GURE 9 Run-time versus problem size for event-based (solid-line)
and traditional compute (dashed-line) implementations of a skyrmion
relaxation micromagnetics problem.
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be further decreased by using faster processors with more par-
allel workers, up to a saturation point. However, unlike with
the event-based computing approach which scales sub-
linearly, the execution time of this traditional parallel
approach continues to scale at best, linearly with the size of
the problem. If the problem is large enough, the time to so-
lution remains a major issue for traditional parallel approaches.

4 | NEXT STEPS

The exemplar applications exhibit properties that make them
amenable to event-based computing—they all decompose the
problem domain into a large mesh of devices with simple
handler logic driving them and do meaningful work by allowing
these devices to rapidly communicate asynchronously. Event-
based computing is less suitable for problems with narrow
and deep datapaths graphs, for example, problems requiring
significant serial computation. The space of problems
amenable to event-based computing is broader than the DPD,
Petri net simulation, genomic imputation, and magnetic
simulation applications we have introduced in this paper: More
exploration will broaden the portfolio of event-based
computing applications. Doing this will provide a more pre-
cise set of characteristics, to allow computer engineers and
software engineers to more accurately predict whether or not
event-based computing is of value in their scenario. In
particular, further exploration of systems with irregular graphs
like finite element models will considerably broaden the event-
based computing application space.

Many tried-and-failed innovations in computer architecture
demonstrate great promise, but they fall into obscurity as
research focusses solely on exploring potential applications.
Hence, one of the key next steps for event-based computing is

exploitation—taking an application domain known to be
amenable to event-based computing and use it to generate
meaningful results and to conduct meaningful scientific in-
vestigations on problems too big or too slow to explore using
traditional methods. It is important to note that one can no
longer develop software, port it to a set of architectures, and
expect efficient results. Software design at the most intimate
level, now more so than ever, is a function of the computing
paradigm on which the target hardware architectures operate,
so exploitation of event-based computing is a non-trivial
endeavour.

Much like the development trajectory behind GPGPUs,
event-based computing can be further generalised by
employing ideas from heterogeneous computing. Combining
event-based computing architectures with conventional
compute architectures results in a platform that can solve more
general problems than event-based architectures alone, at the
cost of increased implementation complexity.

4.1 | Closing thoughts

An ever-growing number of research areas demand more
computational resources. We have provided a miniscule slice of
what event-based computing can be applied to in the Exemplar
Applications section; there is great potential for event-based
artifical intelligence solutions and digital twins for complex
engineering systems—both of these topics have recently gained
considerable traction and are certainly not the only topics to do
so. Modelling the passage of a virus through a cell wall is an
immense computation challenge, and is currently well of reach
for conventional architectures, but event-based computing
technology brings solutions within the reach of further study.
Computational demands for research are greater than ever, so
computer-architectural and compute-paradigm solutions must
be transformative enough to overcome these demands.

Event-based computing is transforming computational
approaches for solving certain classes of problems, but it is
important to note that this paradigm is not a general-purpose
compute approach. There are many problem domains for
which it is not well suited. For those it is well suited to, the
algorithms and approaches used to traditionally solve the
problem that needs to be reformulated—a significant up-front
cost. Such an investment, if made to a suitable problem, will
yield similar remarkable gains similar to those we have
demonstrated in this study. Aside from the monetary and en-
ergy costs associated with the traditional big computing saved
with lightweight event-based computing architectures, elimi-
nating weeks off month-long runtimes allows bigger parameter
space exploration. This enables researchers to more closely
explore their system of interest—facilitating more efficient
science across a broad spectrum of disciplines.
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