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Abstract—We provide a state-of-the-art analysis of acoustic side
channels, cover all the significant academic research in the
area, discuss their security implications and countermeasures,
and identify areas for future research. We also make an attempt
to bridge side channels and inverse problems, two fields that
appear to be completely isolated from each other but have
deep connections.

Index Terms—acoustic side channel, covert channel, inverse
problem, acoustic eavesdropping, attack, countermeasure

1. Introduction

Acoustic side channels (ASCs) have had a long history
of interest. In the 1950’s, the British intelligence spied
on acoustic emanation of an Egyptian embassy’s cipher
machine [75]. This was a case of using sounds emitted by
a Hagelin rotor machine for a side-channel attack, thereby
recovering its secret key.

The National Security Agency in the USA also had a
curious and keen interest in acoustic emanation for long. It
was a part of their TEMPEST program, although unsurpris-
ingly much of the program was on leaking electromagnetic
emanations. According to the NSA’s NACSIM 5000 docu-
ment [57], produced in 1982 and now partially unclassified,
the TEMPEST documents NACSEM 5103, 5104 and 5105
are about acoustic emanations. But they remain classified.
It was stated in [57] that ‘Keyboards, printers, relays –
these produce sound, and consequently can be sources of
compromise’, but no further details are provided.

In the unclassified world (academia and beyond), Briol
[12] showed in 1991 that acoustic emanations of matrix
printers carry, and thus leak substantial information about
the printed text. Ten years later, UC Berkeley researchers
Song et al. [70] observed that time intervals between con-
secutive keystrokes leak information about the keys typed.
This would make an ASC, if and only if the inter-keystroke
timing is captured via acoustics. Instead, the Berkeley team
exploited their neat insight for a timing side-channel attack
on SSH, which relied on (network) packet timing and would
give them about a factor of 50 advantage in guessing a
password. The study of keyboard emanation by Asonov and

Agrawal [4] in 2004 was a landmark paper on ASCs. In
the same year, Adi Shamir et al. [65] announced in the
rump session at Eurocrypt’04 that RSA decryption/signature
operations running on a PC would sound differently for
different secret keys. This suggested acoustic cryptanalysis
become possible. It was unclear by then how to extract
individual key bits from such acoustic emanations, until
Shamir’s team (Genkin et al. [27]) figured out the technical
details in 2014. Since 2004, the field of ASCs started to
grow rapidly, with many academic papers being published
in the years to come.

Our paper represents the first (comprehensive) effort in
systematising knowledge of ASCs discovered to date. We
aim to make the following contributions.

First, we will clarify some conceptual ambiguity within
side-channel literature. Basic and key concepts are not de-
fined adequately, or not at all. Consequently, the literature as
a whole presents a confusing and sometimes chaotic picture.
Some attacks are in fact not ASCs, but were treated as such;
others are indeed ASCs but were not perceived as such. For
example, does the Dolphinattack [79] exploit an ASC? Is
Lamphone [55] an ASC attack? How do ASCs and acoustic
covert channels (ACCs) differ? A number of authors have
presented different and even contradicting views. To tidy up
things, we will introduce intuitive definitions that are simple,
clear-cut and easy to operationalise. We will also introduce
rigorous formal definitions, when necessary. Moreover, we
will put ASCs in perspective, clarifying ASC vs ACC vs
signal injection attacks, and elaborate the boundary between
similar-looking but fundamentally different attacks.

Second, we will establish a taxonomy to map out, struc-
ture and evaluate the ASCs discovered to date. We will also
apply a structured framework to analyse countermeasures
proposed to address these ASCs.

Third, we will perform a meta analysis of the state of the
art, identifying its strengths and weaknesses. We will also
offer new insights, and identify future research directions.

Moreover, we make an attempt to bridge side channels
and inverse problems, two fields that appear to be com-
pletely isolated from each other but have deep connections.
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2. Tidy Up the Mess

2.1. Ambiguity, Confusion and Possible Root
Causes

It is not always straightforward to determine whether an
attack is a side channel or not. Sometimes it can be tricky.
Misconceptions have scattered around in the literature. For
example, a well-cited paper on voice assistant security [22]
mistakenly treated the Dolphinattack [79] as a side channel,
although it is a signal injection attack which involved with
no side channel. Similarly, the long-range dolphin attack
[63] and the attack of ‘light commands’ [71] were classified
as side-channel attacks in [22]. In fact, they are both not.
On the other hand, some attacks (e.g. [21], [80], [81], [82])
were indeed ACSs, but their authors did not make it explicit
at all. More examples can go on and on. One cannot help
wondering: what have caused such ambiguity, confusion or
even mistakes? Our contemplation leads to three possible
root causes as follows.

Root cause 1: lack of a definition of side channels that
is both widely applicable and easy to operationalize.

Many papers in the literature simply used the term of
‘side channels’ without any definition. This practice would
work at early stages of the field, when the attacks were either
a straightforward side channel or not, and many lookalike
or related attacks were not invented yet. However, without a
generally accepted and widely applicable definition, it will
for sure invite for ambiguity and confusion.

On the other hand, many definitions of side channels
are available in the literature, but they are different from
each other, and are not very useful. Some are too narrow;
perhaps more importantly, some are not operational—you
cannot readily apply it to determine whether an attack is a
side channel or not. We quote several definitions from the
literature as follows.

‘An attack enabled by leakage of information from a
physical cryptosystem. Characteristics that could be ex-
ploited in a side-channel attack include timing, power
consumption, and electromagnetic and acoustic emissions.’
[56]. This NIST definition was driven by side-channel
cryptanalysis, and it did not cover non-cryptanalytic side
channels. It is also difficult to operationalize this definition.

‘Physical side-channel attacks extract information from
computing systems by measuring unintended effects of a sys-
tem on its physical environment.’ Used in a recent Oakland
paper [26], this definition is hard to operationalize.

‘This can often be accomplished by means of a side-
channel attack, whereby an unintended information source
is leveraged.’ This definition was introduced in a recent
Oakland SoK paper [51]. It is neat, but too brief, too
abstracted, and operationally not very helpful.

‘... a side-channel attack is any attack based on informa-
tion gained from the implementation of a computer system,
rather than weaknesses in the implemented algorithm itself
(e.g. cryptanalysis and software bugs).’ From Wikipedia,
this definition is clearly driven by cryptanalysis and of a
limited scope.

Root cause 2: side channels and covert channels have
subtle differences, and some new attack class can further
complicate this subtlety.

First, side channels and covert channels are two concepts
that are related and easy-to-confuse. For example, Covert-
Band [53] examined the privacy implication of tracking
human movements with acoustics. It makes a clever covert
channel leaking people’s privacy information, e.g. whether
someone was in a room or not, or whether she was moving
or standing still. But this is not a side-channel attack, as the
leakage was not unintentional but on purpose.

Second, the definitions of side channels quoted earlier
ALL fail to give an angle to differentiate between side
channels and covert channels.

Third, as we will clarify later, some new class of attacks
(e.g. active acoustic side channels) make it harder than
before even for experts to tell whether they are a side
channel or a cover channel.

Root cause 3: The surge of similar looking but
different acoustic attacks has further complicated the
conceptual ambiguity and confusion in the field.

Acoustic security has expanded rapidly and substantially
in the recent years. Acoustic attacks such as the Dolphinat-
tack [79], the long-range dolphin attack [63] and the ‘light
commands’ attack [71], discussed earlier, represent only a
single class of sources for confusions. There are more.

Another set of acoustic attacks eavesdrop and recover
human speech by picking up vibrations via motion sensors,
cameras, laser or lidar, e.g. [3], [32], [50], [51], [55], [62].
They represent another class of confusion sources. These
attacks involved with side channels, but not necessary acous-
tic ones. For example, a gyroscope’s reading is sensitive
to sound vibrations, and Stanford researchers Michalevsky
et al. [50] used it to recover human speech. This is a
side-channel attack, but not an acoustic one. Only when
the vibration frequency is in a certain range (20∼20KHz),
the signal is acoustic. The Lamphone attack [55] recovers
human speech by measuring vibrations of a light bulb caused
by acoustic waves. However, it exploits an optical side
channel, rather than an acoustic one, to recover the sound.

2.2. Our Definitions

A key aspect of side channels is unintended communi-
cation. Acoustic energy is present as wave energy within an
air medium, or as vibrations within solid media. Formally,
a side channel is a communication channel which allows
one-way information transfer from the targeted system to
the attacker. A side channel is defined as a functional
mapping S : I × M 7→ O, where I is the valid input
system inputs, M is the attacker’s influence on S, and O
are the observations made by an attacker monitoring the
channel. The attacker’s goal is to infer I from observations
O. In an ASC, the system leaks information acoustically, i.e.
observations O are made on an acoustic medium regardless
of any adversarial influence M , the influence mechanism
or the influence medium. Not all side channels involve
adversarial influence, in which case S is termed as a passive
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side channel (when |M | = 0). However, in the presence of
adversarial influence |M | > 0, S is termed as an active
side channel. Note that key distinguishing characteristic of
an ASC is that the attacker can only observe the victim
over the acoustic channel. The scenario where adversarial
influence is over an acoustic channel whilst observations
are made on a non-acoustic channel is not an ASC. When
no information is leaked, i.e. O is NULL, then there is
no side channel in existence, even if the adversary is able
to influence the system. This is the dual of the active side
channel and is termed as a signal-injection attack.

To address the ambiguity and confusion in the field
(see Section 2.1), we have developed definitions by first
organising the research landscape on the basis of attacker
and defender capabilities or threat-models (See Figure 1).
Threat models can be classified based on two factors namely
the physical channel the attacker can access (eg. acoustic)
and transmissions (receive-only (Rx), transmit-only (Tx), or
send-and-receive (Rx,Tx)). An attacker is denoted as MC

F
where C ∈ U is the set of channels the attacker can access
out of the universal set of possibilities U , and F is a
subset of {tx, rx}. The target TC′

F ′ is similarly defined in
terms of channels accessed C ∈ U and channel functions
F ′ ∈ {tx, rx}. The combinations of possible attacker and
target profiles define the threat landscape.

Figure 1. Venn diagram mapping threat models to side channel taxonomy

Side channels can be exploited either for offensive [4],
[16], [21], [52], [81] or defensive purposes [7], [8], [58].
When used for attack, one of the channel endpoints, typ-
ically the source of information leakage is the defender,

while the sink is the attacker. Side channels as defenses
are possible where the attacker is replaced by a defender.

A Passive Acoustic Side-Channel Attack (PASCA) is
characterised by an attacker MA

Rx who can only monitor
the acoustic channel while the victim TA

Tx only transmits.
A PASCA is a receiver-only channel for the attacker and a
transmission-only channel for the victim. Therefore, the vic-
tim cannot be influenced by the attacker. Figure 1 visualises
the landscape and suggests boundaries between the various
notions of abusing unintended communication channels on
the basis of threat models. An Active Acoustic Side-Channel
Attack (AASCA) is characterised by a victim TA

Rx,Tx, who
is unintentionally transmitting information over an acous-
tic channel and an attacker who can make observations.
Additionally, the attacker can also influence the victim via
another channel which can either be acoustic or non-acoustic
to induce a change in leakage behaviour i.e. change the rate
of leakage or what is leaked through the acoustic channel.
The crucial difference from PASCA is that the attacker
influences the victim. Note that influence can be either via
non-acoustic or acoustic means, as long as the target leaks
information acoustically, we have an ASC attack.

AASCA is relatively more powerful than its PASCA
counterpart. The ability to influence a victim means that
an attacker can induce leakage to optimise inference. On
the other hand, a PASCA is stealthier since the attacker is
not transmitting any information that can be used by the
defender to detect and isolate the attacker. For example, the
transmission of ultrasound or mechanical vibration by the
attacker may be observed by the defender, thus making ac-
tive attacks relatively detectable. A successful side-channel
attacker must therefore draw a balance between the active
and stealth components of their attack.

Different from side channels but related, an Acous-
tic Covert Channel Attack (ACCA) involves two or more
attackers who are communicating over a channel that is
unintentionally present i.e. the endpoints are intentional but
the channel is unintentionally present. Thus a covert chan-
nel differs from side channels primarily in the functional
mapping S : I ×M 7→ O in the following important way:
in a side channel the function S is defined by the victim
and the attacker has no control over it. In a covert channel,
both ends are under attacker control, therefore the attacker
can optimally define and implement S such that hidden
information I can be readily inferred from observations O.
In a covert channel, the leak is deliberate as the attacker
controls both channel endpoints, whereas in a side channel
the attacker does not control the source endpoint. Covert
channels were first described by Lampson [43].

Due to their similarity, side channels and covert chan-
nels are often confused for one another. As one example,
SonarSnoop [16] is a side channel rather than a covert
channel attack. In SonarSnoop, speakers are used to emit
human inaudible acoustic signals and the echo is recorded
via microphones, turning the acoustic system of a smart-
phone into a sonar system. The echo signal from a user’s
finger movements can be inferred to steal Android phone
unlock patterns. In this attack, indeed acoustic signals were
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intentionally induced, but the researchers measured only
echoes from finger movements, which did not deliberately
leak information i.e. source endpoint is not under attacker
control. As the transmission was accidental, SonarSnoop is
a side-channel attack rather than a covert-channel attack.

Another comparative point is that in the case of side-
channel-as-defense, the defender has no control over source
behaviour. For instance, they cannot make changes to the
keyboard in order to enable the generation of optimal acous-
tic signatures. However, that changes when we consider an
Acoustic Covert-Channel-as-Defense (ACCaD). An example
ACCaD would be the use of an unintentional communication
channel between systems at the same security level perhaps
to fulfill a monitoring function. To the best of our knowl-
edge, no ACCaD has been proposed thus far.

Often, a direct measurement of the output from a side
channel does not immediately give the information leaked
via the channel. And the channel output is more like meta
data, from which attackers deduce the leaked information
in a sensible way to complete their attacks. An excep-
tion is transient execution attacks such as Meltdown [44]
and Spectre [39], which are side channels that leak actual
data, instead of meta data. In contrast, traditional micro-
architectural side-channel attacks leak only meta data, such
as memory access patterns.

3. Acoustic Side Channels: A Taxonomy

To classify ASCs, we consider leaking devices, the
leaked signals, the media via which the leakage occurs, as
well as the information leaked. We also consider various
features of each ASC, such as whether it is an active or
passive attack, whether it is used for offensive or defensive
purposes, the attacker’s distance, and the signal properties.
We propose a taxonomy as in Table 1, whereas its high-level
structure is illustrated in Figure 2. Our taxonomy categories
highlight the most interesting ASC characteristics.

Figure 2. The structure of our ASC taxonomy: a high-level view (dash
lines represent possible combinations but no such papers published yet)

3.1. Keyboard Emanation

Asonov and Agrawal [4] was the first to observe that
each physical key has a unique acoustic (sound) signature
as a fundamental property of keyboard design. Their main
insight was that the physical plate beneath the keys causes
each key to produce a different sound (frequency) depending
on its location on the plate (similar to hitting a drum at
different locations) thus these keystroke sounds can be used
to steal what is being entered. Zhuang et al. [84] combined
per-key acoustic fingerprints with a language model in an
unsupervised learning setting (KMeans+HMM) improving
inference efficiency from 52% to 67%. Berger et al. [10]
introduced a comprehensive language model via a password
dictionary.

An alternate to acoustic frequency spectrum is to lever-
age signal timing. Zhu et al. [83] observed that the relative
time-of-arrival of an acoustic signal is dependent on the
distance between the sensor and the originating keypress
measured as the time-difference-of-arrival (TDoA) at at-
tacker microphones placed 1m apart. Reported inference
accuracy is 72%.

Combining both signal timing and acoustic features, Liu
et al. [45], report a recovery rate of 94% of keystrokes. Their
main insight was that combining signal warfare (TDoA)
techniques with the frequency spectrum (MFCC) effectively
replaced the benefits accorded by a language model, and
simply running K-Means over the fingerprint vector was
enough to cluster them by the key. This is significant since
security practices around password construction may not
permit content that is compatible with a language model.

Halevi et al. [31] evaluated the impact of typing styles
in key recovery rates. They observed that while keys have
unique sound signatures, touch typing significantly reduces
the signal-to-noise ratio reducing recovery rates to 56% in
the supervised case. They also found a significant decrease
in key recovery rates when training and testing writing styles
differ. The extent to which this applies to the unsupervised
learning approaches above is unknown. Martinasek et al.
[47] and Slater et al. [68] utilized neural networks to com-
plete classification and Slater et al. found that deep learning
approaches are well suited to the task of key recovery in
noisy environments.

Specialist keyboards such as Pin Entry Devices (PEDs)
and ATM/PoS keypads are equally vulnerable to key tran-
scription attacks via sound side-channels and the attacks
leverage the sound produced by a keypress on ATM key-
pads [61] and Enigma keyboards [72]. Cardaioli et al. [15]
found that using inter-key delays extracted from signal
arrival information works well too. This is an important im-
provement over Asonov’s sound-of-the-key approach, since
it only uses signal timing information via a single sensor
(as opposed to the multi-sensor TDoA approach of Zhu et
al. [83]). Panda et al. [58] also recovered PIN keys from
the keypress acoustic emanation, but they used the interval
between two keystrokes as the main feature. In addition to
exploiting this ASC for offensive purposes, the researchers
in [58] also explored it for defensive purposes. Namely,
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TABLE 1. ACOUSTIC SIDE CHANNELS: A TAXONOMY

Leaking Sampling
Categories Ref. Source Information Audible Purpose Active Intrusive Proximity1 frequency

Keyboard
emanation

Asonov’04 [4] Physical keyboard Typed text ✓ offensive ✗ ✗ close, far 44.1KHz

Zhuang’05 [84] Physical keyboard Typed text ✓ offensive ✗ ✗ close, far 0.4∼12KHz

Berger’06 [10]
Zhu’14 [83]

Helavi’15 [31]
Slater’19 [68]

Physical keyboard Typed text ✓ offensive ✗ ✗ close 44.1KHz

Liu’15 [45] Physical Keyboard Typed text ✓ offensive ✗ ✗ close 48KHz
192KHz

Martinasek’15 [47] Physical keyboard Typed text ✓ offensive ✗ ✗ close 48KHz

Ranade’09 [61] PED Key taps ✓ offensive ✗ ✗ close 44.1KHz

Cardaioli’20 [15] PED Key taps ✓ offensive ✗ ✗ close 48KHz

Panda’20 [58] PED Key taps &
User identity ✓ offensive &

defensive ✗ ✗ close 0.04∼20KHz

Enigma’15 [72] Enigma keyboard Key taps ✓ offensive ✗ ✗ close 44.1KHz

Acoustic
finger-tapping

emissions

Narain’14 [54] Touch screen Typed text ✗ offensive ✗ ✓ close 48KHz

PIN Skimmer’13 [67] Touch screen Typed text ✗ offensive ✗ ✓ close 16KHz

Shumailov’19 [66] Touch screen Typed text ✗ offensive ✗ ✓ close 44.1KHz

Zarandy’20 [78] Touch screen Typed text ✗ offensive ✗ ✓ close 48kHz

Acoustic
motion

detection

SonarSnoop’18 [16] Human-Computer
Interaction

Gesture
password ✗ offensive ✓ ✓ close 48KHz

KeyListener’19 [46] Human-Computer
Interaction Typed text ✗ offensive ✓ ✓ close 20kHz

PatternListener’18 [81]
PatternListener+’19 [80]

Human-Computer
Interaction

Gesture
password ✗ offensive ✓ ✓ remote 48KHz

VoIP
hitchhiking

ASC

Skype & Type’17 [20] Keyboard Key taps ✓ offensive ✗ ✗ remote 44.1KHz

Anand’18 [2] Keyboard Key taps ✓ offensive ✗ ✓ close, remote 44.1KHz

LendMeYourEar’22
[25] EM fields (via acoustics)

Computation
dependent

leakage
✓ offensive ✗ ✗ remote 48KHz

Physical
location

fingerprinting

Jeon’18 [35] Electricity
network

Physical
location ✓ offensive ✗ ✗ remote 1KHz

VoIPLoc’21 [52] Rooms Physical
location ✓ offensive ✗ ✗ remote 44.1KHz

Acoustic
device

fingerprinting

Das’14 [21] Internal sensors Device ID ✓ offensive ✗ ✓ close, far
8KHz

22.05KHz
44.1KHz

Zhou’14 [82] Internal sensors Device ID ✗ offensive ✗ ✓ close, far 44.1KHz

Kotropoulos’14 [41] Internal sensors Phone module ✓ offensive ✗ ✗ close 16KHz

ASC
based on

Device Hum

Briol’91 [12]
Backes’10 [6] Dot-matrix printer Printed text ✓ offensive ✗ ✗ close 96KHz

Hojjati’16 [33] 3D printer & CNC mill Proprietary
IPR info ✓ offensive ✗ ✗ close 44.1KHz

Song’16 [69] 3D printer Proprietary
IPR info ✓ offensive ✗ ✗ close 44.1KHz

Faruque’16 [24]
Chhetri’18 [19] 3D printer Proprietary

IPR info ✓ offensive ✗ ✗ close 96KHz

KCAD’16 [18] 3D printer Control signals ✓ defensive ✗ ✗ close >40KHz

Bayens’17 [7] 3D printer Fill pattern ✓ defensive ✗ ✗ close 44.1KHz

Belikovetsky’19 [8] 3D printer Audio fingerprint ✓ defensive ✗ ✗ close 44.1KHz

Synesthesia’19 [26] LCD monitor
(power bank)

Display
contents ✗ offensive ✗ ✗ close, far,

remote
40KHz
192KHz

Islam’18 [34] Cooling fan Electrical
load ✓ offensive ✗ ✗ close 8KHz

Physical-key
leakage

SpiKey’20 [59] Mechanical
lock and key Physical key ✓ offensive ✗ ✗ close 44.1KHz

Keynergy’21 [60] Mechanical
lock and key Physical key ✓ offensive ✗ ✗ close 44.1KHz

192KHz

Acousitc
cryptanalysis

Genkin’14 [27]
Genkin’17 [28] Motherboard Crypto keys ✗ offensive ✗ ✓ close 21, 40, 48,

200, 350KHz

DNA synthesis Oligo-Snoop’19 [23] DNA
synthesizers

DNA
sequence ✓ offensive ✗ ✗ close 48KHz

1 The proximity between the attacker and the target. Close: the attacker is physically near the target (up to 3 meters). Far: typically 10 to 100 meters. Remote:
the attacker can only access the target remotely, usually through a network connection.

5



the keystroke dynamics emitted via acoustics could work
as behavioural biometrics for each user, offering additional
protection for their PINs in theory.

3.2. Acoustic Finger-tapping Emissions

This category of attacks targets touchscreen keyboards
on smartphones and tablets, instead of physical keyboards.
When a user taps the screen, a fixed glass plate, with a
finger, the tap generates a sound wave that propagates on
the screen surface and in the air. Although signal strength is
weaker than keystrokes from physical keyboards, it is well
above the noise floor.

Early efforts were multi-modal—they combined acoustic
information with other sources to isolate keypresses. Narain
et al. [54] proposed a passive attack method to infer the text
content created by taps on a touchscreen keyboard by using a
Trojan application to capture sensed data from stereoscopic
microphones and gyroscope. Simon et al. [67] developed
PIN Skimmer which combines device microphones to detect
touch events and device orientation information from the
video camera inputs, to estimate the position of the tapped
number.

The first to propose a fully acoustic passive ASC attack
was Shumailov et al. [66] on touchscreen keyboards. They
observed that acoustic waves passing through the glass
bounce off the screen sides creating unique acoustic patterns
observable from the internal microphones. Authors record
the audio through the built-in microphones and demonstrate
that simple TDoA allows the attacker to decipher PIN
rows, while more complex machine learning models can
use acoustic information to recover the actual PIN code, as
well as, the text typed in.

Building on findings of [66], Zarandy et al. [78] ob-
served that voice assistants such as Amazon Alexa and
Google Home can be abused by an attacker to echolocate
the sounds of a key tap on a different device. The authors
demonstrate that it is possible to perform the attack up to
half a meter away from the voice assistant.

3.3. Acoustic Motion Detection

An active attacker can exploit system behaviour by
introducing a new side-channel. SonarSnoop [16] is the first
such ASC attack for detecting finger motion. The attacker
deploys malware on a victim’s smartphone to generate ultra-
sound chirps. By analysing echoes (chirp reflection), the
dynamic motion of the fingers can be reconstructed in a fine-
grained resolution to support recovery of pattern passwords.
In this attack, the active component is the introduction of
a stealthy sound-field outside human-audible range. The
attacker exploits the property that the victim unintentionally
modulates the attacker signal with confidential information.
The unintentional transmission is a key characteristic of
a side-channel. Zhou et al [80], [81] explored a similar
approach to recover gesture passwords. Acoustic motion
detection can also be used to localise virtual keyboard
inputs. In 2019, KeyListener [46] developed an active ASC

attack that leveraged the change in Doppler effects due to
finger movement within an induced sound field, to isolate
touchscreen taps. All three works are active ASC as they
require an active agent (malware or external device) to
induce the sound field.

3.4. VoIP Hitchhiking ASC

It is natural to explore whether side channels can span
(hitch-hike over) Voice over Internet Protocol (VoIP) ses-
sions. Theoretically, this should be possible as human-voice
frequency (20-20KHz) overlaps with keyboard sound fre-
quency range (2-4KHz). Compagno et al. [20] confirm this
via real-world experiments over the Skype network (Opus
Codec) as long as the bandwidth is more than 20bps. The
technical mechanism is largely based on the same attack
components as prior art (MFCC-based acoustic signature
features mated with a supervised learning inference mecha-
nism). Anand et al. [2] confirm that keypads and ATM PEDs
are equally vulnerable to key transcription side-channel at-
tacks over VoIP sessions as they are close-proximity attacks.
This means that scammers who get victims to hand over
account information and then persuade them to walk over
to an ATM to ‘check balance’ whilst on a call to the
scammer, may steal their victim’s PIN as well as their
account information.

More recently, Genkin et al.’s [25] observed that the
built-in microphones of PCs can inadvertently capture
computation-dependent leakage with electromagnetic (EM)
fields within the computer even at a remote distance. It
is possible because CPU computation leaks through audio
signals. They demonstrated the efficacy by exploiting the
leakage to perform attacks in three different scenarios—
website identification, cryptographic key recovery, and mul-
tiplayer games cheating, via remote VoIP communication.

3.5. Physical-location Fingerprinting

When using VoIP to communicate, the created audios
and data streams always include electrical network fre-
quency (ENF) signals and other acoustic-reflection signals
except for audible sounds. These signals always have spe-
cific characteristics and some important information, such
as time and location. Therefore, it is possible to use those
signals as signatures for location inference. Jeon et al. [35]
proposed an attack to identify the physical location of where
a target video or sound was recorded or streamed from. To
achieve the attack, they first created a reference map of ENF
signals extracted from the multimedia streaming data from
a victim’s device via the microphone and then extracted the
location information from the map by a two-step estimation.
This work belongs to a passive way and is considered
an ASC attack because all the targeted information is es-
sentially leaked from the acoustic signals of multimedia
streaming data. Different from those that require installing
a specific malicious application on a victim’s device, this
attack can be performed with existing VoIP applications or
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online streaming services, which means the only data needed
is a target multimedia file and it is non-intrusive.

Nagaraja et al. [52] proposed a passive attack (location
fingerprinting technique) for a location inference on VoIP
calls via ASCs, called VoIPLoc. Specifically, it exploited the
acoustic-reflection characteristics of the physical space of a
VoIP user. Using the speaker voice as the impulse signal, it
extracted signals and then utilized a multi-layer classifier to
map the fingerprint to a location.

3.6. Acoustic Device Fingerprinting

Microphones and speakers can be fingerprinted by vari-
ations in sensing and actuation respectively, introduced by
variations in their physical properties. Das et al. [21] note
that variations in the chemical compositions of diaphragm
material, aging-related changes in the mount point, the glue
used, wear-and-tear in manufacturing machines, humidity,
and temperature levels during manufacturing all play a role
in ensuring that no two microphones or speakers come
off the assembly line working identically. Given an audio
sample, they were able to trace 98% of the samples to
the sensing device by using MFCC features of recorded
audio. Both Zhou et al. [82] and Kotropoulos et al. [41]
independently discovered the same phenomena and devised
a speaker fingerprinting method based on high-frequency
power spectrum. In summary, manufacturing imperfections
have been successfully exploited to attribute audio record-
ings to specific devices.

3.7. ASC based on Device Hum

Printer hum: Often, electro-mechanical devices with
moving physical parts are vulnerable to ASCs. Moving me-
chanical parts create vibrations that leak into the surround-
ings either as sound or as acoustic vibrations through the
body of the device. In many cases, the movement of the me-
chanical components such as motors, fans, base plates, pins,
and drums, is a function of user input leading to information
leakage through acoustic channels. Briol [12] was the first
to report an ASC in dot-matrix printers. Dot-matrix printers
use multiple rows of needles. When printing a character,
a subset of needles strike the paper surface mounted on a
backing plate, a mechanical action that generates a sound
wave. It turns out that printed characters generate a unique
sound for each character printed (just as keyboards). It is
therefore natural to expect that the approach and techniques
developed for key transcription attacks are applicable to
printer inference attacks. Backes et al. [6] confirm this—
recording the sound from a microphone close enough to the
printer, and passing it through a standard pipeline of basic
signal processing to extract the short-term power-spectrum
features (MFCC) in the relevant frequency band (> 20KHz).
The main difference with keyboards, is the characters are
printed at a higher rate than human keypresses. Due to
this, acoustics of keys get mixed up due to time-overlapping
signals. Interestingly, the sound of printers is above 20KHz
band whereas keyboards emit sound at 2∼4KHz band. This

means key transcription and printer inference do not inter-
fere with each other, and can be executed simultaneously,
if required. In comparison with key-transcription attacks,
printer information leakage is relatively less developed. We
know of no works that apply time-difference-of-arrival of
printer sound, learning-based inference, and signal-timing
information (inter-character delay period). The application
of these ideas may improve the state-of-the-art in printer
transcription attacks, especially the issue of separating over-
lapped signals.

3D printer hum: Different from toner-based printers,
3D printers use a motorised filament extruder which deposits
layers of material via an extrusion arm, whose location is
controlled by multiple stepper motors to precisely control
where filament is delivered on a base plate. The amount of
current supplied to the various motors depends on the (con-
fidential) printer input. Fundamentally, motors emit sound
waves as a direct result of the current applied [14], arising
first from magnetostriction: change in material dimensions
in proportion to passing current in fixed electromagnets in
the motor; electrostriction: change in dimensions of the
conducting coil within the motor in proportion to current
passing in rotor coil; and, third, in certain brushless and
stepper motors, the air gap between rotor (rotating part) and
stator (fixed part), varies drastically with rotor rotation while
the radial forces causing rotation vary with current. In all
three causes, the current applied (confidential printer input)
causes a proportional change in the size of an air column,
resulting the production of sound waves with frequency
components originating from motor hum, stator hum, and
coil hum. Faruque et al. [24] exploited this sound to propose
the first attack against 3D printers. Using similar tools as
keyboard side-channel attacks, namely the use of signal fre-
quency features and supervised learning, they could extract
the 3D printer style files corresponding to various objects
with a recovery rate of 78% in FDM printers. This approach
of exploiting motor acoustics to infer inputs applies to all
3D printers based on motors including FDM, laser sintering,
and laser sintering. Note that unlike the sound of a key
(on a keyboard), the sound of a 3d printed object does not
have a fixed frequency fingerprint—motor, stator, and coil
hum frequencies change based on current applied. For this
reason, using MFCC to extract the frequency component
is not the best approach. In follow up work, Chhetri et
al. [19] replaced MFCC with MODWT (Maximal Overlap
Discrete Wavelet Transform) to capture a better fingerprint,
increasing recovery rate from 78% to 86%. Song et al.
[69] use a smartphone stereo microphone and magnetometer
together to better capture signal characteristics (Hojjati et
al. [33] proposed the same for CNC milling machines).
This approach has only incremental benefits since all motor
inputs are already converted into acoustic sound due to
magnetostriction, electrostriction, and radial forces on the
rotor. Therefore combining acoustic with magnetic side-
channels results in no fundamental improvement over audio
side-channels. A number of works leverage acoustic side-
channels to defend 3D printers. KCad [18] were the first to
observe that integrity compromising attacks—false inputs in
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STereoLithograhy (STL) files that encode the CAD model),
the GCodes, or firmware compromise—necessarily lead to
acoustic emissions. They successfully isolated 3D integrity
compromising attacks through supervised models. Bayens et
al. [7] leveraged acoustic and other spatial layers emanations
to verify the unseen internal fill structure present in 3D
printed objects. They used microphones to record the sounds
leaking from printer mounts and housing and trained an
audio classifier to recover GCodes using peak frequency
and its temporal location within recorded acoustic data.
Their defense can verify 40–60% of fill-pattern modification
attacks. Belikovetsky et al. [8] build on both the above
approaches, to extend the defense coverage to 100% of fill-
modification attacks using a PCA over the spectrogram of
recorded sound.

Display hum: The instantaneous power consumption of
a display unit is a function of the screen content (processed
in the raster sequence). This creates variations in the power
supply causing power-circuit components to vibrate due
to electrostriction resulting in a power-acoustic transducer.
This property generalises well beyond display circuits to
all digital circuits where current varies as a function of the
workload. Synesthesia [26] developed a passive ASC attack
that leverages power-acoustic transduction to extract images
from the audio traces of the display power supply, captured
by a microphone and accessed by a remote attacker over
a VoIP channel. However, they use specialist equipment (a
large parabolic signal collector).

Fan hum: A simple power-acoustic transduction occurs
when heat triggers system cooling. Islam et al. [34] analyse
fan noise to determine power consumption thus developing
a timing power attack rooted in acoustic signal analysis.

3.8. Physical-key Leakage

Pin tumbler locks are widely used to secure homes and
office spaces around the world. Recent work has developed
methods to clone physical keys from the sounds emitted
when a key is inserted. Ramesh et al. [59] proposed SpiKey,
which exploits the fact that each pin in the tumbler makes a
unique sound when depressed (just like a keyboard key). In
follow up work, Ramesh et al. [60] combined the acoustic
signal with visual information to achieve a key recovery rate
of up to 75%.

3.9. Acoustic Cryptanalysis

Genkin et al. [27] introduced a passive acoustic crypt-
analysis attack to extract full 4096-bit RSA keys with using
the sound generated by the computer during the decryption
of some ciphertexts. Using a phone or a sensitive micro-
phone to record the sounds, the processed signals were
then computed through a designed modular exponentiation
which was based on the mathematical analysis of GnuPG
(GNU Privacy Guard). Although this work has shown that
different RSA keys induce different sound patterns that can
be used to attack the keys, it was still not clear how to
extract individual key bits. To address this issue, Genkin et

al. [28] further expanded [27]. The main improvement of
the key extraction is the time decision computation when
performing the additional multiplication for every key bit.
Compared to the previous version, this work built more
detailed experiments to analyze the relevant code of GnuPG
and experimentally showed that this acoustic key distin-
guishability is also possible on other ciphers, such as AES
and DES, and other versions of GnuPG.

3.10. DNA Synthesis

Faezi et al. [23] proposed the first ASC attack on DNA
synthesizer, where compromising confidentiality will leak
valuable information on nucleotide sequences. Two sound
sources were leveraged: 1) the unstable noise radiation
caused by vibration when the DNA synthesizer transports
materials through the pipeline, 2) the audible click produced
by the DNA synthesizer when it opens and closes the flow
of material. In the threat model, the DNA synthesizer can be
connected to computers, external drives, and Ethernet cables,
and it is impossible to tamper with the machine or access the
output DNA sequence. The attacker must place at least one
microphone to the DNA synthesizer within close physical
proximity, which is a passive but non-invasive ASC.

4. Countermeasures

To analyse countermeasures against ASC in a structured
way, we use a three-dimensional framework, namely Imped-
iment, Interference, and Obfuscation. They represent three
different defense principles respectively: preventing access
to the ASCs, interfering with the observed signals, and
obfuscating the original sound pattern with noise. We sum-
marise these countermeasures in Table 2, and note whether
each of them was evaluated empirically.

4.1. Impediment

Considering that getting access to target devices/systems
or collecting useful acoustic signals is a necessary precondi-
tion for ASC attacks, to stop attackers from acquiring such
acoustics, i.e. Impediment, is naturally an intuitive defense.
Approaches include noise-dampening material or blocking
the malicious application before access.

Asonov et al. [4] explore impediment defenses based
on keyboard structure. They observed that keys located at
different positions on a single mechanical plate will pro-
duce unique acoustic fingerprints, like tapping a drum in
different places. They suggested developing silent keyboards
with multiple sound-dampening plates and locating keys
in acoustically equivalent locations to mitigate the attack.
Zhuang et al. [84] and Zarandy et al. [78] also discussed
these ideas and claimed that for mechanical keyboard em-
anations, the use of a silent keyboard is not an effective
countermeasure, as the signal is still above the noise floor,
unless each key is mounted on a separate plate. Zarandy
et al. [78] also mentioned that using phone cases or screen
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TABLE 2. ACOUSTIC SIDE CHANNELS: COUNTERMEASURES

Countermeasures

Principles Techniques

Acoustic side channels Im In Ob Acoustic
shielding

Stricter
access control Alert Add

noise Randomization Other techniques Evaluation

Asonov’04 [4] ✓ ✓ Place the keys not in one plate ✓

Zarandy’20 [78] ✓ ✓ ✓ ✓ Use phone cases or screen protectors ✗

Backes’10 [6] ✓ ✓ ✓ Longer distance ✓

Faruque’16 [24] ✓ ✓ ✓ ✓ Make the motor loads similar ✗

Hojjati’16 [33] ✓ ✓ ✓ ✓ Enlarge machines’s enclosures √∖

Keynergy’21 [60] ✓ ✓ ✓ ✓ ✗

PIN Skimmer’13 [67] ✓ ✓ ✓ ✗

Narain’14 [54] ✓ ✓ Reduce sampling rate of the sensors ✗

SonarSnoop’18 [16] ✓ ✓ ✓ ✓ Disable the sound system; modify sensor design ✗

PatternListener’18 [81]
PatternListener+’19 [80] ✓ ✓ ✓ ✓ ✓

Limit the frequency range
of the speaker and mic ✗

Shumailov’19 [66] ✓ ✓ ✓ Inject fake taps; introduce timing jitter ✗

Synesthesia’19 [26] ✓ ✓ ✓ Make variations on software mitigations ✗

Genkin’17 [28] ✓ ✓ ✓ ✓ ✓ ✓ ✗

KeyListener’19 [77] ✓ ✓ ✓ ✓ ✗

Oligo-Snoop’19 [23] ✓ ✓ ✓ ✓ ✓ ✓ ✗

Zhuang’05 [84] ✓ ✓ ✓ ✓ ✗

Anand’16 [1] ✓ ✓ ✗

Skype & Type’17 [20] ✓ ✓ Perform a short random transformation √∖

Anand’18 [2] ✓ ✓ ✓

VoIPLoc’21 [52] ✓ ✓ Use acoustic jitter and network jitter ✗

Song’16 [69] ✓ ✓ ✓ ✓ ✓ ✓ Inject additional dummy tasks ✗

Im:Impediment, In:Interference, Ob:Obfuscation, √∖:partially evaluated.

protectors may provide some measure of protection against
acoustic side-channel snooping.

In the case of 3D printers and physical locks (both low-
frequency ASC), noise reduction is a direct and effective
measure. Regarding countermeasures against ASC attacks
on printers, Backes et al. [6] tested the effectiveness of
using acoustic shielding foam, placing the microphone at
a larger distance, and placing the printer in another room.
They found that ensuring the absence of sound collections in
the printer’s room is sufficient to resist most eavesdropping.
A similar countermeasure was also considered in DNA
synthesizer defense by Faezi et al. [23]—prevent unautho-
rized person from entering the room. Faruque et al. [24]
and Song et al. [69] also suggested that shielding the 3D
printer with a sound-proofing material can be considered as a
countermeasure. Hojjati et al. [33] recommended improving
shield motors, such as using composites to cover the stepper
motors in manufacturing equipment, can help protect it from
broadcasting sensitive information to an adversary. They
also stated that enlarging the machines’ enclosures could
help since magnetometer readings drop off with the cube of
the distance from the source. In the case of physical keys,
Ramesh et al. [60] suggested modifying the lock design,
such as making the key with noise-reducing material and
removing the vulnerable key.

Early approaches to implementing the impediment have
been crude—both these works suggest notifying users of
the existence of side channels—in effect, asking the user to
solve the sensor deadlock problem. To impede PIN inference

attacks, Simon et al. [67] suggested using activity detection
components at the OS level. When an activity is used
to collect sensitive information from users, the component
informs the OS and the OS will deny access to shared re-
sources from other applications. Narain et al. [54] suggested
blocking sensors in a mutually exclusive manner when a
sensitive app runs. Cheng et al. [16] also proposed similar
countermeasures to disable the sound system or notify users
of a present sound signal in the high frequency range during
sensitive operations to deal with gesture unlocking attacks
which actively emit sound signals and use echoes to attack.
Zhou et al. [80], [81] discussed preventing the microphone
from being used in the background and limiting the fre-
quency range of the speaker and microphone. However, all
these works fail to discuss how to deal with deadlocks
that will naturally arise such as when app A has locked
the accelerometer and waiting for the camera and app B
does the same in reverse order. Another defense proposed
by [16] is to modify sensor design to limit the supported
frequency range, but this is challenging because deciding
the threshold for cutoff is hard. A third approach as Zhou
et al. [80], [81], Yu et al. [77] and Shumailov et al. [66]
proposed is to notify the user and let them deal with it by
disabling sound and/or sensors except touch screen during
sensitive operations, this also seems inappropriate indicating
that there is much further work to be done in impediment-
based access control research. For attacks of cryptographic
key leaking and desktop display leaking, Genkin et al. [26],
[28] propose acoustic shielding, however, this does not sit
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well with the need for air circulation to cool the heat.

4.2. Interference

The working principle of interference defences is to
drive the signal features the attack relies upon to well under
the noise floor.

The ASC attack for keyboard input has reached a cer-
tain degree of accuracy—attackers are exploring different
advanced signal processing and classification algorithms to
continuously improve the effectiveness of the attack, there-
fore disrupting the feature construction and classification
process is a basic way for defenders. Zhuang et al. [84]
pointed out that quieter keyboards (Impediment) are useless.
They believe that the ASC attack can be resisted by reducing
the quality of the sound signal that the attacker may obtain,
that is, increasing the noise. However, noise may also be
separated, especially when faced with a microphone array
attack, which records and distinguishes multiple channels of
sound based on the location of the sound source. When an
attacker is able to collect more data, this defense may also
be ineffective. A smarter way proposed to add noise is to add
a short noise window at each predicted peak, which may be
more acceptable to users than continuous noise shielding.
Anand et al. [1] proposed a defense mechanism against
keyboard attacks which had good performance in the face
of geometric measurement, feature classification, and other
attack methods. The specific measure is to use background
sounds to cover up the audio leakage.

The same is true for defense against remote attacks via
VoIP. Compagno et al. [20] proposed to perform a short
random transformation of the sound when a keystroke is
detected. The intuitive method is to apply a random multi-
band equalizer on multiple small frequency bands of the
frequency spectrum or mix the victim’s microphone with a
masking signal to prevent remote attacks. Anand et al. [2]
also believed that a noisy defense mechanism is feasible by
generating a masking signal with speakers at the victim’s
end, and those strategies were experimentally proved to be
effective in protecting victims’ important information.

Nagaraja et al. [52] also discussed a countermeasure for
ASC attack on VoIP calls, while their target is to prevent
location fingerprint leakage. Defenders may use acoustic
jitter to damage the fingerprint information, such as us-
ing a constant amplitude signal at a room’s characteristic
frequencies (50-2KHz) can cause a decrease in VoIPLoc’s
performance. But it is hard to deploy because even small
amounts of audible noise will negatively impact the voice
quality, which is the first issue to be considered in VoIP.

In fact, this defense strategy of interfering with the
original audio is effective for other different attack scenarios.
Shumailov et al. [66] introduced timing jitter, or decoy tap
sounds, into the microphone data stream to prevent attackers
from reliably identifying tap locations when using virtual
keyboards. As the taps themselves are pretty unnoticeable
for humans, this should not disturb applications that run
in the background. Another feasible countermeasure is to
randomly play some distracting noises that are close to

pressing when the virtual keyboard is used [78]. Cheng et
al. [16] suggested a possible countermeasure against active
ASC attacks is to block the propagation of inaudible sounds,
such as generating inaudible noise to interfere, and when
possible, refuse to receive low-frequency or high-frequency
sound signals.

The interference can still be applied to ASC attacks on
3D printers and physical key leaking. To protect 3D printing,
Hojjati et al. [33] obfuscated the ASC emissions from man-
ufacturing equipment by playing audio recordings of similar
but flawed processes during production. Their experiments
showed that such interference can make it harder for the
attacker to separate the target audio stream from the others
and reconstruct the object’s exact dimensions or process
parameters. Song et al. [69] also suggested introducing more
interference during printing. Ramesh et al. [60] thought that
injecting noise to corrupt key insertion sounds is also a
hopeful direction to improve security. Placing the machine
in a noise environment has been discussed in Genkin et
al.’s work [28], but the noise is easily filtered by a high-
pass filter due to the low frequency (below 10kHz) of the
generated noise. In the DNA synthesizer ASC scenario,
Faezi et al. [23] also suggested introducing additional noise
by adding redundant physical components.

4.3. Obfuscation

One significant factor that causes keyboard acoustic
attacks is that the keyboard always has a unified key layout,
which makes an attacker easily infer the keys since the
fixed location results in a distance pattern. Creating some
similar noise with the target acoustics or randomizing the
keys’ location (soft keyboard) can obfuscate the signals, thus
hampering an adversary to infer the information correctly.

This countermeasure is very useful and convenient to
implement for the virtual keyboard on the touch screen, and
it will not seriously affect the user experience. Compared
with the physical keyboard, the layout of the touch screen
virtual keyboard is easier to be customized, especially when
inputting the PINs, the user’s input habits can be tem-
porarily ignored. For KeyListener, it needs prior knowledge
of QWERTY keyboard layout to map localized keystroke
positions to accurate characters. Therefore, Yu et al. [77]
proposed that generating a random layout of the QWERTY
keyboard is an effective way to resist touchscreen keystroke
eavesdropping attacks. For the on-screen gesture unlocking
leakage, a similar defense is to randomize the layout of the
pattern grid [80].

In addition to changing the position of the keys, random-
ization also plays a role in the defense against other attacks,
such as cryptographic key leaking. Genkin et al. pointed
out that their attack aimed at cryptanalysis can be prevented
by some algorithmic countermeasures, such as ciphertext
normalization and randomization [28].

As for computer screen leaking, attacks can be de-
fended against by changing the screen content. Genkin et
al. [26] proposed that a more promising approach is soft-
ware mitigation. Specifically, these programs cover leaks by
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changing the content on the screen, such as font filtering.
By changing the font, all letters on the screen project the
same horizontal intensity, avoiding the loss of information
within a single pixel line. They also proposed two ways
of shielding (impediment) and masking (interference), but
these countermeasures are more difficult to achieve.

In fact, the defense strategy of obfuscation is also to
prevent an attacker from extracting reliable information with
distinct distinguishing characteristics. Nagaraja et al. [52]
proposed a similar strategy, which is to use network jitter to
induce packet latencies encouraging standard codec imple-
mentations to drop packets containing reverberant compo-
nents, thus preventing the sender from extracting a credible
room fingerprint. Moreover, Obfuscation can also be used
for 3D printer and DNA synthesizer attacks. Faruque et
al. [24] suggested that creating similar loads on each motor
and incorporating random motor movements can obfuscate
the acoustic emissions. Song et al. [69] considered adopting
dynamic printing configurations in the process of G-code
generation and injecting additional dummy tasks (e.g. use
random trajectories). Faezi et al. [23] suggested that oper-
ators can randomly select redundant steps of varying time
length prior to delivery or randomly select and execute steps
unrelated to base delivery to obfuscate signals.

5. Discussions

We draw a number of interesting observations, which
either reflect the strengths and weaknesses of the state of the
art, or shed light on promising future research directions.

Ever expanding attack surfaces. Early work largely
concentrated on physical keyboard emanation, and therefore
targeted devices were PCs, laptops, payment devices and
the like. The range of attack surfaces has been significantly
expanded to date, covering smartphones, LCD displays,
motherboards, mechanical locks, specialised equipment such
as 3D printers and DNA synthesizers, and even computer-
human interactions. Particularly, smartphones and 3D print-
ers have attracted considerate attention in recent years.

Overall, keyboard emanations have been the most stud-
ied among the ASCs. The second most studied is touch-
screen leaking; followed by 3D printer leaking. Those less-
studied categories are likely to offer more opportunities for
future research. Where else to look for new ASCs? New
devices and equipment where noise and sound are emitted
will deserve a look.

Data analysis and machine learning. The power of
data analysis is critical for ASCs, as it hinges on the
capability of extracting signals from often noisy data. There
is a clear trend that ASC research evolved from simpler ma-
chine learning methods (e.g. probabilistic neural network, k-
nearest neighbors, support vector machines) to more sophis-
ticated deep learning (like convolutional neural network and
recurrent neural network). As machine learning advances, it
helps advance side-channel research.

However, it is unnecessary that the more sophisticated
the machine learning methods, the better. The nature of
signals and the features of datasets collected all play an

important role in choosing appropriate analysis methods.
For example, Gohr [29] reported at CRYPTO’19 some
impressive cryptanalysis results achieved by deep learning.
However, Benamira et al [9] showed at Eurocypt’21 that,
after stripping down Gohr’s deep neural network to a bare
minimum, they achieved a similar accuracy using simple
standard machine learning tools.

In cases where deep learning does outperform simple
machine learning methods, the black-box nature of the for-
mer can cause interpretability issues. For example, it may
be unclear why the deep learning method has worked. What
is its weakness? And, how to improve it? For example,
Benamira et al. [9] achieved a complete interpretability of
their method and the decision process, whereas Gohr [29]
fared poorly in explainability.

More nuanced nature of ASCs. Early ASCs were
passive ones, but recently active ASCs emerged [16], [46],
[81]. Active ASCs are intriguing, as they involve with
both intentional and accidental elements. Although acoustic
signals were intentionally introduced by an attacker in active
attacks, the signal-responses from the victim unintentionally
leak information.

Overall, most ASCs identified to date are passive ones,
and only a few are active ones. Research into active ASCs
is an interesting direction for future research.

We would not be surprised if many real-world attacks in
the future will exploit a combination of active and passive
ASCs, or exploit a combination of acoustic and other side
channels, or simply amplify an ASC with non-side-channel
attacks or vice versa. Certainly, researchers with imagination
and creativity will be able to discover exciting new attacks
along these directions, and only the sky is the limit.

Constructive applications of ASCs. Most research in
this area employed ASCs for offensive purposes only, and
several exceptions such as [7], [8], [18], [58] looked into
constructive or defensive applications of ASCs. Panda et
al [58] investigated both offensive and defensive aspects of
ASCs, where they attempted PIN guessing via keyboard em-
anation, as well as user verification via keystroke dynamics,
which is a known behavioural biometric. The basic idea of
using ASCs to build security defenses is that acoustic signals
emitted by devices can also be considered a fingerprint of
the system or the program and used to protect the identifi-
cation systems. It can be used alone or in combination with
other protection mechanisms. This can be an exciting and
promising direction for future research.

Imbalance in attack and defence research. The litera-
ture has put significant effort into discovering new ASCs and
their exploitation, rather than investigating countermeasures
to them. In fact, we could only name a small portion
that covered and discussed countermeasures. For this very
reason, Table 2 is significantly shorter than Table 1.

Inadequate evaluations of countermeasures. What is
worse, among those investigating countermeasures, only a
small portion attempted empirical evaluations. Most counter-
measures proposed remain theoretical Practical implemen-
tations and empirical evaluations are often limited, if any.
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Clearly, countermeasure investigations, in particular their
empirical evaluations, have been under-appreciated and in-
adequate. Countermeasures lag behind attacks, and this may
well suggest that the former may be much harder to deliver
than the latter. However, all these no doubt warrant fertile
grounds for future research.

Research methodology. Experimentation is an intrinsic
element of ASC research. However, experimental details are
often under-reported in the literature. Thus, reproducibility
can be a significant challenge.

Moreover, many studies were mostly controlled exper-
iments, conducted in strict laboratory settings or similar
environments. There was inadequate effort in considering or
pursuing whether the results could be generalized to other
settings, in particular to the naturalistic real-world setting.
Still much effort is required to demonstrate the ecological
validity of these ASC studies.

In terms of rigor and validity, ASC experiments in
general are far behind the area of keystroke dynamics. Via
a series of solid works including [37], [48], [49], [73],
Maxion’s team at Carnegie Mellon meticulously examined
and explored keystroke dynamics, and they achieved a high
standard for repeatable, reproducible, well-grounded and
generalizable experiments in security research. There is
much for ASC researchers to learn from them.

Common metrics, reusable high-quality datasets, and
standardized experimental setups and procedures (e.g. as
shared operational protocols for experiments) all help to im-
prove reproducibility. They will enable direct comparisons
of attack or countermeasure research conducted by different
teams. These will improve the rigor, validity and scientific
foundation of ASC research, and advance the state of the
art in an efficient and cost-effective way.

Lack of human, social and economic perspectives.
Only a few papers (e.g. [1], [66]) considered usability and
human factors, although some ASC countermeasures may
potentially impact many users. On the other hand, monetary
and computational costs incurred by potential countermea-
sures are rarely considered.

Side channels could be hugely serious, with a far-
reaching social and economic impact at a large scale, e.g.
multi-billion dollar consequences. For example, following
the discovery of differential power analysis [40], smart cards
had to be redesigned for banking and other stakeholders all
over the world. The microarchitectural side-channels like
Meltdown [44] and Spectre [39] suggested a major revisit
of CPU designs, too. ASCs do not appear to be as serious.

However, how serious can and will ASCs be in the
future? Some security economic analysis can be relevant and
interesting. To have an answer, it is critical to understand the
severity, practicality, and impact of the various acoustic side
channels in the real world. Which acoustic side channels
pose a real threat? Or, most of them will remain of academic
interest only? There are many interesting open problems.

6. Bridging Side Channels and Inverse Prob-
lems

In unclassified worlds, side channels are a young field,
with a history of less than forty years. Inverse problems
have been studied for more than a century. However, side
channels and inverse problems appear to be two fields that
are completely isolated from each other1.

A problem is inverse because it starts with the observable
effects to calculate or infer the causes, such as determin-
ing causal factors and unknown parameters from a set of
measurements of a system of interest. It is the inverse of a
forward—or direct—(physical) problem, which starts with
the causes and then deduces or calculates the effects, such
as modelling a system from known parameters.

The field of inverse problems has deep and historical
roots in mathematics, pioneered by giants like Hermann
Weyl and Jacques Hadamard [30], [38], [74]. The main
source of inverse problems is science and engineering. These
problems have pushed not only the development of mathe-
matical theories and tools, but also scientific and technolog-
ical innovations in a wide range of disciplines, including
astronomy, geophysics, biology, medical imaging, optics,
and computer vision, among others. Classical achievements
of inverse problems include computed tomography (CT)
and magnetic resonance imaging (MRI), where the inverse
Radon transform is foundational.

6.1. Side Channels versus Inverse Problems

In a side channel, information leaks accidentally via
some medium or mechanism that was not designed or
intended for communication. Often, a direct measurement
of the output from a side channel does not immediately
give away the information leaked. Instead, the direct output
measurement is akin to metadata, from which attackers
deduce the leaked information.

Therefore, every side channel implies or involves an
inverse problem, but not vice versa.

In some instances, a side channel may involve a rela-
tively straightforward inverse problem. For example, Kuhn
demonstrated a classical optical side-channel, where the
information displayed on a computer monitor could be
reconstructed remotely by decoding the light scattered from
the face or shirt of a user sitting in front of the computer
[42]. A sophisticated attack was required to successfully
exploit this side channel. However, its key insight was
the fact that the whole screen information was available
as a time-resolved signal, rather than solving a complex
inverse problem. On the other hand, not all inverse problems
involved in side channels are straightforward to solve. For
example, active acoustic side channels such as SonarSnoop
[16], KeyListener [46], and PatternListener [81] all involved
a rather complex inverse problem.

1. Some analysis in this section were initially developed for [11].
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6.2. Potential Impact on Side Channels

How do the fields of inverse problems and side chan-
nels inform each other? We believe that the problem-
formalisation strategies, theoretical models, mathematical
techniques, algorithms, and concepts developed in inverse
problems have significant potential to benefit and inspire
future research of side channels (including acoustic ones).

First, it helps to properly navigate between the lan-
guages used in both fields. This will, for instance, help to
identify similarities and differences, to clarify misconcep-
tions, and to unify terminologies. For example, information,
which is the set of relevant parameters approximated by
the solution to the inverse problem, conceptually differs
from measurements, which are the physically leaked raw-
data input of the inverse problem and which can contain
various amounts of useful information.

In a unified language that is understandable to both com-
munities, blocking a side-channel attack essentially amounts
to making the corresponding inverse problem unsolvable,
intractable, harder to model, or at least harder to compute ef-
ficiently. Accordingly, there are the following three scenarios
where one could: (a) prove that the inverse problem becomes
impossible to solve by getting rid of the information that is
present in the measurements, in such a way that the analysed
measurements contain nothing relevant; (b) make the inverse
problem much harder to model mathematically or solve
computationally; (c) get rid of the leakage (e.g. physically)
so that there are no measurements to exploit whatsoever,
regardless of whether the said measurements would have
contained meaningful information or not. Adding random
perturbations such as noise is an example of a classical
mechanism that makes an inverse problem unsolvable or
harder to model.

Second, the perspective of inverse problems offers a
new lens for examining side channels. As first elaborated
by Jacques Hadamard, a fundamental challenge in inverse
problems is they are typically ill posed in terms of the
solution’s existence, uniqueness, and stability, whereas their
corresponding forward problems may be well posed in all
these regards [38]. The stability property means that a so-
lution depends continuously on the available measurements
(i.e. the observed data). Accordingly, a problem lacks stabil-
ity if adding or removing data implies a radically different
solution. If a computed solution lacks stability, it will simply
depart from the true solution.

Some studies of side channels (e.g. [16], [17]) may
amount to only proving the existence of a solution for
the corresponding inverse problem, rather than investigating
the two related properties, namely, uniqueness and stability.
Therefore, looking into these other properties, as studied
from the perspective of inverse problems, will likely give
security researchers a new lens for examining side channels,
as well as their countermeasures.

For example, examining the stability property alone war-
rants interesting research to answer the following questions.
How will the side channel be impacted if less, or more,
measurement data are collected for experiments? How much

measurement data is necessary for the side channel to be
stable, in such a way that the retrieved information depends
continuously on the data, as opposed to varying abruptly
across nearly similar datasets? Could specific countermea-
sures, such as adding some type of physical disturbance or
interference, influence the observed output from the side
channel in such a way that stability decreases? Answers to
these questions could allow better optimising side-channel
countermeasures, accurately simulating their expected effect
before implementing them (e.g. in the case of optical side
channels as demonstrated in [11]), quantifying their effi-
ciency, and providing a robust framework to compare them
in a systematic and rigorous manner.

Third, some theoretical results on inverse problems
are relevant to side channels. One such result is recon-
struction guarantees for several types of problem structures,
such as lower bounds on reconstruction errors (Cramér-
Rao bounds [76]). These reconstruction guarantees are often
only tied to the forward model mapping the relationship
between the information of interest and measurements, in
the sense that they do not depend on any specific algorithm
or solution used. Another useful result is the extent to which
the recovery is affected by noise or other non-idealities
[5], [13]—which amount to mitigating side-channel attacks
in security and cryptanalysis. Such results could inform
one on how to best characterise various side channels—
including acoustic, EM, and optical ones—and how to best
design and evaluate their countermeasures. In particular, the
interference and obfuscation countermeasures elaborated in
Section 4 can substantially benefit from the perspective of
inverse-problem research due to their operational nature,
even though impediment and some elements of obfuscation
countermeasures may be out of scope for inverse problems.

To solve challenging inverse problems, mathematics has
been applied to accurately describe the forward model as
well as assumptions on the solution, if any. For instance,
sound statistical modelling allows reducing the dimensional-
ity of the parameter spaces and producing accurate solutions
[36], [64], and specific algorithms also allow maximizing
computational efficiency. These may prove inspiring for side
channel research, too.

Finally, it will be intriguing to explore possible connec-
tions between the optimality2 of a side channel in a given
scenario and the uniqueness and stability of the solution to
the corresponding inverse problem. In some cases, it appears
that the latter indeed implies an optimal side channel. How-
ever, in many other scenarios, whether such a connection
holds or not has no straightforward answers. Instead, these
will be interesting areas for future research.

7. Conclusions

We have seen steady progress in ASC research in the
past twenty years. Some creative or even surprising results

2. By optimality, we mean that the maximum amount of information that
can in theory be leaked from a side channel is fully extracted.
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have emerged, such as acoustic cryptanalysis [27], keyboard
emanation [4] and Synesthesia [26], to name a few.

We have laid down some foundations to clear concep-
tual chaos, and put together a framework to structure our
collective understanding of existing ASCs and their coun-
termeasures. We have also identified gaps in the research,
which point to promising future directions.

We hope this paper sounds the marching bugle, attracting
ambitious and creative researchers to further grow the field
of ASCs, where imagination can make a difference.

Finally, we have made an attempt to bridge side chan-
nels and inverse problems. In general, every side channel
implies (or involves) an inverse problem, but not vice versa.
Although it may be a small step forward at this stage,
it is perhaps the start of an aspiration that will grow in
the future. We believe that this bridge has the potential
to foster cross-field collaboration and inspire several new
research directions, for example, building a more rigorous
and effective scientific foundation for side channel research,
and encouraging the possibility for ideas and techniques
originated in one field to enjoy a wider applicability than
was previously anticipated.
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