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Abstract

Conventional techniques for treating wastewater consume
significant amounts of energy and depending on effectiveness,
may result in secondary contamination. In this regard, the
microbial fuel cell (MFC) technology has shown much promise
as a revolutionary wastewater treatment + energy generation
hybrid. This is due to the unique ability of electroactive or-
ganisms to generate direct electricity, recovering electrons
from the breakdown and consumption of organic compounds in
wastewater. This article critically assesses the current devel-
opment of MFC technology, particularly in the last two years,
focussing on the technology’s economic and environmental
feasibility. Even though there is a significant body of literature
on MFCs with continuously increasing performance levels, the
technology has not yet got fully commercialised to form part of
urban planning or energy policy; this implies a lack of gov-
ernment consideration as a result of the absence of industrial
scale research. The article presents the case for MFCs from a
technology readiness level and life cycle assessment per-
spectives and explains why it is still premature to draw con-
clusions based on these two metrics.
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AD, Anaerobic Digestion; ALICE, Active Living Infrastructure:
Controlled Environment; BES, Bioelectrochemical system; COD,
Chemical Oxygen Demand; DC, Direct Current; DET, Direct Electron
Transfer; HRT, Hydraulic Retention Time; LCA, Life Cycle Assessment;
MDC, Microbial Desalination Cell; MEC, Microbial Electrochemical Cell;
MFC, Microbial Fuel Cell; OPEX, Overall Operating Expenditure; Pb,
Lead; PTFE, Polytetrafluoroethylene; R&D, Research and Develop-
ment; TEA, Techno-Economic Assessments; TRL, Technology Readi-
ness Level.

Introduction

There is a need to develop highly efficient technologies
in order to meet water quality requirements and pro-
tect environmental biodiversity. In this regard, bio-
electrochemical systems deservedly received a great
deal of attention as a ground-breaking wastewater
treatment method. It combines microbiology and bio-
clectrochemistry into a single device, which can
perform the task of wastewater treatment whilst
generating bioelectricity [1]. Microorganisms can
remediate contaminated wastewater by consuming the
organic and inorganic content, thereby leading to a
reduction in its chemical oxygen demand (COD),
whilst transferring electrons and releasing cations,
resulting in direct current (DC) electricity generation.
This inherently results in removal of harmful agents
and restoration of elemental balance [2—4]. “Animal
electricity”, as it was originally called, was first
demonstrated by Luigi Galvani in 1776, when he
showed dead frog limb movement, after connecting
electrodes and passing electricity through the biolog-
ical tissue [5]. The first demonstration of a Microbial
Fuel Cell (MFC), showing electricity generation from
microorganism (S. cerevisiae), was first reported by
Michael Cresse Potter in 1911, using glass beakers
connected with a salt bridge [6]. Research develop-
ment was slow, and apart from Barnett Cohen’s MFC
stack in 1930 [7], it was not until the late 1960s to early
1980s when researchers in Japan and Korea started
focussing on enzymes, electrodes, redox mediators and
materials [8—10]. After NASA’s early pull-out from a
space programme, which was going to look at the
feasibility of MFCs as a technology for human waste
treatment in space [11], scientific interest got rein-
vigorated in the 1990’s with renewed efforts into
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microbial species, substrates and again redox media-
tors. It was the work mainly conducted by Peter
Bennetto, Allen, Stirling and their collaborators, which
resulted in the blueprint of the stereotypical MFC
device that most labs across the globe use as their
starting point in MFC research [12,13]. The direct
electron transfer (DET) between a microorganisms and
a conductive acceptor involves physical contact of the
bacterium cell membrane or a redox-active membrane
apparatus and the BES electrode. Direct extracellular
electron-transfer mechanisms were reported on sedi-
ment bacteria such as Skewanella [14) Geobacter species
[15] and Rhodoferax [16]. The discovery of long-
distance direct extracellular electron transfer via
nanowires was of revolutionary importance for the start
of electromicrobiology [17].

The Bioelectrochemical System (BES) technology has
made substantial advancements over the past 3 decades
[18] by achieving significant improvements in the
development of its constituent components, namely the
anode and cathode electrodes and the semi-permeable
separator [19,20]. Despite the technology’s substantial
advancement and wide deployment in numerous appli-
cations [21,22], industry and government initiatives
have not yet considered BES as a serious contender for
further industrial scale R&D; this is a critical factor in
the eventual uptake of any technology.

Recent advancements in MFC technology are described
in this study to assist in defining the readiness level of
the MFC technology more accurately. In doing so, re-
ports on life cycle assessment are critiqued within the
wider context of market feasibility.

Recent advancements on MFC technology

According to Scopus, the number of publications from
2018 to 2023 increased by 2 times, when the keyword
‘microbial fuel cell’ was used exclusively; this demon-
strates the ever-increasing interest from the scientific
community. However, most of the studies are lab-based
rather than in the field and commonly focus on general
optimisation [23,24], anode improvement [25,26],
cathode electrode and cathode catalyst development
[27], membrane [28], substrate [29,30] and inoculum
options [31,32]. In the last two years, studies have
shown notable improvement in output performance,
COD removal, power density, and coulombic efficiency
[33—35]. Apart from wastewater treatment and elec-
tricity generation, biosensing [36], resource recovery
[37], and hydrogen production [38] are amongst the
many additional attributes of the technology. Funda-
mental studies focus on complex biofilm community and
electrode interface as a system, and the impact of each
operational and design parameter on the overall perfor-
mance of the MFC [26,39]. More recently, modelling
combined with Al as well as 3D fabrication of MFC

bioreactors have been reported as an invaluable tool for
understanding MFC potential and limitations [40,41].

Scaling-up and field work examples of MFCs
Scalability is always a critical factor in any commercial-
isation undertaking and how this is achieved can dictate
a technology’s commercial viability. For MFCs,
increasing reactor volume, with concomitant increases
in the cost of materials, results in decreasing perfor-
mance levels, with respect to power and treatment [42].
Therefore, downsizing individual units and multiplying
them in stack/cascades has been reported as an effective
approach to achieving scale-up [43], especially when it
comes to industrial wastewater treatment [44]. In a
recent study [45], a vertical cascade of a plurality of
MFCs resulted in higher power production than indi-
vidual MFCs, as well as efficient COD removal.
Furthermore, modular systems are more advantageous as
they offer flexibility and reconfigurability, although
there may be challenges with increased system
complexity, which can be robustly addressed with
effective engineering design.

Recently, low-power wireless sensor nodes were
powered by double chamber microalgal MFCs with an
energy generation capacity of 0.521 J per hour [46]. The
first of its type of human-microbe interactive
bio—digital interface, communicating real-time re-
sponses in an audio-visual manner, powered by MFCs,
known as ALICE (Active Living Infrastructure:
Controlled Environment), was also demonstrated [47].
Various examples of MFC systems at different scales/
volumes have been field tested for feasibility, serving
different purposes, ranging from several 10s—100s of
units, treating wastewater, delivering remote power and
even enhancing bio-robotics [48—51].

Technology readiness level and life cycle assessment
of MFC

Technology readiness level (TRL) was designed by
NASA as a measure of technology maturity for evalu-
ating the range of technologies that were to be used for
the moon landing [52]. Early stages of research or proofs
of concept are at the lowest levels, whereas technolog-
ical implementation and market diffusion are at the
highest levels of readiness. The majority of research on
MFCs, at least those with successful lab demonstra-
tions, are commonly evaluated at TRL 4, whereas spo-
radic field studies range between TRLs 5—7, which are
still a long way from market diffusion, i.e., TRL9; this
represents a gap and a clear need for more field studies
to inform the MFC technology commercialisa-
tion process.

Technology readiness is often informed by the scientific
literature reporting on field data and full life cycle as
well as techno-economic assessments (LCA & TEA).
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LCA measures the environmental impact of a product’s
full life—cycle activity, whereas TEA aids in determining
the economic viability of the product or activity in terms
of efficiency, manufacturing and environmental stability.
Given the high dependency of these evaluations in
determining the fate of emerging technologies, they
need to be robust, reliable and comparable.

Although LCA and TEA studies will identify important
environmental and economical hotspots of a technology,
premature assessments on a non-standardised lab-scale
system, subject to local lab practice and material choice,
may well conclude that the subject technology is either
too expensive or largely inefficient. Moreover, the
impact of the construction and operational phases of a
single unit will most likely have a bigger environmental
burden than a pilot-scale system in terms of impact-
benefit and cost-benefit perspectives [53]. Despite
the genuine intentions of understanding environmental
and economic performance metrics, premature conclu-
sions from assessments performed on inconsistent ap-
proaches (amongst international labs — also Table S1)
may hinder the MFC R&D before it reaches scale-up,
by biasing the interest of stakeholders and investors
and therefore subsequently the TRL advancement of
such a benevolent technology.

Table 1 below summarises the literature reporting on
LCA specifically for MFCs, and Table S1 (See Supple-
mentary Information) shows the criteria matrix for the
different examples being included. A TRL-based table
has not been attempted in this report due to the
inconsistency in the comparison criteria as found in the
current literature.

Common findings observed amongst LLCA studies are
included in Table 1, such as the need for better mem-
brane materials and binders. In addition, pumping, so far
an inevitable requirement, was often categorised as the
greatest contributor to the environmental burden of
these systems. Thus, a self-sustainable MFC installa-
tion/product or pumping powered by a renewable
energy, could drastically reduce the environmental
impact of the subject BES systems. In addition, the
discovery of new materials offering better bacterial
adhesion, higher surface areas and lower current col-
lector losses, will result in increasing power density
levels, which will change assessment findings and gen-
eral opinion. Special considerations should be taken to
unify as much as possible future LCA parameters, such
as volume and quality of treated wastewater, which will
also affect the retention time and energy consumption.
More importantly, the differences between objectives
(e.g. cradle-to-gate vs. cradle-to-grave) should be taken
into consideration when comparing [LCA studies.

A review on LCA and TEA [58] concluded that the
overall operating expenditure (OPEX) of some specific
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examples of wastewater treatment MFCs comes to
€1700—<€2300/yr, which is low compared to existing
processes. MFCs usually have high capital/constructing
costs compared to established treatment systems,
especially at large scales, and this is clearly a result of
expensive lab-based prototyping. A TEA of nano-
material-enhanced MFCs showed improved perfor-
mance levels at high cost, which is expected from non-
commercial materials [59]. The vast majority of MFC
R&D is still lab-based, which means that inevitably,
expensive materials are employed in proving a concept,
before progressing to prototyping and beyond; when
such examples are considered in LCA and TEA studies,
then the result is likely to be unfavourable for the
technology. Chin et al. [54] found that the environ-
mental impact of single chamber flat type MFCs was
higher when compared with other single chamber (air
cathode; U-type) and double chamber MFCs (H-type;
modularised MFCs), mainly due to high retention
times. The operational stage of MFCs was found to give
60—90% higher environmental load compared to the
construction stage, even though this is not 100%
representative of field systems.

Numerous studies have found that MFCs lessen the
environmental burden compared to the pollution
created by conventional treatment units. Cetinkaya
et al. [57] conducted a life cycle analysis of MFC-based
biosensors for the purpose of detecting the toxicity of
Pb*" and discovered that the system had very little
negative effect on both human health and the environ-
ment. Dhanda et al. [60] conducted an economic anal-
ysis of the graphene- and biochar-based cathode
catalysts in MFCs to generate electricity. They claimed
that biochar materials are regarded as inexpensive cat-
alysts and that prior studies had suggested that they
were suitable for large-scale MFCs. However, when the
reactor volume was expanded beyond 50 mL, the eco-
nomic analysis revealed that the costs of biochar and
graphene as cathode catalysts were pretty much on a par.
The study of Gupta et al. [61] reported that MFCs are
more economically viable and profitable when energy
and resource recovery is taken into account compared to
the other conventional commercialised bioreactors for
wastewater treatment.

Speight [62] carried out a survey of private UK and
municipal US water utilities and found that the factors
which best helped to drive innovation and the intro-
duction of new technologies, were (i) a supportive cul-
ture of innovation within the water companies
themselves; (ii) a regulatory regime which valued and
promoted innovation; (iii) the capital available for
research and innovation activities; and (iv) the backing
of the public to make changes. Furthermore, Speight
noted that private sector businesses, focused too much
on financial considerations, whereas public-owned util-
ities, focused too much on political considerations; both
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Table 1

Recent life cycle assessments [55,56].

Impact factors*
= E) - g
of MFC/ other Eggggggggéggg‘%;%gézg
reactors Applications | Remarks & Conclusions o = S|& &£ 18 |2|8| 2 |8 |& |2|8| 23| 2| & E| S|Ref
Air-cathode, | Wastewater | (i) Membrane distillation | v° v VI IvivY | v |V [65]
H-type, U- | treatment, integrated MFC  and
type, flat, | Electricity double  chamber  air-
and generation | cathode are the most
modularized | and environmentally friendly.
MFCs Resource (ii)MFC H-type in lab
compared Recovery scale is 3 times more
with  other environmentally
BES damaging than pilot-scale
modularized MFC.
(iii) Value added by-
products and electricity
generation reduce the
impact generated from the
systems.
Air-cathode, | Wastewater | (i)High HRT (flat MFC) | v/ v v |V v v [66]
H-type, U- | treatment has increased
type, flat, | and environmental burden.
and Electricity | (ii)OPEX more energy
modularized | generation | intensive than
construction costs
(electricity consumption).
MDC Wastewater | (i) MDC currently has | v/ v v [VI|VIVY |V vivi|v [67]
treatment negative env. impact due
Seawater to low power density,
desalination | binder selection, and ion-
exchange membrane
fabrication.
(ii) Cathode &
desalination chamber
manufacturing has
significant environmental
impact.
MFC, (i) MEC shows better | v/ v v [ Y|vVivY Y VIv|v [68]
compared environmental
with  MEC, performance due to value-
MDC, and added by-products.
AD (i))PTFE and membrane
fabrication identified as
environmental hotspots.
(ii)MFC  environmental
impact compensated by
increasing power.
Air cathode | Biosensing | ()HRT key factor for | v v v v vIvi|v v | [69]
MFC of Pb*? electricity generation
performance  in  the
system.
(ii)Low human health and
environment impact;
emissions to air, water,
and soil are negligible.

*Some impact factors may have sub-classifications or were performed using different methods. Please refer to Supplementary Table S1 for more

detail.
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are imperfect when considered in isolation but would
form a powerful innovation strategy if considered
in tandem.

Conclusion/future perspectives

Although LLCA and TEA can integrate data for the full
potential of MFC, assumptions/conclusions derived
from these studies serve as a double-edged sword for
premature technologies. These useful tools help iden-
tify bottlenecks, and consequently take actions to
improve the critical issues and overall performance.
Such feedback cycle is essential for every technology’s
development. Nevertheless, early (or perhaps prema-
ture) assumptions of the overall feasibility of MFCs
using lab-scale LCA and TEA can also hinder the path of
this technology towards large-scale process at the in-
dustrial level, since they will serve as bias for stake-
holders to divest away from the research needed for such
a technology. Hence, decisions on technology develop-
ment must be made with patience and full information
at hand, at a much more mature stage of larger-scale
research, rather than in a haste due to the race for
‘being first’.

On the other hand, hybridisation of technologies has
proven to be a more effective strategy than rejection or
full replacement of conventional methods. For instance,
anaerobic treatment technologies may have lower
treatment costs, but they are typically only appropriate
for high-strength wastewater streams needing sizable
workspace that ends up being an expensive cost; this is
in addition to the input being strictly within narrow
parameters to avoid affecting the balance of the micro-
bial community. Additionally, the generation of sludge
resulting from the operation needs further treatment.
The MFC technology feasibly tackles these issues as
both high and low strength operation can be done within
a smaller footprint without any secondary sludge pro-
duction, and it comes with the significant benefit of
clectricity generation. Thus, wastewater treatment
systems will benefit from MFC-anaerobic wastewater
treatment unit hybridization. Similarly, remote locations
deprived of electricity for lighting or charging essential
devices can be served a lot better by a MFC-
photovoltaic hybrid. These are opportunities which
have been largely unexplored, but which can offer huge
benefits to humanity and our environment.
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