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Abstract
Under certain conditions, Koszul complexes can be used to calculate relative Betti
diagrams of vector space-valued functors indexed by a poset, without the explicit
computation of global minimal relative resolutions. In relative homological algebra of
such functors, free functors are replaced by an arbitrary family of functors. Relative
Betti diagrams encode the multiplicities of these functors in minimal relative reso-
lutions. In this article we provide conditions under which grading the chosen family
of functors leads to explicit Koszul complexes whose homology dimensions are the
relative Betti diagrams, thus giving a scheme for the computation of these numerical
descriptors.
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1 Introduction

1.1 Relative Homological Algebra and Koszul Complexes

Recently, there has been intense research activity [1, 5, 6] relating topological data
analysis (TDA) with relative homological algebra [3, 4, 10, 11, 13] of finite dimen-
sional vector space representations of finite posets. One way of thinking about such
representations is as modules over certain finite dimensional algebras, allowing to
phrase homological properties of modules in terms of homological properties of the
algebra. This is also a common way for expressing relative homological properties
of representations. In this case, endomorphism algebras of some chosen modules
are often utilized (see e.g. [3, 5]). We however take another perspective, central in
TDA, and study representations as functors. Local Koszul complexes [9] (see also
[18, Sect. 6] and [20, Sect. 1]) are the key reasons why viewing representations as
functors is particularly convenient in TDA. In favourable situations, these complexes
can be used for calculations of Betti diagrams without explicitly constructing global
minimal resolutions, especially if we have some control over the sets of parents of
elements in the indexing poset.

The aim of this article is to show that Koszul complexes can also be used to calculate
relative Betti diagrams. To do this, we translate from a relative homological algebra
of functors indexed by a given poset to the standard homological algebra of functors
indexed by a new poset.We are interested in translations for which the homology of the
Koszul complexes over the newposet computes the relativeBetti diagrams in away that
can be implemented in software (see for example [23]). One of our main contributions
in this article is a translation construction which allows us to characterize the set of
poset elements (called the degeneracy locus) where local Koszul complexes fail to
calculate the relative Betti diagrams. Importantly, in all examples that are currently
relevant for TDA the degeneracy loci are negligible.

Aiming at a self-contained presentation, and believing that the tools we introduce
may be of interest to a broader audience, we favor an explicit classical formulation of
relative homological algebra [10].

1.2 Relative Homological Approximations

One way of understanding an object is by approximating it. In this article we focus on
approximations coming from relative homological algebra (see [13]), where arbitrary
objects in an abelian category are approximated by finite direct sums of objects of a
chosen collectionP . For example, onemay askwhether a given objectM is isomorphic
to a finite direct sum of elements inP . To answer this question we look at the category⊕

P ↓M of morphisms from finite direct sums of elements in P into M . We are
interested in situationswhere this category has a certain distinguished objectC0 → M :
for example, a terminal object. However, cases where the category

⊕
P ↓M has a
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terminal object are not that common.More common is the existence ofC0 → M in the
category

⊕
P ↓M satisfying the following two conditions. The first condition requires

that every object in
⊕

P ↓M maps to C0 → M , in which case C0 → M is called a
P-epimorphism (see 2.2). This of course holds if C0 → M is terminal in

⊕
P ↓M ,

where not only the existence but also the uniqueness of morphisms into C0 → M is
required. The second condition substitutes this uniqueness by a minimality condition:
every endomorphismofC0 → M is an isomorphism.AmorphismC0 → M satisfying
these two conditions (being a minimal P-epimorphism) is called a minimal P-cover
ofM (see 2.4). If it exists, then theminimalP-cover ofM is unique up to isomorphism.
We regard the minimal P-cover of M as an approximation of M by finite direct sums
of elements in P . In particular, M is isomorphic to such a direct sum if, and only if,
its minimal P-cover is an isomorphism.

If finite direct sums of elements in P are uniquely determined by the multiplicities
of their summands, then we say that P is independent (see 2.1). In this case, there is
a unique function β0

PM : P → N whose value at A in P is the multiplicity of A in
the minimal P-cover C0 of M . The function β0

PM is called the 0th P-Betti diagram
of M and is a numerical descriptor of the approximation of M by finite direct sums of
elements in P . This is only the 0th step. We can continue by considering the minimal
P-cover of the kernel of C0 → M . By doing this inductively we obtain a chain
complex · · · → Cn → · · · → C0 → M called a minimal P-resolution of M . Each
object Cd in this complex is described by a function βd

PM : P → N called the d th

P-Betti diagram of M , where, for all A inP , the number βd
PM(A) is the multiplicity

of A in Cd (see 2.6).
Thus every independent collectionP , forwhich all objects admitminimalP-covers,

leads to numerical invariants in the form ofP-Betti diagrams. The focus of this article
is to provide a method of constructing such collections P and to discuss a strategy
to effectively compute the associated Betti diagrams in the category Fun(I , vectK ) of
functors indexed by a finite poset I with values in finite dimensional K -vector spaces.

1.3 RelatedWork

Since vector space valued functors indexed by posets have played an important role
across many areas of mathematics, their categories are well studied, and in particular
their homological properties are well understood: see for example [3] and references
therein, where such functors are interpreted as modules over finite dimensional alge-
bras. Recently there has also been a growing interest in independent collections in
Fun(I , vectK ) [2, 5, 6] and associated numerical invariants coming from the TDA
community, where such functors are commonly called persistence modules, and the
poset I is usually R

n with the product order. In particular, there are several publica-
tions and implementations of various algorithms to calculate numerical homological
invariants of such functors (e.g. classical Betti diagrams, rank functions, generalized
Euler characteristics) and using them in applications, see for example [15–17, 21, 22,
24].

The idea of approximating persistence modules by objects in a chosen collection
appears in [1, 2, 5, 6, 14]. In [14], without relying on homological algebra, approxima-

123



Foundations of Computational Mathematics

tions in terms of the intervals in the poset are shown to yield a generalization of rank
functions, an invariant of persistence modules. In [1], the authors approximate persis-
tence modules in a Grothendieck group generated by interval modules (called spread
modules in [5] and in our work, see Example D) using quiver representation theory
without resorting to homological algebra methods. Decompositions of rank functions
into linear combinations of rank functions of simpler modules, such as rectangles and
lower hooks, are explained in [6]. Importantly, one such decomposition (called min-
imal rank decomposition) is defined via relative homological algebra of persistence
modules with respect to the collection of lower hooks, which we consider in Example
F. In [2], relative homological algebra with respect to interval modules is studied using
the language of representations of finite dimensional algebras. For homological alge-
bra results for persistence modules over more general posets, we can also look at [8]
and [19]. In the former, the authors prove various standard homological algebra results
for persistence modules, with a focus on the one-parameter case (where the poset is
the real line). In the latter, the author studies presentations of persistence modules,
with focus on infinite posets, and concludes with a Hilbert syzygy-type theorem. The
authors of [5] present a way of obtaining relative projective resolutions from standard
projective resolutions by considering modules over the ring End(

⊕
P)op and finding

a resolution of hom(
⊕

P, M). This gives an automatic correspondence of exact struc-
tures, but there is no reason for the standard projective resolution of hom(

⊕
P, M)

to be more easily computed than the relative projective resolution of M .
Our original motivation was to find a homological interpretation of the approxima-

tions presented in these articles that would allow for explicit calculations. This article
builds on the realization that local Koszul complexes can be used for this purpose.
Koszul complexes ofmodules arewell studied, see e.g. [18, Sect. 6]. Koszul complexes
of graded modules, as presented in [20], have a direct interpretation in terms of persis-
tence modules, based on the equivalence between the category of n-graded modules
over the polynomial ring S:=K [x1, . . . , xn] and the category Fun(Nn, vectK ), where
N
n is endowed with the product order. Here we sketch this connection, referring to

[12, Sect. 3] for more details. The Koszul complex K as defined for example in [20,
Def. 1.26] is a minimal free resolution of the field K in the category of n-graded
S-modules [20, Prop. 1.28]. Given an n-graded S-module M , the Koszul complex of
M at a ∈ N

n is the grade a part of the n-graded chain complex M ⊗S K. Its d th

homology module is the grade a part of the n-graded S-module TorSi (M, K ), whose
dimension is the d th Betti diagram (with respect to the standard projectives) of M at
a. This value of the Betti diagram can be computed, for a grade a ∈ N

n , by looking
only at M restricted to the grades in a small subposet of N

n isomorphic to {0 < 1}k
for some k ≤ n, whose elements are a together with its parents and all their meets.
In this work, we study local Koszul complexes of functors indexed by more general
finite posets (see 3.7), more details on which can be found in [9], and use them in the
context of relative homological algebra.

The above approach starts with a global resolution of K and considers local parts of
M⊗SK at different grades. Such a global resolution however may not have an explicit
formula, which typically would require global regularity assumptions on the indexing
poset. Requiring local regularity only at some grades is a much weaker assumption.
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In such grades we have an explicit Koszul complex construction which we exploit.
For that purpose, the functorial perspective is more advantageous than the language
of representations of finite dimensional algebras used in [2, 5, 6]. Our aim is to use
Koszul complexes not only as a theoretical tool, but as a computable construction to
determine relative Betti diagrams.

1.4 Koszul Complexes and Thinness

Homological algebra characterizes relevant objects by universal properties, regardless
of the category to which they belong, instead of by concrete constructions which may
vary greatly with the category. This offers a powerful language in which to express
and solve mathematical problems. However, extracting calculable invariants, which
is essential in TDA, from universally defined objects is often difficult, costly, and
sometimes not even feasible. Therefore the challenge is to introduce a version of
homological algebra which retains some conceptual power while allowing for some
of the relevant invariants to be described explicitly and algorithmically.

We strike a balance betweenmathematical and computational effectiveness by using
a strategy built on the following two observations. The first is related to the standard
independent collection S = {K (a,−) | a ∈ I } consisting of all free functors on one
generator (see beginning of Sect. 3). This collection is always independent and, when
I is finite, every functor in Fun(I , vectK ) admits a minimal S-resolution. The first
key observation is that under additional assumptions, for example that I is an upper
semilattice, for every element a in I and every functor F : I → vectK , there exists an
explicit chain complex Ka F , called Koszul complex (see 3.7 and discussion in 1.3),
whose homology in degree d has dimension equal to the value of the Betti diagram
βd
SF(K (a,−)) (see Theorem 3.8 and [9, Section 10]). Because of its explicitness, the

Koszul complex is an effective tool for computing the values of the Betti diagram with
respect to the collection S.

To have an analogous construction for amore general collectionP in Fun(I , vectK ),
we require a grading of its elements. Thus, instead of an unstructured collection, our
starting point is a functor T : J op → Fun(I , vectK ) indexed by a finite poset (J ,�).
Such a functor leads to a collection P := {T (a) | a ∈ J , T (a) �= 0}. This grading
allows for a translation between functors indexed by I and functors indexed by J via
a pair of standard adjoint functors (see 5.2 and 5.3):

Fun(I , vectK ) Fun(J , vectK )

R

L

where R := NatI (T ,−) assigns to M : I → vectK the functor NatI (T (−), M) :
J → vectK . The functor T is called thin if the unit of this adjunction ηa : K (a,−) →
RLK (a,−) is an epimorphism for every a in J . The second key observation is rec-
ognizing the importance of the thinness assumption. This assumption enables us to
translate between the homological properties of M in Fun(I , vectK ) relative to P and
the standard homological properties of RM in Fun(J , vectK ).
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1.5 Results

Let I and J be finite posets, and T : J op → Fun(I , vectK ) a thin functor. We give a
self-contained proof that the collectionP = {T (a) | a ∈ J , T (a) �= 0} is independent
(5.13). Moreover, we prove that the adjunction between L and R leads to a one-to-
one correspondence between minimal covers: for every functor M in Fun(I , vectK ),
a natural transformation C0 → RM is a minimal cover in Fun(J , vectK ) if, and
only if, its adjoint LC0 → M is a minimal P-cover in Fun(I , vectK ) (Theorem
5.14). Although we show that every functor M in Fun(I , vectK ) admits a minimal
P-resolution (Corollary 5.16(1)), this resolution cannot in general be obtained via
the adjunction. This means that in general the P-Betti diagrams of M differ from
the standard Betti diagrams of RM . Elements of J where this happens are called
degenerate and form the degeneracy locus (5.18). If J is an upper semilattice, our
main result (Corollary 5.20) identifies elements outside the degeneracy locus, for
which we can use Koszul complexes to calculate the values of P-Betti diagrams.
From a computational perspective, we obtain Algorithm 1 for computing relative
Betti diagrams, given a thin functor.

Algorithm 1: Betti diagrams relative to a parameterization T
Input: I finite poset, J finite upper semilattice,
T : Jop → Fun(I , vectK ) satisfying the conditions of Corollary 5.20,
M : I → vectK functor,
a ∈ J poset element such that T (a) �= 0.
Output: the relative Betti diagrams of M at T (a) relative to {T (b) | b ∈ J , T (b) �= 0}.
U(a) ← {a1, . . . , an} parents of a; // parents defined in 3.7
J0 ← {∅};
for d = 1, . . . , n do Jd ← {S ⊆ U(a) | S bounded below, |S| = d} for S ∈⋃n

d=0 Jd do
RM(
∧

S) ← Nat(T (
∧

S), M); //
∧

∅ = a by convention
for d = 0, . . . , n − 1 do

for S ∈ Jd , S′ ∈ Jd+1, and S ⊂ S′ do
Write i0 < · · · < id such that S′ = {ai0 , . . . , aid };
kS,S′ ← k such that S′ \ S = aik ;
b ←∧ S; c ←∧ S′;
∂S,S′ ← (Nat(T (b > c), M) : RM(c) → RM(b)

)
;

end
end
// Construction of chain complex (K, ∂) from 3.7

K ←
(⊕

S∈Jd
RM(
∧

S)
)

d=0,...,n
;

∂ ←
(∑

S∈Jd , S′∈Jd+1
(−1)kS,S′ ∂S,S′

)

d=0,...,n−1
;

β ← dim H∗(K, ∂);
return β

Furthermore, we produce examples of thin functors T : J op → Fun(I , vectK ),
and we apply our results to explicitly calculate the associated relative Betti diagrams.
We observe how numerical invariants introduced in other works, such as the rank
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invariant over lower hooks of [6] (Example F) and the single-source homological
spread invariant of [5] (Example E), are included in our general framework.

1.6 Organization

Webegin in Sect. 2 by introducing the theory of relative homological algebra, including
the notions of independence and acyclicity, covers and resolutions. Next, in Sect. 3 we
recall standard homological algebra for functors indexed by finite posets. In particular,
when the poset is an upper semilattice, we show how to compute Betti diagrams
explicitly via Koszul complexes. In Sect. 4, we discuss in more depth resolutions and
Betti diagrams of certain functors called filtrations. In particular, we study subfunctors,
and discuss several important notions: supports of functors, upsets, and antichains.

Section 5 is the central part of this work, where we introduce gradings of the form
T : J op → Fun(I , vectK ).We define the key properties of thinness and flatness, which
will allow us to compute relative Betti diagrams over I from standard Betti diagrams
over J .

Finally, we connect to other works in Sect. 6 by exhibiting how rectangles, lower
hooks, and spread modules, among others, are handled in our framework.

2 Relative Homological Algebra

In this section we recall a setup for relative homological algebra in an abelian category
M. This subject, initiated by Hochschild [13], has been extensively developed in the
context of the representation theory of finite dimensional algebras (see for example
[3, 4]). The explicit and self-contained treatment we provide here has the advantage
of not assuming familiarity of the reader with such theory. We fix a collection P of
objects in M. What follows are fundamental notions of homological algebra relative
to P .

2.1 Freeness An object inM is called P-free if it is isomorphic to a finite direct sum
of elements in P . For example, the zero object is P-free. The collection P is called
independent if, for every P-free object F , there is a unique function β : P → N

whose support suppβ := {A | β(A) �= 0} is finite and for which F is isomorphic to⊕
A∈P Aβ(A). If P is independent, then all of its elements are nonzero, and if two of

its elements are isomorphic, then they must be equal. For example, if M is a Krull-
Schmidt category and P is a collection of indecomposables, then it is independent if
and only if no two elements in P are isomorphic.

2.2 Exactness Two composable morphisms f : M → N and g : N → L in M are
said to form a P-exact sequence if the following sequence of abelian groups is exact
for every A in P:

hom(A, M) hom(A, N ) hom(A, L).
hom(A, f ) hom(A,g)
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A sequence of composable morphisms · · · → Md → Md−1 → · · · is called P-exact
if every two of its consecutive morphisms form a P-exact sequence.

If the sequence M
f−→ N → 0 is P-exact, then f is called a P-epimorphism. A

morphism f : M → N is aP-epimorphism if, andonly if, hom(A, f ) : hom(A, M) →
hom(A, N ) is surjective for every A in P (i.e. every g : A → N can be expressed as
the composition of some morphism A → M with f ).

2.3 Projectives An object C0 in M is called P-projective if, for every f : M → N
and g : N → L that form a P-exact sequence, the following is an exact sequence of
abelian groups:

hom(C0, M) hom(C0, N ) hom(C0, L).
hom(C0, f ) hom(C0,g)

Note that if M is P-projective, then f : M → N and g : N → L form a P-exact
sequence if, and only if, the composition g f is null and the induced morphism M →
ker(g) is aP-epimorphism. EveryP-free object isP-projective. If everyP-projective
is P-free, then the collection P is called acyclic.

2.4 Covers A P-cover of an object M is a P-epimorphism C0 → M where C0 is
P-projective. We say that the category M has enough P-projectives if every object
has a P-cover.

A morphism between a P-cover C0 → M and a P-cover D0 → M is a morphism
f : C0 → D0 inM for which the following diagram commutes:

C0

M

D0

f

Such a morphism is an isomorphism if f is an isomorphism inM. There is always a
morphism between two P-covers C0 → M and D0 → M , since C0 is P-projective
and D0 → M is a P-epimorphism.

AP-cover C0 → M is calledminimal if all its endomorphisms are isomorphisms.
Every two minimal P-covers of M are isomorphic: if C0 → M ← D0 are two
minimal P-covers, then in any sequence C0 → D0 → C0 → D0 of morphisms of
the P-covers, the first and second ones compose into an isomorphism by minimality,
as well as the second and third ones, which implies that all these morphisms are
isomorphisms.

2.5 Resolutions Asequence of composablemorphisms inM of the form · · · → C1 →
C0 → M → 0 is called a P-resolution of M if it is P-exact and, for every d ≥ 0, the
object Cd is P-projective. Equivalently, the sequence · · · → C1 → C0 → M → 0 is
aP-resolution of M if the following three conditions are satisfied: (a) for every d ≥ 0,
the objectCd isP-projective; (b) the composition of every two consecutivemorphisms
is 0; and (c) for every d ≥ 0, the induced morphism Cd → ker(Cd−1 → Cd−2) is a
P-epimorphism, where C−2 = 0 and C−1 = M .
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AP-resolution ofM is also written as amorphism of chain complexes, byC → M ,
where M denotes a chain complex concentrated in degree 0 and C = (· · · → C1 →
C0). An object M for which there is a P-resolution C → M is called P-resolvable.
If there are enough P-projectives, then all objects are P-resolvable.

A morphism from aP-resolution C → M to aP-resolution D → M is a sequence
of morphisms fd : Cd → Dd for d ≥ 0 for which the following diagram commutes:

· · · C1 C0

M

· · · D1 D0

f1 f0

Such a morphism is an isomorphism if fd is an isomorphism for every d ≥ 0. As with
P-covers, there is always a morphism between every two P-resolutions of M .

A P-resolution C → M is called minimal if all of its endomorphisms are iso-
morphisms. A P-resolution C → M is minimal if, and only if, for every d ≥ 0,
the morphism Cd → ker(Cd−1 → Cd−2) is a minimal P-cover, where C−1 = M
and C−2 = 0. Thus, if every object has a minimal P-cover, then every object has a
minimalP-resolution that can be constructed inductively by taking minimalP-covers
of successive kernels. Every two minimal P-resolutions of M are isomorphic.

2.6 Betti diagrams SupposeP is independent (see 2.1) and acyclic (see 2.3). LetC →
M be a minimalP-resolution. By acyclicity ofP , for every d ≥ 0, the object Cd isP-
free. Thus, by independence of P , there is a unique function, denoted by βd

PM : P →
N and called the d th P-Betti diagram of M , for which Cd is isomorphic to

⊕

A∈P
Aβd

PM(A)

Since any two minimal P-resolutions of M are isomorphic, the P-Betti diagrams of
M do not depend on the choice of a minimal P-resolution, and are invariants of the
isomorphism type of M . One should note however that P-Betti diagrams are only
defined for objects that have minimal P-resolutions.

To calculate the values of the d th P-Betti diagram of M , a standard strategy is to
develop tools to calculate the 0th P-Betti diagram and then use the fact that, for a
minimal resolution C → M , we have the following sequence of equalities:

βd
PM = βd−1

P ker(C0 → M) = βd−2
P ker(C1 → C0)

= · · · = β0
P ker(Cd−1 → Cd−2).

Building a minimal resolution is an inductive procedure involving constructing mini-
malP-covers of successive kernels, which typically requires a description of the entire
0th P-Betti diagram of these kernels.

One approach to calculating Betti diagrams that avoids this costly inductive pro-
cedure is the construction, given an object M in M and an element A in P , of a
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chain complex V = (· · · → V1 → V0) of vector spaces such that, for all d ≥ 0,
dim Hd(V ) = βd

PM(A). Ideally, this construction is systematic, or even functorial in
M . This is the case for standard homological algebra for functors indexed by finite
upper semilattices, discussed in the next section, where such chain complexes are
given by Koszul complexes.

3 Standard Homological Algebra

Fix a field K , choose a finite poset (J ,�), and consider the abelian category
Fun(J , vectK ) whose objects are functors indexed by J with values in the category
vectK of finite dimensional vector spaces. Morphisms in Fun(J , vectK ) are the natural
transformations. For an element a in J , denote by K (a,−) : J → vectK the compo-
sition of the following functors, where the symbol set denotes the category of finite
sets:

J set vectK

S
⊕

S K

homJ (a,−) free

That is, K (a, b) = K if b � a and 0 otherwise, and K (a, b � c) = idK if b � a and
0 otherwise. The functor K (a,−) is called free on one generator in degree a.

In this section we are going to describe the homological algebra of Fun(J , vectK ),
as presented in Sect. 2, relative to the collection S := {K (a,−) | a ∈ J }. This
corresponds to standard homological algebra and all the following statements are well
known: see for instance [3, 26].

3.1 Independence The collection S is independent since its elements are indecom-
posable (see 2.1). This can be also shown using radicals, as in [3]. Recall that
the radical of a functor F : J → vectK is a subfunctor rad(F) ⊆ F given by
rad(F)(a) =∑s≺a im(F(s ≺ a)) for a in J . The quotient functor H0F := F/rad(F)

is semisimple: that is, for every a ≺ b in J , the morphism H0F(a ≺ b) is the
zero morphism. For a and b in J , (H0K (a,−))(b) is 1-dimensional if a = b and
0 otherwise. Thus, if F is free and isomorphic to

⊕
K (b,−)∈S K (b,−)β(K (b,−)), then

β(K (b,−)) = dimH0F(b) and hence the number β(K (b,−)) is uniquely determined
by the isomorphism type of F .

3.2 Exactness By the Yoneda lemma, for every functor F : J → vectK , the linear map
NatJ (K (a,−), F) → F(a), which assigns to a natural transformationϕ : K (a,−) →
F the elementϕa(a � a) in F(a), is a bijection. Consequently,morphisms f : F → G
and g : G → H in Fun(J , vectK ) form an S-exact sequence if, and only if, for
every a in J , the linear maps fa : F(a) → G(a) and ga : G(a) → H(a) form an
exact sequence of vector spaces. Thus, being S-exact is the same as being exact. In
particular, f : F → G is an S-epimorphism if, and only if, it is a standard categorical
epimorphism, which means fa : F(a) → G(a) is surjective for all a in J . To detect
this we can again use the radical:
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3.3 Lemma Let J be a finite poset. A natural transformation f : F → G in
Fun(J , vectK ) is an epimorphism if, and only if, the composition of f with the quotient
G → G/rad(G) = H0G is an epimorphism.

Proof The only if part of this equivalence is clear. Conversely, suppose that the com-
position is an epimorphism and consider the set of all a in J for which fa is not a
surjection. If this set is nonempty, then it contains a minimal element a (since J is
finite). Minimality of a means that rad( f )a : rad(F)(a) → rad(G)(a) is surjective.
This, combined with the surjectivity of the composition F(a) → G(a) → H0G(a),
implies that fa is surjective, which contradicts the assumption. ��

Since S-epimorphisms are the categorical epimorphisms, S-projectives are the
standard projectives, and it turns out that all of them are (S-)free.

3.4 Proposition Let J be a finite poset. The collection S in Fun(J , vectK ) is acyclic
(see 2.3).

Proof We again use the radical. Let F be projective in Fun(J , vectK ). Consider H0F
and the free functorC0 :=⊕a∈J K (a,−)dim H0F(a). Note that H0C0 and H0F are iso-
morphic. We then use projectiveness to construct the following commutative diagram
where all of the vertical arrows represent the quotient natural transformations:

F C0 F

H0F H0C0 H0F� �

The vertical natural transformations in this diagram are epimorphisms, so by
Lemma 3.3 the horizontal natural transformations are as well. Since the values of
the functors are finite dimensional vector spaces, the horizontal natural transforma-
tions must therefore be isomorphisms. ��
3.5 Minimal covers, resolutions, and Betti diagrams Let F : J → vectK be a func-
tor. As in 3.4, consider H0F = F/rad(F) and the free functor C0 := ⊕a∈J
K (a,−)dim H0F(a). Since H0C0 and H0F are isomorphic, we can use the projective-
ness of C0 to lift the natural transformation C0 → H0F to a natural transformation
C0 → F which makes the following square commute, where the vertical arrows
represent the quotient natural transformations:

C0 F

H0C0 H0F�

The resulting natural transformation C0 → F is an epimorphism (see discussion
in 3.2) and hence it is an S-cover. It is also minimal by the same reasoning as in 3.4.
It follows that there are enough S-projectives and every functor F : J → vectK has
a minimal S-cover, and hence also a minimal S-projective resolution. We refer to
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S-covers and S-projective resolutions simply as covers and resolutions. Since every
functor admits aminimal resolution,S-Betti diagrams in all degrees are always defined
for every functor. We also refer to them simply as Betti diagrams and denote them as
βd F : J → N, omitting the symbol S. A consequence of the above construction of a
minimal cover of F is the equality:

β0F = dim H0F .

The sum
∑

a∈J β0F(a) is called the number of generators of F .
TheBetti diagrams of F are not independent from each other. For example, consider

a differential in a minimal resolution of F :

Cd+1
︷ ︸︸ ︷⊕

b∈supp(βd+1F)

K (b,−)β
d+1F(b)

Cd
︷ ︸︸ ︷⊕

a∈supp(βd F)

K (a,−)β
d F(a)∂

By minimality, each summand K (b,−) of Cd+1 must map nontrivially onto at least
one summand K (a,−) of Cd . This means that every element in supp(βd+1F) is
bounded below by some element in supp(βd F). Relations between Betti diagrams are
easier to describe when the indexing poset J is an upper semilattice. In this case, to
calculate Betti diagrams one can use Koszul complexes. Describing this is the content
of the rest of this section.

3.6 Upper semilattices Recall that the join of a subset S ⊆ J is an element in J ,
denoted by

∨
J S or

∨
S when the poset is understood, satisfying the following uni-

versal property: s �
∨

S for every s in S, and, if s � a in J for every s in S, then∨
S � a. The join is the categorical coproduct in J . Dually, the meet of S is an

element in J , denoted by
∧

J S or
∧

S, satisfying the following universal property:∧
S � s for every s in S, and, if a � s in J for every s in S, then a �

∧
S. When they

exist, joins and meets are unique. If every nonempty subset of J has a join, then J is
called an upper semilattice. If J is an upper semilattice, then every subset S which
is bounded below (i.e., for which there exists a in J such that a � s for every s in S)
also has a meet, given by

∨{a ∈ J | S is bounded below by a}.
A subset L ⊆ J of an upper semilattice is called a sublattice if, for every

nonempty subset S ⊆ L , the join
∨

S belongs to L . For S ⊆ J , we denote by
〈S〉 := {∨ T | T �= ∅, T ⊆ S

} ⊆ J the smallest sublattice containing S.

3.7 Koszul complexes Let a be an element in J . Recall that an element s in J is called
a parent of a if s ≺ a and there is no element b in J such that s ≺ b ≺ a. We also say
that a covers s. We denote the set of parents of a by UJ (a) or U(a) when the ambient
poset is understood.

Suppose that a has the following property: every subset S ⊆ U(a) that is bounded
below admits a meet

∧
S. If J is an upper semilattice, then every element a ∈ J

satisfies this property. Fix a total order < on the set of parents U(a). We then assign to
every functor F : J → vectK a chain complex of K -vector spaces, called the Koszul
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complex of F at a, defined for all d ≥ 0 by

(Ka F)d :=

⎧
⎪⎨

⎪⎩

F(a) if d = 0,
⊕

S⊆U(a), |S|=d
S has lower bound

F(
∧

S) if d > 0.

For example, (Ka F)1 =⊕s∈U(a) F(s). We define the differentials as follows:

• For d = 0, define ∂ : (Ka F)1 → (Ka F)0 = F(a) as the linear map which on the
summand F(s) in

⊕
s∈U(a) F(s) = (Ka F)1 is given by F(s ≺ a).

• For d > 0, define ∂ : (Ka F)d+1 → (Ka F)d as the alternating sum ∂ =∑d
i=0(−1)i∂i , where ∂i : (Ka F)d+1 → (Ka F)d is the function mapping the sum-

mand F(
∧

S) in (Ka F)d+1, indexed by S = {s0 < · · · < sd} ⊆ U(a), to the
summand F(

∧
(S\{si })) in (Ka F)d , indexed by S\{si } ⊆ U(a), via the function

F(
∧

S �
∧

(S\{si })).
The linear functions ∂ form a chain complex as it is standard to verify that the com-
position of two consecutive such functions is null.

For a natural transformation f : F → G, define:

(Ka F)d (KaG)d
(Ka f )d :=

⎧
⎪⎨

⎪⎩

fa if d = 0,
⊕

S⊆U(a), |S|=d
S has lower bound

f∧ S if d > 0.

These linear maps form a chain map denoted byKa f : Ka F → KaG. The assignment
f �→ Ka f is a functor from Fun(I , vectK ) to the category of chain complexes called
the Koszul complex at a. Its fundamental property is the following.

3.8 Theorem Let J be a finite poset. Let a be an element in J such that every nonempty
subset S ⊆ U(a) that is bounded below admits a meet

∧
S. Then, for every functor

F : J → vectK and every d ≥ 0, the following equality holds:

βd F(a) = dim Hd(Ka F).

The assumption on the element a in Theorem 3.8 is local, depending only on the
parents of a. Under this assumption, which is satisfied for example if J is an upper
semilattice (see 3.6), in order to calculate the Betti diagram βd F(a) of a functor F
at a, we do not need to construct the minimal resolution of F . Instead, it suffices to
calculate the homology of the Koszul complex Ka F , which can be done for each a
and each degree d independently.

Proof of Theorem 3.8 The proof is based on three observations and follows closely
what is presented in [9, Section 10].
Observation 1. For every natural transformation f : F → G, the linear map
H0(Ka f ) is isomorphic to (H0 f )a . In particular, the vector spaces H0(Ka F) and
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(H0F)(a) = (F/rad(F))(a) are isomorphic. Moreover, if C0 → F is a minimal
cover, then H0(Ka(C0 → F)) is an isomorphism.

According to Observation 1, β0F(a) = dim(H0F)(a) (see 3.5) coincides with
dim H0(Ka F), which is the statement of the theorem in the case d = 0. To prove this
statement for d > 0, we need two additional observations:
Observation 2. For b in J :

dim Hd(KaK (b,−)) =
{
1 if d = 0 and a = b,

0 otherwise.

Indeed, if b �� a, then KaK (b,−) = 0 and the statement holds. Otherwise, if b = a,
then (KaK (a,−))0 = K and (KaK (a,−))d = 0 for d > 0, and again the statement
holds.

Otherwise, b ≺ a. Then (KaK (b,−))0 = K and, for every nonempty subset
S ⊆ U(a) that is bounded below, K (b,

∧
S) is 1-dimensional if S is a subset of

(b � U(a)) := {s ∈ U(a) | b � s}, and 0 otherwise. Consequently the complex
KaK (b,−) is isomorphic to

· · · →
⊕

S⊆(b�U(a))
|S|=2

K →
⊕

S⊆(b�U(a))
|S|=1

K → K ,

which is the augmented chain complex of the standard (|b � U(a)| − 1)-dimensional
simplex, whose homology is trivial in all degrees. Thus in this case the statement also
holds.
Observation 3. Since taking direct sums is an exact operation, the Koszul complex at
a is an exact functor in the following sense: if f : F → G and g : G → H form an
exact sequence, then the following is an exact sequence of chain complexes of vector
spaces:

Ka F KaG KaH .
Ka f Kag

According to Observation 3, the Koszul complex functor at a commutes with direct
sums, which, combined with Observation 2, implies that for a free functor C0 =⊕

b∈J K (b,−)β(b),

dim Hd(KaC0) =
{

β(a) if d = 0,

0 otherwise.

Let F : J → vectK be a functor and C0 → F its minimal cover. This minimal
cover fits into the following exact sequence:

0 Z C0 F 0,
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which, according to Observation 3, leads to an exact sequence of chain complexes:

0 Ka Z KaC0 Ka F 0,

which in turn leads to a long exact sequence of vector spaces:

· · ·

H1(Ka Z) H1(KaC0) H1(Ka F)

H0(Ka Z) H0(KaC0) H0(Ka F) 0.

According to Observation 1, the function H0(KaC0) → H0(Ka F) is an isomorphism,
and H0(Ka Z) is isomorphic to H0(Z), whose dimension is β1F(a). Observation 2
gives the vanishing of Hd(KaC0) for d ≥ 1. Consequently, for d ≥ 1, the map
Hd(Ka F) → Hd−1(Ka Z) is an isomorphism. The case d = 1 then gives the equal-
ity between dim H0(Ka Z) = β0Z(a) = β1F(a) and dim H1(Ka F), which is the
statement of the theorem for d = 1. The theorem for d > 1 follows by induction by
applying what we already have proven to the functor Z . ��

Theorem 3.8, combined with the long exact sequence argument in its proof, implies
the following.

3.9 Corollary Let J be a finite upper semilattice and 0 → F0 → F1 → F2 → 0 an
exact sequence in Fun(J , vectK ). Let a be an element in J such that βd F0(a) = 0 for
every d ≥ 0. Then βd F1(a) = βd F2(a) for every d ≥ 0.

4 Filtrations, Subfunctors, and Their Standard Betti Diagrams

In this section, we discuss in more depth resolutions and Betti diagrams of certain
filtrations. Recall that a functor F : J → vectK is called a filtration if, for all a � b
in J , F(a � b) is a monomorphism. For example, free functors and constant functors
are filtrations, and in particular the constant functor KJ : J → vectK , whose values are
the 1-dimensional vector space K , is a filtration. Since subfunctors of a filtration are
filtrations, the kernel of a cover C0 → F is a filtration. Two results of this section are
of particular interest to us. One is Corollary 4.3, which describes relations between the
supports of Betti diagrams of a filtration whose 0th Betti diagram has support bounded
below. The other one is Corollary 4.9, which describes a similar, but weaker, relation
for any subfunctor of the constant functor KJ , even if its 0th Betti diagram does not
have a support bounded below.

The following theorem follows from results in [9] (see also [25, Lemma 2.1]).
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4.1 Theorem Let J be a finite upper semilattice and F : J → vectK a functor. Then
the following containment holds:

⋃

d≥0

supp(βd F) ⊆ 〈supp(β0F) ∪ supp(β1F)〉.

Proof Consider a minimal presentation of F given by an exact sequence:

⊕

a∈supp(β1F)

K (a,−)β
1F(a)

⊕

a∈supp(β0F)

K (a,−)β
0F(a) F 0,∂

Using the vocabulary of [9], we can discretize the functors of this sequence by the
sublattice 〈supp(β0F) ∪ supp(β1F)〉. By [9, Corollary 10.18.(2)], we conclude that
the Betti diagrams of F indexed by J are isomorphic to those of F restricted to the
sublattice 〈supp(β0F) ∪ supp(β1F)〉 ⊂ J , and consequently

⋃

d≥0

supp(βd F) ⊆ 〈supp(β0F) ∪ supp(β1F)〉.

��
As a consequence, if βd F(a) �= 0, then there is a subset S ⊆ supp(β0F) ∪

supp(β1F) for which a =∨ S. This gives a considerable restriction on what elements
of the upper semilattice J can belong to supp(βd F) for d > 1.

4.2 Corollary Let J be a finite upper semilattice and F : J → vectK a functor for
which supp(β0F) is bounded below (the meet

∧
supp(β0F) exists). Then

· · · ⊆ 〈supp(β3F)〉 ⊆ 〈supp(β2F)〉 ⊆ 〈supp(β1F)〉.

Proof Let b0 = ∧ supp(β0F). For all a in supp(β0F), we have a � b0, so there
is a monomorphism K (a,−) ⊆ K (b0,−). These monomorphisms, for all a in
supp(β0F), fit into the following pushout square where the top horizontal arrow rep-
resents a minimal cover of F :

⊕

a∈supp(β0F)

K (a,−)β
0F(a) F

⊕

a∈supp(β0F)

K (b0,−)β
0F(a) G

Then the natural transformation represented by the bottom horizontal arrow is a mini-
mal cover ofG. Furthermore, since the kernels of the top and bottom horizontal natural
transformations coincide, we get:
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βdG(a) =

⎧
⎪⎨

⎪⎩

∑
b∈J β0F(b) if d = 0 and a = b0,

0 if d = 0 and a �= b0,

βd F(a) if d > 0.

In particular supp(β0G) = {b0} and supp(βdG) = supp(βd F) for every d ≥ 1.
Since every element in supp(β2G) is bounded by some element in supp(β1G), and
every element in supp(β1G) is bounded by some element in supp(β0G) = {b0}, we
can use Theorem 4.1 to conclude that supp(β2G) ⊆ 〈supp(β1G)〉 and consequently
〈supp(β2G)〉 ⊆ 〈supp(β1G)〉. We then proceed by induction on d. ��

For a filtration, Corollary 4.2 can be extended to include also the 0th Betti diagram.

4.3 Corollary Let J be a finite upper semilattice and F : J → vectK a filtration such
that supp(β0F) is bounded below. Then

· · · ⊆ 〈supp(β2F)〉 ⊆ 〈supp(β1F)〉 ⊆ 〈supp(β0F)〉.

Proof The assumptions on F are equivalent to F being a subfunctor ofG := K (b,−)n

for some b in J and a natural number n. Consider the exact sequence F ↪→ G → G/F .
SinceG is free, β1(G/F)(a) ≤ β0F(a) and βd+1(G/F)(a) = βd F(a) for d > 0 and
every a in J . Consequently, supp(β1(G/F)) ⊆ supp(β0F) and supp(βd+1(G/F)) =
supp(βd F) for d > 0. By applying Corollary 4.2 to the quotient G/F , we obtain the
desired containments. For example,

〈supp(β1F)〉 = 〈supp(β2(G/F))〉 ⊆ 〈supp(β1(G/F))〉 ⊆ 〈supp(β0F)〉.

��
4.4 Subfunctors Next we focus on subfunctors of the constant functor KJ : J →
vectK . Given a subfunctor F of KJ , we denote by F ⊆ KJ the inclusion natural
transformation. Note that a functor F : J → vectK is isomorphic to a subfunctor of
KJ if, and only if, F is a filtration and dim F(a) ≤ 1 for every a in J (compare with
assumptions in Corollary 4.3). We denote by Sub(J ) the set of all subfunctors of KJ .
We consider two ways of parameterizing this set by posets: via upsets and antichains.

4.5 Upsets An upset of a poset (J ,�) is a subset U ⊆ J such that, for all a in U
and b � a, the element b is in U . The set of upsets of J is denoted Up(J ) and comes
naturally equipped with a distributive lattice structure where the order relation is the
inclusion ⊆, joins are unions, and meets are intersections. An example of an upset is
the support of a subfunctor F ⊆ KJ , defined as the subset supp(F) := {a ∈ J |
F(a) �= 0}. In fact, the function F �→ supp(F) is a bijection between the collections
of subfunctors of KJ and upsets in J . Its inverse sends an upset U to the subfunctor
KU ⊆ KJ defined as, for all a in J ,

KU (a) =
{
K if a ∈ U ,

0 otherwise.
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Thus KU ⊆ KJ is the unique subfunctor for which supp(KU ) = U . The inclusion of
subfunctors F ⊆ G ⊆ KJ defines a poset relation that makes this bijection a poset
isomorphism, between (Sub(J ),⊆) and (Up(J ),⊆). We are however more interested
in the opposite poset to (Sub(J ),⊆). This is because of its relation to antichains.

4.6 Antichains An antichain of a poset (J ,�) is a subset of J whose elements are pair-
wise incomparable. In particular, singletons of J are antichains. The set of antichains
of J is denoted by Anti(J ). Given an upset U of J , the set Min(U ) of its minimal
elements is an antichain. In fact, the functionU �→ Min(U ) from upsets to antichains
is a bijection, and so we could equip antichains with the induced poset structure from
Up(J ). However, we would like for the subposet of singletons in Anti(J ) to coincide
with the poset J . For this reason, we define the relation on antichains by the opposite
order on upsets. Thus, given two upsets U and V , we write Min(U ) � Min(V ) if
V ⊆ U . Explicitly, for two antichains S and T in J , the relation S � T holds if, and
only if, for every t in T , there is s in S such that s � t in J . In this way, (Anti(J ),�)

is a distributive lattice whose restriction to singletons coincides with J .
To a subfunctor F ⊆ KJ we associate the antichain Min supp(F), which coin-

cides with supp(β0F). The function F �→ supp(β0F) is a bijection between the
collection Sub(J ) of subfunctors of KJ and the set of antichains Anti(J ). Its inverse
sends an antichain S to the subfunctor K (S,−) := K(S�J ) ⊆ KJ where (S � J )

denotes the upset {a ∈ J | ∃s ∈ S, s � a}. This induces a distributive lattice struc-
ture on subfunctors of KJ : given two subfunctors F,G ⊆ KJ , we write F � G if
supp(β0F) � supp(β0 G), which is equivalent to the inclusion supp(F) ⊇ supp(G).
We denote this poset by (Sub(J ),�).

4.7 Global Koszul complexes We now discuss free resolutions of subfunctors of KJ

under the assumption that J is an upper semilattice. Let F ⊆ KJ be a subfunctor. Fix
a total order < on the antichain supp(β0F). This order is used to construct a chain
complex called global Koszul complex of F . For d ≥ 0, define:

(KF)d :=
⊕

S⊆supp(β0F)
|S|=d+1

K (
∨

S,−).

For example, (KF)0 = ⊕s∈supp(β0F) K (s,−), which coincides with the minimal
cover of F (see 3.5). Set ∂ : (KF)d+1 → (KF)d to be the alternating sum ∂ =∑d+1

i=0 (−1)i∂i , where ∂i : (KF)d+1 → (KF)d is the function mapping the summand
K (
∨

S,−) in (KF)d+1, indexed by S = {s0 < · · · < sd+1} ⊆ supp(β0F), to
the summand K (

∨
(S\{si }),−) in (KF)d , indexed by S\{si } ⊆ supp(β0F), via the

inclusion K (
∨

S,−) ⊆ K (
∨

(S\{si }),−). Finally define ∂ : (KF)0 → F to be a
minimal cover of F . It is standard to verify that the natural transformations ∂ form a
chain complex.

4.8 Proposition Let J be a finite upper semilattice and F ⊆ KJ be a subfunctor. Then
KF → F is a free resolution of F.

Proof Weneed to show that, for every a in J , the complex of vector spaces (KF)(a) →
F(a) is exact. Consider the set T := {s ∈ supp(β0F) | s � a}. If this set is empty,
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then the complex (KF)(a) → F(a) is trivial and hence it is exact. Otherwise, the
complex (KF)(a) → F(a) is isomorphic to

· · · →
⊕

S⊆T
|S|=2

K →
⊕

S⊆T
|S|=1

K → K ,

which is the augmented chain complex of the standard (|T |−1)-dimensional simplex,
whose homology is trivial in all degrees. ��

The global Koszul complex KF → F is a free resolution of F which may fail
however to be minimal. A minimal resolution of F is a direct summand of the global
Koszul complex, which gives:

4.9 Corollary Let J be a finite upper semilattice and F ⊆ KJ be a subfunctor. Then
the following containment holds:

⋃

d≥0

supp(βd F) ⊆ 〈supp(β0F)〉.

5 Constructing Relative Homological Algebra

Let (I ,≤) be a finite poset. In this section we present a strategy for defining an inde-
pendent (see 2.1) and acyclic (see 2.3) collection for relative homological algebra in
the category Fun(I , vectK ). Our starting point and the standard assumption through-
out the entire section is a functor T : J op → Fun(I , vectK ) where (J ,�) is a finite
poset.

We define the collection P := {T (a) | a ∈ J , T (a) �= 0}. Although no structure
on the collection P was needed in our description of the homological algebra relative
to P in Sect. 2, in this section we illustrate the advantage of having the grading on P
given by the poset structure on J . The functor T is used to translate between the P-
relative homological algebra on Fun(I , vectK ) and the standard homological algebra
on Fun(J , vectK ). This translation is done via a pair of adjoint functors.

5.1 Example Throughout this section, we consider the following running example. Let
(I ,≤) be the set {0, 1}2 with the product order, J the set {(u, v) ∈ I 2 | u ≤ v} with
the product order, and

T :
{

J op → Fun(I , vectK )

(u, v) �→ coker(K (v,−) → K (u,−))

123



Foundations of Computational Mathematics

the translation or parameterization functor. Explicitly, we have the Hasse diagrams
(where the order goes up and to the right)

I =
00

01

10

11

and J =

00, 00 00, 10 10, 10

00, 01

01, 01

00, 11 10, 11

01, 11 11, 11

.

The image of J by T is then

0 0

0 0

,

where we have represented each nonzero functor T (a) : I → vectK in P by their
support: the dotted squares correspond to the poset I , the shaded vertices correspond to
the support of the functor, where the functor is equal to K , and the transition functions
are all implicitly of maximal rank. The position of each functor T (a) corresponds to
the position of a in the Hasse diagram of J .

Finally, we have the collection

P =

{
, , , ,

}
.

This example is a specific instance of lower hooks, introduced in [6], which we
study in general in Example F.

5.2 Adjunction The functor T induces the following pair of adjoint functors:

Fun(I , vectK ) Fun(J , vectK )

R

L

where

• R := NatI (T ,−) assigns to M : I → vectK the functor NatI (T (−), M) : J →
vectK ,

• L assigns to F : J → vectK the following colimit in Fun(I , vectK ):

LF := colim

⎛

⎜
⎝
⊕

a0≺a1 in J

T (a1) ⊗ F(a0)
⊕

a in J

T (a) ⊗ F(a)
d0

d1

⎞

⎟
⎠ ,
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where the summand T (a1) ⊗ F(a0), indexed by a0 ≺ a1, is mapped

– by d0 to the summand T (a1)⊗ F(a1) via the morphism idT (a1) ⊗ F(a0 ≺ a1);
– by d1 to the summand T (a0)⊗ F(a0) via the morphism T (a0 ≺ a1)⊗ idF(a0).

5.3 Proposition The functor L is left adjoint toR.

Proof Let F : J → vectK and M : I → vectK be two functors. By the universal prop-
erty of the colimit and the tensor-hom adjunction, the set NatI (LF, M) is in natural
bijection with the set of sequences of linear maps { fa : F(a) → NatI (T (a), M)}a∈J

making the following square commute for every a0 ≺ a1 in J :

F(a0) NatI (T (a0), M)

F(a1) NatI (T (a1), M)

fa0

F(a0≺a1) NatI (T (a0≺a1),M)
fa1

Thus this set of sequences is in bijectionwithNatJ (F,NatI (T , M)) = NatJ (F,RM).
In this way we get a natural isomorphism between NatI (LF, M) and NatJ (F,RM),
which gives the desired adjunction. ��

Let a be in J and consider the free functor K (a,−) : J → vectK . By the adjunc-
tion between L and R, for every M : I → vectK , the set NatI (LK (a,−), M) is
naturally isomorphic to the set NatJ (K (a,−),RM), which is in natural bijection
with RM(a) = NatI (T (a), M). Consequently LK (a,−) and T (a) are isomorphic
functors for every a in J , and the collection P = {T (a) | a ∈ J , T (a) �= 0} can be
identified with {LK (a,−) | a ∈ J , LK (a,−) �= 0}.
5.4 Example Continuing our running Example 5.1, consider the functor M : I →
vectK represented as follows:

Then, using the same representation conventions for functors indexed by J , the
functor RM is represented as

5.5 Adjunction unit and counit For M : I → vectK , the counit εM : LRM → M
is the natural transformation adjoint to id : RM → RM . For F : J → vectK , the
unit ηF : F → RLF is the natural transformation adjoint to id : LF → LF . If
F = K (a,−) for some a in J , then ηF is also denoted by ηa . The adjunction between
L and R implies the commutativity of the following diagrams, which in particular
implies thatRεM and εLF are epimorphisms, and ηRM andLηF aremonomorphisms:
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RM RLRM

RM

ηRM

id

RεM

LRLF LF

LF

εLF

LηF

id

The functorR can be used to translate between P-exactness in Fun(I , vectK ) and
the standard exactness in Fun(J , vectK ):

5.6 Proposition Let I and J be finite posets. A pair of natural transformations
f : M → N and g : N → L in Fun(I , vectK ) form a P-exact sequence (see 2.2)
if, and only if, the natural transformations R f and Rg form an exact sequence in
Fun(J , vectK ).

Proof By definition of the functor R = NatI (T ,−), the pair R f and Rg forms
an exact sequence if, and only if, NatI (T (a), f ) and NatI (T (a), g) form an exact
sequence for all a in J , which corresponds to P-exactness in Fun(I , vectK ). ��
5.7 Corollary A natural transformation f : M → N in Fun(I , vectK ) is a P-
epimorphism if, and only if,R f is an epimorphism in Fun(J , vectK ).

For example, consider a functor M : I → vectK and the natural transformation
εM : LRM → M . SinceRεM is an epimorphism, εM is therefore a P-epimorphism.

To translate between minimal P-covers in Fun(I , vectK ) and standard mini-
mal covers in Fun(J , vectK ), an additional assumption on the functor T : J op →
Fun(I , vectK ) is required. Here is the key definition of our paper.

5.8 Thinness The functor T : J op → Fun(I , vectK ) is called thin if, for every a in J ,
the unit natural transformation ηa : K (a,−) → RLK (a,−) is an epimorphism.

Our primary examples of thin functors are given by the following result:

5.9 Proposition Let I and J be finite posets and T : J op → Fun(I , vectK ) a functor.
Suppose that

• for all a in J , the functor T (a) has at most one generator, i.e.
∑

v∈I β0T (a)(v) ≤
1.

• for all a, b in J , Nat(T (b), T (a)) �= 0 only if a � b.

Then the functor T is thin.

Proof Let a be in J . If T (a) = 0, then RLK (a,−) = Nat(T (−), T (a)) = 0, so the
unit natural transformation ηa : K (a,−) → RLK (a,−) is surjective.

Otherwise, let b be another element of J . If T (b) = 0, then Nat(T (b), T (a)) = 0.
If a �� b, then by hypothesis we also have Nat(T (b), T (a)) = 0. Otherwise, we
have a � b and T (b) �= 0. Using the hypothesis on T , write supp(β0T (b)) =
{xb}. Every natural transformation ϕ : T (b) → T (a) is then determined by
ϕxb : T (b)(xb) → T (a)(xb). Since dim T (b)(xb) = 1 and dim T (a)(xb) ≤ 1, we
get dim Nat(T (b), T (a)) ≤ 1. Moreover, since a � b, we have dim K (a, b) = 1,
and so the natural map ηa(b) : K (a, b) → Nat(T (b), T (a)) is a surjection. Thus
the unit natural transformation ηa : K (a,−) → RLK (a,−) = Nat(T (−), T (a)) is
surjective, and we conclude that T is thin. ��
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5.10 Example In our running Example 5.1, the functor T is thin. Lower hooks fit into
the setting of Proposition 5.9, but we can also check thinness by hand: for instance,
for a = (00, 10) in J , we have

= K(a,−)
ηa RLK(a,−) = R = ,

so the unit natural transformation ηa : K (a,−) → RLK (a,−) is indeed an epimor-
phism.

Among thin functors there are functors that satisfy a stronger requirement.

5.11 Flatness The functor T : J op → Fun(I , vectK ) is called flat if the unit natural
transformation ηa : K (a,−) → RLK (a,−) is an isomorphism for every a in J for
which T (a) �= 0.

Every flat functor is thin. Since both left and right adjoints commute with direct
sums, if T is thin, then, for every free functor C0 in Fun(J , vectK ), the unit natural
transformation ηC0 : C0 → RLC0 is also an epimorphism. If T is flat and C0 in
Fun(J , vectK ) is a free functor, then the unit natural transformationηC0 : C0 → RLC0
is an isomorphism if, and only if, T (a) �= 0 for every a in supp(β0C0).

5.12 Proposition Let I and J be finite posets. If the functor T : J op → Fun(I , vectK )

is thin (resp. flat), then, for every subposet L ⊆ J , the restriction of T to Lop ⊆ J op

is also thin (resp. flat).

Proof For all a in J , the functors RLK (a,−), RT (a), and NatI (T , T (a)) are iso-
morphic. Thus T is thin if, and only if, both of the following conditions are satisfied:

• for a �� b in J , NatI (T (b), T (a)) = 0,
• for a � b in J , every natural transformation T (b) → T (a) is of the form λT (a �
b) for some λ in the field K .

This characterization implies that if T is thin, then its restriction to Lop is also thin.
Similarly, the functor T is flat if, and only if, both of the following conditions are

satisfied:

• for a �� b in J , NatI (T (b), T (a)) = 0,
• for a � b in J , if T (a) �= 0, then NatI (T (b), T (a)) is 1-dimensional and T (a �
b) is nonzero.

As before, this characterization implies that if T is flat, then its restriction to Lop is
also flat. ��

Thinness is important because it implies that all the elements in the collection P
are indecomposable (as their endomorphism algebras are 1 dimensional), and conse-
quently this collection is independent (see 2.1). Nevertheless we find the following
proof insightful.
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5.13 Proposition Let I and J be finite posets. If the functor T : J op → Fun(I , vectK )

is thin, then the collection P = {T (a) | a ∈ J , T (a) �= 0} is independent (see 2.1).
Proof Choose a in J . The functor RLK (a,−) = NatI (T , T (a)) = RT (a) is the
zero functor if, and only if, T (a) is the zero functor. Thus, if T (a) is nonzero, then
the surjectivity of ηa : K (a,−) → RLK (a,−) (T is assumed to be thin) implies that
ηa is a minimal cover in Fun(J , vectK ), in which case the standard 0th Betti diagram
β0RT (a) = β0RLK (a,−) : J → N has the following values:

β0RT (a)(b) =
{
1 if a = b,

0 otherwise.

Let β : J → N be a function whose support is finite and such that, if β(a) �= 0,
then T (a) �= 0. Consider the functor

⊕
a∈J T (a)β(a), which is a finite sum because J

is finite. SinceR is right adjoint, it commutes with finite direct sums and consequently
R
(⊕

a∈J T (a)β(a)
)
is isomorphic to

⊕
a∈J RT (a)β(a). According to the calculation

above, β is the 0th Betti diagram of R
(⊕

a∈J T (a)β(a)
)
. The function β is therefore

determined uniquely by the isomorphism type of the functor
⊕

a∈J T (a)β(a), which
gives the independence of T . ��

If T : J op → Fun(I , vectK ) is thin, then we also have an effective way of con-
structing (minimal) P-covers in Fun(I , vectK ) using standard (minimal) covers in
Fun(J , vectK ).

5.14 Theorem Let I and J be finite posets and T : J op → Fun(I , vectK ) a thin
functor (see 5.8). Then, for every M : I → vectK , a natural transformation C0 →
RM is a cover in Fun(J , vectK ) if, and only if, its adjoint LC0 → M is a P-cover in
Fun(I , vectK ).Moreover, if C0 → RM is aminimal cover, then its adjointLC0 → M
is a minimal P-cover.

Proof Since, for every a in J , the functor LK (a,−) is isomorphic to T (a) and L
commutes with direct sums, a functor C0 in Fun(J , vectK ) is free if, and only if, the
functor LC0 in Fun(I , vectK ) is P-free. Recall that all projectives in Fun(J , vectK )

are free.
Choose a functor M : I → vectK , and a natural transformation f : C0 → RM

with C0 a free functor in Fun(J , vectK ). Let g : LC0 → M be the adjoint of f . The
following commuting diagram describes the relation between f and g:

C0 RLC0

RM

ηC0

f

Rg

By thinness assumption, the unit ηC0 : C0 → RLC0 is an epimorphism. Therefore f
is an epimorphism if, and only if, Rg is an epimorphism, which, by Proposition 5.6,
happens if, and only if, g is a P-epimorphism. Thus f is a cover if, and only if, g is a
P-cover.
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Next we discuss minimality. Suppose that f : C0 → RM is a minimal cover. Since
we already showed that g : LC0 → M is a P-cover, it remains to show its minimality.
Let h : LC0 → LC0 be an endomorphism of g. This endomorphism fits into the
following commutative diagram:

C0 RLC0

RM

C0 RLC0

ηC0

f

Rh
Rg

ηC0

f

Rg

As before, the unit ηC0 : C0 → RLC0 is an epimorphism. The dashed arrow exists
because C0 is free. By the minimality of f , this dashed arrow is an isomorphism. The
natural transformationRh is therefore an epimorphism. By Corollary 5.7, h : LC0 →
LC0 is a P-epimorphism. Since LC0 is P-free, h being a P-epimorphism means that
h is an epimorphism. As the values of LC0 are finite dimensional vector spaces, h is
an isomorphism. The natural transformation g is therefore a minimal cover. ��

5.15 Example Considering the functor from Example 5.4

M = ,

the minimal cover of RM is

,

that is, K ((00, 10),−)⊕K ((00, 01),−) → RM . Then, byTheorem5.14, theminimal
P-cover of M is obtained by applying L (see the discussion before 5.4):

.

Theorem 5.14 has several important consequences, including the acyclicity of the
collection P:

5.16 Corollary Let I and J be finite posets. Suppose the functor T : J op →
Fun(I , vectK ) is thin. Then

(1) every functor in Fun(I , vectK ) admits a minimal P-resolution (see 2.5);
(2) the collection P = {T (a) | a ∈ J , T (a) �= 0} is acyclic (see 2.3).
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Proof (1) Every functor in Fun(J , vectK ) admits a minimal cover (see 3.5). Thus
according to Theorem 5.14 every functor in Fun(I , vectK ) admits a minimalP-cover,
and hence a minimal P-resolution.

(2) Let M be a P-projective object in Fun(I , vectK ). We need to show that it
is P-free. Consider a minimal cover C0 → RM in Fun(J , vectK ) (see 3.5). Its
adjoint LC0 → M , according to Theorem 5.14, is then a minimal P-cover of M in
Fun(I , vectK ), and therefore has to be an isomorphism since M is P-projective. Note
that LC0 is P-free, and consequently so is M . ��

To summarize, if the functor T : J op → Fun(I , vectK ) is thin, then the collectionP
is independent (see 5.13) and acyclic (see 5.16.(2)), and every functor M : I → vectK
has a minimal P-resolution (see 5.16.(1)). Thus thinness guarantees that the P-Betti
diagram βd

PM : P → N is well defined for every d ≥ 0 (see 2.6). The rest of this
section is devoted to describing methods to calculate some values of these P-Betti
diagrams. We start by looking at what we can prove for a general poset J :

5.17 Proposition Let I , J be finite posets, andT : J op → Fun(I , vectK ) and M : I →
vectK be functors.

(1) If T is thin, then β0
PM(T (a)) = β0(RM)(a) for every a in J for which T (a) �= 0.

(2) If T is flat, then βd
PM(T (a)) = βd(RM)(a) for every d ≥ 0 and every a in J for

which T (a) �= 0.

Proof Let f : C0 → RM be a minimal cover. By definition of β0(RM), the functor
C0 is isomorphic to

⊕
a∈J K (a,−)β

0(RM)(a). Recall that, for every a in J , the functor
LK (a,−) is isomorphic to T (a). This, together with the fact that L commutes with
direct sums, implies that LC0 is isomorphic to the functor

⊕

a∈J
T (a) �=0

T (a)β
0(RM)(a).

Suppose T is thin. According to Theorem 5.14, the minimal P-cover of M is given
by the adjoint g : LC0 → M of the minimal cover f : C0 → RM . We conclude that
the equality β0

PM(T (a)) = β0(RM)(a) holds for all a for which T (a) �= 0. This
shows (1).

Suppose T is flat. The natural transformations ker(g) ↪→ LC0 and g : LC0 →
M form a P-exact sequence in Fun(I , vectK ). According to Proposition 5.6, after
applyingR, the natural transformationsR(ker(g) ↪→ LC0) andRg form therefore an
exact sequence inFun(J , vectK ). SinceR is right adjoint, it preservesmonomorphisms
and henceR ker(g) is the kernel ofRg. We can then form the following commutative
diagram with the indicated arrows representing epimorphisms and monomorphisms,
and with the vertical sequences being exact:
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ker( f ) R ker(g)

C0 RLC0

RM RM

f

η

Rg

By flatness, RLC0 is free and hence, by minimality of f , the unit η is an isomor-
phism. The natural transformation represented by the top horizontal arrow in this
diagram is then also an isomorphism. Consequently, for every d ≥ 0 and every a in
J , βd(ker( f ))(a) = βd(R ker(g))(a), and we conclude with the following sequence
of equalities:

βd
PM(T (a)) = βd−1

P (ker(g))(T (a)) (Since g : LC0 → M is a minimal P − cover)

= βd−1(R ker(g))(a) (By induction)

= βd−1(ker( f ))(a) (By isomorphism)

= βd (RM)(a). (Since f : C0 → RM is a minimal cover)

This proves (2). ��
Proposition 5.17.(1) provides an algorithm to calculate the 0th P-Betti diagram of a
functor M : I → vectK when T is thin: first take RM : J → vectK , then calculate
its standard 0th Betti diagram (over the poset J ), and finally restrict the obtained 0th

Betti diagram to the a in J for which T (a) �= 0. The standard 0th Betti diagrams can
be calculated for example using radicals (see 3.5). This algorithm can be then used
inductively in order to calculate the P-Betti diagrams βd

PM of M for all d ≥ 0, as
explained in 2.6. In every step of this procedure we need to evaluate the functorR on
successive kernels (see the second step in the sequence of equalities at the end of the
proof of 5.17). We would like to avoid that step, for example by showing beforehand
that theP-Betti diagrams over I at T (a) are equal to the corresponding Betti diagrams
over J at a. This is the case if, for example, T is flat (see Proposition 5.17.(2)). How-
ever, our key examples (see Sect. 6) are not flat but thin. For an arbitrary thin functor
there could be elements a in J for which the numbers βd

PM(T (a)) �= βd(RM)(a)

differ. Such elements are called T -degenerate:

5.18 Degeneracy locus Let T : J op → Fun(I , vectK ) be thin. An element a in J
is called T -degenerate if T (a) = 0 or if T (a) �= 0 and there exists a functor
M : I → vectK and a natural number d ≥ 0, for which βd

PM(T (a)) �= βd(RM)(a).
The collection of T -degenerate elements is called degeneracy locus of T .

If T is flat, then its degeneracy locus is given by {a ∈ J | T (a) = 0} (see 5.17.(2)).
For an arbitrary thin functor T we do not have an explicit description of its degeneracy
locus. However, we can approximate it when J is an upper semilattice.

5.19 Theorem [Main result, first half] Let I be a finite poset, J a finite upper semi-
lattice, and T : J op → Fun(I , vectK ) a thin functor. Then the degeneracy locus of T

123



Foundations of Computational Mathematics

(see 5.18) is contained in the set

⋃

a∈J
d≥0

supp(βd ker ηa) ⊆ J .

Proof Write G := ⋃a,d supp(β
d ker ηa). Let us prove the contraposition, that for

M : I → vectK a functor, a in J \G, and d ≥ 0,we haveT (a) �= 0 andβd
PM(T (a)) =

βd(RM)(a). Note that if T (a) = 0, then supp(β0 ker ηa) = {a}, so the first statement
is true. We proceed by induction on d ≥ 0 for the second statement. The case d = 0
is the statement of Proposition 5.17. Now let d > 0.

We proceed exactly as in the proof of Proposition 5.17. Let M : I → vectK be a
functor and consider the following commutative diagram:

ker( f ) R ker(g)

C0 RLC0

RM RM

f

η

Rg

where f is a minimal cover in Fun(J , vectK ), g is its left adjoint, which according
to Theorem 5.14 is a minimal P-cover in Fun(I , vectK ), the indicated arrows are
epimorphisms and monomorphisms, and the vertical sequences are exact. The thin-
ness assumption implies that the unit natural transformation η (the middle horizontal
arrow in the above diagram) is an epimorphism. This, together with the exactness of
the vertical sequences, implies that the natural transformation represented by the top
horizontal arrow is also an epimorphism. Also by exactness of the vertical sequences,
the kernel of this natural transformation is isomorphic to ker(η). In this way we obtain
an exact sequence in Fun(J , vectK ) of the form

0 ker(η) ker( f ) R ker(g) 0.

Let us show that for all a in J\G and d ≥ 0, βd(ker( f ))(a) = βd(R ker(g))(a). Since
C0 is free and bothR andL commute with direct sums, ker(η) is isomorphic to a direct
sum of functors of the form ker(ηa : K (a,−) → RLK (a,−)). By definition of G,
we have the containment supp(βd ker(η)) ⊆ G for every d ≥ 0. Thus, for every d ≥ 0
and a in J \G, βd(ker(η))(a) = 0. Since J is an upper semilattice by assumption, we
apply Corollary 3.9 to deduce that βd(ker( f ))(a) = βd(R ker(g))(a).

We conclude with the following sequence of equalities:

βd
PM(T (a)) = βd−1

P (ker(g))(T (a)) (Since g : LC0 → M is a minimal P-cover)

= βd−1(R ker(g))(a) (By induction)

= βd−1(ker( f ))(a) (By our previous claim)
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= βd (RM)(a). (Since f : C0 → RM is a minimal cover)

��
With some additional hypotheses on the parameterization, we get an exact descrip-

tion of the degeneracy locus.

5.20 Corollary [Main result, second half] Let I be a finite poset, J a finite upper semi-
lattice, and T : J op → Fun(I , vectK ) a thin functor. Suppose that, for all a in J , the
sublattice 〈supp(β0 ker ηa)〉 is contained in {b ∈ J | T (b) = 0}. Then the degeneracy
locus of T is {b ∈ J | T (b) = 0}, which is equal to ∪a∈J 〈supp(β0 ker ηa)〉.

Explicitly, for every functorM : I → vectK , every element a in J such that T (a) �=
0, and every d ≥ 0,

βd
PM(T (a)) = dim Hd(KaRM).

Proof For a in J and d ≥ 0, supp(βd ker ηa) is contained in 〈supp(β0 ker ηa)〉, which
itself is contained in {b ∈ J | T (b) = 0} by hypothesis. By Theorem 5.19, we deduce
that the degeneracy locus of T is also contained in {b ∈ J | T (b) = 0}. In fact,
they are equal, and they are both equal to ∪a∈J 〈supp(β0 ker ηa)〉. By definition of the
degeneracy locus and Theorem 3.8 respectively, for all M : I → vectK , a in J such
that T (a) �= 0, and d ≥ 0, we get the equalities

βd
PM(T (a)) = βdRM(a) = dim Hd(KaRM).

��
5.21 Example Our running Example 5.1 satisfies the conditions of Corollary 5.20. This
is proved in general for lower hooks in Example F, but here we can check this by hand:
for instance, for a = (00, 10), we computed the unit natural transformation ηa in 5.10.
We find that

ker ηa = ,

and so supp(β0 ker ηa) = {(10, 10)} = 〈supp(β0 ker ηa)〉, and from 5.1 we know that
T ((10, 10)) = 0. We reason similarly for all other a in J .

6 Examples

This last section is devoted to examples of independent and acyclic collections together
with calculations of the induced relative Betti diagrams in the category Fun(I , vectK ),
where (I ,≤) is a finite poset. Our strategy for performing these calculations is to find
an appropriate parameterization of the collection via an upper semilattice J and a
functor T : J op → Fun(I , vectK ) as explained in Sect. 5.
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Example A. Singleton

We start with the simplest nonempty example. Choose a functor P0 : I → vectK and
consider the collection {P0} consisting only of this chosen functor. The simplest way
to parameterize this collection is to consider the poset [0] with a single element 0 and
the functor T : [0]op → Fun(I , vectK ) sending 0 to P0.

We do a case analysis by the dimension of NatI (P0, P0). If dim NatI (P0, P0) = 0,
then P0 = 0 and the collection P = {T (a) | a ∈ [0], T (a) �= 0} is empty. For every
functor M : I → vectK , 0 → M is a minimal P-resolution, and the Betti diagrams of
M are therefore given by the empty function ∅ → N.

If dim NatI (P0, P0) = 1, then the functor T is flat (explicitly, K (0,−) →
NatI (P0, P0) is an isomorphism). For every functor M : I → vectK , the minimal
cover of RM = NatI (P0, M) is the identity, so by Theorem 5.14, the minimal
P-cover of M is its left adjoint, which is the evaluation natural transformation
P0 ⊗K NatI (P0, M) → M . By Proposition 5.17:

βd
PM(P0) =

{
dimNatI (P0, M) if d = 0,

0 if d > 0.

If dim NatI (P0, P0) > 1, then the functor T is not thin, and we observe for instance
that the minimal cover of RP0 is adjoint to the P-cover P0 ⊗K NatI (P0, P0) → P0,
which is not the minimal P-cover of P0.

We now proceed with the remaining examples, studying homological algebra rela-
tive to various collections of functors in Fun(I , vectK ). In each example, to the extent
that is possible, we proceed as follows.We start by defining a collection and itsparam-
eterization by a functor T : J op → Fun(I , vectK ). We then check if the functor T is
flat or thin.

• If T is flat, then we can apply Proposition 5.17.(2).
• If T is thin, then our aim is to apply Corollary 5.20. To do this we need to verify the
other conditions of the corollary, namely that the poset J is an upper semilattice
and that T sends the sublattice 〈supp(β0 ker ηa)〉 to 0 for all a in J . We call this
latter assumption the degeneracy condition.

In both cases, we conclude that we can compute Betti diagrams relative to P from
Koszul complexes over J . To do this effectively, we characterize parents in J and
then give an explicit formula for Koszul complexes. Then, for every functor M : I →
vectK , element a in J such that T (a) �= 0, and d ≥ 0, we have the equality

123



Foundations of Computational Mathematics

βd
PM(T (a)) = dim Hd(KaRM).

Finally, we compute an explicit relative projective resolution of the following functor
M0 on a 6 × 6 grid, whose minimal standard resolution is illustrated below:

M0

As in Example 5.1, the functorM0 illustrated here is equal to K on its support (vertices
in the shaded area) and 0 elsewhere,with all the transition functionsM0(v ≤ w) having
maximal rank.

Example B. All Subfunctors

Collection

We consider the collection of all nonzero elements in Sub(I ), the set of all subfunctors
of the constant functor KI (see Sect. 4).

Parameterization

Recall that there is a poset relation� on Sub(I ) (see 4.6) such that F � G if, and only
if, supp(F) ⊇ supp(G), which is equivalent to supp(F) ⊇ supp(β0 G). According
to 4.5 and 4.6, the poset (Sub(I ),�) can be identified with either the opposite of the
inclusion poset (Up(I ),⊆) of upsets of I , or with the poset (Anti(I ),�) of antichains
in I . In particular (Sub(I ),�) is an upper semilattice.

Define T : (Sub(I ),�)op → Fun(I , vectK ) to be the identity on objects, and to
map a relation F � G to the corresponding natural transformation G ⊆ F . The
collection P = {T (F) | F ∈ Sub(I ), T (F) = F �= 0} consists of all nonzero
subfunctors of KI .

Flatness

This requires the additional assumption of I having a unique maximal element.

6.1 Proposition Let I be a finite poset with a uniquemaximal element. Then the param-
eterization T is flat.

Proof Let F,G ⊆ KI benonzero subfunctors.By [19, Prop. 3.10(2)], the dimensionof
the space Nat(G, F) is equal to the number of connected components of supp(G) fully
contained in supp(F). By hypothesis of I having a unique maximal element, supp(F)

and supp(G) eachhaveonly one connected component, so dim(Nat(G, F)) = 1 if F �
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G and 0 otherwise. We deduce that the unit natural transformation ηF : K (F,−) →
RLK (F,−) is an isomorphism, and so we conclude that T is flat. ��

According to Proposition 5.17.(2), the flatness of T gives the equality βd
PM(F) =

βd(RM)(F) for every functor M : I → vectK , nonzero subfunctor F ⊆ KI , and
d ≥ 0. The P-Betti diagrams over I can be therefore expressed as the standard Betti
diagrams over the upper semilattice (Sub(I ),�). Thus these standard Betti diagrams
can be calculated using Koszul complexes, once we have identified and enumerated
parents and their meets in (Sub(I ),�) (see 5.20).

Parents

We identify (Sub(I ),�) with the opposite poset of upsets Up(I )op via the map F �→
supp(F) (see 4.5). For a subset S of I , denote by Sc its complement in I and byMax(S)

the set of maximal elements of S. The sets of parents in Up(I )op can be described as
follows:

6.2 Lemma The set of parents of U in Up(I )op is {U ∪ {v} | v ∈ Max(Uc)}.

Proof Let v be an element of Max(Uc). The set U ∪ {v} is indeed an upset because
every element greater than v is not inUc, and hence it is inU . SinceU ∪ {v} contains
U , the former is indeed a lower bound of the latter in Up(I )op. Finally, since there is
only a one-element difference, U ∪ {v} is a parent of U .

Conversely, let V be a parent of U in Up(I )op. Then U is properly contained in
V . Let v be a maximal element in V \U . Since V is an upset, v is also an element of
Max(Uc), and consequent V = U ∪ {v}. ��

Recall that for an upsetU of I , the symbol KU denotes the unique subfunctor of KI

for which supp(KU ) = U . Thus, in terms of subfunctors, according to Lemma 6.2, the
parents of F ⊆ KI in the poset (Sub(I ),�) are subfunctors of the form Ksupp(F)∪{v} ⊆
KI for v in Max(supp(F)c).

Koszul Complexes

For M : I → vectK and F ⊆ KI , the Koszul complex of RM : Sub(I ) → vectK at
F is therefore given in degree d ≥ 0 by

(KFRM)d =
⊕

S⊆Max(supp(F)c)
|S|=d

Nat(Ksupp(F)∪S, M),

with the differentials as defined in 3.7. The value βd
PM(F) is then given by the

dimension of the d th homology of this chain complex. For example, in the case I is
the 6 × 6 grid, the relative projective resolution of M0 can be illustrated as
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Since T : Sub(I )op → Fun(I , vectK ) is flat, so are all of its restrictions (see 5.12).
Thus one way of producing examples of flat functors for which we can use Koszul
complexes to calculate the associated relative Betti diagrams is to find subposets of
Sub(I ) which are upper semilattices (not necessarily sublattices of (Sub(I ),�)) and
for which we can identify parents of its elements and meets of subsets of parents that
are bounded below. The next example is an illustration of this strategy.

Example C. Translated Functors

Collection

Suppose the poset (I ,≤) is the product {0 < · · · < n}r , which is a distributive lattice.
Its elements will be denoted as words w1 · · · wr . Fix an antichain S in Anti(I ) and
define I − S := {v ∈ I | S + v ⊆ I }. The set I − S consists of the elements v in I
for which all the coordinates of t + v are bounded by n for every s in S. Thus

I − S =
r∏

i=1

{0, . . . , n − max{si | s ∈ S}} ⊆ {0, . . . , n}r = I .

Moreover, the subposet (I − S) ⊆ I is a sublattice.
For v in I − S, the subset S + v ⊆ I is also an antichain in I . The associated

subfunctor K (S+v,−) ⊆ KI is called the translation of K (S,−) ⊆ KI by v (see 4.6
for the notation). In this example we consider the collection of all such translations
P := {K (S + v,−) | v ∈ I − S}.

Parameterization

The lattice I − S provides a natural choice for parameterizing this collection because,
for v and w in I − S, the inclusion K (S + v,−) ⊆ K (S + w,−) exists if, and only
if, v ≥ w in I . In particular, K (S + v,−) = K (S + w,−) if, and only if, v = w. Set
T : (I − S)op → Fun(I , vectK ) to be the functor which maps v in (I − S)op to the
translation K (S + v,−).

Flatness

This functor is flat by Proposition 5.12, since it can be identified with the restriction of
the functor T discussed in Example B to the subposet {K (S + v,−) | v ∈ I − S} ⊆
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Sub(I ). Although the inclusion of posets may fail to be a sublattice inclusion, the poset
I − S is a lattice (since it is a sublattice of I ) and consequently the P-Betti diagrams
can be calculated via Koszul complexes.

Parents

For every element v of (I − S) ⊆ I , the parents of v in I are also in I − S. Thus the
parents of v in I − S are the same as those of v in I .

Koszul Complexes

For M : I → vectK and v in I − S, the Koszul complex of RM : (I − S) → vectK
at v is given in degree d ≥ 0 by

(KvRM)d =
⊕

T⊆UI−S(v)
|T |=d

Nat(K (S +∧(I−S) T ,−), M),

with differentials as defined in 3.7. Finally, the value βd
PM(K (S + v,−)) is given by

the dimension of the d th homology of this chain complex. For example, if we choose
I = {0 < · · · < 5}2 and S = {02, 10} ⊂ I , then the projective resolution of M0
relative to translations of the subfunctor K ({02, 10},−) ⊆ KI can be illustrated as

where the double lines indicate summands with multiplicity 2.

Example D. SpreadModules

Collection

We consider the following collection:

C := {coker(G ⊆ F) | G ⊆ F ⊆ KI }.

Functors in this collection have been studied in other works. They are exactly the
spread modules as defined in [5]. Recall that spread modules are defined using two
antichains S and T in I such that, for all s in S there exists t in T such that s ≤ t , and
for all t in T there exists s in S such that s ≤ t . The spread with sources S and sinks
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T is the subset of I

[S, T ] := {v ∈ I | ∃s ∈ S, ∃t ∈ T , s ≤ v ≤ t}.

The spread module with sources S and sinks T is then defined as the functor
K[S,T ] : I → vectK where, for all v ≤ w in I ,

K[S,T ](v) =
{
K if v ∈ [S, T ],
0 otherwise,

K[S,T ](v ≤ w) =
{
idK if v,w ∈ [S, T ],
0 otherwise.

6.3 Lemma The following statements about M : I → vectK are equivalent:

(1) M is isomorphic to a spread module;
(2) M is isomorphic to coker(G ⊆ F) for some G ⊆ F ⊆ KI ;
(3) For all v ≤ w in I , dim(M(v)) ≤ 1 and M(v ≤ w) is of maximal rank.

Proof (1 ⇒ 2) If M is isomorphic to a spread module K[S,T ], then there is a surjection
α : K (S,−) → M , and hence M is isomorphic to coker(ker(α) ⊆ K (S,−)).
(2 ⇒ 3) Let v ≤ w be elements of I . Since F surjects onto coker(G ⊆ F), we have
dim(M(v)) ≤ 1. IfM(v) = 0 orM(w) = 0, thenM(v ≤ w) is of full rank.Otherwise,
v and w are outside of the support of G, which is an upset, and so M(x) ∼= F(x) for
all v ≤ x ≤ w, and so M(v ≤ w) is of full rank.
(3 ⇒ 1) Let S be the minimal elements and T the maximal elements of supp(M),
and consider the spread module K[S,T ]. Note that, for v ≤ w in I , if M(v ≤ w)

is nonzero, then it is an isomorphism of 1-dimensional vector spaces. Thus, for any
two elements v,w in a connected component of supp(M), there exists an isomor-
phism ϕv,w : M(v) → M(w) that commutes with the transition maps of M . This
isomorphism can be defined as a zigzag composition of transition maps.

LetC1, . . . ,Ck be the connected components of supp(M). For each i , fix an element
vi ∈ Ci , and define a natural transformation f : M → K[S,T ] by

f (v) =
{

ϕvi ,v(1)idK if v ∈ Ci , i ∈ {1, . . . , k},
0 otherwise,

We conclude by observing that f is an isomorphism. ��

Parameterization

Consider the following poset equipped with the product order:


 := {(F,G) ∈ Sub(I )2 | F � G}

The functor Q : 
op → Fun(I , vectK ) which sends (F,G) to coker(G ⊆ F) is a
natural parameterization of the collection C.
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Non-Thinness

The functorQ in general is not thin, as the following proposition illustrates, and hence
we cannot apply Corollary 5.20.

6.4 Proposition Suppose I is a finite poset containing two incomparable elements v

andw. Then the collection of nonzero elements in C is not independent andQ : 
op →
Fun(I , vectK ) is not thin.

Proof Let F,G, H : I → vectK be the unique functors in C whose supports are equal
to the following spreads: supp(F) = {v}, supp(G) = {w}, and supp(H) = {v,w}.
Since H is isomorphic to F ⊕ G, the collection of nonzero elements in C cannot be
independent. Consequently Q cannot be thin (see Proposition 5.13). ��

Although Q is not thin, it can be used to construct thin functors. Our strategy is to
use Proposition 5.9 to look for thin restrictions of Q to subposets of 
.

Example E. Single-Source SpreadModules

Collection

We consider the following subcollection of C (see Example D):

C0 := {F ∈ C | F has exactly one generator}.

Note that all the functors in C0 are of the form coker(G ⊆ K (v,−)) for some v in
I . Thus functors in C0 are isomorphic to spread modules K[S,T ] with |S| = 1. These
spread modules are studied in [5] and are called single-source spread modules.

Parameterization

The restriction of Q : 
op → Fun(I , vectK ) (see Example D) to the following sub-
poset of 
 is a natural parameterization of the collection C0:


0 := {(K (v,−),G) ∈ Sub(I )2 | K (v,−) � G and v in I }.

Let Q0 : 

op
0 → Fun(I , vectK ) denote this restriction.

Thinness

The parameterizationQ0 satisfies the conditions of Proposition 5.9. Indeed, by defini-
tion, the functor Q0(K (v,−),G) = coker(G ⊆ K (v,−)) has at most one generator,
and if the functor is nonzero, then its generator is at v. Moreover, we can check that if
(K (v,−),G) �� (K (v′,−),G ′) in
0, thenNat(Q0(K (v′,−),G ′),Q0(K (v,−),G))

= 0. Consequently,Q0 is thin andwe can utilize Proposition 5.17.(1) to express the 0th
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C0-Betti diagrams of functors indexed by I in terms of the standard 0th Betti diagrams
of functors indexed by 
0.

In order to apply Corollary 5.20 to use Koszul complexes to calculate the higher
C0-Betti diagrams, we need to check that the poset 
0 is an upper semilattice and that
the functor Q0 sends 〈supp(β0 ker ηa)〉 to 0 for all a in 
0.

Upper Semilattice

Suppose (I ,≤) is an upper semilattice. Then 
0 is also an upper semilattice. To
describe the join operation and the parents of elements in 
0, it is convenient to
identify it with the following subposet of the product I × Up(I )op


0 ∼= {(v,U ) ∈ I × Up(I )op | v ≤ u for every u in U }

by assigning to an element (K (v,−),G) in 
0, the pair (v, supp(G)). In this poset
(v1,U1) � (v2,U2) if and only if v1 ≤ v2 andU1 ⊇ U2, and hence the join of (v1,U1)

and (v2,U2) in 
0 is given by (v1 ∨ v2,U1 ∩U2).

Degeneracy

By definition, for all a = (v,U ) in 
0, the support of the kernel of the unit
ηa : K (a,−) → RLK (a,−) consists of the elements b in 
0 such that b � a
and RLK (a, b) = Nat(Q0(b),Q0(a)) = 0. Thus the elements in supp(β0 ker ηa),
which are the minimal elements in supp(ker ηa), are of the form (u, (u ≤ I )) where
u is a minimal element of U . Note further that Q0(v

′, v′ ≤ I ) = 0 for every v′ in I .
Since the collection of elements in 
0 of the form (v′, (v′ ≤ I )) is closed under joins,
we conclude that Q0 sends every element of 〈supp(β0 ker ηa)〉 to 0.

Parents

The poset 
0 has the product order and Lemma 6.2 gives the parents of upsets, so the
parents of (v,U ) in 
0 are of the form

U
0(v,U ) = (UI (v) × {U }) ∪ {(v,U ∪ {w}) | w ∈ (v ≤ Max(Uc))},

where (v ≤ Max(Uc)) is the set of maximal elements of Uc bounded below by v.

Koszul Complex

For M : I → vectK the value of the functor RM : 
0 → vectK at (v,U ) in 
0 can
be identified with

RM(v,U ) = Nat(coker(KU ⊆ K (v,−)), M) =
⋂

u∈Min(U )

ker M(v ≤ u),
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where the second equality comes from identifying every elementϕ inNat(coker(KU ⊆
K (v,−)), M) with its value ϕ(v)(1) in

⋂
u∈Min(U ) ker M(v ≤ u).

The Koszul complex ofRM at (v,U ) in degree d ≥ 0 can now be identified with

(K(v,U )RM)d =
⊕

S⊆UI (v)
T⊆(v≤Max(Uc))

|S|+|T |=d
S has lower bound

⋂

u∈Min(U∪T )

ker M(
∧

(I≤v) S ≤ u),

with differentials as defined in 3.7. Finally, we obtain the relative Betti diagrams of
M from the homology of this chain complex. For example, the relative projective
resolution of M0 = coker(K{04,32,40} ⊆ K (00,−)) is itself, since it is already a
single-source spread module:

Example F. Lower Hooks

Collection

Let (I ,≤) be a finite upper semilattice.We now consider the collection of lower hooks,
originally defined in [6], which we define as the subcollection of C (see Example D)

CL := {coker(K (w,−) ⊆ K (v,−)) | K (w,−) ⊆ K (v,−) ⊆ KI }.

Parameterization

Let (J ,�) be the poset {(v,w) | v,w ∈ I , v ≤ w} equipped with the product order:
(v,w) � (v′, w′) in J if and only if v ≤ v′ and w ≤ w′ in I . We identify J with
the subposet of the poset 
0 (see Example E) consisting of the pairs (v,w ≤ I ) for
(v,w) in J . Via this identification, we parameterize lower hooks by the restriction
of the functor Q0 : 


op
0 → Fun(I , vectK ) (see Example E) to J , and denote it by

T . Explicitly, for a = (v,w) in J , the functor T (a) is given by coker(K (w,−) ⊆
K (v,−)).

Thinness

The functor T is thin by Proposition 5.12, since it is a restriction of the thin functor
Q0.
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Upper Semilattice

The poset J is a finite upper semilattice, inheriting the structure from I . Note however
that J is not a sublattice of 
0.

Degeneracy

For all a = (v,w) in J , the sublattice 〈supp(β0 ker ηa)〉 ⊆ J is sent to 0 by T .
Indeed, the support of the kernel of the unit ηa : K (a,−) → RLK (a,−) consists of
the elements b of J such that b � a and RLK (a, b) = Nat(T (a), T (b)) = 0. This
support has a single minimal element, (w,w), which is therefore also the only element
of supp(β0 ker ηa). Thus, in this case, 〈supp(β0 ker ηa)〉 = {(w,w)}, which is sent to
0 by T .

By Corollary 5.20, we conclude that the Betti diagrams relative to lower hooks can
be computed via Koszul complexes over J .

Parents

First, for all (v,w) in J , we have

UJ (v,w) = (UI (v) × {w}) ∪ ({v} × (v ≤ UI (w))),

where (v ≤ UI (w)) is the subset of UI (w) of elements greater or equal to v.

Koszul Complexes

Next, we identifyRM(v,w) = Nat(T (v,w), M) with ker(M(v ≤ w)). Thus we can
compute the Koszul complex of RM at (v,w) in degree d ≥ 0 as

(K(v,w)RM)d =
⊕

S⊆UI (v), T⊆(v≤UI (w))
|S|+|T |=d

S has lower bound

ker M(
∧

(I≤v) S ≤∧(I≤w) T ),

with differentials as defined in 3.7. Finally, we obtain the relative Betti diagrams of
M from the homology of this chain complex.

Variation on Lower Hooks

Now consider the subcollection of C

C∞ := CL ∪ {coker(0 ⊆ K (v,−)) | v ∈ I }.

We parameterize this by the finite upper semilattice J∞ = {(v,w) | v,w ∈ I ∪
{∞}, v ≤ w}, where ∞ is greater than every element of I . The upper semilattice J is
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a sublattice of J∞. We extend the functor T : J op → Fun(I , vectK ) to J∞ by sending
(v,∞) to K (v,−) and denote it by the symbol T∞. The conditions for Corollary 5.20
also hold for this extension. In addition, C∞-exactness implies exactness and rank
additivity [6, Prop. 4.3]: given a short C∞-exact sequence 0 → M → N → L → 0
and v ≤ w in I , we have rank N (v ≤ w) = rank M(v ≤ w) + rank L(v ≤ w).

There is a similar formula for Koszul complexes where we identify RM(v,∞)

with M(v). For both of these examples (T and T∞), the relative projective resolution
of M0 is

As observed above, this sequence is rank additive.

Relative Projective Dimension

By [9, Corollary 10.18] we can deduce an upper bound for the projective dimension
of a functor in Fun(J , vectK ), i.e. the maximal length of its minimal projective res-
olution. By Corollary 5.20, the maximal length of a minimal projective resolution in
Fun(I , vectK ) relative to lower hooks will have the same upper bound. Recent work
[7] proposes a tighter bound in the case where I is a finite lattice. Here we present a
proof of this result using Koszul complexes.

6.5 Proposition [cf. [7, Theorem 5.18]] Let I be a finite lattice such that every its
element has at most n parents. Then the projective dimension relative to lower hooks
of every functor M : I → vectK is bounded above by 2n − 2.

Proof By [9,Corollary 10.18], every functorM in Fun(I , vectK ) has projective dimen-
sion at most n. For the same reason and by observing that J is also a lattice where every
element has at most 2n parents, a functor in Fun(J , vectK ) has projective dimension
at most 2n. In particular, this is the case for the functor RM : J → vectK .

Let π1, π2 : J → I be the functors defined by π1(v,w) = v and π2(v,w) = w.
Consider the compositions Mπ1 and Mπ2 in Fun(J , vectK ) and the natural transfor-
mation α : Mπ1 → Mπ2 whose component at any (v,w) in J is M(v ≤ w). Observe
that there is an exact sequence of functors 0 → RM = ker(α) ↪→ Mπ1

α−→ Mπ2.
Now let C → M be a minimal free resolution in Fun(I , vectK ). For i = 1, 2,
the sequence Cπi → Mπi in Fun(J , vectK ) is also exact because exactness is
defined componentwise. Moreover, for u in I and (v,w) in J , the vector space
(K (u,−)π1)(v,w) is nonzero if, and only if, u ≤ v, or equivalently (u, u) ≤ (v,w).
Thus, K (u,−)π1 is isomorphic to the free functor K ((u, u),−). As a consequence,
the sequence Cπ1 → Mπ1 is a free resolution in Fun(J , vectK ), and so Mπ1 has pro-
jective dimension at most n. Analogously, K (u,−)π2 coincides with the free functor
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K ((e, u),−), where e is the global minimum of the lattice (it exists because I is finite).
We have again that the sequence Cπ2 → Mπ2 is a free resolution in Fun(J , vectK ),
and Mπ2 has projective dimension at most n.

Now consider the exact sequence 0 → RM → Mπ1 → im(α) → 0 and let (v,w)
be an element in J . Since the functorK(v,w) is exact, the sequence 0 → K(v,w)RM →
K(v,w)Mπ1 → K(v,w)im(α) → 0 is also exact. As we observed, the elements in the
poset J have at most 2n parents, so we obtain the following long exact sequence:

0 H2n(K(v,w)RM) H2n(K(v,w)Mπ1) H2n(K(v,w)im(α))

H2n−1(K(v,w)RM) H2n−1(K(v,w)Mπ1) H2n−1(K(v,w)im(α)) · · ·

However, as seen above the 2nth Betti diagram β2n(Mπ1) : J → N is identically
0, and hence H2n(K(v,w)Mπ1) = 0. We deduce the equalities β2nRM(v,w) =
dim H2n(K(v,w)RM) = 0. Similarly, consider the short exact sequence 0 →
im(α) → Mπ2 → Q → 0 where Q := Mπ2/im(α). As before, it leads to a
long exact sequence

0 −→ H2n(K(v,w)im(α)) −→ H2n(K(v,w)Mπ2) −→ H2n(K(v,w)Q) −→ · · ·

Consequently, H2n(K(v,w)Mπ2) = 0, and so H2n(K(v,w)im(α)) = 0. Moreover,
considering the first long exact sequence, we also have H2n−1(K(v,w)π1) = 0, and so
β2n−1RM(v,w) = dim H2n−1(K(v,w)RM) = 0.

The functorRM therefore has projective dimension at most 2n − 2, and so M has
projective dimension relative to lower hooks at most 2n − 2. ��

Example G. Rectangles

We now illustrate an example where the assumptions of Corollary 5.20 fail.

Collection

Let (I ,≤) be a finite upper semilattice. We define the rectangle from v to w as the
spread [v,w] := {x ∈ I | v ≤ x ≤ w} of I (see Example D) and we consider the
subcollection of C of rectangle functors:

CR := {K[v,w] | v,w ∈ I , v ≤ w}.

Parameterization

Let (J ,�) be the poset {(v,w) | v,w ∈ I , v ≤ w} with the product order, as in the
example of lower hooks (see Example F). This time, we identify J with the subposet
{(v, ker(K (v,−) → K (−, w)∗) | v ≤ w} of 
0, where the functor K (−, w)∗ is
equal to K at u, when u ≤ w, and 0 otherwise, with transition functions of full rank.
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Via this identification, we parameterize rectangle functors by the restriction of the
functor Q0 : 


op
0 → Fun(I , vectK ) (see Example E) to J , and denote it by T .

Thinness

The functor T is thin by Proposition 5.12, since it is a restriction of the thin functor
Q0.

Upper Semilattice

The poset J is a finite upper semilattice just as in the previous example.

ProblemWith Degeneracy Locus

Let I be the finite grid {0 < · · · < 5}2 with the product order and M0 : I → vectK a
functor. Choose a := (04, 24) in J . It has has two parents, (03, 24) and (04, 14). The
Koszul complex of RM0 at a is therefore

Nat(T (03, 14), M0) → Nat(T (03, 24), M0) ⊕ Nat(T (04, 14), M0)

→ Nat(T (04, 24), M0),

which simplifies to 0 → Nat(T (03, 24), M0) = K → 0, and so β1RM0(a) =
1. However, in Example H below we compute, using a different parameterization
of the collection CR , the relative Betti diagrams of M0. In particular, we determine
β1
PM0(T (a)) = 0, hence β1

PM0(T (a)) �= β1RM0(a). The reason for this non-
equality is that T does not send the sublattice 〈supp(β0 ker ηa)〉 to 0 for all a in J . In
fact, T does not send any element of J to 0, but sometimes ker ηa is nonzero, and so
the support of β0 ker ηa must be sent to nonzero functors.

Example H. Rectangles on a Grid

We can amend the example of rectangles (see Example G) when we have more control
over the poset I . In this example, we consider I := {0 < · · · < n}r a finite grid with
the product order, denoted by ≤. For v,w in I , we write v + (w − v)i for the element
(v1, . . . , vi−1, wi , vi+1, . . . , vr ).

Collection

We consider the same collection CR as in Example G.
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Parameterization

Let (J ,�) be the poset {(v,w) | v,w ∈ I , v ≤ w} with the product order, as in the
previous example. This time, we identify J with the subposet

{(
v,

r⋃

i=1

(v + (w − v)i ≤ I )
) ∣
∣
∣ v,w ∈ I , v ≤ w

}

of 
0 (see Example E). Via this identification, we parameterize rectangle functors by
the restriction of the functor T : 


op
0 → Fun(I , vectK ) (see Example E) to J , and

denote it by T . Explicitly, T maps (v,w) to the functor coker(
⊕r

i=1 K (v + (w −
v)i ,−) → K (v,−)).

Thinness

The functor T is thin by Proposition 5.12, since it is a restriction of the thin functor
Q0.

Upper Semilattice

The poset J is a finite upper semilattice just as in the previous example.

Degeneracy

For all a = (v,w) in J , T sends the sublattice 〈supp(β0 ker ηa)〉 to 0. Indeed, the
support of the kernel of the unit ηa : K (a,−) → RLK (a,−) consists of the elements
b in J such that b � a and RLK (a, b) = Nat(T (b), T (a)) = 0. Thus the elements
of supp(β0 ker ηa), which are the minimal elements of supp(ker ηa), are of the form
(v+(w−v)i , w)where i ∈ {1, . . . , r}. The sublattice 〈supp(β0 ker ηa)〉 then consists
of the elements (vX , w), for every nonempty subset X of {1, . . . , r}, where, for all i
in {1, . . . , r}, the element vX in I is defined by

(vX )i :=
{

wi if i ∈ X ,

vi otherwise.

Note that for (v′, w′) in J , T (v′, w′) = 0 if, and only if, there exists i ∈ {1, . . . , r}
such that v′

i = w′
i . As a consequence, T sends the elements of the sublattice

〈supp(β0 ker ηa)〉 to 0.
By Corollary 5.20, we can compute Betti diagrams relative to rectangles via Koszul

complexes.

123



Foundations of Computational Mathematics

Parents

Parents are exactly the same as for lower hooks (see Example F).

Koszul Complexes

For (v,w) in J , we can identifyRM(v,w) = Nat(T (v,w), M)with
⋂r

i=1 ker M(v ≤
v + (w − v)i ). Thus we can compute the Koszul complex ofRM at (v,w) in degree
d ≥ 0 as

(K(v,w)RM)d =
⊕

S⊆UI (v)
T⊆(v≤UI (w))

|S|+|T |=d

r⋂

i=1

ker M (vS ≤ vS + (wT − vS)i ) ,

where vS :=∧(I≤v) S and wT :=∧(I≤w) T , and with differentials as defined in 3.7.
We obtain the relative Betti diagrams of M from the homology of this chain complex.
For example, the relative projective resolution of M0 is
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