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O C E A N O G R A P H Y

High sea surface temperatures were a prerequisite for 
the development and expansion of the Great 
Barrier Reef
Benjamin Petrick1*, Lars Reuning1, Alexandra Auderset2, Miriam Pfeiffer1,  
Gerald Auer3, Lorenz Schwark1,4

The Great Barrier Reef is the largest reef system in the modern ocean. To date, the influence of temperature on the 
origin and long-term evolution of the Great Barrier Reef remains enigmatic. Here, we present a 900–thousand year 
TEX86

H-derived temperature proxy record from Ocean Drilling Program Site 820 in the Coral Sea. It demonstrates 
that the onset of reef growth on the outer shelf was preceded by a rise in summer temperature from ~26° to ~28°C 
at around 700 thousand years ago (marine isotope stage 17). This approximately 2°C rise in summer sea surface 
temperatures (SSTs) likely resulted in higher carbonate production rates, which were crucial for the formation of the 
Great Barrier Reef. Subsequently, reconstructed SSTs remained sufficiently warm for the Great Barrier Reef to thrive 
and evolve continuously. The evolution of the Great Barrier Reef, therefore, appears to be closely linked to SSTs.

INTRODUCTION
The Great Barrier Reef (GBR), a UNESCO World Heritage Site 
(Fig. 1), is by far the largest barrier reef system in the world today 
(1), being more than 300 times larger than the second largest bar-
rier reef off the coast of Belize (2, 3). The onset of the GBR evolu-
tion is debated and was initially thought to have been between 900 
and 400 thousand years ago (ka) (4). An alkenone (UK

37′)–based 
sea surface temperature (SST) reconstruction covering the last 
800 thousand years (kyr) shows only low-amplitude SST changes 
and, therefore, does not support a link between changing SST and 
the development of the GBR (5). This led authors to suggest that 
SST played only a minor to no role in the development of the GBR 
(5–7). However, more recent reconstructions from the Coral Sea 
suggest higher-magnitude glacial to interglacial SST changes based 
on element ratios measured on foraminifers and coral skeletons 
(8–11). Therefore, improved paleo-SST records of past climate 
changes are critical to understanding the role of temperature in the 
establishment and climate-driven responses of the GBR ecosystem.

Here, we use TEX86
H, an SST proxy based on the cyclization of 

GDGTs (glycerol dialkyl glycerol tetraethers), to reconstruct SST 
changes over the last ~900 kyr from Ocean Drilling Program (ODP) 
Site 820 in the Coral Sea, only 8 km off the edge of the GBR (Fig. 1). 
With these data, we provide a long-term record of SST and can place 
the development of the GBR in the Pleistocene in the context of re-
gional climatic changes.

RESULTS
Holocene TEX86

H-derived SST at ODP Site 820 represents tempera-
tures that are 2.0°C warmer than annually averaged SSTs and closer 
to modern summer SST. For more information, see the Supplemen-
tary Materials. Reconstructed summer SSTs across the entire record 

average 27.3°C (Fig. 2). The warmest point was 30.0°C during ma-
rine isotope stage (MIS) 5, and the coldest was 24.3°C during MIS 
12. Before MIS 17, SSTs were as low as 24.5°C and did not exceed 
28.1°C (Fig. 2). Then, between MIS 17 and MIS 13, temperatures 
ranged between 26° and 29°C, followed by a final cooling to 24.3°C 
during MIS 12 (Fig. 2). After MIS 12, high interglacial temperatures 
reached 30.0°C, and glacial SSTs stayed above 26.0°C, except for 
MIS 4 when temperatures were around 25.5°C. Our record shows a 
higher SST range than a previously published UK

37′-based SST-
proxy dataset (5) (see the Supplementary Materials for a detailed 
discussion). In contrast, the TEX86

H record agrees with the 3° to 4°C 
glacial to interglacial temperature increases seen in the foraminif-
eral Mg/Ca-based (10–12) and the coral Sr/Ca-based SST-proxy re-
cords (8, 9) from the Coral Sea (fig. S1).

DISCUSSION
The most important difference between the GBR and other modern 
coral reef systems is its large spatial extent compared to other coral 
reef systems (2, 3). Its development would have required prolonged 
periods of time with very high carbonate production rates. SST is 
the major factor controlling the carbonate production of tropical 
coral reef systems (13). Optimum conditions for coral carbonate 
production are close to their upper thermal limit (14). This explains 
the apparent contradiction between the high carbonate production 
of coral reefs in the warmest ocean waters (15–17) and their sensi-
tivity to short-term thermal stress bleaching events that currently 
increase in frequency due to global warming. Warmer SSTs support 
higher coral growth and carbonate production rates in tropical reef 
systems (17, 18). This temperature dependence has been demon-
strated in numerous studies investigating major reef-building corals 
from the GBR, which show an increase in growth and calcification 
rates with increasing SSTs (16, 19, 20). Well-dated Holocene reef 
cores also show higher reef accretion rates in warmer climates dur-
ing the Early to Middle Holocene in all tropical oceans (21). Sum-
mer temperatures above 24°C are a lower limit for the proliferation 
of tropical coral reef platforms (13, 18), although reefs can persist in 
areas where winter temperatures stay above 18°C.
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Because of the importance of SSTs to carbonate production and 
reef development, we compared our SST data to an existing record of 
Pleistocene coral reef development, the Ribbon Reef 5 borehole (22–
24) (Fig. 2). A major change in coral community structure and the 
beginning of a cyclic repetition in coral assemblages starting at 137 m 
marks the establishment of a barrier reef system at the outer shelf (25) 
(Fig. 2). A radiogenic uranium/thorium decay date of 616±51 ka at 
118 m (26) indicates a minimum age of MIS 15 for this reef section. 
The depth of 137 m in the core was tentatively assigned to MIS 17 
(Fig. 2) (23). This timing matches changes in sedimentology at Site 
820. The carbonate content (27) rapidly increased from 900 ka (MIS 
22) to 700 ka (MIS 17), indicating a reduction in terrestrial input dur-
ing this time (Fig. 2). In the southern GBR at ODP Site 1195, a similar 
change in lithology has been interpreted as indicating the initiation of 
the GBR between ~560 and 670 ka (MIS 15 or 17) and the consequent 
retention of terrestrial input inshore of this topographic barrier (7). 
Together with evidence from the Ribbon Reef core, MIS 17 seems to 
mark a major step in the development of the GBR.

Overall, before ~700 ka (MIS 17), we detect a steeper SST gradient 
to ODP Site 806 in the Western Pacific Warm Pool (WPWP), sug-
gesting subtropical conditions at Site 820 (Fig. 2B). All glacial sum-
mer SSTs were at or below 26°C, with minima <25°C during MIS 18, 
MIS 20, and MIS 22. Assuming a modern seasonality of ~5°C (28), 
this would indicate winter temperatures of ~20°C. Temperatures be-
low the threshold of 24°C during large parts of the year likely resulted 
in low rates of tropical carbonate production (13, 18) and coral 
growth and calcification (16, 20). The consequent low coral reef 
accretion potential would have left the reefs susceptible to other 

stressors, such as rapid relative sea level rise or siliciclastic input (29). 
The environmental conditions during the period before 700 ka ap-
pear to have been unfavorable for the expansion of existing small 
reefs into the vast barrier system of the GBR. We, therefore, interpret 
the shift toward ~2°C higher temperatures after ~700 ka (Fig. 2A) as 
a critical step for the formation of the GBR.

Even after the “establishment” of the barrier system during the 
early reef cycles between 137 and 85 m (Cy7 and Cy8, respectively, 
in Fig. 2), there is a lack of reef framework, suggesting that the GBR 
was still in its infancy (25). On the basis of the age model presented 
in (26), the upper end of this interval can be assigned to MIS 13 (Fig. 
2). Between the start of MIS 17 and the end of MIS 13, SSTs re-
mained between 26° and 30°C, which is close to the modern sum-
mer SSTs in the Coral Sea (30), and glacial-interglacial amplitudes 
remained <2.5°C (Fig. 2A). The first indication of abundant in situ 
reef framework at 85 m (25) at the Ribbon Reef 5 borehole can be 
placed at MIS 13 (Fig. 2) according to available age constraints 
(23, 26). The global δ18O stack indicates relatively low amplitude sea 
level fluctuations during this time (31). This extended stable period 
of warmth and relatively stable sea level matches the period of bar-
rier reef development at the Ribbon Reef 5 site (25) (Fig. 2E). Our 
record suggests that the SST between MISs 17 and 13 in the central 
GBR was ideal for allowing a barrier reef system to develop over 
several glacial/interglacial cycles. One important difference between 
the GBR and other modern coral reef systems is its size and com-
plexity. Therefore, the relatively stable and warm SST may be one of 
the key drivers in forming a coral barrier reef system as big and 
complex as the GBR.

Fig. 1. Maps showing the GBR and core sites that are discussed in this article. The zoomed-out map shows the modern surface winds (arrows) and sea surface austral 
summer temperatures (colors) for February in the SW-Pacific. SST data are taken from NOAA Optimal Interpolation SST (28), and wind data are taken from the NCEP/NCAR 
40 reanalysis (54). Charts computed at IRI/LDEO Climate Data Library (http://iridl.ldeo.columbia.edu; date accessed: 25 May 2023). The locations of the sites mentioned in 
the text and supplements are indicated: ODP Site 806 (55), MD 05-2930 (11), and MD 06-3018 (12). Zoomed-in map showing that GBR was generated using Google Earth 
(56). The locations of the sites mentioned in the text and supplements are indicated: ODP Site 1195 (7), Ribbon Reef 5 (22), NOG (Noggin Pass), and HYD (Hydrographer’s 
Passage) from Integrated Ocean Drilling Project (IODP) Expedition 325 (8, 9).
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After MIS 17, a connection between SSTs at ODP Site 820 and 
the WPWP is noted (Fig. 2B). Today, most of the Coral Sea’s water 
derives from the Central Pacific. However, during austral summer, 
there is a stronger connection to the WPWP as it expands south-
ward (Fig. 1). This is also driven by the southward migration of the 
Intertropical Convergence Zone (ITCZ), which drives warm water 
from the central Pacific into the Coral Sea. It is well known that the 
ITCZ shifts southward during colder climates (32, 33). Given that 
our summer SST reconstruction reflects warmer SSTs during this 
period, the most likely explanation is that MIS 17 marks a south-
ward expansion of the WPWP, at least during the summers (Fig. 
2B). This fits with evidence finding a southward shift in the ITCZ 
and the WPWP during the Mid Pleistocene Transition (12, 34). This 
shift is at its most southward limit between 800 and 500 ka, consis-
tent with the MIS 17 to 13 period showing the most stable SSTs (34). 
Last, work on the west coast of Australia shows that changes in sea 

level increasingly affected the Indonesian Throughflow, also during 
MIS 17 (35, 36). It is possible that the greater exposure of the Mari-
time Continent due to sea level drops might have played a role in 
shifting the ITCZ further south during glacials at this period (37). 
However, there is a lack of records over this period of time to fully 
address the wider climatic and oceanographic changes for the Coral 
Sea around MIS 17. Therefore, this finding may help to understand 
one of the key questions: Why did the GBR flourish during the large 
glacial/interglacial cycles of the 100 ka world? The answer from our 
data is that a stable WPWP and southward-shifted ITCZ kept SSTs 
warm, providing ideal conditions for reef growth and development 
between MIS 17 and 13, even during glacials, which would have al-
lowed the active expansion of the GBR even during less favorable 
climate regimes.

This pattern continues in MIS 11 (424 to 374 ka). MIS 11 is often 
considered one of the longest and warmest interglacials of the 
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Fig. 2. ODP 820 TEX86
H-derived SST record correlated with major events in the development of the GBR based on the Ribbon Reef 5 borehole. (A) ODP 820 TEX86

H 
(16.64°S, 146.30°E). Summer SST record (red) compared to the annual average Mg/Ca-SST record of ODP 806 (0.32°N, 159.36°E) (55), gray-white banding within (A) delin-
eates the MIS related to glacial (even MIS, gray) and interglacials (uneven MIS, white), (B) SST gradient between ODP Sites 820 and 806 with resampled Mg/Ca-SST time 
series to match the resolution of the TEX86

H data. (C) ODP Site 820 carbonate content (wt %) based on XRD [blue (27)]. (D) Proposed MISs for the Ribbon Reef 5 borehole 
(15.37°S, 145.79°E) (23). (E) Interpretation of coral reef development from the Ribbon Reef 5 borehole. Cy1 to Cy8 indicate the different reef cycles. Lw stands for the lower 
unit without shallow-water reef framework (25). (F) Age data reported for the Ribbon Reef 5 borehole (26).
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Middle to Late Pleistocene (38, 39). It has been suggested that this 
extended period of warmth and higher sea levels led to the establish-
ment of the GBR (40). This was previously rejected because SST data 
did not show a particularly warm interglacial (5, 6, 25). MIS 11 in 
the ODP 820 TEX86

H record, though not the warmest interglacial, is 
the first of the interglacials to have summer SST near 30°C (Fig. 2). 
Our records, therefore, confirm that MIS 11 probably represents an 
important time for the expansion of the GBR due to its warmth and 
high sea level.

Because of the sea level fall during the LGM, the coral reef sys-
tem was forced to migrate to the edge of the existing reef platform, 
and it can be assumed that a similar process happened during ear-
lier glacials (29, 41). The glacials preserved in the record after MIS 
11 continue to show summer SST at or above ~26°C (Fig. 2). Glacial 
summer SST above 26°C would have allowed coral larvae to estab-
lish these low-stand reefs during the glacials (42), which could then 
repopulate the shelf when sea levels rose again, allowing the system 
to survive multiple glacial cycles (9, 12, 25, 41). It is also possible 
that the higher-amplitude sea level changes, coupled with the warm-
er stable SSTs, aided in the development of the in situ reef frame-
work of the GBR system, as previously suggested (25). In summary, 
our data suggest that the conditions after MIS 11 continued to be 
ideal for the growth of the GBR.

In addition, other processes may have contributed to the devel-
opment of the GBR on glacial to interglacial timescales. First, sea 
level change is an important controlling factor for the internal archi-
tecture of the GBR, as it defines the location of the reef belts between 
glacial and interglacial periods (29). The increase in the amplitude 
of sea level fluctuations throughout the Middle Pleistocene poten-
tially also influenced the reef-coral community structure of the 
GBR, which changed toward faster-growing acroporids capable of 
keeping up with fast-paced sea level changes (25, 41). In addition, 
sea level influences the input of terrestrial sediments and nutrients 
to the GBR, which has been shown to influence reef development 
(29, 43, 44).

Last, the influence of siliciclastic input on the development of the 
GBR has been investigated best on glacial-interglacial and shorter 
timescales, but one study links the original formation of the GBR 
with the contemporaneous formation of Fraser Island (K’gari) (6). 
The authors argue that the development of Fraser Island would have 
strongly reduced the sediment supply to the continental shelf north 
of the island, facilitating widespread coral reef formation in the 
southern and central GBR area (6). They reinterpret the observed 
decrease in siliciclastic input at Site 1195 at ~700 ka as evidence for 
this process rather than as an effect of sediment trapping behind the 
developing barrier reef as initially interpreted (7). However, the fact 
that a similar decrease in siliciclastic input can be observed at Site 
820, more than 1100 km north of Fraser Island at about the same 
time (Fig. 2), makes it unlikely that the formation of Fraser Island 
alone is responsible for this process. We cannot rule out that the 
formation of Fraser Island influenced the development of the south-
ern part of the GBR. However, we propose that the observed tem-
perature rise around 700 ka (Fig. 2A) was the decisive factor in 
initiating the formation of the world’s largest barrier reef system.

Consequently, our data suggest that extended periods of optimal 
temperatures are a prerequisite for the development and maintenance 
of the GBR. At present, heat waves associated with global warming 
have caused widespread coral bleaching and are a major threat to the 
survivability of coral reefs (45, 46). It has been suggested that 

warming-induced range expansion of tropical corals into subtropical 
latitudes may provide crucial climate change refuges (47, 48). Howev-
er, reefs at subtropical latitudes are under an increased risk of marine 
cold spells causing massive coral bleaching events (49). Such extreme 
cold events will persist or even increase in the future, especially at 
middle to high latitudes (50, 51). Even today, cold spells are an impor-
tant limiting factor for the range expansion of reef-building coral taxa, 
highlighting the particularly narrow temperature field necessary for 
the proliferation of corals and the proliferation of reef ecosystems.

In conclusion, we show an unequivocal link between SST and the 
establishment of the GBR. Before ~700 ka, relatively cold SSTs al-
lowed reefs to persist, but they were not able to accrete into a large 
barrier reef system. The ~2°C increase in summer SST after ~700 ka 
led to an increase in carbonate production rates and the consequent 
establishment of the GBR. Since then, our data show that warm SST 
linked to the WPWP might have played a key role in allowing the 
reef system to survive the glacial periods when the SST remained 
sufficiently warm to establish productive coral reefs in low–sea level 
refugia. Warm and stable SST between MIS 17 and MIS 13 may have 
favored the development of an extensive barrier reef system. Warm 
glacials allowed for a rapid reestablishment of the reef during the 
beginning of interglacials. Therefore, although our results may seem 
contrary to the current situation of global warming, they neverthe-
less offer important insights into the stringent temperature confines 
dictating the capability for coral reefs to proliferate.

MATERIALS AND METHODS
For this study, we collected 88 samples from ODP Site 820 covering 
the past 900 kyr. Initial sampling was guided by the existing δ18O 
record to choose samples at glacial and interglacial maxima and 
minima. We took samples at higher resolution over key intervals 
critical for the onset of the GBR, including the last deglaciation, 
MIS 11, and the period between MIS 18 and 13. Last, once the in-
creasing temperatures around MIS 17 became evident, we took 
additional samples to confirm this trend and increase the sampling 
resolution of the pre–MIS 17 glacials. The samples were freeze dried 
and analyzed for biomarkers in the organic geochemistry laboratory 
at Kiel University.

For this project, we took 30 cm3 of sediment, leading to between 
30 and 40 g of sediment extracted. Pilot work showed that due to low 
extract yields, large-volume sampling was essential to obtain suffi-
cient amounts of GDGT lipids for the determination of the TEX86

H 
paleo SST proxy. Samples were Soxhlet extracted for 48 hours using 
a solvent mixture of DCM:MeOH (9:1, v/v). Elemental sulfur was 
removed by the addition of activated copper turnings. Excess solvent 
was evaporated by a Büchi solvent evaporator to a final volume of 
2 ml, and samples were then transferred into a 4-ml vial, where the 
total extract (TE) was taken to dryness under a gentle stream of 
nitrogen. TEs were fractionated into aliphatic, aromatic, and polar 
fractions by silica gel-column chromatography (6 ml of SPE column, 
2.8 g of Silica 60 mesh, 25 to 40 μm) using solvents with increasing 
polarity in an LC-TECH automated SPE system. Nitrogen, sulfur, 
and oxygen (polar) compounds were eluted with 14 ml of DCM/
MeOH (1:1, v/v). The polar fraction was reconstituted in hexane/
isopropanol (9:1, v/v) and re-chromatographed over aminopropyl-
substituted silica gel (3 ml of SPE column, 1.0 g of aminopropyl-
silica, 25 to 40 μm). The alcohol fraction containing the GDGTs was 
eluted with 5 ml of hexane/isopropanol (9:1, v/v) and, after drying, 
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was redissolved in hexane/isopropanol (99:1, v/v) to a final concen-
tration of 6 mg/ml for injection into the High-Performance Liquid 
Chromatograph with a Mass Spectrometer (HPLC/MS) system.

GDGTs were measured on AGILENT liquid chromatograph 
coupled to an AGILENT single quadrupole mass spectrometer fol-
lowing the analytical protocol of Hopmans et al. (52). The HPLC 
instrument was equipped with an AGILENT HILIC silica column 
(2.1 × 150 mm; 1.5 μm particle size) and a guard column main-
tained at 30°C. Detection of archaeal core lipids was achieved by 
single ion recording of their protonated molecular ions ([M + H]+) 
and compounds were quantified by integration of peak areas using 
AGILENT Masshunter software. Calculation of TEX86

H-derived 
temperatures followed Kim et al. (53). This temperature calibration 
has a standard residual error of 2.5°C as shown in (53) (fig. S2). Re-
producibility upon duplicate measurements showed a relative stan-
dard error of < 2% (fig. S2).
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