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Realising the Benefits of Dynamic DNNs on Reconfigurable Hardware

by Anastasios Dimitriou

Deep Neural Networks (DNNs) are increasingly capable of solving many cognitive

problems, with countless everyday life applications such as autonomous driving, voice

assistants, medical diagnoses, etc. Their increased computational, memory, and energy

demands led to the widespread adoption of powerful GPU cloud servers for their ex-

ecution. However, there is an increasing interest in moving the computation of DNNs

to the edge. By processing data locally, the dependency on cloud infrastructure is re-

duced, thereby decreasing the data transmission load, improving privacy and security,

and increasing the availability of networks in environments with limited internet con-

nectivity. However, edge devices (IoT devices, mobile phones, etc.) are typically re-

source restricted in processing power, memory, and power consumption. This research

aims to contribute towards enabling the deployment of complex DNNs on resource-

restricted devices.

Field Programmable Gate Arrays (FPGAs) have been proven to be very effective in

accelerating neural networks due to their configurability, parallelization capabilities,

and low energy consumption. Nonetheless, attempting to map modern DNNs onto

them without compression is not feasible. Dynamic DNNs are approaches that go be-

yond the limits of static model compression by tuning computational workload to the

difficulty of inputs on a per-sample basis. This thesis first explores the challenges intro-

duced by this DNN approaches when their FPGA implementation is targeted. Three

limiting factors were identified: the lack of software libraries and frameworks, the lack

of hardware modules and frameworks, and the dependencies on intermediate feature

maps.

Having identified these challenges, the next contribution of this thesis is a first real-

isation of dynamic networks on FPGAs. The design followed the standard architec-

ture and achieved a minimum of 3.2x faster execution over a Jetson embedded device

and comparable latency to a CPU/GPU system while maintaining very low energy

consumption (at least 1.8x less than the Jetson). This highlighted the feasibility and
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efficiency of deploying the dynamic network on FPGAs. Nonetheless, FPGAs are in-

herently parallel devices, and leveraging that, the third contribution of the thesis is

a second design approach that explores the simultaneous execution of the two main

components of dynamic networks. It addressed two main challenges concerning the

dependencies on intermediate feature maps and further accelerated the execution of

the dynamic network by up to 23%.

Finally, targeting the versatility and reconfigurability of FPGAs, the last contribution

of the thesis is the exploration of two confidence-controlled dynamic schemes. Util-

ising control values generated by dynamic networks, the first dynamically selects the

location of the exit points within the network, and the second the applied quantisation

level. Both approaches enhance the adaptability and performance of the early-exit dy-

namic DNN, achieving an 18% reduction in computations and up to a 21.9% reduction

in latency, respectively, with minimal accuracy drops.
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Chapter 1

Introduction

Deep Neural Networks (DNNs) have emerged to be a transformative and very effec-

tive technology, revolutionising various cognitive applications such as computer vision

[1], [2], voice recognition [3], natural language processing [4] etc. Characterized by

their ability to model complex patterns, modern DNNs, such as ResNet [2], DenseNet

[5], VGG [6], GoogleNET [7] and Transformers [4] have achieved unprecedented per-

formance, while recent research on Neural Architecture Search (NAS) [8], [9] enables

easier and faster design of even more powerful and complex structures. Their success

derives from many reasons, including advancements in computational power, avail-

ability of larger datasets, increased model depth and innovations in training. Figure

1.1 highlights the increase in parameter numbers of deep neural networks in the decade

between 2012 and 2022.

This increase in complexity and depth leads to significantly higher computational de-

mands. Traditional CPU platforms often fail to process deep neural network models

at the speeds required for real-time tasks. GPUs, on the contrary, offer a viable solu-

tion in many cases by leveraging their vast parallel computing capabilities to accelerate

matrix-vector operations, which are predominant in DNN computations. Most mod-

ern DNN applications are executed on powerful cloud servers containing hundreds of

GPUs. More specifically, while initially deployed locally, they retrieve the data from

devices like mobile phones or embedded platforms, upload them to the cloud, where

inference is executed and then receive the output. These servers have immense process-

ing power, but their operation is very expensive for both natural resources and energy

needs. For example, the execution of the ChatGPT [10] language model requires 10000

GPUs and millions of dollars for their operation and cooling [11], [12].

However, there is an increasing interest in moving the execution of inference locally

[14], [15], [16], not only reduces the cost of executing DNNs [17] but also can result in

lower overall latency and energy consumption (including both computing and com-

munication) compared to using cloud servers. This reduction in latency enhances user
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FIGURE 1.1: Number of deep neural network parameters. The x-axis is plotted on a
log scale. Reprinted from B. Steiner et.al. [13].

experience [18] and allows for meeting the strict timing demands of real-time applica-

tions, such as self-driving cars [19]. Furthermore, many of the data sent to the cloud

are personal, e.g. audio clips for voice assistants, and keeping them locally helps to

mitigate any potential privacy concerns [20]. Finally using the cloud servers requires

accessing the internet, and despite recent advancements in wireless communication

(e.g. 5G, LTE-M) there are multiple areas with limited or non-existent connectivity.

Performing inference locally can eliminate this issue [21].

Moving the execution of DNNs locally mandated the deployment of the neural mod-

els on devices with very restricted resources, e.g. IoT devices, mobile phones, etc. For

low-resource settings, custom hardware architectures can be specifically designed for

DNNs, optimizing processing elements to meet the required computational character-

istics. A device that is proven a strong candidate for accelerating neural network op-

erations is Field-Programmable Gate Arrays (FPGAs) due to their flexibility and paral-

lelization capabilities, all while maintaining very low power consumption. They con-

sist of a flexible collection of logic elements and IP blocks that can be configured for

a specific application. When designed efficiently, they can achieve higher power effi-

ciency than GPUs and CPUs [22].
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Nevertheless, large networks can require around 40 billion operations [6] and hun-

dreds of millions of parameters to process even a single 224 × 224 image. Despite the

capabilities of FPGAs, they are devices with a restricted amount of resources, and the

aforementioned DNN requirements render their deployment infeasible. To overcome

that, the networks’ compression is mandatory.

1.1 Research Justification

Typical approaches to reduce the inference workload and memory footprint of DNNs,

which consequently translates to reduced energy consumption, primarily focus on pa-

rameter reduction. Quantization [23] entails lowering the precision of DNN weights

and activations from the standard IEEE floating-point value, reducing the memory

footprint and the complexity of the computations. Extreme quantization levels in-

volve representing parameters as single bits or employing Binarised Neural Networks

(BNNs) [24]. Pruning [25] is another approach through which a subset of the net-

work’s redundant or less significant parameters are removed, which greatly reduces the

model’s memory footprint. Nonetheless, this often entails computing large, sparse, and

sometimes unstructured matrix multiplications. Also, removing certain connections or

neurons may reduce the network’s capacity to generalize across diverse datasets, lead-

ing to over-fitting or under-fitting in certain scenarios. Finally, Knowledge Distillation

[26] has gained popularity as a technique to decrease the size of networks during train-

ing by incorporating the loss from larger capacity networks into smaller ones. All of

these approaches result in more compact and efficient models, however they act in

a static manner, permanently affecting the network which leads in the reduction of

accuracy and representation power. To further enhance efficiency and performance,

dynamic approaches are utilized.

As opposed to static methods of compression, dynamic approaches generate DNN ar-

chitectures that can adapt their characteristics to various variables, including network

inputs, hardware resources, etc. They are able to strategically allocate computations

on demand at run-time by selectively activating model components (e.g. layers [27],

channels [28] or sub-networks [29]) which consequently leads to a reduction of com-

putations spent on easy to recognise samples or less informative parts of an input.

Furthermore, data-driven network architectures enhance DNNs by enabling a signif-

icantly enlarged parameter space and improving representation power. For example,

by applying feature-conditioned attention weights on a convolution layer’s kernel, the

model’s capacity can be boosted [30], [31]. The popular soft attention mechanism could

also be integrated into the framework of dynamic networks, as different channels of
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features are dynamically re-weighted or pruned at run-time (Figure 1.2). Finally, dy-

namism can also be driven by environmental hardware variables (i.e. available mem-

ory, power consumption constraints, etc.), giving them the ability to deal and adapt

with different hardware platforms and varying computational budgets [32].

FIGURE 1.2: Dynamic channel and spatial column pruning. Reprinted from J. Shen
et.al. [33].

Alongside dynamic network architectures, hardware-focused research on dynamic ex-

ecution of DNNs aims to adapt the hardware platform to the model’s characteristics.

These approaches utilize the programmability and reconfigurability of FPGAs to adjust

them to the layers’ computational needs of the target DNN. While networks are getting

deeper and more complex, their layers’ types and characteristics are changing and have

an increased variation [34]. For example, by altering the size of a systolic array of pro-

cess elements, more efficient computation of depth-wise over normal convolution can

be achieved [35]. This exploits even more the parallelism and acceleration potential of

the FPGAs and makes them more appealing to deeper networks.

Although dynamic networks showcase great results, not only accelerating but also in-

creasing the effectiveness, simplicity and adaptability of complex and computationally

intensive networks, there is a gap between theoretical findings and real-world applica-

tions [36]. Dynamic networks are designed using libraries optimized for static models

and evaluated on conventional CPU-GPU systems, resulting in inconsistency between

anticipated and actual effectiveness. CPU performance still cannot meet the real-time

processing requirements in embedded devices, and GPU power consumption is too

high. On the contrary, FPGAs have already proven to be very effective at realising

DNNs and maintaining very low energy demands. At the same time, the dynamic

hardware approaches unlock further adaptability to modern networks’ needs. Com-

bining the hardware capabilities of FPGAs and the benefits of dynamic DNN architec-

tures can be a vital contribution towards enabling the deployment of modern neural

networks locally on edge devices, yet nobody has considered this to date.
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1.2 Research Questions

Following the research justification above and the literature review in Chapter 2, this

thesis investigates the benefits of realising a dynamic neural network in a custom hard-

ware platform such as FPGAs. Dynamic DNNs have already been proven on a the-

oretical level to significantly reduce computational needs and, as a result, the energy

needed to execute a neural network’s inference. However, there aren’t any practical

results, so this thesis aims to further exploit their capabilities and accelerate and re-

duce their power needs with FPGAs. This platform has already been shown to offer

enhanced capabilities to efficiently accommodate DNNs while achieving very low en-

ergy consumption, and its programmability and reconfigurability render it the perfect

device for research. In summary, the three questions answered in this thesis are:

Q1. What are the challenges Dynamic DNNs’ architectural characteristics introduce

to their implementation on FPGAs? Can Dynamic DNNs be implemented on

FPGAs?

Research question Q1 aims to investigate the feasibility of realising dynamic DNNs

on FPGAs. As their architecture differs from static networks, they introduce limi-

tations in deploying state-of-the-art libraries, tools and frameworks, making their

implementation challenging. This question is answered in Chapter 3.

Q2. How can the performance of Dynamic networks be enhanced with the paral-

lelization capabilities of FPGAs?

FPGAs are very capable of parallelising computations. How can the dynamic

approaches’ computations be parallelised and produce more efficient hardware

designs? This question is answered in Chapter 4.

Q3. How the versatility/reconfigurability of FPGAs can be utilised to enable dy-

namic exit point placement and quantisation in dynamic DNNs?

FPGAs allow the use of custom data flows, representation resolutions, and even

dynamic reconfiguration of the hardware design. How can this versatility and

reconfigurability enhance the dynamic network effectiveness and lead to lower

latency and energy consumption by dynamically controlling the depth of exit

points and the quantisation level? This question is answered in Chapter 5.

1.3 Research Contributions

To address the above research questions, the contributions that have been made during

this research are summarized as follows:
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C1. Study on the challenges of realising Dynamic DNNs on FPGAs. - Chapter 3

highlights the differences in the dynamic networks’ architecture and the limi-

tations they introduce both to software design and to state-of-the-art hardware

approaches, targeting the realisation of dynamic DNNs on FPGAs. This contri-

bution partially answers Question 1.

Anastasios Dimitriou, Benjamin Biggs, Jonathon Hare, Geoff V. Merrett. FPGA

Acceleration of Dynamic Neural Networks: Challenges and Advancements. In

IEEE International Conference on Omni-Layer Intelligent Systems (COINS), London,

UK, 2024.

C2. The first realisation of Dynamic DNNs on FPGAs - Chapter 3 presents a first

FPGA design that fully deploys early-exit dynamic DNNs on FPGAs. The de-

sign’s experimental results showcased the capability of FPGAs to efficiently de-

ploy and execute dynamic DNNs while achieving very low energy consumption.

This contribution partially answers Question 1.

Anastasios Dimitriou, Mingyu Hu, Jonathon Hare, Geoff V. Merrett. Exploration

of Decision Sub-Network Architectures for FPGA-based Dynamic DNNs. In

Design Automation and Test in Europe (DATE) Conference, Antwerp, Belgium, 2023.

C3. Exploration on how the parallelisation capabilities of FPGAs can be leveraged

to increase the efficiency of early-exit dynamic DNNs implementations - Chap-

ter 4 proposes a second design approach that, by utilising the parallelization ca-

pabilities of FPGAs, addresses two of the early-exit networks’ implementation

challenges. Aditionally a first modelisation of the execution time and the energy

consumption of early-exit dynamic DNNs inference on FPGAs is presented. This

contribution answers Question 2.

Anastasios Dimitriou, Lei Xun, Jonathon Hare, Geoff V. Merrett. Realisation of

Early-Exit Dynamic Neural Networks on Reconfigurable Hardware. Submitted

to IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 2024.

C4. Two dynamic approaches that utilise the confidence values of input samples

that fail to trigger an early exit. - Chapter 5 introduces two confidence-controlled

dynamic schemes concerning the placement of intermediate classifiers and quan-

tisation. Employing the versatility and reprogrammability of FPGAs, the dy-

namic schemes increase the efficiency and performance of the early-exit dynamic

DNN designs with minimal accuracy drop. This contribution answers Question

3.
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1.4 Thesis Structure

This thesis is divided into several chapters that address different aspects of realising

dynamic DNNs on FPGA platforms. Chapter 2 provides an overview of the funda-

mentals and current state-of-the-art in deploying efficiently DNN models, as well as

techniques for both software and hardware dynamic execution approaches of neural

networks.

Chapter 3 focuses on answering (Q2). Initially, the architecture differences between

static and dynamic networks and how they introduce limitations in their implementa-

tion on FPGAs are presented. More specifically, a thorough exploration of the architec-

ture of early-exit dynamic networks and the challenges they introduce in software and

hardware design are presented, alongside some recent advancements to resolve them .

A first realisation of the early-exit dynamic networks is explored, and experimental re-

sults comparing CPU, CPU-GPU, embedded and FPGA platforms over execution time

and energy consumption are discussed.

Chapter 4 extends this work and introduces a second design approach, leveraging the

parallelisation capabilities of FPGAs and answers to the second research question (Q2).

Experimental results are also discussed, while a thorough comparison between the two

design approaches over execution time, energy consumption, memory footprint and

decision threshold levels highlights which better fits different target applications. Fur-

thermore, two equations are presented to model the energy demands and the execution

time of the early-exit dynamic networks’ inference on FPGAs, targeting both architec-

tures.

Chapter 5 explores how the information from the input sample’s confidence level, ob-

tained by the intermediate classifiers, can be combined with the capabilities of the FP-

GAs to enhance the performance of the early-exit networks. More specifically, this

Chapter explored two different directions, answering research question 3 (Q3). The

first focuses on a dynamic placement of the early-exit networks’ intermediate clas-

sifiers scheme, taking advantage of the parallel design approach in order to further

adapt the early-exiting architecture to the variety of the input samples. Following that,

the second direction explores the quantisation of the early-exit dynamic DNNs initially

applied only on the intermediate classifiers and then on the entirety of the dynamic net-

work. Finally, it introduces a dynamic quantisation scheme, where different network

parts have different quantisation levels, to reduce resource needs with minimal effects

on early-exiting behaviour and accuracy.

Finally, Chapter 6 summarizes this thesis’s key findings and discusses plans for future

research in this area.
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Chapter 2

Background Theory

Efficient deployment and execution of DNNs on mobile and embedded platforms are

crucial for their widespread adoption [14]. However, this task presents many chal-

lenges [15], [16], as despite achieving state-of-the-art performance, deep neural net-

works (DNNs) are inherently both computationally and memory access intensive. This

Chapter begins with an overview of modern DNNs in Section 2.1, followed by an ex-

ploration and comparison of the different hardware platforms targeting their deploy-

ment in Section 2.2, focusing on the FPGAs, which is the target device of this thesis. To

achieve the deployment of DNNs in resource-restricted devices, however, their com-

pression is necessary. Section 2.3 provides an overview of popular network compres-

sion methods and, finally, Section 2.4 and Section 2.5 presents a thorough review of

current literature in dynamic deep neural networks, covering both software and hard-

ware directions.

2.1 Deep Neural Networks

Deep Neural Networks (DNNs) are one of the foundation models of modern machine

learning, inspired by the structure and function of the human brain. They consist of

interconnected layers of artificial neurons that process data through a series of trans-

formations. Unlike traditional neural networks, DNNs contain multiple hidden layers

between the input and output layers (Figure 2.1), allowing them to learn and model

intricate patterns and relationships within data. This depth and different model ar-

chitectures enable DNNs to tackle highly complex tasks, such as convolutional neural

networks [37] for image recognition and sequential models (e.g. LSTMs [38]) for natu-

ral language processing.

At the core of DNNs are neurons, which are the basic units that perform computations.

Each neuron receives inputs, applies a set of weights, adds a bias, and then passes the
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FIGURE 2.1: Deep Neural Network (DNN) example. Reprinted from M. Merenda et.al.
[39].

result through an activation function. This process helps to introduce non-linearity

into the model, enabling it to learn from errors and adjust the weights during training.

The layers of neurons are typically organized into three main types: the input layer,

which receives raw data; multiple hidden layers, where intermediate computations are

carried out; and the output layer, which produces the final predictions or classifications.

However, before deploying DNNs, they have to be trained. Training a DNN involves

optimizing the weights and biases using a process called backpropagation [40], which

adjusts these parameters to minimize the error between the predicted output and the

actual target. This is achieved through iterative algorithms such as stochastic gradient

descent. The depth and complexity of DNNs allow them to capture high-level abstrac-

tions in data, making them particularly effective for tasks that require an understanding

of hierarchical structures, such as recognizing objects in images or understanding the

context in language.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs or ConvNets) are a specialized class of deep

neural networks designed primarily for processing structured grid-like data, such as

images. Inspired by the visual cortex of the human brain, CNNs are particularly effec-

tive at capturing information in data through their unique architecture, which includes

convolutional, pooling, and fully connected layers. This allows CNNs to automatically

and adaptively learn spatial hierarchies of features, making them exceptionally power-

ful for tasks such as image classification, object detection, and segmentation.
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FIGURE 2.2: Architecture of AlexNet CNN model. Reprinted from A. Krizhevsky et.al.
[1].

The core of CNNs are convolutional layers, which apply a series of learnable filters (or

kernels) to the input data. These filters slide over the input data to produce feature

maps, capturing local patterns such as edges, textures, and simple shapes in the initial

layers. As the data passes through deeper layers, the network combines these simple

patterns to detect more complex features and structures. This hierarchical feature ex-

traction process enables CNNs to recognize objects in images regardless of variations

in position, scale, and orientation.

Pooling layers are another crucial component of CNNs. These layers perform down-

sampling operations on the feature maps, reducing their spatial dimensions and the

number of parameters, which helps to control over-fitting and makes the network more

computationally efficient. The most common type of pooling is max pooling, which

takes the maximum value from each sub-region of the feature map. This step retains

the most salient features while discarding less important information, further enhanc-

ing the network’s ability to generalize from the training data.

The final layers of a CNN typically consist of fully connected layers, which integrate

the high-level features extracted by the convolutional and pooling layers to perform the

final classification or regression tasks. These layers are similar to those in traditional

neural networks, where each neuron is connected to every neuron in the previous layer.

Figure 2.2 shows the architecture of the popular CNN model AlexNet [1], which con-

sists of an input layer, five convolution layers and three fully connected layers.

2.2 Hardware Platforms for Inference

As explained above, implementing a deep learning application is a two-step process:

training and inference. Training is used to meticulously clean and set up data and

weights to improve the model’s generalization capabilities. Machine learning libraries

such as Theano [41] and TensorFlow [42] in Python can make the implementation of

neural network training relatively easy, as they include a number of useful functions for

backpropagation [40], optimization algorithms (e.g stochastic gradient descent (SGD)
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[43], Adam [44]). However, the actual training process can take a significant amount

of resources and time to complete due to the complexity of the back-propagation al-

gorithm and the number of iterations necessary to adjust weights and biases. This

operation, though, in most occasions, happens only once before the deployment of the

network, usually in very powerful GPU servers.

The second step, inference, is the phase where the trained model is deployed to make

predictions on new, unknown data. Unlike training, inference is computationally less

demanding because it involves only forward propagation through the network without

the need for backpropagation or weight updates. The primary goal of inference is to

apply the learned patterns and relationships from the training phase to real-world data.

The efficiency and speed of inference are critical, especially in applications requiring

real-time predictions, such as autonomous driving or online recommendation systems.

While training is performed on powerful hardware like GPUs to handle the extensive

computations, inference can be executed on a variety of devices, including edge devices

like smartphones, thanks to optimizations like model quantization and pruning that

reduce the model’s size and computational requirements.

2.2.1 CPU and GPU

A first approach in executing inference of a DNN is to use software and exclusively the

central processing unit (CPU). This strategy is attractive because it provides general-

ity, as a high-level software solution can run on any platform without the need for any

special hardware. It is also the simplest, both in terms of development time and design

complexity. Machine learning frameworks, such as Theano [41] or TensorFlow [42] pro-

vide the programmer with a lot of predefined functions that can reduce the magnitude

of the code and simplify the network’s training, inference and debugging processes.

Additionally, they provide tools to target a specific device’s needs, e.g. TensorFlow

Lite [45], which was developed specifically to easily adapt TensorFlow code for mobile

phone applications. The limitations of this approach are few, and often, it should be the

first choice for application designers, especially if the real-time requirements for system

latency and performance are modest.

However, for applications that require low latency and high productivity, a CPU-focused

implementation may be insufficient. This follows from the underlying calculations per-

formed in the forward propagation. With N hidden units and M-dimensional input,

this calculation requires M ∗ N multiplications, M ∗ N additions, and N calculations

of the activation function. For a basic scalar processor, these calculations must be per-

formed sequentially, where the M ∗ N term dominates the complexity. Modern super-

scalar multi-core processors, as well as low-level optimized linear algebra libraries,

such as BLAS [46], introduce parallelism that helps to accelerate computations between
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matrices and vectors. Nonetheless, there will always be a limit to the computational

performance of CPU devices.

To overcome that, graphics processing units (GPUs) were introduced, initially target-

ing only training [1], and then every aspect of the DNN execution [47]. Due to their

thousands of processing cores, GPUs provide massive parallelism potential that can

speed up matrix-vector multiplication, the predominant operation in DNNs. GPUs

have become a very popular tool for deep learning, and they were quickly adopted

by many machine learning frameworks, too. Most of the aforementioned tools offer

smooth GPU integration through their back-end (e.g. cuDNN [48]), while many hard-

ware manufacturers have begun designing their GPUs specifically for deep learning

applications, making this transition even easier.

The deployment of GPUs, however, raises some challenges. These devices are very ex-

pensive both in financial cost (a high-performance GPU can cost thousands of pounds

[49]) and in power demands. For a complex neural network-based speech recognition

algorithm, a GPU application requires almost twice the amount of power required by

the CPU [50]. While the total energy consumption for a particular task may be lower

in a GPU than in a CPU, the high-power requirement of a GPU may be prohibitive for

some platforms, such as embedded systems. So, in order to meet performance require-

ments while minimizing power consumption, custom hardware designs are vital.

2.2.2 Neural Processing Units

NPUs, or Neural Processing Units, are specialized hardware components designed

specifically for accelerating neural network computations [51], [52]. These units are

tailored to handle the intense computational requirements of artificial intelligence (AI)

and machine learning (ML) algorithms, particularly deep learning models. NPUs are

optimized for tasks like matrix multiplication, convolution operations, and other op-

erations commonly found in neural networks. The primary purpose of NPUs is to

enhance the performance and efficiency of AI and ML workloads, enabling faster infer-

ence and training times compared to general-purpose processors like CPUs and GPUs.

A typical NPU architecture comprises processing units optimized for matrix multipli-

cation and convolution operations, a memory subsystem for storing parameters and

data, and specialized instruction sets tailored to neural network computations. Data

movement engines facilitate efficient data transfer between memory hierarchies and

processing units, while power management mechanisms dynamically adjust power

consumption to balance performance and energy efficiency. Integration interfaces en-

able connectivity with host processors and peripherals. A software stack, including

drivers and runtime environments, supports developers in compiling, optimizing, and

deploying DNNs. Overall, NPUs are designed to accelerate AI workloads efficiently,
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and they have already been deployed in devices like mobile phones and laptops [53],

[54].

NPUs can be implemented as standalone chips or integrated into larger systems-on-

chip (SoCs) alongside other processing units like CPUs, GPUs, and DSPs (Digital Sig-

nal Processors). Nonetheless, they have fixed architectures. While they can accelerate

the execution of DNNs, custom hardware must be used for applications that require

reconfigurability, adaptability, and even lower energy demands.

2.2.3 Application-Specific Integrated Circuits

CPUs, GPUs, and NPUs are platforms that allow easy development and deployment

of neural network applications, while the latter two also offer high effectiveness. How-

ever, in cases where there is a restriction in power consumption, latency, resources,

etc., some significant limitations arise. Custom hardware designs can be the strategy to

manage demanding workloads and reduce long-term energy costs.

Generally, a custom hardware solution is called Application-Specific Integrated Circuit

(ASIC). Their main difference with general-purpose processors is that while they are

designed to handle a wide variety of tasks, ASICs are specialized microchips explicitly

designed and contain only the resources needed to perform a single specific operation.

Following that, ASICs can be highly optimized in computing and latency efficiency,

maintaining very low energy demands. For example, an ASIC accelerator for a neural

network targeting a computer vision application achieved 13 times faster computation

performance and 3,400 times less power consumption than a GPU solution [55].

Their effectiveness can be explained by the fact that inference, as an operation, has

some properties that characterise it as a very good candidate to be realized and opti-

mized in custom hardware. First of all, for every forward propagation, the type, order,

and number of operations performed are known prior to execution. This makes the de-

cision process of what types and the number of computational units (e.g. adders, mul-

tipliers, etc.) straightforward for the designer. Furthermore, knowing the data types

and their access schedule can lead to high data movement optimization. Secondly, the

predominant matrix multiplications are highly parallelisable. ASICs can be designed

to handle these specific operations more efficiently than general-purpose processors by

incorporating specialized hardware accelerators and optimized memory hierarchies.

Finally, DNNs’ weights and variables are known and remain unchanged during infer-

ence. This gives an opportunity to implement various compression schemes, such as

quantization, which can significantly reduce the memory footprint.

However, the development of ASICs can be expensive and time-consuming due to the

need for custom design and manufacturing processes. It requires skills in electronics

and complicated CAD software. In addition to that, an ASIC can only be built once,
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and any need for alternations to its architecture require the complete reconstruction

and replacement of existing devices, which is very expensive and time consuming.

2.2.3.1 Tensor Processing Units

A special case of ASIC accelerators specifically targeting the computational needs of

machine learning applications is Tensor Processing Units (TPUs) (Figure 2.3). Their ar-

chitecture incorporates a vector processing unit, a systolic array-based matrix multipli-

cation unit, a Very Long Instruction Word (VLIW) instruction set, 2D vector registers,

and a transpose reduction permute unit (Figure 2.4). The core of TPUs is the matrix

multiplication unit, and their philosophy is to keep it as busy as possible. This way

it maximizes the exploitation of the advantages of the systolic array on calculations

between tensors, which is the most common operation among machine learning appli-

cations. Finally, despite the fact that TPUs do not support out-of-order execution, they

accomplish very high instruction-level parallelism. This is achieved by special com-

pilers (e.g. Google’s XLA [56]) applying techniques like critical path scheduling and

register allocation.

FIGURE 2.3: Google’s TPU block diagram. Reprinted from N. P. Jouppi et.al. [57].

Google started using TPUs in 2015 and made them available to the public in 2018

through a cloud service for training and running machine learning algorithms [58].

Their architecture reduced the energy overhead per computation by more than 10x

(Figure 2.4) and achieved 35x more trillion operations per second over a CPU solution

[57].
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FIGURE 2.4: Instruction fetch and execute energy consumption between a traditional
CPU and a TPU. Reprinted from N. Jouppi et.al.[59].

2.2.4 Field Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) present a reconfigurability aspect that is miss-

ing from ASICs. FPGAs consist of a large, interconnected array of configurable logic

blocks (CLBs), which can be reconfigured to implement various and complex digital

circuits. They also offer on-chip block memory (BRAM) and Digital Signal Processors

(DSPs) for mathematical operations, both connected to the CLBs (Figure 2.5). This ar-

chitecture enables parallel processing capabilities, as multiple logic blocks can operate

simultaneously to calculate different sections of an application. This parallelism makes

FPGAs particularly suited for applications requiring high-speed data processing and

real-time performance, such as signal processing, telecommunications, and embedded

systems. Despite the fact that they lack the energy consumption levels and perfor-

mance of ASICs, they are still considerably faster and more energy efficient than CPUs

and GPUs. An FPGA accelerator for a speech recognition DNN application achieved

43- and 197-times better speed and energy efficiency, respectively, over a network being

executed on CPU and 3 and 14 times over a network being executed on GPU [50]. Mi-

crosoft already from 2015 had deployed FPGA accelerators for its search engine (Project

Brainwave [60]) and increased its ranking throughput by 50%.

One of the key advantages of FPGAs is their ability to be reprogrammed to accom-

modate changes in functionality or to optimize performance for different tasks. This

makes them highly valuable in research and development environments, where design

requirements can evolve rapidly. This is why FPGAs are the target platform in this

work.

2.2.4.1 Systolic Arrays of Process Elements

One of the most prolific architectures of FPGAs and ASICs is the systolic arrays of

process elements. In essence, systolic arrays are hardware structures that replace a

pipeline structure with an array of homogeneous process elements (PEs) that can per-

form a common mathematical operation. These elements are locally interconnected,

and they are able to communicate with each other in a synchronous manner. This com-

munication pattern extends to the computations, too, as it constricts the data flow and
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FIGURE 2.5: Typical structure of a FPGA.

consequently sets a restriction on the type of algorithms that can be mapped on systolic

arrays. According to K. Rao et al. [61], these algorithms are called ªRegular Iterative

Algorithmsº (RIAs) and must satisfy three conditions:

1. Every variable must be defined by a name and a finite set of indices

2. Variables must not be assigned multiple times but only once

3. The difference between the indices of the variables between the left-hand side and

the right-hand side of an operation must be constant for every recurrence relation

Due to their structure, they can provide high-throughput capacity and great accelera-

tion for RIAs. Some great examples of such algorithms are matrix multiplication, multi-

dimensional image processing, decision-based algorithms, etc. Additionally, they add

reconfigurability to the design with the ability to manipulate the active rows and columns

of PEs and save fabric space, as the intercommunication and computations do not need

to be driven by control units.

Therefore, as the majority of computation in DNNs are matrix-to-matrix multiplica-

tions, they became very popular with neural network accelerators. For example, Fig-

ure 2.6 shows the deployment of a systolic array for convolutional neural network’s

inference [62]. The weights are stationary and stored in the PEs, and the input data are

continuously inputted from top to bottom. Each PE performs a multiplication and an

addition with the previously calculated result from its left PE. The final result is then

propagated to the nearest PE on the right.
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FIGURE 2.6: Matrix-Multiplication on a Systolic Array. Reprinted from J. Zhang et.al.
[62].

Recent research elevates the use of systolic arrays on FPGAs. By making small changes

to the structure of the PEs and by adding some controllers, researchers aim to adapt

systolic arrays to some more challenging tasks arising from the evolution of accelera-

tion techniques on neural networks. J. Zhang et al. [62] proposed an architecture to

handle the very sparse weight matrices after unstructured pruning. More specifically,

they considered the systolic array’s size when they transformed the pruning’s sparse

output into a denser matrix. This way, they created blocks of data that were easier to

map on the systolic array and achieved very high computation efficiency Figure 2.7,

highlighting the acceleration capabilities of the systolic array.

With the same mindset, R. Xu et al. [35] achieved to create an architecture that is able to

perform the computations for both normal and depth-wise convolution. The latter one

transforms the matrix-matrix multiplication into matrix-vector, leading to high levels
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of underutilization of the systolic arrays (Figure 2.8). So by only increasing by 1% the

design area, they added a number of multiplexers, a register and a control unit. They

achieved a structure that could properly accelerate both techniques of convolution, il-

lustrating the versatility of the systolic array architecture.

FIGURE 2.7: Example of a modified systolic array’s structure. Reprinted from J. Zhang
et.al. [62].

FIGURE 2.8: Normal vs Depth-wise convolution when mapped on a SA. Reprinted
from R. Xu et.al. [35].

2.2.4.2 Dynamic Partial Reconfiguration

As explained above, FPGAs offer the flexibility of re-programming and redesigning

without the need for re-fabrication like ASICs. Dynamic Partial Reconfiguration (DPR)

enhances this flexibility even more, allowing the reconfiguration of a portion of the

programmable logic while the rest of the system continues to operate normally. This

capability provides significant advantages in terms of flexibility, resource optimization,

and efficiency. With DPR, different tasks or functions can be loaded into specific regions

of the FPGA on the fly without interrupting the operation of the entire system. This is
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particularly useful for applications that require real-time adaptability and responsive-

ness to changing conditions.

A design taking advantage of DPR is divided into two parts, a static and a dynamic.

The static part (grey in Figure 2.9) is a full bit-stream of a design, and it’s loaded during

start-up. The dynamic part (black in Figure 2.9 labelled Reconfig Block A) is the parti-

tion of the design that can be changed by a partial configuration file in bit-form (A1.bit

to A4.bit in Figure 2.9). These files can be downloaded and change the re-configurable

areas of the FPGA at run time and without compromising any other non-configurable

part of the initial bit-stream.

FIGURE 2.9: Basic presumption of Dynamic Partial Reconfiguration. Reprinted from
ªVivado Design Suite User Guide: Partial Reconfiguration (UG909)º [63].

Overall, DPR expands the design space of FPGAs by allowing for greater flexibility,

resource efficiency, and adaptability. The ability to multiplex hardware dynamically on

a single FPGA board can generate:

• smaller architectures than a static design to implement a given function, which

consequently means less production cost and power needs

• extra flexibility, increasing the amount of operations ready to run on the same

piece of fabric

• extra tolerance to errors

• more choices in design security

2.2.4.3 Toolflows for mapping DNNs on FPGAs

FPGAs typically require device domain knowledge to effectively use the benefits men-

tioned in the above sections due to the complexities of tooling and the required fine-

tuning of algorithm implementation. This makes the process of designing them an

expensive and time-consuming task. However, there are many tools that can map

high-level expressions of DNNs directly to the device [64]. The majority of industries

related to the production of FPGA boards have developed toolkits to help hardware
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engineers create easier and better designs. For example, Intel has introduced Hyper-

flex [65], which is a Python-based command line toolkit that imports trained models

from popular learning frameworks like TensorFlow [42], analyses and adjusts them to

better fit a targeted device (CPU, GPU, Vision Processing Unit (VPU) or FPGA).

Similarly, Nvidia introduced NVDLA [66], which is a free and open-source architecture

that provides a standard approach for DNN accelerator design. It works by grouping

the DL inference operation into four categories: i) Convolutions, ii) Activations, iii)

Poolling and iv) Normalisation. Then, it maps these operations using one of the pre-

developed hardware components (Convolution Core, Single, Planar or Channel data

processor, dedicated memory, Data Reshaping Engines). Every hardware block is then

independently optimised and connected with the others to form a complete architec-

ture.

Research towards tool-flows for mapping neural networks on FPGAs is a very popular

research interest too. For example, fpgaConvNet, proposed by S. Venieris et al. [67], is

an end-to-end framework that, given a trained CNN and the description of the targeted

device (Xilinx’s FPGA boards) as inputs, it produces an FPGA architecture file in High-

Level Synthesis (HLS) code. Figure 2.10 describes the framework’s processing flow.

FIGURE 2.10: fpgaConvNet processing flow. Reprinted from S. I. Venieris et.al. [67].

The process begins with HLS, which translates CNN models described in high-level

programming languages (Caffe [68] or Torch [69]) into hardware descriptions that can
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be implemented on an FPGA. This approach simplifies the development process, allow-

ing designers to focus on the algorithmic aspects of the CNN without delving deeply

into hardware design. fpgaConvNet also incorporates model compression techniques,

such as quantization and pruning, which reduce the computational load and mem-

ory requirements of the CNN. These techniques help fit larger models onto the limited

resources of an FPGA and improve inference speed. Moreover, the framework em-

ploys a layer-wise optimization strategy, where each layer of the CNN is mapped onto

the FPGA in a manner that balances computational workload and memory access pat-

terns. This strategy ensures efficient utilization of the FPGA’s resources, such as logic

gates and memory blocks, and minimizes data movement, which can be a bottleneck in

CNN inference. By optimizing data flow and computation for each layer, fpgaConvNet

achieves low latency and high throughput, making it suitable for real-time applications.

A similar approach is HPIPE (Heterogeneous Layer-Pipelined and Sparse-Aware CNN

Inference for FPGAs) [70], an innovative convolutional neural network accelerator ar-

chitecture designed specifically for FPGAs. The primary objective of HPIPE is to lever-

age the inherent parallelism and reconfigurability of FPGAs to accelerate CNN infer-

ence while efficiently managing computational and memory resources. It achieves this

by combining two key strategies: heterogeneous layer-pipelining and sparse-aware

processing.

FIGURE 2.11: HPIPE architecture. Reprinted from M. Hall et.al. [70].

Heterogeneous layer-pipelining involves decomposing the CNN layers into distinct

stages that can be executed in parallel across different regions of the FPGA. Each stage

corresponds to a layer or a group of layers in the CNN, and these stages are configured

to match the specific hardware capabilities of the FPGA. This pipelined approach en-

sures that data flows continuously from one layer to the next, minimizing latency and

maximizing throughput. By distributing the workload across multiple FPGA regions,
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HPIPE can exploit the parallelism of FPGAs to process multiple layers simultaneously,

thereby speeding up the inference process.

Sparse-aware processing is the second crucial component of HPIPE, which takes ad-

vantage of the sparsity in CNN weights and activations. In many CNNs, a significant

portion of the weights and activations are zero, leading to unnecessary computations

if not managed properly. HPIPE integrates mechanisms to identify and skip these zero

values during computation, reducing the number of operations and memory accesses

required. This not only accelerates the inference but also reduces power consumption.

By combining these techniques, HPIPE provides a highly efficient and scalable solu-

tion for deploying CNNs on FPGAs, achieving significant improvements in speed and

energy efficiency compared to traditional approaches.

2.3 Network Compression

Despite their effectiveness in accelerating DNNs and their very low power demands,

FPGAs still have a limited amount of resources. On the contrary, modern neural mod-

els are growing deeper and more complex to adapt to many real-life machine learn-

ing problems (autonomous cars, language processing, healthcare applications, etc.).

This translates to increased depth, variety in layer types, complexity, and computa-

tional burden. Training and inference became very time and resource-consuming oper-

ations, even for very powerful CPUs and GPUs, and made the deployment of DNNs on

resource-restricted devices a very difficult or even impossible task. That led to a very

broad research field that focuses on increasing model compactness. Some of the most

popular techniques to reduce the size of DNNs are presented below.

2.3.1 Quantisation

Quantization is a technique used to reduce the precision of the numbers that represent a

model’s parameters and activations. Typically, neural networks are trained using 32-bit

floating-point representations, which provide high precision but also consume signifi-

cant memory and computational resources. The process of quantization involves map-

ping the continuous range of floating-point values to a discrete set of lower-precision

values. For instance, in an 8-bit quantization, the continuous range of values is mapped

to 256 discrete levels. This reduction in precision can significantly decrease the model’s

size, leading to lower memory bandwidth requirements and faster arithmetic opera-

tions, which are crucial for deploying models on resource-constrained hardware like

FPGAs, mobile devices, and edge computing platforms. More intense quantisation can

reduce the representation resolution as low as 4-bit [71], [72] or even one [24].
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However, quantization can introduce some challenges, primarily related to maintain-

ing model accuracy. Reducing the precision of weights and activations can lead to a

loss of information, potentially degrading the model’s performance. To address this,

various techniques are employed, such as fine-tuning the quantized model to recover

lost accuracy [73] and using sophisticated quantization schemes like mixed-precision

quantization, where different parts of the network use different precision [74].

2.3.2 Pruning

Pruning [25] is another technique used in deep learning to reduce the size of a neu-

ral network by removing less important or redundant parameters. This process aims

to simplify the network, making it more efficient in terms of memory footprint and

computational burden without significantly sacrificing performance. Pruning can be

particularly beneficial for deploying models on resource-constrained hardware such as

FPGAs, mobile devices, and edge computing platforms.

There are two main types of pruning: structured [75], [76], and unstructured [77]. Struc-

tured pruning involves removing entire components of the network (Figure 2.12), such

as filters, channels, or layers, which leads to more regular and predictable reductions

in computational complexity, making it easier to implement on hardware. On the con-

trary, unstructured pruning involves removing individual weights that have little im-

pact on the network’s output. While this can achieve higher compression rates, it re-

sults in irregular sparsity patterns that can be harder to exploit for performance gains

in standard hardware architectures.

FIGURE 2.12: Different structured pruning schemes. Reprinted from N. Liu et.al. [75].

Unavoidably, the removal of these elements leads to a loss in accuracy and representa-

tion power. The pruned network is fine-tuned or retrained to help the network adjust

to its new, smaller structure and regain performance [78], [79]. Although pruning can
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introduce some complexity in terms of implementation and fine-tuning, it is a power-

ful method for creating more efficient neural networks that can be deployed in a wider

range of applications, balancing the trade-off between computational resources and

model accuracy.

2.3.3 Knowledge Distillation

Knowledge distillation [26] is a technique where a smaller, more efficient ºstudentº

model is trained to replicate the behaviour of a larger, more complex ºteacherº model.

The primary goal of this approach is to transfer the knowledge learned by the large

model to a smaller model that can perform similarly but with significantly reduced

computational and memory requirements.

The distillation process involves training the student model to mimic the outputs of

the teacher model. Instead of training the student model on the original dataset, it is

trained using the soft outputs (probabilities) produced by the teacher model. These

soft outputs contain more information than hard labels (the correct class) because they

convey the teacher model’s confidence in its predictions across all classes, not just the

correct one. This additional information helps the student model learn the underly-

ing data distribution more effectively, often resulting in improved generalization and

performance compared to training directly on the original dataset with hard labels.

2.4 Dynamic DNNs

Despite their ability to compress DNNs effectively, these approaches have a limita-

tion in common. They permanently affect the networks by using a larger network’s

trained weights, reducing the precision or even completely removing parameters and

activations of the deployed network. This is done in a general and static way, reducing

the number of parameters and the complexity of the model, which can remove useful

information and limit the model’s capacity to learn and generalize complex patterns.

Furthermore, hardware resources are hardly ever similar or constantly available on dif-

ferent platforms, so their adaptability for inconsistent resources is very low.

Dynamic DNNs are architectures that adapt their structure or computation during in-

ference based on the input data, aiming to balance computational efficiency and model

performance. Their core idea is that neural models are trained to identify class-level

features. Each network’s input has a certain feature activation variance and will only

trigger a subpart of the whole network. Unlike static DNNs, which have a fixed ar-

chitecture and process every input similarly, dynamic DNNs can adjust parameters

like the number of active layers, neurons, or the type of operations performed. This
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FIGURE 2.13: Cascading of models

adaptability allows dynamic DNNs to allocate computational resources more effec-

tively, processing simpler inputs faster while dedicating more resources to complex

inputs, ultimately achieving a better trade-off between speed, accuracy, and resource

utilization.

Current research on Dynamic DNNs is divided into two different directions: structure-

focused and parameter-focused. The first one introduces dynamic properties to the

structure of the neural network, while the second dynamically adapts its parameters

like weights, activations etc. Both approaches are presented below.

2.4.1 Structure-focused Dynamic DNNs

This dynamic network approach focuses on the general architecture and structural

components of a model. Different input samples have different computational de-

mands. In other words, there are ªeasierº (canonical) samples for the network to clas-

sify, which can be achieved at the very early stage of the inference execution. On the

contrary, samples that are ªharderº (non-canonical) demand the execution of deeper

layers in order for the network to extract the needed amount of information to produce

a correct classification. Consequently, identifying when a network is ready to produce

an output is vital as a great amount of computations can be avoided.

Early-exiting is a structure-focused dynamic approach that allows inference to stop in

an intermediate stage when the network has sufficient information to classify the input.

If xi is the ith input sample, the forward propagation of a N-layer deep network can be

written:

y = Lni
◦ Lni−1

◦ · · · ◦ L1(xi), 1 ≤ ni ≤ N (2.1)

Where Lni
is the i-th output of the N network layers, ni the layer at which the inference

stops and y the network’s output.
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FIGURE 2.14: Network with Intermediate Classifiers. Reprinted from S. Teerapit-
tayanon et.al. [81].

A common technique that enables early-exiting is cascading multiple models (Fig-

ure 2.13). This approach employs two models, one containing a smaller amount of

layers and a second which is deeper. After the execution of the first, a decision function

determines if the amount of abstracted information from the input sample is enough to

classify it. If they are, then this model’s output is used, and the dynamic network pro-

ceeds with the next input samples. If they are not, the second model is enabled, and the

classification is determined by its output. E. Park et al. [80] propose a dynamic model

with two CNN networks, where if the difference between the two largest outputs (Soft-

Max) of the first network exceeds a threshold, early exit occurs. Despite containing two

models, they achieved over 80% reduction in energy on the MNIST dataset and over

40% on ImagNet with less than 2% accuracy loss in both cases. Nonetheless, this ap-

proach has a drawback, as all the information obtained from the first model is lost if the

decision condition is not met. The two models are completely independent, and when

the execution of the second is needed, the inference must start again from scratch.
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FIGURE 2.15: Dynamic model that performs early exit based on the similarity of con-
sequent video frames. Reprinted from A. Sabet et.al. [82].

To solve this problem, instead of using multiple models, the decision for early-exiting

is made between the layers of a DNN (Figure 2.14). This approach introduces inter-

mediate classifiers, which are auxiliary output sub-networks placed at various depths

within the backbone network, which from now on shall be referred to as the backbone

network. They are used for the extraction of a confidence value, which is a metric of

the features extracted up to that point of execution. Each of them operates indepen-

dently, leveraging the partial feature representations to make its own prediction. If

the confidence level of an intermediate classifier meets or exceeds a predefined thresh-

old, the backbone network can terminate further processing and output the prediction

from that classifier, effectively exiting early. S. Teerapittayanon et al. [81] using this ap-

proach, with a 2% increase in parameters amount, achieved 38% fewer computations

with minimal loss in accuracy.

An extension of this approach is similarity-aware inference. This approach is applied

mostly to video recognition applications. For example, A. Sabetsarvestani et al. [82]

check in-between layers the similarity level of two consecutive video frames (Figure 2.15).

If the abstracted features from the second frame are very similar to the previously pro-

cessed one, the inference stops and restarts with the next frame.

Following the core idea of early-exiting, layer-skipping is a more flexible dynamic

DNNs approach. Instead of completely stopping the execution of inference, it proposes

skipping only the execution of specific layers. Equation 2.1 can now be written:

y = (Si ◦ Lni
) ◦ (Si−1 ◦ Lni−1

) ◦ · · · ◦ (S1 ◦ L1)(xi), 1 ≤ ni ≤ N (2.2)

Where Si denotes the decision function that decides the execution or not of the ith layer.
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Gating functions are usually employed to deploy layer-skipping. They use the outputs

of a layer and produce a binary value that denotes if the next layer will or will not be

executed. SkipNet [83] is a great example. Let xi be the input, Li(xi) be the operation

function of the ith layer or group of layers, then the output of the gated layer is ([83]):

xi+1 = Gi(xi)Fi(xi) + (1 − G1(xi))xi (2.3)

where Gi(xi) ∈ 0, 1 is the gating function for layer i, that determines if it will be exe-

cuted or not.

Z. Wu et al. [84] on the other hand, in order to implement layer-skipping, introduce

an extra model (policy network) which, based on the network’s inputs it is trained

to produce binary gates that decide which of a pre-trained ResNet model’s layers are

going to be executed. Both methods add computational overhead in order to decide

upon the execution of a layer, but the overall reduction in computational burden is

substantially greater. On a ResNet model, SkipNet [83] achieves a 30% to 80% reduction

in computations, dependent on the ªharshnessº of the gates, and BlockDrop [84] a 20%

overall acceleration over a CPU/GPU solution.

A generalised approach combining early-exiting and layer-skipping is dynamic rout-

ing. In this case the network is converted into a Directed Acyclic Graph (DAG), and

control modules are introduced. Every node represents either a layer or a control mod-

ule and every edge a data line or a control line respectively. These control modules are

similar to the intermediate classifiers presented above. Driven from input instances or

user-defined global performance metrics (available resources, target latency, etc.), they

either produce a gate-like output or a probability map, indicating which of the next

layers or sub-graphs are going to be activated. L. Liu et al. [85] submit a novel deploy-

ment of dynamic routing, where every control node outputs a set of control scores, one

for each of its outgoing control edges (Figure 2.16) achieving a 40% increased execution

efficiency of ResNet-110. Z. Yan et al. [86], on the other hand, execute a small CNN

network in order to broadly categorize each sample and, then, based on this categori-

sation, execute a specific sub-network.

It can be noticed that all of the above-mentioned approaches interfere with the depth

of a network and focus on the interaction variability of the input sample with each

of the backbone network’s layers. Delving deeper into the layers, this translates to

the number of neurons whose feature preference would align with those of the input.

However, while an input sample may not stimulate the majority of a layer’s neurons,

there can be some that can generate useful information [87]. An alternative approach

to completely skipping the execution of one or several layers is keeping all of them

and selectively activating a part of their components (neurons, batches or channels). A

line of work connected to this idea is Mixture of Experts (MoE), where a number of
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(A) High-Low (B) Cascade

(C) Chain (D) Hierarchy

FIGURE 2.16: Four different dynamic routing networks. Reprinted from L. Liu et.al.
[85].

parallel sub-networks (Experts), that each target a specific part of the problem’s space,

are combined, via an ensemble, using data-dependent weights. In more detail, if x is an

input, G is a gating mechanism that produces an N-dimensional g vector that controls

the execution of N experts (F1, F2, . . . , Fn). The inference function can now be written

as:

y =
N

∑
K=1

[G(x)]kFk(x) =
N

∑
k=1

gkFk(x) (2.4)

If gn = 0 then the n-th expert will not be executed, otherwise it will. HydraNet [88] (Fig-

ure 2.17) implements that by changing the convolutional blocks with multiple branches

and selectively executing them at run-time. Doing so, N. Shazeer et al. [88] reduced the

inference on a ResNet and a DenseNet model by at least 2x times.

A final approach towards enabling dynamic execution of DNNs is dynamic pruning.

Existing static pruning methods reduce a great number of a network’s parameters,
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FIGURE 2.17: HydraNet’s architecture: consists of multiple branches specialized for
different inputs, a gate that selects which of them will be executed and a combiner that
aggregates their outputs to make a final prediction. Reprinted from R. T. Mullapudi

et.al. [88].

pruning permanently removes unimportant weights, neurons, or layers during or after

training based on global importance metrics, resulting in a fixed, smaller network with

reduced computational cost. However, since the pruned structure remains unchanged

during inference, it lacks adaptability to varying input complexities and often requires

fine-tuning to recover lost accuracy.

As discussed above, different inputs are better recognized by different parts of a net-

work or layer. By permanently deleting the network’s parameters, the model loses the

ability to process some input samples accurately and permanently. Contrary to static,

dynamic pruning suggests not deleting any weight or feature parameters but instead

using a specific portion of them, decided by the current network’s input. This makes

the model more flexible and efficient, as it can allocate resources dynamically depend-

ing on the complexity of the input. For example, Z. Chen et al. [28] (Figure 2.18) pro-

pose GaterNet, a framework for input-dependent dynamic filter selection in CNNs.

They employ similar to the target DNN but considerably smaller, which infer the input

sample and generate binary gates that control the target network’s filters. This way it

maintains the pruning benefits while achieving less than a 2% reduction in Top-1 Error

on the ResNet model using the Cifar100 test-set. J. Lin et al. [89] implement dynamic

pruning by modelling it as a Markov decision process and use RNN to select specific

channel groups.
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FIGURE 2.18: GaterNet’s model architecture. Reprinted from Z. Chen et.al. [28].

2.4.2 Parameter-focused Dynamic DNNs

In contrast to structure-focused, parameter-focused approaches perform dynamic in-

ference on a fixed architecture but with dynamic parameters, aiming to add more in-

formative features and, therefore, increase the network’s representation power. A fun-

damental assumption in the design of deep neural networks is that the same kernels

are applied to each instance of a data-set. To increase a model’s capacity, developers

usually add more layers or increase the size of existing kernels, both of which increase

the total network’s computational cost.

To overcome this, published work applies soft attention mechanisms on multiple ker-

nels in order to produce an adaptive set of parameters and increase the representation

power of a model without the additional computation burden of the previous methods

(parameter adjustment). For example, CondConv [30] computes convolutional kernels

as a function of the inputs. More precisely, it parametrises the convolutional kernels as

a linear combination of N experts:

y = σ((α1W1 + α2W2 + . . . αnWn) ∗ x) (2.5)

where α1, . . . , αn are functions of the input learned through gradient descent and W̃ =

αnWn, n = 1, 2, . . . , M the weights of M kernels.

Following CondConv architecture, increasing the capacity of the network is the simple

task of increasing the number of experts. This method achieves higher representation
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(A) CondConv Network (B) Network following Mixture of Experts method

FIGURE 2.19: (A) CondConv architecture with three n=3 Kernels vs. (B) Mixture of Ex-
perts approach. There are two mathematically equivalent networks, but CondConv,
with input-driven parameterization of convolutional kernels, requires 2 fewer convo-

lutions. Reprinted from B. Yang et.al. [30].

power, maintaining high efficiency and minimal extra computational burden, as the re-

sult of fusing the outputs of M convolutional blocks, as in Mixture of Experts, is equal

to that produced by performing one convolution with W̃. This means that this ap-

proach needs only the 1/Mth of the computation (Figure 2.19) that a Mixture of Experts

architecture would require to achieve the same outcome.

Weight prediction is another technique to apply dynamic parameter adjustment. Rather

than using the already calculated training weights, this approach directly generates

them in the test phase. DFN [90] is a great example that leads to a 15% reduction in loss

on the synthetic moving MNIST dataset. It consists of two parts (Figure 2.20), a filter-

generating network and a dynamic filter layer. The first takes in a network’s input and

generates IA ∈ Rh×w×cA where h,w and cA are the width, height and number of chan-

nels of an input A. It produces filters Fθ parameterized by parameters θ ∈ Rs×s×cB×n×d

where s is the filter size, cB the number of channels of input B, n the numbers of filters

and d is a variable, equal to 1 for dynamic convolution. Finally, a dynamic filter layer

takes the filters Fθ and the input IB and generates an output y = Fθ(IB). An LSTM net-

work is chosen for the generation of the filters, but any other differential architecture is

appropriate for use (multilayer perceptron, convolutional layer, etc.)

Finally, a soft attention mechanism can also be used to create feature kernels with adap-

tive size. F. Yu et al. [87] propose AntiDote, attention-based dynamic CNN, where they

calculate both channel-wise and spatial-wise attention coefficients by measuring the

average of the feature maps in the spatial dimensions (Height * Width) and in the di-

mension of depth respectively. Then, they use these coefficients to prune and reshape

the feature maps. They achieved a 40% FLOPs reduction on VGG16 running CIFAR100.
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FIGURE 2.20: Dynamic Filter Network (DFN) general architecture. Reprinted from B.
D. Brabandere et.al. [90].

2.4.3 Decision-Making Schemes

There are a number of slightly different decision mechanisms, but the three most com-

monly used are: Confidence-based Criteria, Policy Networks and Gating Functions

Confidence-based Criteria methods usually require the estimation of the confidence of

an intermediate output, which is essentially a metric of the amount of information the

backbone network had abstracted from the input sample. This value is then compared

to a predefined threshold for decision-making. The confidence can be represented by

the highest element of a Softmax function [27], the value of an entropy function [91] or

a score margin [80]. Finally, the halting score in [92] [93] could also be viewed as the

confidence of the feature to be output in the next time step.

Policy Network is typically developed for a specific backbone network. Each input

sample is first processed by the policy network, which is trained to learn a decision

function that dictates which parts of the main network are going to be activated. Block-

Drop [84] is a great example that uses this type of network to determine the depth of

the backbone one.

Gating Functions can be viewed as plug-in modules that go between layers or blocks

of vanilla backbone networks. The gating functions take in the input or intermediate

samples and produce a binary-valued gate vector that decides which channels need to

be activated [89], which layers need to be skipped [94] [95] or which path should be

selected in a tree-like SuperNet [96].

2.4.4 Decision-Making Modules Architecture

Considering the architecture of the decision-making modules, there are two different

directions followed in literature: the end-to-end designed, where these modules are inte-

grated into the original network and the enhanced backbone networks, where the original
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network remains unchanged, and the decision-making modules are added alongside

the depth. The first direction leads to an architecture that follows a progressive in-

ference. This means that the neural model and the decision modules are co-designed

and trained jointly. Such an approach gives the designer the ability to hand-write and

control the entirety of the dynamic network, providing more degrees of freedom in the

final architecture. However, it can lead to a considerable decline in training perfor-

mance and accuracy, as it requires custom training functions that simultaneously train

both the backbone and the modules. This also translates into the inability to use any

of the existent coding libraries (Tensorflow [42], Pytorch [97], etc.), making the coding

process harder.

On the other hand, the second direction suggests the architecture of the backbone net-

work to be completely independent of the decision modules, giving the flexibility to

the designer to lazily select their architecture. This translates to case-driven designs

that can be trained separately and selected at deployment time [98]. Although it can-

not achieve the overall accuracy of the end-to-end designed, as the backbone network and

the decision-making modules are not co-designed, it is easier to train and deploy and

more flexible, making it the most popular approach among conducted research. This is

also the approach this research follows.

(A) EPNet Ealry-exit Architecture. Reprinted from
X. Dai et.al. [99].

(B) LC-Net layer and channel skipping Architec-
ture. Reprinted from W. Xia et.al. [100].

FIGURE 2.21: Decision-Making Mechanisms’ Architecture Examples.

In most cases, decision-making modules are designed as small-sized neural networks,

mirroring the structure of conventional DNNs but considerably smaller. They typically

consist of convolutional layers, fully-connected (FC) layers, and pooling layers. For ex-

ample, in BranchyNet [81], the early exit modules incorporate Convolutional and FC

layers alongside some activation functions, while on EPNet [99] (Figure 2.21 (A)) and



36 Chapter 2. Background Theory

dynaexit [101] the convolutional layers are skipped. This decision to omit convolu-

tional layers is often made to reduce computational complexity, as convolutional layers

are among the most resource-intensive components of a neural network. Alternatively,

and to mitigate the complete loss of convolution, there are works proposing depth-wise

convolution [102], which significantly reduce the number of parameters and operations

required. In addition to reducing the size and complexity of the decision -aking mod-

ules, some approaches opt for a more compact design by utilizing multiple smaller

sub-networks to handle different types of decisions. This strategy allows for greater

flexibility and efficiency in managing dynamic inference tasks. For example, LC-Net

[100] employs two very small networksÐone to decide whether to execute a layer and

another to determine whether to use a specific channel (Figure 2.21 (B)).

Finally, the structure of the decision-making modules within dynamic networks can be

either uniform or non-uniform. Decision modules organized under a uniform structure

exhibit a consistent approach to decision-making. Each module within the network em-

ploys the same architecture to make decisions. This uniformity simplifies the design,

improves predictability, and makes it easier to train. Networks with uniform modules

often benefit from scalability and efficiency, as all components can be optimized in a

similar way. However, they might lack the adaptability needed for complex environ-

ments.

A non-uniform architecture operates with different rules and processes depending on

their role, position, or input data, expanding the design space. This approach allows for

specialization within the network, where some modules can focus on different tasks or

conditions. Non-uniform structures offer greater flexibility, enabling a network to re-

spond more effectively to diverse or complex environments. However, this approach

can introduce challenges in coordination, as varying decision processes may increase

complexity in training and optimizing the network. Therefore, the design of these mod-

ules must be carefully considered, taking into account the original network architecture

and the specific dynamic policy being implemented, to ensure that the benefits of dy-

namic inference outweigh the potential costs.

2.4.5 Dynamic Network Training

There are primarily two methods for training early-exit networks: i) end-to-end (E2E)

and ii) intermediate classifiers (IC) only. Each method offers distinct trade-offs be-

tween achieved accuracy and adaptability for target-specific adjustments. In this dis-

cussion, we explore these compromises alongside additional training techniques that

can enhance the overall accuracy of the model.

End-to-End training involves simultaneously training the network and its early exits.

Typically, a joint loss function is formulated, combining the losses from intermediate
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and final outputs (denoted as Li
task) in a weighted manner (Equation 2.6), and then

propagating these signals back to the corresponding parts of the network. While this

approach can potentially yield higher accuracy for both intermediate (yi¡N) and final

exit (yN), it’s not guaranteed due to interference between exits [103]. Specifically, the

interaction of multiple backpropagation signals and the relative weighting (wi) of the

loss components [104] must be carefully designed to facilitate the extraction of reusable

features across exits. Therefore, while offering greater potential, end-to-end training

necessitates manual adjustment of the loss function, and collaborative design of the

network architecture and its exits [105].

Le2e(y0, ..., yN , y) =
N

∑
i=0

(wi ∗ Li
task(yi, y) (2.6)

IC-only training alternatively, can be accomplished by training the backbone of the

network separately from the early exits in two distinct phases. Initially, the backbone

network, whether it incorporates early exits or not, is trained or pre-trained. In the

subsequent phase, the backbone network is kept frozen, and early exits are added at

various points in the network and trained independently (Equation 2.7). This implies

that each exit fine-tunes its own layers exclusively without influencing the convergence

of the remainder of the network. Consequently, the final exit remains untouched, elim-

inating inter-classifier communication and the need for manual adjustment of the loss

function. This approach allows for the placement of multiple exit variants at different

locations within the network, enabling parallel training and scalability while deferring

the selection of exit heads until deployment [106]. Consequently, a paradigm of ºtrain-

once, deploy-everywhereº is established for multi-device deployment. However, this

training method imposes greater constraints on overall model modifications, poten-

tially resulting in lower accuracy than a jointly trained and optimized variant.

Li
ic−only(yi, y) = Li

task(yi, y) (2.7)

2.5 Dynamic Hardware Architectures for DNNs

Dynamic hardware approaches focus on adding a dynamic aspect to the architecture of

the hardware platform in which the inference of a neural network is accelerated. Most

of the published work utilises FPGAs to implement their designs and systolic arrays

of process elements for the majority of the computations, mostly because of the recon-

figurability potential they both offer. The core idea is to reconfigure the accelerator’s

different components in order to target the layers’ computational needs. This leads to

higher utilisation levels of the available hardware and, consequently, faster execution.
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2.5.1 Diversity in Layers

FIGURE 2.22: Parameters of DNN layers. Reprinted from M. Putic et.al. [34].

Figure 2.22 captures the main type of computations performed in the layers of a CNN.

Nin is the number of input feature maps, Nout is the number of output feature maps,

Ni × Nj(Nij) is the number of rows and columns in each feature map and Ki × Kj(Kij)

are the dimensions of each kernel filter. In theory, two similar layers performing the

same type of operation, e.g. 2D convolution, should have similar performance at-

tributes. Putic et al. [34] (Table 2.1), however, highlights that both their data-structure

shape and computational demands vary significantly. It is easily visible that, for convo-

lutional layers, as the network gets deeper, the input and output features (Nin and Nout)

increase by over two orders of magnitude while Nij decreases proportionately. FC lay-

ers, on the other hand, are dominated by weights, while significant variations are noted

on the kernel sizes, too, alternating between 3 × 3 and 1 × 1. This variety is depicted

on the Ops/Byte requirement, too, where it differs by over an order of magnitude for

Convolutional layers and two orders of magnitude overall.

TABLE 2.1: Dimensions and compute characteristics of the layers of VGG11 image
recognition DNN. Reprinted from M. Putic et.al. [34].
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Creating a general static model, even though it can accelerate the execution, does not

translate to the acceleration of every layer’s execution. For example, when a layer has

high data reuse (e.g. Ops/ByteDNN > Ops/Byteacc) can lead to under-provisioning

the compute components, and resources should be shifted to them from, e.g. mem-

ory bandwidth. On the contrary, when a layer has high number of input and output

feature maps, which means low data-reuse (e.g. Ops/ByteDNN < Ops/Byteacc) com-

pute components are underutilized and resources should be shifted from them to data-

movement, as data is not fed in sufficient rate. Moreover, these compute components

are multi-dimensional parallel execution engines, so if the hardware dimensions are

not an even multiple of the weights, inputs and outputs feature maps’ dimensions, a

significant utilization drop occurs. This means that by leveraging the layers’ attributes,

a lot more efficient resource distribution and memory scheduling can be achieved [34].

2.5.2 Hardware Design and Deployment

The information collected from analyzing the layers of a network, along with the avail-

able resources and the reconfiguration cost of the target device, can be used to explore

the design space and find the most efficient architecture. Nonetheless, for this to hap-

pen, the information concerning the DNN’s structure must be translated into hard-

ware relative values such as power consumption, latency cost, etc. To evaluate perfor-

mance effects, Putic et al. [34] propose a cycle-accurate hardware equivalent model of a

systolic array, which is the reconfiguration target component, written in Python [107].

They simulated the MAC operations and the on- and off-chip memory data movement

costs extracted from the network information in order to create different performance

scenarios for each layer. Moreover, they implement and synthesize a simple design of a

systolic array in RTL and use Cadence Genus [108] and ARM Memory Compiler [109]

to estimate the power needs.

F. Kastner et al. [110] and S. Jiang et al. [111] follow a simpler approach, where taking

into consideration the layer’s features, they created multiple architectures with differ-

ent levels of parallelization, latency and accuracy. To achieve that, they use different

combinations of three major optimization parameters: the factor of unrolled loops, the

pipeline interval (the number of clock cycles the systolic array needs to be available to

accept a new input) and the bit-width for the quantization of the model’s parameters.

However, to enable the dynamic deployment of hardware designs, dynamic partial re-

configuration is necessary. When the available resources are not static, for example,

on a mobile device where a number of applications run in the background, the main

architecture and the reconfigurable components must adapt to the real-time demands.

S. Jiang et al. [111] formulated two functions to select the best architecture given the

available resources and a preferable trade-off between latency, accuracy and energy
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(Figure 2.23). More specifically, to calculate latency, they consider the time for the ex-

ecution of the model on the FPGA, the time for its reconfiguration and the time that it

must wait for available engines. Then, they pass this information to a second function,

which combines the time needs with the accuracy and energy estimation of every ar-

chitecture and chooses the best one for the current resource availability. In doing so,

they managed to meet different real-time resource limitations while maintaining a very

high quality of experience on a mobile device.

(A) Drone Data (B) Fixed Camera Data

(C) Synthetic Data

FIGURE 2.23: Generated architectures providing different trade-offs between Energy
Consumption and Latency. Reprinted from S. Jiang et.al. [111].

Contrarily, when the available resources are static, deployment methodology falls into

finding the balance between reconfiguration cost and gained acceleration by the change

of the design for each layer. Putic et al. [34] proposes an algorithm where the inputs,

the architecture, and the reconfiguration cost are utilised to produce a configuration

map (Figure 2.24). More specifically, using the performance model explained above, it

explores and identifies the best design for every layer. A first network description with

the best design for every layer is produced. However, reconfiguring the FPGA after

the execution of each layer is very time-consuming and leads to an overall increase in

latency. To resolve that, it performs between every consecutive layer to determine when

the performance gain of reconfiguration is higher than its cost and only then applies

it. This leads to a refined network that showed 15-65% latency and 25-90% energy

improvement over static designs on 6 popular DNN models (ResNet50, GoogleNet,

VGG11, etc.).

Y. Yang et al. [112] propose an approach that focuses on clustering the layers. They

find the fastest one and create an empty set. Then, for every other layer, compare if the
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FIGURE 2.24: DyHard-DNN methodology. Reprinted from B. D. Brabandere et.al.
[90].

acceleration difference between them and the fastest is greater than the reconfiguration

cost. If it is then they create a new set of layers, otherwise they add it to the existing one.

They repeat this process for all the layers, and they end up with a number of layer sets

assigned with the design of the initial layer. Finally, in order to create the configuration

map, when there are two neighbouring layers of different sets, and consequently with

different assigned architectures, they recheck if the performance gain is greater than the

reconfiguration cost and choose accordingly to change or not the design. Overall, they

achieved a 2.11× performance improvement in the execution of AlexNet, compared

with a static FPGA design.

2.6 Research Scoping and Discussion

While DNNs are getting deeper and more complex in adapting to the needs of modern

AI applications, they are becoming increasingly demanding for memory and computa-

tion. CPUs are unable to accommodate large networks, especially when low latency is

of high importance, leading to the widespread adoption of GPUs as the main hardware

device to execute AI applications.

With the increasing interest in moving the execution of DNNs to the edge, as elabo-

rated in Chapter 1, a lot of effort has been put into developing devices that maintain

low levels of energy consumption and accelerate the execution of DNNs, like NPUs

and TPUs. FPGAs are another platform that has been proven to be very effective in ex-

ecuting neural networks. Hardware-focused dynamic approaches further highlighted

their effectiveness. Focusing on the layers’ varying functions and computational needs

and targeting the FPGA’s ability to partially reconfigure their architecture on runtime,

they propose the creation of multiple partial designs, mostly of a systolic array, to bet-

ter adapt to each layer’s unique characteristics. Doing so, there are approaches that

manage to achieve up to 65% reduction in latency and up to 90% in energy.
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However, FPGAs is a platform with a limited amount of resources, rendering the need

for network compression mandatory. State-of-the-art compression techniques were

presented in this Chapter, too. Static methods that permanently affect the DNNs, like

quantisation or pruning, reduce the computation needs and memory footprint but re-

sult in losses in accuracy and representation power. On the other hand, dynamic ap-

proaches, following the observation that each input interacts differently with each com-

ponent of a neural model, provide a dynamic aspect to neural networks by devising

input-driven control mechanisms. Targeting either the network’s structures or its pa-

rameters significantly increases the efficiency and adaptability of many modern deep

neural models (e.g. VGG11, ResNet, GoogleNet, et al.). For example, by dynamically

selecting which of the layers are going to be executed, E. Park et al. [94] reduced the

needed energy by 80% on the MNIST dataset and over 40% on ImagNet compared to a

static network, while F. Yu et al. [87] applying adaptive kernel sizes achieved a 40% re-

duction in FLOPs on a VGG16 network. These results are very promising, especially for

deploying models with high computational burden on devices with limited resources.

Through the examination of the existing work, it was visible that the dynamic DNN

approaches offer great benefits in reducing the computational and energy demands of

modern neural networks. They also managed to achieve that with minimal to none

negative effects on the accuracy of the networks. However applying these types of

networks on conventional processing systems, such as computer processors and GPUs

does not allow to fully highlight their capabilities, as despite their benefits, the results,

especially concerning energy, does not depict a realistic application. FPGAs on the

contrary, have already proven to be a very good platform to optimise and accelerate

the execution of modern DNNs, while providing a low power environment. Building

on the prior findings presented in this Section, a hypothesis was formulated that FPGA-

specific optimizations, such as parallel execution and quantization, can further enhance

the performance while improving energy efficiency of early-exit dynamic DNNs.
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Chapter 3

Realising Dynamic DNNs on FPGAs

Chapter 2 showcased how the different Dynamic DNN approaches can enable a data-

driven execution that adapts to the characteristics of each input sample and efficiently

compresses a neural network without compromising accuracy or representation power.

To achieve this, however, dynamic approaches introduce new components to the net-

work’s architecture. For example, early-exit networks deploy intermediate classifiers

to enable the classification of an input at earlier stages of the inference. Layer-skipping

networks incorporate gating functions to dynamically bypass certain layers of the back-

bone network, and weight prediction methods use filter-generating networks to dy-

namically predict weights adapted to each input sample’s attributes. This substantially

differentiates their structure from static networks, creating more adaptable but complex

architectures.

Despite their very promising results, their deployment has been mostly explored in

powerful GPU-CPU systems. While this is an environment very capable of highlight-

ing their beneficial impact on the execution of DNNs, it is argued that there is a gap in

knowledge between theoretical and practical results. This Chapter aims to explore the

realisation of dynamic DNNs on FPGAs. FPGAs are popular for their ability to pro-

vide high-performance and low-power implementations of custom hardware designs,

rendering them ideal to illustrate the capabilities of dynamic network approaches in

resource-constrained environments.

The dynamic DNNs’ architectural complexity, however, poses significant challenges to

their deployment and hardware realization. Unlike static networks, which have a fixed

structure, rendering them easier to optimize for various hardware platforms, dynamic

networks introduce variability that can be difficult to manage. The new components

require additional computational overhead and more sophisticated control logic. In

addition to this, the reliance on software and hardware libraries designed for static

networks complicates their implementation, as these tools are not optimized for dy-

namic operations. These challenges become even more pronounced when considering
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the deployment of dynamic networks on FPGAs since the dynamic reconfiguration of

the network components at runtime, as required by dynamic DNNs, is not inherently

supported by FPGAs.

In this Chapter, the challenges of current software and hardware infrastructure in the

support of dynamic networks are outlined. Information on the limitations introduced

by the characteristics of the dynamic approach is very important for the hardware de-

signing process, and it can also highlight potential directions for future research. The

state-of-art advancements towards solving some of these challenges are also illustrated

and discussed. Finally, the first design approach to realising dynamic DNNs on FP-

GAs is proposed. The aim of the proposed architecture is not only to investigate the

feasibility of the FPGA platform to deploy dynamic DNNs but also to highlight their

advantages in a resource-restricted environment.

The novel contributions of this Chapter can be summarised as:

• An exploration of the challenges the early-exit networks architecture intro-

duces to their hardware implementation. Identifying the limitations presented

by the software and hardware infrastructure and the architectural characteristics

of early-exit dynamic DNNs is of vital importance for their hardware realisation

process and highlights open research problems.

• A first consideration for realising and implementing dynamic DNNs on FPGAs

(at the time this research was conducted). A first FPGA implementation of an

early-exit network is presented.

• An experimental evaluation of the proposed Early-Exit FPGA design. The de-

sign is implemented on a ZCU106 FPGA, and its performance is evaluated over

accuracy, execution time, power and energy consumption against a desktop CPU,

CPU+GPU, and an Nvidia Jetson Xavier embedded device.

3.1 Challenges

Following Section 2.4.1, the two major components of an early-exit DNN are the back-

bone network and the intermediate classifiers (Figure 3.1). The backbone network (or-

ange part of Figure 3.1) is the static DNN, unchanged and used as the main process-

ing route for the input samples. Input samples, translated into matrices, are inference

through the first layer of the network. The output feature maps are than forwarded to

the intermediate classifiers (doted squares in Figure 3.1), which are the decision mod-

ules whose purpose is to enable the dynamic execution of the network and, conse-

quently, to reduce the computational burden it introduces. The convolution and the FC
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FIGURE 3.1: Early-Exit Dynamic DNN architecture.

layer are used to reduce the dimensions of the feature maps and flatten them into a vec-

tor, which size is dictated by the amount of the classification classes (S(yi)). This vector

is then compared with vector Vj. If the early-exit condition is met then inference stops

(red line in Figure 3.1), other it continues to the execution of the backbone network till

the next intermediate classifier. A check for an early exit happens again (orange line in

Figure 3.1). If an early exit does not occur inference stops producing an output from

the backbone network (green line in Figure 3.1).

Despite being simpler structures (see Section 2.4.4), even over small DNNs, e.g. LeNet

[113], intermediate classifiers introduce significant complexity when integrated into

static network architectures. They require careful training and cause alternation in the

data-paths and execution of the DNNs, leading to uncharted territories both in terms

of their development and their deployment.

3.1.1 Software Frameworks & Training

Training is the first step towards the deployment of a neural network. It is one of the

most time-consuming and computationally heavy operations of DNNs due to the com-

plexity of the backpropagation algorithm and the vast number of parameters modern

networks require. Hence, a lot of effort is spent to simplify and accelerate this pro-

cess. Frameworks like TensorFlow [42], PyTorch [97], and JAX [114] offer automatic

differentiation, which automatically computes gradients needed for backpropagation.

This eliminates the need for manual gradient calculations, making it easier to imple-

ment and optimize complex models. High-level APIs like Keras [115] (integrated into

TensorFlow) provide intuitive interfaces for building and training models and libraries

of common layers, loss functions, optimisers, etc. Thus they abstract the complexity of

lower-level operations, allowing users to define and train models with minimal amount

of coding. The latest advancements even support distributed training across multiple
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GPUs or even clusters of machines, allowing faster training times through data paral-

lelism (distributing different batches of data across multiple devices) and model paral-

lelism (splitting the model across devices).

However, these frameworks have very limited, if not zero, support for dynamic DNNs.

Conversely, the architectural differences of dynamic networks require more complex

training methodologies in order to achieve high accuracy on a given task. As seen in

Section 2.4.5, the majority of works concerning early-exiting employ either an End-to-

end strategy, which jointly trains the backbone and intermediate classifiers with com-

bined loss functions, or IC-only training in which, only the intermediate classifiers

have their parameters updated during training, while the backbone parameters are

frozen.

Both of these approaches require custom loss functions adapted to the structure of the

early-exit network and the decision-making approach of the intermediate classifiers’.

While the core of the loss function is the same as those used for static networks, the

need to adapt to early-exiting necessitates creating new or altering the existing libraries.

This renders the coding process considerably harder, as most of the predefined compo-

nents and functions offered by DNN frameworks are infeasible to support dynamic

networks. Also, their dependency on the structure of the early-exit approach makes

the modelisation of training that would enable techniques like distribution training,

automated tuning (e.g. Optuna [116], Ray Tune [117] etc.) very hard if not impossible.

This extends to the deployment of dynamic networks, too. A great example is Tensor-

flow, as it freezes the execution graph for inference, meaning that the architecture and

model’s parameters become constants and cannot be further trained or modified. This

greatly limits the creation and deployment of models that require the run-time modi-

fication of their structure. Furthermore, dynamic architectures have a data-dependent

inference procedure, which usually requires a model to handle input samples sequen-

tially. This poses a major challenge for the parallel processing of batched input samples

[118], and similarly to training, the deployment to distributed systems.

3.1.2 Hardware Design & Frameworks

Targeting custom hardware devices, especially for the deployment of complex applica-

tions like DNNs, is a difficult and time-consuming task. Likewise, to software devel-

opment, numerous FPGA manufacturers and researchers have invested resources in

developing mapping frameworks for DNNs. For example, Xilinx’s Vitis AI [119] and

Intel’s OpenVINO [120] development platforms provide tools for optimizing and de-

ploying AI models on FPGAs, including libraries for accelerating DNN inference, tools

for quantization and pruning and emulators allowing the testing of DNN models be-

fore full deployment. Techniques like NAS are adapted to consider FPGA constraints
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during the design of network architectures, helping with design models that are not

only accurate but also optimized for FPGA performance in terms of resource utiliza-

tion and latency. Finally, frameworks like AngelEye and fpgaConvNet [67] automate

the deployment of DNNs incorporating acceleration techniques like loop unrolling,

different quantisation levels and dynamic partial reconfiguration.

However, these tools are integrated with static network libraries like Caffe, TensorFlow,

Torch, etc. In other words, the limitations presented above apply to the use of FPGA-

focused tool-flows, resulting in limited support in capturing and mapping the dynamic

behaviour. It could be argued that, at a minimum, they could be used for the design of

the backbone network. However, most of these tools generate comprehensive but often

inaccessible designs. For example, Figure A.1 shows the design output of fpgaConvNet

for LeNet-5. They are highly optimised architectures, but accessing and altering them

in order to incorporate the intermediate classifiers. is either a very hard or impossible

task.

Overall, due to the control and data-flow nature of Dynamic DNNs, mapping the ar-

chitecture requires the use of custom layer types, components, and control modules,

which dramatically increases the complexity of the hardware design task. Designers

need to carefully balance the standard trade-offs between computational efficiency, la-

tency, and resource utilization while ensuring proper synchronization and data flow

across different inference paths.

3.1.3 Intermediate Feature Map Dependence

Focusing on early-exit dynamic networks and looking at Figure 3.1, it is notable that

the intermediate classifiers use the previous layer’s output to reach a decision. These

intermediate feature maps are required by both the intermediate classification layers

or, in cases when an early-exit does not occur, the remainder of the backbone network.

Propagating the intermediate feature map through the early-exit branch destroys them,

which raises the need to preserve them. In CPU/GPU systems, it is straightforward

as they can be stored temporarily in the memory. However, when resource-restricted

devices, like FPGAs, are targeted, preserving the intermediate feature maps can be

challenging. A method to follow is buffering them on-chip, but due to the increased

memory requirements in larger networks (e.g. VGG, ResNet, etc.), this is not always a

viable solution. An alternative is routing them to external memory, which, although,

can significantly impact the latency and energy demands of a given inference.
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3.2 Advancements

One of the first attempts to overcome the challenges concerning hardware design frame-

works 3.1.2 is the framework visualized in Figure 3.2. ATHEENA [121] is a framework

that constructs a deeply pipelined, early-exit network accelerator to perform inference

on an FPGA. It investigates the resource/throughput trade-off that can be made when

factoring the probabilistic nature of the early-exit network and utilises the open-source

fpgaConvNet [67] as a baseline to automate the mapping process.

FIGURE 3.2: High-level overview of the components of the ATHEENA framework.
Reprinted from B. Biggs et.al. [121].

Utilising fpgaConvNet, ATHEENA maps the early-exit network onto the FPGA and

optimises the level of parallel computation to maximise throughput under the resource

constraints of a given device. The primary distinction between the two flows is that

while the original fpgaConvNet generated a data-flow graph, this approach creates a

control and data-flow graph (CDFG). This CDFG not only represents the flow of data

through the network layers but also incorporates the confidence decisions made at the

early-exit points. To accommodate different ONNX operations and incorporate control

flow into hardware translation, the parser and the optimizer are modified. Addition-

ally, several new hardware component templates have been created to implement con-

trol flow and support confidence calculations on the FPGA. Figure A.2 is the enhanced

processing flow of ATHEENA framework, corresponding to Figure 2.10 presented in

Section 2.2.4.3.

AdaPEx [122] is a related FPGA work that explores dynamic network inference on FP-

GAs, making use of adaptive pruning and early-exit intermediate classifiers to further

explore the trade-off between resources and throughput at run-time. AdaPEx is built

on the FINN [71] HLS framework, which is used to construct a library of FPGA accel-

erators for a given traditional DNN. To achieve that, they utilised the dataflow accel-

erator, creating custom hardware module libraries tailored to the needs of early-exit

networks. Each accelerator has a different level of channel-wise pruning, with reduced
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FIGURE 3.3: AdaPEx workflow. Reprinted from G. Korol et.al. [122].

accuracy corresponding to improved accelerator performance. A runtime manager is

deployed to orchestrate the dynamic partial reconfiguration of the FPGA, deploying

the generated accelerators based on the user requirements for accuracy and through-

put. Figure 3.3

Both approaches target to overcome the aforementioned challenges and help towards

making the deployment of early-exit dynamic DNNs of FPGAs easier and more effi-

cient. Utilising and adapting frameworks like FINN or fpgaConvNet aims to make

the FPGA designing process significantly easier and faster. However, as highlighted

above they are designed focusing on static networks, which results in their output de-

signs being restricted by the available libraries and frameworks limitations. For ex-

ample, ATHEENA employing fgpaConvNet leads to architectures that are accelerated

by function (as seen in Section 2.2.4.3) that excel at static data paths. Additionally, the

limitations of the framework are highlighted by a very limited number of explored

DNNs to date. Correspondingly while AdaPEx propose a dynamic hardware/soft-

ware approach, combining dynamic pruning, early-exiting and FPGA reconfiguration,

the developed architecture’s performance is explored only on a simulation level.

3.3 Early-Exit Network FPGA Design

A different approach and the one followed in this research, is designing everything

from scratch using a hardware description language (VHDL, Verilog, etc.). This tech-

nique requires considerably more time but can lead to hardware architecture with ut-

most efficiency and effectiveness. A first attempt to realise and fully deploy early-exit

dynamic DNNs on FPGAs is presented below.

3.3.1 Early-Exiting Approach

This work employs the approach presented by Teerapittayanon et al. [81]. The network

follows the early-exit architecture presented in Section 2.4.4, deploying intermediate

classifiers within the backbone network in order to enable the dynamic execution of

the DNN. The intermediate classifiers are trained alongside the backbone network as



50 Chapter 3. Realising Dynamic DNNs on FPGAs

FIGURE 3.4: The Early-Exit Dynamic DNN FPGA Design Approach.

a joint optimisation problem, using the softmax cross entropy loss function. Once the

network is trained, entropy is used to measure how confident the network is at an exit

point. Entropy can be written as:

S(y) = ∑
c∈C

yc · log yc (3.1)

where y is the intermediate classifier’s output that contains the probabilities for every

one of the C possible labels. Entropy is then compared over a vector V, which contains

the thresholds for every exit point. For example, in the j-th exit point after the Ln layer,

entropy is compared with Vj. If it is smaller, the inference halts, and the branch’s pre-

dicted class is selected. Otherwise, inference continues with the execution of the Ln+1

layer.

3.3.2 Architecture

The proposed design approach (Figure 3.4) follows the traditional early-exit architec-

ture. The backbone network is executed normally until the layer before the intermedi-

ate classifier Ln−1. The backbone network then halts, and the Ln−1 layer’s output is fed

to the intermediate classifier, which starts executing. Its output is then compared with

a confidence value, and the dynamic network either stops (S(yj) < Vj) and requests a

next input sample, or (S(yj) ≥ Vj) inference continues with the next layer Ln.
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This architecture offers the possibility of reusing the hardware modules designed for

the backbone network. Following the analysis of the structure of the intermediate clas-

sifiers in Section 2.4.4, their components (layers, activation functions, etc) are similar to

the backbone network. With some careful setting of the control module on the FPGA

design, reusing the same hardware modules can lead to an additional area overhead of

close to 0% for the execution of the intermediate classifiers. This can cause the under-

utilization of the existing modules, but it can be proven to be very useful for cases with

very restricted amounts of resources.

3.3.3 Hardware Implementation

To further investigate the feasibility and benefits of dynamic DNNs on FPGAs, a hard-

ware implementation is developed. It is essential first to convert real numbers like

inputs, weights, and biases into a digital format. Implementing FP32 arithmetic units

in an FPGA requires significant resources, as floating-point operations are complex and

consume a large number of logic elements (LUTs, flip-flops), DSP slices, and memory.

In scenarios where FPGA resources are limited, fixed-point representation is utilised.

An 8-bit fixed-point representation is used, as it minimizes the computational demands

on hardware resources while maintaining the same levels of accuracy [123]. As illus-

trated in Figure 3.5, this representation comprises three components: a sign bit (S), a

two-bit integer (I), and a five-bit fractional value (R) (illustrating a fixed-point repre-

sentation for the number 1.375).

FIGURE 3.5: Example of fixed-point representation of the real number 1.375.

An array of processing elements is employed to accelerate matrix-vector multiplica-

tions. Systolic arrays are hardware structures that replace a pipeline structure with an

array of homogeneous processing elements (PEs) that can perform a common mathe-

matical operation. These elements are locally interconnected and able to communicate

with each other in a synchronous manner. An architecture like this is very beneficial as

it can naturally facilitate data reuse during matrix/tensor algebra operations. A signif-

icant portion of PEs in the array can perform their tasks without requiring communica-

tion with external memory. Consequently, a maximum of p I/O ports has the capacity

to drive p2 PE units, which substantially reduces memory bandwidth demands.



52 Chapter 3. Realising Dynamic DNNs on FPGAs

FIGURE 3.6: The design of the systolic array following an Output Stationary data-flow.

Figure 3.6 shows a typical 2D systolic array configuration, containing a collection of

identical and interconnected PEs, accompanied by a controller module and an on-board

memory/buffer. Each PE (Figure 3.7) is constructed from fundamental arithmetic and

register components, enabling it to execute multiply-accumulate operations. The data

flows from the DRAM into the PEs (weights through regW and features through regI)

and is multiplied and accumulated in the MAC module. Partial sums are calculated

using bufc, and when all iterations are completed, the results are stored back in the

memory.

Algorithm 1 3-nested loop of fully-connected (FC) layer

Input: I[D, C] and W[E, C]
Output: O[D, G]

1: for (d = 0; d < D; d ++) do

2: for (g = 0; g < G; g ++) do

3: for (c = 0; c < C; C ++) do

4: O[d, g] = O[d, g] + W[g, c] · I[d, c]

To improve the performance of the systolic array, it is necessary to consider how to ex-

plore the parallelism of the workload to drive multiple PEs to work simultaneously. A

simple way is loop unrolling [124]. Algorithm 1, for example, describes the calculation

process of an FC Layer, where d denotes the size of the mini-batch, c signifies the cth

input and g represents the gth output. loop1 and loop2 can be flattened to the spatial
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FIGURE 3.7: The design of the processing element on our FPGA architectures.

hardware and compute these loop instances in parallel. For a more detailed descrip-

tion, data flow can be used to represent which loops in the workload are unrolling. The

Output Stationary (OS) [125] approach is followed, which refers to mapping output ele-

ments to the corresponding PEs, where each PE needs to complete all the computations

required for an output element.

The target platform is the Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit, including

504K logic cells, 1728 digital signal processing (DSP) slices, 38Mb of Block RAM and

one 4Gb DDR4 module. Table 3.1 highlights the resource utilisation of the FPGA.

TABLE 3.1: FPGA Resource Utilisation

Data #PEs FF LUT BRAM DSP Clock

8-bit 300 50% 66% 96% 78% 150 Mhz

3.3.4 Layer realisation

3.3.4.1 Convolution Layer

For the implementation of convolution, input data is fed from the buffers into the Sys-

tolic Array, as explained above. The PEs calculate input-kernel multiplication, and

outputs are then moved to another buffer. The activation function (ReLU), a simple
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FIGURE 3.8: Design Overview.

conditional branch, is promptly applied, and its results are stored in buffers that feed

the subsequent layers.

3.3.4.2 FC Layer

The architecture of fully connected (FC) layers is akin to that of convolutional layers,

but instead of using convolution, they rely on vector-matrix multiplication. The input

vectors consist of numerous values generated by flattening the output of the previ-

ous layer, resulting in many multiplication operations. To handle this, the inputs and

weights are divided into equal segments and computed separately.

3.3.4.3 Pooling Layer

Pooling layers take the values stored in buffers from the preceding layer and apply a

sliding window with a size equal to the pooling filter and a step size determined by the

specified stride value. The operation performed is either max or average pooling.

3.3.5 Design Overview

Fig. 3.8 provides an overview of the design of the proposed hardware implementation.

The core of the design is the 2D systolic array configuration accompanied by onboard

memory/registers. The data flows from the Input Buffer into the PEs (weights through
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FIGURE 3.9: Tooling Flow Diagram.

regW and features through regI) and is multiplied and accumulated in the MAC mod-

ule. Partial sums are calculated using bufc, and when all iterations are completed, the

results are stored in the Output Buffer.

The rest of the design contains a controller module, a DMA (Direct Memory Access)

module, a host processor and an Off-Chip DRAM. The controller ensures the synchro-

nisation of the different processing units and coordinates the sequence of the dynamic

DNN layer execution. It also communicates with the host processor, which, for most

networks, is used to set-up the FPGA and post-process its results. In the case of ResNet-

32, it is used to execute the model, too. Finally, the DMA is responsible for the effi-

cient data movement between the accelerator buffers and the Off-Chip DRAM. As the

data have an 8-bit fixed point representation, they are stored in the 32-bit per address

memory in groups of 4, so the DMA is mandatory for the correct use of the external

memory-fetched data. Throughout this thesis the energy consumption of the memory

data move, in theoretical measurements, is the standard for LPDDR4 memory 4 pJ/bit.

[126].

Fig. 3.9 finally highlights the tooling flow for the realisation of each Early-Exit network.

In more detail, the network is first designed using an ML Framework, e.g. Tensorflow,

PyTorch etc. Then the FPGA hardware design, described in VHDL, is adapted to the

characteristics of the dynamic DNN. Vivado Design Suit is then responsible for the

synthesise and implementation of the design. Finally, the generated bitstream is down-

loaded and applied to the FPGA, where inference is executed.

3.3.6 Experimental Setup

To verify, test and evaluate the performance of the design, the BranchyNet [81] early-

exit LeNet-5 network is used. It consists of three convolutional and two FC layers,



56 Chapter 3. Realising Dynamic DNNs on FPGAs

while the one deployed intermediate classifier contains one convolutional and one FC

layer, and it is placed after the first convolutional layer of the backbone network. Addi-

tionally, at all exit points, the softmax function is applied to classify the input samples

(y in Equation 3.1. MNIST [127] data-set is used, containing 60,000 training images and

10,000 testing images, each of which is a 28x28 pixel gray-scale image of a handwritten

digit (numbers 0 to 9). The dynamic network, apart from the FPGA accelerator, is exe-

cuted on a desktop computer (Intel Core i9 + Nvidia RTX 2080 TI) and on an embedded

platform (Nvidia Jetson Xavier NX).

To calculate latency and power consumption of the proposed design on the FPGA,

the Xilinx Vivado design suit [128] is used. In more detail, in order to acquire pre-

cise measurements of the execution time the dynamic network requires to process an

input sample, an Integrated Logic Analyzer (ILA) is deployed on the design. It is a

powerful debugging tool within the Design Suite that allows designers to monitor and

capture real-time internal signals of an FPGA design while it is operating. By monitor-

ing specifically selected or generated signals and with the knowledge of the design’s

clock frequency, the actual latency of the network can be measured with very high pre-

cision. Similarly, Vivado’s Power Estimation tool is used to calculate the power needs

of the design. It can estimate the power of the FPGA in various design stages, achieving

the highest accuracy after implementation. It uses a Simulation Activity file (SAIF) that

represents the real-world operation of the design. The file contains information with

respect to the environmental conditions (device temperature, ambient temperature, air-

flow, etc.), the various voltages for the device’s power rails, the clock constraints and

the default activity rates (set and reset signal probability, IO toggle rates etc.). Utilising

this information, the tool can analyse the characteristics of the design and produce a

very accurate estimation of the power required by the FPGA.

This process is simpler for the Jetson Xavier NX embedded device. The execution time

was measured by simply using Python’s time library. For power measurements, the

Tegrastat tool provided by nVidia has been adopted. It is a command-line utility used

to monitor system resource usage on NVIDIA Jetson platforms, which are powered

by NVIDIA’s Tegra system-on-chip (SoC). This tool provides real-time information on

various system resources such as CPU, GPU, memory, power consumption, et al.

3.3.7 Design Validation and Evaluation

Figure 3.10 shows the per sample execution time of the early-exit network on different

platforms. The first thing to observe is that the dynamic network, when none of the

early-exits is triggered (green bars), is slower than a static (normal, orange bars) net-

work. This is explained by the additional computations introduced by the intermediate

classifiers. As explained in Section 2.4.4 and in Section 3.3.2, for the followed early-exit

approach, intermediate classifiers contain layers that are used to make the exit decision.
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FIGURE 3.10: Experimental results comparing average Execution Time per sample.
Average values are calculated based on each exit point trigger rate.

In cases where an input does not trigger an early exit, the inference contains the execu-

tion of every intermediate classifier sub-network in series with the backbone network.

This delays the execution time of inference as it increases the amount of computations.

However, none of the samples triggering an early-exit is not a realistic scenario, as with

the correct training, a large number of input samples will trigger an early exit. It can be

seen in the results too, as the average execution time of the dynamic network executed

without restricting the early exits (purple bars), is substantially faster. This occurs,

as for the BranchyNet early-exit dynamic approach for LeNet-5, 94.3% of the input

samples exit on the first exit point(early), 5.63% on the second (the backbone’s exit).

Furthermore, the accuracy of the networks is shown on top of the bars, stressing the

fact that early-exiting can lead to higher accuracy values. BranchyNet jointly optimizes

the weighted loss of all exit points, thus providing regularization on the exit points,

preventing overfitting and improving test accuracy. Overall, the dynamic approach is

at least 1.6x faster over a static network on all platforms. At the same time, the proposed

design is 1.2x faster than a desktop CPU, comparable to a desktop CPU/GPU system

and 1.7x faster than the Jetson. These results highlight not only the effects of dynamic

execution but also the capabilities of the FPGA platform. Additionally it is found that

the accuracy is slightly increased in the cases where intermediate classifiers are used

(99.3% over 90.2%). This can be explained by the fact that layers, especially in CNNs are

attribute specific, and deeper layers target to highlight input details and characteristics

harder to be found on early layers within the network. By allowing early exits, the

model avoids deeper layers that might overfit to complex representations for simple

inputs.

Figure 3.11 shows the average energy consumption per input sample. Similar to the

execution time, it is noticeable that the dynamic network requires more energy when

no early exit is triggered (green bars), logically connected with the increased amount of
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TABLE 3.2: Execution Time (ms) of a static (Normal) and an early-exit dynamic LeNet-
5 DNN.

LeNet-5

Normal
Exit 1

(94.4%)
Exit 2
(5.6%)

Avg

CPU 1.21 0.3 1.32 0.36
CPU+GPU 0.57 0.15 0.62 0.17

Jetson 4.65 0.71 5.05 0.95
FPGA (proposed) 0.82 0.24 0.99 0.29

TABLE 3.3: Energy Consumption (mJ), with (w/ EE) and without (w/o EE) early exits
of a dynamic LeNet-5 DNN.

FPGA - Static
(16.7W)

Nvidia Jetson Xavier
(9.6W)

FPGA-proposed

(16.7W)

w/o EE w/ EE Normal w/o EE w/ EE w/o EE w/ EE

LeNet-5 13.7 n/a 44.6 48.5 9.1 16.5 4.8

computations. However, as mentioned above, when it is executed without restriction

on the exit triggering (purple bars), the early-exit network is significantly less energy-

demanding compared to the static (orange bars). The proposed design approach re-

quires 41% less energy over the Jetson Xavier embedded device, further illuminating

the low levels of power demands FPGAs can achieve. Table 3.2 and Table 3.3 show the

results in execution time and energy consumption of the early-exit LeNet-5 DNN in

more detail.

FIGURE 3.11: Experimental results comparing average Energy Consumption per sam-
ple. Average values are calculated based on each exit point trigger rate.
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3.4 Discussion

Realising Dynamic DNNs on FPGAs is an effective way to reduce power consumption

and flexibly adjust the computational workload of modern neural networks to meet

the constraints of resource-limited environments. However, it is a very challenging

task due to the changes the dynamic approaches introduce to the architecture of the

neural models and the lack of libraries and frameworks, both in terms of software and

hardware, that can support them. This Section presented an exploration of these lim-

itations and identified three that present them: Software Frameworks and Training,

Hardware Design Frameworks, and Early-Exit Networks’ Intermediate Feature Maps

Dependencies.

Following that, this Section presented a first attempt to realise and fully deploy an

early-exit dynamic DNN on FPGAs. The design approach followed the traditional ex-

ecution pattern of early-exit networks. It utilised systolic arrays of process elements

and loop unrolling techniques, and by reusing the hardware components designed

for the backbone network it achieved almost 0% of hardware overhead. The design

was experimentally evaluated, and its performance was assessed over a CPU system,

a CPU/GPU system, and Jetson Xavier embedded device. It achieved comparable la-

tency results with the CPU/GPU system, a 1.7x faster execution over the embedded

device, and very low energy consumption (4.8 mJ/s). This highlighted the capabilities

of FPGAs to accommodate dynamic DNNs, and more specifically, early-exit networks,

not only efficiently but also achieving very low power consumption. Yet training and

deployment methodologies for dynamic networks are an ongoing area of research, and

future directions should involve:

Libraries. The continued development of libraries targeting dynamic networks focus-

ing on optimization and integration with mainstream software (Pytorch, Tensorflow

etc.). While training and profiling are possible with existing libraries, optimized exe-

cution that can leverage batched computation and high-power computing is not well

supported in mainstream tools.

Hardware-Software co-design. Existing FPGA hardware tools (hls4ml, finn, etc.) have

limited support in this area and even less for Dynamic DNNs. While there is an intu-

itive explanation for the performance improvements of Dynamic DNNs, an exploration

of why they are effective in their current state will help to derive more performant ar-

chitectures and adoption in different ML tasks.

Neural Models. The majority of research on Dynamic DNNs has focused on tasks of

image classification utilising CNNs. However, a diverse number of models (RNNs,

GANs etc.) are already efficiently deployed on FPGAs, tackling various tasks like ob-

ject detection, regression and image captioning, for which dynamism could be very

beneficial.
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Training Strategies. Training DNNs is inherently challenging especially, when FPGAs

are targeted. Developing hardware-friendly strategies could enable on-device training

leveraging the platform’s low power and acceleration potential.

Distributed Execution. Beyond the resource-constrained setting, the flexibility of both

Dynamic DNNs and FPGAs can be leveraged in multi-FPGA systems. Using runtime

managers, reconfiguration, and high bandwidth interconnects, this system could tackle

much larger-scale networks while continually adapting the level of computation on a

per-sample basis.
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Chapter 4

Leveraging the parallelisation

capabilities of FPGAs to accelerate

Early-Exit Dynamic DNNs

The design approach presented in Chapter 3 deployed an early exit dynamic DNN on

an FPGA platform and achieved comparable execution time with a CPU/GPU system

while maintaining very low energy demands. This highlighted the compression ca-

pabilities of dynamic DNN approaches and the feasibility and benefits of using FPGA

devices. However, as elaborated in Section 3.1, the architectural interventions of the

dynamic approaches to neural models raise challenges in their deployment.

Despite its promising results, the design approach still struggles with two execution

limitations introduced by the early-exit networks’ architecture. The first is the necessity

to halt the execution of the backbone network when intermediate classifiers execute.

This, especially for cases when an early exit does not occur, leads to an increase in the

network’s latency. Focusing on Table 3.2 and comparing the ºNormalº and ºExit 2º

columns, it can be seen that this leads to a latency increase by at least 8% over a static

network.

The second refers to the intermediate feature map dependencies. Intermediate classi-

fiers require the previous layer’s output to execute. However, as presented in Section

3.1.3, these intermediate feature maps are needed by the backbone too, and to avoid

their permanent destruction by the intermediate classifiers’ execution, they must be

stored. This, especially in deeper networks where the size of layers is larger (4.7Mb on

VGG19 [6], 1.6Mb on ResNet-32 [2]), has a significant detrimental effect on the latency

and memory footprint of inference.
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Early-Exit Dynamic DNNs

However, FPGAs are inherently parallel devices, which means they can perform mul-

tiple operations simultaneously. They allow for a high degree of fine-grained paral-

lelism, where multiple operations can be executed simultaneously at the gate level.

This section presents a second design approach, aiming to exploit these parallelization

capabilities and overcome the abovementioned limitations by executing both the back-

bone network and the intermediate classifiers simultaneously. The two designs are

compared over latency, energy and memory demands and characterised over different

networks and decision thresholds. Finally, a first modelisation of their time and energy

demands on the FPGA is presented.

The novel contributions of this Chapter can be summarised as:

• A design approach that leverages the parallelization capabilities of the FPGA

platform. This design approach, by executing the intermediate classifiers in par-

allel with the backbone network, achieves to eliminate the dependencies on the

intermediate outputs and the latency cost of halting the backbone network’s exe-

cution.

• A characterisation of the two approaches over different early exit networks and

different decision thresholds. The effects on latency, energy demands, and ac-

curacy for both designs are highlighted to achieve a thorough analysis of their

benefits and disadvantages.

• A first modelisation of the energy and time demands of an early exit network

executed on an FPGA, enabling the calculation of the trade-offs between hard-

ware resources, accuracy and latency, allowing the exploration of the best design

approach for a given scenario.

4.1 Design Approach

This design approach utilises the parallelisation capabilities of the FPGA platform, aim-

ing to eliminate the intermediate feature map dependencies (presented in Section 3.1.3)

and the latency cost caused by halting the execution of the backbone network. The

basis of the design lies in the fact that intermediate classifiers are substantially smaller,

and their execution is usually faster than the execution of a backbone network’s layer.

This, along with the ability of the FPGAs to deploy multiple execution paths in parallel,

presents the opportunity for simultaneous execution of the backbone network and the

intermediate classifiers without compromising the efficiency of the architecture by ex-

ecuting a substantial amount of unnecessary computations for the backbone network,

if an early-exit occurs.
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FIGURE 4.1: Parallel Approach.

Similar to the previous approach (Section 3.3), the execution of the backbone network

starts normally until the layer before the intermediate classifier. In this design ap-

proach, instead of halting the backbone network, the output of the previous layer is fed

to both the next layer of the backbone network and the intermediate classifier. They

start executing simultaneously, but the intermediate classifier, due to its smaller size

and lower complexity, always finishes executing first. Dictated by the generated deci-

sion, the execution of the backbone either continues or stops and the network resets.

This eliminates the latency overhead while computing the early exit branch but also,

more importantly, the need to store the intermediate layer’s output. However, the si-

multaneous activation of both paths requires the design of separate IPs for the interme-

diate classifier, increasing the area and power demands of the design. For the remain-

der of the thesis, this approach is going to be referred to as the parallel approach, while

the one explored in the previous section is the pipeline approach.

4.1.1 Designs Modelling

Before analysing the experimental results and to give a better understanding of how

the designs are executed on the FPGA, a modelisation of their energy consumption and

execution time is presented. To estimate the total energy consumption of the designs

for the inference of I input samples, the following equation is used :
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Early-Exit Dynamic DNNs

Ein f =
I

∑
i=1

(PFPGA · Ti + EDRAM · Mi) (4.1)

where PFPGA and Ti are the power consumption of the FPGA design and the total exe-

cution time of inference for the ith input. Mi is the number of Memory Accesses to the

off-chip DRAM, and can be calculated based on the systolic array size and the workload

parallelisation approach presented in Section IV. Finally, EDRAM is the typical per-bit ac-

cess energy of LDDR4 memory (4 pJ/bit [126]).

In early-exiting approaches, however, the execution time is directly connected to every

exit point’s triggering rate. Essentially, this is the rate of the number of test inputs that

trigger a target exit. This is dictated by one of the most influencing parameters in these

dynamic approaches, which controls how harsh or lenient the decision to exit is. For

example, in the target network BranchyNet, vector V is used to determine if an input i

should exit at a specific exit-point. It is calculated during training, using the proposed

custom optimisation function, and controls the trade-off between accuracy and latency

of the early-exit scheme. After training, the rate of samples that would trigger every

exit point can be experimentally calculated, creating the following average per sample

execution time T equation:

T = a1 · T1 + a2 · T2 + ... + aj · T j + ... + aJ · T J (4.2)

where aj is the rate of samples that exits in the jth exit point, J is the total number of the

dynamic network’s exits, and Tj is the execution time of the backbone layers and all the

intermediate classifiers, till that exit point. However, due to its different architecture,

for the parallel approach, only the triggered exit point intermediate classifier execution

time is added. So equation 4.2 can be correctly rewritten as:

Tpipe =
J

∑
k=1

(ak · (Tk +
k

∑
i=1

τi)) (4.3)

Tpara =
J

∑
k=1

(ak · (Tk + τk)) (4.4)

where now T denotes the execution time of the backbone network layers and τ the

execution time of the intermediate classifier. The average execution time of the early-

exit network executed on the pipeline approach is the sum of the rates ak of every

exit point multiplied by the sum of the execution time of every layer of the backbone
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network (Tk) and all early-exit branches up to that point (sum of τi). For the parallel

approach, the same function applies, but instead of adding the execution time of every

branch, the one that led to the stop of inference τk is only added. In this occasion, when

no early-exit occurs, the added execution time from the intermediate classifier (τ) is 0.

In addition to the difference in execution time, the parallel approach, as seen in Section

III B, does not require storing the layer’s output before an exit point like the pipeline

approach, decreasing the memory access needs. The following equations are proposed

to calculate the energy consumption of the two designs:

Epipe =
I

∑
i=1

(Ppipe · Tpipe + EDRAM · (Mi +
i

∑
k=1

Mintk)) (4.5)

Epara =
I

∑
i=1

(Ppara · Tpara + EDRAM · Mi) (4.6)

where Mintk is the memory access needs to store and load the intermediate layer output.

4.2 Experiment Setup

4.2.1 Hardware Implementation

The hardware architecture followed for the execution of the parallel approach is very

similar to the one presented in Sections 3.3.3 and 3.3.5. The core of the hardware de-

sign is the Array of Processing Elements, which is responsible for the execution of both

the Convolution, Fully-Connected and Pooling layers, while the activation functions,

which are solely conditional branches, are instantly applied to the feature maps. An

identical but significantly scaled-down architecture is used for the execution of the

intermediate functions. The main difference between the implementation of the two

design approaches is the control module. In the case of the parallel approach it is de-

signed to follow the different data-path introduced by the simultaneous execution of

the backbone network and the intermediate classifiers. Additionally, it constantly mon-

itors an interrupt signal that indicates an early-exit and, subsequently, the rest of the

network execution with the next input sample. The target platform is again the Zynq

UltraScale+ MPSoC ZCU106 Evaluation Kit. Table 4.1 compares the FPGA resource

utilisation for the two architectures.

The dynamic network accelerator outlined above is implemented using VHDL on a

Xilinx FPGA board for four different DNNs. To verify and compare the performance of

the FPGA design, the networks are also executed using PyTorch on a desktop computer

with an Intel Core i9 CPU and an Nvidia RTX 2080 TI GPU and on the Nvidia Jetson
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TABLE 4.1: Resource Utilisation

Design Data #PEs FF LUT BRAM DSP Clock

Pipeline 8-bit 300 50% 66% 96% 78% 150 Mhz

Parallel 8-bit 300 58% 73% 89% 81% 150 Mhz

Xavier NX embedded platform. The calculation of the execution time and the power

consumption is performed as explained in Section 3.3.6.

4.2.1.1 DNN Networks

The experiments were conducted with four of the most popular DNNs: LeNet-5 [37],

VGG19 [6], AlexNet [1] and ResNet [2]. The networks are modified to add early ex-

its using the structure of BranchyNet [81], an open-source and popular early exit net-

work. Explicitly, on LeNet-5, one branch consisting of 1 convolutional layer and a fully-

connected layer is added after the first convolutional layer (L1) of the main network.

On AlexNet, one branch consists of two convolutional layers and a fully-connected

layer after the 2nd convolutional layer (L2) of the main network. Finally, on VGG19

and ResNet two branches are added containing a convolutional and a fully-connected

layer, after the 2nd (L2) and 10th (L10) convolutional layers on VGG19 and after the 2nd

(L2) and 14th (L14) convolutional layers on ResNet32. It must be noted that an external

host processor orchestrates the execution of the ResNet32 network, while the rest of the

dynamic DNNs are deployed entirely on the FPGA.

4.2.1.2 Datasets

The designs are bench-marked and compared using three widely used and open-source

datasets: MNIST [127], CIFAR-10 and CIFAR-100 [129]. MNIST contains 60,000 train-

ing images and 10,000 testing images, each of which is a 28x28 pixel grey-scale image

of a handwritten digit. The two CIFAR datasets contain 32x32 pixel RGB natural im-

ages across 10 and 100 classes, respectively, with 50,000 training and 10,000 validation

samples.

4.3 Experimental Results and Analysis

4.3.1 Design Validation and Evaluation

To validate and evaluate the FPGA architectures for the two designs, the four widely

used DNNs described above are deployed and trained based on the BranchyNet [81]

approach. For brevity, Figure 4.2 shows the per-sample execution time of VGG19 on
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FIGURE 4.2: Experimental results comparing average Execution Time per sample. Av-
erage values are calculated based on each exit point trigger rate (ai).

the Cifar-10 dataset, both for the original static (orange bars) and the dynamic network

(green and purple bars). The green bars show the time needed to execute the early-exit

network when the last exit is triggered, and comparing it with the static network (or-

ange bars) highlights the additional latency introduced by the intermediate classifiers.

However, dynamic inference exits for 43% (a1) of the samples at the first exit point,

45.6% (a2) on the second and 11.4% (a3) on the original output. The average execution

time (T) for the 10k test samples is portrayed on the Figure 4.2 (purple bars). As il-

lustrated by the difference between the Normal and Early Exit bars and explained by

equations 4.3 and 4.4, this leads to an execution speedup of at least 1.4x in all platforms.

At the same time, for the FPGA approaches, the dynamic network is at least 1.9x faster.

The benefits of executing the backbone network and the intermediate classifiers in par-

allel are clearly visible, especially when focusing on the results without early exiting

(green bars). The parallel approach eliminates completely the execution time overhead

introduced by the intermediate classifiers in an early-exit network, equalising its exe-

cution time with the static network. Also, in a normal dynamic scenario, the parallel

approach is 16% faster than the pipeline approach. Finally, it is also seen that the ac-

curacy (top of bars) of the network is barely affected, being only 1.5% less than the

original static network.

The effects on the execution time of Dynamic DNNs, however, also impact their energy

demands (equations 4.5 and 4.6). Figure 4.3 shows the per-sample energy consump-

tion (Ein f ) of VGG19 both for the original static (orange bars) and the dynamic network

(green and purple bars) on the Jetson and the FPGA. Corresponding to the execution

time, in cases where an early exit does not occur, the energy consumption of the dy-

namic network is higher than the static’s. However, when the dynamic network is

properly trained, the effects of early-exiting lead to a reduction in energy consumption
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FIGURE 4.3: Experimental results comparing average Energy Consumption per sam-
ple. Average values are calculated based on each exit point trigger rate (ai).

over a static network by at least 1.4x on the Jetson and 1.8x on the FPGA. As illus-

trated on Figure 4.3, the FPGA is able to achieve comparatively low energy consump-

tion (at least 4x less than the Jetson), highlighting the capabilities and effectiveness of

a custom hardware design. Focusing on the two FPGA designs, the parallel approach,

despite having reduced execution time, is more energy demanding by 1.1x than the

pipeline. This highlights the effects of the increased complexity of the hardware ar-

chitecture and indicates the importance of the tradeoff between resource usage and

performance. A more detailed exploration of the two approaches’ characteristics and

results is presented in Section 4.3.2.

The performance against other FPGA-based DNN accelerators is also assessed, as illus-

trated in Table 4.4. All of the designs employ systolic arrays of process elements and ex-

plore different techniques to accelerate DNNs on FPGAs, e.g. Winograd-GEMM [130],

FFT [131] and pruning [132]. Although the targeted early-exit networks maintain the

backbone network unchanged and actually burden it with the intermediate classifiers,

the proposed accelerator achieves comparative power and better energy efficiency than

other designs, further highlighting the benefits of dynamic approaches. In fact, there

is still adequate opportunity to enhance the accelerator’s performance. It is observed

that DSP utilization is relatively low due to insufficient block RAM resources. By opti-

mizing the storage structure or utilizing a platform with more resources, the processing

element array can be expanded to enhance DSP utilization, thereby achieving higher

throughput. Furthermore, by combining dynamic approaches with acceleration tech-

niques, such as the ones used by the cited designs, latency and resource demands could

be further reduced.
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TABLE 4.2: Execution Time (ms)

LeNet-5 AlexNet VGG19 ResNet32
Exit 1

(94.4%)
Exit 2
(5.6%)

Avg
Exit 1

(75.6%)
Exit 2

(24.4%)
Avg

Exit 1
(43%)

Exit 2
(45.6%)

Exit 3
(11.4%)

Avg
Exit 1

(48.4%)
Exit 2

(18.3%)
Exit 3

(33.3%)
Avg

CPU 0.3 1.32 0.36 0.75 3.3 1.38 1.92 3.21 5.98 2.97 2.54 8.24 12.74 6.98
CPU-GPU 0.15 0.62 0.17 0.38 1.55 0.66 1.28 2.14 3.35 1.91 1.37 3.53 5.75 3.22
Jetson 0.71 5.05 0.95 1.78 12.63 4.43 8.98 14.2 24.12 13.08 9.9 15.62 26.53 16.48
Pipeline 0.24 0.99 0.29 0.6 2.48 1.06 1.49 2.99 5.31 2.58 1.84 5.1 9.4 4.95
Parallel 0.24 0.82 0.28 0.6 2.05 0.95 1.49 2.48 4.13 2.24 1.84 4.54 7.89 4.01
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TABLE 4.3: Energy Consumption (mJ), with (w/ EE) and without (w/oEE) early exits

FPGA - Static
(16.7W)

Nvidia Jetson Xavier
Pipeline

(16.7W)

Parallel

(21.2W)

w/o EE w/ EE w/o EE w/ EE Power (W) w/o EE w/ EE w/o EE w/ EE

LeNet-5 16.5 n/a 48.5 9.1 9.6 13.7 4.8 17.4 5.9
AlexNet 34.2 n/a 142.7 50.1 11.3 41.4 17.7 45.5 21.1
VGG19 68.9 n/a 361.8 196.2 15 88.7 43.1 87.6 47.5

ResNet-32 99.3 n/a 398 247.2 15 143.82 75.7 141.8 85
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4.3.2 Evaluating pipeline vs parallel Approaches

Table 4.2 contains the average per-sample execution time (T) for each network and

every exit point, alongside the percentage of samples (ai) that would trigger them (un-

derneath every exit). Focusing on the FPGA architectures and comparing them with

the rest of the platforms, it is visible that their performance is competitive compared to

the CPU/CPU-GPU and much better than that of the Jetson. The benefits of executing

the intermediate classifiers in parallel with the backbone networks are also noticed, as

the parallel approach is constantly faster than the pipeline.

FIGURE 4.4: Comparison of the pipeline and parallel designs over average execution
time across early-exit LeNet-5, AlexNet, VGG19 and ResNet32.

To further explore and characterise the two proposed designs, their latency, energy and

memory demands are compared. Figure 4.4 shows the average execution time (T) of the

deployed early-exit networks on the two approaches. The aforementioned parallel ad-

vantages are more pronounced on deeper networks; the latency of LeNet-5 is improved

by 3.7%, while VGG19 and ResNet32 are improved by 15.2% and 23.9%, respectively.

This is because the design avoids halting the backbone network, which is very effective

in cases where there are many samples that would require the execution of deeper lay-

ers. That occurs when more complex data sets with a higher number of non-canonical

samples are targeted. Also, deeper networks usually consist of larger layers with bigger

feature maps and more filters. This unavoidably affects the intermediate classifiers, too,

increasing their size and, consequently, the required computation. Conversely, smaller

networks targeting simpler data-sets have a high proportion of samples triggering exits

in shallow layers, reducing the effectiveness of parallel execution.
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FIGURE 4.5: Comparison of the pipeline and parallel designs over average energy
consumption across early-exit LeNet-5, AlexNet, VGG19 and ResNet32.

Table 4.3 shows the energy per sample for every network with and without early ex-

iting. Based on the previously stated rates of early-exiting at each branch, it can be

seen that the average energy consumption is always at least 25% lower than the static

network on the embedded device and almost 50% on the FPGA (Ein f ). It is also noticed

that the parallel approach, on average, is at least 15% more energy (Figure 4.5) demand-

ing on smaller networks than deeper networks. This is explained by the same reasons

elaborated in the previous paragraph. In simpler networks, fewer samples require in-

ference at deeper layers, while the size of the intermediate classifiers is proportional to

the size of the backbone, rendering the parallel approach less effective.

Furthermore, as explained above, the pipeline approach requires the storing of the in-

termediate layer’s output (Mintk); the total data for each network can be seen in Fig-

ure 4.6. It is considerably larger on deeper, more complex networks. While smaller

networks like LeNet-5 and AlexNet, the data can be buffered on-chip, VGG19 and

ResNet32 can reach up to 4MB, rendering the use of external memory mandatory. This

significantly affects the latency and energy demands of the pipeline approach, and il-

lustrates the effectiveness of the parallel approach on deeper networks. Overall, how-

ever, for smaller networks, the extra energy demands that are introduced in the parallel

approach overshadow its benefits, making the pipeline the better design.
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TABLE 4.4: Performance Comparison With Existing Implementations

[130] [131] [133] [134] [132] [135] Ours (pipeline) Ours (parallel)

DNN model
AlexNet/

VGG16
AlexNet/

VGG16
ResNet50

AlexNet/VGG16
/ResNet50

LeNet/AlexNet
/VGG16

VGG16
LeNet/AlexNet/
VGG19/ResNet32

LeNet/AlexNet/
VGG19/ResNet32

Device
FPGA

VX690T
FPGA

ZCU102
FPGA
ZC706

FPGA
ZCU102

FPGA
XCVU9P

Aria-10
GX1150

FPGA
ZCU106

FPGA
ZCU106

Frequency (MHz) 200 200 200 200 300 150 150 150
Precision Fixed 16 Fixed 16 Fixed 16 Fixed 16 Fixed 8 Fixed 16 Fixed 8 Fixed 8

Power (W) 17.3 23.6 6.23 23.6 - 45 16.7 21.2
Performance

(GOPs)
433.6/
407.2

854.6/
2479.6

107.9
2068.5/2641

/1240
1490.5/913.9

/862.2
232.2

583.1/911.3
/1732.5/185.1

611.9/1009
/2011.6/243.9

DSP Efficiency
(GOPs/DSP)

0.30/0.28 0.34/0.98 0.24 1.81/2.31/1.08 3.88/1.79/1.68 0.153
0.78/0.96

/1.82/0.20
0.66/0.82

/1.64/0.19
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FIGURE 4.6: Comparison of the pipeline and parallel designs over average data move-
ment across early-exit LeNet-5, AlexNet, VGG19 and ResNet32.

FIGURE 4.7: On a 3 point early-exit Resnet-32 a) shows each exit’s trigger rate and b)
the percentage difference of parallel over pipeline approaches over Energy and Time for

different Decision Thresholds.

4.3.3 Effect of Decision Threshold on Performance

Section 4.1.1 presented the modelling of the two approaches regarding energy con-

sumption and execution time. The importance of the decision threshold (V) is high-

lighted, as it controls the effects of early-exiting in the DNN. Figure 4.7 shows the trig-

gering rates (ai) of 10k samples at the three exit points of an early exit ResNet32, along

with the accuracy achieved. For higher decision thresholds, most of the samples would
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trigger the first exit point (black line). Decreasing the decision threshold results in a sig-

nificant decrease in the number of samples that would exit at the first exit point (black

line), while those that would exit on the third and final exit increase (blue line). Besides

affecting the exit point rates, changing the threshold essentially affects the amount of

abstracted information needed to make a prediction which consequently affects the ac-

curacy of the network, too.

FIGURE 4.8: On an 3 point early-exit Resnet-32 a) shows each exit’s trigger rate and b)
the percentage difference of parallel over pipeline approaches over Energy and Time for

different Decision Thresholds.

Following equations 4.3 - 4.6, it is noticeable that, by changing the thresholds, the la-

tency and energy demands of the network can be controlled. 4.8 shows the difference

between the two approaches over execution time and energy consumption. It is noted

that, while using higher thresholds, the parallel approach is considerably more energy-

demanding without similar gains in execution time. On the contrary, when the thresh-

old values are lower, deeper layers are executed more often, resulting in reducing the

energy consumption difference between the two approaches and increasing the time

difference, making the parallel approach considerably faster. Consequently, apart from

the dynamic network architecture, changing the decision threshold to exit controls the

accuracy-latency trade-off and affects the effectiveness of the designs realising it.

Following the results of changing the decision threshold in execution time and energy

consumption, another tradeoff is highlighted between accuracy and performance. As

shown in Figure 4.7, higher threshold values lead to accuracy drops, while the opposite

happens when they are lower. This is explained by the fact that more samples exit at an

earlier stage without the network being able to abstract enough information to make

a correct classification. On the contrary, a higher amount of samples exiting in earlier

stages of the network translates to a significant drop in the necessary computations
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for inference and, consequently, the energy consumption. These results showcase that

higher decision thresholds lead to more accurate but with increased latency and energy

consumption implementations, while lower decision thresholds have the opposite ef-

fects.

4.4 Discussion

The pipeline approach demonstrated the feasibility of deploying dynamic DNNs on

FPGA devices by achieving comparable execution times with CPU/GPU systems while

maintaining very low energy demands. However, following the traditional execution

pattern of eraly-exit networks, introduces challenges related to latency and memory

footprint due to the halting of the backbone network and the need to store intermedi-

ate layer outputs. To address these limitations, this Section proposed a parallel design

approach, which leverages the parallelism capabilities of FPGAs to execute the back-

bone and the intermediate classifiers simultaneously. The experimental results high-

light that the parallel approach outperforms the pipeline approach regarding execu-

tion time, especially for deeper networks like VGG19 and ResNet32, achieving up to a

23.9% reduction in latency.

However, to achieve that, additional hardware components are introduced to incorpo-

rate the parallel execution of the backbone network and the intermediate classifiers.

Through the evaluation of the two design approaches over latency, energy, memory

demands and different early-exit decision thresholds, it was shown that the parallel

approach is more energy-intensive for smaller networks and lower thresholds where

early-exits frequently occur in shallow layers without justifying the reduction in la-

tency. The opposite occurs when networks are deeper and thresholds are higher. Thus,

the choice between pipeline and parallel approaches depends on the specific applica-

tion and network characteristics, such as depth and dataset complexity.

Furthermore, a first modelisation of the early-exit networks’ performance on FPGAs

was presented. In more detail, four equations are proposed, two for each design ap-

proach, that take into consideration factors like exit trigger rates, memory access cost,

etc., to calculate with great precision the early-exit networks’ per-sample execution time

and energy consumption. Overall, using these equations and controlling the thresholds

of the early-exit decision, the trade-offs between accuracy, latency, and resource needs

can be explored to help decide the best design approach for any application needs.
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Chapter 5

Confidece Based Dynamic Control

of Early-Exit Networks

The influence of the decision threshold on the performance of an early-exit dynamic

DNN was illustrated in the previous Chapter, both in terms of exit trigger rates and

accuracy. In essence, the confidence value, produced by the intermediate classifiers,

is a metric of the amount of information the backbone network was able to abstract

from the input sample up to that point of execution. Accordingly, the decision thresh-

old sets the limit that indicates when this information is sufficient to prompt a correct

classification. The ability to extract such a value is vital for the early-exit dynamic net-

works and is the basis for their effectiveness and compression capabilities. Despite its

importance, however, the confidence level of an input sample is utilised only when it

satisfies the decision threshold limit. Contradictory, when its value cannot achieve this,

is completely disregarded.

In coherence with these statements, Section 4.3.3 illustrated the effectiveness of the

decision threshold on the performance of the FPGA for the two proposed design ap-

proaches. Lower decision thresholds prompt a more lenient approach to exit early,

increasing the number of input samples exiting at earlier stages of the network. This

resulted in lower computational demands and latency, favouring the pipeline design

approach. On the contrary, when a higher decision threshold is selected, the network

must be very confident before an input can trigger an exit. This induced the need for

more computations and higher average execution time of the network, favouring the

parallel approach.

This Section explores the effects on the performance of the early exit network when

the confidence level of the samples that did not succeed in triggering an early-exit

is utilised. Two different directions are investigated to target the versatility and re-

programmability of the FPGA platform. The first one proposes a confidence dynamic

placement of the intermediate classifiers, aiming to enhance early-exiting performance
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by better adapting the early-exit network architectures to the input samples’ charac-

teristics. The second introduces a confidence-controlled dynamic quantisation scheme.

Quantisation is a technique widely used to reduce the resource needs of DNNs, espe-

cially when FPGAs are targeted. The proposed scheme aims to apply it in a directed

way to reduce the computational and energy demands of the early-exit dynamic DNNs

with minimal detrimental effects on their accuracy.

The novel contributions of this Chapter can be summarised as:

• A first utilisation of the confidence level of input samples that did not trigger

an early-exit. The intermediate classifiers’ outputs are completely disregarded

when an early-exit does not occur. This Chapter highlights their importance and

exploits them to increase the early-exit networks’ adaptability and performance.

• A first exploration of the effects post-training quantisation has on early-exiting

behaviour. Quantization is a widely used technique to reduce the computational

demands of DNNs. However, it is shown that the unconditional application of

quantisation has significant detrimental effects on the accuracy of the dynamic

behaviour of the early-exit networks.

• A first confidence-controlled dynamic placement of intermediate classifier. This

approach explores an adaptive placement of the intermediate classifiers within

the backbone network governed by the input samples’ confidence levels. Through

this, the adaptability of the early-exit network approach is increased, and a fur-

ther reduction of its computational demands is achieved.

• A first confidence-controlled dynamic quantisation scheme. Utilising the input

sample’s confidence values, this approach dynamically selects the quantisation

level for different parts of the early-exit network. Doing so enables the benefits of

quantisation with minimal effects on accuracy and dynamic performance.

5.1 Dynamic Early-Exit Placement

The scope of early-exiting focuses on the fact that every layer is attribute-specific, de-

noting that some layers are more relevant to each input sample’s characteristics than

others. This indicates that different inputs require the execution of different amounts

of layers in order to be classified correctly. Deciding the location and the quantity of

the intermediate classifiers is one of the most important tasks while designing the ar-

chitecture of an early-exit dynamic network. It impacts both the granularity of the

early-exit results and the overall computational overhead they introduce compared to

a single-exit network. Placing an intermediate classifier after every layer of the back-

bone network would maximise the early-exiting efficiency, providing the capability to
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compute the exact number of layers needed for each input sample. However, this level

of placement density can introduce an excessive computational and memory overhead,

having detrimental effects on the benefits of early-exiting.

Conversely, sparse placement of intermediate classifiers may lead to longer computa-

tion of samples that would exit on earlier stages. For instance, on the ResNet-32 early-

exit dynamic DNN presented in Section 4.2.1.1, an input sample that does not trigger

the first exit point is bound to be executed for 12 more layers before its confidence value

is assessed again. This creates a bottleneck where certain inputs are forced to go deeper

into the network, even when it may not be necessary for their classification. Corre-

spondingly, this also translates to the unnecessary computation of deeper and larger

networks, reducing the overall efficiency of the network.

5.1.1 Methodology

Aiming to solve that while maintaining a balance in the number of intermediate clas-

sifiers placed in an early-exit network, a dynamic early-exit placement approach is

proposed. The basis of the dynamic scheme lies in the information captured by the

confidence value of each input. In more detail, the focus lies on samples that failed to

trigger an early-exit. Their confidence value still represents the amount of information

the backbone network achieved to abstract from them until that point of execution. It

is argued that when this value is close to the decision threshold, indicates that the in-

put sample requires the execution of only a few of the following layers in order for the

network to have adequate confidence to classify it.

After the execution of an intermediate classifier and when an early-exit is not triggered,

the difference (δ) between the generated confidence and the confidence threshold is cal-

culated. Following the Equation 3.1 the calculation of δ on the jth out of J intermediate

classifiers in an early-exit network can be written:

δj = S(yj)− Vj, j = 1, 2, . . . , J (5.1)

where yj indicates the output of the jth intermediate classifier, S(yj) the confidence

value of the executed input sample and Vj the decision threshold. Based on the value of

δ, the location of the next exit-point is selected. For lower values, the next intermediate

classifier is placed after only a few layers, while for higher values, it is placed deeper

in the backbone network. The decision of the limits to determine when δ is high or

low, as well as the exact location of the next intermediate classifier for both occasions,

depends on the use case, the exit rate and the accuracy of each early-exit point. For

example, and as shown in Section 3.3, for simpler datasets like MNIST, an early-exit
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FIGURE 5.1: The exit trigger rates (ai) of an early-exit ResNet-32 Dynamic DNN with
an intermediate classifier after every layer.

point can be placed after the first layer of the backbone network and achieve a very

high number of accurate classifications. For more challenging datasets, e.g. CIFAR-

100, the intermediate classifiers should be placed deeper based on their classification

performance.

5.1.2 Experimental Setup

To evaluate the performance of the proposed dynamic early-exit placement approach,

the ResNet32 neural network was used, employing Branchynet’s early-exit approach.

To explore the best location to place the intermediate classifiers and to determine the

high and low limits of δ, an intermediate classifier is inserted after every one of the

backbone network’s layers. The network is trained using the softmax cross entropy

loss function, presented in Section 3.3.1, targeting the CIFAR-100 dataset.

Attempting to train the network containing all the intermediate classifiers, however,

led to significant overfitting, diminishing its accuracy and generalisation capabilities.

To resolve that, the training process is applied on 8 networks, each containing 4 inter-

mediate classifiers in different equidistant points. For instance, the second network that

was trained had intermediate classifiers after the 2nd, 10th, 18th and 26th layer of the

backbone network. The only exception is the last network, which contains 3 intermedi-

ate classifiers, as an early exit cannot occur after layer 32. After that process, the trained

parameters were combined and applied to the network containing all the intermediate

classifiers.

Figure 5.1 displays the percentage of input samples that would trigger an early-exit on

the dynamic ResNet-32 with three exit points (black line) and when an intermediate

classifier is placed after every layer (red line). It is evident that in the second case, the
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two exit points utilised in the original Branchynet’s implementation of the early-exit

ResNet-32 (at layer 2 and layer 14, as detailed in Section 4.2.1.1) maintain very high

trigger rates. However, it is also noted that a considerable amount of input samples

trigger an early-exit after the execution of the layers immediately following the original

exit points. In more detail, 13% of the 10000 samples or 18% of the samples that didn’t

trigger an exit at the first intermediate classifier can be classified after processing a

maximum of 4 more layers. Similarly, 16% of the total sample or 41% of the samples

that did not trigger an exit after the execution of the 14th layer can be classified in the

next 5 layers.

Furthermore Figure 5.2 illustrate the average δ values the input samples achieved in

the intermediate classifiers after layer 2 (Figure 5.2 (A)) and layer 14 (Figure 5.2 (B))

and managed to trigger an early-exit at exit points 3 to 6 and 15 to 19 accordingly. It is

noted that these values are never more than 0.21, validating the initial assumption that

input samples that showcase high confidence levels but not enough to trigger an exit

require the execution of only a small number of the succeeding layers to be classified.

It is also important to note that the accuracy of the network was minimally affected by

less than 1%.

These results highlight the effectiveness of the location an intermediate classifier has.

By having an intermediate classifier after every layer, the efficiency of early exiting is

maximised, as the inference output for each sample requires exactly then necessary, for

the network, layers to gather an adequate amount of information for a classification.

This however increases a lot the computational overhead introduced by the dynamic

approach, leading to a very energy and computationally intense inference, having op-

posite effects to what the early-exiting aims to achieve. Maintaining a balance between

the amount and the location of the intermediate classifiers, as seen from the aforemen-

tioned results, is very important to enable the benefits of dynamic execution and to

further enhance its performance.

Guided by the results shown in Figure 5.1 and Figure 5.2, the proposed network archi-

tecture consists of two constant intermediate classifiers and two dynamic. Likewise the

Branchynet’s approach, intermediate classifiers are placed after the 2nd and the 14th

layers of the backbone network. However, after their execution, an assessment of the

δ value is performed. If it is less or equal to 0.16, then an additional intermediate clas-

sifier is placed either after the 6th or the 19th layer, in accordance with the permanent

exit points. If it is not, then the execution continues to the next permanent exit point,

either 14 or 32.

Finally, to deploy the proposed network, the parallel design approach (Section 4.1)

is utilised. As demonstrated in the previous Chapter, the parallel approach employs

separate hardware modules to execute the intermediate classifiers in parallel with the

backbone network. This implies that these dedicated modules are always available to
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(A) Average δ2 of the input samples that triggered an exit after the execution of layers 3
to 6.

(B) Average δ2 of the input samples that triggered an exit after the execution of layers 15
to 19.

FIGURE 5.2: Average δj for the input samples that failed to trigger exit points 2 and 14
but achieved it at points 3 to 6 and 15 to 19 accordingly.

TABLE 5.1: Exit Trigger Rates (%)

Exit 1
Exit 2

(Dynamic)
Exit 2

Exit 3
(Dynamic)

Exit 3

original 48.4% - 18.3% - 33.3%
proposed 43.9% 12.4% 7.6% 15.8% 23.3%

be used between every layer, providing the necessary versatility to accommodate the

proposed approach.

5.1.3 Results and Analysis

Table 5.1 show the exit trigger rates of the three constant exit points (Exit 1 after layer

2, Exit 2 after layer 14 and Exit 3 the layer 32) and the two dynamic exit points, Exit 2

(Dynamic) and Exit 3 (Dynamic) placed after the 6th and the 19th layers of the backbone

network. Focusing on the first exit point, it is seen that the proposed approach, over
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TABLE 5.2: Execution Time (ms)

Exit 1
Exit 2

(Dynamic)
Exit 2

Exit 3
(Dynamic

Exit 3 Avg

original 1.84 - 4.54 - 7.89 4.01
proposed 1.84 2.02 4.54 5.07 7.89 3.80

the original Branchynet’s network, has a reduced exit trigger rate by 4.5%. This can

be explained by the fact that the training process for the proposed approach included

an extra intermediate classifier. This changes the balance between the exits, as they are

jointly optimised. Nonetheless, it can be seen that 56.3% of the input samples trigger an

early exit after executing 6 layers of the backbone network and 23.4% after executing

19 layers. In other words, compared to the original network, 7.9% of the input samples

do not require the execution of at least 8 layers (between layer 6 and layer 14) and a

further 10% of samples the execution of 13 layers (between layer 19 and layer 32) when

dynamic early-exit placement is deployed. This translates to an overall reduction of

computations by 18% over the original network while maintaining the same accuracy

levels.

Following the results on exit trigger rates, Table 5.2 shows the average per sample ex-

ecution time for every exit point. It can be seen that the proposed approach achieved

5.8% reduction in the latency of the early-exit dynamic DNN, which, as both designs

are deployed on the same FPGA hardware design (21.2W of power consumption, see

4.3), also translates in 5.8% reduction in its energy demands. Overall, enabling the

dynamic placement of the intermediate classifiers in an early-exit dynamic DNN in-

troduces an additional level of adaptability to the characteristics of the input samples,

increasing its efficiency. As a result, the proposed approach accelerates the execution of

the network, reduces its energy demands, and minimises the execution of unnecessary

computations for samples with high confidence levels while maintaining equivalent

levels of accuracy.

5.2 Early-Exit Dynamic DNNs Quantisation

Quantization in DNNs is a technique used to reduce the computational and memory

requirements of a model by representing its parameters, such as weights, biases and ac-

tivations, with lower precision data types. As presented in Section 2.3.1, this process in-

volves mapping high-precision (e.g., 32-bit floating point) numbers to lower-precision

(e.g., 8-bit integer) formats, which can lead to faster computations and lower energy

consumption. Due to these significant performance advantages, it became very popu-

lar for application targeting environments where computational resources and power

efficiency are critical.
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Such an environment is presented by FPGAs, where quantisation is of the essence to

achieve efficient deployment of modern DNNs. More specifically, the most commonly

used technique of quantisation in FPGAs is fixed point representation. It is a method of

representing real numbers by a fixed number of bits, divided into two parts: the integer

part and the fractional part. Unlike floating-point representation, where the position of

the decimal point can ºfloat,º in fixed-point representation, the decimal point is fixed

at a specific position (see Figure 3.5). Numerous research works, including [98], [136],

[137] succeeded in reducing the representation of the DNN parameters even down to 2

bits and achieved lower computational burden and memory needs while maintaining

high accuracy levels. In addition to that, FPGAs due to their customisability, offer the

ability to use completely custom representations with great efficiency and without the

restrictions presented by the limited support for low-bit arithmetics in general-purpose

processors.

This section presents an exploration of the capability of quantisation to enhance the per-

formance of early-exit dynamic DNNs. In more detail, two directions are investigated.

The first one targets the quantisation of the intermediate classifiers. As described in

Chapters 3 and 4, despite their beneficial effects, intermediate classifiers unavoidably

introduce additional computational burdens to the execution of the DNN. Reducing

the representation resolution can reduce their computational needs, increasing the ef-

ficiency of the early-exit networks. The second direction intends to extend this work

by applying quantisation to the entirety of the network. Combining the compression

capabilities of quantisation and early-exiting can further reduce the resource needs for

the execution of DNNs and contribute towards enabling their deployment in resource-

restricted devices.

5.2.1 Quantisation Methodology

Throughout this thesis, the post-training quantisation scheme is applied. It is a tech-

nique introduced by J. Holt and T. Hwang [138] back in 1993 and popularised by the

introduction of TensorFlow Lite (TFLite) [123] in 2017. The process begins with train-

ing the network using full precision, usually a 32-bit floating point format. Then the

range of values that each layer requires is determined by collecting statistics on the

minimum and maximum values of the trained weights and activations. These statistics

are then used to compute scaling factors that map the original high-precision values

to the lower-precision representation. Once these scaling factors are established, the

weights and activations are quantized by rounding the high-precision values to the

nearest values in the lower-precision format.

In this work 4-bit to 8-bit fixed-point formats are used. For 4-bit and 5-bit representa-

tions, 2 bits are used for the integer part and 2 and 3 bits, respectively, for the real part.

This leads to a range of -2 to 1.75 with a step of 0.25 for the 4-bit format and -2 to 1.875
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with a step of 0.125 for 5-bit format. For the rest, 3 bits are used for the integer part and

the rest for the real translating to a range of -4 to 3.875 with a step of 0.125 for the 6-bit

format, -4 to 3.9375 with a step of 0.0625 for the 7-bit format and -4 to 3.96875 with a

step of 0.03125 for 8-bit format.

5.2.1.1 Experimental Setup

To explore the effects of quantisation on early-exit dynamic DNNs, the early-exit ResNet-

32 presented in Section 4.2.1.1 is deployed. It includes two intermediate classifiers con-

taining one convolutional and one fully-connected layer, placed after the 2nd (L2) and

15th (L14) layers of the backbone network. The network requires 81.51 MB of memory to

store its parameters while using 8-bit fixed-point representation, of which 227.3 kB are

required by the intermediate classifiers. The network is trained using the BranchyNet

approach [81] and fp32 representation. The trained weights and activations are then

used to employ post-training quantisation.

When the quantisation of the intermediate classifiers is targeted, the backbone network

is constantly quantised using 8-bit fixed-point representation, while for the interme-

diate classifiers, all 5 bit-widths presented above are explored. On the contrary, the 5

bit-widths are applied to the entirety of the early-exit network. Finally, to evaluate the

effects of quantisation, the two design approaches, pipeline and parallel, presented in

the previous Chapters, are used.

5.2.2 Early-Exit Branch Quantisation

Despite the effectiveness of early-exiting, in order to enable the dynamic inference of

a DNN, the deployment of intermediate classifiers is essential. Through correct train-

ing they can reduce the overall time consumption and energy demands of a network,

however, inevitably they introduce additional computations and memory demands.

Figure 4.4 and Figure 4.5 illustrated that, especially for samples that require the whole

depth of the network to be classified. Comparing the Without Early Exit (green bar) with

the Normal (orange bar), it is noticed that for the pipeline approach, the execution time

of the early-exit VGG19 network is increased by 31%. This is resolved through the par-

allel approach by executing the intermediate classifiers and the backbone network in-

parallel, which, however, necessitates the design of additional hardware components,

leading to an increase in energy consumption by 29% over a static implementation.

In addition to that, the intermediate classifiers of the early-exit VGG19 network require

an additional 125kB of memory to store their parameters. This not only contributes to

the aforementioned detrimental effects in latency and energy demands but also makes

the deployment of early exit networks harder. One of the primary challenges in FPGA
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FIGURE 5.3: Early-Exit Branches Memory Needs over different quantisation levels.

design is the relatively limited on-chip memory resources compared to dedicated pro-

cessors like CPUs or GPUs. FPGAs typically rely on embedded Block RAM (BRAM) or

distributed RAM, which are constrained in size and can quickly become a bottleneck for

data-intensive applications. Additionally, accessing off-chip memory, such as DRAM,

introduces latency and bandwidth constraints and is very expensive in terms of energy

consumption, further limiting performance. To resolve that, the further quantisation of

intermediate classifiers, using representations lower than 8-bits, is proposed.

5.2.2.1 Experimental Results and Analysis

One of the most significant advantages of quantization is the reduction in the memory

requirements of a DNN. 5.3 illustrates the memory needs for storing the parameters

of the intermediate classifiers at different quantization levels. By employing 8-bit res-

olution, a 75% reduction in the memory requirements of the intermediate classifiers

compared to fp23 can be achieved. Further reduction in representation can increase

this number even more. This directly results in reduced memory accesses and simpler

computations, potentially leading to lower energy consumption and faster network ex-

ecution.

Before, however, examining the results of the intermediate classifiers quantisation in

latency and energy consumption, it is very important to asses how it influences the

early-exiting behaviour. It was presented in Chapter 4.3.3 that the decision threshold

(Vi) greatly affects the performance of an early-exit network. Reducing the representa-

tion resolution of the intermediate classifiers can lead to reduced representation power

that can alter the exit triggering rates. Increased numbers of input samples exiting

on earlier stages could show that the network is overconfident, reducing its accuracy.
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FIGURE 5.4: Percentage of samples to trigger each exit point over different quantisa-
tion levels of the exit branch.

On the contrary, increased trigger rates of deeper exits prompt that more input sam-

ples require higher amounts of computations to be classified, rendering the benefits of

quantisation irrelevant.

Figure 5.4 shows the percentage of samples that would exit on each exit point. It is

visible that the exit trigger rates for all three exit points (y1, y2 and y3) are affected.

Reducing the resolution to 4-bits and 5-bits has the biggest impact, especially on the

second exit point, resulting in many input samples demanding the execution of deeper

layers to be classified. This highlights the reduced representation power of lower bit-

widths, which are not capable of capturing details that could potentially lead to an

earlier exit. On the contrary, however, when the resolution increases, in this case, 6-bits

and higher, the change in trigger rates over fp32 is less significant, always being less

than 11%.

In addition to these results, bellow the bit-widths, the accuracy of the network is illus-

trated. In lower resolutions, where samples tend to execute till deeper stages of the

DNN, the accuracy is increased. This is explained by the fact that the network, utilis-

ing more layers, can abstract more information from the samples. On the other hand,

when the resolution increases, a drop in accuracy is noticed. While these representa-

tions can achieve exit trigger rates closer to the ones achieved by full resolution (fp32),

the lack of representation power causes the network to commit more classification er-

rors. Nonetheless, the drop in accuracy is not very significant, never being more than

4%.

Table 5.3 shows the per-sample execution time of the early-exit dynamic ResNet-32 net-

work for different levels of quantisation in the intermediate classifiers. In contrast to

the initial assumptions, at very low representation precision, the execution time actu-

ally increases. Specifically, employing 4-bit and 5-bit quantisation levels results in a
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TABLE 5.3: Per Sample Execution Time (ms) of Early-Exit Dynamic ResNet-32 over
Different Quantisation Levels of Intermediate Classifiers

Exit Trigger
Rate (aj)

Pipeline Parallel

4-bit

Exit 1 29.6% 1.47 1.47
Exit 2 8.5% 4.08 3.63
Exit 3 61.9% 7.52 6.31
Avg - 5.43 4.64

5-bit

Exit 1 32.7% 1.52 1.52
Exit 2 10.3% 4.23 3.76
Exit 3 57% 7.80 6.54
Avg - 5.38 4.61

6-bit

Exit 1 38.4% 1.54 1.54
Exit 2 15% 4.28 3.81
Exit 3 46.6% 7.89 6.62
Avg - 4.78 4.15

7-bit

Exit 1 43.2% 1.56 1.56
Exit 2 16.7% 4.33 3.86
Exit 3 40.1% 7.99 6.70
Avg - 4.47 3.90

8-bit

Exit 1 48.4% 1.84 1.84
Exit 2 18.3% 5.1 4.54
Exit 3 33.3% 9.4 7.89
Avg - 4.95 4.34

9% and 8% increase in execution time when using the pipeline approach, and a 6.5%

and 6% increase when using the parallel approach, compared to a network using 8-bit

fixed-point representation throughout its architecture. This is justified by the impact

of quantisation on the exit triggering rate. As elaborated earlier, higher percentages of

input samples exiting at later stages of the network lead to increased computational

load, negating the performance benefits of quantisation.

However, when higher bit-widths are targeted, as seen from Figure 5.4, the exit trigger-

ing rates are a lot closer to the values achieved by a full precision network. This leads to

a decrease in latency of the dynamic network. In more detail, when the 6-bit and 7-bit

fixed-point representations are used, the per sample execution time is 6% and 7% less

when pipeline approach is targeted and 11% and 11.5% when the parallel approach is

targeted, over a network using 8-bit precision throughout his architecture.

The same outcomes can be obtained when focusing on the energy consumption of the

networks. Table 5.4 shows the per sample needed energy to execute the early-exit

ResNet-32 over different quantisation levels of the intermediate classifiers. It can be

seen that when 4-bit and 5-bit representation is used, the energy consumption is higher

than the 8-bit quantised network. This is explained by the results shown in Figure 5.4

and Table 5.3, that highlight the rates of samples that trigger each exit point. Even

though the data requirements are reduced considerably, the information lost from the
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TABLE 5.4: Per Sample Energy Consumption (mJ) of Early-Exit Dynamic ResNet-32
over Different Quantisation Levels of Intermediate Classifiers

4-bit 5-bit 6-bit 7-bit 8-bit

Pipeline 78.98 78.22 67.71 64.09 72.00

Parallel 93.63 93.04 81.53 77.62 87.58

quantisation leads to a negative effect on the early-exit rates, leading to more samples

executing through the entirety of the network to produce an output and overall in-

creasing the latency and the energy demands of the network, especially over higher

representations, e.g. 8-bit.

Similarly, this is caused by quantisation’s effects on the early-exiting behaviour. On the

contrary, it is noted that when 6-bit and 7-bit resolution is used the network is 10.5%

and 15.5% respectively when the pipeline approach is used and 11.5 and 16% when

the parallel approach is used. Similar to execution time, it is evident that the energy

consumption is higher when using 4-bit and 5-bit representation compared to the 8-bit

quantised network, attributable to the effects of quantisation on early-exit behaviour.

Conversely, it is observed that when using 6-bit and 7-bit resolution, the energy con-

sumption is 10.5% and 15.5%, respectively, when employing the pipeline approach, and

11.5% and 16% when using the parallel approach.

Overall quantising the intermediate classifiers can be beneficial towards minimising the

computational overhead introduced by early-exit dynamic DNNs. As can be seen from

the results, it can lead to reductions in execution time, energy consumption and, most

importantly, memory demands. Nonetheless, special attention must always be paid to

the effects of using lower representation precision on the early-exiting behaviour, as it

can, instead of accelerating, lead to negative implications on the performance of the

dynamic DNN.

5.2.3 Full-Network Quantisation

Following the results of quantising intermediate classifiers, the question is raised as to

whether the same technique can be applied to the entire dynamic network. Although

early-exit networks are efficient in compressing DNNs, the Achilles heel of early-exit

networks is the additional computational burden of the intermediate classifiers, espe-

cially for the execution of samples that exit on the last exit point. However, quantization

is a widely used technique, especially when FPGAs are the target deployment plat-

form, to reduce the resource needs for DNN inference. Aiming to combine its benefits

with those of early exiting, this section explores the effects of quantising the Early-Exit

ResNet-32 Dynamic DNN to achieve further performance efficiency.
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FIGURE 5.5: Early-exit ResNet-32 memory needs over different quantisation levels.

5.2.3.1 Experimental Results and Anaslysis

When quantisation is applied, the most significant result is the reduction of the mem-

ory demands of the network. The dynamic ResNet-32 requires 81.51 MB of memory

(Figure 5.5) to store its parameters (weights activations etc.). Simply by reducing the

representation resolution to 8-bits the data is reduced to 20.38MB (a 75% reduction).

While using even lower resolutions, like 6-bit or 7-bit precision, this is further reduced

by 25% and 12%, respectively.

As explained above, however, the impact of quantizing a dynamic network on its dy-

namic behaviour is a crucial factor to consider. Figure 5.6 shows the percentage of the

input samples that would trigger each of the three exit points on the early-exit dynamic

ResNet-32 DNN. In contrast to the results of the intermediate classifiers quantisation,

it is apparent that the compression technique is significantly more effective in this case.

The 4-bit representation resolution completely disables the first and second exit points,

eliminating the dynamism from the network. Similarly, none of the input samples trig-

ger the second exit point when the 5-bit resolution is used. This results in a substantial

drop in accuracy, as both quantisation levels are at least 10% less accurate than the

network using fp32 format, highlighting their lack of representation power. On the

other hand, however, it is noted that 6-bit and 7-bit resolutions achieve much better re-

sults, having trigger rates substantially closer (no more than 15% different) to the ones

achieved by 8-bit or fp32 representation. The effects in accuracy, although, are still more

prominent in this case over the intermediate classifiers quantisation, being 9% and 4%

less than what the 8-bit resolution can achieve.

Compulsorily, these results impact the energy consumption and the latency of the dy-

namic network too. Table 5.5 shows the per sample execution time of the early-exit

dynamic ResNet-32 network for different intermediate classifiers’ quantisation levels.

The importance of balancing the quantisation effects on the early-exiting behaviour are
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FIGURE 5.6: Percentage of samples to trigger each exit point over different quantisa-
tion levels of the early-exit network.

highlighted, as it can be seen that despite the considerable less memory needs and com-

plexity in computations, when the 4-bit resolution is applied the overall latency of the

network is actually increased, even over the 8-bit network. Similarly, while the 5-bit

and 6-bit representations can achieve faster execution, the negative effects on the accu-

racy, being 13% and 10% less accurate, render them infeasible to use. The experimental

results of the 7-bit quantized network, however, show that even by reducing the res-

olution by one bit, execution can be accelerated. Nevertheless, it is important to note

again that early exiting plays a crucial role as the difference in triggering rates leads to

only a small acceleration.

Similar conclusions can be drawn by assessing the per-sample energy consumption

results (Table 5.6). Quantisation can lead to reduced energy demands. However, its

effects on the exit trigger rates render its benefits futile. This is reinforced by focusing

on the energy consumption of the 6-bit and 7-bit formats. While 6-bit should cause

considerable reductions in energy demands, the actual decrease is less than 1% in both

pipeline and pipeline approaches.

Quantization provides a great opportunity to reduce latency, energy consumption, and

memory demands, particularly when targeting FPGAs for dynamic DNNs. However,

applying it without considering the implications of early-exit behaviour can lead to

designs that do not benefit from resolution reduction. In fact, it has been shown that it

can have the opposite effects, especially when it results in more input samples exiting

in the later stages of the dynamic network.
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TABLE 5.5: Per Sample Execution Time (ms) of Early-Exit Dynamic ResNet-32 over
Different Quantisation Levels

Exit Trigger
Rate (aj)

Pipeline Parallel

4-bit

Exit 1 0% 1.15 1.15
Exit 2 0% 3.21 2.86
Exit 3 100% 5.92 4.97
Avg - 5.92 4.97

5-bit

Exit 1 32.5% 1.26 1.26
Exit 2 0% 3.51 3.13
Exit 3 67.5% 6.48 5.44
Avg - 4.78 4.08

6-bit

Exit 1 30.9% 1.38 1.38
Exit 2 20.8% 3.82 3.40
Exit 3 48.3% 7.05 5.91
Avg - 4.62 3.99

7-bit

Exit 1 33.9% 1.47 1.47
Exit 2 17.2% 4.08 3.63
Exit 3 48.9% 7.52 6.31
Avg - 4.87 4.20

8-bit

Exit 1 48.4% 1.84 1.84
Exit 2 18.3% 5.10 4.54
Exit 3 33.3% 9.40 7.89
Avg - 4.95 4.34

TABLE 5.6: Per Sample Energy Consumption (mJ) of Early-Exit Dynamic ResNet-32
over Different Quantisation Levels

4-bit 5-bit 6-bit 7-bit 8-bit

Pipeline 90.60 73.25 70.78 70.89 72.00

Parallel 105.37 86.60 84.63 84.78 87.58

5.3 Confidence Controlled Dynamic Quantisation of Early-Exit

Networks

Quantisation has been acknowledged as an effective technique for reducing the infer-

ence workload of DNNs, especially when they are deployed on FPGAs, where arbitrary

resolution levels can be applied. To some extent, this applies to early-exit dynamic

DNNs, too; however, following the results of the previous section, it can be noted that

it cannot achieve the same levels of reduction in energy demands and latency as when

it is applied to static DNNs. The main reason behind that is the extent of the effect

quantisation has on the early-exiting behaviour, significantly altering the exit trigger

rates of the dynamic network. The limitation presented by the post-training quanti-

sation technique is that it quantises the DNN based on the static distribution of the

trained parameters. This simplifies the quantisation scheme but makes the solution
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fixed, disregarding the input sample characteristics and failing to dynamically capture

their sensitivity and variability.

On the contrary, the main aim of the intermediate classifiers is to do exactly that. Their

purpose, as explained in Chapter 2, is to extract information from the input samples

and dynamically allocate computations based on their characteristics. As explained

above, their output is a metric of the amount of abstracted information the networks

have achieved until that execution stage. Following the results presented in Section

5.1, it is argued that input samples that displayed high confidence levels are more re-

silient to lower representation resolutions. This section aims to implement a dynamic

quantisation scheme for early-exit Dynamic DNNs, utilising the information from the

intermediate classifiers in order to efficiently reduce the computational burden, power

demands, and memory needs of the network.

5.3.1 Methodology

To implement the dynamic quantisation scheme, the early-exit ResNet-32 Dynamic

DNN presented in section 4.2.1.1 is deployed. The network is initially trained normally

employing float-point 32-bit arithmetic representation. Then, the range of values that

each layer requires is calculated by collecting statistics, as explained in Section 5.2.1, in

order to apply post-training quantisation for all the presented bit-widths. Following

that, the dynamic network starts executing with full precision up to the first intermedi-

ate classifier. If its output is above the decision threshold, then an early exit occurs, and

inference restarts with the next input sample. If it’s not, then similarly to Section 5.1,

the δ is calculated, and its value is assessed. When it is low, then the succeeding part

of the network until the next intermediate classifier, is quantised with lower represen-

tation resolutions. On the contrary, quantisation is either applied with higher formats

or not at all (Figure 5.7). The basis of this approach lies in the fact that when the input

confidence value is close to the decision threshold, the network could abstract a consid-

erable amount of information and is less affected by the loss in representation power of

lower resolution. On the contrary, when their difference is higher, the network was not

able to identify the key characteristics of the input sample, and more information must

be preserved for the continuation of the inference.

Similarly to Figure 5.1, Figure 5.8 shows the number of input samples that do not trig-

ger an exit at the intermediate classifiers (Exit 1 or Exit 2), and their δ values were less

or equal to 0.1, 0.2 and 0.3. A small amount of input samples satisfying these require-

ments would render the approach ineffective, as the application of quantisation would

happen very rarely. However, the Figure 5.8 illustrates that even for samples whose

confidence was at most 0.1 below the threshold, their numbers were almost 1500 for the

first exit and more than 700 for the second. Considering that the exit trigger rate for the

first exit point is 48.4% and for the second 18.3%, these numbers represent 27.5% and
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FIGURE 5.7: Dynamic Quantisation Scheme for Early-Exit Dynamic DNNs

FIGURE 5.8: The number of inputs for which δ ≤ 0.1, δ ≤ 0.2 and δ ≤ 0.3 at Exit 1 and
Exit 2.

22% of the rejected input samples, respectively. A further increase in these numbers is

noticed when the δ limits are increased. These results further validate the applicability

of dynamic quantisation.

Following that, Figure 5.9, Figure 5.10 and Figure 5.11 illustrate the Exit Trigger Rates

of the dynamic quantised early-exit ResNet-32 when δ ≤ 0.1, δ ≤ 0.2 and δ ≤ 0.3 re-

spectevely. Comparing these results with the ones presented in the previous section,

it is visible that in this case, with the exception of the 4-bit representation resolution,

the rates are very close to the ones achieved when the fp32 format is used. This indi-

cates that the dynamic quantisation scheme has a considerably reduced effect on the

early-exiting behaviour. The 4-bit resolution’s limited representation capabilities are

still insufficient to hold the necessary information for the network’s accurate inference,

thereby completely disabling the second exit point. Nonetheless, the rest of the rep-

resentation bit-widths achieved exit rates never deviating more than 7% (5-bit when

δ ≤ 0.3) from the results achieved with fp32.

This is depicted in the accuracy results, too (seen below the bit-widths). The reduced

impact on the early-exiting behaviour leads to the minimisation of the negative effects,
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FIGURE 5.9: Percentage of samples to trigger each exit point over different dynamic
quantisation levels when δ ≤ 0.1.

FIGURE 5.10: Percentage of samples to trigger each exit point over different dynamic
quantisation levels when δ ≤ 0.2.

discussed in the previous Chapter, on the accuracy of the network, too. It is noticeable

that the less the difference between the confidence of an input sample and the thresh-

old, the more resilient the network to quantisation. Figure 5.9 results are both closer

regarding exit trigger rates and accuracy of the quantised networks over the one using

full resolution. This gives the opportunity to use different quantisation levels based on

the confidence of each input sample.

To explore the proposed dynamic quantisation scheme and evaluate its effectiveness,

the proposed network utilises 5-bit quantisation for samples achieving δ ≤ 0.1 and 6-

bit for samples achieving 0.1 < δ ≤ 0.2. Results whose δ value is higher than 0.2 are

executed using full precision, which in this occasion is 8 bits. It is worth noting that

the experimental results are gathered by combining the performance results of three



96 Chapter 5. Confidece Based Dynamic Control of Early-Exit Networks

FIGURE 5.11: Percentage of samples to trigger each exit point over different dynamic
quantisation levels when δ ≤ 0.3.

TABLE 5.7: Per Sample Execution Time (ms) of Early-Exit Dynamic ResNet-32 with
and without applying dynamic quantisation

ResNet-32 ResNet-32 (dynamic quantisation)
Exit 1

(48.4%)
Exit 2

(18.3%)
Exit 3

(33.3%)
Avg

Exit 1
(48.4%)

Exit 2
(16.2%)

Exit 3
(35.4%)

Avg

Pipeline 1.84 5.1 9.4 4.95 1.84 3.72 6.86 3.92
Parallel 1.84 4.54 7.89 4.01 1.84 3.22 5.60 3.39

designs with different quantisation levels. While this approach does not consider any

dynamic reconfiguration costs, which is necessary to deploy the proposed scheme, it

can approximate and highlight its potential benefits.

5.3.2 Experimental Results and Analysis

Table 5.7 shows the per sample execution time in ms of the early-exit ResNet-32 dy-

namic DNN with and without the application of the dynamic quantisation. The first

thing to be noticed is that the effects of dynamic quantisation on the exit trigger rate of

each exit point are affected very slightly. Obviously, the first exit point maintains the

same levels of samples exiting, as the full precision is used in both cases (8 bits). The

next two exits showcase some deviation, which, however, is not more than 2.1%. Hav-

ing the need to use an 8-bit representation format indicates that the benefits of quanti-

sation in memory needs cannot apply; however, focusing on the execution time results,

it is visible that the quantisation scheme achieves faster execution in both architecture

approaches. More specifically, the quantised network achieves a reduction in latency

by 20.8% and 21.9% on the pipeline and on the parallel approach, respectively. Finally,

the achieved accuracy of the network is 70%, the same as when 8-bit representation is

deployed.
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Overall, the dynamic quantisation scheme approach, utilising the confidence levels of

input samples, managed to leverage the benefits of quantisation without compromising

either the early-exiting behaviour or the accuracy of the network. Clearly, disregarding

the device’s reconfiguration cost cannot provide accurate energy and latency results;

however, considering that the deployment of the ResNet-32 network was already or-

chestrated by the host processor, the latency results still provide a great approximation

of the benefits of dynamic quantisation.

5.4 Discussion

In this Chapter, two dynamic approaches for the execution of the early-exit dynamic

DNNs on FPGAs were proposed. The key aspect in both of them was utilising, the

confidence level of input samples that did not trigger an early-exit. Utilizing a δ value,

which measures the difference between their confidence level and the decision thresh-

old, the two approaches achieved, exploiting the versatility of the FPGA platform, to

further enhance the performance of the early-exit dynamic DNNs.

In more detail, the first approach presents a dynamic placing scheme for the inter-

mediate classifiers. Noting that densely placed classifiers increase the computational

overhead, while sparse placement can lead to the unnecessary computation of the back-

bone network’s layers, a first adaptive placement scheme is presented. Employing the

δ value, it dynamically places intermediate classifiers closer to the already executed

ones if the rejected sample’s confidence is high (δ ≤ 0.16) and deeper into the backbone

network when it is lower. In this manner, it increased the adaptability of the network

to each input sample’s characteristics and achieved an 18% reduction in computation

demands without sacrificing accuracy.

The second proposed approach focuses on quantisation. Quantisation is a widely used

technique to reduce the computational and memory needs of a DNN, especially when

deployed on FPGAs due to their ability to use custom representations. It was proven

that while it can reduce the overhead introduced by the intermediate classifier when

quantisation is applied undirected to the entirety of the dynamic network, it has sig-

nificant detrimental effects on accuracy and early-exiting behaviour. Aiming to solve

that, a first confidence-controlled quantisation scheme is proposed. Unlike conven-

tional static quantization, which is fixed and does not consider input variability, this

approach adjusts precision based on δ. For inputs with confidence close to the thresh-

old (δ ≤ 0.2), lower precision is used, while on the contrary, the resolution remains

unchanged. Experiments with a dynamically quantized early-exit ResNet-32 showed

that while quantization slightly affects early-exit rates, it significantly reduces latency

(by 21%) and computational costs without substantial accuracy loss. Both approaches
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demonstrated enhancements in the performance of early-exit dynamic networks. How-

ever, these results cannot be achieved without the capabilities of the FPGAs to deploy

custom architectures, data-fows and representation resolutions.
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Chapter 6

Conclusions & Future Work

6.1 Conclusions

Deep Neural Networks (DNNs) are the cornerstone of modern AI technologies. Their

multi-layer architectures have revolutionised how machines learn and interpret com-

plex data. Although they have showcased state-of-the-art performance/accuracy in

numerous application domains, this comes at a cost due to the sheer volume of com-

putational and memory requirements. Enabling their deployment on edge devices,

like smartphones, IoT devices, etc., is vital to increasing their availability and lever-

aging their capabilities in everyday life and real-time applications. However, these

devices have considerable resource restrictions and mandate the compression of the

DNNs to accommodate their execution. Dynamic DNNs are a novel approach that

aims to achieve that by strategically distributing the computational workload based on

their ability to modify network structure and parameters during inference.

Conducted research on the structure and the parameters of neural networks provides

a broad field of approaches to the dynamic execution of DNNs. By layer skipping, se-

lective execution, dynamic pruning, parameter adjusting, etc., dynamic models have

been proven more efficient and effective than their static equivalents. Nonetheless,

their practical implementations and exploration are restricted to conventional CPU-

GPU systems, which can only theoretically highlight their capabilities. This constituted

the main point of interest for the conducted research presented on this thesis. In more

detail, the thesis focuses on exploring and addressing the challenges of realising Dy-

namic DNNs on resource-restricted devices, aiming to contribute towards moving the

execution of modern DNNs to the edge. FPGAs were selected as it is a platform that

has already been proven very effective in implementing and accelerating DNNs. Their

reprogrammability, parallelisation capabilities and low energy demands render them

ideal for exploring and evaluating the capabilities of the dynamic approaches.
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Despite their benefits, however, dynamic DNN approaches introduce new components

(e.g. intermediate classifiers in early-exit networks) and change the architecture of the

neural network and the inference data flow. These complexities require additional com-

putational overhead and sophisticated control logic, raising many challenges in optimi-

sation and hardware realisation. Through the exploration of these challenges (3) three

main limiting factors were identified: the lack of software libraries and frameworks tai-

lored for the needs of dynamic networks’ execution and training, the lack of hardware

modules and frameworks to support the architectural characteristics of dynamic DNNs

and, focusing on early-exit networks, the dependencies on intermediate feature maps.

These findings answered the first research question (Q1) and highlighted the fact that

despite their positive attributes, realising dynamic DNNs on hardware is a novel and

difficult task, with limitations that can affect not only the ease of design but also the

performance of the architecture itself.

A first FPGA implementation of an early-exit dynamic DNN (pipeline approach) achieved

comparable latency to a CPU/GPU system while maintaining very low power con-

sumption, requiring 4.8mJ per sample for the execution of a LeNet early exit network

(48% less than a Jetson Xavier embedded device). The effectiveness of dynamic DNNs

was also illustrated as the FPGA architecture required 70% less energy when the dy-

namic network was executed. Overall, the proposed design highlighted the FPGA plat-

form’s capability to efficiently deploy an early-exit dynamic network, maintaining very

low power needs and minimal effects on accuracy despite the limitations presented by

the dynamic architecture limitations.

Even though this approach showcased the benefits of implementing an early-exit dy-

namic network on FPGAs, its performance was afflicted by the need to halt the execu-

tion of the backbone network and store the intermediate feature maps every time the

intermediate classifiers were executed. It is also noted that it didn’t fully utilised the

parallelization capabilities of the FPGA platform. These limitations were addressed by

proposing a second design approach (parallel approach), which explored the parallel

execution of the backbone network and intermediate classifiers. Performing that elim-

inates the latency overhead introduced by the intermediate classifiers, especially for

input samples that do not trigger an early exit, and accelerates the execution of the dy-

namic network by up to 23% over the pipeline design approach. These results answered

the second research question (Q2) and illustrated how the FPGA parallelization capa-

bilities could address some of the limitations introduced by the early-exit networks’

architecture and accelerate their execution. Overall through both approaches it was

proven that FPGAs are a very capable platform that can realise and enhance the per-

formance of dynamic DNNs, further accelerating and reducing the energy demands of

modern computer vision applications.

It is worth noting that throughout the exploration of early-exit network, the effects of



6.2. Future Work 101

the dynamic approach in energy and computational demands are validated and high-

lighted. However, it could be argued that they are very class and data dependent and

could possibly not scale well under unseen data during validation or testing, especially

when important layers, e.g. the last, are not executed. This could be the case when

the undirected reduction of layers or filters (e.g. pruning); however, in the dynamic

approaches, the intermediate classifiers that control the amount of executed layers are

trained alongside the backbone network. In this way, they learn to identify the informa-

tion abstracted from the backbone network and not bluntly classify the current feature

map. As long as the backbone network is trained correctly to generalise on unknown

information, then the early-exit approach will not affect the accuracy of the network.

An additional notable characteristic of early-exit dynamic DNNs is that to enable dy-

namic execution, they employ intermediate classifiers, which unavoidably introduce

computational overhead. It was also noted that despite their output being a value of the

amount of abstracted information the network could abstract from the input samples,

it is only utilised to trigger an early exit, and otherwise, it’s completely disregarded.

Following these observations, two confidence-controlled dynamic schemes achieved to

utilise the versatility and reprogrammability of FPGAs and enhance the performance

of the early-exit dynamic DNNs, answering the last research question (Q3). The core of

both dynamic approaches is the importance of the difference between the confidence

level of input samples that didn’t trigger an early exit and the decision threshold (δ).

The first approach focuses on the placement of the intermediate classifiers employing

the versatility of the FPGAs and the parallel design and achieved to reduce the com-

putational burden of an early-exit network by 18% and its energy consumption and

latency by 5.8%. The second proposed dynamic scheme focuses on the quantisation

of the dynamic network using δ and the ability of FPGAs to accommodate various

representation levels. It achieved a minimum of 20.8% reduction in the latency of the

early-exit network with minimal implications on accuracy.

In conclusion, this thesis first and foremost showcased the capabilities and benefits of

using FPGAs in order to realise dynamic DNNs. The versatility and reconfigurabil-

ity of FPGAs where able to help create architectures that adapt to the characteristics

of early-exiting and enhance their performance, both in terms of energy consumption

and computational load. Nonetheless, as it was identified in Chapter 3, there is a lot

room for improvement, both in terms of hardware architecture and in terms of dynamic

networks design.

6.2 Future Work

This section outlines potential future research directions for extending and improving

the work in this thesis.
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6.2.1 Quantisation-Aware Training

Chapter 5 explored the benefits of quantisation on early-exit dynamic DNNs, employ-

ing a post-training quantisation methodology. It is a technique simple to apply, requir-

ing little additional computational effort and has proven to be effective in reducing the

memory demands and latency of a dynamic network. Nonetheless, it was also high-

lighted, especially in the uncontrolled full network quantisation case, that the reduced

representation power has detrimental effects on the early-exiting behaviour and the ac-

curacy of the network, rendering its application useless. To resolve that, future work

can explore Quantisation-Aware Training methodologies, which consider the effects of

quantisation during the training process. It is substantially more complex to apply, as

it requires the fabrication and fine-tuning of complex training schemes that integrate

the effects of quantisation, the sensitivity of the layers and the behavioural character-

istics of the network. Achieving that, however, could minimise the negative effects

quantisation has in the accuracy and early-exiting behaviour and further enhance the

performance of early-exit dynamic networks by efficiently quantising them with even

lower bit-widths.

6.2.2 Introduce Dynamic Partial Reconfiguration to Dynamic DNN acceler-

ators

Section 5.3 introduced a dynamic quantisation scheme that uses the input samples’

confidence to dynamically change the quantisation level of the early-exit network in

between two exit points. Performing that mandates the existence of multiple bit-width

designs that are available to be deployed at any time. While the followed approach

(Section 5.3.1 can highlight the benefits of the proposed dynamic quantisation scheme,

it disregards the costs of the dynamic reconfiguration of the FPGA. Introducing Dy-

namic Partial Reconfiguration to dynamically change the bit-width of the dynamic net-

work on a single hardware design can lead to more accurate results.

In addition to that, Section 2.5.1 highlighted the diversity among the computational

needs of different layers of a single DNN. This diversity can be found in the early-exit

networks too. Introducing Dynamic Partial Reconfiguration to their accelerators can

increase the adaptability of the hardware to their characteristics, and further increase

their performance.

6.2.3 Employ NAS techniques to better explore the FPGA design space

Exploring the realization of early-exit networks in FPGAs has revealed a significant

interaction between their components. Chapter 4 highlighted the effects of the deci-

sion threshold on the performance of the proposed FPGA designs, while Chapter 5
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illustrated how the location of the intermediate classifiers, or the quantisation level ap-

plied to an early-exit network can alter its efficiency and accuracy. Consequently, it is

beneficial to jointly optimize various design and configuration parameters such as the

number of exits, their placement, architecture, and decision policies. This expands the

architectural search space, making exploring and identifying optimal configurations

computationally demanding. Neural Architecture Search (NAS) methods may offer an

effective solution to navigate this space efficiently.
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Appendix A

Additional Figures

FIGURE A.1: LeNet-5 final design for Xilinx’s ZC702 board
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FIGURE A.2: ATHEENA processing flow. Reprinted from B. Biggs et.al. [121]
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