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A B S T R A C T   

Microbial Fuel Cells (MFCs) transform organic matter into electricity through microbial electrochemical re
actions catalysed on anodic and cathodic half-cells. Terrestrial MFCs (TMFCs) are a bioelectrochemical system 
for bioelectricity production as well as soil remediation. In TMFCs, the soil is the ion-exchange electrolyte, 
whereas a biofilm on the anode oxidises organic matter through electroactive bacteria. Little is known of the 
overall microbial community composition in a TMFC, which impedes complete exploitation of the potential to 
generate energy in different soil types. In this context, an experiment was performed to reveal the prokaryotic 
community structure in single chamber TMFCs with soil in the presence and absence of a municipal waste 
compost (3% w/v). The microbial community was assessed on the anode and cathode and in bulk soil at the end 
of the experiment (54 days). Moreover, TMFC electrical performance (voltage and power) was also evaluated 
over the experimental period, varying the external resistance to improve performance. Compost stimulated soil 
microbial activity, in line with a general increase in voltage and power. Significant differences were observed in 
the microbial communities between initial soil conditions and TMFCs, and between the anode, cathode and bulk 
soil in the presence of the compost. Several electroactive genera (Bacillus, Fulvivirga, Burkholdeira and Geobacter) 
were found at the anode in the presence of compost. Overall, the use of municipal waste compost significantly 
increased the performance of the MFCs in terms of electrical power and voltage generated, not least thanks to the 
selective pressure towards electroactive bacteria on the anode.   

1. Introduction 

Bioelectrochemical systems (BES) are capable of converting chemi
cal energy into electrical energy [1]. They rely on the biological activity 
of living organisms (electroactive or electrogenic bacteria) for reducing 
pollutants, recycling elements, synthetizing new products, and gener
ating electricity [2]. Electrogenic bacteria or electroactive bacteria 
(EAB) can develop biofilms on electrodes and catalyze oxidations on the 
bioanode and/or reductions on the biocathode [1]. In the context of 
bioremediation, BES technologies have attracted a lot of interest in 

recent years for their biodegradation/bioremoval of several contami
nants such as chlorinated compounds [3,4] and heavy metals [5–7]. BES 
are an ecofriendly technology, with zero pollution, long technical life, 
and sustainability [1–3], and can have multiple applications (e.g. elec
tricity, hydrogen and chemicals production [8,9]). BES technology is in 
line with the circular economy model because waste can be used as the 
fuel material, converting it to bioenergy [10]. Microbial Fuel Cells 
(MFCs) are a type of BES which transforms organic waste into electricity 
through microbial electrochemical reactions catalyzed in the anodic and 
cathodic regions [11–15]. 
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Electroactive biofilms (also termed electrochemically active bio
films) can develop in both natural ecosystems (soils, sediments, 
seawater or freshwater), and in a wide range of different microbe-rich 
environments, such as sewage sludge, activated sludge or industrial 
and domestic effluents [16]. The composition of these biofilms is not 
completely known, however specific anaerobic bacterial strains (e.g. 
Geobacter sulfurreducens, Rhodoferax ferrireducens, Shewanella sp.) with a 
catalytic ability, and a capacity to exchange electrons with solid sub
strates (i.e. electrodes) have been identified [4,9,17]. These natural 
microorganisms are able to generate electricity through various meta
bolic processes [18]. More recently, EAB activity in Terrestrial MFCs 
have been tested as a promising variant for bioelectricity generation. A 
terrestrial MFC comprises two electrodes separated by a layer of soil (the 
electrolyte) and connected through an external electrical circuit (usually 
a wire or electrical load). EAB growing in anaerobic conditions develop 
a biofilm on the anode (located at the bottom of an MFC) and can 
catabolize (oxidize) organic compounds (including several contami
nants), producing and releasing protons (H+), electrons (e-) and carbon 
dioxide (CO2). Currently, about 100 microorganisms have been 
described as EABs, able to perform extracellular electron transfer (EET) 
[19] which coordinate their development, activity and mobility with 
advantageous cell-to-cell interactions. The EET pathways of the 
gram-negative Geobacter sulfurreducens and Shewanella oneidensis have 
been investigated; these bacteria can perform anaerobic respiration 
utilizing a metal such as iron (III) or manganese (IV) as a terminal 
electron acceptor [20]. Other bacteria such as Klebsiella, Azonexus, 
Comamonas, Petrimonas and Acidivorax have been also found to show 
EET capacity, however the final electron acceptors have not been well 
identified [18]. 

Electrons from bacteria on the anode are transferred using different 
mechanisms, such as the electron transport chains through membrane 
cytochrome or conductive pili [21]. Subsequently, electrons are trans
ported from the anode to the cathode (where oxygen acts as an electron 
acceptor) through an external circuit. Protons flow from the anode to the 
cathode through the soil. The latter provides the biofilm bacterial 
community and the organic matter [22]. Carbon-based materials, such 
as graphite fiber brushes, rods, felts and fabrics, are used to design 
electrodes because they have high performance, low-cost and strong 
biocompatibility and a high electrical conductivity [23]. 

Terrestrial MFCs have been used for restoring soil or sediment from 
phenolic compound [24], polycyclic aromatic hydrocarbon [25], PAH 
[26] and dichlorodiphenyldichloroethylene (DDE) contamination [22, 
27]. However, the efficiency of terrestrial MFCs still needs to be 
improved especially if compared to that of conventional liquid-based 
MFCs. In fact, terrestrial MFCs are more complex compared to other 
MFCs where the electrolyte is a liquid (e.g. water or wastewater). Owing 
to soil heterogeneity and its variable abiotic factors (e.g. pH, texture, 
organic carbon content and water content) terrestrial MFC performance 
can vary significantly [4,28,29]. In particular, organic matter content 
can be a key factor in MFC electricity production and durability as well 
as in decontamination process effectiveness [30]. Recent studies report 
that adding an external carbon source, such as glucose [31] or compost 
[22] to soil, can significantly improve performance of terrestrial MFC 
electroactive bacteria [32]. Compost is an organic fertilizer obtained 
from the treatment of organic waste. It is commonly produced by aer
obic degradation of plant and food waste and organic materials (such as 
municipal waste). Compost is rich in organic carbon, active microbial 
communities and microelements, features which make it suitable for a 
wide variety of agronomic uses. It is well known that compost increases 
water retention, soil organic matter content, nutrients and cation ex
change capacity [33,34]. For example, in soil MFCs [35] a cattle manure 
compost was added, enriched with 0.5 g/ml of urea, for increasing their 
power production. In another work, [36], two sets of MFCs were tested 
using soil amended with 2 type of compost from vegetable waste with 
different C:N ratio and then added a saline solution (5 g/L of NaCl); the 
authors obtained the best electrical performances (W/m2) using the 

compost with the highest nitrogen concentration. 
Although MFCs have been investigated in terms of energy production 

and engineering design, and some electroactive bacteria identified, 
current knowledge of overall microbial community composition inside a 
terrestrial MFC and its distribution between the anode, cathode and soil 
is very limited. 

In this context, the structure and functioning of a microbial com
munity in the presence/absence of a municipal waste compost were 
investigated in single-chamber terrestrial MFCs over 54 days. The bac
terial community on the anode and cathode and in bulk soil were 
analyzed in terms of microbial activity (dehydrogenase activity) and 
total microbial abundance (DAPI counts). Moreover, bacterial compo
sition was characterized by sequencing its 16 S rRNA gene (Miseq Illu
mina). The electrical performance was also evaluated measuring daily 
voltage and power over the experimental period. 

2. Material and methods 

2.1. Terrestrial MFC set-up 

The soil was sampled from the first 30 cm of an abandoned agri
cultural field located 30 km north of Rome. It had a neutral pH (7), with 
1.35% organic carbon and 0.15% total N, and the texture was 28% sand, 
24% silt and 48% clay. The soil was air dried and stones, gravel and roots 
were removed. A municipal solid waste compost (organic carbon con
tent: 26%), produced and supplied by Progeva Spa (Laterza, TA, Italy), 
was used. The compost quality was certified on the basis of ISO/IEC 
17025, and the main characteristics were discussed in a previous report 
[37]. The compost (54 g) was added and mixed to 1746 g of dry soil to 
obtain 3% of compost (after adding the compost organic carbon and 
total nitrogen were 1.9% and 0.22%, respectively). A further 1800 g of 
soil were used without adding compost. About 600 g of soil were 
employed for each microbial fuel cell microcosm (MFC). Finally, the soil 
was saturated with water (30% of the water holding capacity). 

Each MFC consisted of a single chamber with inert graphite elec
trodes (anode and cathode), which have been shown to be appropriate 
conductors and an easily available material [22]. Microcosms were set 
up as follows: 1 cm of wet soil layer was packed at the bottom of each 
MFC. The anode was then placed on top of the soil and after that, each 
cell was filled with 5 cm of soil. The soil and anode were squeezed in 
order to form a smooth layer and remove air bubbles. The cathode was 
then placed on top of the soil and exposed to air. A total of 6 terrestrial 
MFCs were assembled (3 with only soil: TMFC; 3 with soil and compost: 
TMFC+Compost). Some soil samples in the absence/presence of 
compost were collected before setting up the MFCs to assess the initial 
microbial community; they were termed Soil and Soil+Compost, 
respectively. At day 54, all the MFCs were disassembled, and the soil 
sampled in each cell in 3 different points: one in close contact with the 
anode (Anode), another in close contact with the cathode (Cathode) and 
a third one in the middle of each MFC (Bulk soil). At the end of the 
experiment (54 days) aliquots of initial soil samples from the Cathode, 
Bulk and Anode TMFC and TMFC+Compost conditions were used for 
microbiological analyses. Moreover, electrical measurements (power 
and voltage) were carried out daily over the experimental period. 

2.2. Total microbial abundance and dehydrogenase activity 

The total microbial abundance (N. cells/g soil) was estimated using 
the epifluorescence direct count under a microscope and using DAPI 
(4′,6-Diamidino-2-phenylindole dihydrochloride) dye as the DNA 
intercalant. Formaldehyde-fixed soil samples (1 g for each replicate 
condition, in 3 sub-replicates) were used and processed as reported in 
detail in previous works [38,39]. 

The microbial activity was measured as dehydrogenase activity 
(DHA), which reflects the overall microbial respiration rate and there
fore the biological oxidation of organic matter [40,41]. The method 
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applied is based on extraction and colorimetric determination of the 
color intensity of the 2,3,5-triphenyl formazan (TPF) produced from the 
reduction of the colorless 2,3,5-triphenyltetrazoliumchloride (TTC) in 
soil samples (6 g for each replicate condition, in 3 sub-replicates), 24 h 
after an incubation at 37◦C in the dark [41]. Soil dehydrogenase activity 
was expressed as μg TPF/g dry soil and was measured with a Thermo 
Multiskan FC Microplate Photometer (Thermo Fisher Scientific; Wal
tham, MA, USA). 

2.3. Prokaryotic community composition: DNA extraction, sequencing of 
16 S rDNA and bioinformatic analyses 

The effect of compost on the bacterial community structure and its 
possible modifications on Anode and Cathode and in Bulk soil was 
evaluated using a metabarcoding approach. Metabarcoding is the large- 
scale taxonomic identification of complex environmental samples via 
analysis of DNA sequences for short regions of genes [42], such as the 
regions of the 16 s rRNA gene. 

Soil DNA was extracted from the initial soil (Soil and Soil+Compost) 
and from MFC (3 replicates for each sampling point: Anode, Cathode and 

Bulk soil) using the DNeasy PowerSoil kit (Qiagen, Valencia, CA, USA), 
following the manufacturer’s recommendations. A DNA-free sample was 
also analyzed as the negative control during the whole workflow. The 
extraction yield and quality of the DNA were assessed using spectro
photometric measurements (Multiskan Sky Microplate Spectrophotom
eter, Thermo Fisher Scientific, USA). DNA extracted was stored at −
20 ◦C until sequencing. 

The DNA extracted was used as the template for sequencing the 
hypervariable V3-V4 region of 16 S rRNA with MiSeq Illumina, using the 
341F and 805R primers (Table S1). Nucleotide sequences were depos
ited in GenBank (accession number PRJNA918324). 

The raw sequences were imported and demultiplexed using QIIME2 
platform v2019.11 [43] and denoised with the DADA2 plug-in, as pre
viously described [44]. The primers were removed using the DADA2 
commands: “trim- left-f” for the forward primer and “trim-left-r” for the 
reverse one. These commands remove the sequences from its beginning 
to a specific position. The exact length of the primers was 17 nucleotides 
for the forward one and 21 nucleotides for the reverse one [45]. 

The amplicon sequencing variants (ASV) obtained with denoising 
process were sorted using the Silva 132 database (https:// www.arb- 

Fig. 1. Soil microbial community. A. Total Microbial Abundance (N. cells/g dry soil) in initial soil conditions (Soil and Soil+Compost, blue bars), TMFC (red bars), 
and TMFC+Compost (green bars). Vertical bars represent the standard error. B. Total dehydrogenase activity, (DHA, µg TPF/g soil) in initial soil conditions (Soil and 
Soil+Compost, blue bars), TMFC (red bars), and TMFC+Compost (green bars). Vertical bars represent the standard error. 
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silva.de) with a naive Bayes classifier trained on the amplified regions 
with 80% confidence [46]. 

2.4. Electrical measurements 

The electrical measurements were carried out daily to evaluate the 
MFCs’ performance. A data logging device (measurement station de
vice), previously designed [22], was implemented for measuring and 
obtaining (using Ohm’s law) the main electrical parameters such as 
voltage (V) and current (µA) [47]. The current is also reported as current 
density (A/m2), when divided by the electrode surface. The station de
vice also controlled and modulated the external resistive load. Power 
generation (µW) and power density (W/m2) were also calculated. The 
operating conditions of the device varied when obtaining an open or 
closed-circuit. During open circuit operation, a ‘recharge’ period was in 
action and the cell voltage increased, eventually reaching a stable 
voltage. When the external circuit was closed (by modulating the 
external resistance), electrons flowed from the anode towards the 
cathode and the voltage diminished following the polarization curve 
(discharge period). 

In order to capture the differences between the electrical results in 
the presence and absence of compost, the Open Circuit Voltage values 
(OCV, mV) and the electric power generated (µW) are reported in the 
logarithm base 10 scale. Because the MFC maximum electrical output 
was obtained when the internal resistance was close to the external one 
[48], the power produced was calculated by closing the electrical circuit 
and varying the external resistances (112.5, 300.8, 530.8, 990.6, 
2983.3, 4976.0 and 9957.7 Ohm). This made it possible to identify the 
external resistance value at which the maximum electrical power 

(Pmax) was generated. 
The daily electrical measurement phase consisted of several succes

sive steps. At each one, the circuit was closed over one of the 7 resistance 
values for 15 s. Between two successive measurements with different 
resistance, the circuit remained open for 250 s to recover the undis
turbed open circuit voltage condition. Due to the significant difference 
in magnitude between the test conditions, voltage was plotted on a 
logarithmic scale. 

2.5. Diversity indices and statistical analyses 

The diversity of the prokaryotic community was analyzed using the 
Evenness and Shannon diversity indices, while the Chao 1 index [49] 
was used as an estimator of potential richness. All the statistical analyses 
and graphic elaboration were performed using R (4.0.4 version https: 
//www.r-project.org). The effects of compost on the prokaryotic com
munity in the initial conditions (Soil and Soil+Compost) and TMFCs and 
the differences between Anode, Cathode and Bulk soil inside each cell, 
were evaluated with a principal-coordinate analysis (PCoA) of the ASVs, 
based on Bray-Curtis distances. A multivariate ANOVA with permuta
tions (PERMANOVA) was applied in order to assess significance. Pair
wise PERMANOVA [50] was performed using the function pairwise. 
perm.manova from the package RVAideMemoire [51] in order to evaluate 
the significance of ASV changes in the prokaryotic composition in the 
different experimental conditions. A one-way ANOVA together with 
TukeyHSD as the post-hoc test [52] was performed to find significant 
differences among experimental conditions within the Alpha-diversity 
indices (Chao1, Shannon, and Evenness), and for microbial abun
dance, dehydrogenase activity and prokaryotic (genera and classes) 

Fig. 2. Electrical parameters in TMFC and TMFC+Compost measured daily over the experimental period. A: Open Circuit Voltage (OCV) values reported as mV, 
measured just before closing the circuit. B: Maximum Electric power generated (Pmax, µW) obtained daily in closed circuit conditions. Pmax represents the maximum 
value recorded in TMFCs during the discharge phases for variable external resistors. The results on the y-axis are reported in a log scale in order to capture the 
difference in order of magnitude between the two configurations (TMFC and TMFC+Compost). 
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taxa. 
The abundances of the prokaryotic community were normalized to z- 

scores and displayed in a heatmap generated by Complex Heatmap [53]. 
In the heatmap, bacterial genera and experimental conditions were 
grouped in accordance with hierarchical clustering dendrograms, which 
are shown at the top and on the left side of the heatmaps. 

3. Results and discussion 

An overall increase in microbial abundance and activity was 
observed on the cathodes and anodes of the MFCs, with values signifi
cantly higher than those in the initial soil (Fig. 1A,B). 

The highest microbial abundance values were observed on the an
odes in both the TMFC and TMFC+Compost conditions. This result was 
presumably due to bacteria migration from soil to the electrodes by 
quorum sensing [54] for the forming of bioactive biofilms [4], con
firming that the bio-electrochemical reactions are triggered on the 
anode. 

A positive effect on microbial activity was found when adding 
compost (Fig. 1B, TMFC+Compost) not only on the anode, but also on 
the cathode and in the bulk soil and this promoted an overall increase in 
active microbial populations in the overall microbial fuel cell. The 
effectiveness of organic amendments in increasing microorganism 
abundance and organic matter content has been also demonstrated in 
other works [37,39]. 

The effect of compost on microbial activity was reflected in the 
higher performance of the TMFC+Compost than TMFC, as shown by the 
electric power and voltage values (Fig. 2A,B). The MFCs started to 
produce electricity (open circuit voltage, OCV) in the same way (day 0: 
74 mV in both TMFC and TMFC+Compost); see Fig. 2A. However, in the 
presence of compost (TMFC+Compost) a sharp increase of up to 467 mV 
(5 days) in OCV values was observed, while, during the same time, 
TMFC only reached 175 mV. The OCV remained stable in the 
480–600 mV range in TMFC+Compost and with values significantly 
higher than those recorded in TMFC (range: 80–210 mV). The perfor
mance of the cells dropped after 45 days in both TMFC and 

Fig. 3. Polarization curves, power density and current density detected at day 52 in TMFC and TMFC+Compost. A and B: Polarization curves (orange) obtained 
plotting the closed circuit voltage (CCV, expressed as V) and the Current density (A/m2). In blue, Power density (W/m2). C and D: Current density (A/m2, green) and 
power density (W/m2, blue) obtained as a function of the external resistance in TMFC and TMFC+Compost, respectively. 
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TMFC+Compost and for this reason the experiment was disassembled at 
day 54. 

In line with the voltage levels, the electrical power values were 
significantly (p < 0.05) higher (ranging from 700 to 800 µW, with 
maximum peaks of 836 µW, Fig. 2B) in the presence of compost than in 
the TMFC (range: 10 and 20 µW; Fig. 2B). Interestingly, between days 14 
and 45 of the experiment, the MFCs showed a stable operating phase in 
terms of OCV and electrical productivity (Figure2A and 2B), and the 
polarization curves remained relatively stable (see for example Sup
plementary Materials, Fig. S1 for day 41). 

At day 52, close to the end of the experiment, the electrical power 
generated (Pmax in Fig. 2B) reached its maximum with external resis
tance values of about 300 Ω and 113 Ω (Fig. 3C,D) were registered with 
the measurement station device resistors for TMFC and TMFC+Com
post, respectively (see also Fig. S2 for day 51). The internal resistance of 
the TMFC was estimated by analyzing the slope of the ohmic region in 
the polarization curves (orange lines in Fig. 3A,B). In TMFC (without 
compost) this value was about 320 Ω, close to the external resistance of 
about 300 Ω required for maximum power (Fig. 3C, left side). In the 
presence of compost, the internal resistance was 75 Ω (Fig. 3B, right 
side), and this value was also close to the external resistance of about 
113 Ω, required for obtaining the maximum power (Fig. 3D, right side) 
[48]. The latter result is in line with the highest microbial activity in the 
TMFC+Compost. The compost, rich in organic matter, was presumably 
used as a substrate by microorganisms and favored bacterial develop
ment. Bacteria increased organic compound oxidation, releasing H+ and 
electrons and supporting the generation of an electric current towards 
the anode, as previously reported [22,55,56]. Interestingly, positive 
correlations (p < 0.001, R: 0.80) were found between voltage (OCV) and 
microbial activity (DHA) and power and microbial activity (DHA). 

3.1. Microbial community diversity and composition 

The PCoA (Fig. 4), based on Bray-Curtis distances of the ASVs of the 

prokaryotic community shows that there are significant differences 
among the experimental conditions. A shift in ASV distribution was 
observed between the initial soil (Soil and Soil+Compost) and the MFCs. 

The TMFCs selected and activated soil microbial populations 
involved in electrochemical activity, inducing a change of ASV distri
bution and an increase in the potential number of species, as shown by 
the Chao1 index values (Table 1). Indeed, significant (p < 0.05) differ
ences were found between the initial soil samples (Soil and Soil+Com
post, dots), where the prokaryotic community was dominated by 
Actinobacteria (40% in Soil and 38% in Soil+Compost) followed by the 
Alphaproteobacteria, Bacilli and Gammaproteobacteria classes (Fig. 5). 

Actinobacteria numbers decreased in the TMFCs (Fig. 5, TMFC and 
TMFC+Compost), and other classes, such as Gammaproteobacteria, Del
taproteobacteria and Bacterioidetes (gram-negative), increased. Interest
ingly, adding compost not only positively influenced the performance of 
the microbial fuel cells (Fig. 2A,B), but also promoted a different 
(p < 0.05) distribution of the microbial populations with respect to the 
other condition (Fig. 4, TMFC+Compost, pink triangles vs TMFC, blue 
triangles). A co-dominance of Actinobacteria, Alphaproteobacteria and 

Fig. 4. Principal component analysis based on Bray-Curtis distance matrix calculated for ASV distribution. In pink the TMFC amended with compost; in light blue the 
TMFC without compost. Dots are for initial soil conditions (Soil, Soil+Compost); triangles for TMFC. 

Table 1 
Diversity indices (Chao1, Shannon and Evenness) estimated on ASV (Amplicon 
Sequences Variant) abundances that have passed the denoise step in initial 
condition (Soil and Soil+Compost) and in TMFC and TMFC+Compost.    

Chao01 ± e. 
s. 

Shannon 
(H) ± e.s. 

Evenness 
(E) ± e.s.  

Soil 
Soil+Compost  

440 ± 45.80 
544 ± 62.04  

8.70 ± 0.13 
7.17 ± 0.15  

0.90 ± 0.02 
0.92 ± 0.01 

TMFC Cathode 
Bulk 
Anode  

826 ± 102.20 
582 ± 57.77 
696 ± 78.22  

7.74 ± 0.16 
7.72 ± 0.21 
8.71 ± 0.19  

0.84 ± 0.02 
0.87 ± 0.02 
0.83 ± 0.02 

TMFC 
+ Compost 

Cathode 
Bulk 
Anode  

807 ± 188.45 
806 ± 127.95 
708 ± 74.79  

8.01 ± 0.18 
8.13 ± 0.52 
8.28 ± 0.13  

0.86 ± 0.01 
0.86 ± 0.01 
0.83 ± 0.02  
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Gammaproteobacteria (ca. 20% each) was observed in the TMFC condi
tion, with no significant differences inside each cell and among the three 
regions analyzed (Anode, Bulk and Cathode, Fig. 5). 

Bacilli, Bacteroidia, Clostridia, Deltaproteobacteria and Gammaproteo
bacteria were in higher abundance in TMFC+Compost than in TMFC 
(Fig. 5). These classes include several bacterial genera recognized for 
their exoelectrogenic abilities [57–59], such as Geobacter, a genus 
belonging to Deltaproteobacteria, which was found in the TMFC+Com
post, in particular on the anode, with higher values than in other points 
(p < 0.05). More specifically, the main bacterial genera identified in the 
MFCs are shown in Fig. 6. The heatmap reports the most abundance 
genera (25 genera with at least 1% of abundance within the overall 
dataset, net of "unclassified" ones). The identified genera cover 60–70% 

of total sequences (ASV). The abundance is reported with different 
colour: from blue the lowest value, to red colour the highest one. 

The initial soil conditions were dominated by Bacillus (19% Soil; 22% 
Soil+Compost) and Streptomyces (19% Soil; Soil +Compost 20%; Fig. 6), 
both gram-positive bacteria. In both TMFC and TMFC+Compost, a sig
nificant (p < 0.01) shift in overall genera distribution was found, in line 
with the classes observed (Fig. 5). 

In the TMFC condition, the dominant genus was Sphingomonas 
(Alphaproteobacteria, 18%), followed by Bacillus (10.5%) and Strepto
myces (Actinobacteria, 10.5%), without any significant differences be
tween anode, bulk and cathode. On the other hand, a significant 
(p < 0.05) difference between bacterial genera was found in 
TMFC+Compost between anode, bulk and cathode. 

Fig. 5. Class relative abundance (% of ASV) at the end of the experiment, in both starting conditions (Soil and Soil+Compost) and in TMFC (TMFC and 
TMFC+Compost) Anode, Bulk and Cathode. 

Fig. 6. Heatmap of main bacterial genera identified by ASVs. The values are normalized by z-score. Higher genera abundances are in red, while low abundances are 
in blue. Genera and conditions are grouped in accordance with a hierarchical clustering dendrogram, at the top and on the left of the heatmap. 
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In the TMFC+Compost, where the highest values for electrical power 
were observed, (100 times higher than in TMFC, Fig. 2), the dominant 
bacteria was Bacillus. In particular on the anode Bacillus was at 16%, 
Fulvivirga at 14% and Burkholdeira at 13% (Fig. 6). Bacillus is able to 
grow in the absence of oxygen by using nitrate or nitrite as terminal 
electron acceptors and producing a biofilm [60], and it is biocompatible 
with the carbon electrodes of terrestrial MFCs, resulting in a more effi
cient electron transfer and energy gain [61]. Indeed, Bacillus thuringiensis 
inoculated in MFCs was found to form a biofilm on the electrodes [62, 
63]. 

Fulvivirga, the second most abundant genus on the anode in 
TMFC+Compost, belongs to the Bacteroidia class, which is able to 
metabolize several organic compounds and comprises bacteria reported 
to be found on the anodes of microbial fuel cells [58]. The presence of 
this genus may therefore have improved the availability of some meta
bolic and electrogenic substrates [64,65], which, in turn, increased 
bacterial activity in the high-performing TMFC+Compost. Fulvivirga has 
also, in other studies, been found to be able to accept electrons from 
cathodes [21,66], and this is the first time in which it has been observed 
on an anode. The fact that well-known exoelectrogenic bacteria, such as 
Shewanella oneidensis and Geobacter sulfurreducens, have protein com
plexes as both electron donors on the anode (exoelectrogenic) and 
electron acceptors on the cathode (electrotrophic) [67], does not 
exclude Fulvivirga as a possible exoelectrogenic bacterium. The latter 
considerations need to be better investigated. 

Finally, Burkholdeira has been reported to be an exoelectrogenic 
genus [59] and it has been found on the anode of microbial fuel cells 
where it was able to use organic carbon as an electron donor and to 
perform denitrification, producing nitrogen and maintaining an anaer
obic environment on the anode [68]. This bacterium which is commonly 
found in soil and has a wide metabolic capacity to degrade various 
chemicals, such as triazines [69,70] and hydrocarbons [71–73], may be 
a good potential candidate for both producing energy and degrade 
contaminants in TMFC applications. 

4. Conclusions 

The overall results show how MFC technology can also be applied to 
recovering poor soils, through adding organic compounds such as 
compost, in order to stimulate the naturally occurring exoelectrogenic 
bacteria to produce electrical power. The use of municipal waste 
compost proved to be effective and necessary by significantly increasing 
the performance of the microbial fuel cells, and also achieving a lower 
internal resistance, while otherwise there would have been low elec
tricity and power output. In addition, the slight increase in organic 
matter made it possible to select different microbial communities 
(including chemical degrading bacteria) in the different compartments 
of the microbial cell, a phenomenon not observed in the absence of 
compost. Several advantages of applying compost from municipal 
organic waste were found, including its low cost and the use of a by- 
product in line with the circular economy, while achieving results 
comparable to terrestrial microbial cells with more expensive carbon 
substrates such as acetate, lactate and glucose. 

This study forms a starting point for subsequent bioremediation 
applications with terrestrial microbial cells in contaminated soils that 
are poor in organic matter. This trait can also be associated with the 
removal of organic contaminants and heavy metals inside TMFCs in a 
bioeconomy context and the possibility of their application as a nature- 
based solution. 
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