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As the global energy landscape shifts toward renewable sources, particularly photovoltaic (PV) 
technology, PV installations are expanding rapidly, covering larger areas and integrating 
advanced innovations. This growth poses new challenges for feasibility software used to evaluate 
solar projects, especially as diverse regions adopt emerging PV technologies. Accurate solar 
irradiance prediction plays a crucial role in ensuring the reliability of feasibility assessments and 
financial forecasting, as these predictions form the backbone of feasibility software's 
performance. This research delves into advanced PV technologies, including bifacial panels, 
tracking systems, and AgriPhotovoltaics (AgriPV), focusing on their behavior under the dynamic 
sky conditions typical of temperate climates, with high-resolution, minute-by-minute irradiance 
measurements. A major focus of this work is the evaluation of feasibility software limitations, 
specifically in its ability to estimate Diffuse Horizontal Irradiance (DHI) and Direct Normal 
Irradiance (DNI) from Global Horizontal Irradiance (GHI) using decomposition models, as well as 
its transposition models for calculating Plane of Array (POA) irradiance.  

The contributions of this research are fourfold:  firstly, this thesis develops a robust 
benchmarking framework to evaluate decomposition models using tests for temporal resolution, 
spatial homogeneity, and the influence of dataset periods. Since many locations lack dedicated 
weather stations for DHI and DNI measurements, such as the case study in the UK, this 
framework becomes essential. Initially, 5 decomposition models were identified as robust. To 
broaden the range, this research introduces the effect of clear-sky GHI (GHIClear) by altering 10 
variations, expanding the pool of viable models from 5 to 15.  Secondly, through the separation of 
sky conditions into clear, intermediate, and overcast days, the study evaluates the performance 
of transposition models within feasibility software. The DISC decomposition model, when paired 
with the Skartveit-Olseth (SO) transposition model, demonstrated consistent performance for 
both a fixed-tilt (FT) system at 55 degrees and a tracking system. Additional testing, using six 
distinct cloud intervals and feeding in measured GHI, DHI, and DHI, further confirmed the 
robustness of the SO model. Thirdly, work in this thesis assesses the reliability of six clear-sky 
irradiance model iterations using data from 67 global stations and different data sources, 
including measured values from AErosol RObotic NETwork (AERONET), Modern-Era 
Retrospective analysis for Research and Applications, Version 2 (MERRA2), and Copernicus 
Atmosphere Monitoring Service (CAMS). The analysis focuses on key atmospheric parameters 
such as precipitable water (PW), the Ångström exponent (AE), and Aerosol Optical Depth at 550 
nm (AOD550). MERRA-2 data outperformed CAMS in all 3 parameter estimations and was second 
only to AERONET’s measured data when coupled with the REST2 proprietary model. Among open-
access model services, McClear proved superior to ERA5, making it the most reliable option. 



 

5 

Lastly, with the growing adoption of AgriPV systems, there is an increasing demand for accurate 
estimation of Photosynthetically Active Radiation (PAR) irradiance, a critical aspect currently 
underrepresented in existing feasibility software for AgriPV applications. A new model, the 
Musleh-Rahman (MR) model, is introduced to accurately predict PAR in temperate climates using 
easily accessible input parameters.  This model is designed to enhance the accuracy of PAR 
estimations and was benchmarked against 10 other PAR models, outperforming them all. The 
combined findings of this research provide a foundation for enhancing sub-hourly irradiance 
prediction accuracy. These insights are expected to support the PV industry’s expansion into new 
regions and facilitate the seamless integration of advanced PV technologies into feasibility 
software, ultimately driving the growth of renewable energy deployment. 
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Nomenclature 

𝐴𝐸   Ångström exponent 

𝐴𝑀1.5   Air Mass for the standard terrestrial solar spectrum 

𝐴𝑂𝐷(𝜆)   Aerosol Optical Depth at a specific wavelength 

𝐴𝑂𝐷550  Aerosol Optical Depth at 500nm 

𝐴𝑂𝐼   Angle of Incidence (Degrees) 

𝐴𝑟𝑒𝑎𝐴𝑙𝑙   Total Area (m2) 

𝐴𝑟𝑒𝑎𝑠ℎ𝑎𝑑𝑒𝑑  Total shaded Area caused by solar panels (m2) 

𝐴𝑟𝑒𝑎𝑢𝑛𝑠ℎ𝑎𝑑𝑒𝑑  Total unshaded Area (m2) 

𝐵𝐺𝐸𝑛𝑒𝑟𝑔𝑦   Energy Bifacial Gain 

𝐵𝐺𝑖𝑟𝑟    Irradiance Bifacial Gain 

𝐵𝑂𝐴   Back of Array Irradiance (W/m2) 

𝐶𝑊    Collector Width of the total Solar Panels within a row (m) 

𝐷𝐻𝐼    Diffuse Horizontal Irradiance (W/m2) 

𝐷𝑁𝐼    Direct Normal Irradiance (W/m2) 

𝐷𝑁𝐼𝐶𝑙𝑒𝑎𝑟   Clear-Sky Direct Normal Irradiance (W/m2) 

𝑑𝑃𝐴𝑅   Diffuse Photosynthetically Active Radiation  (W/m2) 

𝐸𝑎   Extraterrestrial Horizontal Irradiance (W/m2) 

𝐸𝐵𝑖𝑓𝑖     Energy Produced by a bifacial system (Wh) 

𝐸𝑚𝑜𝑛𝑜  Energy Produced by a monofacial system (Wh) 

𝑒𝑙𝑒𝑣   Site elevation above sea level (m) 
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𝐺𝐻𝐼   Global Horizontal Irradiance (W/m2) 

𝐺𝐻𝐼𝐶𝑙𝑒𝑎𝑟  Clear-Sky Global Horizontal Irradiance (W/m2) 

𝐺𝐻𝐼𝑐𝑑𝑎   Clean, and dry Global Horizontal Irradiance (W/m2) 

𝐺𝑆𝑇𝐶     Irradiance under standard testing conditions (W/m2) 

ℎ   Elevation height of a module (m) 

𝑘   Extinction coefficient (nm) 

𝐾𝑑   Diffusion Fraction 

𝐾𝑡   Sky Clearness Index 

𝑀𝐴𝐷   Mean Absolute Deviation (%) 

𝑁𝑂2   Total Nitrogen Dioxide amount (cm) 

𝑂𝑧𝑜𝑛𝑒   Total Ozone amount (cm) 

𝑃𝐴𝑅    Photosynthetically Active Radiation (W/m2) 

𝑃   Pressure (mbar) 

𝑃𝐼𝐷𝐸𝐴𝐿   Dataset DC Power at standard testing conditions (W) 

𝑃𝑆𝑌𝑆𝑇𝐸𝑀  DC Power of the modules (W) 

𝑃𝑚𝑎𝑥−𝑓𝑟𝑜𝑛𝑡  Rear side Power of a bifacial module (W) 

𝑃𝑚𝑎𝑥−𝑟𝑒𝑎𝑟    Front side Power of a bifacial module (W) 

𝑃𝑂𝐴   Plane of Array Irradiance (W/m2) 

𝑃𝑃𝐹    Photosynthetic Photon Flux (μmol/m2/s) 

𝑃𝑅   Performance Ratio 

𝑃𝑊    Precipitable Water (cm) 

𝑆𝑆𝐴   Single Scattering Albedo 
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𝑆𝑇𝐶   Standard Testing Conditions 

𝑆𝑍𝐴   Solar Zenith Angle (Degrees) 

𝜓𝑠𝑢𝑛   Solar Azimuth (Degrees) 

𝜓𝑠𝑦𝑠𝑡𝑒𝑚  System Azimuth (Degrees) 

𝑅𝑑   Transposition Factor 

𝑅𝐻𝐼   Reflected Horizontal Irradiance (W/m2) 

𝑅2   Coefficient of Determination 

𝜌   Albedo 

𝑇    Temperature (K) 

𝑇𝑑   Dewpoint Temperature (ºC) 

𝑇𝐿   Linke Turbidity Factor 

𝛼   Solar Altitude (Degrees) 

𝛽   System Tilt (Degrees) 

𝛿   Solar Declination (Degrees) 

Δ    Perez Sky Brightness Coefficient 

𝜀   Perez Sky Clearness Coefficient 

𝜑   Latitude of Location (Degrees) 

𝜆   Wavelength (nm) 

𝜔   Hour Angle (Degrees) 

𝜏   Broadband Optical Depth 

Φ𝑏𝑖𝑓𝑖     Bifaciality Factor 

𝑓𝐻𝑎𝑦   Hay Modulation Factor 
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𝑓𝐻𝑎𝑦 1993  Hay-1993 Modulation Factor 

𝑓𝐾   Klucher Modulation Factor 

𝑓𝑅    Reindl Modulation Factor 

𝐵𝑡    Beam Tilted Irradiance Component 

𝐷𝑡   Diffuse Tilted Irradiance Component 

𝑅𝑡   Reflected Tilted Irradiance Component 
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Abbreviations 

AATSR ............................. Advanced Along-Track Scanning Radiometer 

AERONET ........................ Aerosol RObotic NETwork 

AgriPV ............................. Agricultural Photovoltaics 

AM .................................. Air mass 

ASTM G173 ...................... American Society for Testing Materials G173 Spectra 

AVHRR ............................ Advanced Very High Resolution Radiometer 

BSRN .............................. Baseline Surface Radiation Network 

CAELUS .......................... Classification Algorithm for the Evaluation of cLoUdiness Situations 

CAMS .............................. Copernicus Atmosphere Monitoring Service 

CEDA .............................. Centre for Environmental Data Analysis 

CIE .................................. International Commission on Illumination  

CSD ................................ Clear-Sky Detection 

DAT ................................. Dual Axis Tracking 

ECMWF ........................... European Centre for Medium-Range Weather Forecasts 

FT .................................... Fixed-Tilt 

HPC ................................ High-Performance Computing 

HSAT ............................... Horizontal Single Axis Tracking 

IEA .................................. International Energy Agency 

IEC .................................. International Electrotechnical Commission  

ICOS ............................... Integrated Carbon Observation System 

IPCC ............................... Intergovernmental Panel on Climate Change 

IRENA ............................. International Renewable Energy Agency 

ISO .................................. International Organization for Standardization  

ITRPV .............................. International Technology Roadmap for Photovoltaics 
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LCOE............................... Levelized Cost of Electricity 

LER ................................. Land Equivalent Ratio 

LJ .................................... Liu-Jordan 

ML ................................... Machine Learning 

MERRA-2 ......................... Modern-Era Retrospective analysis for Research and Applications, 

Version 2 

MISR ............................... Multi-angle Imaging SpectroRadiometer 

MODIS ............................ Moderate Resolution Imaging Spectroradiometer 

MR .................................. Musleh-Rahman 

PV ................................... Photovoltaics 

RT ................................... Ray-Tracing 

Si .................................... Silicon 

SMARTS .......................... Simple Model for the Atmospheric Radiative Transfer of Sunshine 

SO ................................... Skartveit-Olseth 

SPA ................................. Solar Position Algorithm 

TBO ................................. Tracking-the-Best-Orientation 

TC ................................... Temps-Couslon 

TS .................................... Tracking-the-Sun 

UTC ................................. Coordinated Universal Time 

VF ................................... View-Factor
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Chapter 1 Introduction 

1.1 Motivation 

An expanding global population and geopolitical disputes are causing a pressing energy crisis. 

Alternative sources of energy are needed to meet this growing demand. A viable alternative is 

necessary due to the limited nature of finite sources and the emission of excessive amounts of 

carbon. It has become increasingly important to find abundant yet sustainable alternative 

sources of energy to satisfy such extensive demand. In order to adhere to the 1.5°C cap goal set 

forth by the Paris Agreement [1], carbon dioxide emissions must decrease by 45% prior to 2030. 

Furthermore, the Intergovernmental Panel on Climate Change (IPCC) [2] highlights the necessity 

for renewable energy to comprise a minimum of 70% of the energy supply by 2050. A shift from 

fossil fuels will be facilitated by the growth and widespread adoption of renewable energy 

solutions within industrial, commercial, and residential domains. 

Despite perceptions that the volatile energy market has a high degree of competitiveness, 

renewable sources of energy are gaining a foothold [3]. Solar energy, hailing from the sun's 

virtually limitless reserves, is instrumental in mitigating the escalation of average global 

temperatures. Solar panels work on the principle of photovoltaics (PV), in which sunlight is 

converted into electricity by using semiconductors, typically silicon (Si), that absorb photons 

through transitions of electrons across an energy gap. The International Energy Agency (IEA) 

stated that certain solar power projects deliver historic cost-effective electricity [4], making PV 

one of the most affordable and environmentally friendly energy sources available. 

In examining the global landscape of PV technology, a historical overview reveals noteworthy 

growth in solar energy adoption. According to data from the International Renewable Energy 

Agency (IRENA), solar capacity experienced a significant increase from 175,039 MW in 2014 to 

1,411,139 MW by the end of 2023, surpassing the 1 TW mark [5]. This expansion means that solar 

energy now represents over a quarter of the global installed renewable energy capacity, 

comprising more than 36% of all renewable energy installations [5]. There are several factors that 

have contributed to such expansions, ranging from government policies to incentives, aiding in 

the broader adoption of solar energy. 

Temperate climates, known for their fluctuating sunlight and predominantly diffuse irradiance, 

pose distinctive challenges for the adoption of PV systems. Nonetheless, these regions also offer 

substantial opportunities for integrating solar energy into the national energy framework. Within 
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the framework of its new British Energy Security Strategy, the UK aims to build a cumulative solar 

PV capacity of 70 GW by 2035 [6]. Yet, despite a consistent increase, the growth rate observed 

over the past decade suggests that by 2035, the actual capacity may only slightly exceed 27 GW. 

This would leave the UK more than 42 GW below its ambitious target. Therefore, it is crucial to 

promote the adoption of advanced PV technologies to accelerate the expansion of solar capacity, 

a step that must be taken promptly. 

The advent of bifacial solar technology, which utilizes advanced cell technologies to capture 

irradiance simultaneously from the front and the rear, coupled with tracking solutions, may 

provide solutions to these climatic challenges [7]. Moreover, these advancements may prove 

instrumental in supporting the UK’s ambitious target of 70GW. By harnessing the potential of 

breakthrough solar technologies, the UK can solidify the position of solar power in its renewable 

energy landscape and achieve its goals.  

Recent advancements in PV technology have positioned bifacial solar panels as potential 

disruptors in the market, poised to challenge the dominance of traditional single-sided modules. 

According to the 15th edition of the International Technology Roadmap for Photovoltaics (ITRPV), 

bifacial modules currently command approximately 63% market share. This figure is expected to 

increase by an additional 10%, reaching 73% over the next decade. The same edition of ITRPV 

predicted that tracking solutions would also be used in more than 55% of PV systems by 2030 [8]. 

Tracker systems that adjust module orientation with respect to the sun’s motion are proving to be 

effective at improving module performance. Furthermore, such solutions may decrease the 

number of modules required per kWh of output [9]. This development is especially critical due to 

the high costs and limited availability of land - a challenge that Agricultural Photovoltaics (AgriPV), 

which combines agriculture with photovoltaics, regularly encounters [10]. Projections from the 

ITRPV 2024 indicate that AgriPV is poised to secure a growing portion of the market [8]. 

Despite advances in PV technologies, there remains a significant gap in research concerning the 

validity of optical models for irradiance estimation in temperate climates. This gap is primarily 

due to the complex dynamics of light harvesting, which complicates the optimization of bifacial 

PV and AgriPV technologies. Without robust validation of these models, particularly in temperate 

regions, the broader adoption of diverse PV technologies could be impeded. 

Currently, a variety of prediction models, ranging from empirical to physical, are employed within 

different simulation software to estimate irradiance on PV modules [9][11], including the rear side 

for bifacial modules, and the irradiance utilized by plants for photosynthesis. Accurate irradiance 

estimations are crucial as they serve as a foundational metric that attracts investor interest [11].  
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Most models have been developed (and thus validated) using daily or hourly irradiance 

measurements. However, there is a pressing need to predict irradiance on a minute-minute scale 

as it provides more precise information on the variability and quality of solar irradiance, enabling 

more reliable PV power output estimations [12][13][14] and performance metrics [15]. Such data 

offer a more accurate reflection of weather conditions and events that may impact PV systems 

and provide enhanced information for the optimal control and management of PV systems [16]. 

If the temporal resolution of solar resource data is too coarse, such as hourly or daily, it will fail 

to capture short-term fluctuations or peaks in solar irradiance, which can significantly affect a 

project’s energy production and financial returns. Consequently, 1-minute solar resource data 

are vital for financiers to secure realistic and dependable estimates of energy production and the 

profitability of solar projects, as they capture the variability and frequency distribution of solar 

irradiance, influencing the revenue of PV projects [12][17]. 

There is an urgent need to refine the precision of solar irradiance models within temperate 

climates through diligent development and comprehensive validation of new empirical methods. 

Accurate solar irradiance estimations are crucial inputs for feasibility software, which drives the 

bankability and viability of PV farms. Feasibility software serves as a critical tool for engineers, 

enabling them to design, simulate and analyse the performance of various PV systems. 

Feasability software assist in evaluating both the technical and financial potential of a project by 

modelling expected energy production. They also help users optimise system configurations, 

estimate energy yields, and carry out in-depth performance assessments, ultimately supporting 

informed decision-making prior to project deployment. A variety of feasibility tools are available, 

each offering different levels of complexity and tailored to meet diverse project requirements. 

These estimations not only inform technological choices and project design but also pinpoint 

primary sources of uncertainty in energy production forecasts, impacting financing conditions 

and investment returns. Thus, validating and integrating diverse irradiance estimation models 

with commercially available software on a minute-by-minute basis is essential. Failure to 

address these needs could hinder the widespread implementation of these technologies in such 

climates. 

1.2 Aims and Objectives 

The primary goal of this research is to boost the integration of solar energy within the energy 

market. This goal is pursued by enhancing the accuracy of solar irradiance estimates, which are 

essential for evaluating the performance of PV systems. These refined estimates are incorporated 

into widely used feasibility software employed to inform investment. The research focuses on 
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improving the precision of solar irradiance models in temperate climates through rigorous 

development and comprehensive validation of new empirical methods. By providing a robust and 

validated approach to estimating solar irradiance, applicable across a range of technologies - 

from traditional fixed-tilt to innovative bifacial and AgriPV systems - this study aims to strengthen 

investor confidence in these emerging technologies, particularly in regions like the UK. 

To achieve this, this research will involve on validating optical models to enhance the selection 

of appropriate solar irradiance models for use in temperate climates. The methodology will 

explore the limitations of current optical models integrated into feasibility software and aim to 

improve these models through the identification and rectification of prevalent errors. All 

assessments will be conducted on a minute-by-minute scale to ensure precision. The outcomes 

of this study are expected to serve as crucial tools for model validation in temperate climates and 

will provide a necessary framework that can be adapted for use in other climatic conditions. 

Additionally, this work will establish a benchmark that can guide technological advancements in 

the field. As a result, the experimental methodology will be employed to achieve the following 

objectives: 

1. Develop a comprehensive framework for a series of tests designed to evaluate and select 

optimal methods for solar irradiance components. 

2. Validate and quantify current solar irradiance models, including decomposition and 

transposition methods, to identify and thoroughly document their limitations. 

3. Strengthen the precision and reliability of clear-sky irradiance models by employing 

varied satellite data sources. 

4. Construct a predictive model for photosynthetically active radiation irradiance, 

incorporating innovative and readily available input parameters. 
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1.3 Overview of Research Contributions 

The following are portions of this work that have been presented to the wider scientific community 
in various forms: 

Journal Paper Publications: 

• Y. J. K. Musleh and T. Rahman, “Predictive models for photosynthetic active radiation 
irradiance in temperate climates,” Renewable and Sustainable Energy Reviews, vol. 200. 
Elsevier BV, p. 114599, Aug. 2024. doi: 10.1016/j.rser.2024.114599. 

• Y. J. K. Musleh, W. Herring, C. D. Rodríguez-Gallegos, S. A. Boden and T. Rahman, 
"Subhourly Error Analysis of Decomposition–Transposition Model Pairs for Temperate 
Climates," in IEEE Journal of Photovoltaics, vol. 15, no. 1, pp. 164-172, Jan. 2025, doi: 
10.1109/JPHOTOV.2024.3483262 

• Y. J. K. Musleh, C.A. Gueymard and T. Rahman, “Worldwide impacts of satellite-based 
atmospheric conditions on solar irradiance modelling.” Under Preparation. 

Oral Presentations 

• Y. J. K. Musleh, S.A. Boden and T. Rahman, “A Comprehensive Examination of 
Decomposition Models for Solar Radiation Forecasting in Temperate Climates.” 17th 
Photovoltaic Science, Application and Technology Conference, London, England, 2023. 

• Y. J. K. Musleh, S.A. Boden and T. Rahman, “Irradiance Estimation for Vertical Bifacial 
AgriPV Systems: Integrating Regression Analysis and Decomposition-Transposition 
Matrix in the UK Context.” Photovoltaic Science, Application and Technology Conference 
2024, Glasgow, Scotland, 2024. 

• Y. J. K. Musleh, S.A. Boden and T. Rahman, “Analyzing Bifacial AgriPV Systems in 
Temperate Climates with Advanced Mathematical Modelling for Irradiance Estimation.” 
BifiPV 24 Conference, Chambéry, France, 2024. 

Poster Presentations: 

• Y. J. K. Musleh, S.A. Boden and T. Rahman, “Developing Outdoor Testing Equipment for 
Insolation Measurement of Bifacial Solar Tracking Systems”, 16th Photovoltaic Science, 
Application and Technology Conference (PVSAT-16), Salford, England, 2022. 

• Y. J. K. Musleh, S.A. Boden and T. Rahman, “Developing Outdoor Testing Equipment for 
Insolation Measurement of Bifacial Solar Tracking Systems”, Institute of Physics: 
Advances in Photovoltaics, London, England, 2022. 

• Y. J. K. Musleh, S.A. Boden and T. Rahman, “An Empirical Study of the Plane-Of-Array and 
Back-Of-Array Solar Irradiance of a Dual-Axis Tracker in Oxford, UK”, BifiPV 22 
Conference, Ankara, Türkiye, 2022. 

• Y. J. K. Musleh, S.A. Boden and T. Rahman, “An Empirical Study of the Plane-Of-Array and 
Back-Of-Array Solar Irradiance of a Dual-Axis Tracker in Oxford, UK”, Institute of Physics: 
Advances in Photovoltaics, London, England, 2022. 
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1.4 Structure of Report 

Chapter 2 presents a comprehensive review of the existing literature and provides a theoretical 

background on solar irradiance resource assessment. It discusses the fundamental principles of 

solar irradiance and emphasizes the significance of accurate estimation methods. This chapter 

also outlines prior studies on the mathematical modelling of irradiance, including 

decomposition, transposition, and clear-sky models, and explores their application in bifacial, 

tracking, and AgriPV systems. The methodology for assessing solar resources is introduced, 

establishing a clear benchmarking framework for selecting solar irradiance estimates in Chapter 

3. This framework aims to enhance the accuracy and reliability of solar resource assessments. 

Chapter 4 delves into the limitations of current models in the context of decomposition and 

transposition. It examines the application of model pairs in feasibility software and discusses the 

dynamics of transposition techniques for predicting PV performance based on measured 

irradiance inputs. Chapters 5 and 6 focus on refining models and introducing new methodologies. 

Chapter 5 evaluates predictions of clear-sky irradiance, considering both measured and 

modelled atmospheric data by assessing  the sources of satellite data. Chapter 6 introduces an 

empirical model for estimating Photosynthetically Active Radiation (PAR) irradiance and develops 

a new mathematical model tailored for temperate climates using readily available data, moving 

away from reliance on extensive measurements. Finally, Chapter 7 summarizes the findings, 

draws conclusions, and identifies areas for future research, aiming to further advance the field of 

solar irradiance assessment. 
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Chapter 2 Theoretical Background and Review of 

Related Literature 

2.1 Foundations of Solar Irradiance 

2.1.1 Comprehending the Solar Resource 

Climate conditions vary globally due to differences in temperature, weather patterns, and 

geographical positioning. These all affect solar irradiance levels based on the sun's path and 

other variables [18]. The Köppen-Geiger climate classification system categorizes global land 

climates into five primary groups using thresholds related to air temperature and precipitation 

levels. This classification provides a structured approach to simplifying complex climate data into 

actionable insights. 

 

Figure 1: The Köppen-Geiger climate map is provided with a spatial resolution of 0.5º, adapted from [18]. 

The Köppen-Geiger system employs a three-letter code, as per Figure 1, to define climatic zones 

based on temperature, precipitation, and their seasonal occurrences. Each letter refines the 

classification further: the first letter indicates the main climate type, with "C" representing 

temperate climates where the warmest month has an average temperature that exceeds 10ºC 

and the coldest month’s average temperature ranges between -3ºC to 18ºC. The subsequent 

letters describe precipitation and temperature patterns. For example, much of the UK is 
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classified under "Cfb," indicating a temperate climate with no dry season and mild summers 

where the warmest month’s average temperature remains below 22 ºC. 

It is crucial to comprehend the sun's movement in relation to a site location, as this knowledge is 

vital for maximizing a PV system installation's performance. This movement is described by a two-

dimensional coordinate system consisting of azimuth, 𝜓 and altitude angles, 𝛼 [19]. 

cos 𝜓 = cos 𝜑 ∙ sin 𝛿 − cos 𝜔 ∙ cos 𝛿 ∙ sin 𝜑 (1) 

𝛼 = 90 + 𝜑 − 𝛿 (2) 

Here, 𝜓, signifies the angle between the sun and the north axis in a clockwise direction. This angle 

can be calculated using Equation 1, which incorporates trigonometric functions that involve the 

location's latitude 𝜑, the declination angle 𝛿, and the hour angle 𝜔. 𝛼, represents the angle 

between the horizon and the center of the solar disc, as shown in Equation 2 [19]. 

An alternative method for pinpointing the sun's position involves the zenith angle, SZA,  which is 

the angle between the sun's disc and a vertical line (see Figure 2). This angle is a 90-degree phase 

shift from 𝛼 due to its basis on the orthogonal axis, as outlined in equation 3. Determining SZA is 

crucial for estimating the solar radiation that reaches the Earth's atmosphere across a range of 

solar configurations [20]. 

cos 𝑆𝑍𝐴 = sin 𝛼   (3) 

 

 

 

 

 

 

Figure 2: A two-dimensional coordinate system represents the assortment of solar angles. Adapted from 

[20]. 

Here, 𝜑 and time of year significantly impact 𝜓, 𝛼, and subsequently 𝑆𝑍𝐴, due to the sun's path 

[21]. The sun's trajectory changes more drastically at higher 𝜑, as depicted in Figure 3. In such 

locations, during the summer solstice, the 𝜓 range expands, and the 𝛼 range ascends higher in 

the sky, which results in extended daylight exposure. In contrast, during the winter solstice, the 
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sun's path becomes compressed as a result of 𝜓 and 𝛼 becoming more limited, leading to reduce 

sunlight hours. At the equator, while the solar declination angle oscillates between ±23.45º, the 

sun’s apparent movement remains relatively symmetrical across both the northern and southern 

hemispheres. As a result, seasonal fluctuations in sunlight duration and intensity are significantly 

less pronounced than at higher latitudes. A precise comprehension of the sun’s path is crucial 

for assessing PV systems performance [7], as it directly influences the design and optimisation 

of tracking systems. 

 

 

 

 

 

 
 

Figure 3: Trajectory of the sun throughout the winter, summer, and spring solstices observed in London 
and at the equator. 

The location of a site influences the optical air mass (AM), which denotes the path length of the 

direct beam traversing the atmosphere compared to the overhead sun [20]. AM0 pertains to the 

irradiance at the atmosphere's apex, and AM1.5 (conforming to the ASTM G173 standard [22]) is 

a crucial component of standard testing conditions (STC) employed to rate PV modules [23]. This 

particular value is utilized as a standard due to its representation of the annual average for mid- 

𝜑 regions, as determined through an analysis of solar irradiance data in the US. Referring to Figure 

4, the ASTM G173 AM1.5 spectrum can be observed, showcasing dips at specific wavelength 

values. These dips occur due to Fraunhofer lines, a collection of spectral absorption lines 

resulting from gas absorption in the photosphere and absorption in the atmosphere [24]. These 

lines are crucial in understanding the composition of the sun and the way solar radiation interacts 

with the Earth's atmosphere. The presence of these lines can influence the performance of PV 

modules, which is essential to consider during system design. 
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Figure 4: Solar extraterrestrial spectrum (in red) and the direct solar irradiance at the ground, 
ASTM G173 AM1.5 (in blue) using SMARTS software [25]. 

Possessing an understanding of the irradiance is critical. Such information is procured either 

through terrestrial observations from local meteorological stations or via satellite-derived data 

[26][27]. Focusing on temperate regions, satellite data exhibits diminished accuracy due to 

persistent cloud formations, rendering it less suitable [28]. It may also be outdated. 

Solar irradiance can be segregated into three components. Direct Normal Irradiance (DNI) refers 

to the component of solar radiation that strikes a surface positioned perpendicularly (normal) to 

the sun’s rays. It represents sunlight that reaches the surface directly from the solar disk, without 

undergoing scattering.  DNI transpires when sun rays are traveling directly from the position of the 

sun. Diffuse Horizontal Irradiance (DHI) represents the quantity of irradiance dispersed by 

atmospheric elements such as clouds, or aerosols, rather than emanating directly from the sun. 

Global Horizontal Irradiance (GHI) is received by a surface oriented parallel to the ground, 

encompassing both DHI and DNI as constituents, as mathematically illustrated in the closure 

equation (equation 4) [29]: 

GHI =  DHI + DNI cos(𝑆𝑍𝐴) (4) 

Solar irradiance overall spans a wide range of wavelengths, covering the ultraviolet, visible and 

infrared regions of the spectrum. This spectral distribution plays a critical role in the performance 

of PV systems, as different materials absorb and convert solar energy with varying efficiencies 

across different parts of the spectrum. Irradiance varies with the time of day due to sunlight 

reflection angles and the influence of Earth's atmosphere on light transmission. Solar noon, when 

the sun reaches its highest 𝛼, exhibits a peak in irradiance as sunlight traverses the minimal 
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atmospheric distance and experiences the least reflection. Conversely, during early mornings 

and late afternoons, SZA is near its maximum, the sun resides at its lowest 𝛼, and an increased 

quantity of light is reflected. 

Moreover, there are additional components of solar irradiance that are important in the solar 

resource, which use different combinations of GHI, DHI and DNI. Irradiance reaching the surface 

of a module is known as Plane-Of-Array (POA) irradiance, a critical metric for evaluating system 

performance of PV [7][9][30]. Conversely, Back-Of-Array (BOA) irradiance refers to the irradiance 

that impacts the rear surface of a PV module. As the AgriPV sector expands its market presence, 

it becomes essential to measure the irradiance suitable for plant growth, termed 

Photosynthetically Active Radiation (PAR) [31]. Similar to GHI, PAR comprises both diffuse and 

direct components with diffuse irradiance prevalent in shaded environments and direct 

irradiance emanating straight from the sun [32][33]. 

Sky conditions, which influence solar resources, can fluctuate rapidly, demanding adaptable 

design, development, and management strategies to accommodate such variability. The 

constant and often swift changes in sky conditions complicate the accurate characterization of 

prevailing conditions and subsequently challenge the evaluation of model performance, 

especially at high frequencies [12][34]. On a daily timescale, the classification of the average sky 

conditions is feasible using a definition of sky clarity [19]. The clearness of the sky is often 

determined using GHI in conjunction with the extraterrestrial horizontal irradiance (Ea), as 

delineated in equation 5 to calculate the clearness index (Kt). This index is pivotal in solar resource 

applications and is widely acknowledged for its significance [20]. 

Kt =
GHI

Ea
 

(5) 

Daily aggregated sky conditions are categorized based on Kt values as per previous research 

conducted [35][36]. A Kt value below 0.30 indicates overcast conditions, above 0.68 signifies 

clear skies, and values between 0.30 and 0.68 are classified as intermediate. This acknowledges 

the findings of Page et al. who noted a typical decline in Kt values at higher φ [37]. It is important 

to highlight that at low solar altitudes (during early mornings and late afternoons), the values of Ea 

diminishes due to its dependence on the sine of the solar altitude (refer to Equation 3). As a result, 

the dominator of Kt becomes smaller, which may artificially elevate Kt values even under relatively 

poor atmospheric conditions. Additionally, during these times, sun rays must pass through a 

longer atmospheric path, increasing the influence of scattering by atmospheric molecules (i.e., 

aerosols). This extended optical path leads to notable attenuation of GHI relative to the 

extraterrestrial component. However, because of the sine of the solar altitude is very small at low 



Chapter 2 

53 

 

angles, its impact on the denominator can outweigh the GHI reduction, occasionally producing 

anomalously high Kt values during these periods.  

The condition of the sky significantly influences solar irradiance, primarily dictated by cloud 

coverage, which affects both the quantity and variability of the irradiance reaching the ground 

[38][39]. Understanding the cloud dynamics is essential to evaluate how these variations impact 

PV systems. Developed by Ruiz Arias-Gueymard, the Classification Algorithm for the Evaluation 

of cLoUdiness Situations (CAELUS) effectively categorizes sky conditions into six distinct 

classes: cloud enhancements, cloudless, overcast, thin clouds, thick clouds, and scattered 

clouds [40]. This algorithm is informed by data from 54 radiometric stations across diverse 

climates, utilizing GHI measurements and SZA. It integrates four bespoke solar irradiance indices 

that gauge the magnitude and variability of GHI. Classifications are determined based on specific 

threshold values for these indices, refined through empirical testing for distinguishing between 

different types of cloud coverage. At the core of CAELUS are the clear-sky index (which compares 

observed GHI against modelled clear-sky GHI) and two indices derived from GHI variability, which 

are instrumental in classifying cloud impacts more accurately than the clear-sky index alone. 

These indices include the magnitude index, which compares a 30-minute moving average of GHI 

to the theoretical clear-sky GHI in a pristine atmosphere, and the variability index, which 

quantifies the cumulative minute-to-minute GHI fluctuations over a 30-minute span, aiming to 

capture short-term variations. A more finely tuned version of this index calculates variations over 

a 10-minute window to detect even more subtle fluctuations. Through this sophisticated, 

threshold-based approach, CAELUS advances the understanding of sky conditions by minimizing 

errors and stabilizing classifications, offering a more realistic portrayal of atmospheric dynamics.  

Clear sky irradiance is a crucial parameter in assessing solar resources, referring to the solar 

radiation, whether GHI or DNI, that reaches a specific location on Earth's surface under cloudless 

conditions [41]. This parameter serves as a foundational element in evaluating the viability of PV 

systems, as these systems derive significant energy from such unobstructed conditions [42]. A 

key challenge in solar energy studies is accurately determining whether the sky is clear. The de 

facto method for Clear-Sky Detection (CSD) established in this field is the BrightSun algorithm, 

developed by Bright et al [43]. This CSD model has been developed by analysing irradiance data 

collected at minute intervals from 5 radiometric stations of varying climatology. The methodology 

encompasses two principal stages, culminating in detection analysis coupled with additional 

duration filtering. Initially, it employs a clear-sky model to establish baseline irradiance under 

clear conditions, which is then compared against measured irradiance. Subsequently, the 

algorithm enhances the clear-sky irradiance by fitting it to a curve and performing 
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multidimensional nonlinear optimization to fine-tune a linear correction factor. This approach 

directly aligns clear-sky curves with measured irradiance data, minimizing reliance on local 

atmospheric conditions and accommodating uncertainties such as aerosol presence. Rather 

than using absolute thresholds, it compares the differences between measured and clear-sky 

irradiance in normalized units or ratios, enhancing robustness across different irradiance levels 

and SZA. However, for BrightSun's criteria to classify a period as clear, it necessitates consensus 

among GHI, DNI, and DHI, alongside SZA, indicating the requirement for these four inputs. 

CAELUS can also be deemed as a CSD model, where its definition of a cloudless moment is 

synonymous with clear conditions.  

2.1.2 Methods for Accurate Irradiance Assessment 

Pyranometers, which function based on the Seebeck effect, can measure various types of solar 

irradiance, contingent upon orientation and mount [44]. When mounted horizontally, GHI is 

measured. By obstructing the sun's direct path using a shadow ball and a sun tracker, DHI can be 

obtained. DNI measurements can solely be acquired if utilizing the same tracker, without the 

shadow ball, using a pyrheliometer as evident in Figure 5a. An evaluation of PV performance 

considers factors like irradiance incident on a defined tilt-angle (𝛽) and system-azimuth (𝜓𝑠𝑦𝑠). 

Placing instruments in-plane or inverted captures POA or BOA measurements, respectively. 

However, in such an assessment context, opinions emerge in deciding whether to utilize 

pyranometers or reference cells. The latter is designed to quantify the irradiance available to a PV 

module for transforming into electrical data. Table 1 offers a synopsis of both options [45][46][47]. 
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Table 1: Comparison of the use of solar reference cells and radiometers for two different types of 

measurements. 

 

Characteristics 

Measurement of PV system performance  
at reference conditions (POA or BOA) 

Solar Radiometric measurements  
(GHI or DHI) 

Reference cell Pyranometer Reference Cell Pyranometer 

Spectral 
response 

Similar to PV 
Broadband  
response 

Narrow wavelength 
response 

Broadband  
response 

Angle of 
Incidence 

Similar to PV Response to all angles Response falls off at 
SZA > 70 o 

Wide angle acceptance, up to  
SZA = 85o 

Temperature 
Response 

Linear, Similar to 
PV 

Minimal sensitivity to 
temperature 

Temperature 
correction required 

Minimal sensitivity to 
temperature 

Time Response 
< milliseconds, 

Similar to PV 
< 30 seconds 

< milliseconds, 
Similar to PV 

< 30 seconds 

Standards IEC 60904 
IEC 9847, ISO 9845, ISO 

9846 IEC 60904 IEC 9847, ISO 9845, ISO 9846 

Other Issues - 
Problems At low 

irradiance conditions 
- - 

 

Accurate measurements of GHI using spectrally flat class A pyranometers are exceedingly 

uncommon [12][39], and it is even rarer to find installations that measure DHI or DNI with a 

tracking and a pyrheliometer [43][44]. These methodologies are limited due to the significant 

challenges in maintenance, including the continuous need for calibration and recalibration 

[60][79]. As a result, there is a growing need to develop reliable estimations for these parameters. 

Consequently, researchers are exploring alternative methods, with mathematical modelling 

emerging as a pivotal approach [234]. While GHI is more accessible and can be measured using 

pyranometers, in cases where such equipment is unavailable, it can be estimated through 

satellite imagery combined with clear-sky GHI (GHIClear) estimates. Once GHI is determined, other 

parameters from DHI, DNI to complex configurations of POA and BOA irradiance can be 

estimated using various mathematical techniques [7][9][79][80]. This complex, interlinked model 

structure underscores the critical importance of comprehensive solar irradiance estimations. 

Additionally, within the specific spectral range of photosynthetically active radiation (400-700 

nm), photodetectors, though even rarer than GHI measurements, are employed to meet the 

critical demand for precise Photosynthetically Active Radiation (PAR) estimates [31][265]. 
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Figure 5: Various types of irradiance measurements are conducted using different instruments, including 
pyranometers for measuring GHI, DHI, POA, and BOA, pyrheliometers for DNI 

measurements, and photodetectors for capturing PAR measurements. 

A crucial metric for evaluating PV performance is the Performance Ratio (PR), which is essential 

for gauging the overall quality of PV systems [49]. This assessment aligns with the IEC 61724 

standard [50]. This location-independent metric describes the relationship between the actual 

and theoretical energy outputs of PV plants. A key application of the PR is to demonstrate the 

energy proportion that can be utilized operationally or exported to the grid at a premium rate. 

Higher PR is synonymous with higher quality in terms of overall performance, but a value of 100% 

is never possible due to unavoidable losses or eventual degradation. Several PV systems with PR 

between 60-90% were described in the literature as high-performance systems [49][51]. PR is 

computed as seen in Equations 6a and 6b, which is a ratio of POA and the irradiance under 

standard testing conditions, 𝐺𝑆𝑇𝐶  [50]. 𝑃𝑆𝑌𝑆𝑇𝐸𝑀 is the DC power of the modules (in Watts), and 

𝑃𝐼𝐷𝐸𝐴𝐿 is the DC power from the datasheet at STC (in Watts).  

𝑃𝑅 =  
𝑃𝑆𝑌𝑆𝑇𝐸𝑀

𝑃𝐼𝐷𝐸𝐴𝐿
 

(6a) 

𝑃𝑆𝑌𝑆𝑇𝐸𝑀 =  𝑃𝐼𝐷𝐸𝐴𝐿 ×
𝑃𝑂𝐴

𝐺𝑆𝑇𝐶
  

(6b) 

Monofacial PV with a defined 𝛽 are configured to meet this requirement. However, it is essential 

to explore the implications of incorporating bifacial modules. Issues arise when utilizing the 

previously mentioned formula, as a definitive standard for assessing bifacial modules has not 

been established, as the current method only evaluates the front-side power. However, as per 
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Figure 6, IEC 61724-1 emphasizes that a station should have at least three BOA measurement 

instruments, positioned in representative locations to capture the effects of non-uniformities at 

the rear side while avoiding shading or reflections that could impact readings. Alternatively, it 

suggests placing two BOA sensors 20% from the module width's edge, as this provides a 

measurement comparable to average values in irradiance models [48]. Thus, it is evident that 

quantifying BOA irradiance presents significant challenges, and this is where the role of 

mathematical modelling becomes critical. This process initiates a cascade effect, starting from 

the foundational GHI measurements and progressively building towards accurately estimating 

BOA and PAR irradiance. 

Figure 6: Suggestions for rear-side irradiance sensor placement as per [48]. 

2.1.3 Data Filtration Implementation 

In the process of estimating solar irradiance, several data manipulation and handling steps are 

required. Especially since, when conducting solar irradiance measurements, the accuracy and 

reliability of these measurements are influenced by several crucial factors [52]. These factors 

must be thoroughly eradicated before the data is used for model development or validation [12]. 

Understanding these variables is essential for accurately assessing modelled irradiance data 

[44]. Therefore, it is imperative to implement the quality control procedure for solar irradiance 

measurements to ensure their precision and validity. Firstly, the establishment of a precise 

method for utilizing and predicting solar geometry has consistently relied on the most effective 

approaches found in the literature. This is done through the use of NREL’s Solar Position 

Algorithm (SPA), which calculates solar angles such as SZA; critical to the closure equation (see 
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equation 4). The SPA is noted for its exceptional precision, with a minimal uncertainty of only 

0.0003◦, applicable from the year 2000 to 6000 [53].  

Although the Baseline Surface Radiation Network (BSRN) has initiated some quality control 

protocols, a comprehensive quality control framework remains under development [54][55]. 

Drawing inspiration from existing studies, a robust data quality procedure is required. The initial 

step involves identifying and quantifying missing timestamps and values (e.g., empty values) 

across data parameters such as GHI, DHI, or DNI. This assessment helps determine each 

station's data completeness, and any identified gaps or anomalies are excluded from further 

analysis to maintain data integrity [56]. Before implementing any quality control measures, it is 

critical to address potential thermal offsets in the pyranometers used. Hence, it is a fundamental 

prerequisite for quality control processes to ensure that any thermal offsets are either absent or 

have been correctly adjusted. The method for correcting thermal offsets involves using nighttime 

irradiance readings [57]. Specifically, negative irradiance values recorded after midnight until SZA 

reaches 100◦, and similarly post-sunset until midnight, are used. By averaging these values, an 

absolute adjustment is applied to the daytime observations of GHI and DHI to correct for any 

discrepancies caused by thermal offsets. This step is crucial to ensure that the data reflects 

accurate solar irradiance measurements, free from instrumental biases [52].  

Once thermal offset issues are addressed, the next steps in this quality control process focus on 

measurements with SZA less than 85◦. This restriction helps eliminate instances of low irradiance 

from the dataset. It is also critical to evaluate the performance of the solar tracker used for DHI 

and DNI measurements. Tracker malfunctions, which can stem from electromechanical issues, 

misalignment, or timestamp inaccuracies, directly impact measurement reliability. Detecting 

these faults, especially subtle misalignments, requires careful analysis. This involves comparing 

recorded data against estimated values of irradiance to identify discrepancies. To further validate 

tracker accuracy, "tracker-off" tests are performed, adhering to established protocols. Moreover, 

the constant value of 1361.1 W/m2 for extraterrestrial horizontal irradiance is utilized as a 

reference point throughout this research, as specified in [58] and the ASTM E490-22 standard 

[59]. Additionally, K-tests help not only in identifying potential issues with the tracker but also in 

correcting any physical misalignments that might skew the data. Addressing past constraints, 

which sometimes led to incorrect data exclusions during cloud enhancement scenarios, is 

another key aspect of this approach. Implementing "Extremely rare limits tests" as recommended 

by the BSRN is essential for projects requiring high-accuracy data. Finally, ensuring that the 

absolute value from the closure equation remains below 5% is vital, as it highlights the benefits 
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of using both DNI and DHI measurements over relying solely on GHI. This approach not only aligns 

with but also enhances the methodological rigor of these data quality protocols. 

2.1.4 The Use of Satellite Data 

Assessing solar irradiance at ground level is essential for analysing atmospheric components 

[60][61]. The atmosphere’s constituents scatter and absorb solar radiation, leading to the 

attenuation of both direct beam and diffuse sky radiation. The decrease in solar irradiance 

through the atmosphere follows the principles outlined in the radiative transfer equation [62], as 

specified in equation 7a. In this equation, 𝐸(𝜆) represents the irradiance at a particular 

wavelength (𝜆), 𝜅 denotes the extinction coefficient, and 𝑥 refers to the distance traveled through 

the atmospheric volume. 

𝑑𝐸(𝜆) =  −𝜅(𝜆) ∙ 𝐸(𝜆) ∙ 𝑑(𝑥)  (7a) 

𝐸(𝜆) =  𝐸0(𝜆) ∙ 𝑒−𝜅(𝜆)∙𝑥 (7b) 

Assuming 𝐸0(𝜆) represents the initial irradiance entering an atmospheric volume, it aligns directly 

with the Beer-Lambert-Bouguer law [63], thus evident in equation 7b. Furthermore, if 𝜅(𝜆)is 

dependent on the distance, x; this introduces the definition of optical depth, 𝐴𝑂𝐷(𝜆), and it is 

defined as the integral of extinction over a specified path, as outlined in equation 7c. 

𝐴𝑂𝐷(𝜆) =  ∫ 𝜅(𝜆, 𝑥)
𝑆𝑍𝐴2

𝑆𝑍𝐴1

∙ 𝑑(𝑥)  
(7c) 

It should be noted that the formula presented in equation 7c applies to every wavelength due to 

𝜅 (which encompasses both scattering and absorption) being highly dependent on the 

wavelength. The dynamics between solar irradiance and aerosols are critical to understand 

because aerosols significantly influence the attenuation and scattering of incoming solar 

radiation [64]. According to equation 7c, the wavelength-specific scattering by air molecules (via 

Rayleigh scattering) and aerosol particles (via Mie scattering), as well as the absorption by 

atmospheric gases marked by Fraunhofer lines, occurs in sharply varying absorption bands (refer 

to Figure 4). Additionally, data on aerosols and precipitable water (PW) can enhance cloud 

condensation formation, thereby impacting incoming radiation through changes in optical 

properties and cloud coverage [65]. Accurate prediction of surface solar irradiance necessitates 

the incorporation of aerosol data alongside other solar irradiance measurements. Ideally, aerosol 

levels should be monitored using a sunphotometer, though this equipment is typically only 

available within the AErosol RObotic NETwork (AERONET), which offers a global, yet limited, 

database of aerosol and radiative properties [66]. 
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Historically, the primary sources of large-scale aerosol data have been derived from remote 

sensing observations conducted by spaceborne instruments [67]. These multispectral sensors 

monitor the reflected radiance from the surface-atmosphere system and employ algorithms to 

retrieve Aerosol Optical Depth (AOD) at various wavelengths. Estimations of AOD enable the 

calculation of the Ångstrom exponent (AE), an empirical measure crucial for inferring AOD at 

wavelengths not directly measured, or for identifying aerosol types by their size distribution 

through an inverse relationship [68]. AE effectively indicates the dominant particle size, with 

lower values (approaching 0) associated with larger coarse particles like dust, and higher values 

(up to 2.5) typical of finer aerosols such as those found in urban pollution. 𝛼 can be derived from 

a linear fit following the linearization of the Ångstrom law [68][69], utilizing predetermined 

wavelengths, with AERONET typically measuring at 440, 500, 675, and 870 nm. AOD at 550 nm 

has become the standard reference for assessing turbidity and can also be calculated using this 

approach as outlined in equation 8, where 𝜆0 is the reference wavelength.  

ln(𝐴𝑂𝐷𝜆) = ln(𝐴𝑂𝐷𝜆0) − 𝐴𝐸 ∙  ln (
𝜆

𝜆0
)  

(8) 

However, the use of AOD and 𝐴𝐸 data from spaceborne remote sensing in surface irradiance 

modelling is hindered by their intermittent availability. AOD measurements are unreliable under 

cloudy conditions, over brightly reflective surfaces like sand or snow, or when clouds are 

mistakenly identified as clear skies. Additionally, the temporal discontinuity of aerosol data, due 

to the nature of polar-orbiting satellites, poses a significant challenge. This limitation has sparked 

considerable interest across various scientific communities in AOD modelling, leading to the 

development of satellite datasets that provide AOD and AE estimates for use in mathematical 

models, such as those estimating GHI and DHI under clear sky conditions [68]. With DNI being 

particularly sensitive to AOD, and GHI is also affected by AOD, the impact is less severe 

compared to DNI, and it is influenced by PW as well [70]. 

To mitigate these challenges, forecasters utilize satellite data from resources like MERRA-2 

(Modern-Era Retrospective Analysis for Research and Applications, Version 2) [71][72][73] and 

CAMS (Copernicus Atmosphere Monitoring Service) [74][75][76][77]. Satellite datasets integrate 

historical data from satellites and weather stations with climate model outputs, offering a 

comprehensive and consistent record of atmospheric conditions over extended periods and 

across various φ [58][78]. This data is essential for understanding weather patterns, climate 

trends, and atmospheric disturbances, providing a global perspective that enhances the financial 

viability of solar energy projects. Different satellite data result in different approximations of AOD 

and AE hence, there is a need to see the difference and the effect that they have. 
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2.1.5 Metrics Deployed in Feasibility Software 

The swift advancement and deployment of various PV technologies necessitate significant 

investments, financial risk assessments, and strategic policy decisions regarding the 

prioritization of technology deployment [11][12][52]. The energy output of a system is closely 

linked to POA (and to some extent BOA in bifacial systems and PAR in AgriPV systems), 

underscoring the impact of these factors on the system's energy production and design 

parameters. This inherent uncertainty in energy output directly correlates with uncertainties in 

POA (BOA, and PAR), making financial risk evaluation and the assessment of project bankability 

and feasibility crucial for future PV projects [9]. Numerous feasibility software applications exist 

that utilize various irradiance estimations to project values for POA, BOA, and PAR. 

An accurate appraisal of PV performance is central to the economic viability of systems [6][7]. 

The wide range of optical model combinations, where decomposition and transposition models 

are paired together, can lead to errors and elevate the risk during the deployment of photovoltaic 

(PV) systems. Feasibility software offers a multitude of model combinations, but there is no 

established standard for their use [79]. Previous research indicate that applying the same 

meteorological information and system definitions can lead to differing POA irradiance 

predictions [80]. POA is crucial for making knowledgeable choices, spanning various domains 

from analyzing shade effects to assessing economic feasibility [81]. ITRPV estimates show that 

by 2030, 40% of PV systems will incorporate tracking technologies [82]. Reinforcing this, the 

International Energy Agency (IEA) highlights the growing use of single-axis trackers in the USA, 

surpassing Fixed-Tilt (FT) systems within PV farms [83]. Moreover, it demonstrates the growing 

global market for PV trackers. The pursuit of tracking technologies in the PV landscape holds the 

potential for enhanced energy output and therefore reduction in the number of modules required 

per kWh [84][85]. However, tracking solutions in PV systems often necessitate increased physical 

space, which could be a hurdle in space-limited areas [82]. Therefore, precise modelling is 

essential to ensure that the benefits provided by these solutions surpass their spatial needs. 

Furthermore, the use of trackers introduces concerns about return on investment. 

It is documented that the accumulation of modelled results over longer periods tends to reduce 

their random errors (referenced in sources [86][87]). Thus, assessing model performance over an 

appropriate averaging period is critical. Traditionally, hourly and monthly radiation data have 

been standard in the simulation and design of PV systems. However, recent developments have 

introduced new requirements and opportunities. Many radiometric stations now offer data at 

much finer resolutions (i.e., 1 minute), facilitating model validation at higher frequencies. This 

high-frequency data is crucial for simulating PV systems that operate under rapidly changing 
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conditions, such as those found in the temperate climate of the UK. Additionally, solar resource 

characterization over specific areas is often reported in terms of mean annual irradiation, a vital 

factor in estimating the long-term energy production of PV systems and an essential component 

for the financial analyses required to determine a project’s bankability using feasibility software. 

Utilising high temporal resolution data, such as solar irradiance data at one minute intervals, 

allows for more precise characterisation of irradiance variability driven by transient atmospheric 

conditions. This includes the movement of clouds, aerosol events, and brief changes in solar 

position. This granular level of detail is particularly beneficial for assessing the dynamic response 

of PV systems under real-world sky conditions, as it captures rapid fluctuations in irradiance that 

are often obscured in coarser, hourly datasets. This is particularly true for tracking systems, 

where an hourly dataset my underpin the overall gains relative to its fixed-tilt counterpart. 

Moreover, employing minute-resolution data enhances the accuracy of time-series simulations 

by supporting the detection of systematic biases and enabling more precise calibration of both 

decomposition and transposition models. From a system operation perspective, high-frequency 

data facilitates more advanced forecasting methods and informs grid-integration analyses. This 

is especially true for scenarios with high levels of PV deployment. Integrating such data 

strengthens system design, refines operational planning and increases confidence in energy yield 

projections, all of which contribute to minimising investment risks in PV projects.  

Given the scarcity of solar irradiance measurements in areas critical for large-scale 

developments, both general and specific project analyses often must rely on modelled datasets. 

This reliance raises several important considerations about the accuracy of these datasets 

compared to actual, locally measured high-quality data, and the level of confidence investors 

might place in such information. Additionally, comparisons between different models, are 

necessary to establish their relative accuracy and reliability. This discourse sets the stage for the 

extensive use of various metrics designed to quantify the errors inherent in irradiance modelling 

used by feasibility software. The literature on solar irradiance modelling is rich, and there is a wide 

range of methods for assessing the performance of these models through validation studies. 

These studies typically explore different components of irradiance, with most components being 

validated and some developed. Consequently, this thesis will establish a benchmark for 

comparing modelled data against measured data, for different solar irradiance estimations, 

aiming to set a standard for this evaluation. 

The review of existing literature highlights a broad spectrum of evaluation methods, emphasizing 

the necessity for selecting suitable performance metrics. This thesis, like most previous research 

on this topic, employs Mean Absolute Deviation (MAD) as the key figure of merit as per equation 
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9a [88]. The term “deviation” is used here rather than “error” to emphasize that the performance 

of any radiation model is evaluated against irradiance measurements that are affected by low, 

but non-negligible, experimental uncertainties [52]. MAD is instrumental in quantifying 

discrepancies between observed data and predictions by irradiance models, offering a gauge for 

the model’s fidelity in reflecting real-world conditions. It proves especially useful in pinpointing 

how much the model’s estimates deviate from actual observations in general. MAD calculations 

provide insights into the absolute deviations a model exhibits compared to its measured values 

and are endorsed as Class A indicators [11]. The evaluation of deviation in the estimated 

irradiance is a key component of solar resource assessment, as it directly impacts the 

uncertainty in the predicted output of PV systems and their bankability. One key advantage of 

MAD is its robust measurement of average error, which remains unaffected by extreme outliers 

(unlike Root Mean Square Deviation) and prevents error cancellation, a common issue with Mean 

Bias Deviation. MAD evaluates the absolute size of deviations, providing a more comprehensive 

perspective on overall variation with measured data. This thesis underscores the uniform 

contribution of each site. For example, the MAD across a diverse station database is calculated 

as the arithmetic mean of all individual MADs as specified in [12]. The statistical results are 

expressed in percent rather than in W/m2 to adhere to the recommendations in [40]. A good 

combination of irradiance models should have a low MAD, close to 0%. 

MAD =
100

𝐼𝑟𝑟′𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
∑ |𝐼𝑟𝑟𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 −  𝐼𝑟𝑟𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

𝑖=𝑁

𝑖=1

  
(9a) 

𝐼𝑟𝑟𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 represents the irradiance value from the specific model for the ith data point and 

𝐼𝑟𝑟𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  conveys the measured irradiance value from the instrument deployed for the ith data 

point. The number of data points is depicted as N. The 𝐼𝑟𝑟′𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 represents the mean of the 

measured irradiance value and 𝐼𝑟𝑟′𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 represents its modelled mean counterpart. Another 

useful metric is the coefficient of determination (R2), as outlined in equation 9b. R2 is a measure 

of the variability of an irradiance model relative to actual measurements. Hence, it indicates how 

well a model capture the overall trend in the data. R2 values closer to 1 indicating a higher level of 

accuracy in the model’s predictions. 

R2 = (
∑ (𝐼𝑟𝑟𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 −  𝐼𝑟𝑟′𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 )(𝐼𝑟𝑟𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑟𝑟′𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 )

𝑖=𝑁
𝑖=1

∑ (𝐼𝑟𝑟𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 −  𝐼𝑟𝑟′
𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑 )

2(𝐼𝑟𝑟𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐼𝑟𝑟′
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 )

2𝑖=𝑁
𝑖=1

)

2

  
(9b) 

Bifacial Gain, or BG, is a metric frequently found in literature to characterize the performance of 

bifacial systems, but its usage is not uniform. At times, it is referred to as the ratio of irradiance 

collected on the front and rear of the panel [89][90]. Nonetheless, the energy yield version of BG 
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is employed in the industry [91][92], which quantifies the increase in energy yield for a bifacial 

module in comparison to a monofacial module under identical circumstances. To avoid 

confusion, the terms BGirr and BGEnergy will be used distinctly. These concepts are outlined in 

equations 10a and 10b, where 𝐸𝐵𝑖𝑓𝑖  represents the total energy produced by a bifacial system (in 

Watt-Hours), and 𝐸𝑚𝑜𝑛𝑜 corresponds to the energy output from a monofacial system (in Watt-

Hours). 

𝐵𝐺𝑖𝑟𝑟 =
𝐵𝑂𝐴

𝑃𝑂𝐴
 

(10a) 

𝐵𝐺𝐸𝑛𝑒𝑟𝑔𝑦 =
(𝐸𝐵𝑖𝑓𝑖 − 𝐸𝑚𝑜𝑛𝑜)

𝐸𝑚𝑜𝑛𝑜
  

(10b) 

Bifacial modules are classified using the bifaciality factor, ϕ𝑏𝑖𝑓𝑖, which conforms to the IEC 

60904-1-2 standard [93]. A spectral mismatch correction factor is added as per IEC 60904-7 [94]. 

The rear-to-front side power ratio is measured at STC conditions: 25 °C, 1000 W/m2, and AM1.5 

and is defined by equation 11. The module rear side is covered with a non-reflective sheet through 

a solar simulator, ensuring less than 3 W/m2 at any point on the non-illuminated side of the PV, 

and the front power (𝑃𝑚𝑎𝑥−𝑓𝑟𝑜𝑛𝑡)is measured. Similarly, the front side is covered with the same 

material to measure the rear side power (𝑃𝑚𝑎𝑥−𝑟𝑒𝑎𝑟).  

ϕ𝑏𝑖𝑓𝑖 =
𝑃𝑚𝑎𝑥−𝑟𝑒𝑎𝑟

𝑃𝑚𝑎𝑥−𝑓𝑟𝑜𝑛𝑡
 

(11) 
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Figure 7: Three distinct scenarios illustrate the methods for calculating the land equivalent ratio: 
Scenario I involves dedicating the entire area to crop cultivation, Scenario II 

allocates the land exclusively for PV energy generation, and Scenario III combines 
both agriculture and PV energy generation to explore their synergistic potential. 

 

𝐿𝐸𝑅 =
𝑋𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼𝐼

𝑋𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼
+

𝑌𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼𝐼

𝑌𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼
 

(12a) 

𝑋𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼𝐼 = 𝑑𝑃𝐴𝑅 ∙ 𝐴𝑟𝑒𝑎𝑠ℎ𝑎𝑑𝑒𝑑 + 𝑃𝐴𝑅 ∙ 𝐴𝑟𝑒𝑎𝑢𝑛𝑠ℎ𝑎𝑑𝑒𝑑 (12b) 

𝑋𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼 = 𝑃𝐴𝑅 ∙ 𝐴𝑟𝑒𝑎𝐴𝑙𝑙 (12c) 

𝑌𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼𝐼 = CW ∙ 𝑁 ∙ ∑ 𝑃𝑂𝐴𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼𝐼

𝑁=𝑅𝑜𝑤𝑠

𝑁

 
(12d) 

𝑌𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼 = CW ∙ 𝑁 ∙ ∑ 𝑃𝑂𝐴𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐼𝐼

𝑁=𝑅𝑜𝑤𝑠

𝑁

 
(12e) 

Land costs are increasingly high and projected to rise further, prompting some to argue that 

arable land should primarily serve to feed the growing population amidst escalating hunger. 

AgriPV presents a solution by enabling the dual use of farmland for both crop growth and energy 
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generation, addressing the food-energy-water nexus. A critical metric in this approach is the Land 

Equivalent Ratio (LER) [95], which measures the combined yield of crops and energy as opposed 

to their separate cultivation across three scenarios as per Figure 7: Scenario I utilizes the land 

solely for agriculture, Scenario II dedicates it entirely to energy generation, and Scenario III 

integrates both uses. Equation 12a defines the LER, calculating the normalized value of 

combining land productivity for agriculture and PV energy in terms of production. Equation 12b 

focuses on Scenario III, quantifying the crop production by assessing the irradiance available for 

PAR, alongside the irradiance for PV deployment on the same agricultural land, as detailed in 

equation 12d Conversely, equation 12c corresponds to Scenario II, which reserves the land 

exclusively for agriculture, while equation 12e applies to Scenario I, where the land is used only 

for PV energy generation. In the equations below, dPAR connotes the diffuse component of PAR, 

𝐴𝑟𝑒𝑎𝑠ℎ𝑎𝑑𝑒𝑑 represents the shaded area caused by the PV panels, 𝐴𝑟𝑒𝑎𝑢𝑛𝑠ℎ𝑎𝑑𝑒𝑑 is the area that is 

unshaded and 𝐴𝑟𝑒𝑎𝐴𝑙𝑙 is the total area of the land. CW is the collector width of the panels in a row 

in meters. 

2.2 Exploring Bifacial, Tracking and AgriVoltaic Systems 

2.2.1 Bifacial Technology 

With the growing popularity of solar energy, choosing the right solar panel is crucial for 

maximising energy production and return on investment. Traditionally, monofacial panels have 

been the standard choice, designed to capture sunlight exclusively from the front side of the 

panel. In contrast, bifacial panels, as the name implies, are capable of absorbing sunlight from 

both the front and rear sides [96]. As shown in Figure 8, bifacial modules achieve this by replacing 

the opaque backsheet found in monofacial panels with a glass layer. This modification allows 

sunlight, reflected off the ground or nearby surfaces, to penetrate and be absorbed by the rear 

side.  
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Figure 8: Monofacial and bifacial modules consist of multiple layers, with a key distinction being the 
replacement of the opaque backsheet in monofacial modules with a glass layer in bifacial 

modules [91]. 

The addition of this rear-side irradiance collection sets bifacial modules apart from their 

monofacial counterparts. The glass layer or in some cases, a transparent backsheet, takes the 

place of the conventional backsheet [85], reducing infrared light absorption. This reduction 

lowers operating temperatures, ultimately extending the panels’ lifespan, as highlighted by 

Hubner et al. [100]. Although bifacial modules offer advantages such as increased durability and 

enhanced performance under diffuse light conditions, their overall efficiency depends on several 

environmental and system-specific factors. Consequently, a transition to a bifacial modules 

architecture can improve energy yield by up to 30% [98]. Calculations by Deline et al. have shown 

that such architecture options can be achieved at a reasonable increase in production costs 

while guaranteeing an increase in power production [99]. 

The visual distinction between monofacial and bifacial modules is just one aspect of a broader 

set of functional differences. Bifacial modules absorb irradiance from the rear side as well as the 

front side due to the use of bifacial-compatible solar cell architecture. This is due to the fact that 

various cell architectures are evolving away from completely covering the back end of a cell. 

Instead, metallization is applied only partly on the back side - thereby improving photon 

absorption [99]. This allows for bifacial technology to be integrated due to their metallization.   

Aside from the different optical designs between monofacial and bifacial modules, they also 

exhibit distinct lifetime behaviour. Bifacial modules are constructed with glass on both sides, 

which enhances the mechanical strength and operational lifetime when compared to the more 

conventional glass-back sheet configuration of monofacial modules. An essential aspect 

affecting bifacial system performance is the elevation height, h of the module [101]. To optimize 

sunlight collection at the rear, h should be adequate. This is defined as the height of the distance 

between the lowest part of the module and the surface. There is a positive correlation between h 

and performance, indicating that the higher the bifacial module is positioned, the more likely the 

rear side will be exposed to reflected sunlight [102]. In addition, for energy yield considerations, 
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a uniform distribution of reflected irradiance is preferred on the rear side of a bifacial module [48]. 

Shadows cast by the module's own rear side cause irradiance variations resulting in mismatch 

loss, which impacts the system's energy yield. 

 

 

 

 

Figure 9: The distribution of rear side irradiance in a single module changes as per different h  
(a) 0.08m (b) 0.58m (c) 1.08m. This figure is adapted from [103]. 

Kreinin et al. conducted an experiment to investigate the irradiance distribution of a single south-

facing bifacial module set at 𝛽 = 30° at 𝜑 = 32°, exploring various h [103], as depicted in Figure 9. 

Berrian et al. [104] used a simulation to study the effects of different h, employing the same 𝛽, but 

situating the system at 𝜑 = 42°, ultimately reaching a similar conclusion. Although there is general 

agreement in the literature that a saturation point regarding rear uniformity will eventually be 

achieved, there remains a noticeable research gap concerning the extent of rear side 

nonuniformity in diffuse regions, and whether differing saturation points would be reached in said 

conditions. 

In the context of bifacial solar panels, a crucial factor that quantifies the amount of light reflected 

is albedo (ρ) [105]. Regarded as a dimensionless metric, ρ symbolizes the portion of light 

reflected off a surface. This value can range between 0 and 1, where 0 signifies a completely 

black, absorptive substance, and 1 indicates an ideal reflector.  Through the use of a pair of 

pyranometers placed back-to-back, equation 13 is utilized to calculate ρ from measured GHI and 

Reflected Horizontal Irradiance (RHI). Various parameters influence the overall value of ρ, such 

as surface type, moisture levels, roughness, and solar angular light distributions [105][106]. As 

stated by Gostein et al., most PV software computes ρ as a single figure, but some applications 

calculate monthly ρ values that may fluctuate due to ground dampness and other environmental 

factors [47].  

ρ =
𝑅𝐻𝐼

𝐺𝐻𝐼
 

(13) 

As notably seen in Figure 10, ρ of materials depends on the wavelength of incoming sunlight, often 

referred to as spectral albedo in literature [107]. Previous research has investigated the spectral 

properties of plants due to PAR, which denotes the light spectrum portion used by plants for 

photosynthesis [108] ranging from 400 nm to 700 nm. In temperate regions, a significant amount 
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of land is designated for agriculture, and such vegetation areas can accommodate bifacial panels 

to tackle the food-energy-water nexus [109]. However, calculating ρ under one-sun calibrated 

pyranometers, which yield a single aggregated value related to shortwave radiation (typically 

0.20), does not provide a comprehensive understanding, and introduces uncertainty. As most 

bifacial solar panels employ crystalline silicon, operating between 400 and 1100 nm [110], BOA 

estimation are said not to be accurate if they are measured using pyranometers.  

 

 

 

 

 

 

 

Figure 10: A study of the spectral albedo of a few commonly used surfaces [111]. The dashed horizontal 
lines refer to the broadband albedo value using a back-to-back pyranometer. 

Moreover, simulation software that uses specific wavelength ranges might produce inaccurate 

results, especially if there are assumptions made about the ground's Lambertian isotropic 

scattering. Investigations show that neglecting spectral and angular details can lead to significant 

deviations in PV performance [112]. Consequently, research has concluded that spectral albedo 

effects can significantly impact BOA estimations, and these effects must be considered in 

simulations [46][113].  

2.2.2 Tracking System Varieties and Algorithmic Approaches 

While more cost-effective, the limitations of Fixed-Tilt (FT) systems (Figure 11a) become apparent 

in light of the cosine effect. This effect means that the sun will not always be at a right angle to the 

panel, resulting in power losses as the PV module aligns with the SZA-axis for only a brief period. 

To mitigate such issues to an extent, tracking can be employed, with Horizontal Single Axis 

Tracking (HSAT, see Figure 11b) being the primary tracking method. As the name depicts, this 

technology permits one degree of motion, contingent upon one parameter. If it is configured to 

face south, 𝜓𝑠𝑦𝑠 is tracked (known as HSAT-EW). Conversely, if 𝜓𝑠𝑦𝑠  = 90°, 𝛼 is tracked (termed 
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HSAT-NS). HSATs are believed to be on the rise, as IHS Markit anticipates increased tracker 

shipments due to the expected adoption of bifacial technology in the coming years [114]. 

Regarding bifacial HSAT, research has shown that irradiance gains ranges between 6.5-7.9% due 

to uneven soil moisture and grass texture [115][116] at 𝜑 = 36°. The 1.7 MW La Silla power plant 

at 𝜑 = 29° compared monofacial and bifacial HSATs over a nine-month period, determining that 

𝐵𝐺𝐸𝑛𝑒𝑟𝑔𝑦 varies between 10.4% and 12.4% at an unspecified ρ (which likely ranges from 0.2 to 

0.3 due to desert conditions) [117]. Patel's simulations [118] found that bifacial HSAT orientation 

matters depending on 𝜑. HSAT-NS gain an additional 𝐵𝐺𝐸𝑛𝑒𝑟𝑔𝑦 of at least 5% compared to HSAT-

EW at 𝜑 > 50º, whereas at 𝜑 < 50º, HSAT-EW outperforms HSAT-NS by a minimum of 10%. This is 

attributed to the more pronounced inclined sun path at higher 𝜑 and the greater variation in 𝛼 

throughout the year. Moreover, it was concluded that HSAT-NS is more effective in winter, while 

HSAT-EW is superior in summer [118]. However, it is important to note that these findings were 

based on simulated weather data; they may not accurately represent real-world conditions in 

temperate climates due to insufficient validation, which underlines the significance of validating 

models for more reliable conclusions. 

In comparison to FT systems and HSATs, the use of Dual Axis Trackers (DATs) effectively 

eradicates the cosine effect, as the panels continuously align with the sun. DATs can move in 

response to both 𝜓𝑠𝑦𝑠 and 𝛽 as seen in Figure 11c. Although they offer an increase in energy 

production, DATs are generally viewed as expensive options due to their upfront capital costs, 

with Rodriguez et al. estimating a 31% additional energy output, which is only 5% more than an 

HSAT at a price that investors find difficult to justify [7]. This is especially true when factoring in 

the economic aspects of DATs, such as maintenance expenses throughout their lifespans. 

However, bifacial modules might be the catalyst that changes these hesitant opinions, as bifacial 

DATs could boost energy production by 40% in comparison to monofacial FT systems and 

potentially more if BOA-specified algorithms are employed. Kelly et al. also suggested that with 

increasing ρ levels and sun path angles, bifacial DATs may become a more desirable alternative 

to FT systems [119]. 

Burnham [120] analyzed the performance of bifacial DATs in a high ρ environment at φ = 44°, over 

a two-year timeframe. In comparison to its monofacial FT counterparts, there was an uplift of 41% 

energy increase. This heightened energy yield could be due to the study location receiving an 

average of 200 cm of snow yearly, dispersed over six months, as the high ρ of snow would 

generate additional energy on the panels' back side. Furthermore, the consistently lower ambient 

temperatures year-round would improve operating efficiency. However, Gueymard [121] argue 
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that up to 90% of the sun's potential energy comes from DNI , with the remaining 10% originating 

from DHI scattered by atmospheric aerosols. In overcast conditions, much of the radiation is 

derived from DHI; therefore, tracking the sun in temperate regions is less beneficial.  

 

 

 

 

 

 

 

Figure 11: There types of tracking solutions: a) FT, b) HSAT-EW, and c) DAT. This figure was 

adapted from [102] 

Tracking control schemes are of considerable importance in terms of the potential energy they 

can provide, depending on both the tracker's overall movement strategy and its response to 

shading on its modules. All tracking algorithms can be classified into two primary categories: 

closed-loop and open-loop. The open-loop control, synonymous with tracking-the-sun (TS) [122], 

employs a mathematical algorithm that automatically adjusts the tracker's position to follow the 

sun based on the site's geolocation, maximizing DNI collection. Although the module's position 

can be determined regardless of location, it does not account for weather conditions. In contrast, 

closed-loop algorithms consider atmospheric conditions using irradiance sensors that 

determine the module's optimum orientation, often referred to as "tracking-the-best-orientation" 

(TBO). Modules are oriented toward the area receiving the most solar insolation, considering 

reflective and diffuse components. Mousazadeh [123] suggested that in overcast conditions, 

little DNI insolation reaches the modules, in line with Gueymard statements [121]. Thus, modules 

should have been positioned horizontally on trackers to collect more energy compared to those 

using celestial tracking. However, the optimal tracking movements under stated conditions are 

yet to be developed. As a result, it is essential to further explore the impact of diffuse components 

on tracking and develop equations that maximize irradiance capture. Researchers are advised to 

integrate short-term irradiance control schemes, thereby highlighting the crucial requirement for 

precise solar irradiance estimations. This need encompasses the utilization of DHI, DNI, or GHI 

estimates, as well as more complex calculations such as POA and BOA estimations. 
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Trackers are deemed more effective when they integrate backtracking algorithms into their 

control schemes [90]. This is especially relevant when the 𝛼 is low, potentially causing one panel 

to shade the one behind it, resulting in hot spot generation. This is particularly important in 

temperate climates due to the inclined solar path. Backtracking enables trackers to adjust their 

position to eliminate inter-row shading, considering the sun's position relative to the site 

topography and panel dimensions, albeit at the expense of cosine losses. Lorenzo detailed the 

backtracking geometry and how it varies for monofacial tracking technology [124]. Since current 

algorithms do not include ρ and, consequently, BOA, backtracking algorithms may require 

modifications in the context of bifacial technologies. This is especially at high 𝜑, where the inter-

row spacing will be extensive due to the angled sun path and the requirement to raise the system 

higher to optimize BOA uniformity. 

Table 2 presents a comprehensive synopsis of the literature review on bifacial tracking, 

emphasizing the impact of various factors on irradiance or energy performance. There is a 

growing interest in studying bifacial tracking systems [102], [117], [125-131], with energy gains up 

to 41% in climates with lower latitudinal angles than the UK [120]. This highlights the need for 

research on potential gains in temperate environments. 
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Table 2: An examination of the literature pertaining to bifacial gains demonstrated by various tracking systems, including their critical parameters and methods of data collection. 

Unless otherwise indicated, the gains reported are of the monofacial counterpart.  Bifacial Gain outcomes from simulations are denoted by ‘s,’ while ‘m’ indicates 

outcomes from real-world system measurements. 
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2.2.3 Integration of Agriculture and Photovoltaics through AgriVoltaics  

Economic growth coupled with increasing population sizes significantly contributes to the 

escalating demand for energy, leading to an energy crisis in numerous nations [10]. This situation 

has sparked important discussions regarding energy use and agricultural practices worldwide 

[132]. The concept of the food-energy-water nexus underscores the interconnectedness of water, 

energy, and food security, emphasizing the urgent need for beneficial strategies that align 

agricultural and energy policies [133]. Contrary to the widespread belief that energy and 

agricultural production are incompatible, meaning one cannot be pursued without sacrificing the 

other, the integration of energy transition into societal norms is becoming a pivotal aspect of 

developing energy generation systems, such as PV farms [134]. Efforts are being directed towards 

addressing several of the United Nations Sustainable Development Goals (UN SDGs), particularly 

focusing on UN SDG 2, which aims to achieve zero hunger through agricultural improvements, 

and UN SDG 7, which promotes affordable and clean energy, notably through advancements in 

photovoltaic technology. AgriPV presents a notable solution that bridges the perceived divide 

between energy production and farming [135].  It integrates PV energy generation with agricultural 

activities, allowing for both crop cultivation and energy production to occur on the same piece of 

land simultaneously. This innovative approach enables the expansion of PV energy without 

encroaching on valuable agricultural space, and it also offers the added benefit of protecting 

crops with the installation of PV modules [136][137]. This coexistence potentially enhances crop 

yields through the shared use of sunlight, depending on climatic conditions and crop varieties [5]. 

In certain instances, this arrangement proves mutually advantageous, as the evaporation from 

crops can lower the operating temperatures of PV modules [138][139]. 

The agricultural sector faces several challenges beyond land scarcity and high costs. These 

include water shortages, constrained resources, and increasing demands for quality food. 

Additionally, climate change is exacerbating these issues with rising temperatures, altered 

precipitation patterns, and more frequent extreme weather events like droughts and floods, all of 

which adversely affect farm productivity. To cope, farmers are adopting strategies such as crop 

diversification, improved soil management, enhanced water efficiency, and selecting crop and 

livestock varieties better suited to harsh conditions. Limited access to arable land, water, and 

cost-effective energy is driving the agricultural sector toward innovative technologies such as 

AgriPV. These systems offer a viable solution by generating new avenues for solar energy 

development across diverse climates and simultaneously resolving the conflict between 

agricultural and photovoltaic demands on valuable land. 
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The role of PV systems situated on agricultural lands in advancing renewable energy objectives is 

becoming increasingly recognized in various regions. For example, France can deploy up to 5 GW 

of solar power by utilizing just 0.1% of its agricultural lands, which constitute a significant portion 

of the country's area. Similarly, the possibility of harnessing 1% of the European Union's 

agricultural land could lead to the generation of 410 GW through PV, although only 29.3 GW had 

been achieved in 2021. European nations have established guidelines for integrating agriculture 

and PV, with Italy allocating substantial funds for the development of 2 GW in AgriPV projects [84]. 

Furthermore, calls for AgriPV project proposals have been made in various countries, with France 

targeting approximately 300 MW, Germany 150 MW, and the Netherlands 45 MW. Additionally, 

progress has been made in tracking systems, which are increasingly prevalent in the market [82] 

and are being tailored for AgriPV initiatives to maximize the performance of PV energy for farming 

needs. Through leveraging the superposition of energy and food production for mutual benefit, 

studies have demonstrated the successful cultivation of various crops under AgriPV 

configurations. This helps mitigate risks of food scarcity and market volatility, particularly for rain-

fed agriculture. Research by Edouard et al. on integrating tracking systems to optimize crop 

production within AgriPV setups has shown LER at 1.51 in temperate climates at φ = 48.3º, 

highlighting AgriPV’s efficacy [140]. Furthermore, in temperate climates, optimal placement of PV 

panels requires significant inter-row spacing to minimize shading. This strategic positioning of 

crops within these spaces exploits the extensive areas surrounding and underneath the panels, 

further enhancing crop yield. This was supported by Campana et al., who reported an LER of 1.39 

in similar conditions at φ = 59.55º, reinforcing the viability of AgriPV systems [141]. 

While AgriPV has garnered increasing interest, challenges persist due to the lack of 

comprehensive parameters and models. Despite its potential, the AgriPV sector remains niche, 

constrained by scarce data and installations that could broaden its impact. Moreover, the 

growing interest in PV systems has led to land competition, prompting investigations into land 

dual-use as a solution, especially in regions where land is at a premium [84]. Precise calculation 

of available irradiance for crops is essential to determine the viability of AgriPV, utilizing metrics 

such as LER [142]. Consequently, this necessitates modelling, which hinges on accurate 

assessments or predictions of irradiance components relevant to photovoltaics and agriculture 

[143]. Moreover, there is a lack of feasibility software for AgriPV mainly due to the challenges of 

estimating PAR irradiance. 

Addressing the challenge of accurately modelling AgriPV systems involves understanding the 

critical role of PAR in plant growth. PAR represents a fraction of the spectral range (400 – 700 nm) 

[144] captured by common radiometer measurements of GHI. The integration of PV panels into 
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agricultural lands necessitates ensuring that crop yields do not fall below acceptable thresholds, 

thus underlining accurate PAR estimations [145]. Photosynthesis rates hinge on the energy 

accessible to plants and are expressed either in terms of flux density (i.e., µml photons/m2/s) as 

it is a quantum process or in terms of flux density (i.e., irradiance W/m2) [12]. While plants 

predominantly absorb radiation within the 360 and 760nm wavelength, their efficiency varies 

across this spectrum [146]. The way that PAR is measured is deploying photodetectors that 

assumes that the critical absorption range for stimulating photosynthesis lies between 400 to 700 

nm, treating all wavelengths within this range as equally effective. Compared to its counterpart 

GHI, information on PAR irradiance is sparse [147]. There exists a critical demand for PAR data, 

essential for both agricultural applications and propelling AgriPV technologies forward, as it 

serves as a vital parameter in various modelling tools. This is particularly so in temperate regions 

like the UK, where integrating AgriPV offers a solution to deploying PV without sacrificing arable 

land, would aid in achieving the ambitious 70GW target by 2035. Moreover, quantifying PAR data 

is essential for estimating its diffuse component (dPAR), paralleling the roles of GHI and DHI, 

thereby highlighting the need for precise PAR irradiance predictions through mathematical 

modelling [33]. 

2.3 Mathematical Solar Irradiance Modelling 

2.3.1 Comprehensive Analysis of Decomposition Models 

GHI is the most frequently recorded solar radiation variable, obtained through ground-based 

meteorological stations or satellite imagery. In contrast, DHI is less commonly measured and not 

as easily accessible. Acquiring accurate DHI data is crucial for its use in advanced mathematical 

models within feasibility software, informing decisions about optimal 𝛽 and tracking algorithms 

for PV deployment. Decomposition models, which calculate DHI from GHI using various 

parameters in conjunction with the Kt, offer an alternative to direct DHI measurements, 

addressing a critical need [148]. The closure equation (equation 4) in conjunction with SZA can 

then be deployed to estimate DNI [166]. 

The scientific community has responded to the demand for DHI without high start-up costs, 

ongoing calibration, or maintenance [148-152] by developing mathematical equations. Liu and 

Jordan [153] laid the groundwork by connecting Kt with the diffuse fraction, Kd (which is the ratio 

of DHI to GHI). Subsequent researchers expanded upon their work, incorporating geo-specific 

parameters and time resolution from daily to hourly [154]. Orgill and Hollands' model [155] used 

irradiance data from a single meteorological site (φ = 43°), generating DHI predictions from Kt, 
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resulting in three-order polynomials. The Erbs model [156], built upon earlier work, utilised four 

years of measured data across 31° ≤ φ ≤ 42° to establish its constants and parametric functions. 

Reindl et al. proposed distinct piecewise index intervals based on the assessment of measured 

climatic variables for 28° ≤ φ ≤ 59°, varying in input data and complexity [157]. Additionally, Ridley 

et al. [158] developed a five-parameter predictive model, as opposed to piecewise functions, for 

7 φ values in the range of 12° to 51°. Decomposition models are developed based on data 

collected from specific locations, thus, they must be evaluated thoroughly before they can be 

applied elsewhere. 

Previous studies have centered on determining the most suitable decomposition model by 

comparing data from diverse weather stations across the globe using several statistical 

measures [159]. An investigation by Yao et al. [160] scrutinized 108 decomposition models, 

based on hourly and daily data. It was discovered that intricate polynomial models, dependent 

on sunlight hours, could accurately depict locations with climates and geographical positions 

similar to Shanghai. One might speculate that models of greater complexity, encompassing more 

parameters, would deliver superior accuracy. However, Behar et al. discovered a contrary 

conclusion in a desert climate at φ = 28° [161]. After reviewing 17 models, it was found that 

simpler models outperformed the more complex ones. Further confirmation of this came from 

work by Zhou et al. who modelled hourly diffuse fraction based on apparent solar time and sky 

conditions clustering [162]. This conclusion aligns with the general agreement reached by 

Gueymard [12] and Stein [163], with the latter assessing 30 sites in North America, with 34° ≤ φ ≤ 

48°. A recent study by Yin et al. focused on developing models for DHI estimations by categorizing 

sky conditions at five locations in China [164]. The discrepancy in findings and the lack of 

consensus between Yao, Behar, and Gueymard can be attributed to the Kd of the sky at each 

location. In a dry climate, Kd is low, implying that the diffuse component is minimal. Hence, most 

of the horizontal irradiance sum would originate from DNI. This observation helps to rationalize 

Behar's argument that simpler models excel in such environments. On the other hand, Shanghai 

is recognized for the high presence of diffuse irradiance, necessitating the use of more complex 

models.  

Abreu et al. [34] examined 121 distinct models across 48 radiometric stations worldwide, with 25 

stations classified as temperate climates. The conclusion drawn was that 13 out of the 121 

models were suitable. Gueymard and Ruiz [21] reviewed 140 decomposition models across 54 

stations, on a minute-by-minute basis, dividing them based on the count of predictors. Half of 

these stations were situated in locations with a temperate climate. It was found that complex 

models with additional inputs outperformed simpler ones. It was highlighted that the Engerer2a 

model [159], with its extensive set of predictors, is particularly suitable for both global and 
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temperate climates. Subsequently, the Engerer2a model, originally validated using minute-by-

minute irradiance data from Australia, inspired Bright et al. to develop seven newer models [165]. 

These models, named Engerer2b to Engerer2h in this thesis, were each tailored for specific 

temporal resolutions (ranging from 1 minute to daily irradiance) using a global dataset, with 

adjustments made to their coefficients. Notably, these new models incorporated the TJ model 

[234] for clear-sky global horizontal irradiance (GHIClear) estimates. 

Following this, several models emerged. The Starke1 and Starke2 models [167] were introduced, 

adjusting coefficients for Australian and Brazilian data respectively, employing the Simplified 

Solis GHIClear model in their piecewise equations [168]. Concurrently, Paulescu presented a 

model combining regression with indicator functions [169]. Starke et al. proposed the Starke3 

model, examining one-minute data from global stations [170]. Simultaneously, Every et al. 

introduced the Every1 model, a quasi-global model adjusting the Boland-Ridley-Lauret (BRL) 

model [171], alongside Every2, which modified BRL coefficients for different Köppen-Geiger 

climate zones [172]. 

Yang [173] introduced the Yang4 model, which was developed using minute-by-minute data 

collected from various stations and integrated with the McClear GHIClear model [174]. The primary 

aim of Yang4 was to reduce reliance on satellite-derived data for input, a common practice across 

differing satellite-derived irradiance databases as outlined in [175]. This model included 

enhancements such as the incorporation of albedo effects, cloud coverage data, and an 

advanced physical representation of radiative transfer processes. Notably, when compared 

against ten different machine learning (ML) models, the Yang4 model demonstrated superior 

accuracy [176]. Building on this, the Yang5 model was launched [177], which incorporated new 

coefficients that consider cloud cover frequency, aerosol optical depth, and surface albedo 

climatology derived from satellite imagery. Like its predecessor, Yang5 utilized the same GHIClear 

model and exhibited improved performance in DHI estimation across more than 70% of the 126 

stations tested. 

Palmer et al. [178] assessed three decomposition models at three UK locations, using two 

stations previously utilized by [12], as well as one in Loughborough (𝜑 = 52.76°). Their motivation 

stemmed from the lack of consensus regarding model complexity found in the literature. Through 

their evaluation of the Erbs [156], BRL [171], and De Miguel [179] models against hourly irradiance 

data, there is a tendency to underestimate DHI, indicating potential for model improvement. 

Additionally, Munoz et al. [180] analyzed historical GHI and DHI data from 1982 to 1999 under 

stringent data quality control to evaluate six different models across three UK  locations, 
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employing error histograms. It was found that the Reindl [157] model performed best in an hourly-

based context, although the other five models were in close competition.  

Table 3: Various Optical Model pairs deployed in different feasibility software [181][182]. 

Decomposition 
Model 

Transposition Model Abbreviation Software 

Erbs [156] 

Perez [185] Erbs-Perez 
INSEL [193] 

PVSyst [192] 

Liu-Jordan [186] Erbs-LJ 

PVToolbox [195] 

INSEL [193] 

RETScreen [194] 

Skartveit-Olseth [187] Erbs-SO 

INSEL [193] 
Temps-Coulson [188] Erbs-TC 

Willmot [189] Erbs-Willmot 

Bugler [190] Erbs-Bugler 

Hay [191] Erbs-Hay 
PVSyst [192] 

INSEL [193] 

Reindl [157] 

Perez [185] Reindl-Perez 
PVSOL [201] 

TRNSYS [196] 

Skartveit-Olseth [187] Reindl-SO PVSOL [201] 

Hay [191] Reindl-Hay TRNSYS [196] 

DIRINT [183] Perez [185] DIRINT-Perez 
SolarAnyWhere [197] 

SolarGIS [198] 

DISC [184] 

Hay [191] DISC-Hay 

Meteonorm [199] Perez [185] DISC-Perez 

Skartveit-Olseth [187] DISC-SO 

BRL [171] Liu-Jordan [186] BRL-LJ Summa [200] 

 

It is essential to develop a comprehensive and transparent benchmarking framework to evaluate 
the wide variety of decomposition models available. This need arises from the scarcity of solar 
irradiance data in temperate climates, especially in regions such as the UK, where further 
detailed research is urgently needed. Currently, only three modern weather stations in the UK 
provide open access to both GHI and DHI data. Identifying the most effective decomposition 
model for these specific conditions and determining if particular decomposition models are 
ideally suited for certain datasets represent significant opportunities for future research. The 
diversity of models underscores the importance of establishing a standardized framework to 
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support accurate DHI estimation. It is critical to adopt a framework that can be implemented in 
other regions. Such a shift is consistent with prevailing solar energy guidelines, underscoring the 
significance of considering global implications in any model developed for widespread 
application [40][202].  Furthermore, a thorough evaluation of decomposition models is crucial 
because various feasibility software applications, as detailed in Table 3, utilize different 
decomposition methods to estimate DHI (or DNI) prior to transposing these estimates to 
calculate POA. 

2.3.2 The Importance of Transposition Modelling 

The economic viability of PV systems, be they categorized as FT or tracking, largely relies on 

accurate POA estimations. This evaluation is typically executed using a View-Factor (VF) method, 

implemented through feasibility software. Due to the unpredictability of PV systems’ 

performance, precise modelling is crucial, irrespective of geographical location. The primary 

approaches to modelling irradiance involve Ray-Tracing (RT) and VF methods [203]. RT is a 

rendering technique that traces light rays from their origin, calculating the impact of light to render 

objects. RT applies radiative transfer theory in reverse, emitting rays at the sampling point and 

directing them from the module to the sky. This approach entails creating a ray at the sampling 

point, which passes through the view plane to the object (e.g., the hemisphere or other introduced 

geometries). By accounting for complex geometries, such as racking or obstructions, and 

analyzing shading, these modelling techniques can evaluate edge effects in bifacial modules. 

Due to its increased complexity and longer run times, reverse RT demands the use of High-

Performance Computing (HPC) [204]. 

VF models are grounded in the thermal radiation heat transfer theorem and employ an etendue 

geometric quantity to gauge the flux-gathering ability of an optical system [205]. This quantity is 

essentially a mathematical product of the solid angle projected from the source as seen from the 

collector, the source, and the collector’s area. The use of VF models has gained traction across 

a wide range of software applications due to their unique benefits. These advantages include 

faster computation times, lower computational resource requirements, seamless integration 

with other industry software and tools, and adherence to the standard used for PR calculations 

[192].  

Prior research has compared between RT and VF methods. For example, Pelaez et al. [89] 

compared three models (two VF and one RT) with actual measurements under various inter-row 

spacing, 𝛽, and ρ, finding that all models demonstrated good agreement with 𝐵𝐺𝐸𝑛𝑒𝑟𝑔𝑦 with a 2% 

error. In a similar study, Sanchez et al. [101] compared three models across two locations (𝜑 = 

51.77° with a south-facing 𝛽 =  35°  and 𝜑 = 9.85° with 𝛽 =  15°), both with a system setup 
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featuring h = 1m. The comparison with measured data revealed that the VF method produced 

results closest to the actual measurements when considering 𝛽 and 𝜓𝑠𝑦𝑠. Further research [206] 

compared a single VF model and an RT model under various conditions, including 𝛽, ρ, and h, at 

𝜑 = 41.64°. The study concluded that the VF model outperformed the RT model in all cases, 

except for inter-row spacing, where the difference was equal to 1.77%. 

A key aspect of VF models is their reliance on transposition models, which are often used 

interchangeably with sky diffuse models. These models separate POA and BOA estimations. 

However, it is important to note that BOA estimation necessitates POA verification for the site of 

interest [7]. Equation 14a calculates POA using components of Beam Tilted Irradiance (𝐵𝑡), 

Reflective Tilted Irradiance (𝑅𝑡), and Diffuse Tilt Irradiance (𝐷𝑡) [207]: 

POA =  𝐵𝑡 + 𝑅𝑡 + 𝐷𝑡 (14a) 

𝐵𝑡, through equation 14b, employs DNI and  the angle of incidence (AOI) as seen Figure 12: 

𝐵𝑡 =  𝐷𝑁𝐼 ∙ cos 𝐴𝑂𝐼 (14b) 

The approach to calculate 𝑅𝑡  in equation 14c assumes isotropic conditions, meaning that 

regardless of AOI, all rays exhibit the same intensity. The simplified ground re-emission of rays is 

treated as a Lambertian surface, where the amount of ground re-emission relies on 𝜌 [208]. In this 

context, an infinite array is assumed, with the ground visible to the array from the intersecting 

slope extending to an infinite horizon. 

𝑅𝑡 =  𝐺𝐻𝐼 ∙ 𝜌 ∙
(1 − 𝑐𝑜𝑠𝛽)

2
 

(14c) 

𝐷𝑡 =  DHI ∙ 𝑅𝑑 (14d) 

Equation 14d shows that 𝐷𝑡 consists of DHI and 𝑅𝑑, which is the transposition factor. 𝑅𝑑 heavily 

relies on the type of transposition model employed, be it isotropic or anisotropic. For a tilted 

inclined surface, the intensity of the 𝐷𝑡 depends on the fraction of the sky dome it observes, as 

isotropic models assume uniform diffuse sky radiation across the sky dome. In contrast, an 

anisotropic sky model makes different assumptions. It considers diffuse sky radiation to be 

anisotropic near the circumsolar region (i.e., the area surrounding the solar disk) and introduces 

various horizon brightening factors, while maintaining isotropic conditions for the rest of the sky 

dome. 

Numerous transposition models have been developed and presented for POA applications [185-

1910, [209-217]. As indicated in the literature, these models can predict solar irradiation with 
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adequate accuracy [218-220]. However, it remains challenging to pinpoint a reliable 

transposition model that can serve as a standard reference, especially on a minute-by-minute 

basis. Generally, transposition models are site-dependent, given that they are based on various 

assumptions about sky distribution and have empirical origins. The selection of the best-

performing model typically involves comparing it to measured POA data at a specified FT setups, 

with minimal focus on tracking systems [79].  

 

 

 

 

 

 

Figure 12: For AOI determination, the sun coordinates are correlated with the FT orientation. This figure 

was adapted from [20]. 

Limited research has been conducted on transposition validation for differing installations. 

Nonetheless, a noticeable inconsistency exists in the literature. Raptis et al. [221] analyzed four 

distinct transposition models for a south-facing 𝛽 =  38°,and 𝜑 = 43.67°, concluding that the 

Perez model [185] was optimal. Mubarak et al. [222] compared five models at 𝛽 =10° to 70° in 10° 

increments and at 𝜑 = 52.38°. They discovered that the Liu-Jordan model [186] best matched 

measured data up to 30°, after which the Hay [191] model performed best. Yang [223] evaluated 

26 models against measured data that consisted of south-facing setup with 𝛽 =45° at 𝜑 = 

53.14° and determined that the Reindl [221] model was the top performer.  

Furthermore, Wlodarczyk-Nowak [224] conducted a study on 14 models at two  

𝛽, (35° and 50°), and at a similar 𝜑, finding that the Temp-Coulson [188] model worked best for 

the former and Bugler [190] for the latter. It is evident that no consensus has been reached for FT 

installations. When tracking is incorporated, whether through HSAT or DAT, various 𝜓𝑠𝑦𝑠 and 𝛽 

combinations are introduced, necessitating further research to identify the ideal transposition 

model or a combination of models that most accurately approximate measured data.  

The computation of BOA, it shares similarities with its front-side counterpart (POA), as 

demonstrated in equation 15. Both the reflected beam and diffuse components, 𝐵𝑡𝑟  and 𝐷𝑡𝑟, 
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follow the same methodology outlined in equations 14b and 14d, but consider a 180-degree 

adjustment for 𝛽 [92][225]; as illustrated in Figure 13. Nonetheless, the ground-reflected 

component, 𝑅𝑡𝑟,  can no longer rely on the same initial assumptions due to influential factors 

such as shading, h, 𝜓𝑠𝑦𝑠, ρ, and notably, the spectral effect and non-uniformity [208][225]. There 

are multiple methods for calculating this component, varying in complexity, but their applicability 

is contingent on specific case circumstances [208][226][227]. 

BOA =  𝐵𝑡𝑟 + 𝑅𝑡𝑟 + 𝐷𝑡𝑟 (15) 

 

 

 

 

 

Figure 13: Differences between POA and BOA irradiances due to tilted components. 

Obtaining POA (and consequently BOA) estimates relies on measured GHI, DHI, and DNI data, 

but it is uncommon for all three components to be measured. Consequently, decomposition 

must occur to obtain DHI, which can then be input into transposition models. No single 

combination of decomposition and transposition is universally recognized as a standard for 

converting GHI to POA; a variety of combinations are utilized. Therefore, during the incorporation 

of both decomposition and transposition models, as carried out in feasibility software, errors 

tend to escalate. This is attributable to a cascading effect where an underestimated DHI 

stemming from decomposition models, could result in an overestimated DNI, and subsequently, 

POA when these irradiance components are transposed. Conversely, an overestimated DHI 

would yield the opposite behaviour. This inconsistency results in differing POA (and thus BOA) 

predictions, even when the same GHI input is provided.  

There are limited studies evaluating decomposition-transposition model pairs. For example, Lave 

et al. examined two model pairs across 9 locations in the US for FT systems (predominantly with 

a south-facing β = 25º), concluding that regardless of the decomposition model used,  the choice 

of transposition model resulted in differing outcomes. The Hay model showed less error 

compared to its Perez counterpart [79]. In their research, Sun et al. implemented the Orgill and 

Hollands decomposition model [115], coupled with the Perez transposition model. Their 

validation exercises focused solely on FT systems set at 𝛽 = 15° and 30° at 𝜑 = 35°, revealing a 
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variation in modelled irradiance BG of 6.40% compared to measurements [227]. Furthermore, the 

DIRINT-Perez model pairing was leveraged in an additional investigation [7], wherein Levelised 

Cost of Electricity (LCOE) calculations served as a validation criterion. An identical model pairing 

was used across six locations for an irradiance BG study [226]. 

The collection of 6 sites involved an HSAT and south-facing FT at 𝜑 = 35°, resulting in a 6% error 

from modelled BG. The setup at location 2 compromised an FT system of 𝛽 = 34°, supplemented 

by two SATS at 𝜑 = 37.5°, resulting in a 5% error from the model. Location 3 was near the equator 

and featured a 10° 𝛽. Location 4 maintained 𝛽=24°, identical to its 𝜑, whereas location 5  (𝜑 = 51° 

) featured an FT setup with 𝛽 = 35°. The BG from locations 3, 4, and 5 showed considerable 

consistency with the model, displaying errors of only 1%, 3.16%, and 1.65% respectively.  

Yang et al. assessed ten transposition and five decomposition models under tropical conditions 

at 𝜑 = 1.3° [228]. It was discovered that combining both types of models leads to increased 

prediction errors when converting irradiance from horizontal to tilted surfaces, with the error 

magnifying as 𝛽 increases. This highlights the need to explore the percentage error in the 

modelling results at higher tilts, which is important for bifacial systems or monofacial systems 

requiring greater 𝛽 for optimal incident angle. Maani et al. noted that limiting studies to a single 

model combination might result in less accurate model chain indicators [229]. Roberts et al. 

conducted a year-long study at 𝜑 = 52.7°, analyzing 16 pairs of optical models using hourly data. 

Their research highlighted that the DISC decomposition model paired with the Liu-Jordan 

isotropic model delivered superior accuracy compared to other combinations; validated on a FT 

system (𝛽 = 45° with 𝜓𝑠𝑦𝑠𝑡𝑒𝑚 of 12° relative to the South). It was recommended that future 

research delve into the empirical derating factors employed in PV modelling today, considering 

diverse system configurations with various 𝛽 -𝜓𝑠𝑦𝑠𝑡𝑒𝑚  combinations [230]. 

Despite these findings, it is notable that the majority of the optical model pair validation studies 

use hourly data and FT systems. This leaves a knowledge gap concerning their utility for a range 

of angles, a prerequisite for tracking systems, along with a higher temporal resolution and under 

temperate climates. Additionally, Gueymard showed that most of the error in predicting POA 

irradiance at a sunny location stems from the empirical separation of direct and diffuse 

components when these are not measured locally [231]. Hofmann et al. noted that 

decomposition models tend to produce a broader range of outcomes, whereas transposition 

models significantly influence these results. Nevertheless, additional validation is necessary for 

areas with diffuse climates, and a range of 𝛽 needs to be considered [232]. These findings raise a 

critical question about whether similar conclusions can be drawn for locations with high levels of 

diffuse light, and which has a greater impact on POA irradiance: the decomposition or the 
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transposition aspect. It is essential to explore not only the optical model pair but also the 

transposition process, particularly in environments with variable conditions such as the 

temperate climate of the UK. Even when rare measured values of DHI, DNI, and GHI are available, 

it remains crucial to determine which transposition model exhibits the smallest deviation. 

Investigating both the input of decomposed data to obtain DHI and DNI, and then their 

transposition (a process already implemented by various feasibility software as indicated in Table 

3), as well as using measured DHI and DNI, could help elucidate why certain transposition 

models underperform in a temperate climate. 

2.3.3 Evaluation of Clear-Sky Modelling Accuracy 

Clear sky models are designed to predict the solar irradiance that reaches the Earth's surface in 

cloudless conditions [233]. These models are pivotal for estimating the potential maximum 

energy output of PV systems. Moreover, the general estimation of all-sky irradiance is derived 

from these clear sky calculations, adjusted by an attenuation factor that accounts for the solar 

position. By integrating time series data from satellite-derived irradiance with clear-sky model 

outputs, and a transmittance function reflecting the cumulative effects of clouds and surface 

interactions, a comprehensive irradiance profile is constructed. This transmittance is routinely 

assessed through the observation of atmospheric reflectance via satellite sensors. As a result, 

all-sky irradiance retains a proportional relationship to its clear-sky counterpart, forming the 

basis for all subsequent irradiance modelling. Additionally, GHIClear and Clear sky DNI (DNIClear) 

serve as essential inputs in various irradiance models, including decomposition types like 

Engerer2a [159] and Yang5 [177], underscoring their significance in solar irradiance forecasting. 

Clear sky irradiance models, similar to decomposition models, utilize empirical relationships that 

circumvent the complexities inherent in detailed radiative transfer modelling. For instance, the 

Threlkeld-Jordan model utilizes three coefficients, based on the SZA, to estimate GHIClear [234]. El 

Mghouchi et al., utilizing three years of data collected every ten minutes in a dry, northern 

Moroccan climate (φ = 35.6º), refined this model to also factor in SZA and Ea [235]. Furthermore, 

with the same input parameters as El-Mghouchi’s model,  Kumar’s model expanded upon this by 

incorporating atmospheric pressure to detail the attenuation effects on solar irradiance, tested 

with half-hourly data at a φ of 36.5º [236]. The Ineichen-Perez model introduced an innovative 

approach by integrating the Linke turbidity factor, aiming to reduce the model's reliance solely on 

solar geometry. This model was validated using hourly data from seven stations across φ: 35.1º 

to 45.8º, considering the impact of aerosols and water vapor [237]. Similarly, the Simplified Solis 

model employs the Bouguer-Lambert-Beer law, with variables like AOD at 700 nm, PW, and 
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atmospheric pressure [168]. Bashahu further developed this model using annual data from a φ of 

14.7 º, adding AOD550 as a novel parameter, showing considerable accuracy at a nearby φ of 

14.7º [238]. Moreover, the MAC2 model enhances transmittance calculations, simplifying 

Rayleigh scattering calculations relative to air mass and incorporating AOD data. It considers 

direct transmittances for Rayleigh scattering, ozone, aerosols, and a term for water vapor 

absorptance [239]. The Iqbal C model is another advanced example, incorporating eight 

parameters, including ozone concentration and nitrogen dioxide levels in the atmosphere, 

alongside the Angstrom exponent and AOD550 [20].  The REST2 model, developed by Gueymard 

in 2008, separates its analysis into two spectral bands (0.3 - 0.7 µm and 0.7 - 4.0 µm), using 

parameterizations from the SMARTS spectral radiation model to account for various atmospheric 

transmittances including Rayleigh scattering, mixed gas absorption, ozone, nitrogen dioxide, 

water vapor, and aerosol extinction [240]. Lastly, the McClear model stands out as a 

comprehensive, model-based approach utilizing a vast library of radiative transfer outputs to 

simulate detailed calculations [174]. As a part of the freely accessible CAMS, McClear operates 

as a "black box", providing users with results directly tied to extensive atmospheric data, without 

the option for alternative data inputs. 

Generally, simplified models can yield acceptable results in regions where atmospheric and 

environmental conditions align with the model's foundational assumptions, which typically 

presume low to moderate levels of water vapor and aerosols [233]. A significant challenge with 

more advanced Clear Sky models is their dependency on detailed atmospheric data inputs. 

Often, the availability and quality of such data are constrained, limiting the models' accuracy. 

Consequently, deploying more complex models does not guarantee enhanced accuracy and 

might, under circumstances of inadequate or erroneous data inputs, lead to decreased model 

performance [241]. Validation studies for these models vary in their temporal resolution and 

geographical scope. For example, Badescu et al. examined 54 models at two sites (φ = 44º and 

46º)  using hourly data, identifying six clear-sky models capable of approximating GHIClear and 

developed an empirical model named after the author [242]. In contrast, Cros et al. assessed four 

models across three sites on a minute-by-minute basis, finding McClear to be the most accurate 

[243]. Similarly, Segupta et al.’s  research across seven sites compared models for both DNI and 

GHI on a minute scale, highlighting REST2 as the superior model [244]. These findings underscore 

the necessity for more comprehensive validation studies, particularly focusing on spatial 

variability and minute-by-minute temporal resolution, to address existing gaps in model 

validation. 
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Ruiz-Arias and Gueymard reviewed 36 validation studies, creating a consensus around 15 robust 

clear sky models [245]. These models were assessed across different temporal resolutions and 

climates, pinpointing major discrepancies caused by high aerosol loads, elevated site locations, 

and low solar altitudes. This review underscores the need for more refined validation studies that 

integrate measured irradiance and sunphotometer data at the same locations to advance the 

development of a universally effective model, particularly in temperate climates. Moreover, Sun 

et al. systematically reviewed variables used in 75 clear sky models across diverse global sites, 

with the REST2 model emerging as one of the top performers [246]. Although REST2 is deemed as 

a proprietary, its efficacy underscores the critical role of high-quality input data in determining 

model accuracy.  

Research has explored how satellite variables such as AOD, AE and PW impact the precision of 

solar irradiance predictions [247],[248]. For example, Gueymard found that PW data from 

MERRA2 introduces some uncertainty into clear-sky GHI estimates, although the effect is not 

marked numerically [249]. A significant finding by Ruiz-Arias et al. is that the error in DNIClear 

predictions could increase sixfold when substituting AERONET AOD measurements with those 

from MERRA-2 [250]. Additionally, a study by Salamalikis et al. on the uncertainties in DNI 

induced by CAMS AOD, using AERONET AOD as a baseline, highlighted regional differences, 

ranging for Mean Bias Deviation (MBD) -4.1% to 5.3%, with the latter in high AOD locations and 

the former in desert climate locations [251]. These findings underscore the variability in error 

propagation from satellite data to solar irradiance estimates across different geographical and 

climatic contexts. However, there has been limited research on the selection of satellite data 

products for optimizing clear-sky irradiance modelling. Sun et al. evaluated 95 clear sky models 

for clear-DNI at 100 radiometric sites and reiterated that REST2 provided the most accurate 

estimates [252]. However, it was noted the necessity for further research to assess the sensitivity 

of top models to variations in input data sources, highlighting ongoing challenges in the field. 

The literature on clear sky models is extensive and diverse, reflecting a range of complexities 

designed to manage solar transmittance. These models vary from simplistic ones that use basic 

inputs like SZA in the Threlkeld-Jordan model, to more intricate physical models like McClear or 

REST2, which incorporate multiple atmospheric variables, including complex factors such as the 

AE and AOD550. Accurate satellite data are crucial for these models since atmospheric 

conditions directly impact the attenuation of solar irradiance. Gueymard highlights that 

prediction errors in these models mainly arise from two sources: errors in aerosol input data and 

the model's inherent limitations in accounting for aerosol effects, especially under high aerosol 

conditions [253]. Notably, these inaccuracies have a more pronounced impact on DNI 
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predictions, due to how errors in aerosol representation affect direct and diffuse irradiances 

differently.  

2.3.4 Insights into Photosynthetically Active Radiation Irradiance Modelling  

PAR irradiance is essential for evaluating the feasibility of AgriPV systems. Regulations specify 

that crop yields must maintain certain thresholds to ensure the successful integration of 

photovoltaics with agricultural land use [31][139][141]. This requirement highlights the critical 

nature of accurate PAR measurement. Unlike more common irradiance measurements such as 

GHI (as well as DHI and DNI), PAR irradiance data are not as readily accessible. This scarcity 

might stem from the relatively recent prominence of AgriPV in renewable energy discussions 

[258]. Accurate estimation of PAR irradiance is hence crucial. Such data is utilized in various 

modelling programs, such as CropWat [254], which predict crop yields based on defined 

mathematical relationships.  

The significance of PAR irradiance in crop development is well-known, yet there is a notable 

scarcity of PAR measurements. This is compounded by the absence of a global network for 

measuring PAR that adheres to standardized quality control protocols. This situation has led to 

fewer studies on PAR compared to the more frequently analyzing GHI or DHI. Although 

atmospheric radiative transfer models can estimate PAR components, these models are often 

highly complex and demand substantial computational resources. As a result, researchers have 

increasingly relied on empirical mathematical methods for estimation. Accurate determination 

and comprehensive understanding of PAR irradiance are essential, yet measurements remain 

limited. Consequently, researchers have endeavored to estimate PAR irradiance using various 

conversion factors by multiplying different parameters. Numerous studies have identified PAR 

ratios as dependent on variables such as location, season, sky conditions, and altitude [255]. 

However, there is no agreed-upon consensus, making it challenging to predict reasonable PAR 

ratio values for specific sites and seasons. This lack of clarity underscores the importance of 

incorporating meteorological and solar position parameters in research. 

The detailed analysis by Nwokolo et al. outlines various methods for estimating PAR irradiance, 

as identified in literature, focusing mostly on daily predictions with some hourly assessments. 

Since then, advancements have been achieved in predicting PAR irradiance by leveraging GHI and 

additional parameters [255]. Wang demonstrated the impact of sky clarity on PAR across China, 

introducing a validated model in two central locations [256]. Wang further elaborated on this by 

incorporating solar geometry into their research, covering 39 different locations on both hourly 

and daily scales. Similarly, Peng et al. developed a versatile PAR model suitable for temperate 
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climates in China [257]. Furthermore, Aguiar ventured into modelling PAR in Southwest 

Amazonia, employing methods ranging from simple ratios to complex formulas integrating sky 

clarity and precipitable water, suitable for all sky conditions [259]. Ferrera-Cobos explored 22 

models for estimating daily PAR in oceanic and Mediterranean climates, employing site 

adaptation techniques and variables like relative humidity, temperature, and extraterrestrial 

irradiance [260]. Their study compared regression models and an ML approach, finding negligible 

differences in performance. Similarly, Proutsos et al. examined a high-altitude Mediterranean 

forest in Greece, developing models for estimating ultraviolet radiation and PAR based on hourly 

data, highlighting the importance of optical thickness and temperature [261]. Similarly,  

Escobedo et al. differentiated parts of the electromagnetic spectrum, in Brazilian climates using 

daily observations [262]. Furthermore, Akitsu et al. explored models incorporating GHI, 

precipitable water, and pressure alongside sky clarity under all sky conditions to demonstrate the 

interplay between said parameters and PAR [263]. These models, however, demonstrated 

diminished accuracy in winter conditions and in environments rich in aerosols, which are typical 

characteristics of temperate climates. 

Studies suggest that models incorporating DHI or employing Perez coefficients (that are deployed 

in transposition modelling [185], which are direct derivatives of DHI and DNI), tend to exhibit 

improved performance [264-266]. Garcia-Rodriguez et al. incorporated meteorological indices 

for PAR irradiance modelling, using the International Commission on Illumination (CIE) [267] 

standard sky classification alongside Perez brightness and clearness coefficients for all sky 

conditions [268]. Reliance on DHI and similar metrics complicates analyses due to their sporadic 

measurement. When data are lacking, the need for specialized decomposition models becomes 

crucial, as these models vary significantly depending on temporal resolution and geographical 

location. Furthermore, inaccuracies in initial predictions can be exacerbated in subsequent 

stages, resulting in notable discrepancies in the final results. Although numerous decomposition 

models exist in the literature, their integration can introduce complexities. This is due to the 

varied ways these models function across different climatic zones, temporal resolutions, and 

input parameters, not to mention their divergent estimates of these parameters. Such 

complexities can lead to inaccuracies, particularly when using these models to calculate Perez 

coefficients. Errors may arise, for example, from overlapping ranges of sky brightness that the 

models may not correctly distinguish. Lu et al. emphasize the importance of advancing PAR 

prediction methodologies across various global climates [33]. This advancement is critical for 

expanding the market penetration of AgriPV [145]. It should be noted that while PAR irradiance 

models are necessary, said models should also be readily available and accessible. 
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There is a crucial demand to derive PAR estimates from GHI and other available parameters. 

Conversion ratios from GHI to PAR under conditions of high solar irradiance indicate a reliance 

on the sky's optical path, yet this relationship becomes complex under overcast conditions or 

variable weather, requiring multiple parameters for precise PAR conversion, a significant factor 

in high- φ temperate regions. While numerous studies have explored the conversion of GHI to PAR 

across various climates, the application of these models in new, especially temperate, 

environments has been scarcely explored. This deficiency is notable because models validated 

in diverse climates might not consider the unique sun path effects vital for accuracy in higher φ, 

temperate regions, where latitudinal differences substantially affect sun angles and model 

precision. Atmospheric conditions also vary by location, altering the scattering and absorption of 

solar radiation, and thus affecting PAR values. Moreover, the impact of cloud cover on GHI and 

subsequently on PAR is substantial, with many models overlooking regional differences in 

cloudiness due to local weather patterns, leading to potential errors in solar irradiance 

predictions. Furthermore, the reliance on limited datasets, typically focusing on daily or hourly 

solar irradiance for specific climates, highlights the need for more comprehensive models that 

account for the various factors influencing PAR in sub-hourly intervals. To address these 

challenges, it is essential to develop a mathematical model that predicts PAR irradiance in 

temperate regions without depending on conventional DHI or Perez coefficients, and instead 

utilizes readily available data. This approach would improve the accessibility of PAR estimations, 

thus facilitating the adoption and market growth of AgriPV systems where PAR data are critical for 

LER calculations. 

2.3.5 Summary 

A comprehensive review of the literature has revealed several critical research gaps in the field of 

solar irradiance estimation, particularly at a minute-level resolution within temperate climates. 

These gaps revolve around understanding the limitations of current models, identifying areas of 

improvement, and developing enhanced approaches to bridge existing shortcomings. One key 

area of focus involves evaluating the limitations of feasibility software, specifically in terms of the 

types of models employed and their overall performance. Additionally, the decomposition 

process presents a challenge due to the extensive variety of available models. A systematic 

approach is needed to identify and benchmark the most robust models by narrowing down this 

large pool and establishing a reliable evaluation framework. The evaluation of transposition 

models also remains essential, with particular attention given to their performance under diverse 

sky and cloud conditions. Examining these models from multiple perspectives can help assess 

their adaptability and effectiveness in different scenarios. Enhancing GHIClear and DNIClear 
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estimations represents a key area of research. This improvement involves integrating different 

satellite-derived data to refine crucial parameter inputs, thereby increasing the precision and 

reliability of clear-sky models. Identifying the most suitable satellite data is essential to achieving 

these enhancements. Furthermore, the development of AgriPV systems necessitates a tailored 

model for predicting PAR at sub-hourly intervals in temperate regions. This model should 

prioritize ease of use by relying on readily accessible inputs rather than complex or data-intensive 

requirements. Addressing these research gaps is essential for advancing the accuracy and 

applicability of solar irradiance models and supporting the widespread deployment of PV 

systems. 
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Chapter 3 Benchmarking Framework for 

Decomposition Models 

3.1 Introduction  

The chapter addresses the considerable variety of decomposition models that have emerged 

from differing inputs, data durations, and meteorological empirical foundations. This diversity is 

driven by the continual need for researchers to develop mathematical models that can 

approximate DHI from various parameters as a function of Kt. As a result, a multitude of models 

exist, each requiring rigorous validation to establish their robustness. This necessitates the 

implementation of a benchmark framework to identify robust models effectively. The chapter 

introduces a clear and structured benchmarking framework to evaluate decomposition models, 

using the United Kingdom as a case study. This choice is due to the challenges faced by many 

locations globally, which lack open access to weather stations or require complex maintenance 

and calibration of pyranometers and pyrheliometers for DHI and DNI measurements, 

respectively. The evaluation will cover 104 promising decomposition models identified in earlier 

studies in temperate climates. The assessment includes four series of tests to determine the 

most reliable models, examining the effects of varying temporal resolutions, spatial 

homogeneity, dataset influence, and changes in clear-sky irradiance inputs on the 

decomposition models. 

3.2 Establishment of the Transparent Framework 

Due to their empirical foundations, many decomposition models have traditionally relied on 

hourly irradiance data. However, as industry and research shift towards minute-by-minute 

irradiance values, it becomes crucial to assess the impact of temporal resolution on these 

models in both time domains. Particularly in a temperate climate such as the United Kingdom, 

where weather conditions can change significantly, hourly irradiance levels may not adequately 

capture the nuances of sunlight variations, including the amounts of diffuse and scattered 

irradiance. Therefore, an examination of the shift from hourly to minute-level inputs is vital. The 

first test in the proposed framework assesses the impact of temporal resolution on model 

accuracy. Additionally, the increasing demand for high-frequency solar irradiance data in PV 

simulations underscores the need for this focus. This framework is especially pertinent for larger 

SZA, where tracking systems provide distinct advantages, highlighting the limitations of using 
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hourly data for precise applications. The second test focuses on the spatial homogeneity 

performance of decomposition models. This involves evaluating the reliability of models across 

various geographic locations within temperate zones. An essential aspect of this assessment is 

determining whether a model performs consistently well across different locations or if its 

effectiveness is location-specific. The goal is to identify models that are inclusive of diverse 

geographic conditions, which is especially crucial in regions with limited access to open weather 

stations. Such an evaluation ensures that the models account for environmental variables, such 

as sun angles, and set a standard for geographical inclusivity in their performance. 

The dataset period influence constitutes another critical test. This assessment investigates the 

effectiveness of models using data from different years, addressing the challenge of limited data 

availability from specific weather stations. Comparing models across diverse datasets is 

essential for evaluating their consistency over time and their adaptability to changing weather 

conditions and varying sky scenarios. This approach adds a vital dimension to understanding the 

robustness of decomposition models, emphasizing their performance stability across different 

temporal spans. Transitioning to one-minute irradiance data introduces new parameters that are 

distinct from those used in traditional hourly decomposition models. A key feature of these finer-

resolution models is the incorporation of clear-sky irradiance, an essential element for their 

functionality. The fourth test here is to examine the influence of varying clear-sky irradiance 

approximation equations, which differ based on the number of input levels, ranging from one to 

ten. This exploration aims to identify the optimal clear-sky model that, when used in conjunction 

with decomposition models, could significantly enhance accuracy levels and hence, the number 

of robust models. Earlier studies [12] have identified models with an MAD value under 30% as 

highly effective. Among the 104 models evaluated in this study, a large number conform to this 

statistical benchmark (see Table A1 in Appendix A). For this research, the criterion is more 

stringent, setting a threshold below 15% as the sole measure of acceptable performance in each 

test. 
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Site Latitude (°) Longitude (°) 
Köppen Climate Classification 

[38] 
Study Period 

Camborne 50.21 -5.32 Cfb June 1, 2015 - June 1, 2017 

Chilbolton 51.15 -1.44 Cfb 
June 1, 2015 - June 1, 2017 

June 1, 2021 - June 1, 2023 

Lerwick 60.14 -1.18 Cfb June 1, 2015 - June 1, 2017 

 

 

Figure 14: Evaluation method for the 104 decomposition models using open-source data based on 

horizontal irradiance measurements. 

 

Table 4: An overview of the locations and datasets used in this framework . The Köppen Climate Classification of Cfb is 

defined as a "Temperate”, “without a dry season” and with a “warm summer” [38]. 
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A search revealed 14 different DHI datasets from diverse φ areas across the UK in hourly format. 

These, however, have been retired owing to their requirement for steady operation and 

maintenance [269]. Three open-access locations (as per Table 4) were selected as they are 

capable of simultaneously recording both GHI and DHI in a minute-minute format. These include 

Lerwick and Camborne, from the Baseline Surface Radiation Network (BSRN) [54], and Chilbolton 

from the Centre for Environmental Data Analysis (CEDA) Archive [270]. Given this context, it 

becomes crucial to identify resilient decomposition models that exhibit strong alignment across 

these three locations, marking this as an important research area. The three selected sites 

adhere to standards set by the ISO [271], which has specific requirements and compliance 

guidelines. All data were measured using Spectrally Flat Class A Pyranometers (and their 

corresponding shadow ball trackers for DHI). As per Figure 14, the data is synchronized to 

coordinated universal time (UTC). The geometry of the sun (SZA, Ea, etc.) was sourced from the 

National Renewable Energy Laboratory’s (NREL) Solar Position Algorithm (SPA) [53].   

Table 5 presents the specific GHIClear models utilized in the respective 15 decomposition models. 

This consistent application of GHIClear across the study was driven by two primary considerations. 

Firstly, the coefficients within each decomposition model were originally derived based on these 

particular GHIClear implemented, hence maintaining consistency is essential for accurately 

assessing their effectiveness. Secondly, the study aims to investigate the potential for enhanced 

performance by exploring the feasibility of substituting different GHIClear models in a pair-matrix 

formation. This aspect examines whether the selection of which GHIClear model could potentially 

lead to improvements in DHI estimation. 
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Table 5: The 15 decomposition models studied, with their respective GHIClear models, as it relies on the 

decomposition model's specific coefficients calculation process. 

Decomposition Model GHIClear Comment 

 Engerer1 

REST2 [240] 

  

 Engerer3 
 

 Engerer2a Referred to Engerer2 in [159] 

 Engerer2b 

TJ [234] 

Referred to New 1-min Engerer2 in 

[165] 

 Engerer2c 
Referred to New 5-min Engerer2 in 

[165] 

 Engerer2d 
Referred to New 10-min Engerer2 in 

[165] 

 Engerer2e 
Referred to New 15-min Engerer2 in 

[165] 

 Engerer2f 
Referred to New 30-min Engerer2 in 

[165] 

 Engerer2g Referred to New 1-h Engerer2 in [165] 

 Engerer2h Referred to New 1-day Engerer2 in [165] 

Yang4 

McClear [174] 

  

Yang5   

Starke1 

Simplified 

Solis [168] 

  

Starke2 
 

Starke3   

A comprehensive analysis was conducted employing various GHIClear models, each characterized 

by distinct parameters [246]. Selection criteria for the models prioritized the highest-performing 

ones within each parameter category, ensuring a rigorous evaluation of GHIClear impacts as seen 

in Table 6. In this work, the Ineichen-Perez GHIClear model incorporated data specific to London, 

particularly the monthly 𝑇𝐿 values. This model was used alongside averaged data from September 

and November to compensate for the absence of October values [272]. Moreover, this thesis 

opted for the TJ GHIClear model over the AHRAE model [46], aligning with the methodologies 

applied in the Engerer2b – Engerer2h evaluations. To calculate the parameters effectively, 

satellite data from MERRA2, provided by NASA's Global Modelling and Assimilation Office, served 



Chapter 3 

97 

 

as a crucial data source [274]. This approach mirrors the methodologies used in reference [246] 

for GHIClear assessments and allows the framework to be employed easily.  

Certain limitations are apparent with this approach, firstly, due to the specific calibration 

conditions of the pyranometers used (namely, SZA of approximately 45º). This calibration 

specificity leads to increased measurement uncertainties under low irradiance conditions, such 

as during overcast weather, potentially compromising the accuracy of the collected data. 

Additionally, the assessment and validation of the models across three sites might not accurately 

reflect the broader characteristics of temperate climates, as different regions exhibit unique 

climatic traits that could affect the model's precision and relevance. This may prompt concerns 

about the broader applicability of the conclusions to all temperate climates. However, the 

primary goal here is not to generalize the results to all regions but to emphasize the urgent need 

to establish a series of tests for an effective benchmarking framework. Presently, a diverse array 

of decomposition models exists, yet there is a notable lack of transparent methodologies for their 

evaluation. Given the scarcity of one-minute irradiance data from UK stations (treated here as a 

case study) there is a critical need to identify robust decomposition models. This transparent 

framework can be applied in various settings, not limited to the UK or within temperate climates 

alone. Additionally, re-parameterization (altering the coefficients of present models) was not 

undertaken because it would entail an empirical approach that might unnecessarily complicate 

an already effective model or duplicate existing methods, rather than enhancing scalability. 
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Table 6: A list of the essential input parameters for each GHIClear model, including the following variables: 
the Solar Zenith Angle (SZA) in degrees, the extraterrestrial Horizontal Irradiance (Ea) in 

W/m2, atmospheric pressure in millibars (𝑃), site elevation above sea level in meters (𝑒𝑙𝑒𝑣), 
Linke Turbidity Factor (𝑇𝐿), total precipitable water vapor in centimeters (𝑃𝑊), broadband 

optical depth (𝜏), Ångström exponent (𝐴𝐸), Aerosol Optical depth at 550nm (AOD550), 
single-scattering albedo (SSA), total ozone amount in atmospheric centimeters (𝑂𝑧𝑜𝑛𝑒),  

total nitrogen dioxide amount in atmospheric centimeters (𝑁𝑂2), and temperature in Kelvin 
(𝑇). The global and temperate ranking is depicted in the table as per [44]. 

GHIClear 𝑺𝒁𝑨 𝑬𝒂 𝑷 𝒆𝒍𝒆𝒗 𝑻𝑳 𝑷𝑾 𝝉 𝑨𝑬 𝑨𝑶𝑫𝟓𝟓𝟎 𝑺𝑺𝑨 𝑶𝒛𝒐𝒏𝒆 𝑵𝑶𝟐 𝑻 
Global 

Ranking 

Temperate 

Ranking 
Reference 

TJ ✓             62 47 [234] 

El Mghouchi ✓ ✓            68 67 [235] 

Kumar ✓ ✓ ✓           61 59 [236] 

Ineichen 
Perez ✓ ✓  ✓ ✓         

33 5 [237] 

Simplified 
Solis ✓ ✓ ✓   ✓ ✓       

34 21 [168] 

Bashahu ✓ ✓ ✓   ✓  ✓ ✓     4 3 [238] 

MAC2 ✓ ✓ ✓   ✓  ✓ ✓ ✓    1 1 [239] 

IqbalC ✓ ✓ ✓   ✓  ✓ ✓ ✓ ✓   7 8 [20] 

REST2 ✓ ✓ ✓   ✓  ✓ ✓ ✓ ✓ ✓  2 4 [240] 

McClear ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ✓  ✓ 35 58 [174] 

 

The irradiance measurements obtained from BSRN and CEDA were initially in .nc format. These 

were converted into individual .csv files, each named using the yyyymmdd.csv convention. For 

datasets recorded at one-minute intervals, no temporal adjustment was necessary. However, for 

hourly datasets, averages were computed over a sliding window from 30 minutes before to 29 

minutes after the target timestamp (e.g., the 13:00 value represents the period from 12:30 to 

13:29), aligning with recommendations from established PV feasibility tools [102]. All 

decomposition models utilized in this chapter were custom-developed in Python. A total of 104 

models were implemented, with Python libraries such as NumPy and pandas facilitating data 

handling and batch processing across multiple CSV files. Data preprocessing followed a rigorous 

cleaning protocol, previously outlined in Section 2.1.3. This included applying quality-control 

filters and removing invalid or out-of-range values. The overall process adhered to a structured 

four-step workflow to ensure full transparency and reproducibility: (1) importing raw data, (2) 
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synchronizing timestamps to UTC+0, (3) applying the defined filtering criteria, and (4) running the 

in-house Python implementations of the models. Model outputs were evaluated using statistical 

tools from the scikit-learn library, with performance metrics calculated after each iteration. 

Lastly, the clear-sky reference model used during the final stage of the framework was adapted 

from source code originally written in R in [246], which was carefully translated and re-

implemented in Python. The script generates an .xlsx file containing the results of all 104 

implemented decomposition models. To ensure reproducibility, the Python code for all 104 

models is provided in Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

3.3 Discussion of Performance and Results 

3.3.1 Temporal Resolution 

The first test of this framework is to examine the performance of decomposition models under 

hourly and minute rates, with a specific emphasis on the unpredictable climatic fluctuations in 

the UK. Such rapid shifts in weather can lead to notable changes in the Kt value over short 

periods of time. It is crucial, therefore, to delve into data more frequently than on an hourly 

basis. This test pinpoints models that meet the MAD threshold criterion for both hourly and 

minute-level domains. 
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Figure 15: The combined probability matrix for Kt-Kd is segmented for various locations and intervals as 

follows: a) hour b) minute for Camborne, c) hour d) minute for Chilbolton, e) hour and f) 

minute for Lerwick during June 1, 2015 – June 1, 2017. 

Figure 15 displays the combined joint distribution of Kt and Kd for three sites in the United Kingdom 

(Camborne, Chilbolton, and Lerwick) using two temporal resolutions; hourly and one-minute. A 

clear picture of the Kt distribution for each site is offered in the appendix (see appendix C).  While 

Kt is not the sole factor influencing Kd, Figure 15 clearly illustrates that a single Kt value can 

correspond to multiple Kd values. To gauge the extent to which Kt values correspond to Kd, a 

cumulative probability percentage is employed. Essentially, this is a measure of the likelihood 

that data points will occur in a two-dimensional structure defined by Kt and Kd.  The shift in the 

hourly basis (Figures 15a, 15c, and 15e) to that gathered every minute (Figures 15b, 15d, and 15f) 

suggests a heightened responsiveness to quick-changing conditions in the more granular level. 

In minute data, swift variations in cloud cover and positioning lead to notable fluctuations in both 
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Kt and Kd, resulting in a more dispersed array of data points. Conversely, the hourly data tends to 

represent average conditions over extended periods, thereby obscuring these brief variations. 

This process generates a more uniform pattern, as short-lived events are evened out, culminating 

in a closer grouping of Kt-Kd values. This may indicate why a large number of hourly decomposition 

models opt for a simple cubic mathematical regression.  

Focusing on specific sky conditions, the more confined cluster for overcast scenarios (Kt ≤ 0.30) 

indicates uniformity in the diffused component of solar radiation due to thick cloud coverage and 

the fact that there is little to no direct irradiance. Under such conditions, Kd shows less variation 

as the dense clouds distribute sunlight more evenly, resulting in a consistent diffuse fraction 

throughout the observation area. In contrast, under clear skies (Kt ≥ 0.70), Kd values suggest a 

stronger impact from direct sunlight. Variables like the time of day, sun position, and the 

presence of atmospheric components like aerosols and water vapor, and thus, may introduce 

more variation in sunlight diffusion, leading to a more defined distribution. The fluctuating nature 

of cloud coverage and type during intermediate conditions leads to a broad and less predictable 

spectrum of Kd values. Moreover, the sun's angle relative to cloud edges can create sharp 

contrasts in both DNI and DHI, adding to the dispersion of Kt-Kd values in this range.  

When examining the transition from minute to hourly data for each location, distinctive insights 

emerge about the behavior of Kd and Kt values within different climatic and geographic contexts. 

In Camborne, the shift from minute to hourly data shows a convergence of data points around the 

median Kd values. In Figure 15b, at the minute level, the maritime climate significantly influences 

solar irradiance, with the sea's proximity causing rapid cloud cover changes due to local weather 

systems. These changes can lead to notable shifts in Kd as clouds swiftly move across the sun. 

However, in the aggregated hourly data (see Figure 15a), this coastal variability is averaged out, 

resulting in a more stable and predictable Kd range. This suggests that although Camborne may 

experience short-term cloud cover variability, the overall solar irradiance across an hour tends to 

normalize to the area's average cloudiness level. Moving to Chilbolton, as evident in Figure 15d, 

the minute-level data captures a broader range of both Kt and Kd, indicative of a more continental 

climate. The hourly data, however, shows a more concentrated cluster of values, particularly at 

lower Kt levels, suggesting that overcast conditions, when present, tend to be more enduring and 

less subject to rapid changes compared to Camborne. This consistency over the hour signifies a 

reduced variability in cloud cover, possibly due to slower-moving weather systems inland. For 

Lerwick, located at a higher northern φ, the minute-level data displays a broad spread 

significantly influenced by the local climate's tendency for quick weather shifts, intensified by its 

island geography as indicated in Figure 15f. The transition to hourly data reveals a notable 
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concentration of Kd values, especially in the higher ranges of Kt. This could indicate a balancing of 

both diffuse and direct solar irradiance over time, as short-term cloud cover variations caused by 

the island's interaction with maritime air masses are averaged out. The more focused Kd values in 

the hourly data suggest a consistent cloud cover pattern, despite potential rapid weather 

changes. The transition from minute to hourly intervals in these three locations underscores the 

impact of broader weather patterns over immediate local conditions and the time-based 

averaging effect on solar irradiance measurements. It emphasizes the need to consider temporal 

resolution in solar irradiance analysis, as it can profoundly alter the interpretation of the 

relationship between the Kt and DHI. 

One of the clearest differences between the hourly and minute-based datasets lies in the level of 

detail captured within the distributions. Hourly data tends to smooth out rapid fluctuations in 

irradiance, often cause by intermittent cloud cover or shifting atmospheric conditions. The hourly 

plots in Figure 15 (a, c and e) tend to smooth out rapid fluctuations in irradiance caused by short-

lived meteorological phenomena such as passing clouds or sudden clearings. This average effect 

compresses Kt values into a narrower range, between 0.3 and 0.6 and thus, reduces the observed 

diversity in Kd. As a result, the joint distributions appear more generalised, with localised clusters. 

By contrast, the one-minute resolution data (see Figures 15b, 15d, and 15f) captures a richer and 

more detailed representation of atmospheric variability. Distinct peaks emerge across Kt-Kd 

space, especially near Kt = 0.20; indicative of overcast conditions, and around Kt=0.70, which 

reflects clearer skies. These features point to high-frequency changes that are lost in hourly 

averages but are crucial for the understanding of solar irradiance. 

This pattern is further reinforced when examining the induvial histograms provided in the 

appendix (see appendix C). The hourly distribution are generally flatter, while the one-minute 

versions revel sharper distributions. In particular, sites like Lerwick and Chilbolton show 

prominent peaks at both low and mid-range Kt values in the minute-based plots, indicating the 

presence of intermittent sky conditions that are otherwise obscured when data is aggregated 

hourly. It must be noted that these differences are not trivial, especially considered in the context 

of solar energy applications. Many solar modelling frameworks (I.E., CSD) require detailed 

knowledge of short term irradiance behaviour. High resolution input data is also vital for 

classification tools like CAELUS [40], which depend on transient cloud pattern detection. Failing 

to account for this variability by relying on hourly data may lead to underrepresentation of key 

atmospheric states, resulting in biased energy estimates or misclassified sky conditions.  In 

examining the performance, it is observed that a number of these models meet the MAD < 15% 

threshold, particularly in hourly analysis. This is especially true for models developed for or 
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effectively applied in temperate climates. In Camborne, 18 models fell within the acceptable 

MAD range, which varied from 13.63% to 14.91%. Chilbolton showed 32 models meeting the 

threshold, with MADs spanning 12.57% to 14.99%. Lerwick, although having the fewest, still 

presented 13 models within the threshold, with MADs from 13.86% to 14.89%. However, when 

data was examined at a more granular level, changes were noted. Lerwick's count was reduced 

to 9 models for the minute domain, with 5 models being effective in both the minute and hourly 

scales as per Figure 16a. Chilbolton saw a decrease to 5 models for minute data, with MADs 

ranging from 13.04% to 14.00%, and with 2 models effective in both time scales as per figure 16b. 

Camborne's adherence to the model decreased to 6 when analyzing minute-level data, showing 

MAD ranging from 12.74% to 14.52%. Only two models demonstrated effectiveness across both 

hourly and minute resolutions. As depicted in Figure 16, Paulescu consistently performed across 

all locations at both temporal resolutions. In Lerwick, Engerer models proved effective. These 

models are equipped to adeptly manage the variability in cloud coverage by incorporating a factor 

that adjusts for deviations from clear sky conditions to the actual sky clarity observed. Notably, 

Engerer models excel in adapting to shifts in cloud density and the influence of the SZA. 

Conversely, Chilbolton, which is located further inland, shows a different scenario. In Chilbolton, 

the Paulescu model performs well and stays within acceptable thresholds, unlike the Engerer 

models, indicating that the Paulescu model is highly effective across various climate conditions. 

Additionally, while the Starke1 model meets the threshold in both Lerwick and Camborne, 

Starke3 is unique to Chilbolton because it factors in hourly, rather than daily, calculations of Kt. 

The Starke1 model, meeting the threshold in both Camborne and Lerwick, underscores its 

flexibility across diverse environments, ranging from temperate coastal to harsher northern 

settings. Moreover, the consistent effectiveness of the Paulescu model across all three sites also 

underscores its versatility beyond purely geographical considerations. This model shifts focus 

from short-term local conditions to broader irradiance trends, adjusting its parameters based on 

varying thresholds of Kt. Hence, only the Paulescu model, out of a total of 104 models, adheres 

to said examination. 
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Figure 16: The minute MAD for decomposition models that meet the threshold for both hourly and 

minute-level analyses. It includes a comparison of the changes when shifting from minute to 

hourly intervals for a) Lerwick, b) Chilbolton, and c) Camborne, highlighting the percentage 

discrepancies observed during these transitions. Engerer models here use the default REST2 

GHIClear model. 

3.3.2 Spatial Homogeneity 

Assessing the interplay among different models across three regions, utilizing publicly available 

minute data is needed. Prior analysis indicates that only the Paulescu model is effective across 

all locations when examined on the mutual inclusivity in the temporal resolution (i.e., adhering to 

the threshold both on an hourly and minute basis for all locations). Among the five models 

demonstrating spatial consistency (Paulescu, Suehrcke-McCormick (SM), Yang4, Starke3, and 

Yang5), Paulescu emerges as the most effective, with an MAD of 12.76% as per Figure 17a. This 

is illustrated in a radar chart (Figure 17), depicting each model's MAD at each location using 

minute-by-minute data. 

The analysis shows that the models primarily depend on two variables: GHI and Kt, along with a 

parameter that identifies trends in overall solar irradiance. Paulescu and SM utilize three 

parameters; Paulescu incorporates daily Kt, while SM considers the SZA, each applying distinct 

mathematical approaches to explore their relationships and quantify the atmosphere.  
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Figure 17: A radar chart displays the performance metrics of various decomposition models, highlighting 
the MAD (%) values for the following locations: a) overall average, b) Lerwick, c) Chilbolton, 

and d) Camborne using minute data. 

 

Figure 18: An illustration of one-minute datapoints from all three locations of Kd-Kt plots using 4 selected 
models that meet the criteria for spatial homogeneity. In this visualization, actual 

measurements are depicted by a grey backdrop, while the model results are displayed using 
a magma colour gradient. 
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According to Figure 18a, it initially establishes a baseline using linear effects of Kt and daily Kt, then applies 

additional empirical adjustments activated when Kt surpasses certain thresholds. These modifications 

enhance the estimation of conditions potentially linked to specific atmospheric occurrences or solar 

positions. In essence, the Paulescu model also incorporates the daily average Kt, which accounts for daily 

variations in solar clarity alongside instantaneous readings. It uses a segmented function defined by 

empirical constants to reflect day-long trends in solar irradiance. In contrast, the SM model uses the SZA 

to calculate air mass - the length of the path that sunlight travels through the atmosphere, normalized to 

the shortest path. Like Paulescu, SM includes a threshold that adjusts estimates when solar radiation 

becomes significantly diffuse due to atmospheric scattering and absorption. Unlike Paulescu's use of daily 

Kt, SM integrates air mass directly, beginning with a simple mathematical relationship at lower Kt values 

and becoming more complex at higher values, as depicted in Figure 18c. 

The Yang4 and Yang5 models, although they share a structural basis by utilizing the GHIClear to GHI ratio as 

a metric for atmospheric quantification, differ in their coefficient values. Both models demonstrate 

extensive parameter ranges, leading to identical MAD values in Lerwick, as shown in Figure 17b. However, 

Yang5 performs better in Chilbolton and Camborne, owing to refined coefficients that effectively consider 

cloud clustering, aerosols, and albedo - making it a regime-dependent refinement of Yang4. 

3.3.3 Period Influence 

 

Figure 19: The combined probability matrix for Kt-Kd for minute data for Chilbolton during June 1, 2021 - 
June 1, 2023. 

Examining the performance of models across different datasets, focusing on the unique 

challenges faced by weather stations with limited historical data is needed. The study involves a 

comparison of two datasets to evaluate the consistency, adaptability, and responsiveness of 

models over time. It explores whether models that achieved benchmark classification in an initial 
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dataset (June 1, 2015 – June 1, 2017, hereinafter referred to as the 2016 dataset) maintain similar 

performance in a later dataset (June 1, 2021 - June 1, 2023, hereinafter referred to as the 2022 

dataset). Two models met the threshold on the 2016 dataset from Chilbolton , similar to the 

number of models in the 2022 dataset. A notable difference is the mean DHI, with the 2016 

dataset at 136 W/m² and the 2022 dataset at 155 W/m², implying more overcast conditions in the 

latter period. Analysis of Figure 19 compared with Figure 15d reveals that the 2016 dataset 

exhibits a narrower concentration in overcast conditions than the 2022 dataset, with a wider 

spread of intermediate conditions in 2016. 

Figure 20 illustrates the distribution of the Kd values across various models for two datasets from 

2016 and 2022. In the 2022 dataset depicted in Figure 20a, the median Kd values are generally 

lower for almost all models, when compared to the 2016 values in Figure 20b. For instance, the 

median Kd for Yang4 drops from 0.956 in 2016 to 0.937 in 2022, suggesting a trend toward reduced 

diffuse fractions in conditions of lower DHI. This trend may reflect model adaptations to 

increasingly overcast skies, which elevate the ratio of diffuse to direct solar radiation. The 

downward shift in median Kd values signals a systemic change in the models’ sensitivity to altered 

radiation scenarios as illustrated in Figure 19. Moreover, examining models like Gonzalez6 in 

2022, which strictly meets the MAD <15% criterion only for the 2022 dataset reveals that the 

median reduces from 0.919 in 2016 to 0.856 in 2022. This substantial decrease in median 

alongside a maximum value that remains constant at 1.153 across years suggests that while the 

model is capable of reaching high Kd values, its general output has shifted downwards. This shift 

could be attributed to the model's sensitivity to higher DHI, where the presence of clouds 

increases the proportion of diffuse to direct sunlight, affecting the overall model performance.  

Figure 20: Box plots showcasing the comparative performance of various decomposition models against 
specified thresholds for two distinct datasets: a) the 2022 dataset and b) the 2016 dataset. 
Models that meet the threshold criteria exclusively for the 2016 dataset are marked in red, 

while those meeting the threshold solely for the 2022 dataset are highlighted in blue. Models 
that successfully meet the threshold for both datasets are distinguished in orange. 
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Figure 21: An illustration of one-minute datapoints of Kd-Kt plots using three selected models that meet 
the MAD maximum threshold for the 2016 and 2022 datasets.  In this visualization, actual 

measurements are depicted by a grey backdrop, while the model results are displayed using 
a magma colour gradient. 

The interquartile range (IQR) provides insights into the data spread around the median, indicating 

significant differences between the datasets. For instance, Yang5’s IQR narrows from 0.615 

(ranging from 0.366 to 0.981) in 2016 to 0.674 (from 0.303 to 0.977) in 2022. This increase in IQR 

in a higher DHI scenario implies not only a decrease in the estimated diffuse fraction but also 

greater consistency in model output, which may suggest enhancements in model accuracy and 

reliability under variable cloud conditions, possibly due to algorithmic improvements or better 

acclimatization to the prevailing climate conditions of 2022. Colour coding in the box plots 

provides further clarity on model adaptability, with orange indicating consistent performance 

across both datasets and red and blue denoting dataset-specific behaviors. Models coloured 

orange, like Paulescu, show remarkable stability, with median values of 0.987 in 2016 and 0.968 

in 2022, demonstrating minimal variability despite different atmospheric influences. This stability 

implies a strong mathematical ability to compensate for variations in solar radiation due to cloud 

cover and other atmospheric factors, maintaining a tight clustering around the median Kt value 

as seen in Figure 21a. Conversely, models highlighted in blue, such as Energer1, optimize their 

performance for the specific conditions of 2022, achieving a median near the third quartile, 

indicative of an optimal setting for higher mean DHI (155 W/m² in 2022). This suggests that such 

models may not adapt as dynamically to fluctuating cloud cover and might perform poorly in 2016 

but excel in conditions typical of 2022. 
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3.3.4 Effect of Clear-Sky Input Parameter Matrix 

The objective centered on pinpointing models that align with all evaluation benchmarks, with 

MAD below the threshold of 15%. This endeavor led to the selection of five distinct models that 

are not only spatially homogenous, but robust to dataset selection and temporal resolution: 

Paulescu,  Yang5, SM, Starke3, and Yang4. Their respective average MADs for the specified tests 

are 12.57%, 13.24%, 13.42%, 14.12% and 14.22%. Notably, three of these models (Starke3, Yang 

4 and Yang5) incorporate GHIClear in their formulations. The focus now shifts to exploring the 

impact of modifying GHIClear approximation equations. This is to broaden the scope beyond the 

robust models, aiming to increase the number of models that meet the MAD threshold. 

Table 7: Across the 15 decomposition models, an alternate distinct GHIClear is substituted, displaying the 
MAD (%) in minute-minute data. Bold figures denote the initial GHIClear model used. Yellow 

markings indicate a reduction in the MAD, though not conforming to the established 
threshold, whereas green highlights denote that the model pairs have improved and comply 

with the established threshold. 

 

Tables 5 and 6 present detailed listings of 15 decomposition models and 10 GHIClear models, each 

differing in parameter complexity. To increase precision, a detailed analysis involving a matrix of 

150 GHIClear-decomposition combinations is executed, as detailed in Table 7. Of these, modifying 

the input GHIClear model enhances 30 models, with 15 combinations maintaining MAD below 15%. 

According to Table 7, significant enhancements predominantly utilize REST2 or McClear as the 

GHIClear inputs, suggesting inaccuracies in conclusions that rank other models above those 

utilizing GHIClear due to the variability in GHIClear models applied. For the models ranging from 

Engerer2b to Engerer2e, regardless of whether REST2 or McClear was used as the GHIClear model, 

all modifications meet the MAD threshold. This consistency also extends to all Starke1 and 

Starke3 models. The Yang models (Yang4 and Yang5) initially paired with the original McClear 

show MAD values of 14.22% and 13.24%, respectively, indicating robust performance without the 

need for adjustments from the other nine GHIClear models in temperate regions. It is crucial to 
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recognize the intricate relationship between the coefficients in decomposition models and their 

comparative effectiveness in the GHIClear model, particularly in temperate zones, underscoring a 

significant interaction where a lower GHIClear model ranking does not necessarily imply reduced 

accuracy in the decomposition model, as shown when comparing Tables 6 and 7. 

 

Figure 22: An illustration of one-minute datapoints of Kd-Kt plots using a model that show improvements 
that still meet the criteria for all tests. In this visualization, actual measurements are 

depicted by a grey backdrop, while the model results are displayed using a magma colour 
gradient. 

Further analysis involves identifying the most robust decomposition model, regardless of the 

specific GHIClear model employed. This involves noting the MAD variation for each decomposition- 

GHIClear model combination. Engerer2b to 2g models show MAD fluctuation between 4.13% and 

4.18%, indicating minimal change with GHIClear. This is expected due to their coefficients being 

based on the one-parameter TJ model. Furthermore, Yang models, as well as Engerer2a, 

demonstrate significant fluctuations due to their complex parameter GHIClear choice, which may 

result in underfitting when using different GHIClear due to the nature of REST2 and McClear. 

Analyzing top-performing decomposition models post GHIClear model adjustment reveals that 

Engerer2a with McClear achieves the lowest MAD value of 12.77 as per Figure 22; second to 

Paulescu.  

3.4 Conclusion 

In conclusion, this chapter introduces a clear and transparent framework that presents a 

sequence of evaluations designed to validate robust decomposition models across a series of 

tests addressing temporal resolution, spatial homogeneity, dataset period influence, and the 
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effect of altering clear-sky irradiance equations. This is particularly vital in regions lacking direct 

solar irradiance data. Therefore, utilizing the UK as a case example, this research 

comprehensively analyzed 104 decomposition models, mainly from or tested in temperate 

climates, for estimating DHI. The methodology employed a MAD limit of 15% as a metric for the 

success of a model. The approach included both hourly and minute-by-minute analysis. In 

Camborne, the number of models meeting hourly standards dwindled from 18 to 6 when 

assessed per minute, with only 2 models demonstrating consistent performance across both. 

Similarly, in Chilbolton, 32 models met the threshold on hourly data, decreasing to 5 for minute-

to-minute data, with just two models satisfying the threshold for both periods. For Lerwick, 

suitable models were reduced from 13 to 9, and 5 models retained their performance in both 

timeframes. This chapter also identified specific models that proved effective in multiple 

locations for both hourly and minute-by-minute intervals. The Paulescu model demonstrated 

consistent performances across all three sites, yielding MADs of 12.37% for Lerwick, 13.05% for 

Chilbolton, and 12.87% for Camborne. In Camborne and Lerwick, the Starke1 model stood out, 

mainly because of its effectiveness in coastal areas by incorporating daily Kt to assess 

atmospheric changes. On the other hand, Starke3 was significant only in Chilbolton, where it 

enhanced the analysis by integrating both hourly and daily Kt measurements. Spatial 

homogeneity analysis across Lerwick, Camborne, and Chilbolton revealed only five models 

surpassing the threshold, with Paulescu showing the lowest average MAD at 12.76%. The study 

further investigated the impact of dataset periods in Chilbolton, finding Paulescu, Yang5, and SM 

consistently meeting the threshold across datasets collected over different periods. These 

models, examined by box plots, were identified as the most robust, with average MADs of 12.52% 

for Paulescu, 13.61% for Yang5, and 14.08% for SM. Lastly, this research delved into the 

transformative effect of modifying the GHIClear model, which increased the tally of robust models 

from 5 (Paulescu,  Yang5, SM, Starke3, and Yang4) to a further 15. Specifically, integrating REST2 

or McClear as the GHIClear model basis yields improved accuracy, with 15 models within MAD < 

15%. Upon adjusting the GHIClear model, an analysis of the leading decomposition models 

indicates that the Engerer2a model combined with McClear yielded the lowest MAD value of 

12.77%, ranking second to Paulescu by 0.25%.
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Chapter 4 Exploring Transposition Techniques for In-

plane Solar Irradiance Estimation in 

Temperate Setting 

4.1 Introduction 

Validating mathematical models embedded within PV system feasibility software is especially 

critical in temperate climates due to the empirical nature of these models. Accurate estimation 

of POA irradiance cannot be overstated, as it significantly influences the economic viability of 

deploying PV systems. The analysis is twofold: initially, an evaluation of 15 pairs of optical models 

involving decomposition-transposition processes is presented. Optical model pairs are utilized 

to calculate DHI and DNI before these values are transposed to estimate POA irradiance. The 

analysis is segmented based on the average clearness index of the day, including overcast, 

intermediate, and clear conditions, ensuring a comprehensive analysis across a spectrum of sky 

clarity. This structured approach allows for a detailed exploration of the intricacies inherent in 

optical model pairs, offering fresh insights into their functionality and application under differing 

environmental conditions. Furthermore, the chapter examines 16 transposition models, half of 

which are employed in software and others not typically used, by leveraging measured GHI, DHI, 

and DNI data. Despite the rarity of such detailed irradiance measurements, their inclusion is vital 

for assessing model performance across six distinct cloud conditions. This novel methodological 

approach not only enhances the understanding of model behavior under diverse weather 

scenarios but also refines the models used in feasibility software, ensuring they provide reliable 

and accurate predictions essential for the successful implementation of PV systems in a 

temperate climate. 
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4.2 Methodology 

Table 8: Specifications of the actuator-based tracker and the FT system. 

System Type 
Experimental 

Duration 

𝝍𝒔𝒚𝒔𝒕𝒆𝒎 

(°) 

𝜷 

(°) 

1 Tracker 
Apr 14, 2023 – Apr 

13, 2024 

126 -247 
33 - 

68 

2 FT 180 55 

Transposition models are inherently empirical, developed from a range of experimental results 

tailored to specific climates. Essentially, such models can be divided into two categories: 

isotropic and anisotropic. Isotropic models depict DHI as a consistent distribution of rays across 

the entire sky dome, signifying equal irradiance in every direction. On the other hand, anisotropic 

models (e.g. Perez [185]), are considerably more intricate as they break away from the restrictive 

assumption of complete isotropy. They divide solar irradiance into distinct elements: circumsolar 

(rays within a spherical cone with a 2.5o  half angle), and horizon brightening (rays emanating from 

a planar beam) built on top of an isotropic foundation. Traditionally, these models utilize hourly 

irradiance data as their finest temporal resolution. However, there is a shift towards utilizing 

minute-by-minute data, raising critical questions about their effectiveness in temperate climates 

characterized by fluctuating weather conditions and at such granular irradiance levels. This shift 

necessitates an evaluation of whether these refined temporal resolutions maintain accuracy and 

reliability in predicting solar irradiance under variable atmospheric dynamics. Further, the 

examination of the optical model pairs and transposition pairs are performed at one-minute 

intervals, an approach designed to seize the variety inherent in the tracking combinations (i.e.,  

𝛽 − 𝜓𝑠𝑦𝑠𝑡𝑒𝑚) that an hourly computation would not facilitate [275]. The 15 optical model pairs 

under scrutiny are outlined in Table 3 in the earlier section. Moreover, in the later stages of this 

research, 8 supplementary transposition models (Badescu [217], Hay 1993 [210], HDKR [211], 

Jimenez [215], Klucher [212], Koronakis [214], Ma-Iqbal [20], Reindl [211], and Tian [216]) will be 

evaluated alongside those already utilized in the feasibility software. 

This research explores a diverse array of tilt and azimuth combinations, equipping a pyranometer 

on two distinct systems. The first, a conventional, south-facing static system, with a fixed tilt of 

55º. In contrast, the second system incorporates a tracking mechanism that adjusts the solar 

panel array's tilt angle along the East-West axis using an actuator control system. This tracker 

aligns the panels according to the sun's altitude and azimuth within a two-dimensional 
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coordinate system. However, due to actuator length limitations, it aims the panels within 

predefined boundaries during its tracking cycle, as outlined in Table 8. This tracking system 

provides valuable insights into tilt and azimuth combinations that extend beyond the empirical 

basis of most existing transposition models. Both systems utilize spectrally flat class A 

pyranometers, conforming to the IEC 61724 standard, which covers aspects from calibration to 

sensor placement, ensuring the consistency and accuracy of data collection. 

 

 

 

 

 

 

 

 

 

 

Figure 23: The flowchart provides a visual representation of the performance evaluation process for 
optical models, illustrating how DHI and DNI are derived through decomposition and 

subsequently combined with GHI to estimate modelled POA. Additionally, it depicts the 
evaluation of transposition models using actual measurements of DHI, DNI, and GHI. This 

dual approach helps in assessing both the models deployed in feasibility software. 

Using Equation 5, sky conditions are classified into clear, overcast, or intermediate categories, 

as explained in earlier sections. To mitigate errors in misidentifying daily average sky conditions, 

Kt values were calculated only when the SZA was below 75º. This approach avoids the early 

morning periods between 75.1 and 85º, which could be inaccurately classified as overcast due 

to misleadingly low Kt values below 0.30. By employing average Kt values, each day can be 

accurately categorized under specific conditions, enhancing the understanding of how 15 optical 

models, deployed in feasibility software, perform under clear, overcast, and intermediate 

conditions. At 𝜑 = 51.1°, where the prevailing condition was deemed to be intermediate (with an 

average Kt equal 0.48), clear conditions were observed on 31 of the 364 days, with an average Kt 
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of 0.70, while overcast conditions (average Kt = 0.19) were reported on 101 days as per Figure 24a 

and 24b.  

Despite the rarity of measured GHI, DHI, and DNI data, this research also leverages these 

measurements to evaluate the performance of 15 transposition models, seven of which are 

implemented in feasibility software while the remaining eight are not. This analysis aims to 

understand how these models perform under optimal conditions when provided with precise 

input data as seen in Figure 23. To deepen the understanding, the CAELUS algorithm's cloud 

coverage detection mechanism categorizes clouds into six distinct conditions: cloud 

enhancement, cloudless skies, thin clouds, scattered clouds, thick clouds, and overcast skies. 

Figure 24c illustrates that scattered clouds are the most frequent condition, totaling 175,847 

occurrences. This is followed by cloudless skies, which appear 19,079 times. Both thin clouds 

and cloud enhancements show comparable frequencies, recorded at 14,660 and 14,848 

instances, respectively. Similarly, overcast and thick clouds have nearly equal counts, with 

overcast conditions noted 5,944 times and thick clouds appearing 5,788 times. This classification 

adds a layer to the analysis, examining how clouds at minute-level irradiance impact the 

functionality of transposition models. Additionally, solar position is considered to further 

elucidate the interactions between cloud coverage and transposition model efficacy. It is 

important to note that the established figure of merit for both the optical model pairs and the 

transposition model evaluation is a MAD of less than 5%, aligning with common practices for 

evaluating the accuracy of irradiance models. 

 

 



Chapter 4 

116 

 

 

Figure 24:  Different sky classification methods have been applied to a year's worth of data (April 15th, 2023, to April 
14th, 2024) collected at the University of Southampton PV Outdoor Testing Facility. The analysis 

includes  a) the daily average clearness index, b) the total number of accumulated days per condition, 
and c) minute-by-minute cloud instances evaluated using CAELUS. 

 

Irradiance data, comprising GHI, DHI and DNI were sourced from the CEDA archive, measured 

via pyranometers installed at the Chilbolton Observatory. These instruments were positioned 

approximately 4 meters from the POA pyranometers associated with both the FT and tracking 

systems. It is important to note that while the GHI, DHI, and DNI datasets were provided through 

CEDA, the POA measurements originated from the University of Southampton’s outdoor solar 

testing facility. The POA measurements were acquired using Spectrally flat Class A CMP10 

pyranometers [285], which were connected to a CR1000X datalogger [286]. Data logging was 

conducted at one-minute intervals, capturing high-resolution irradiance data essential for model 

validation. All transposition models evaluated in this chapter (whether commonly integrated in 

PV feasibility tools or otherwise) were independently implemented using Python. These models 

were not simulated through proprietary software tools, as such platforms typically provide energy 

yield estimates rather than direct irradiance outputs, limiting their transparency and scientific 

reproducibility. Therefore, custom Python scripts were used for all decomposition models, with 

the exception of DISC and DIRINT, which were accessed through the open-source pvlib library. 

The data preprocessing methodology applied a stringent cleaning protocol, as outlined in Section 

2.1.3. This included correction for thermal offsets across GHI, DHI, DNI, and POA measurements 

for both FT and tracking configurations. 
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Model outputs were statistically assessed using the MAD as a percentage, with evaluations 

performed using tools from the scikit-learn library after each model iteration. The CAELUS cloud 

classification algorithm was also employed, implemented through the open-access Python 

package caelus (available on GitHub) [40]. This algorithm requires three inputs: clear-sky 

irradiance (derived from McClear), SZA computed using NREL’s SPA and measured GHI from the 

CEDA database. 

Certain limitations must be declared in this methodology.  The analysis here did not incorporate 

ρ measurements but instead specified a constant ρ = 0.20 for grass surfaces within the feasibility 

software. This could influence the comparative performance of the model pairs, particularly the 

FT system which is affected by its steep AOI. Unfortunately, this limitation is dictated by the 

constraints of the feasibility software, hence its adoption in this methodology. Moreover, the 

results presented here are based on standalone data from a single location. Another drawback is 

that the measurements focus solely on global in-plane POA, excluding diffuse and/or direct. This 

exclusion makes it challenging to determine the extent to which DHI or DNI contribute to errors 

in the analysis of in-plane POA. Aligning pyranometers with the POA is challenging, often resulting 

in alignment errors of several degrees. These errors increase as the AOI to the POA widens. 

Consequently, systems with a lower AOI, such as the tracker system, tend to exhibit fewer error 

percentages from POA and pyranometer misalignment compared to the FT system. However, it 

is important to acknowledge the impact of different elevation heights and the inherent nature of 

movement in tracking systems contributing to unavoidable errors in systems with varying AOI. 

4.3 Optical Models Pairs Deployed in Feasibility Software 

4.3.1 Clear Conditions 

The MAD for the 15 model pairs, across the three conditions for both the tracked and FT systems, 

are presented in Figure 25 and 26, respectively. The performance seems to hinge on the 

fundamental aspects of either the initiation of the decomposition segment or the implementation 

of the transposition component within the optical model combination.  A total of 4 models 

conform to MAD < 5% for the FT setup, with MAD fluctuating between 3.21% and 25.45%. Both 

Erbs and Reindl employ similar equations, exhibiting a negative linear gradient for the latter and 

a negative exponential-like shape for the former in clear instances. Comparing Erbs-Perez and 

Reindl-Perez, it is evident that their errors to measurement are closely aligned at 5.11% and 

3.21%, respectively. The same can be observed with Skartveit Olseth (referred to as SO), where 

the Erbs model results in  MAD of 17.25% and the Reindl model yields 14.88%. 
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Figure 25: The MAD (%) performance of 15 different decomposition-transposition model pairs is 
evaluated across clear, intermediate, and overcast conditions for the tracker. Underlined 

numbers signify that the pair meets the specified threshold. 

 

 

Figure 26: The MAD (%) values of 15 different decomposition-transposition model pairs is evaluated 
across clear, intermediate, and overcast conditions for the FT system. Underlined numbers 

signify that the pair meets the specified threshold. 

 

 

Clear Intermeidate Overcast

BRL-LJ 3.70 7.20 4.81

DIRINT-Perez 2.82 3.28 45.22

DISC-Hay 3.94 6.18 5.72

DISC-Perez 2.78 3.31 44.56

DISC-SO 3.31 3.12 3.23

Erbs-Bugler 8.08 6.24 10.69

Erbs-Hay 4.17 6.93 7.08

Erbs-LJ 3.42 5.62 5.05

Erbs-Perez 4.97 4.37 38.81

Erbs-SO 6.00 5.73 8.90

Erbs-TC 8.36 12.95 51.07

Erbs-Willmot 13.92 7.14 37.66

Reindl-Hay 4.79 5.20 13.01

Reindl-Perez 4.41 3.33 35.95

Reindl-SO 7.70 6.44 9.30

Daily Sky Condition

O
p

ti
c

a
l M

o
d

e
l

Clear Intermeidate Overcast

BRL-LJ 7.44 10.81 7.42

DIRINT-Perez 4.96 5.53 31.73

DISC-Hay 6.80 5.89 7.28

DISC-Perez 3.73 4.99 30.23

DISC-SO 3.22 2.87 2.67

Erbs-Bugler 15.27 10.39 10.82

Erbs-Hay 10.60 6.10 8.86

Erbs-LJ 11.03 9.23 7.02

Erbs-Perez 5.11 8.91 26.79

Erbs-SO 17.25 10.93 10.93

Erbs-TC 16.44 19.35 40.47

Erbs-Willmot 25.45 17.31 8.73

Reindl-Hay 15.01 11.01 12.25

Reindl-Perez 3.21 9.09 25.76

Reindl-SO 14.88 9.72 6.72
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For the tracker, 10 of the 15 models conform to the figure of merit. Using a simple isotropic 

transposition model (in this case, Liu-Jordan or LJ) offers a more accurate portrayal of POA; 

mainly due to DHI being minimal, resulting in a low error from the measurement. Still, all models 

using Perez as the transposition part, adhere to the threshold, albeit producing overestimations 

rather than underestimations possibly due to the mathematical contributions of the model 

coefficients of the sky clearness bins found within the lookup table of the Perez model. 

4.3.2 Overcast Conditions 

By their nature, overcast conditions imply that a considerable segment of total irradiance will 

originate from DHI. Hence, the role of decomposition models becomes similar to their function 

in clear conditions but reversed -  now focusing on DT. According to Figure 26, all combinations 

for the FT system except for the DISC-SO pair have MAD >5%. Moreover, the range of percentage 

errors for the tracked system extends from 3.23% to 51.07%, while for FT, it spans 2.67% to 

40.47%. For the tracked system, the number of models meeting the error threshold in overcast 

conditions decreased from 10 to 2. This reduction is primarily because the function of cos(AOI) 

nears one in clear conditions, where BT dominates. Notably, employing LJ in the transposition role 

performs similarly in overcast conditions. Comparing BRL-LJ and Erbs-LJ, both assume 𝐷𝑇 

computation is uniformly distributed over the sky and their percentage errors to the measurement 

for the tracked system are quite similar, with a difference of only 0.24%. This further validates the 

use of isotropic models under overcast conditions, where diffuse irradiance scatters 

homogeneously.  

The only model pair within the established threshold in both systems is the DISC-SO 

combination. However, it is important to note that the optimal estimation of DHI does not 

necessarily come from the DISC among the 5 decomposition models, as other transposition 

models using DISC still display substantial errors from the measured POA. In addition, regardless 

of the decomposition model used or the system type examined, combinations incorporating 

Perez consistently perform poorly. Extreme MAD ranges from 25.76% to 45.22%, possibly due to 

unsuitable constants defined in the lookup function for low sky brightness coefficients, 

suggesting a calibration necessity. The TC transposition model also presents the most significant 

POA percentage errors in both systems, with 51.07% for the tracker and 40.47% for the FT setup, 

respectively.  The cause of this low performance is not attributed to the Erbs component, but 

primarily to the transposition aspect. The methodology is simplified, which can lead to 

inadequate results when horizons are darker during overcast conditions. The TC model results 
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from an integrated segment of the sky, exposed to these specified 𝛽 − 𝜓𝑠𝑦𝑠𝑡𝑒𝑚   combinations. 

However, only a limited set of measurements from the 49 combinations in clear skies were taken, 

specifically from late January to early April at a 𝜑 < 50°. 

 

4.3.3 Intermediate Conditions 

Similar to the conditions of both clear and overcast conditions, the number of model pairs 

meeting the threshold is higher in the tracked system (Figure 25) compared to the FT setup (Figure 

26). The tracked system features 5 model pairs with MAD within 5%, while the FT system includes 

only 2. For the FT system, these are DISC-Perez, which falls just 0.01% within the threshold, and 

DISC-SO with MAD of 2.87%. Meanwhile, the tracked system also includes these two pairs, in 

addition to DIRINT, DISC, and Reindl paired with Perez. 

 The Erbs-Willmot and Erbs-TC model combinations had the most significant percentage errors 

relative to the measured POA. The former had 7.14% and 17.31% for the tracker and FT system, 

respectively, while the latter combination showed a percentage variance of 12.95% and 19.35%. 

The TC model employs trigonometric principles to track DT variability rooted in solar position, 

while the Willmot model exhibited a modification of the Hay model, incorporating its unique sky 

clarity definition and a second-order polynomial as a function of 𝛽. The conception of both the 

Willmot and TC models accepts that enhancements can better the approximations for dispersed 

clouds, as brightening on the horizon in these circumstances stem from a seemingly larger sky 

coverage due to clouds overlapping near the horizon. Naturally, the error percentage of Willmot 

and TC is reduced in a tracked system because the 𝛽 − 𝜓𝑠𝑦𝑠𝑡𝑒𝑚 leads to angles upon which they 

have been validated. A certain consistency is noticeable when the Perez transposition model is 

applied. In the tracked system, the discrepancy between models employing Perez is marginal, 

with only a difference of 1.09% between the highest and lowest MAD (i.e., all fall within the 3.38% 

to 4.37% margin). However, the FT system does not exhibit a similar pattern, having a more 

significant percentage difference; i.e., 4.10% between 4.99% and 9.09%. This may suggest that 

the Perez model functions well under intermediate conditions and that with accurate DHI 

estimation, it may yield smaller percentage differences. Its coefficients seem better suited due 

to two primary factors: the selected coefficients align better with the average intermediate sky, 

and the SZA parameter may inadvertently contribute to intermediate conditions being aligned 

with brightness coefficients. 
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Moreover, during intermediate conditions, which account for the majority of the experiment's 

duration with an average Kt of 0.48, the roles of the decomposition and transposition models 

become equivalent as both BT and DT contribute similarly to the POA. For the tracked system, 

employing an isotropic transposition model (LJ) leads to an overestimation of 7.20% if BRL is the 

decomposition basis or 5.62% if Erbs is chosen. By assuming an isotropic sky, models can 

effectively capture scattering. However, FT portrayed a two-fold increase in MAD from 

measurement with BRL-LJ and Erbs-LJ compared to its tracking counterpart as the tracker 

observes sky variations under different cloud accumulations owing to its 𝛽 −

𝜓𝑠𝑦𝑠𝑡𝑒𝑚 combinations. The decomposition models used for LJ (i.e., Erbs and BRL) may require 

adjustments in intermediate conditions due to their inverse sigmoid function, elucidating the 

estimation sign change when transitioning to a tracking system. The DISC-SO pair indicates the 

most suitable performance across both systems. 

4.3.4 Analysis of Decomposition Against Transposition  

Identifying appropriate irradiance models is critical, whether for transposition or decomposition 

purposes. It is particularly important to validate these models from various angles (i.e., through 

the use of a tracker). Feasibility software programs integrate diverse methods that incorporate 

decomposition models to forecast DHI and then DNI (or the other way around), followed by 

transposing them. The examination underway investigates which factor plays a stronger role in 

percentage discrepancies: the decomposition or the transposition model. Figure 27 presents the 

overall percentage error of the 15 model pairs on the tracker system, and Figure 28 on the FT 

setup. Notably, the variations display distinct percentage discrepancies. The decomposition 

model employed will contribute to this difference, but the transposition model implementation 

after the prediction of DHI (and DNI) proves to be crucial. 

 

Figure 27: Across the 15 different optical models, the overall percentage error due to the effects of 

decomposition and transposition is presented for the Tracker.  

A closer analysis of various combinations indicates that the main variation stems from the choice 

of the transposition model, irrespective of the foundation of the decomposition model. For 

example, considering the Erbs, DISC, and Reindl models and pairing them with Perez, Hay, or SO 
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BRL 6.24 - - - - - -

Erbs 5.28 13.95 6.74 6.63 7.63 23.11 16.14

DIRINT - 14.85 - - - - -

Disc - 14.68 5.86 3.17 - - -

Reindl - 12.25 7.33 7.34 - - -
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reveals more apparent differences in the choice of transposition model than in the choice of 

decomposition model. Taking Erbs-Perez as a reference point:  Altering the decomposition model 

leads to a maximum variation of 2.43% for the tracked system and 2.17% for the FT system among 

the previously mentioned models. To further corroborate this, analyzing the DISC decomposition 

model combined with Hay, Perez, or SO shows a variation of 6.29% for the FT system and 7.32% 

for the tracker system across these three configurations. Moreover, using Hay for transposition 

while varying the decomposition models (such as DISC, Erbs, and Reindl) results in a 5.34% 

variation for the FT system and 1.47% for the tracker system yet again changing the transposition 

yields to a maximum difference of 11.51% for the tracker system and 8.53% for the FT system. In 

essence, while there is a discernible difference in selecting the decomposition model, it is not as 

pronounced as when choosing the transposition model. This can be attributed to the varied 

mathematical approaches used by the transposition model to estimate the diffuse component 

based on DHI data. 

 

Figure 28: Across the 15 different optical models, the overall percentage error due to the effects of 

decomposition and transposition is presented for the FT system. 

4.3.5 Efficacy of the Optimal Optical Model 

An important aspect of this study is to examine how well an optimal model combination performs. 

As noted in prior literature, it is imperative to examine the scalability of model pairs at different 

𝛽 − 𝜓𝑠𝑦𝑠𝑡𝑒𝑚 system   combinations, thus this section's focus will be solely on the actuator-based 

tracker. Figure 25 provides a comprehensive analysis, showing that the pairing of the DISC 

decomposition model with the SO transposition model results in the smallest percentage errors. 

The DISC model incorporates SZA, and the SO model, devised empirically at φ =60°, includes SZA 

in its equation in conjunction with the AOI. Figure 29 illustrates the comparison between 

measured and modelled data (DISC-SO), for varying sky conditions. 

Figures 29a and 29b demonstrate a close alignment between the modelled and measured POA 

irradiance, mirroring similar fluctuations. This alignment suggests that while the model generally 

captures the irradiance profile, it occasionally diverges by overestimating or underestimating the 

POA. The coefficients of determination (R2), 0.5034 for clear conditions  and 0.5379 for 

LJ Perez Hay SO Bugler TC Willmot

BRL 9.58 - - - - - -

Erbs 8.77 13.54 7.25 11.47 10.92 24.95 15.63

DIRINT - 12.73 - - - - -

Disc - 11.37 6.35 2.84 - - -

Reindl - 13.20 11.69 9.33 - - -
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intermediate suggest a scatter in the data points due to the high temporal resolution of the input 

data and hourly basis of the SO model's creation, particularly evident in Figure 29e, which shows 

dense clustering of data points from 0 to 200 W/m². In overcast conditions, as depicted in Figure 

29f, there is an initial strong alignment in low irradiance readings, but less so at higher levels, 

explaining the low R2 and variability. 

 

Figure 29: The given illustration shows a side-by-side comparison of POA irradiance recorded every 
minute but displayed in 15-minute slots against the time of day. This includes both 

measured and the DISC-SO model for the tracked system under clear (a), intermediate (b), 
and overcast (c) conditions. Additionally, a scatter plot provides a comparison of per-minute 

irradiance over the selected period between the measured and modelled POA for clear (d), 
intermediate (e), and overcast (f) conditions. 

Solar radiation data is often required at intervals shorter than the typical hourly break. This 

demand becomes even more pressing in light of the volatile weather typical of temperate regions. 

Accurate irradiance estimation is crucial, especially in areas with significant variations in SZA. 

Using an hourly timeframe can compromise the reliability of these estimates. However, most 

decomposition and transposition models have been empirically developed using hourly data 

inputs. Hence, this study investigates the effectiveness of the DISC-SO when utilizing both hourly 

and minute-by-minute input data. 

Across all the sky conditions, as evident in Figure 30, feeding hourly data into the decomposition 

and transposition contexts results in a lower MAD of the DISC-SO compared to feeding in minute-

by-minute data. The most significant difference occurs during intermediate conditions, where 

switching from hourly to minute data shows increases of 1.68% to 3.19%. Additionally, in 

overcast and clear conditions, similar trends are observed. Specifically, under clear conditions, 

hourly data exhibit MAD of 2.35%, while minute data show 3.31%. Moreover, during overcast 
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conditions, minute data results in an MAD of 3.23%, whereas hourly data has an MAD of 2.15%. 

These variations may be due to the overprediction of DHI at the minute scale, leading to 

underestimations in POA when transposed, and the reverse occurring under clear conditions with 

minute data.  

 

 

Figure 30: The MAD (%) of the DISC-SO model pair for the tracked system, using solar irradiance inputs in 

both hourly and minute intervals, across different sky conditions. 

4.4 Sub-Hourly Validation of Transposition Models 

4.4.1 Assessing Cloud Coverage Effects 

 

 

 

 

 

 

Figure 31: The MAD (%) of 16 different transposition models over six distinct cloud coverage scenarios 
utilizing the CAELUS algorithm, incorporating inputs of measured GHI, DNI and DHI. 

Figure 31 clearly illustrates that among the 16 transposition models evaluated, the SO model 

consistently performs the best under varying cloud conditions as recorded by CAELUS. The SO 
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model shows the smallest deviation from measured DAT POA irradiance, with discrepancies 

ranging from 2.7% under cloud enhancement conditions to 5.0% in scattered cloud conditions. 

Specifically, the lowest MAD of 2.7% occurs under the cloud enhancement condition, attributed 

to the SO model, while the highest MAD, reaching 41.9%, is observed in the Ma-Iqbal (MI) model 

during overcast conditions.  

Regarding discrepancies, the Jiminez and MI models consistently exhibit the highest MAD. This 

pattern arises because both models employ a similar approach to calculating the transposition 

factor, incorporating functions of the AOI and SZA along with their tilt inputs. Delving into the 

specifics, the MI model incorporates both Kt and Kt
2 within its calculations. This approach might 

introduce exacerbating effects when squared, particularly under conditions of low Kt moments 

which are typical in overcast and thick cloud scenarios. In such weather, a low Kt value does not 

directly correspond to a specific, singular higher Kd value; instead, Kd exhibits significant 

variability across a range of Kt values as discussed in the earlier chapter. For the Jiminez model, 

it operates under the assumption that 20% of the cloud cover is diffused. This assumption proves 

problematic, particularly in the contexts of overcast and thick cloud formations, where such a 

simplification can lead to significant inaccuracies in model outputs. 

 

Figure 32: Four distinct factors are utilized within transposition models, each exhibiting average values 
across six unique cloud coverage scenarios from the CAELUS algorithm. 

In contrast, the Hay and Hay1993 models demonstrate remarkably similar performances, with a 

maximum deviation of only 0.39% under scattered cloud conditions. The Hay1993 model, an 

updated version of the Hay model, modifies the original sky factor. However, this alteration 
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seems ineffective in temperate regions, particularly when observing minute-by-minute variations 

as per Figure 32 which shows the different factors. Specifically, the original Hay model calculates 

a sky clarity factor using the ratio of DNI to Extraterrestrial Direct Normal Solar Irradiance (named 

𝑓𝐻𝑎𝑦), whereas the Hay1993 model adjusts this ratio to DNI divided by the solar constant, thereby 

normalizing to the peak values of solar irradiance (named 𝑓𝐻𝑎𝑦 1993). Nonetheless, it is observed 

that during periods of scattered clouds, the average value 𝑓𝐻𝑎𝑦 is 0.29, in contrast to 𝑓𝐻𝑎𝑦 1993, 

which averages at 0.11 (nearly three times less). This difference could account for why the Hay 

1993 model exhibits a MAD of less than 0.71% in scatter cloud conditions. Furthermore, Figure 

32 shows that 𝑓𝐻𝑎𝑦 is not showing the inversely proportion trend of a lower factor as moving 

toward overcast conditions, unlike its counterparts.  

Moreover, isotropic models such as those by Badescu, Koronakis, LJ, and Tian demonstrate 

minor discrepancies across various cloud conditions. The differences are modest, ranging from 

1.57% in cloud-enhanced scenarios to 0.75% in cloudless conditions, 0.92% in thin clouds, 

2.18% in scattered clouds, 1.75% in thick clouds, and 1.15% in overcast conditions. These 

models assume that the intensity of diffuse irradiance is uniformly distributed across the sky. 

However, this isotropic assumption does not entirely hold as the models apply different 

numerical splits to the sky conditions; for instance, LJ uses a division factor of 50%, Badescu uses 

75%, and Koronakis applies two-thirds. This variation underscores the limitations of the isotropic 

approach in accurately modelling sky conditions across different cloud types. 

The Reindl model seeks to quantify the diffuse irradiance emanating from near-horizon regions 

by introducing a modulation factor (𝑓𝑅). This model posits that the intensity of diffuse irradiance 

decreases with increasing cloud cover, specifically from the horizon. Its performance is nearly 

identical to that of its successor, the Klucher model, with only minor discrepancies, peaking at a 

difference of 0.5% during thin cloud conditions. The Klucher model builds on this by attempting 

to refine cloud coverage estimations to better capture horizon effects, aiming to enhance sky 

clarity through deploying its own factor named (𝑓𝐾). Klucher outperforms its Reindl counterpart 

primarily due to the effectiveness of its applied factor. Notably, the values of 𝑓𝐾 exceed those of 

𝑓𝑅 in various conditions; by over 0.11 during cloud enhancement, more than 0.21 in cloudless 

conditions, and exceeding 0.10 during thin cloud coverage. This differential in factor values may 

account for Klucher's slight edge over the Reindl model. Consequently, the Klucher model 

achieves modest improvements, noting a 0.40% increase in accuracy during cloud-enhanced 

conditions, a 0.02% improvement under cloudless skies, and a 0.50% enhancement during thin 

cloud periods, when compared to the Reindl benchmark. Figure 32 illustrates only minor 

discrepancies between 𝑓𝑅 and 𝑓𝐾 in overcast and thick cloud scenarios (less than 0.02%), 
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corresponding to minimal MAD differences of 0.03% and 0.04% for overcast and thick cloud 

conditions, respectively. 

The HDKR model, derived from the Hay model, incorporates a horizon brightening mechanism 

akin to the Klucher model (𝑓𝐾) but still delivers similar performance. This similarity suggests that 

its empirical mathematical equation does not significantly enhance irradiance predictions in 

temperate climates on a minute-by-minute basis. Consistent with previous findings, the TC and 

Willmot models also display comparable outcomes, indicating that their empirical approaches 

to quantifying solar disc proximity and sky irradiance from the horizon region fall short, 

particularly under thick cloud and overcast conditions, where their MAD exceeds 24%. 

Delving deeper into the empirical foundations of the SO model, which utilized solar irradiance 

measurements from Norway at a specific φ (60.2º), it appears that diffuse radiation primarily 

emanates from parts of the sky near the SZA under overcast conditions. This effect diminishes 

with the absence of cloud cover, as demonstrated by its optimal performances with the lowest 

MAD of 2.68% in cloud enhancement conditions and 2.84% in cloudless conditions. The SO 

model advances the Hay model by integrating a correction factor that accounts for barriers that 

obscure part of the diffuse irradiance from the horizon. This inclusion is distinctive, as such 

barriers are often overlooked in other transposition models. 

 

Figure 33: Bar chart series designed to illustrate the distribution of bins utilized by the Perez model in its 
mathematical computations across various cloud conditions: a) cloud enhancement 

moments, b) cloudless moments, c) thin cloud moments, d) scattered cloud moments, e) 
thick cloud moments, and f) overcast moments. The average sky clearness (𝜀) and 

brightness (∆) coefficients are shown for each cloud condition. 
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Most feasibility software opts for either a simple isotropic model, such as LJ, or a more complex 

transposition model like the Perez Model. It would be insightful to compare the performance of 

these models more closely with the superior SO model. According to Figure 31, the performance 

of the Perez model declines as cloud cover increases. The MAD reaches its highest at 18.12% 

under thick cloud conditions and 17.42% during overcast scenarios. Additionally, in scattered 

clouds and thin cloud conditions, the MAD registers at 15.66% and 14.37%, respectively. This 

observation confirms earlier findings that the coefficients deployed within the Perez model's 

lookup tables may not be well-suited for temperate climates like that of the United Kingdom, 

despite including DHI and DNI measurements. The Perez model incorporates two principal 

parameters within its empirical framework: the brightness coefficient (∆) and the clearness 

coefficient (𝜀). These coefficients are integral to the empirical functions utilized in the model. 

However, the primary challenge may not stem from ∆ but from 𝜀, which are pivotal for ensuring 

model accuracy across varying sky conditions. According to Figure 33, it presents the average ∆ 

and 𝜀 specified under the CAELUS cloud conditions. Furthermore, it delineates the distribution of 

bins that the Perez model employs in its mathematical computations across different cloud 

scenarios. The Perez model utilizes eight bins to determine the coefficients for its mathematical 

function. Notably, in conditions such as thin, scattered, thick, and overcast clouds, the majority 

of counts (i.e., the computed 𝜀 condition) are predominantly found in bin number 1, accounting 

for 37.50% in thin clouds, 57.84% in scattered clouds, 99.97% in thick clouds, and 99.93% in 

overcast conditions. This suggests that the coefficients associated with bin 1 in the Perez model, 

designed to adapt to various sky conditions, may not be optimal for temperate regions. 

Different transposition models handle anisotropic cloud brightening effects through varying 

approaches. Cloud brightening refers to the phenomenon where thin or fragmented clouds 

increase diffuse irradiance near the solar disk, within the circumsolar region [40]. This leads to a 

non-uniform, or anisotropic, distribution of diffuse radiation with a greater concentration near the 

sun’s position rather than being evenly scatted across the sky. The Perez example, as previously 

discussed, explicitly incorporates anisotropic sky conditions by separating the diffuse irradiance 

into three distinct components: circumsolar brightening, horizon brightening and isotropic 

diffuse radiation [185]. It adjusts the transposition of the diffuse irradiance through dynamically 

weighing these components based on the clearness index and SZA. The SO model, through its 

mathematical formulation, introduces a correction mechanism based on the parameter 𝑓𝐻𝑎𝑦. 

When 𝑓𝐻𝑎𝑦 is elevated, which is typical under clear skies or conditions with pronounced 

circumsolar enhancement, the model applies a correction factor to account for increased 

anisotropy. This adjustment helps reduce the overestimation of irradiance near the solar disk, 

particularly during periods of thin cloud cover or high cloud concentration. By scaling the 
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circumsolar contribution appropriately, the SO model improves its accuracy under varying cloud 

conditions as depicted in Figure 31. 

4.4.2 Investigating Solar Position Dynamics 

Figure 31 illustrates that the SO model consistently surpasses the performance of both the LJ and 

Perez models under various atmospheric conditions. This superiority is primarily due to the 

different methods these models use to manage anisotropy and circumsolar effects in dynamic 

cloud scenarios. Specifically, the LJ model, a traditional approach to diffuse irradiance 

modelling, assumes a uniform distribution of diffuse light across the sky dome. This isotropic 

assumption falters under conditions such as thin or scattered clouds, which can intensify 

brightness in specific sections of the sky, leading to significant deviations in its predictions, as 

evidenced by its MAD of 11.62% for thin clouds and 13.08% for scattered clouds. This limitation 

results in broader scatter and systematic errors in the predicted POA irradiance. In contrast, the 

Perez model introduces adjustments for the anisotropic distribution of diffuse irradiance, 

incorporating factors that account for circumsolar and horizon brightening along with other 

directional influences. However, in environments characterized by complex cloud movements 

(such as thin clouds traversing the solar disk or scattered clouds causing intermittent bright 

spots) Perez's mathematical model may still fall short. The model occasionally fails to capture 

the high spatial and temporal variability brought on by fluctuating cloud cover. The consistently 

superior performance of the SO model is attributed to its refined approach in modelling the sky's 

diffuse component, which effectively adapts to evolving atmospheric dynamics. This model 

integrates angular distribution functions sensitive to the direct beam’s position and the 

heterogeneous nature of cloud layers. For instance, under thin clouds, the SO model records 

MAD of 4.44%, significantly lower than Perez's 14.37% and LJ's 11.62%. Under scattered clouds 

and thick cloud instances, the SO model maintains MAD rates of 5.03% and 4.23%, respectively, 

while LJ and Perez exhibit markedly higher errors. This trend highlights the SO model's capability 

to maintain lower error rates in highly variable and challenging sky conditions, showcasing its 

advanced handling of anisotropic diffuse radiation and dynamic cloud interactions. 

Figure 34 presents scatter graphs that illustrate the point density for six specified cloud 

conditions, also showing the distribution of altitude and azimuth (i.e., the sun path) as a function 

of Kt, using measured DAT POA as the benchmark. In scenarios of cloud enhancement, the SO 

model registers the lowest MAD at 2.69%, followed by the Perez model at 7.42%, and the LJ model 

trailing slightly with an additional 0.12%. Notably, during cloud enhancement, the majority of Kt 

values exceed 0.68, with lower values observed at times of low altitude (high SZA). Furthermore, 
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Figure 35 delves into the interplay between solar position and the MAD for each model. The SO 

model displays fewer instances where MAD exceeds 20%, especially when compared to the LJ 

and Perez models, which both show a broader distribution of MAD instances above 20% during 

periods of low altitude. In conditions characterized by bright cloud edges that amplify local 

irradiance, the measured POA irradiance frequently surpasses predictions by the LJ and Perez 

models. This discrepancy is addressed by the SO model, which incorporates elements (such as 

the AOI and SZA) that account for transient increases in light due to forward scattering at cloud 

edges, thereby enhancing accuracy and consistency in matching observed data. 
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Figure 34: In an analysis of six distinct cloud formation instances, the scatter plots for the Liu-Jordan 

(LJ), Perez, and Skartveit-Olseth (SO) models are displayed, emphasizing point density variations. 

Additionally, the measured DAT POA values are presented across various solar position coordinates, 

serving as a benchmark relative to the clearness index (Kt). 
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During cloudless moments, the LJ and Perez models exhibit closely matched performances, with 

only a 0.11% difference in MAD; however, the SO model achieves the lowest MAD at just 2.84%. 

Even under clear skies, slight variations in atmospheric clarity, aerosol content, and solar 

geometry (as depicted in Figure 35) can introduce significant anisotropy in diffuse irradiance. The 

SO model's advanced angular distributions enable it to more accurately align with measured POA 

values, evident by the denser clustering of data points along the one-to-one line. Even in 

scenarios typically considered straightforward for modelling, the SO model demonstrates 

superior performance with MAD nearly one-third that of the LJ (7.35%) and Perez (7.46%) models. 

Figure 35 also highlights the rarity of instances where the SO model's MAD exceeds 20%, 

contrasting sharply with the Perez and LJ models under thin and scattered cloud conditions. 

When said clouds intermittently block the sun or drift through the circumsolar region, the direct-

to-diffuse irradiance ratio shifts abruptly. The SO model efficiently accommodates these rapid 

changes through a function that manages the effects of obstacles blocking the horizon and 

partially obscuring diffuse irradiance. This approach results in a more consistent alignment of 

modelled points with measured data, avoiding the broad spread or systematic deviations that are 

more apparent in the LJ and Perez models.  

 

Figure 35: The altitude-azimuth coordinate system illustrates the MAD as a function of cloud formation, 
utilizing the CAELUS algorithm across three transposition models: Liu-Jordan (LJ), Perez, and 

Skartveit-Olseth (SO). In such plots, sections are demarcated at 10 degrees azimuth and 5 
degrees altitude. 

Under uniformly cloudy conditions (i.e., overcast conditions), where irradiance is predominantly 

diffuse yet directionally influenced (e.g., minimal horizon brightening but increased illumination 

from the cloud base), the SO model demonstrates greater adaptability compared to the LJ model, 

which tends to underperform because of its reliance on isotropic assumptions. It also 

consistently surpasses the Perez model, which struggles with inaccuracies due to poorly 
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calibrated parameters for thick, homogeneous clouds, particularly due to the incorrect 

coefficients from bin 1 as discussed previously. These differences highlight the advanced 

capabilities of the SO model in handling diverse atmospheric conditions more effectively. Figure 

35 demonstrates that in scenarios with dense clouds and overcast skies, the SO model maintains 

a more stable distribution of MAD values across azimuthal-altitude coordinates, indicating its 

effectiveness not only in complex weather conditions but also in improving overall measurement 

accuracy. Numerically, as per Figure 31, when diffuse irradiance predominates (i.e., Overcast 

conditions), the SO model achieves a notably lower MAD of 4.59% compared to LJ (11.48%) and 

Perez (17.42%). This significant advantage underscores the SO model's superior performance in 

modelling diffuse irradiance, even in environments with uniformly low light levels. 

4.5 Conclusion 

In conclusion, this chapter involved analysing 15 different optical model combinations within 

feasibility software, comparing them against measured POA for both a tracking and a south-

facing tilted system set at 55° in a sub-hourly context. The error of the model-derived POA from 

that derived from measurement (i.e., the error of the model) ranged drastically, from 2.67% to 

51.07%, influenced by factors such as Kt and the type of system used. Evaluating the precision of 

these models, particularly when MAD exceeded 5%, revealed inconsistencies across different 

sky conditions. Specifically, the number of model pairs meeting the threshold decreased with 

diminishing sky clarity: 10 pairs in clear skies (ranging from 2.78% to 4.97%), five pairs in 

intermediate conditions (from 3.12% to 4.37%), and only two pairs under overcast conditions 

(4.81% and 3.23%) for the tracking system. For the fixed tilt system, the numbers were five in clear 

conditions (from 3.21% to 4.96%) and two in intermediate conditions, dropping to just one, DISC-

SO, in overcast conditions with an MAD of 2.67%. Furthermore, the impact of decomposition 

versus transposition was examined. While changes in decomposition resulted in a maximum 

percentage discrepancy of 2.43% for tracking systems and 5.34% for fixed-tilt systems, altering 

the transposition model led to a percentage error of 11.51% for tracking systems and 8.53% for 

fixed-tilt systems. Additionally, the DISC-SO pair was analyzed to assess the effect of temporal 

resolution in input solar irradiance data. It was found that using hourly input data resulted in lower 

MAD, with values of 1.44% under intermediate conditions, 2.15% in overcast conditions, and 

2.35% in clear conditions, performing better than minute data. This may be due to the empirical 

definition of the model combination, as the models were developed using hourly data rather than 

minute data. This chapter examines the integration of measurement data into transposition 

models, eliminating the necessity for decomposition models. The analysis covered 16 
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transposition models, eight of which are utilized in feasibility software, across six different cloud 

conditions. Discrepancies in model outputs ranged from 2.69% to 41.91%. Notably, the SO 

model demonstrated the smallest deviations from measured DAT POA irradiance, with 

discrepancies as low as 2.69% under cloud enhancement conditions and up to 5.03% under 

scattered cloud conditions. Further mathematical exploration of these models revealed that the 

specific implementations of some models significantly influence their performance under varying 

cloud scenarios. Both the original Hay model and its refined version, Hay1993, displayed similar 

performance, with maximum discrepancies of just 0.71%, attributed to the updated factor in 

Hay1993. Moreover, the analysis highlighted the Perez model's poor performance in cloudy 

conditions, which is primarily due to the unsuitability of the clearness coefficient used within its 

1st bin for temperate climates at minute-level irradiance measurement. Further investigations 

into the Perez model, alongside the LJ and SO models, delved into the dynamics of cloud 

concentration and azimuth-altitude movements. Among these, the SO model was found to be the 

most effective, showing the lowest MAD values of 2.69%, 2.84%, 4.44%, 5.03%, 4.23%, and 

4.59% under various cloud conditions including cloud enhancement, cloudless, thin clouds, 

scattered clouds, thick clouds, and overcast, respectively. Future research can progress by 

adjusting the thresholds of the clearness coefficient for various bins to better align with 

temperate climates and minute-level data. Additionally, the findings presented in this chapter 

establish a foundation for BOA irradiance estimations, utilizing the identified transposition factor, 

specifically the SO model. 
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Chapter 5 Evaluation of Clear-Sky Irradiance 

Prediction with Varying Atmospheric Data 

Inputs 

5.1 Introduction  

Accurate solar resource assessments are vital for the effective design and performance 

modelling of PV systems throughout their operational lifespan, significantly influencing economic 

planning based on anticipated energy outputs. These evaluations typically depend on precise 

solar radiation data, ideally obtained from direct irradiance measurements, which underpin 

feasibility studies. Yet, the acquisition of such data often faces challenges due to the substantial 

upfront investment required for radiometers, their maintenance costs, and the demands of 

continuous operation. Comprehensive data collection necessitates monitoring across all 

seasonal cycles with different sun paths to capture the dynamic nature of solar conditions and 

varied sunlight exposure. In many areas, especially those without direct irradiance 

measurements, the complexity of solar irradiance estimations increases due to atmospheric 

interference such as gas absorption, particle scattering, and cloud coverage, all of which vary by 

geography and climate, complicating site-specific assessments. Consequently, forecasters 

frequently resort to using modelled data. These models primarily employ clear sky irradiance 

estimates, which predict the solar irradiance that reaches the Earth's surface under clear sky 

conditions, proving essential not only for projections but also for assessing solar potential in 

optimal conditions. Previous studies have recommended using specific measurement inputs like 

AOD550, AE, and PW for these models, although such detailed measurements often remain 

unrecorded. This chapter will delve into the critical role of precise clear-sky irradiance data 

across various applications and evaluate the impact of atmospheric conditions derived from 

satellite data on solar irradiance modelling. It will scrutinize six clear-sky models, including the 

accessible McClear and ERA5 model alongside four REST2 variants that integrate data from 

MERRA2 (with and without an elevation adjustment mechanism), CAMS, and benchmark 

measurements from AERONET. By merging irradiance modelling with assorted satellite datasets 

from 67 global stations, totaling over 18 million data points, this analysis will offer a 

comprehensive insight into how different atmospheric inputs influence the errors in modelled 

irradiance, shaped by the specific configurations of radiation models and the diverse satellite 

data utilized. 
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5.2 Research Approach 

Figure 36: Global map showing the mean annual aerosol optical depth (AOD) from MERRA2 for regions 
within ±60° latitude [72][274], featuring pairs of radiometric and sunphotometric stations 

marked by blue circular dots. The inset focuses on European stations, which are highlighted 
with dark pink dots. 

Prior studies have demonstrated that clear-sky models incorporating atmospheric inputs like 

AOD550, AE, and PW yield more accurate predictions. These parameters significantly influence 

irradiance, as previously detailed in this thesis. The focus here is on two readily accessible 

models that employ these specific inputs, beginning with the McClear model. It is a fully physical 

model, that not only surpasses many empirical models but which also operates as a web service. 

This model is based on radiative transfer principles, it uses atmospheric properties provided by 

the EU-funded MACC project to estimate solar irradiance during cloud-free instances. It 

incorporates AE and AOD values synonymous with CAMS. McClear’s design utilizes lookup tables 

established with the libRadTran radiative transfer model, allowing rapid execution and the 

capability to run as a web service using satellite data sets. The service delivers GHIClear and DNIClear 

at one-minute intervals. The physical nature and user-friendly accessibility of McClear make it an 

attractive option for solar forecasters. The other easily accessible irradiance model is ERA5, the 

fifth-generation satellite dataset from the European Centre for Medium-Range Weather 

Forecasts (ECMWF), offers significant improvements in spatial and temporal resolution 

compared to its predecessors, providing data from 1950 to nearly real-time. It supports satellite-
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derived parameters with a spatial resolution of 31 km and hourly temporal updates. Furthermore, 

This research also employs the REST2 model in four distinct iterations, including one from 

AERONET that serves as the benchmark. The other three iterations of REST2 utilize satellite data 

from CAMS and MERRA-2, the latter of which is analysed both with and without elevation 

correction procedures. Thus, this chapter compares the integration of REST2 with various 

satellite datasets against DNIClear and GHIClear estimates derived from McClear and ERA5. This 

comparison aims to illuminate the variances between predicted and actual measured GHI and 

DNI under clear-sky conditions, potentially providing new perspectives on solar irradiance 

predictions. 

To develop a dependable approach for estimating solar irradiance, this chapter merges 

irradiance modelling with diverse satellite datasets. It evaluates the influence of different 

modelling challenges on solar radiation estimates, utilizing data from 67 high-quality stations 

worldwide, as illustrated in Figure 36 (and see Appendix D). With over 18 million valid data points 

gathered from these stations, this extensive dataset enables a thorough exploration of how errors 

in modelled irradiance propagate from varied atmospheric inputs, influenced by the architectural 

complexities of the radiation models and the heterogeneous application of satellite data. 

In the process of estimating clear sky irradiance, several data manipulation and handling steps 

are required. The initial phase involves preparing data to ensure that the measured irradiance at 

the target station coincides with both AERONET readings and the temporal scope of satellite data 

from MERRA2, CAMS, and ERA5. This comprehensive analysis spans five distinct datasets (three 

from satellite sources, one from measured readings, and one from AERONET), focusing on the 

period from 2003 to 2022. It is crucial that AERONET and measured irradiance data overlap within 

this 19-year window.  

After addressing the data preparation aspect, the measured GHI and DNI data are applied to two 

distinct clear-sky methodologies, specifically BrightSun [43] and CAELUS [40] models. For 

BrightSun, inputs include computed values of GHI and DNI, while CAELUS additionally requires 

the insertion of cloudless, clean, and dry global horizontal irradiance, denoted as GHIcda in the 

Figure 37. Both approaches require data on solar positioning along with reference values for 

GHIClear and DNIClear. A moment recognized as clear, despite stringent criteria, is best identified 

when BrightSun and CAELUS criteria are concurrently satisfied (i.e., showing mutual inclusivity), 

ensuring precise delineation of clear conditions. This method enables accurate identification and 

analysis of clear-sky conditions, as detailed within this chapter. After identifying the clear-sky 

periods, four distinct iterations of the REST2 model were implemented. In parallel, irradiance 

estimates from the ERA5 and McClear models were obtained. The required input parameters for 
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these models were gathered by matching them to their respective sources: for example, aerosol 

optical properties were retrieved from the AERONET site corresponding to each location (67 sites 

in total), while MERRA-2 data were used for meteorological parameters, and CAMS data were 

used for atmospheric composition inputs. Only three parameters (AOD550, AE and PW) varied 

across the four datasets, as illustrated in Figure 37. The remaining input parameters for the 

proprietary REST2 model were standardized: near-infrared and visible albedo values were 

sourced from ERA5; NO2 concentrations were taken from CAMS; ozone levels were retrieved 

from MERRA-2; and surface pressure data were obtained from on-site meteorological 

measurements. The entire workflow was programmed in Python at a minute-by-minute 

resolution. The MAD metric was calculated using the scikit-learn library. Model performance was 

evaluated by comparing the estimated irradiance values to ground-based measurements 

obtained from the corresponding AERONET radiometer site. Further details regarding the 

AERONET configuration and associated radiometric instrumentation are provided in Appendix D. 

Table 9: Sources of input data used with REST2, with their spatial resolution. The elevation correction 
procedure modifies both Precipitable water and AOD550 to take the difference in elevation 
between the station and the MERRA-2 pixel into consideration, resulting in a particular form 

of interpolation. 

 

 

 

Quantity Source Spatial resolution 

Solar constant [58] Point 
Solar position [53] Point 
Station pressure Site observation (AERONET if missing) Point 
Ozone column MERRA2 0.5 x 0.625° 
Aerosol single-scattering albedo MERRA2 0.5 x 0.625° 
Surface albedo, UV-VIS ERA5 0.25 x 0.25° 
Surface albedo, NIR ERA5 0.25 x 0.25° 
Nitrogen dioxide CAMS 0.5 x 0.5° 

Precipitable water 
MERRA2 (reference) 0.5 x 0.625° 

MERRA2 (elevation corrected) 0.5 x 0.625° (interp.) 

AOD550 & AE 

AERONET (reference) Point 
CAMS 0.5 x 0.5° 
MERRA2 0.5 x 0.625° 
MERRA2 (elevation corrected) 0.5 x 0.625° (interp.) 
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Figure 37: Flowchart illustrating the parallel computation of clear-sky irradiance using four alternative 
methods in addition to the precalculated results from McClear and ERA5. The process is divided into 

several stages: data preparation, determination of clear-sky periods, predictions made using the REST2 
model, and subsequent model validation. 
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The computation of AE involves various methodologies across different data sources as per Table 

9. MERRA2 uses a preset default value for this calculation. In contrast, AERONET and CAMS 

determine AE through a least-squares fit applied to a logarithmic equation [67]. Since McClear is 

derived from CAMS data, it adopts the same AE as CAMS. Regarding the calculation of AOD550, 

both CAMS and MERRA2 utilize their respective default values. For AERONET, AOD550 is 

calculated using a linear fit, which is derived from the linearization of the Ångström law [68]. 

McClear, on the other hand, employs the sum of eight Different AOD550 values for its 

computations.  

The REST2 model is utilized with four distinct alternate input sets. The baseline inputs include the 

computed AE and AOD550 from AERONET, alongside data from CAMS and MERRA2. Additionally, 

the MERRA2 AOD and PW inputs are both alternatively adjusted for elevation, hence the named 

MERRA2c which connotes to MERRA2 with elevation correction. Therefore, the CAMS and 

MERRA2 atmospheric data are all compared to AERONET for further insight.  

The various satellite datasets used in this study feature different temporal resolutions, whereas 

the measured irradiance data is recorded in 1-minute increments. To achieve temporal 

homogeneity, a two-step process is employed. Firstly, for the satellite data, a 1-minute 

interpolation is performed using the piecewise cubic Hermite polynomial to align with the 

measured irradiance data as per [68]. Secondly, since AERONET operates on a different (and 

variable) time increment compared to the other datasets, a matching process is implemented. 

The midpoint of each 1-minute period is aligned with the exact AERONET observation time within 

a 10-minute window, i.e., ±5 minutes around the specific time point. If multiple AERONET 

observations fall within this window, each corresponding radiation data point is included to 

ensure comprehensive temporal alignment and to decrease possible errors [68]. 

5.3 Comparison of Atmospheric Data Inputs  

It is essential to recognize the significance of aerosol measurements, particularly AOD550 and 

AE. These elements are critical for clear-sky modelling. AE indicates an inverse relationship with 

particle size within aerosols - the smaller the particles, the higher the exponent. Large particles, 

like cloud droplets, result in a minimal Angstrom exponent. AOD550 measures how much light 

aerosols absorb or scatter through an atmospheric column. The choice of 550 nm as a standard 

measurement wavelength is due to its position at the peak of the solar irradiance spectrum, 

which captures a significant amount of solar energy. Standardizing this measurement across 
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various times and locations using instruments or satellite data is vital for consistent aerosol 

monitoring and atmospheric model validation. 

Table 10: The MAD values for the AE, AOD550, and PW across all 67 sites are presented with bold 
highlighting on the reanalysis data (either CAMS or MERRA2) that shows the least 

discrepancy between the two. 

Statistical Value AE AOD550 PW 

MAD(%)    

MERRA2 17.24 50.48 33.92 

CAMS 29.12 85.44 36.46 

A comprehensive assessment of satellite data sources for both AOD550 and AE remains 

essential. Examination of 67 sites indicates that MERRA2 demonstrates superior performance 

compared to CAMS for these aerosol parameters. As shown in Table 10, MERRA2 attains an MAD 

reduction of approximately 11.88% for AE and 34.96% for AOD550 relative to CAMS. This 

discrepancy can be partially attributed to MERRA2’s direct assimilation of MODIS observations, 

which undergo bias correction to ensure closer agreement with AERONET measurements. In 

contrast, CAMS calculates AE from only four reported AOD wavelengths (469 nm, 550 nm, 670 

nm, and 865 nm) using the Ångström exponent, whereas MERRA2 applies a comparable 

methodology but incorporates a different aerosol modelling framework. Such distinctions may 

reflect differences in aerosol chemistry and transport modelling and the varying impacts of 

assimilating diverse remotely sensed data sources. These factors may also explain why, despite 

both datasets showing relatively high AOD550, MERRA2 generally outperforms CAMS. This 

advantage likely arises from MERRA2’s broader inclusion of spaceborne retrievals, bias-

corrected MODIS data, and assimilation of extensive AERONET observations. However, it is 

acknowledged that this approach somewhat favors MERRA2 by design, given that its validation is 

not fully independent from AERONET. In addition, MERRA2 may also be validated through other 

sunphotometer networks that do not have publicly accessible data, limiting the availability of 

truly independent ground-truth information. The current difficulty in establishing the exact 

uncertainty in AOD550 predictions from these reanalyses is further compounded by differences 

between gridded data products (such as MERRA2 or CAMS) and actual ground-based 

measurements. Nevertheless, the results in Table 10 strongly indicate that MERRA2 generally 

surpasses CAMS. Both datasets, however, offer distinct advantages over more traditional 

satellite-only observations, including improved spatial and temporal continuity, reduced cloud 

interference, and enhanced temporal resolution (3-hourly for CAMS and hourly for MERRA2). Yet 

both still rely critically on satellite observations. The biases observed here suggest that further 

refinements are needed in the chemical transport models underlying these satellite products, as 
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their effectiveness may depend on correctly representing the composition and temporal 

variability of local aerosol populations.  

 

Figure 38: The histograms present the distributions across 100 bins for: a) and b) PW, c) and d) AOD550, 

and e) and f) AE, highlighting comparisons between CAMS (red) and MERRA2 (blue), against 

AERONET (black) across all 67 sites. 

Figure 38 offers a significant visualization through histograms, which reveal critical data about 

the counts of AE across 67 sites, displaying notable similarities between MERRA2 and AERONET 

measurements. Upon closer inspection, CAMS demonstrates an overestimation in the range of 

AE from 1.25 to 1.60 (as per Figure 38e), where there is an evident peak. This indicates that in this 

specific range, CAMS records a higher concentration of data points, thus exaggerating AE 

compared to the more moderate peak seen in AERONET, which serves as the reference standard. 

In contrast, Figure 38f conveys that MERRA2 demonstrates a close alignment with AERONET by 

maintaining counts near 100,000, unlike CAMS, which shows counts exceeding that by an 
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additional 100,000. This indicates that CAMS's distribution may be inaccurately represented, and 

its central tendency does not effectively depict the scenario as accurately as MERRA2. For 

AOD550, Figure 38d shows that MERRA2 demonstrates distributions that closely mirror that of 

AERONET, although MERRA2 notably does not account for AOD550 values near zero, unlike 

CAMS and AERONET as in Figure 38c. However, the number of counts for CAMS is significantly 

lower at approximately 280,000, while AERONET's is higher than 400,000, and MERRA2's is just 

under it. This discrepancy highlights a weaker performance by CAMS, with MERRA2 presenting a 

more accurate alignment but still not perfectly matching AERONET. This variation in counts 

indicates the degree to which MERRA2 and CAMS differ in terms of data accuracy and 

consistency when compared to AERONET. This supports the inference that the discrepancies in 

AOD550 values for MERRA2 and CAMS, which are pronounced in their MAD values, are due to the 

temporal resolution of MERRA2, which is higher than that of CAMS. Furthermore, MERRA2's use 

of diverse data sources such as MODIS, MISR, AVHRR, and AERONET, compared to CAMS’s 

limited use of MODIS and AATSR, provides a more robust data assimilation framework, enhancing 

its overall performance in modelling aerosol measurements. 

A closer examination of Figure 39 reveals that nine locations were selected for analysis due to 

their low irradiance levels, making them suitable for evaluating the effects of AOD550 and AE. 

These criteria provide a solid benchmark to compare the operational effectiveness of CAMS and 

MERRA2. In terms of AOD550, eight of these nine locations displayed lower MAD values when 

comparing MERRA2 with CAMS. MERRA2 typically showing denser concentrations of data points, 

particularly noticeable in sites such as SHA, ROC, and CAH. The MAD values exhibit variability, 

yet the overall pattern indicates that MERRA2 frequently achieves lower values than CAMS. Even 

when CAMS surpasses MERRA2 in performance, the margin of superiority remains narrow (i.e., in 

CAH, a difference of 2.23%). Conversely, MERRA2 shows a significant reduction in the MAD by up 

to 33.06% at the BAR location compared to CAMS. Furthermore, in analyzing AE, it is observed 

that in six out of nine selected locations, MERRA2 demonstrates lower MAD values. For example, 

at the SMS site, CAMS records an MAD of 41.34%, whereas MERRA2 shows a lower MAD at 

30.87%. This analysis highlights MERRA2's superior precision and dependability in assessing 

aerosol properties, especially in areas where solar irradiance is subdued. 

 PW measures the depth of water vapor in a column of atmosphere and it significantly influences 

infrared opacity, playing a crucial role in the attenuation of radiation, making it a key factor in 

clear-sky modelling. Accurate simulation of PW in satellite data, which may mirror actual 

measurements, is vital. These reanalyses data often rely on raw satellite sensor estimates, which 

help define the atmospheric models' boundary conditions. Understanding the precision of these 
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initial satellite estimates is essential to identify any potential climatological biases. PW also 

impacts cloud formation and alters the size and optical properties of aerosols, thus affecting 

atmospheric optical transparency. The reliance on uncertain PW data, especially data from 

satellite data with limited spatiotemporal resolution or data interpolated from adjacent stations, 

can lead to significant errors in DNI estimates, particularly in regions with high φ or during periods 

of low solar elevation. 
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Figure 39: Scatter plots display the comparative analysis of MERRA2 and CAMS AOD550 (first two 
columns) alongside the AE (last two columns) as measured by sun photometers as part of 

AERONET. Each row represents one of the nine locations, with each chart detailing the MAD 
value. 
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According to Table 10, PW sourced from MERRA2 demonstrates a lower MAD of 33.92% 

compared to CAMS' 36.46%, and thus the difference is small. An analysis of Figure 38a and 38b 

reveals that both CAMS and MERRA2 display similar counts, both around 150,000 counts at their 

peak, in contrast to AERONET's exceeding 180,000 counts at its peak, highlighting the reason 

behind the large MAD values for both models. For PW measurements greater than 3 cm, both 

MERRA2 and CAMS exhibit trends that closely align with AERONET data, with MERRA2 showing a 

particularly close correlation. 

 

Figure 40: The scatter diagrams present a comparative evaluation of MERRA2 and CAMS PW data in 
relation to AERONET observations at two different sites. 

One potential reason for the observed differences in performance between MERRA-2 and CAMS 

could be the frequency of data output. MERRA-2 uniquely offers hourly outputs for PW, which is 

particularly advantageous for solar-related research and other applications requiring high 

temporal resolution. In contrast, CAMS provides data at coarser three-hour intervals. In areas 

where PW can fluctuate significantly throughout the day, affecting both atmospheric opacity and 

incoming irradiance, a higher resolution of data is crucial. Moreover, a notable discrepancy exists 

in the calculation of water vapor between the two. For instance, at the JRC station, which is 

situated at an elevation of 800 meters, the mean PW value recorded by AERONET is 1.625 cm. In 

comparison, MERRA-2 reports a slightly lower figure at 1.522 cm, while CAMS records 1.434 cm. 

This positioning highlights the inferior performance of CAMS at higher altitudes, with MERRA-2 

displaying an MAD of 11.12%, illustrating how inaccurate PW estimates can degrade 

performance. In TAM, known for its dry and arid climate, the levels of PW are relatively low. 

Analysis shows that the MERRA-2 model estimates an average PW of 0.900 cm, while the CAMS 

model estimates it slightly higher at 0.998 cm. Both of these are high compared to the AERONET 

measurements, which report a lower average of 0.698 cm. This discrepancy highlights a tendency 
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for both MERRA2 and CAMS to overestimate PW in regions with minimal rainfall. The MAD further 

illustrate these overestimations and their implications for model accuracy and reliability. 

5.4 Model Validation 

5.4.1 Individual Matrix Combination 

Figure 41 reveals that GHI MAD values fluctuate significantly across various models. McClear 

shows a variation from 0.81% to 8.31%, ERA5 from 3.09% to 55.95%, and REST2 (independent of 

input data) from 0.71% to 17.25%. Notably, REST2-Aero frequently exhibits the most favorable for 

38 out of the 67 sites. ERA5, in particular, records substantial MAD at specific locations, such as 

FUA with an MAD of 44.31%, which is higher than those of other REST2 model combinations and 

McClear. Similarly, for GUR, ERA5 records a MAD of 55.95%. These substantial deviations might 

be attributed to high pollution levels and aerosol concentrations in urban areas, which could 

interfere with the model’s ability to accurately predict irradiance and cloud cover variability. 

Additionally, high humidity levels could also affect model accuracy by absorbing and scattering 

solar radiation. For GUR, the data station instruments were not cleaned as frequently as they 

should have been due to the frequent soiling of the region, thus affecting all 6 models; with REST2 

coupled with AERONET measurements having a MAD of 13.49%. 

SHA, characterized by a desert-like climate with prevalent sand storms and high concentrations 

of airborne dust and sand particles, presents a challenging environment for solar irradiance 

measurement. These aerosols, common in desert settings, significantly scatter and absorb 

sunlight, reducing the solar radiation that reaches the ground. Additionally, fine airborne dust 

creates haze, further diminishing visibility and solar irradiance. For GHI, analysis shows using 

McClear and various REST2 models, regardless of the satellite data employed, indicates MAD 

values ranging from 2.65% to 3.40%. However, data from ERA5 exhibit a significantly higher MAD 

of 15.37%. In Figure 42, REST2-AERO data show greater alignment and closer one-to-one 

estimates of GHI under clear conditions compared to other models. This closer approximation is 

attributed to the similarity of AOD550 measurements and AE to those recorded by AERONET.  

Furthermore, Figure 43 illustrates that all clear-sky models, except for REST2-Aero produce less 

accurate plots, where REST2-AERO almost achieves a one-to-one line correlation. DNI 

estimations for SHA, as shown in Figure 44, exhibit MAD values ranging from 2.69% to 17.03% 

when using any of the REST2 iterations. McClear and ERA5 report MAD values of 14.53% and 

25.84%, respectively, suggesting that ERA5 may not yield reliable predictions in desert-like 
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climates, potentially due to satellite imaging techniques or the application of AOD550 

predictions. The performance of CAMS and McClear is comparably close, with only a 0.96% 

difference in MAD, underlining the nuanced impacts of aerosol modelling in arid environments. 

Conversely, REST2-AERO achieves the lowest MAD value at 2.69%, highlighting the effectiveness 

of AOD550 estimates in satellite data. In fact, 62 of the 67 sites show that REST2-Aero 

combination results with the lowest MAD value; between 0.46% and 4.49%.  

In locations such as PRE, seasonal biomass burning from agricultural activities and regional 

wildfires during the dry season significantly enhances aerosol concentrations. The smoke and 

particulate matter from this vegetation burning considerably diminish solar irradiance by 

scattering and absorbing sunlight. Analysis of GHI across various clear-sky models, as depicted 

in Figure 42, demonstrates consistent scatter plot patterns regardless of the model used. Delving 

further, for GHI, ERA5 registers the highest MAD value at 15.46%, suggesting a potential shortfall 

in accurately capturing events of seasonal biomass burning. Conversely, the integration of REST2 

with CAMS and MERRA2 demonstrates enhanced accuracy, yielding deviations of 3.66% and 

3.94% respectively, which markedly surpass those obtained using ERA5 and approach the 

precision of sunphotometer readings by a narrow margin of less than 0.64%. In terms of DNI 

predictions, as depicted in Figure 44, both McClear and REST2-CAMS present closely 

comparable MAD values of 8.35% and 6.56% respectively. Furthermore, the disparity in GHI 

estimations between REST2-CAMS and McClear is minimal, at 0.95% compared to 1.79%. This 

variation underscores the necessity for model refinement, particularly in areas impacted by 

significant biomass burning. This leads to an inquiry into the extent of deviation between REST2-

CAMS and McClear in terms of GHI and DNI estimations. 

At EUR, the difference in GHI between McClear and REST2-CAMS is relatively minor at 0.40%, 

whereas for DNI, the disparity escalates to approximately 10 times this amount. The notable 

discrepancy at MLO raises concerns about potential underestimations by McClear, with similar 

trends observed at FUA and IZA, which reported differences of 32.86% and 24.79% respectively. 

These locations are geographically distinct, contributing to the variations observed. MLO, 

characterized by its high elevation and remote oceanic setting, should theoretically show 

minimal discrepancy with REST2-CAMS measurements. However, CAMS might face challenges 

in accurately capturing the low aerosol environment of such an isolated site. Furthermore, 

volcanic activity in the area could sporadically introduce aerosols from eruptions or transported 

volcanic plumes, which might not be fully represented in global models or could differ in timing 

from CAMS's assumptions. At MLO, the average AOD550 measured by AERONET is 0.240, while 

CAMS significantly overestimates it at 2.312. 
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For FUA, positioned near a coastal area with substantial human activity, the site experiences a 

mix of aerosols from pollution and regionally transported dust. The variability and complexity of 

local sources, such as urban emissions and industrial aerosol sources, can cause rapid 

fluctuations in AOD550. Despite this, CAMS and sunphotometer measurements align closely, 

with CAMS recording an average AOD of 1.730 compared to 1.695 by the sunphotometer, 

suggesting that operational differences in McClear’s modelling approach or its variable inputs 

could affect its accuracy. At IZA, known for its pristine atmospheric conditions typically above the 

marine boundary layer, the site measures free-tropospheric conditions different from those at 

ground-level coastal sites. IZA lies in a transitional zone between marine and continental air 

masses and is subject to Saharan dust intrusions. CAMS may not accurately resolve these 

episodic events and their vertical distributions, leading to significant overestimations of AOD550 

compared to AERONET sunphotometer measurements, with actual averages at 0.450 versus 

CAMS’s modelled 1.897. 

XIA is recognized as a site with very high AOD550 levels due to urban smog, industrial emissions, 

and significant particulate matter from industries, vehicle exhaust, and construction activities. 

As anticipated, REST2-Aero demonstrates the densest plot on scatter graphs for both GHI and 

DNI, as evidenced in Figures 41 and 44 respectively, with MAD values of 2.99% for GHI and 2.44% 

for DNI. REST2-CAMS and McClear display nearly identical performances; the differences are 

less than 0.63% for GHI estimates and near identical (difference of 0.06%) for DNI estimates. The 

average AOD550 values at XIA, as measured by CAMS, stand at 0.696, while MERRA2 records a 

lower average of 0.407, compared to AERONET's actual measurements of 0.623. This variation 

partly explains the higher MAD values observed when using MERRA2 for both GHI and DNI 

estimations. Moreover, ERA5 struggles with accuracy in GHIClear estimations, showing the highest 

MAD among the models evaluated at 45.72% for DNIClear, indicating substantial challenges in 

modelling under these specific environmental conditions. 
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Figure 41: A heatmap generated illustrating GHIClear alongside comparative data from McClear, ERA5, and 
REST2. The REST2 variations include Aeronet inputs (REST2-Aero), CAMS inputs (REST2-

CAMS), MERRA2 inputs (REST2-MER2), and MERRA2 with elevation correction inputs 
(REST2-MERc). MAD (%) is used as the of merit, with white signifying MAD values close to 

zero and darker red indicating increasing MAD levels, across all 67 individual sites. 
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Figure 42: Scatter plots comparing the outputs from McClear, ERA5, and REST2, which use four unique 

inputs from reanalysis data and AERONET measurements, to GHI measurements. These 
comparisons are made across six sites that vary in climate, site elevation, and weather 

patterns. 
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Figure 43: Scatter plots comparing the outputs from McClear, ERA5, and REST2, which use four unique 
inputs from reanalysis data and AERONET measurements, to DNI measurements. These 
comparisons are made across six sites that vary in climate, site elevation, and weather 

patterns. 
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Figure 44: A heatmap generated illustrating DNIClear alongside comparative data from McClear, ERA5, and 
REST2. The REST2 variations include Aeronet inputs (REST2-Aero), CAMS inputs (REST2-

CAMS), MERRA2 inputs (REST2-MER2), and MERRA2 with elevation correction inputs 
(REST2-MERc). MAD (%) is used as the of merit, with white signifying MAD values close to 

zero and darker red indicating increasing MAD levels, across all 67 individual sites. 
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5.4.2 Latitude and Altitude Effects 

MERRA-2 generally outperforms CAMS in terms of AOD accuracy and demonstrates similar 

precision in statistical evaluations as depicted in Figure 39. However, the influence of altitude is 

critical in clear-sky modelling, particularly at higher elevations. Standard atmospheric data used 

in clear-sky models are typically derived from sea-level conditions, which may not be 

representative of conditions at elevated terrains, leading to potential discrepancies in model 

accuracy. 

To address this, elevation corrections for key atmospheric parameters such as PW and AOD550 

were assessed to determine their impact on enhancing solar irradiance estimations using 

MERRA-2 data at high-altitude locations. Atmospheric conditions affect solar irradiance in two 

primary ways: absorption and scattering. Absorption, mainly by atmospheric gases, significantly 

reduces direct solar radiation reaching the ground. Scattering, influenced by aerosols and 

atmospheric molecules, redirects solar radiation, thereby increasing the diffuse component of 

sunlight. At higher elevations, the thinner atmosphere contains less water vapor, which 

diminishes both absorption and scattering effects. This alteration directly affects the 

measurements of DNI and GHI. Moreover, it is crucial to recognize the distinct sensitivity of DNI 

to elevation corrections compared to GHI, largely due to DNI’s reliance on the unobstructed 

clarity of the atmospheric path between the sun and the measurement sensor. DNI experiences 

more direct impact from factors like aerosol scattering and water vapor absorption as outlined 

earlier in the thesis. Consequently, precise adjustments to AOD550 and PW are essential at high-

altitude locations to ensure accurate readings. In contrast, GHI, which is affected by both direct 

and diffuse components of solar radiation, exhibits a reduced sensitivity to these adjustments. 

This is attributed to the balancing effect of increased diffuse radiation, which mitigates the impact 

of higher aerosol scattering typically less pronounced at elevated altitudes. This phenomenon 

underpins why MERRA-2 corrections result in substantial improvements in both MAD across 

three sites, OHY, IZA and SPO independent of the clear-sky detection mechanism used.  

Analysis of two high-altitude stations, each above 2250 meters, reveals significant variances in 

the correction factors needed. At IZA (2373 m), corrections led to notable improvements in MAD 

by 7.24% for GHI and 15.59% for DNI, indicating a substantial underestimation of irradiance in 

the original MERRA-2 outputs. These results highlight DNI’s increased sensitivity compared to 

GHI. This is further confirmed in Figure 44, where it can be seen that MERRA2 corrections show 

more overlap. At MLO (3397 m), improvements utilizing REST2-MER2c show a decrease of 8.00 in 

MAD differences compared to its MERRA2 counterpart for GHI, and 14.50% for DNI. In high-

altitude climates that do not have an elevation correction close to 0, such as OHY (3314m with 
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an elevation correction of 1.766) and DAV (1589m with an elevation correction of 1.227), have 

resulted in diminished performances for GHI but even more so for DNI. This could indicate that 

the initial model predictions were already well-suited to the actual atmospheric conditions at 

higher elevations, potentially accounting for factors like snow.  

The impact of inclined solar paths, particularly in high- φ or snowy locations, is significant due to 

the high margin of error in clear-sky irradiance estimations in these areas. Figure 41 demonstrates 

that sites like CAM, CBT, and TOR exhibit consistent performance in estimating clear-sky GHI, 

regardless of the chosen model, whether McClear, or REST2 iterations. For these models, the 

MAD values remain between 1.08% and 2.69%, indicating close alignment with zero. McClear and 

REST2-CAMS also perform relatively well, with McClear and CAMS displaying near identical 

performance. However, in the case of DNI estimations, illustrated in Figure 44, the situation is 

more nuanced. ERA5 still demonstrates weaker performance, with MAD values reaching 26.01% 

for CAM, 26.28% for CBT and 22.79% for TOR. A comparison between CAMS and MERRA2 reveals 

CAMS's notably higher error, likely influenced by the climatology of stations like CBT, CAM, and 

TOR, where MAD values for CAMS are nearly twice those of MERRA2, regardless of elevation-

corrections. 

5.4.3 Global Results 

 

Figure 45: A radar chart that displays the global MAD (%) outcomes for McClear, ERA5, and REST2 
models, utilizing various data sources: AERONET (REST2-Aero), CAMS (REST2-CAMS), 
MERRA2 (REST2-MER2), and MERRA2 with elevation adjustment (REST2-MER2c). The 

segments of the chart are categorized as follows: (Left) GHI (Right) DNI. 

Figure 45 illustrates that whether estimating GHI or DNI, the integration of AERONET data into the 

REST2 model consistently yields the lowest MAD values, registering 2.48% for GHI and 2.42% for 

DNI. Given that AERONET measurements are not always accessible, determining the most 

suitable satellite data becomes crucial. As per earlier findings noted in Table 10, MERRA2 

surpasses CAMS in AE, AOD550, and PW estimations, suggesting that REST2-MER2 is preferable. 
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The difference in deploying REST2-MER2 for GHI estimations is minute, only 0.74% if it is not 

corrected, and 0.63% if corrected for elevation. While MERRA2 with elevation correction 

demonstrates a slight variance in performance, its use should be considered selectively. 

Elevation correction is particularly beneficial at notably high elevations; otherwise, it might not 

be essential However, for DNI estimations, there is a larger difference moving away from 

AERONET to MERRA2 parameters, by 3 folds.  

In contrast, McClear and REST2-CAMS show nearly identical performances, with only a 0.08% 

difference in GHI but a tenfold difference in DNI. ERA5 is the least effective model for both GHI 

and DNI, exhibiting MAD values that are more than five folds those of other models, 14.88% for 

GHI and 25.26% for DNI. This significant disparity underscores its ineffectiveness. Considering 

REST2's proprietary nature, McClear consistently offers superior performance both individually 

and globally compared to ERA5. Moreover, when selecting parameters from satellite datasets, 

MERRA2 is preferable to CAMS, as previously noted. 

5.5 Conclusion 

In conclusion, this chapter examined six clear-sky models, including readily accessible McClear 

and ERA5 models, alongside four combinations involving REST2 with data sources from satellite 

data such as CAMS, MERRA2 (including elevation correction), and actual AERONET 

measurements at 67 stations globally. Among these, the combination of REST2 combined with 

AERONET data emerged as the most precise for GHI and DNI estimations, showing a global MAD 

of 2.48% for GHI and 2.42% for DNI. In light of the frequent absence of AERONET data, 

determining the most suitable satellite dataset for incorporation becomes a critical 

consideration. MERRA2 data surpasses CAMS in performance across all evaluated parameters, 

including AOD550, AE and PW. Specifically, on a global scale, MERRA2 exhibits superior 

performance by 11.88% for AE, 34.96% for AOD550 and 2.54% for PW. Thus, on a global scale for 

GHI estimations, REST2-MER2 had an MAD of 3.20%; a 0.12% improvement than REST2-CAMS. 

For DNI, REST2-CAMS records an MAD of 8.22%, 1.08% shy of REST2-MER2.  Comparatively, 

REST2-CAMS and McClear demonstrate similar overall performances in GHI estimation, with 

negligible MAD discrepancy of 0.08% for GHI but almost twelve-folds for DNI. ERA5 reported MAD 

values of 14.88% for GHI and a peak of 25.26% for DNI. This could be attributed to inadequate 

AOD550 estimations, particularly at sites with high aerosol density, where ERA5 performed 

notably poorly. In environments of high altitudes, McClear and CAMS display divergent results, 

suggesting there may be potential inaccuracies in McClear’s underlying equation, coefficients it 

deploys, or perhaps how it gathers other parameters, especially at elevated altitudes, despite 
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both models utilizing AE and AOD550 from CAMS data. While, REST2-MER2 requires elevation 

corrections, as it can improve performances by up to 7.24% for GHI and 15.59% for DNI. Globally, 

the optimal approach is to combine REST2 with AERONET measurements. However, due to the 

limited availability of sunphotometers, it is advisable to use REST2 with MERRA2, applying 

elevation correction only at high elevations. Moreover, given the proprietary nature of REST2, the 

alternatives are McClear or ERA5. Among these, McClear is recommended as it delivers 

performance comparable to REST2 iterations (when not incorporating AERONET data). 
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Chapter 6 Predictive Models for Photosynthetic Active 

Radiation Irradiance 

6.1 Introduction 

The expansion of AgriPV is gaining momentum, yet challenges such as limited land availability 

pose significant obstacles to its broader adoption. In assessing the viability of AgriPV systems, it 

is crucial to accurately predict irradiance levels for both photovoltaic and agricultural needs. 

Photosynthetically Active Radiation (PAR) irradiance, in particular, is critical yet rarely measured, 

leading to a notable knowledge gap in predicting PAR levels, especially within the variable 

conditions of temperate climates. The scarcity of PAR measurements complicates the 

assessment and optimization of AgriPV systems. Addressing this, the forthcoming chapter delves 

into both established and innovative methodologies for estimating PAR irradiance. This includes 

an analysis of 10 contemporary empirical models, assessing their effectiveness in predicting PAR 

in locations beyond their initial calibration settings - specifically in European temperate regions.  

Moreover, this chapter introduces a new model for predicting PAR irradiance that surpasses 

traditional approaches. This model utilizes readily accessible inputs such as clear sky irradiance, 

AOD550, and ozone concentrations, which are available through satellite data, thus 

circumventing the dependency on conventional data such as DHI or Perez coefficients. The 

chapter first evaluates these ten empirical models and the novel approach across 9 temperate 

European climates, where the new PAR model is also formulated. Comprehensive statistical 

analysis is conducted to examine the precision and scalability of all models across six additional, 

unseen, temperate locations. This rigorous evaluation highlights their capacity to deliver reliable 

predictions across diverse settings, thereby enhancing the accessibility and integration of PAR 

data into economic assessments like LCOE or LER figures of merit, facilitating the growth of the 

AgriPV market. 
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6.2 Interplay of Different Parameters 

6.2.1 Data Sources 

 
Figure 46: The spatial layout of the 15 chosen locations includes 9 sites marked in yellow for the purpose 

of model training and validation, and 6 sites indicated in blue dedicated to evaluating the 
models against new data. Among these, 12 sites are classified under Temperate Oceanic 
Climates (Cfb), while 3 sites fall within the Cool Summer Mediterranean Climate category 

(Csc) as per the Köppen–Geiger climate classification [18]. 
 

Table 11: Details on the 15 sites selected for assessing PAR, with the first nine sites selected for the 
training and validation of models, whereas the remaining 5 sites serve the purpose of model 

testing. The provided average values of PAR and GHI pertain solely to data points deemed 
valid. 

Code Radiometric site 

Lat. Long. Site Elev. 

Period 

Climate Mean PAR Mean GHI 

(°) (°) (m) Classification (W/m2) (W/m2) 

BHT Brasschaat 51.307 4.520 16.0 2019 - 2023 Cfb 139.83 324.29 

GEB Gebesee 51.100 10.915 161.5 2020 - 2023 Cfb 134.24 312.41 

HAI Hainich 51.079 10.452 438.7 2019 - 2023 Cfb 137.75 317.46 

HES Hesse 48.674 7.065 310.0 2021 - 2023 Cfb 190.16 410.28 

LQE Lamasquere 43.496 1.238 181.0 2020 - 2023 Cfb 213.13 449.92 

LZT Lanzhot 48.682 16.946 150.0 2022 - 2023 Cfb 157.19 362.31 

VAD Voulundgaard 56.038 9.161 67.7 2020 - 2023 Cfb 117.8 286.99 

BCI Borgo Cioffi 40.524 14.957 10.0 2023 Csa 227.76 535.14 

TOR Tõravere 58.264 26.462 70.0 2016 - 2019 Csa 115.92 279.47 

ADE Aurade 43.550 1.106 250.0 2019 - 2023 Cfb 197.16 427.11 

FBU Fontainebleau-Barbeau 48.476 2.781 103.0 2023 Cfb 178.77 368.97 

HHH Hohes Holz 52.086 11.222 193.0 2019 - 2023 Cfb 123.19 299.17 

LOH Lochristi 51.112 3.850 6.3 2019 - 2022 Cfb 152.92 340.86 

MMN Maasmechelen 50.980 5.631 87.0 2020 - 2023 Cfb 166.61 352.02 

CIO Castelporziano 41.704 12.357 19.0 2021 - 2023 Csa 244.28 481.57 
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The Integrated Carbon Observation System (ICOS) network [276], a European research 

infrastructure, encompasses multiple stations across Europe, each adhering to strict protocols 

and standards for data measurement. For GHI measurements, these stations employ Spectrally 

Flat Class A pyranometers, in accordance with the International Organization for Standardization 

(ISO) 9060:1990 [271]. PAR measurements are conducted using photodetectors to measure PPF, 

adhering to specific requirements as outlined in Carra et al [277]. The measurement of PAR 

utilizes a conversion factor of 4.57 μmol/m2/s to translate these measurements into watts per 

square meter (W/m2), aligning with methodologies established in previous studies [33][139]. A 

total of 14 locations from ICOS were selected.  One additional location from the Baseline Surface 

Radiation Network (BSRN) in Tõravere is included [54], resulting in 15 locations altogether as per 

Figure 46 and Table 11. Given the scarcity of simultaneous measurements of PAR and GHI, these 

specific weather stations that record both parameters concurrently and adhere to the 

aforementioned standards were chosen. The open-source dataset was selected for its reliability 

and relevance to the study of PAR. All data were recorded on a minute-basis but averaged over a 

30-minute period by their respective radiometric stations. For model training and validation, 9 of 

the 15 locations are highlighted, with the remaining 6 reserved exclusively for model testing. This 

distinction ensures a thorough evaluation of model performance on unseen data, particularly 

focusing on their applicability and scalability within European climates. Such an approach 

underscores the importance of a rigorous evaluation process, considering the models' 

robustness, which is critical [177]. However, the independence of some locations was limited 

due to proximity, potentially introducing bias in the development of the new and mathematical 

regression analyses. Therefore, the dataset was partitioned based on randomly sampled days, 

with an 80-20 percentage split for training and validation, respectively, following practices as 

recommended in the literature [278]. 

In this thesis, a quality control mechanism is implemented for solar irradiance. However, distinct 

quality control protocols for PAR irradiance are yet to be established. Drawing on insights from 

the operation of the BSRN, a detailed set of guidelines has been developed to screen for 

unreliable irradiance; these guidelines build on existing protocols for GHI and DHI. Thus, using 

that as motivation, this chapter includes several key criteria for evaluating PAR data before it is 

used in analysis or model development. Key parameters for PAR data quality include ensuring 

that PAR values are greater than zero and that GHI must always exceed PAR. Additionally, the SZA 

is scrutinized, particularly filtering out values greater than 85º where uncertainty peaks. These 

criteria form the core of a robust framework designed to enhance the reliability of PAR irradiance 

data in scientific research. PAR, GHI, and DHI datasets were sourced from the ICOS platform, 

initially provided in .txt format. These files were converted into .csv format to facilitate more 
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efficient data handling and processing. Time standardization was performed to align all ICOS data 

to UTC ensuring consistency with the Tõravere dataset obtained from the BSRN. Subsequently, 

ten PAR estimation models were individually developed and implemented using Python, given the 

absence of publicly available libraries addressing PAR or AgriPV-specific calculations. In line with 

the statistical procedures adopted in previous chapters 

6.2.2 Present Models 

Recent advancements in PAR estimation models have introduced a variety of approaches and 

parameters, as detailed in Table 12. A consistent feature across these models is their reliance on 

GHI, Kt, and, frequently, SZA. These elements are typically derived from Solar Position Algorithm 

(SPA) through calculations including GHI measurements; hence are easily attainable. 

Table 12: Details on the parameters used across the 10 PAR models under evaluation. The following 
variables: the Global Horizontal Irradiance (GHI) in W/m2, sky clearness index (Kt), Pressure 
in millibars (P), the Solar Zenith Angle (SZA), the Perez brightness coefficient (∆), the Perez 

clearness coefficient (ε) and the dew point temperature (Td). Alados refers to Model 1 in 
[280]. 

Model GHI Kt P SZA ∆ 𝜺 Td 

Tan-Ismail ✓ 

      

Escobedo ✓ ✓ 

     

Akitsu 1 ✓ ✓ 

     

Akitsu 2 ✓ ✓ ✓ 

    

Peng ✓ ✓ 

 

✓ 

   

Wang ✓ ✓ 

 

✓ 

   

Hu ✓ 

  
✓ ✓ 

  

Jacovides 
 

✓ 

  
✓ ✓ 

 

Garcia-Rodriguez ✓ ✓ 

 

✓ ✓ ✓ 

 

Alados ✓ 

  
✓ ✓ ✓ ✓ 

Among the 10 models evaluated, the Tan-Ismail model stands out for its simplicity [279]. It 

proposes a straightforward conversion ratio over a one-year period in Singapore. Escobedo et al. 

crafted a model that categorizes Kt into distinct segments [255][262]. This technique draws 

inspiration from the segmentation of DHI from GHI in numerous decomposition models, but it 

uniquely applies this strategy to extract PAR from GHI based on varied sky conditions over 4 years 

in Botucatu, Brazil. Akitsu et al. have contributed two models to the field [263]. The first, Akitsu1, 
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integrates only GHI and pressure, while the second, Akitsu2, also incorporates Kt. Similarly, Peng 

and Wang have developed models that utilize a piecewise mathematical function, with 

coefficients as functions of Kt [256][257]. These models also account for SZA, observing an 

exponential increase in hourly PAR for specific Kt intervals. Despite sharing a common equation, 

said models diverge in their coefficient weighting systems, showcasing a tailored approach to 

PAR estimation based on varying Kt values. 

Table 12 reveals that the latter four models utilize DHI or Perez equations that compute 𝜀 and ∆, 

with the former utilizing DNI. Such irradiance value can be directly measured via the use of a 

pyrheliometer or estimated through the closure equation (see equation 4). The estimated dew 

point temperature (Td) integrates relative humidity as a percentage and air temperature in ◦C. Td is 

calculated based on the adopted methodology identified through a comprehensive review of the 

literature [266]. 

6.2.3 Model Development 

Previous studies have highlighted the multifaceted influences on PAR, suggesting no single factor 

can solely affect it. However, Figures 47 and 48 demonstrate how individual parameter values 

can be linked to a range of PAR outcomes. Both figures present a detailed visualization of how 

various parameters interact with measured PAR, offering a nuanced understanding of their 

relationships and dependencies. Figures 47a and 47b show a logistic growth concerning the 

cosine of SZA and Kt relative to measured PAR, illustrating an initial swift escalation that tapers 

off due to a limiting factor, embodying a sigmoidal curve that nears an asymptote. Conversely, 

Figure 47c introduces a weighted function depicting dew point temperatures starting from 0 to 

35◦C, where the data points exhibit a positive linear growth. Additionally, Figure 47d suggests that 

lower ∆ may inversely correlates with higher PAR values, evidenced by a denser concentration of 

points, indicating a potential inverse relationship between these variables. 

A clear objective of this research is to identify new parameters that directly influence PAR, with a 

focus on variables that are readily accessible and not derived empirically through decomposition 

models, such is the case if DHI measurements are missing. An integral part of this research 

involves leveraging clear sky irradiances, specifically DNI, under clear conditions.  The sensitivity 

of DNI to aerosols necessitates careful parameter selection. This study has evaluated six clear 

sky irradiance models, identifying REST2-Aero as a strong performer. However, considering the 

practical applications and the fact that REST2 is proprietary, the choice was between ERA5 and 

McClear. McClear was selected for its enhanced performance compared to ERA5. Additionally, 

McClear is preferred for its ease of access, requiring only the geographical coordinates and 
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elevation for input, making it highly user-friendly for various applications. Additionally, to explore 

further variables potentially affecting PAR estimations, this work incorporates satellite data from 

MERRA-2. Firstly, MERRA-2 consistently demonstrates superior performance on a global scale, 

as highlighted in a previous chapter, and it offers easy accessibility. This data source is crucial for 

upholding the standards of integrity and analytical rigor in this work. The chosen data, featuring 

an hourly temporal resolution and a recent update with a delay of less than two months, is 

meticulously aligned with the temporal resolution and the time frame of the measured PAR data. 

Additionally, this study utilizes AAOD550 data, selected specifically because it falls within the 

spectral range of PAR. Moreover, total ozone column measurements, here referred to simply as 

Ozone, are analyzed to examine their influence on the Fraunhofer lines and early wavelengths 

pertinent to the PAR spectral range. Table 13 offers insights on how the variables matched the 

temporal resolution of PAR irradiance. 

 

 

 

 

 

 

 

 

 

Figure 47: The relationship of different parameters with regards to the measured PAR using data from 
both the training and testing segments across the 9 aforementioned sites. The concept of 

point density is employed to gauge the frequency of data point convergence within a scatter 
plot, specifically concerning the parameter and PAR, across a grid formation in increments 

of 0.01. 

Incorporating new variables into a new PAR model, alongside variables outlined in Figures 47a-

47c, becomes essential due to the identified robust correlation among DNIClear, AOD550, and 

Ozone levels as per Figure 48. These parameters are crucial for PAR modelling because they 

influence the sunlight's path through the Earth's atmosphere, affecting its absorption and 

scattering potential. This, in turn, is influenced by molecular and aerosol interactions, as 

captured by AOD and ozone concentration metrics.  
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Table 13: The summary of Variables with Sources and Methods to be used in PAR prediction. 

Variable Source Method 

DNIClear 

(W/m2) 
McClear 

Data for the half-hour was computed by  

averaging the lead and lag hour 

AOD 550nm 
Collection "M21TNXAER" with 

Parameter Code "TOTEXTTAU" 

Data for the half-hour was computed by  

averaging the lead and lag hour. 

Total Ozone 

Amount 

(atm-cm) 

Collection "M2T1NXSLV" with 

Parameter Code "TO3" 

Data for the half-hour was computed by  

averaging the lead and lag hour. 

Raw data divided by 1000 to get in atm-cm 

 

 

 

 

 

 

 

Figure 48: Data from both the training and testing segments of the 9 aforementioned sites were used to 
investigate the relationship between the new parameters and the measured PAR. Data 

points in a scatter plot can be gauged by their density in increments of 0.01 using the point 
density concept, specifically concerning the parameter and PAR. 

Analysis beginning with Figure 48a reveals densification of data points at elevated DNI values, 

suggesting a potential exponential relationship where PAR escalates with rising DNI. This 

correlation is logical, given that increased solar irradiance directly translates to enhanced 

irradiance within PAR wavelengths. Furthermore, DNI is influenced by solar geometry, 

encompassing SZA and the Earth-sun distance. Higher solar positions correlate with increased 

DNI due to the reduced atmospheric path, minimizing scattering and absorption phenomena.  

Contrastingly, Figure 48b illustrates a dense vertical aggregation, indicating a significant 

concentration of data points around a specific AOD 550 value. AOD 550, quantifying solar 

radiation extinction by atmospheric aerosols, is a unitless measure indicating the extent to which 
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aerosols hinder sunlight from reaching the ground. Elevated AOD values suggest increased 

aerosol presence, which can scatter and absorb sunlight, diminishing the PAR reaching the 

Earth's surface. Since AOD measurements at 550 nm align with the PAR spectrum, it directly 

affects the light available for photosynthesis. The impact of AOD on PAR is further modulated by 

solar geometry; for instance, lower solar positions result in sunlight traversing more of the 

atmosphere, thereby encountering more aerosols and amplifying AOD's effect on PAR. Moreover, 

Figure 48c displays a concentrated vertical distribution of PAR measurements around specific 

ozone concentrations, ranging between 0.2 and 0.3. Ozone predominantly absorbs sunlight in the 

UV spectrum, having a less immediate impact on PAR. Nonetheless, ozone can indirectly 

influence PAR through its effects on atmospheric thermal structure and composition, which can 

alter cloud formation and other atmospheric conditions affecting PAR levels at the surface. In this 

context, the relevance of Fraunhofer lines emerges, given the potential overlap of ozone 

absorption with these lines. However, the primary consideration for PAR remains the broader 

absorption characteristics of ozone, rather than the specific Fraunhofer lines. 

In response to these findings, this work proposes shifting away from DHI towards a new set of 

variables outlined in Figure 48. These are integrated with Kt, GHI, SZA, and Td based on their 

demonstrated correlation with PAR in literature and observations. The resulting Musleh-Rahman 

(MR) model incorporates the new variables in a weighted exponential formula. The model's 

coefficients, as per equation 16, are determined through nonlinear regression using least squares 

fit [53], a method chosen for its statistical consistency and relevance to reducing MAD. This 

iterative fitting process starts with initial values derived from the Garcia-Rodriguez model for Kt, 

GHI, and SZA while for Td and the new variables are initially set to 0.1, ensuring a robust foundation 

for accurate PAR estimation. 

 𝑃𝐴𝑅 = GHI ∙  (
1.386 + ln Kt

−0.059 + 1.06×10−3∙T𝑑 + 0.185∙cos (SZA)

e(6.60 ×10−5∙DNI𝐶𝑙𝑒𝑎𝑟 + 2.384∙Ozone + 0.135∙AOD550)
) (16) 

 

6.3 Evaluation and Testing Against Present Models 

The analysis of 10 models for estimating PAR reveals a broad spectrum of MAD values, spanning 

from 2.12% to 41.31%, as illustrated in Figure 49. The Akitus1 and Tan-Ismail models, which rely 

on fewer variables, show enhanced accuracy. This underscores the importance of GHI and Kt in 

estimating PAR across the nine evaluated sites, with MADs of 10.73% and 9.38% respectively. 

However, the Akitsu2 model, which includes atmospheric pressure, might be prone to overfitting, 

as indicated by its elevated MAD values ranging from 14.61% to 28.70%. The Escobedo models, 

designed to adapt strategies based on Kt values, fail to consistently correlate with the Cfb or Cfc 
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Köppen-Geiger climate classifications, as evidenced by all nine sites reporting MAD values above 

10%, culminating in an average of 18.47%. The Peng and Wang models, which are structurally 

similar, exhibit similar performances and, while validated in Chinese temperate climates, do not 

adapt well to European temperate climates with varying SZA and GHI (and consequently, Kt 

values). This misalignment results in high MAD values for Peng and Wang at 31.76% and 28.05%, 

respectively, as per Figure 50. Models that incorporate DHI or Perez coefficients, like those by 

Jacovides and Garcia-Rodriguez, should better align with European temperate climates. Notably, 

the Alados model, also validated in Spain - a climate akin to Garcia-Rodriguez's - shows a marked 

increase in MAD by 18.85% when replacing Kt with Td, highlighting the pivotal role of Kt in PAR 

estimation and the challenges of using a weighted Td coefficient in diverse European climates. 

 

Figure 49: The effectiveness of ten empirical PAR models, featuring the recently introduced Musleh-

Rahman model, was assessed using the MAD (%) values at nine different locations. 

 

Figure 50: The overall MAD (%) values of the 10 models and the newly introduced MR model across 9 
distinct locations. 
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Figure 51: A side-by-side comparison of measured versus modelled PAR using two distinct models: the 
Garcia-Rodriguez model is depicted on the left, while the MR model is featured on the right. 

The comparison aims to illustrate the accuracy of each model in replicating observed PAR 
data across 9 validation sites. 

The MR model demonstrates enhanced performance in predicting PAR values for European 

temperate climates, as evidenced in Figure 50. It achieves a decrease in MAD by 0.27% when 

compared to the best performing PAR estimations (i.e., the Garcia-Rodriguez model). This 

improvement is expected, given that the MR model is specifically calibrated using data from 

European climates, tailoring its coefficients to this particular environmental context. Figure 51 

reveals that, unlike its counterpart, the MR model exhibits a more diverse point density across the 

spectrum of irradiance levels, noted by its improved R2 approaching one. It not only maintains 

accuracy at the initial irradiance levels but also extends this accuracy to higher levels of 

irradiance. This characteristic is crucial for enabling more precise estimations of PAR during 

critical periods, such as the harvesting season for certain crops, by providing insights into the 

required irradiance levels under different sky conditions. Consequently, the MR model's 

applicability extends beyond the limitations of data availability from stations measuring DHI, 

promoting its broader use in various applications. Additionally, Figure 51 highlights a denser 

overlap between modelled and measured PAR across the entire range of PAR values, indicating a 

more robust and versatile performance compared to the DHI-dependent Garcia-Rodriguez 

model. 
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Figure 52: The performance of the ten distinct empirical PAR models, including the Musleh-Rahman 
model, was evaluated based on MAD (%) values across six untested locations. 

 

Figure 53: The overall MAD (%) values of the 10 models and the newly introduced MR model across six 
unseen locations. 

To assess the robustness of the MR model, it is crucial to evaluate its performance across 

untested sites. Figure 52 displays a significant range of MAD values among 11 models, spanning 

from 2.82% to 48.03%. The MR model exhibits outstanding performance with an overall MAD of 

3.57%, slightly outperforming the Garcia-Rodriguez model by 0.37% as per Figure 53. Again, the 

Peng and Wang models do not adequately address the substantial SZA experienced at higher φ, 

which explains their comparable and less favorable MAD values. Additionally, the simple ratio 

conversion used in the Tan-Ismail method results in an MAD ranging from 13.29% to 21.28%. This 

variation may stem from the complexities introduced by the dynamics of GHI distribution, which 

includes various influencing factors and variables, thus impacting PAR irradiance. This effect is 

particularly evident at the location LOH, situated near the sea, where increased humidity and 

variable weather conditions such as precipitation and temperature variations can lead to differing 

PW levels. As previously discussed in this thesis, these PW values can significantly influence GHI. 
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This analysis suggests that a straightforward arithmetic transformation may lack the necessary 

precision for accurate PAR estimation. Although segmenting the analysis based on sky clarity at 

LOH resulted in a modest MAD improvement of 0.16%, the overall performance using the 

Escobedo model remains unsatisfactory. However, enhancements in model accuracy are noted 

when incorporating DHI through Perez coefficients. Among the models evaluated, the Garcia-

Rodriguez model continues to perform better, particularly at LOH where it shows a superior MAD 

of 3.93% against the highest observed value of 4.98%, underscoring the complex influence of PW 

on GHI and consequently on PAR. 

 

Figure 54: Comparative performance of the best-performing models with the normalised density 
distributions (a and b) and the associated data density percentages within specific PAR 
intervals (c and d) for the Garcia-Rodriguez model (in green) and the MR model (in red).  

Exploring the performance nuances of the Garcia-Rodriguez and the MR, against different PAR 

irradiance levels, Figure 54 shows kernel density estimations shed light on their performance. 

These estimations reveal a heavily-skewed bell-shaped distribution for PAR values, highlighting a 

peak around 50 W/m2. The Garcia-Rodriguez model aligns well with observed PAR levels but tends 

to slightly overestimate at the peak as per Figure 54a, predominantly covering lower irradiance 

values below 200 W/m2, reflective of most dataset observations. From Figure 54d, the MR model, 

through its integration of McClear DNIClear, avoids the peak overestimation seen in Garcia-

Rodriguez, providing a more consistent density across the 0 to 100 W/m2 range. It exhibits a 

broader and more even distribution of predicted PAR values, particularly reducing bias towards 

higher or lower extremes as seen in Figure 54b. This refined strategy enhances the alignment of 
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the MR model with the actual distribution of PAR values in the dataset, boosting its precision 

across a variety of conditions. This subtle adjustment in prediction density could afford the MR 

model a slight edge in accuracy, particularly for datasets characterized by a moderate prevalence 

of PAR values. Additionally, its consistent performance throughout the entire PAR range 

demonstrates its robust ability to deliver accurate predictions across various irradiance levels. 

The nuanced distribution of the MR model suggests it could provide the most thorough and 

balanced performance among all the empirical models reviewed, particularly valuable in 

scenarios that demand accurate predictions across a wide spectrum of PAR irradiance. 

Through examining Figure 55, it becomes evident that the Garcia-Rodriguez model's point density 

is predominantly concentrated within the initial 100 PAR irradiance values. This observation 

aligns with previous discussions, highlighting a decrease in modelling performance, in terms of 

point density, as PAR values escalate. Specifically, the density of grid interactions diminishes. 

Such model elucidates the variance observed in measured PAR data, as reflected by an R² value 

of 0.9463. This indicates that although the model exhibits a consistent bias towards higher 

estimates, its predictions align closely with the trends observed in actual measurements, 

reinforcing insights presented in Figure 55. In contrast, the MR model exhibits a reduction in 

performance at unseen sites, resulting in an overall MAD of 3.57% yielding an R² value of 0.9709. 

This similar performance in MAD suggests a narrower average error margin compared to the 

findings in Figure 54a. Furthermore, an enhanced R² value signifies a superior model fit to the 

measured data, implying not only an accurate trend prediction but also greater precision on 

average. The density of points near the 1:1 line is notably high for lower PAR values, with no 

distinct peak value as indicated in Figure 54b, pointing towards numerous accurate predictions. 

 

 
Figure 55: Comparative scatter plots of measured PAR against the best-performing models with Garcia-

Rodriguez (Left), and MR (Right), at 6 unseen European Temperate Locations. 
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It becomes apparent that eliminating DHI and incorporating McClear DNIClear, Ozone, and 

AOD550 not only reduces MAD (albeit by a small margin of 0.36%) and improves the R² value but 

also enhances the model's robustness, making it applicable beyond sites equipped to measure 

DHI. Specifically, the inclusion of McClear DNIClear addresses the issue of early PAR values, while 

Ozone and AOD550 adjustments rectify overestimations beyond 200 W/m², facilitating a more 

accurate representation of fluctuations.  

6.4 Conclusion 

This chapter presents an analysis of ten empirical models for predicting PAR irradiance, with four 

models that incorporate DHI (or its derivatives such as Perez coefficients) across 15 temperate 

European environments. The evaluation highlights their performance under diverse solar, 

atmospheric, and cloud cover conditions at higher φ, leading to the development of the Musleh-

Rahman (MR) model. This new model cedes the use of  DHI in favor of DNIClear, as well as Ozone 

and AOD 550 data sourced from satellite observations using MERRA-2. The substitution of DHI 

with these readily available variables supports advancements in AgriPV by providing essential, 

accessible data. The MR model performance was extensively tested, showing a notable 

improvement in accuracy, particularly across nine European climates where it achieved a MAD 

of 2.93%, a reduction from the 3.20% observed in best empirical model (i.e, the Garcia-Rodriguez 

model). Further validation across six additional, unseen European sites showed MAD values 

ranging from 2.82% to 4.51% for the newly developed MR model. The MR model demonstrated 

exceptional precision in predicting lower PAR values, as evidenced by kernel density and scatter 

plot analyses, achieving a robust R2 value of 0.9709. Such advancements aim to enhance 

accurate PAR irradiance predictions in temperate European climates, where the MR model 

surpasses other models. Its accuracy could be integrated into feasibility software and other 

metrics to assess potential crop yields and, when combined with other models, to predict diffuse 

PAR values. This integration is intended to promote the adoption of AgriPV, offering a robust 

foundation for optimizing agricultural productivity under varying solar conditions. 
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Chapter 7 Conclusions and Future Work 

7.1 Summary of Research Findings 

The swift expansion of the PV industry, along with other renewable energy sources, has been 

propelled by several critical factors. Central to these considerations is the dual imperative to 

meet escalating global energy demands and address climate change concerns due to fossil fuel 

emissions. Nations worldwide strive to achieve their carbon neutrality targets, underscoring the 

necessity for innovative solutions in the energy sector. To challenge the supremacy of non-

renewable energy, a diverse array of PV technologies must be investigated. This exploration is 

conducted through sophisticated modelling to assess the viability of various systems. Traditional 

monofacial, fixed-tilt solar setups are giving way to more advanced configurations, such as 

bifacial modules with tracking systems and the integration of photovoltaics with agriculture, 

known as AgriPV. Validating these empirical mathematical models is crucial to gaining public 

trust. As the PV sector continues to expand, the demand for more precise feasibility assessments 

and financial projections is becoming increasingly critical. A key approach to achieving this 

accuracy involved thoroughly evaluating and analysing the irradiance models embedded within 

current feasibility software. Equally concerning is the shortage of dedicated feasibility software 

for AgriPV, which is essential for addressing land scarcity and enabling the harmonious 

integration of agricultural activities and PV systems on shared land. This involved testing the 

models against minutely resolved irradiance data, a shift from the previous hourly-based models, 

and examining their performance in temperate climates like the UK, where conditions differ 

significantly from the regions where these models were originally conceptualized. This thesis 

aimed to validate and, where necessary, refine various optical models, examining the 

methodologies used, and the limitations of current feasibility software, and proposing potential 

enhancements.  

The core goal of this research was to facilitate the growth of solar energy in the market by 

integrating accurate evaluations of PV system performance into mainstream feasibility software. 

This approach will attract potential investors by offering reliable, validated methodologies for 

calculating irradiance components essential for solar resource assessment and various 

irradiance parameters. The focus extends to systems ranging from tilted installations to tracking 

solutions in temperate climates such as the UK, thereby enhancing confidence in the rapidly 

advancing PV technologies. This thesis undertook a comprehensive investigation of bifacial, 

tracking, and AgriPV systems, amalgamating insights from diverse studies and geographical φ to 
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demonstrate the viability of these varied systems. Given solar investors' critical dependence on 

irradiance data to calculate incident irradiance on inclined surfaces, it is essential to understand 

the models employed by feasibility software. This research delineated the breakdown of GHI into 

its constituent fractions by establishing a foundation in solar irradiance through the analysis of 

solar resources and the use of satellite data, grounded in the mathematical principles of solar 

irradiance modelling. Firstly, this thesis established a benchmarking framework, employing the 

UK as a case study, to conduct detailed examinations of decomposition models that breakdown 

GHI into its constituent fractions of DHI (and subsequently DNI). Moreover, it highlighted the 

significance of transposition modelling in various systems for estimating POA irradiance (and 

thus, lays the foundation for BOA estimations). This involves scrutinizing the limitations of 

feasibility software and conducting sub-hourly validations, with the former focusing on sky 

clearness and the latter on assessing the effects of cloud coverage. Additionally, this research 

evaluated the accuracy of clear sky modelling on a global scale, factoring in diverse atmospheric 

conditions, as clear sky modelling is essential for all irradiance modelling endeavours. Lastly, the 

thesis offered insights into PAR irradiance modelling by exploring its constraints and developing 

a tailored optical model to predict PAR in temperate settings.  

The necessity for reliable solar irradiance estimations is paramount, particularly in locations 

lacking direct measurements, which is the overwhelming majority. Researchers are increasingly 

turning to decomposition models designed to estimate DHI, a critical component for determining 

titled irradiance calculations for solar panels. Given the abundance of models present, this thesis 

introduced a clear and structured benchmarking framework tailored for regions devoid of solar 

irradiance data. Focusing on precision and robustness, the framework established a cap for the 

MAD at 15%, and incorporated explanations from statistical, mathematical, and physical aspects 

of 104 models using the UK as a case study. The first examination assessed the effects of 

temporal resolution on the accuracy of the models. In Camborne, hourly-to-minute analysis 

narrowed 18 models to 6, with only 2 consistent across both periods. Chilbolton's count reduced 

from 32 to 5, with 2 models meeting both thresholds. Lerwick saw a drop from 13 to 9, with 5 

models effective in both time resolutions. Furthermore, this chapter identified models effective 

in multiple locations in both time domains. The Paulescu model excelled in all locations (MADs 

of 12.37% to 13.05%). In Camborne and Lerwick, Starke1 were found to be in common, 

particularly due to the empirical nature such model has with respect to its coastal contexts. A 

spatial homogeneity assessment across the three locations found only five models meeting the 

threshold, with Paulescu having the lowest average MAD (12.76%). Paulescu,  Yang5, SM, 

Starke3, and Yang4 adhered to the threshold across varying datasets and hence, were confirmed 

as the most robust with MADs of 12.57%, 13.24%, 13.42%, 14.12% and 14.22%, respectively.  
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Finally, a comprehensive approach was implemented by integrating 10 distinct GHIClear models, 

each with unique number of input parameters. These models were systematically combined in a 

matrix format across 15 decomposition models that use clear-sky models. This strategy 

successfully expanded the number of models meeting the MAD threshold from 5 to 20.  

Furthermore, by integrating REST2 or McClear as the basis for GHIClear models, 15 models were 

found to be within MAD < 15%.  Modifying clear-sky models to enhance the robustness of these 

systems underscores the need to evaluate clear sky irradiance predictions using varied 

atmospheric inputs. Analysing the leading decomposition models by adapting the GHIClear model 

results in the Engerer2a model combined with McClear yielding the lowest MAD value of 12.77%, 

demonstrating substantial room for optimization.  

Feasibility software for photovoltaic systems primarily uses decomposition-transposition model 

pairs to estimate POA irradiance. Additionally, said software is capable of incorporating 

measured GHI, DHI, and DNI to calculate POA irradiance, although this is less common. Hence, 

it is imperative to look into both aspects, using optical pairs and also using measured inputs to 

assess the viability of transposition models. Firstly, this thesis analysed the accuracy of 15 

optical model pairs, using minute input irradiance, to assess POA predictions in a temperate 

setting by comparing to measured POA for both an actuator-based tracker and a 55° south-facing 

tilted system. Using the MAD of <5% as the benchmark, significant variations were revealed 

across diverse sky conditions. Model estimates portrayed a broad range of errors from the 

measured data, from 2.67% to 51.07%, influenced by variables such as Kt and system type. For 

the tracking system, the evaluation showed that in clear conditions, ten model pairs maintained 

errors within the range. However, this success diminished under intermediate skies, with only five 

models remaining within range, and further reduced to two models in overcast conditions. The 

fixed tilt system demonstrated similar trends but with fewer models meeting the required 

thresholds; four models in clear conditions, and only two in intermediate conditions. 

Remarkably, only the DISC-SO model pair met the threshold in overcast conditions, exhibiting an 

MAD of 2.67%. Thus, the DISC-SO model pair consistently met the threshold for both systems 

under all conditions, making it a preferred choice for transposing horizontal irradiance. However, 

R2 values (0.5034, 0.5379, 0.5083 for clear, intermediate, and overcast conditions, respectively) 

highlighted challenges due to the high temporal resolution of input data and the hourly data-

based SO transposition model. Moreover, the study also examined the impact of decomposition 

and transposition models on percentage errors. Decomposition changes caused discrepancies 

of up to 2.43% for tracking systems and 5.34% for fixed-tilt systems. In contrast, transposition 

model changes resulted in errors of 8.53% and 11.51%, respectively. Additionally, using hourly 

solar irradiance data yielded lower errors compared to minute data, with 1.51% in intermediate 
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conditions, 1.08%, and 0.96%  in overcast and clear conditions, likely due to the models being 

developed empirically with hourly data. 

This thesis also investigated the integration of measurement data into transposition models, a 

move that renders decomposition models obsolete. The research involved an analysis of 16 

transposition models, eight of which are frequently utilized in feasibility software, across six 

distinct cloud conditions. The results revealed MAD in model outputs ranging from 2.69% to 

41.91%. The SO model, in particular, demonstrated the most accurate performance, with the 

smallest deviations from measured POA irradiance; with discrepancies being minimal at 2.69% 

under cloud enhancement conditions and up to 5.03% under scattered cloud scenarios. A deeper 

mathematical evaluation showed that the specific implementations of these models play a 

critical role in their effectiveness under various cloud conditions. Both the original and the revised 

versions of the Hay model, known as Hay1993, displayed robust performances with maximum 

discrepancies of just 0.71%, a testament to the updated factor in Hay1993. Additionally, this 

thesis investigated the decline in the Perez model's performance in the presence of clouds, which 

deteriorates significantly, reaching a MAD of 18.12%. The analysis identified a critical flaw in the 

Perez model: the unsuitability of the clearness coefficient in its first bin, especially when applied 

to temperate climates with minute-level irradiance data. To enhance the Perez model's 

applicability, a revision of the coefficients, particularly those in the first bin of its lookup table, is 

essential. Additional scrutiny of the Perez model, along with the LJ and SO models, delved into 

the influence of cloud concentration and azimuth-altitude adjustments on model accuracy. Of 

these, the SO model emerged as the most consistent, registering the lowest MAD values of 

2.69%, 2.84%, 4.44%, 5.03%, 4.23%, and 4.59% across different cloud conditions, namely cloud 

enhancement, cloudless, thin clouds, scattered clouds, thick clouds, and overcast, respectively. 

This translated to that, regardless of using measured inputs or using a robust decomposition 

model, the SO model is superior.  

Accurate clear-sky irradiance data plays a crucial role in various applications, such as estimating 

all-sky irradiance components with an attenuation factor or serving as a fundamental parameter 

in decomposition models. Henceforward, content within this thesis assessed the impact of 

atmospheric data inputs sourced from satellite data on the accuracy of solar irradiance 

modelling. It evaluated six clear-sky models, specifically the widely-used McClear and ERA5, 

alongside four REST2 variants that utilize data from MERRA2 (with and without elevation 

adjustments), CAMS, and AERONET measurements at 67 international locations. The analysis 

revealed that the REST2 model, when combined with AERONET data, consistently achieves the 

most accurate predictions for GHI and DNI on a global scale, with MAD of 2.48% and 2.42%, 
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respectively. In scenarios lacking sunphotometer data, which are common, choosing the right 

satellite dataset is crucial for model accuracy. Findings showed that that MERRA2 data provides 

superior performance over CAMS in terms of AE, AOD550 and PW, showing improvements of 

11.88%, 34.96%, and 2.54% respectively. For global GHI estimates, the REST2 variant using 

MERRA2 data recorded an MAD of 3.20%, and for DNI, an MAD of 7.14%, ranking second after the 

AERONET-integrated model. McClear, which relies on CAMS data, was evaluated to understand 

how its internal formulas differ. The performance of McClear and REST2-CAMS was 

incomparable in estimating GHI, with a minimal MAD difference of 0.08%. However, for DNI 

predictions, the discrepancy was significantly larger, nearly twelvefold. At higher altitudes, 

McClear and REST2-CAMS showed differing results, indicating potential inaccuracies in 

McClear’s formulas or its data integration process, particularly with elevation data and AOD550 

from CAMS. Conversely, ERA5 reported higher MAD values of 14.88% for GHI and 25.26% for DNI 

globally, but showed improved accuracy at high-altitude sites with MADs of 3.09% for GHI, 

outperforming McClear by 5.22%. Therefore, for high-altitude locations, ERA5 was preferred over 

McClear. However, the REST2 model using MERRA2 data, particularly with elevation correction, 

is recommended for broader applications. Given the proprietary nature of REST2, viable 

alternatives include McClear or ERA5, with McClear being advisable due to its performance 

closely matching that of REST2 iterations, except when integrating AERONET data. 

The rise of AgriPV underscores the necessity for precise PAR irradiance predictions, particularly 

in higher φ where standard models may falter due to atmospheric discrepancies. This thesis 

concluded that through critically evaluating ten empirical models and introducing the Musleh-

Rahman (MR) model, which optimizes input selection by excluding DHI. Based on findings within 

this thesis, these inputs were selected to simplify the application process and enhance data 

accessibility, thus why DNIClear (from McClear) alongside AOD550 and Ozone concentrations 

(from MERRA2) were selected. Utilizing sub-hourly data from nine temperate climates, the MR 

model demonstrated an MAD of 2.93%, surpassing the 3.20% MAD of the best performing 

empirical model (which did utilize DHI measurements as an input). Further validation of the MR 

model across six unseen temperate sites revealed MAD values ranging from 2.82% to 4.51%. The 

model’s accuracy in predicting lower PAR values was substantiated through kernel density and 

scatter plot analyses, achieving a robust R2 value of 0.9709. This precision not only establishes 

the MR model's superiority over its competitors but also underscores its utility in feasibility 

software for predicting potential crop yields and diffuse PAR values. The ultimate goal was to 

facilitate the widespread adoption of AgriPV by providing reliable and easily accessible data to 

optimize agricultural productivity under varied solar conditions. 
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This research made several contributions in the realm of solar resource assessment. Firstly, it 

introduced a benchmarking framework featuring a series of four tests designed to evaluate the 

robustness of decomposition models. This transparent framework can be universally applied and 

considers all relevant factors influencing the model selection process. Secondly, the thesis 

examined the dynamics of transposition models, addressing both the constraints of feasibility 

software in deploying optical model pairs (decomposition coupled with transposition) and the 

evaluation of transposition models based on measured inputs. These analyses are conducted in 

a temperate climate context and under minute-to-minute irradiance variations. Thirdly, the thesis 

assessed the accuracy of clear-sky irradiance models across global settings, comparing both 

proprietary and open-access models using varied atmospheric data inputs. Lastly, the thesis 

presented the development of a mathematical model formulated with readily available inputs to 

predict PAR irradiance, a critical factor for AgriPV applications. This model supports both 

standalone agricultural applications and the combined use of PV and agriculture. 

7.2 Suggestions for Future Research Directions 

This research laid the groundwork for enhancing PV modelling and opens up possibilities for 

further exploration in various fields. By delving into innovative structures, it aimed to pave the way 

for the development of more precise models across different PV technologies. The findings 

presented offer numerous opportunities for extension, yet it would be beneficial to concentrate 

on specific areas where this thesis could significantly impact the advancement of accurate solar 

resource assessment. 

ML research is rapidly gaining momentum, with significant attention directed towards enhancing 

model performance through optimal input parameter selection. This thesis highlighted key 

features that could significantly impact ML models. Although AERONET measurements are ideal 

for atmospheric inputs, they are often unavailable. Thus, incorporating parameters such as AE, 

AOD550, and PW from MERRA2 into ML models is recommended over CAMS. Additionally, 

considering clear-sky irradiance, regardless of access to proprietary models, could improve both 

irradiance predictions and decomposition models, potentially leading to the creation of a new 

model variant that optimizes decomposition processes. To advance this field, employing ML to 

replace traditional decomposition models presents a promising avenue. Future research should 

not only integrate the new features identified but also engage in reverse engineering existing 

methods. It is crucial to examine the robust framework developed and ensure the ML model's 

robustness through spatial homogeneity. This can be achieved by analyzing a wide range of global 

sites with varying solar irradiance and positions. Additionally, addressing temporal resolution 
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through minute-by-minute input handling and assessing dataset viability could further refine 

model accuracy and reliability. 

In the transposition segment, a shift toward spatial uniformity is essential, encompassing 

multiple sites rather than concentrating on a single location to give an accurate representation of 

POA. It is crucial to validate transposition techniques across various system configurations, 

including different elevation heights, azimuths, and tilts. However, for high tilt angles, it may be 

beneficial to obstruct part of a pyranometer to mitigate the influence of reflective contributions, 

focusing solely on the diffuse aspect of the transposition model. Research presented in this 

thesis indicates that the coefficients employed in the Perez Model's lookup function are 

inadequate, particularly under varying cloud conditions. This suggests the potential for 

developing new coefficients.  

Exploring measured albedo inputs is also beneficial as this can significantly influence POA 

measurements. Given the established standards for BOA measurements, evaluating ground 

reflective models using the transposition models discussed in this thesis is warranted. This 

involves implementing a 180-degree tilt shift and moving beyond traditional transposition model 

evaluations to assess reflective models. Moving away from stand-alone systems for BOA 

modelling is imperative. Configuring the setup in an array format (minimally three rows and 

columns with measurement devices in the center of the second row and column) is required, as 

this configuration represents the most challenging scenario for BOA measurement due to 

shading. Further investigations are necessary to determine the overall irradiance spectrum, 

acknowledging that the spectral component of BOA differs from POA due to the PAR range. 

Comprehensive spectral measurements, encompassing not only albedo but also BOA, are 

crucial. These measurements are vital for understanding the inhomogeneity of rear irradiance 

and its effects, which remain largely unquantified. Such variability can significantly affect the 

performance and predictive accuracy of bifacial PV performance. Therefore, further exploration 

and evaluation of the non-uniformity on the rear-side irradiance through integrated optical and 

electrical models are necessary. 

For AgriPV systems, employing specialized equipment such as quantum sensors beneath PV 

installations (particularly in differing tilt scenarios) facilitates the calculation of the diffuse 

component of PAR. As research on PAR irradiance increasingly adopts minute-to-minute 

analysis, similar to its spectrally flat counterparts like GHI, this approach enables detailed 

studies, either empirical or ML based. By analyzing the separation of PAR into its diffuse and direct 

components, these insights can be integrated into feasibility software. Integrating this 

methodology is pivotal for assessing crop yields beneath PV installations, moving beyond the 
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unshaded PAR estimations explored earlier in this thesis. Such integration will facilitate a 

comprehensive evaluation of performance metrics, deepening the understanding of AgriPV's 

effects. Building upon the results discussed in this thesis, it becomes imperative to develop 

models that are not only accessible but also broadly applicable across various domains such as 

PAR, decomposition, and transposition. 
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Appendix A  

The follow table presents a thorough review of 104 decomposition models, highlighting those 

developed specifically in temperate climates or successfully validated in the same region. It 

details the latitude where the model originated, the year of development, the data range used 

during its creation, and the temporal resolution of the dataset involved. Additionally, the table 

includes relevant references and remarks to provide further context and insights. 

Table A.1: Comprehensive Literature Review of 104 Decomposition Models for Estimating 
Diffuse Horizontal Irradiance (DHI). 

Model Latitude Year Range 
Data 

Resolution Reference Comments 

 

Boland1 38.1 - 67 days Hourly [A1] Equation 1 
 

Boland2 38.1 - - - [A1] Equation 2 
 

Bakhsh 26.2 
Jan 1984 - Apr 

1985 
15 

months Hourly [A10]  

 

Kuo1 23 
Jan 2011 - Dec 

2012 
24 

months Hourly 
[A11] Model 1 (with fitting dataset of 2011) 

 

Kuo2 23 
Jan 2011 - Dec 

2012 
24 

months Hourly 
[A11] Model 2 (with fitting dataset of 2012) 

 

Kuo3 23 
Jan 2011 - Dec 

2012 
24 

months Hourly 
[A11] Model 3 (with fitting dataset of 2011) 

 

Kuo4 23 
Jan 2011 - Dec 

2012 
25 

months Hourly 
[A11] Model 4 (with fitting dataset of 2012) 

 

Yao1 31.1 Jun 2012 - Nov 
2012 

5 
months 

Hourly 
[A12] HMDF model 1  

 

Yao2 31.1 Jun 2012 - Nov 
2012 

5 
months 

Hourly 
[A12] HMDF model 2 

 

Yao3 31.1 Jun 2012 - Nov 
2012 

5 
months 

Hourly 
[A12] HMDF model 3 

 

Yao4 31.1 
Jun 2012 - Nov 

2012 
5 

months Hourly [A12] HMDF model 5 

 

Bourges 
(37 locations) 37.4 

- 55.8 - 
48 

months Hourly [A13]  

 

CK 13 
Jan 1983 - Dec 

1987 
60 

months Hourly [A14] Equation 6 

 

CM1 6.6 
Jan 1991 - Dec 

1992 
24 

months Hourly 
[A15] Model 1 

 

CM2 6.6 
Jan 1990 - Jun 

1991 
17 

months Hourly 
[A16] Model I 

 

chikh1 31.6 
Aug 1990 - 
Dec 1992 

29 
months Hourly 

[A17] Bechar Site 
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chikh2 22.8 Jan 1990 - Aug 
1992 

32 
months 

Hourly 
[A17] Tamanrasseet Site 

 

chikh3 36.4 
Jan 1992 - Dec 

1992 
12 

months Hourly [A17] Alger Site 

 

FO 23.3 
Jan 2002 - Dec 

2002 
12 

months Hourly [A18]  

 

Hawlader 1.2 
Mar 1932 - Aug 

1962 
5 

months Hourly [A19]  

 

Boland3 51.4 - - - [A2] Bracknell Coefficients 
 

Boland4 12.5 - - - [A2] Darwin Coefficients 
 

Boland5 38.7 - - - [A2] Lisbon Coefficients 
 

Boland6 22.2 - - - [A2] Macau Coefficients 
 

Boland7 50.8 - - - [A2] Uccle Coefficients 
 

Hollands 43.7 Jan 1967 - Dec 
1971 

60 
months 

Hourly 
[A20]  

 

Jacovides 37 
Jan 2000 - Dec 

2002 
36 

months Hourly [A21]  

 

Lam and Li 22.3 
Jan 1991 - Jun 

1994 
41 

months Hourly [A22] Model 1 

 

LAM2 22.3 
Jan 1991 - 
June 1994 

48 
months Hourly [A22] Model 2 

 

Li And Lam 22.3 
Jan 1991 - 
June 1994 

48 
months Hourly 

[A23]  

 

Louche 41.6 
Oct 1983 - Jun 

1985 
20 

months Hourly 
[A24]  

 

Moreno 37.4 
Jan 2000 - Dec 

2008 
108 

months Hourly 
[A25]  

 

Muneer3 
(2 locations) (51.3 - 

54.7) 
Jan 1990 - Dec 

1995 
72 

months Hourly 
[A26]  

 

Oliveira 23.3 May 1994 - Jun 
1999 

61 
months 

Hourly 
[A27]  

 

Pagola1 (3 locations) 38.0 - 
40.4 

Oct 2005 - Sep 
2008 

36 
months 

Hourly 
[A28] Model 1 

 

Pagola2 (3 locations) 38.0 - 
40.4 

Oct 2005 - Sep 
2008 

36 
months 

Hourly 
[A28] Model 2 

 

Perez-
Burgos 

(4 locations) 48.0 - 
43.5 

Jan 2002 - Jun 
2012 

120 
months 

Hourly 
[A29]  

 

SM 32 
Nov 1985 - 

Nov 986 
12 

months Hourly [A3] 
Equation 4 with Equation 1, Equation 2, Equation 

3 

 

PLL1 37.5 
Jan 1993 - Dec 

2002 
120 

months Hourly [A30] Model 1 

 

PLL2 37.5 
Jan 1993 - Dec 

2002 
120 

months Hourly [A30] Model 2 

 

Karatasou 38 
Jan 1996 - Dec 

1998 
36 

months Hourly 
[A31]  
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Rerhrhaye 33.1 Oct 1991 - Sep 
1993 

24 
months 

Hourly 
[A31]  

 

Ruiz-Arias1 39 
Jan 2002 - Dec 

2006 
60 

months Hourly [A32] Albacete (Spain) Model G0 

 

Ruiz-Arias2 40 
Jan 1961 - Dec 

1990 
360 

months Hourly [A32] Boulder (Western USA) Model G0 

 

Ruiz-Arias3 51.1 
Jan 1981 - Dec 

1990 
120 

months Hourly [A32] Dresden (Germ.) Model G0 

 

Ruiz-Arias4 40.4 
Jan 1961 - Dec 

1990 
360 

months Hourly 
[A32] Pittsburgh (NE USA) Model G0 

 

Ruiz-Arias5 32.1 
Jan 1961 - Dec 

1990 
360 

months Hourly 
[A32] Tuscon (SW USA) Model G0 

 

Ruiz-Arias6 62.3 
Jan 1961 - Dec 

1990 
360 

months Hourly 
[A32] Talkeetna (Alaska) Model G0 

 

Sanchez 38.5 
Nov 2009 - Oct 

2010 
12 

months Hourly 
[A33]  

 

Skartveit 60.5 Jan 1965 - Dec 
1979 

180 
months 

Hourly 
[A34]  

 

Soares 23.6 Jan 1998 - Sep 
2001 

44 
months 

Hourly 
[A35]  

 

Spencer (12 locations) 20.0 
- 45.0 

Aug 1971 - Jul 
1977 

71 
months 

Hourly 
[A36]  

 

Tapakis1 31.5 
Jan 2001 - Dec 

2010 
120 

months Hourly [A37] Table 4 

 

Tapakis2 31.5 
Jan 2001 - Dec 

2010 
120 

months Hourly [A37] Corrected Table 5 (reverse order of p6 to p1) 

 

Tapakis3 31.5 
Jan 2001 - Dec 

2010 
120 

months Hourly [A37] Table 8 

 

Torres1 42.8 
Oct 2006 - 
May 2008 

19 
months Hourly 

[A38] Model 1 Pamplona (Table 1), a8 = 0.1923 

 

Torres2 42.8 
Oct 2006 - 
May 2008 

19 
months Hourly 

[A38] Model 2 Pamplona (Table 1) 

 

Torres3 42.8 
Oct 2006 - 
May 2008 

19 
months Hourly 

[A38] Model 3 Pamplona (Table 1) 

 

Torres4 42.8 
Oct 2006 - 
May 2008 

19 
months Hourly 

[A38] Model 4 Pamplona (Table 1) 

 

Tuomiranta1 
(8 locations) 23.6 - 

24.5 
Jun 2007 - Jun 

2013 
72 

months Hourly 
[A39] 

UAE general (U1): all sites apart from East of Jebel 
Hafeet 

 

Tuomiranta2 (8 locations) 23.6 - 
24.5 

Jun 2007 - Jun 
2013 

72 
months 

Hourly 
[A39] 

UAE inland (U2): all inland sites apart from East of 
Jebel Hafeet 

 

Tuomiranta3 (8 locations) 23.6 - 
24.5 

Jun 2007 - Jun 
2013 

72 
months 

Hourly 
[A39] UAE east: sites close to East of Jebel Hafeet 

 

De Jong 52.1 Jan 1961 - Dec 
1977 

204 
months 

Hourly 
[A4]  

 

UH1 38.2 
Jan 1994 - Dec 

1998 
60 

months Hourly [A40] Equation 9 

 

UH2 38.2 
Jan 1994 - Dec 

1998 
60 

months Hourly [A41] Equation 10 
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De Miguel (11 locations) 37.0 
- 44.1 

Jan 1978 - Dec 
1996 

216 
months 

Hourly 
[A42]  

 

Orgill-
Hollands 43.7 

Sep 1967 - Aug 
1971 

47 
months Hourly [A43] 

 

 

Erbs 
(4 locations) 31.1 - 

42.4 
Aug 1974 - 
Dec 1976 

28 
months Hourly [A44] 

 

 

Reindl 
(6 locations) 28.4 - 

59.6 
Jan 1979 - Dec 

1980 
24 

months Hourly [A45] 
 

 

Reindl2 
(6 locations) 28.4 - 

59.6 
Jan 1979 - Dec 

1980 
24 

months Hourly [A45] 
Equation3a, 3b, 3c 

 

BRL 
(7 locations) 12.5 - 

51.4 - - - [A46] 
Equation 10 

 

Engerer1 
(6 locations) 34.2 - 

40.7 
Jan 2001 - Dec 

2011 
132 

months Minute [A47] 
 

 

Engerer2a 
(6 locations) 34.2 - 

40.7 
Jan 2001 - Dec 

2011 
132 

months Minute [A47] 
Referred to Engerer2 

 

Engerer3 (6 locations) 34.2 - 
40.7 

Jan 2001 - Dec 
2011 

132 
months 

Minute [A47] 
 

 

Abreu (48 locations) 8.53 
- 75.1 

1995 - 2017 Multiple Minute [A48] 
 

 

Energer2b 
(70 locations) 96.6 

- 0.52 
Jan 2013 - Aug 

2018 Multiple Minute 
[A49] 

Referred to New 1-min Engerer2 

 

Energer2c 
(70 locations) 96.6 

- 0.52 
Jan 2013 - Aug 

2018 Multiple Minute [A49] Referred to New 5-min Engerer2 

 

Energer2d 
(70 locations) 96.6 

- 0.52 
Jan 2013 - Aug 

2018 Multiple Minute [A49] Referred to New 10-min Engerer2 

 

Energer2e 
(70 locations) 96.6 

- 0.52 
Jan 2013 - Aug 

2018 Multiple Minute [A49] Referred to New 15-min Engerer2 

 

Energer2f 
(70 locations) 96.6 

- 0.52 
Jan 2013 - Aug 

2018 Multiple Minute 
[A49] 

Referred to New 30-min Engerer2 

 

Energer2g 
(70 locations) 96.6 

- 0.52 
Jan 2013 - Aug 

2018 Multiple Minute 
[A49] 

Referred to New 1-h Engerer2 

 

Energer2h 
(70 locations) 96.6 

- 0.52 
Jan 2013 - Aug 

2018 Multiple Minute 
[A49] 

Referred to New 1-day Engerer2 

 

Mondol 2 54.6 
Jan 1989 - Dec 

1998 
120 

months Hourly 
[A5]  

 

Starke1 
(4 locations) 12.5 - 

37.8 1999 - 2013 Multiple Minute 
[A50] 

Australian Data (Table 3) 

 

Starke2 
(3 locations) 9.1 - 

27.6 2004 - 2016 Multiple Minute 
[A50] 

Brazilian Data (Table 5) 

 

Paulescu 
(37 locations) 60.1 

- 0.52 2002 - 2013 Multiple Minute 
[A51] 

 

 

Boland 8 38.1 - 67 days - [A52] Corrected Equation 4 
 

Every1 
(19 locations) 12.4 

- 41.0 - 
24 

months Minute 
[A53] 

Using Worldwide coefficients  

 

Every2 
(2 locations) 37.8 - 

41.0 - 
24 

months Minute 
[A53] 

Using coefficients from 'Cfb' 
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Starke3 
24 locations (24.3 - 

60.1) - - Minute 
[A53] 

Using coefficients from 'C' 

 

Yang4 
(126 locations) 

60.1 - 0.52 2016 - 2020 
48 

months Minute [A54] 
 

 

Yang5 
(126 locations) 

60.1 - 0.52 2016 - 2020 
48 

months Minute [A55] 
 

 

Gonzalez1 
(2 locations) 41.2 - 

41.4 
Jan 1994 - Dec 

1996 
36 

months 5 Minute [A56] T1 

 

Gonzalez2 
(2 locations) 41.2 - 

41.4 
Jan 1994 - Dec 

1996 
36 

months 5 Minute [A56] 
T2 

 

Gonzalez3 
(2 locations) 41.2 - 

41.4 
Jan 1994 - Dec 

1996 
36 

months 5 Minute [A56] 
T3 

 

Gonzalez4 
(2 locations) 41.2 - 

41.4 
Jan 1994 - Dec 

1996 
36 

months 5 Minute [A56] 
T4 

 

Gonzalez6 
(2 locations) 41.2 - 

41.4 
Jan 1994 - Dec 

1996 
36 

months 5 Minute [A56] 
T6 

 

Gonzalez7 (2 locations) 41.2 - 
41.4 

Jan 1994 - Dec 
1996 

36 
months 

5 Minute [A56] 
T7 

 

Muneer2 (5 locations) 51.2 - 
60.1 

Jan 1981 - Dec 
1983 

36 
months 

Hourly 
[A6]  

 

Ineichen1 46.2 Jun 1979 - Jun 
1983 

48 
months 

Hourly 
[A7] Model 1 

 

Ineichen2 46.2 
Jun 1979 - Jun 

1983 
48 

months Hourly [A7] Model 2 

 

Ineichen3 46.2 
Jun 1979 - Jun 

1983 
48 

months Hourly [A7] Model 3 

 

Mondol 1 54.6 
Jan 1989 - Dec 

1998 
120 

months Hourly [A8]  

 

Muneer1 28.6 
Jan 1974 - Jun 

1995 
24 

months Hourly 
[A9]   
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The table below presents the outcomes of 104 decomposition models, incorporating both 

minute-by-minute and hourly input data. It highlights key factors, including temporal resolution, 

spatial homogeneity, and dataset influence. The numerical values provided represent the Mean 

Absolute Deviation (MAD) expressed as a percentage (%).  

Table A.2: Results of 104 Decomposition Models Highlighting Temporal Resolution, Spatial 
Homogeneity, and Dataset Influence - A Foundational Framework for Estimating Diffuse 

Horizontal Irradiance (DHI). 
Model Chilbolton Camborne Lerwick Chilbolton Camborne Lerwick 

Minute Hour Data 

2022 Dataset 2016 Dataset 

Abreu 15.30 17.49 15.50 14.98 15.20 14.84 15.02 

Bakhsh 19.67 23.42 21.27 19.56 16.36 16.53 16.30 

Boland 8 21.53 21.25 19.19 18.39 16.83 16.52 16.42 

Boland1 19.24 21.58 18.81 17.75 16.06 15.29 15.14 

Boland2 20.85 22.24 19.94 19.06 16.00 15.68 15.89 

Boland3 19.77 25.25 22.13 18.97 19.09 18.39 15.92 

Boland4 23.05 23.00 21.08 20.36 16.86 16.81 17.18 

Boland5 19.82 22.07 19.53 18.45 15.88 15.37 15.35 

Boland6 19.92 21.95 19.43 18.42 15.88 15.36 15.39 

Boland7 22.56 22.29 20.28 19.59 16.67 16.43 16.74 

Bourges 18.73 19.03 16.98 16.79 14.71 14.46 15.47 
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BRL 19.23 19.05 17.17 16.83 14.07 14.02 14.05 

chikh1 18.10 19.39 17.67 16.96 14.71 14.76 15.33 

chikh2 16.82 21.80 18.98 16.81 16.60 15.86 15.02 

chikh3 16.33 21.67 18.88 16.68 16.82 16.04 15.09 

CK 21.81 26.66 24.33 21.99 18.37 18.69 17.89 

CM1 23.76 29.44 27.25 24.54 20.82 21.42 20.35 

CM2 22.94 25.35 23.38 22.29 17.68 18.20 18.78 

De Jong 20.73 22.74 18.58 18.39 15.37 14.10 15.55 

De Miguel 18.96 19.49 17.76 17.21 14.82 14.91 15.51 

Energer2b 14.91 20.28 19.09 15.75 20.26 19.42 15.30 

Energer2c 17.26 20.41 15.46 18.52 19.53 15.98 16.83 

Energer2d 16.24 16.76 15.21 14.86 14.11 13.81 14.30 

Energer2e 16.43 16.91 15.40 14.98 14.17 13.82 14.22 

Energer2f 16.73 17.09 15.63 15.13 14.07 13.74 14.10 

Energer2g 16.99 17.18 15.66 15.19 14.39 14.00 14.26 

Energer2h 17.49 17.38 15.82 15.25 14.36 13.93 14.14 

Engerer1 18.18 17.91 16.07 15.42 14.42 13.90 14.10 

Engerer2a 23.20 30.31 25.14 24.49 22.27 20.75 22.14 

Engerer3 71.89 72.35 72.19 74.97 66.79 70.47 75.13 

Erbs 19.06 18.88 17.20 16.76 14.94 14.91 15.58 

Every1 22.02 20.06 18.38 18.01 16.11 15.69 15.72 

Every2 20.84 19.28 17.51 17.46 16.20 15.38 15.49 

FO 34.21 31.96 30.55 29.26 23.56 23.96 23.36 

Gonzalez1 19.57 19.38 17.68 17.68 15.02 15.14 16.49 

Gonzalez2 85.23 86.13 84.47 83.07 80.06 82.07 82.63 

Gonzalez3 16.40 23.50 20.77 17.88 18.97 18.36 16.40 

Gonzalez4 19.41 27.20 24.07 20.49 20.85 20.15 17.97 

Gonzalez6 15.00 21.84 19.83 17.15 18.91 18.30 16.05 

Gonzalez7 16.62 24.09 21.73 18.80 19.78 19.14 16.99 

Hawlader 36.65 42.07 42.65 43.84 34.89 38.32 41.87 

Hollands 109.95 120.37 123.87 148.07 112.30 121.69 153.11 

Ineichen1 17.82 20.21 18.60 17.62 15.11 15.39 15.67 

Ineichen2 19.10 21.09 18.51 17.99 14.93 14.51 15.56 

Ineichen3 46.02 45.24 42.74 43.95 37.49 38.12 40.68 

Jacovides 21.12 22.55 20.81 20.05 16.07 16.57 17.24 

Karatasou 22.61 24.64 22.94 22.07 17.61 18.32 18.99 

Kuo1 38.30 48.34 45.81 27.86 47.63 46.79 30.43 

Kuo2 41.79 52.43 49.18 30.17 50.51 49.43 32.30 

Kuo3 19.81 19.59 17.94 17.69 16.02 16.12 16.70 
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Kuo4 17.46 19.33 17.97 17.18 16.24 16.54 16.46 

Lam and Li 19.75 23.12 21.66 20.49 16.98 17.79 17.88 

LAM2 30.47 35.11 35.68 36.31 28.61 32.28 34.99 

Li And Lam 19.57 21.22 19.88 18.95 15.97 16.37 16.66 

Louche 70.53 71.13 55.80 87.69 73.41 50.67 68.04 

Mondol 1 16.84 19.71 17.86 16.70 14.90 14.90 14.89 

Mondol 2 15.95 20.58 18.64 16.68 15.65 15.71 14.71 

Moreno 29.47 27.45 25.68 23.98 21.45 20.80 20.95 

Muneer1 19.40 23.33 21.63 19.97 16.87 17.37 17.04 

Muneer2 16.10 20.53 18.39 16.38 15.65 15.49 14.57 

Muneer3 28.31 37.34 34.18 27.37 31.50 30.57 24.31 

Oliveira 21.20 21.12 19.41 19.25 15.84 16.27 17.42 

Orgill-Hollands 18.89 19.91 18.01 17.16 15.30 15.27 15.47 

Pagola1 22.53 25.40 24.30 23.17 18.97 20.21 20.49 

Pagola2 21.58 24.83 23.67 22.64 19.20 20.32 20.59 

Paulescu 12.00 14.05 12.87 12.37 13.57 13.63 13.86 

Perez-Burgos 101.72 105.98 90.74 129.03 116.94 83.13 101.69 

PLL1 54.54 68.20 65.77 61.34 56.38 58.22 57.06 

PLL2 510.60 547.20 501.40 403.67 455.07 403.31 306.32 

Reindl 20.23 20.81 18.72 18.12 15.30 15.25 15.99 

Reindl2 16.52 20.87 19.56 18.51 18.87 18.48 17.67 

Rerhrhaye 64.62 77.26 67.79 49.50 71.79 64.70 48.44 

Ruiz-Arias1 220.11 246.45 226.95 206.76 184.54 164.89 136.19 

Ruiz-Arias2 223.38 267.80 274.72 291.09 248.81 265.50 293.63 

Ruiz-Arias3 294.12 321.05 293.35 240.49 260.90 231.37 177.34 

Ruiz-Arias4 65.15 78.06 69.09 50.09 72.19 65.56 48.55 

Ruiz-Arias5 64.11 77.07 68.26 49.36 70.85 64.45 47.65 

Ruiz-Arias6 63.70 76.60 67.78 48.97 70.50 64.08 47.32 

Sanchez 31.16 30.86 29.96 29.58 23.73 25.43 26.69 

Skartveit 85.05 86.48 84.92 84.88 80.08 82.24 84.30 

SM 22.09 22.63 21.50 21.57 17.73 18.72 19.23 

Soares 21.62 20.18 18.76 18.22 15.79 16.05 16.61 

Spencer 16.29 16.26 14.52 14.60 15.30 14.80 13.93 

Starke1 20.28 18.32 16.75 16.86 14.12 14.06 14.01 

Starke2 15.24 15.00 13.28 13.97 17.34 15.96 15.20 

Starke3 14.44 14.72 12.74 12.79 19.55 17.69 15.81 

Tapakis1 20.60 21.87 19.58 19.56 17.06 16.69 17.14 

Tapakis2 85.19 86.26 84.73 83.27 80.00 82.13 82.77 

Tapakis3 86.44 87.47 85.88 84.98 82.35 84.32 85.06 
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Torres1 20.90 21.60 20.04 19.43 15.84 16.39 17.09 

Torres2 21.59 21.84 20.20 19.71 16.01 16.46 17.17 

Torres3 21.63 21.89 20.22 19.73 16.03 16.46 17.18 

Torres4 21.47 21.81 20.17 19.67 15.99 16.43 17.15 

Tuomiranta1 73.22 86.29 77.43 54.04 80.92 74.41 53.06 

Tuomiranta2 71.07 84.01 74.94 52.62 78.53 71.89 51.60 

Tuomiranta3 70.57 83.47 74.35 52.23 77.96 71.28 51.22 

UH1 30.83 36.53 36.08 35.02 28.89 31.72 32.59 

UH2 31.53 37.18 36.81 35.65 29.69 32.74 33.48 

Yang4 17.01 14.60 13.75 12.51 26.38 23.87 20.89 

Yang5 14.17 14.04 13.23 12.51 23.89 21.79 19.20 

Yao1 17.34 23.06 20.28 16.84 19.38 18.70 16.08 

Yao2 17.78 23.66 20.60 17.43 19.36 18.55 16.19 

Yao3 17.09 23.17 20.00 17.37 20.34 19.15 16.20 

Yao4 17.44 23.36 20.43 16.96 20.79 19.93 16.77 
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Appendix B  

The full python script to implement the 104 decomposition models is seen below: 

# -*- coding: utf-8 -*- 

""" 

=============================== 

104 DECOMPOSITION MODEL SCRIPT 

=============================== 

It would be helpful to install the following libraries using pip install: 

pip install pandas numpy openpyxl tqdm 

""" 

import math, os 

from pathlib import Path 

import numpy as np, pandas as pd 

from tqdm import tqdm 

 

DATA_PATH = Path(r"INSERT/YOUR/PATH/HERE") 

 

def phi_series(kt): 

    return (kt.shift(1).fillna(method="bfill") + kt.shift(-1).fillna(method="ffill")) / 2 

 

def Energer2a(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde = max(0,1-(GHI_clear/GHI)); delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    cc,bb0,bb1,bb2,bb3,bb4,bb5=0.042336,-3.7912,7.5479,-0.010036,0.003148,-5.3146,1.7073 

    f=cc+(1-cc)/(1+np.exp(bb0+bb1*Kt+bb2*AST+bb3*zenith_angle/180*math.pi+bb4*delta_ktc))+bb5*kde 

    return f*GHI 

 

def Energer2b(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    c,b0,b1,b2,b3,b4,b5=0.10562,-4.1332,8.2578,0.010087,0.00088801,-4.9302,0.44378 

    f=c+(1-c)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    return f*GHI 

 

def Energer2c(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    c,b0,b1,b2,b3,b4,b5=0.093936,-4.5771,8.4641,0.010012,0.003975,-4.3921,0.39331 

    f=c+(1-c)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    return f*GHI 
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def Energer2d(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    c,b0,b1,b2,b3,b4,b5=0.079965,-4.8539,8.4764,0.018849,0.0051497,-4.1457,0.37466 

    f=c+(1-c)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    return f*GHI 

 

def Energer2e(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    c,b0,b1,b2,b3,b4,b5=0.065972,-4.7211,8.3294,0.0095444,0.0053493,-4.169,0.39526 

    f=c+(1-c)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    return f*GHI 

 

def Energer2f(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    c,b0,b1,b2,b3,b4,b5=0.032675,-4.8681,8.1867,0.015829,0.0059922,-4.0304,0.47371 

    f=c+(1-c)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    return f*GHI 

 

def Energer2g(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    c,b0,b1,b2,b3,b4,b5=-0.0097539,-5.3169,8.5084,0.013241,0.0074356,-3.0329,0.56403 

    f=c+(1-c)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    return f*GHI 

 

def Energer2h(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    c,b0,b1,b2,b3,b4,b5=0.32726,-9.4391,17.113,0.13752,-0.024099,6.6257,0.31419 

    f=c+(1-c)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    return f*GHI 

 

def Starke1(Kt, AST, altitude, phi_val, daily_kt, GHI_clear, GHI): 

    b=[-6.70407,6.99137,-0.00048,0.03839,3.36003,1.97891,-0.96758,0.15623,-4.21938,-0.00207,-0.06604,2.12613,2.56515,1.62075] 

    p1=math.exp(b[0]+b[1]*Kt+b[2]*AST+b[3]*altitude+b[4]*daily_kt+b[5]*phi_val+b[6]*(GHI_clear/277.28)) 

    p2=math.exp(b[7]+b[8]*Kt+b[9]*AST+b[10]*altitude+b[11]*daily_kt+b[12]*phi_val+b[13]*(GHI_clear/277.28)) 

    return GHI/(1+p2) if (Kt>0.65 and Kt/GHI_clear>=1.05) else GHI/(1+p1) 

 

def Starke2(Kt, AST, altitude, phi_val, daily_kt, GHI_clear, GHI): 

    b=[-6.37505,6.68399,0.01667,0.02552,3.32837,1.97935,-0.74116,0.19486,-3.52376,-0.00325,-0.03737,2.68761,1.60666,1.07129] 

    p1=math.exp(b[0]+b[1]*Kt+b[2]*AST+b[3]*altitude+b[4]*daily_kt+b[5]*phi_val+b[6]*(GHI_clear/277.28)) 

    p2=math.exp(b[7]+b[8]*Kt+b[9]*AST+b[10]*altitude+b[11]*daily_kt+b[12]*phi_val+b[13]*(GHI_clear/277.28)) 

    return GHI/(1+p2) if (Kt>0.65 and Kt/GHI_clear>=1.05) else GHI/(1+p1) 
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def Starke3(Kt, AST, altitude, phi_val, daily_kt, hourly_kt, GHI_clear, GHI): 

    b=[-0.083,-3.14711,0.00176,-0.03354,1.40264,0.81353,0.00343,1.95109,-7.28853,7.15225,0.00384,0.02535,2.35926,0.83439,-
0.00327,3.19723] 

    p1=math.exp(b[0]+b[1]*Kt+b[2]*AST+b[3]*altitude+b[4]*daily_kt+b[5]*phi_val+b[6]*GHI_clear+b[7]*hourly_kt) 

    p2=math.exp(b[8]+b[9]*Kt+b[10]*AST+b[11]*altitude+b[12]*daily_kt+b[13]*phi_val+b[14]*GHI_clear+b[15]*hourly_kt) 

    return GHI/(1+p1) if (Kt>=0.75 and Kt/GHI_clear>=1.05) else GHI/(1+p2) 

 

def yang4(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    cc,b0,b1,b2,b3,b4,b5,b6=0.042336,-3.7912,7.5479,-0.010036,0.003148,-5.3146,1.7073,0.0361 

    d=cc+(1-cc)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    z=[-0.5744,4.3184,-0.0011,0.004,-4.7952,1.4414,-2.8396] 

    f=b6+(1-b6)/(1+np.exp(z[0]+z[1]*Kt+z[2]*AST+z[3]*zenith_angle/180*math.pi+z[4]*delta_ktc+z[6]*d))+z[5]*kde 

    return f*GHI 

 

def yang5(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde=max(0,1-(GHI_clear/GHI));delta_ktc=(GHI_clear/ea)-Kt if ea else 0 

    cc,b0,b1,b2,b3,b4,b5=0.042336,-3.7912,7.5479,-0.010036,0.003148,-5.3146,1.7073 

    d=cc+(1-cc)/(1+np.exp(b0+b1*Kt+b2*AST+b3*zenith_angle/180*math.pi+b4*delta_ktc))+b5*kde 

    z=[0.04294,-1.64437,4.71808,0.01462,0.00745,-3.35223,1.25192,-2.36477] 

    f=z[0]+(1-z[0])/(1+np.exp(z[1]+z[2]*Kt+z[3]*AST+z[4]*zenith_angle/180*math.pi+z[5]*delta_ktc+z[7]*d))+z[6]*kde 

    return f*GHI 

 

def every_1(Kt, altitude, GHI, AST, phi_val, daily_kt): 

    x=-6.862+9.068*Kt+0.01468*AST-0.00472*altitude+1.703*daily_kt+1.084*phi_val 

    return GHI/(1+math.exp(x)) 

 

def every_2(Kt, altitude, GHI, AST, phi_val, daily_kt): 

    x=-6.764+9.958*Kt+0.01271*AST-0.01249*altitude+0.928*daily_kt+1.142*phi_val 

    return GHI/(1+math.exp(x)) 

 

def Arbeu(Kt,GHI): 

    A,B,N=10.79,-5.87,2.24 

    y=(A*(Kt-0.5)**2+B*(Kt-0.5)+1)**(-N) 

    return GHI*(1+y)**(-1/N) 

 

def paulescu(Kt,daily_kt,GHI): 

    b=[1.0119,-0.0316,-0.0294,-1.6567,0.367,1.8982,0.734,-0.8548,0.462] 

    i1=1 if Kt>=b[4] else 0;i2=1 if Kt>=b[6] else 0;i3=1 if Kt>=b[8] else 0 

    return GHI*(b[0]+b[1]*Kt+b[2]*daily_kt+b[3]*(Kt-b[4])*i1+b[5]*(Kt-b[6])*i2+b[7]*(daily_kt-b[8])*i3) 
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def brl(Kt, altitude, GHI, AST, phi_val, mean_Kt): 

    x=-5.38+6.63*Kt+0.006*AST-0.007*altitude+1.75*mean_Kt+1.31*phi_val 

    return abs(GHI/(1+math.exp(x))) 

 

def _kuo_exp(a): 

    try: return math.exp(a) 

    except OverflowError: return 0 

 

def Kuo1(Kt_list, altitude, GHI, AST, zenith_angle): 

    mean_Kt=sum(Kt_list)/len(Kt_list) 

    def _phi(i): return Kt_list[i] if i in (0,len(Kt_list)-1) else (Kt_list[i-1]+Kt_list[i+1])/2 

    e=_kuo_exp(-4.5274+5.6956*Kt_list[0]-0.0814*altitude-0.0464*AST+2.4162*mean_Kt+1.0125*_phi(0)) 

    return GHI/(1+e) 

 

def Kuo2(Kt_list, altitude,GHI,AST,zenith_angle): 

    mean_Kt=sum(Kt_list)/len(Kt_list);phi=(Kt_list[0]+Kt_list[min(1,len(Kt_list)-1)])/2 

    return GHI/(1+_kuo_exp(-4.5312+5.7627*Kt_list[0]-0.0882*altitude-0.0391*AST+1.9998*mean_Kt+1.1521*phi)) 

 

def Kuo3(Kt_list, altitude,GHI,AST,zenith_angle): 

    mean_Kt=sum(Kt_list)/len(Kt_list) 

    phi=(Kt_list[0]+Kt_list[min(1,len(Kt_list)-1)])/2 

    if mean_Kt<0.2: return 0.9885*GHI 

    if mean_Kt<=0.3:return (1.0981-0.3769*mean_Kt+0.0233*math.sin(altitude)+0.002*AST-0.1451*mean_Kt-0.1727*phi)*GHI 

    if mean_Kt<=0.75:return (1.4185-1.1897*mean_Kt+0.01*math.sin(altitude)+0.0071*AST-0.3891*mean_Kt-0.2181*phi)*GHI 

    return 0.1922*GHI 

 

def Kuo4(Kt_list, altitude,GHI,AST,zenith_angle): 

    mean_Kt=sum(Kt_list)/len(Kt_list);phi=(Kt_list[0]+Kt_list[min(1,len(Kt_list)-1)])/2 

    if mean_Kt<0.2:return 0.9896*GHI 

    if mean_Kt<=0.3:return (1.0874-0.3936*mean_Kt+0.0359*math.sin(altitude)+0.0035*AST-0.1899*mean_Kt-0.1253*phi)*GHI 

    if mean_Kt<=0.75:return (1.4188-1.2191*mean_Kt+0.015*math.sin(altitude)+0.0063*AST-0.3403*mean_Kt-0.2125*phi)*GHI 

    return 0.2775*GHI 

 

def Boland8(Kt_list, altitude,GHI,AST,zenith_angle): 

    mean_Kt=sum(Kt_list)/len(Kt_list);phi=(Kt_list[0]+Kt_list[min(1,len(Kt_list)-1)])/2 

    e=_kuo_exp(-7.75*Kt_list[0]-1.185*mean_Kt-1.05*phi-0.004*AST+0.003*altitude) 

    dni=(0.02628/(0.006+4.374*e))*1000/3.6 

    return abs(dni*math.cos(math.radians(zenith_angle))-GHI) 

 

def baksh(Kt,GHI): 

    return (1-0.22*Kt)*GHI if Kt<=0.23 else (1.235-1.26*Kt)*GHI if Kt<0.80 else 0.225*GHI 

 



 

197 

 

def chikh1(Kt, GHI):  

    if Kt <= 0.175: 

        return (1-0.3*Kt)*GHI 

    elif Kt > 0.175 and Kt < 0.87: 

        return (1.137 - 1.077*Kt) * GHI 

    else: 

        return (0.2043) * GHI 

 

def chikh2(Kt, GHI): 

    if Kt <= 0.175: 

        return (1-0.64*Kt)*GHI 

    elif Kt > 0.175 and Kt < 0.87: 

        return (1.052 - 0.935*Kt) * GHI 

    else: 

        return (0.24) * GHI 

 

def chikh3(Kt, GHI): 

    if Kt <= 0.175: 

        return (1-0.232*Kt)*GHI 

    elif Kt > 0.175 and Kt < 0.87: 

        return (1.17 - 1.23*Kt) * GHI 

    else: 

        return (0.203) * GHI 

 

def LAM2(Kt, GHI): 

    if Kt <= 0.15: 

        return (0.974*Kt)*GHI 

    elif Kt > 0.15 and Kt < 0.70: 

        return (1.192 - 1.394*Kt) * GHI 

    else: 

        return (0.259) * GHI 

 

def Mondol1(Kt, GHI): 

    if Kt <= 0.20: 

        return (0.98)*GHI 

    else: 

        return (0.5836 + 3.6259*Kt - 10.171*Kt*Kt+6.338*Kt*Kt*Kt) * GHI 

 

def Mondol2(Kt, GHI, zenith_angle): 

    if Kt <= 0.20: 

        return(GHI*0.98) 

    elif Kt > 0.20 and Kt <= 0.70: 
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        return(GHI * (0.61092 + 3.6259*Kt - 10.171*Kt*Kt + 6.338*Kt*Kt*Kt)) 

    else: 

        return(GHI * (0.672 - 0.474*Kt)) 

 

def Muneer1(Kt, GHI): 

    if Kt <= 0.175: 

        return 0.95 * GHI 

    elif Kt <= 0.755: 

        return (0.9698 + 0.4353 * Kt - 3.4499 * Kt**2 + 2.1888 * Kt**3) * GHI 

    else: 

        return 0.26 * GHI 

 

def Muneer2(Kt, GHI): 

    if Kt <= 0.20: 

        return (0.98)*GHI 

    else: 

        return (0.687+2.932*Kt-8.546*Kt*Kt + 5.277*Kt*Kt*Kt) * GHI 

 

def PerezBurgos(Kt, GHI, zenith_angle): 

    k = 0.0909 + 594.67*Kt - 3796.1*Kt*Kt + 5837.3*Kt*Kt*Kt 

    return (GHI - k) 

 

def Rerhrhaye(Kt, GHI, zenith_angle): 

    k = 1/math.cos(math.radians(zenith_angle)) 

    if Kt <0.12: 

        return GHI 

    else: 

        return GHI -k*(0.16 - 1.19*Kt + 2.25*Kt*Kt) 

 

def DeJong(Kt, GHI, altitude): 

    r = 0.847 - 1.61*math.sin(math.radians(altitude)) 

    x = ((1.47 - r)/1.66) 

    if Kt <= 0.22: 

        return GHI 

    elif Kt > 0.22 and Kt <= 0.35: 

        return GHI*(1-6.4*(Kt-0.22)**2) 

    elif Kt > 0.35 and Kt <=x: 

        return GHI*(1.47-1.66*Kt) 

    else: 

        return GHI*r 
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def Tuomiranta3(Kt, GHI, zenith_angle): 

    m = 1.0 / (math.cos(math.radians(zenith_angle)) + 0.50572*((96.07995 - zenith_angle)**-1.6364)) 

    kt_mod = Kt / (1.031 * math.exp(-1.4/0.9 + (9.4/m)) + 0.1) 

    if kt_mod <= 0.46: 

        return GHI*(1.055 - 0.241*kt_mod) 

    elif kt_mod > 0.46 and kt_mod <= 0.77: 

        return (0.866+1.598*kt_mod - 3.102 *kt_mod*kt_mod) * GHI 

    else: 

        return 0.257*GHI 

     

def Tuomiranta1(Kt, GHI, zenith_angle): 

    m = 1.0 / (math.cos(math.radians(zenith_angle)) + 0.50572*((96.07995 - zenith_angle)**-1.6364)) 

    kt_mod = Kt / (1.031 * math.exp(-1.4/0.9 + (9.4/m)) + 0.1) 

    if kt_mod <= 0.49: 

        return GHI*(1.08 - 0.367*kt_mod) 

    elif kt_mod > 0.49 and kt_mod <= 0.76: 

        return (2.162-2.717*kt_mod + 0.288 *kt_mod*kt_mod) * GHI 

    else: 

        return 0.264*GHI 

 

def Tuomiranta2(Kt, GHI, zenith_angle): 

    m = 1.0 / (math.cos(math.radians(zenith_angle)) + 0.50572*((96.07995 - zenith_angle)**-1.6364)) 

    kt_mod = Kt / (1.031 * math.exp(-1.4/0.9 + (9.4/m)) + 0.1) 

    if kt_mod <= 0.48: 

        return GHI*(1.06 - 0.271*kt_mod) 

    elif kt_mod > 0.48 and kt_mod <= 0.77: 

        return (1.072+0.989*kt_mod - 2.674 *kt_mod*kt_mod) * GHI 

    else: 

        return 0.247*GHI 

 

def chandraskaran_kumar(Kt, GHI): 

    if Kt <= 0.24: 

        return (1.0086 - 0.178*Kt)*GHI 

    elif Kt > 0.24 and Kt < 0.80: 

        return (0.9686 + 0.1325*Kt + 1.4183*Kt*Kt - 10.1862*Kt*Kt*Kt + 8.3733*Kt*Kt*Kt*Kt) * GHI 

    else: 

        return (0.197) * GHI 

 

def erbs(Kt, GHI): 

    if Kt <= 0.22: 

        return (1 - 0.09*Kt) * GHI 

    elif Kt > 0.22 and Kt <= 0.80: 
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        return (0.9511 - 0.1604*Kt + 4.388*Kt*Kt - 16.638*Kt*Kt*Kt + 12.336*Kt*Kt*Kt*Kt) * GHI 

    else: 

        return 0.165 * GHI 

 

def hawlader(Kt, GHI): 

    if Kt < 0.225: 

        return 0.915 * GHI * Kt 

    elif Kt >= 0.225 and Kt < 0.775: 

        return (1.1389 - 0.9422*Kt - 0.3878*Kt*Kt) * GHI 

    else: 

        return 0.215 * GHI 

 

def jacovides(Kt, GHI): 

    if Kt <= 0.1: 

        return 0.987 * GHI 

    elif Kt > 0.1 and Kt <= 0.8: 

        return (0.94 + 0.937*Kt - 5.01*Kt*Kt + 3.32*Kt*Kt*Kt) * GHI 

    else: 

        return 0.177 * GHI 

 

def karatasou(Kt, GHI): 

    if Kt <= 0.78: 

        return (0.9995 - 0.05*Kt - 2.4156*Kt*Kt + 1.4926*Kt*Kt*Kt) * GHI 

    else: 

        return 0.2 * GHI 

 

def lam_and_li(Kt, GHI): 

    if Kt <= 0.15: 

        return 0.977 * GHI 

    elif Kt > 0.15 and Kt <= 0.70: 

        return (1.237 - 1.361*Kt) * GHI 

    else: 

        return 0.273 * GHI 

def louche(Kt, GHI, zenith_angle): 

    return GHI - (((-10.7676*Kt**5 + 15.307*Kt**4 - 5.205*Kt**3 + 0.99*Kt**2 - 0.059*Kt + 0.02) * GHI) / 
math.cos(math.radians(zenith_angle))) 
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def orgill_and_hollands(Kt, GHI): 

    if Kt <= 0.35: 

        return (1 - 0.249*Kt) * GHI 

    elif Kt <= 0.75: 

        return (1.577 - 1.84*Kt) * GHI 

    else: 

        return 0.177 * GHI 

     

def Hollands(Kt, GHI): 

    a_holl = 1.115 

    b_holl = 0.491 

    if Kt >= 0 and GHI > 0: 

        expr = (1-b_holl)**2 - 4*a_holl*b_holl*Kt*(1-a_holl*Kt) 

        if expr >= 0: 

            return GHI*(1 - b_holl - math.sqrt(expr)/(2*a_holl*b_holl*Kt)) 

        else: 

            return 0 

    else: 

        return 0 

     

def Bourges(Kt, GHI): 

    if Kt <= 0.20: 

        return GHI 

    elif Kt > 0.20 and Kt <= 0.35: 

        return (1.116 - 0.580*Kt) * GHI 

    elif Kt > 0.35 and Kt <= 0.75: 

        return (1.557 - 1.840*Kt) * GHI 

    else: 

        return 0.177 * GHI 

     

def boland1(Kt, GHI): 

    return GHI / (1 + np.exp(8.645 * (Kt - 0.613))) 

 

def boland2(Kt, GHI): 

    return GHI / (1 + np.exp(7.997 * (Kt - 0.586))) 

 

def boland3(Kt, GHI): 

    return GHI / (1 + np.exp(-4.38  + 6.62*Kt)) 

 

def boland4(Kt, GHI): 

    return GHI / (1 + np.exp(-4.53  + 8.05*Kt)) 
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def boland5(Kt, GHI): 

    return GHI / (1 + np.exp(-4.80  + 7.98*Kt)) 

 

def boland6(Kt, GHI): 

    return GHI / (1 + np.exp(-4.87  + 8.12*Kt)) 

 

def boland7(Kt, GHI): 

    return GHI / (1 + np.exp(-4.94 + 8.66*Kt)) 

 

def reindl(Kt, GHI): 

    if Kt <= 0.3: 

        return (1.02 - 0.248 * Kt) * GHI 

    elif Kt > 0.3 and Kt <=0.78: 

        return (1.45 - 1.67 * Kt) * GHI 

    else: 

        return 0.147 * GHI 

 

def De_Miguel(Kt, GHI): 

    if Kt <= 0.21: 

        return (0.995 - 0.081*Kt)* GHI 

    elif Kt > 0.21 and Kt <= 0.76: 

        return (0.724 + 2.738*Kt - 8.320*Kt*Kt + 4.967*Kt*Kt*Kt) * GHI 

    else: 

        return 0.180 * GHI     

 

def Li_And_Lam(Kt, GHI): 

    if Kt <= 0.15: 

        return (0.976)* GHI 

    elif Kt > 0.15 and Kt <= 0.70: 

        return (0.996 + 0.036*Kt - 1.589*Kt*Kt) * GHI 

    else: 

        return 0.230 * GHI     

     

def Spencer(Kt, GHI): 

    if Kt < 0.3: 

        return 0.97975 * GHI 

    elif Kt >= 0.3 and Kt <= 0.75: 

        return (1.5418 - 1.8735*Kt) * GHI 

    else: 

        return 0.136675 * GHI 
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def Ineichen1(Kt, GHI): 

    if Kt < 0.15: 

        return 0.98 * GHI 

    else: 

        return (0.8 + 2.25*Kt - 7.93*Kt*Kt + 5.26*Kt*Kt*Kt)*GHI 

 

def Ineichen2(Kt, GHI): 

    if Kt < 0.25: 

        return GHI 

    elif Kt >= 0.25 and Kt <= 0.80: 

        return (1.38 - 1.52*Kt) * GHI 

    else: 

        return (0.16)*GHI 

 

def Ineichen3(Kt, GHI): 

    if Kt < 0.25: 

        return GHI 

    else: 

        return (1.28*Kt - 1.40*Kt*Kt)*GHI 

     

def reindl2(Kt, GHI, altitude): 

    if Kt <= 0.3: 

        return (1.02 - 0.254 * Kt + 0.0123 * math.sin(math.radians(altitude))) * GHI 

    elif Kt > 0.3 and Kt <=0.78: 

        return (1.4 - 1.749 * Kt + 0.177 * math.sin(math.radians(altitude))) * GHI 

    else: 

        return (0.486 * GHI - 0.182 * math.sin(math.radians(altitude))) 

 

def oliveira(Kt, GHI): 

    if Kt <= 0.17: 

        return GHI 

    elif Kt > 0.17 and Kt < 0.75: 

        return (0.97 + 0.8 * Kt - 3 * Kt**2 - 3.1 * Kt**3 + 5.2 * Kt**4) * GHI 

    else: 

        return 0.17 * GHI 
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def Ulgen_And_Hepbasli1(Kt, GHI): 

    if Kt <= 0.32: 

        return 0.68*GHI 

    elif Kt > 0.32 and Kt < 0.62: 

        return (1.0609 - 1.2138*Kt) * GHI 

    else: 

        return 0.30 * GHI     

 

def Ulgen_And_Hepbasli2(Kt, GHI): 

    if Kt <= 0.32: 

        return 0.68*GHI 

    elif Kt > 0.32 and Kt < 0.62: 

        return (0.0743 - 19.3430*Kt + 206.91*Kt*Kt - 719.72*Kt*Kt*Kt + 1053.4 *Kt*Kt*Kt*Kt- 562.69*Kt*Kt*Kt*Kt*Kt) * GHI 

    else: 

        return 0.30 * GHI         

 

def soares(Kt,GHI): 

        return (0.9 + 1.1 * Kt - 4.5 * Kt**2 + 0.01 * Kt**3 + 3.14 * Kt**4) * GHI 

 

def chendo_and_maduekwe1(Kt, GHI): 

     if Kt <= 0.30: 

         return (1.022 -0.156*Kt)*GHI 

     elif Kt > 0.30 and Kt < 0.80: 

         return (1.385 - 1.396*Kt) * GHI 

     else: 

         return (0.264) * GHI 

 

def chendo_and_maduekwe2(Kt, GHI): 

     if Kt <= 0.30: 

         return (1.021 -0.151*Kt)*GHI 

     elif Kt > 0.30 and Kt < 0.80: 

         return (1.385 - 1.396*Kt) * GHI 

     else: 

         return (0.295) * GHI 

     

def Furlan_and_Oliveira(Kt, GHI): 

     if Kt <= 0.228: 

         return (0.961)*GHI 

     else: 

         return (1.337 - 1.650*Kt) * GHI     
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def Moreno(Kt, GHI): 

     if Kt <= 0.20: 

         return (0.9930)*GHI 

     elif Kt > 0.20 and Kt < 0.70: 

         return (1.4946 - 1.7899*Kt)*GHI 

     else: 

         return (0.045) * GHI 

 

def Pagola1(Kt, GHI): 

     if Kt <= 0.35: 

         return (0.9818 - 0.5870*Kt)*GHI 

     elif Kt > 0.35 and Kt < 0.75: 

         return (1.2056 - 1.3240*Kt)*GHI 

     else: 

         return (0.2552) * GHI 

 

def Pagola2(Kt, GHI): 

      if Kt <= 0.22: 

          return (0.9522 - 0.3119*Kt)*GHI 

      elif Kt > 0.22 and Kt < 0.80: 

          return (0.6059 + 2.987*Kt - 10.5675*Kt**2 +10.1833*Kt**3 - 3.0475*Kt**4)*GHI 

      else: 

          return (0.3209) * GHI    

 

def Posadillo_Lopez1(Kt, GHI): 

    return (Kt*1.77 - 1.381*Kt*Kt) * GHI    

 

def Posadillo_Lopez2(Kt, GHI): 

    return (-0.00829 + 1.163*Kt + 0.433*Kt*Kt + 5.839*Kt*Kt*Kt + 4.6488*Kt*Kt*Kt*Kt)*GHI 

       

def Ruiz_Arias1(Kt, GHI): 

    return (0.086 + 0.88*math.exp(-3.877 + 6.138*Kt))*GHI      

 

def Ruiz_Arias2(Kt, GHI): 

    return (0.967 - 1.024*math.exp(2.473 - 5.324*Kt))*GHI     

  

def Ruiz_Arias3(Kt, GHI): 

    return (0.140 + 0.962*math.exp(-1.976 + 4.067*Kt))*GHI        

  

def Ruiz_Arias4(Kt, GHI): 

    return (1.001 - 1*math.exp(-2.45 -5.048*Kt))*GHI        
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def Ruiz_Arias5(Kt, GHI): 

    return (0.988 - 1*math.exp(-2.456 -5.172*Kt))*GHI        

  

def Ruiz_Arias6(Kt, GHI): 

          return (0.985 - 0.962*math.exp(-2.655 - 6.003*Kt))*GHI        

 

def Torres1(Kt, GHI): 

      if Kt <= 0.24: 

          return (1.0058 - 0.2195*Kt)*GHI 

      elif Kt > 0.24 and Kt < 0.75: 

          return (1.3264 - 1.5120*Kt)*GHI 

      else: 

          return (0.1923) * GHI    

 

def Torres2(Kt, GHI): 

      if Kt <= 0.22: 

          return (0.9920 - 0.0980*Kt)*GHI 

      elif Kt > 0.22 and Kt < 0.75: 

          return (1.2158 - 1.0467*Kt - 0.448*Kt*Kt)*GHI 

      else: 

          return 0.1787*GHI    

       

def Torres3(Kt, GHI): 

      if Kt <= 0.225: 

          return (0.9923 - 0.0980*Kt)*GHI 

      elif Kt > 0.225 and Kt < 0.755: 

          return (1.1459 - 0.5612*Kt - 1.4952*Kt*Kt + 0.7103*Kt*Kt*Kt)*GHI 

      else: 

          return 0.1755*GHI         

     

def Torres4(Kt, GHI): 

      if Kt <= 0.225: 

          return (0.9943 - 0.1165*Kt)*GHI 

      elif Kt > 0.225 and Kt < 0.755: 

          return (1.4101 - 2.9918*Kt + 6.4599*Kt*Kt -10.329*Kt*Kt*Kt + 5.5140*Kt*Kt*Kt*Kt)*GHI 

      else: 

          return 0.18*GHI    
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def Sanchez(Kt, GHI): 

      if Kt < 0.3: 

          return (0.78)*GHI 

      elif Kt >= 0.30 and Kt <= 0.75: 

          return (1.23 - 1.43*Kt)*GHI 

      else: 

          return 0.13*GHI    

def Tapakis1(Kt, GHI): 

      if Kt < 0.10: 

          return (0.91 + 2.4993*Kt - 18.858*Kt*Kt)*GHI 

      elif Kt >= 0.10 and Kt <= 0.78: 

          return (0.9605 + 0.4482*Kt - 2.0011*Kt*Kt - 1.5581*Kt*Kt*Kt + 2.008*Kt*Kt*Kt*Kt)*GHI 

      else: 

          return (-2.4518 + 3.3014*Kt)*GHI    

def Tapakis2(Kt, altitude, GHI): 

    if altitude >= 5 and altitude < 10: 

        return GHI*(-246.06*Kt**5 + 412.05*Kt**4 -236.59*Kt**3 +53.9*Kt**2 -4.72*Kt +1.10) 

    elif altitude >= 10 and altitude < 15: 

        return GHI*(-94.4*Kt**5 + 189.87*Kt**4 -127.29*Kt**3 +32.63*Kt**2 -3.29*Kt +1.08) 

    elif altitude >= 15 and altitude < 20: 

        return GHI*(-36.9*Kt**5 + 94.73*Kt**4 -75.34*Kt**3 +21.23*Kt**2 -2.24*Kt +1.05) 

    elif altitude >= 20 and altitude < 25: 

        return GHI*(84.95*Kt**5 -114.34*Kt**4 +49.34*Kt**3 -9.50*Kt**2 +0.66*Kt +0.98) 

    elif altitude >= 25 and altitude < 30: 

        return GHI*(40.61*Kt**5 -52.24*Kt**4 + 18.70*Kt**3 -2.99*Kt**2 +0.10*Kt +0.99) 

    elif altitude >= 30 and altitude < 35: 

        return GHI*(63.53*Kt**5 -104.96*Kt**4 +59.07*Kt**3 -15.34*Kt**2 +1.52*Kt +0.95) 

    elif altitude >= 35 and altitude < 40: 

        return GHI*(56.06*Kt**5 + -100.60*Kt**4 +64.47*Kt**3 -20.02*Kt**2 +2.51*Kt +0.89) 

    elif altitude >= 40 and altitude < 45: 

        return GHI*(28.16*Kt**5 -43.96*Kt**4 +22.34*Kt**3 -6.29*Kt**2 +0.71*Kt +0.96) 

    elif altitude >= 45 and altitude < 50: 

        return GHI*(39.69*Kt**5 -72.72*Kt**4 +47.24*Kt**3 -15.05*Kt**2 +1.77*Kt +0.93) 

    elif altitude >= 50 and altitude < 55: 

        return GHI*(15.59*Kt**5 -33.36*Kt**4 +28.09*Kt**3 -12.80*Kt**2 +1.92*Kt +0.91) 

    elif altitude >= 55 and altitude < 60:   

        return GHI*(26.66*Kt**5 -46.68*Kt**4 +29.02*Kt**3 -9.99*Kt**2 +1.36*Kt +0.93) 

    elif altitude >= 60 and altitude < 65:    

        return GHI*(69.77*Kt**5 -163.83*Kt**4 +142.13*Kt**3 -56.08*Kt**2 +8.58*Kt +0.57) 

    elif altitude >= 65 and altitude < 70: 

        return GHI*(19.27*Kt**5 -37.50*Kt**4 +26.92*Kt**3 -10.47*Kt**2 +1.38*Kt +0.93) 

    else: 
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        return GHI*(43.02*Kt**5 -93.20*Kt**4 +72.92*Kt**3 -25.81*Kt*Kt +3.06*Kt +0.88) 

 

def Tapakis3(Kt, altitude, GHI): 

      if Kt < 0.32: 

          return (7.37/(7.52 + math.exp(-13.57 + 64.94*Kt + -22.06*Kt**2 -71.73*altitude*math.pi/180 +6.97*Kt*altitude*math.pi/180)))*GHI 

      elif Kt >= 0.32 and Kt <= 0.63: 

          return (5.11/(3.91 + math.exp(-0.07 + 1.67*Kt +0.94*Kt**2 + 2.90*altitude*math.pi/180 -0.50*Kt*altitude*math.pi/180)))*GHI 

      else: 

          return (11.7 / (29.85 + math.exp(-83.28 + 241.32*Kt +21.06*Kt**2 -168.56*altitude*math.pi/180 - 
14.84*Kt*altitude*math.pi/180))) * GHI 

 

def Suehrcke_McCormick(Kt, GHI, zenith_angle): 

    m = 1/((math.cos(math.radians(zenith_angle)) + 0.50572*(96.07995 - zenith_angle)**-1.6364)) 

    kc = 0.877*math.exp(-0.0933*m) 

    dc = 0.0366 + 0.0477*m 

    if Kt <= kc: 

        return (1-(1-dc)*(Kt/kc)**4.4)*GHI 

    else: 

        return ((kc*dc + (Kt-kc))/Kt)*GHI   

 

def Skartveit1(Kt, altitude, GHI): 

    k1 = 0.87 - 0.56 * math.exp(-0.06 * altitude) 

    alpha = 1.09 

    d1 = 0.15 + 0.43 * math.exp(-0.06 * altitude) 

    a = 0.27 

    b = 0 

    inside = (Kt - 0.2) / (k1 - 0.2) 

    K = 0.5 * (1 + math.sin(math.radians(math.pi * (inside - 0.5)))) 

    if Kt <= 0.2: 

        return GHI 

    elif Kt > 0.3 and Kt <= 1.09 * k1: 

        return GHI * ((1 - (1 - d1) * (a * math.sqrt(K) + b * K + (1 - a - b) * (K) * (K)))) 

    else: 

        return 1 - (alpha * k1 * (1 - (1 - d1) * (a * math.sqrt(K) + b * K + (1 - a - b) * (K) * (K)))) / Kt 
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def Engerer1(Kt, altitude, GHI, GHI_clear, ea, AST, zenith_angle): 

    kde = max(0, 1 - (GHI_clear / GHI)) 

    if ea != 0: 

        delta_ktc = (GHI_clear / ea) - Kt 

    else: 

        # Handle the case when ea is zero 

        # Return 0 as the default value 

        return 0 

    C = 0.1527 

    b0 = -4.1092 

    b1 = 6.1661 

    b2 = -0.0022304 

    b3 = 0.011026 

    b4 = -4.3314 

    b5 = 0 

    return (C + ((1 + C) / (1 + math.exp(b0 + b1 * Kt + b2 * AST + b3 * zenith_angle + b4 * delta_ktc))) + b5 * kde) * GHI 

def Engerer2(Kt, altitude, GHI, GHI_clear,ea, AST, zenith_angle): 

    kde = max(0,1-(GHI_clear/GHI)) 

    if ea != 0: 

        delta_ktc = (GHI_clear / ea) - Kt 

    else: 

        # Handle the case when ea is zero 

        # Return 0 as the default value 

        return 0 

    C = 0.042336 

    b0 = -3.7912 

    b1 = 7.5479 

    b2 = -0.010036 

    b3 = 0.003148 

    b4 = -5.3146 

    b5 = 1.7073 

    return (C+((1+C)/(1 + math.exp(b0 + b1*Kt+ b2*AST + b3*zenith_angle + b4*delta_ktc))) + b5*kde)*GHI 

def Engerer3(Kt, altitude, GHI, GHI_clear,ea, AST, zenith_angle): 

    kde = max(0,1-(GHI_clear/GHI)) 

    if ea != 0: 

        delta_ktc = (GHI_clear / ea) - Kt 

    else: 

        # Handle the case when ea is zero 

        # Return 0 as the default value 

        return 0 

    C = 0.1090 

    b0 = -0.020506 
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    b1 = 8.1249 

    b2 = -0.036234 

    b3 = 0.041397 

    b4 = -5.1045 

    b5 = 0 

    return (C+((1+C)/(1 + math.exp(b0 + b1*Kt+ b2*AST + b3*zenith_angle + b4*delta_ktc))) + b5*kde)*GHI 

 

def Gonzalez4(GHI, Kt, zenith_angle): 

    m = 1/((math.cos(math.radians(zenith_angle)) + 0.50572*(96.07995 - zenith_angle)**-1.6364)) 

    zeta = 0.124 - 0.0285*math.log(m) 

    fm = 0.229 + 0.957*math.exp(-1.74*zeta*m) 

    if fm <= 0.0001: 

        return GHI 

    kt_dash = Kt/fm 

    if kt_dash <= 0: 

        return GHI 

    delta2 = math.log(kt_dash)/kt_dash 

    if Kt <= 0.25: 

        return GHI 

    elif Kt > 0.25 and Kt < 0.75: 

        return GHI * (1.409 - 1.431*Kt + 0.0382*delta2) 

    else: 

        return GHI * (0.49 -0.065*Kt - 0.0562*delta2) 

   

def Gonzalez7(Kt, altitude, GHI, zenith_angle): 

    m = 1/((math.cos(math.radians(zenith_angle)) + 0.50572*(96.07995 - zenith_angle)**-1.6364)) 

    zeta = 0.124 - 0.0285*math.log(m) 

    fm = 0.229 + 0.957*math.exp(-1.74*zeta*m) 

    kt_dash = Kt/fm 

    if kt_dash <= 0: 

        return GHI 

    delta2 = math.log(kt_dash)/kt_dash 

    if Kt <= 0.25: 

        return GHI 

    elif Kt > 0.25 and Kt < 0.75: 

        return GHI * (1.386 -1.586*Kt + 0.181*math.sin(math.radians(altitude)) + 0.032*delta2) 

    else: 

        return GHI * (0.528 - 0.087*Kt - 0.019*math.sin(math.radians(altitude)) + 0.0557*delta2) 

 

def Gonzalez1(Kt, GHI): 

    if Kt <= 0.25: 

        return GHI 
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    elif Kt > 0.25 and Kt < 0.75: 

        return GHI * (1.421 - 1.670*Kt) 

    else: 

        return GHI * (-0.043 + 0.290*Kt) 

     

def Gonzalez2(Kt, GHI, altitude): 

    if Kt <= 0.25: 

        return GHI 

    elif Kt > 0.25 and Kt < 0.75: 

        return GHI * (1.391 - 1.812*Kt + 0.219*math.sin(math.radians(altitude))) 

    else: 

        return GHI * (0.123 +0.164*Kt - 0.094*math.sin(math.radians(altitude))) 

 

def Gonzalez3(Kt, altitude, GHI, zenith_angle): 

    m = 1/((math.cos(math.radians(zenith_angle)) + 0.50572*(96.07995 - zenith_angle)**-1.6364)) 

    zeta = 0.124 - 0.0285*math.log(m) 

    fm = 0.229 + 0.957*math.exp(-1.74*zeta*m) 

    if fm == 0: 

        return GHI 

    kt_dash = abs(Kt/fm) 

    if kt_dash == 0: 

        return GHI 

    std = math.sqrt(kt_dash) 

    delta1 = math.log(std/kt_dash) 

    if Kt <= 0.25: 

        return GHI 

    elif Kt > 0.25 and Kt < 0.75: 

        return GHI * (1.381 - 1.432*Kt + 0.0352*delta1) 

    else: 

        return GHI * (0.607 - 0.242*Kt + 0.0549*delta1) 

 

def Gonzalez6(Kt, altitude, GHI, zenith_angle): 

    m = 1/((math.cos(math.radians(zenith_angle)) + 0.50572*(96.07995 - zenith_angle)**-1.6364)) 

    zeta = 0.124 - 0.0285*math.log(m) 

    fm = 0.229 + 0.957*math.exp(-1.74*zeta*m) 

    if abs(fm) <= 0.0001: 

        return GHI 

    kt_dash = abs(Kt/fm) 

    std = math.sqrt(kt_dash) 

    if kt_dash <= 0: 

        return GHI 

    delta1 = math.log(std/kt_dash) 
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    if Kt <= 0.25: 

        return GHI 

    elif Kt > 0.25 and Kt < 0.75: 

        return GHI * (1.361 - 1.593*Kt + 0.193*math.sin(math.radians(altitude)) + 0.02985*delta1) 

    else: 

        return GHI * (0.598 - 0.235*Kt +0.007*math.sin(math.radians(altitude)) + 0.0551*delta1) 

 

# Yao 3 --> MBD -0.37% 

def Yao3(Kt, GHI, zenith_angle): 

    if Kt <= 0.20: 

        return(GHI*(0.8775 + 1.3991*Kt - 4.9285*Kt*Kt)) 

    else: 

        return(GHI*(1.1209 - 2.1699*Kt + 11.06*Kt*Kt - 22.355*Kt*Kt*Kt + 12.863*Kt*Kt*Kt*Kt)) 

     

# Yao 4 --> MBD 2.73% 

def Yao4(Kt, GHI, zenith_angle): 

    dhi_4 = (0.2421 + 0.7202/(1+math.exp((Kt-0.6203)/0.0749))) * GHI 

    return dhi_4 

 

# Yao 2 --> MBD 3.84% 

def Yao2(Kt, GHI, zenith_angle): 

    dhi_2 = (0.8142 + 2.0792*Kt - 6.1439*Kt**2 + 3.4707*Kt**3) * GHI 

    return dhi_2 

 

# Yao 1 --> MBD 4.58% 

def Yao1(Kt, GHI, zenith_angle): 

    dhi1 = (0.9381 + 0.1481*Kt)*GHI 

    dhi2 = (1.5197 - 1.534*Kt)*GHI 

    dhi3 = (0.27*GHI) 

    if Kt <= 0.30: 

        return dhi1 

    elif Kt > 0.30 and Kt < 0.80: 

        return dhi2 

    else: 

        return dhi3 

 

def muneer3(Kt, GHI, zenith_angle, declination): 

    m = 1 / (math.cos(math.radians(zenith_angle)) + 0.50572 * (96.07995 - zenith_angle) ** -1.6364) 

    sf = (2 / 15) * math.acos(-math.tan(math.radians(51.145101)) * math.tan(math.radians(declination))) 

    return GHI * ((0.899 - 0.683 * sf + 0.648 * sf ** 2 + 0.028 * m - 0.002 * m * m) + 

                  (0.88 - 0.666 * sf - 0.314 * sf ** 2 - 0.158 * m + 0.003 * m * m) * Kt + 

                  (-1.751 + 2.786 * sf - 1.924 * sf ** 2 + 0.044 * m + 0.012*m*m) * Kt * Kt) 
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MODELS={ 

"Energer2a":Energer2a,"Energer2b":Energer2b,"Energer2c":Energer2c,"Energer2d":Energer2d, 

"Energer2e":Energer2e,"Energer2f":Energer2f,"Energer2g":Energer2g,"Energer2h":Energer2h, 

"Starke1":Starke1,"Starke2":Starke2,"Starke3":Starke3, 

"Yang4":yang4,"Yang5":yang5, 

"Every1":every_1,"Every2":every_2,"Arbeu":Arbeu,"Paulescu":paulescu, 

"BRL":lambda **r: brl(r['Kt'],r['altitude'],r['GHI'],r['AST'],r['Phi'],r['mean_Kt']), 

"Kuo1"   :lambda **r: Kuo1([r['Kt']],r['altitude'],r['GHI'],r['AST'],r['zenith_angle']), 

"Kuo2"   :lambda **r: Kuo2([r['Kt']],r['altitude'],r['GHI'],r['AST'],r['zenith_angle']), 

"Kuo3"   :lambda **r: Kuo3([r['Kt']],r['altitude'],r['GHI'],r['AST'],r['zenith_angle']), 

"Kuo4"   :lambda **r: Kuo4([r['Kt']],r['altitude'],r['GHI'],r['AST'],r['zenith_angle']), 

"Boland8"  :lambda **r: Boland8([r['Kt']],r['altitude'],r['GHI'],r['AST'],r['zenith_angle']), 

"baksh"   :lambda **r: baksh(r['Kt'],r['GHI']), 

"chikh1"  : lambda **r: chikh1(r["Kt"], r["GHI"]), 

"chikh2"  : lambda **r: chikh2(r["Kt"], r["GHI"]), 

"chikh3"             : lambda **r: chikh3(r["Kt"], r["GHI"]), 

"LAM2"                : lambda **r: LAM2(r["Kt"], r["GHI"]), 

"Mondol1"             : lambda **r: Mondol1(r["Kt"], r["GHI"]), 

"Muneer1"             : lambda **r: Muneer1(r["Kt"], r["GHI"]), 

"Muneer2"             : lambda **r: Muneer2(r["Kt"], r["GHI"]), 

"chandraskaran_kumar" : lambda **r: chandraskaran_kumar(r["Kt"], r["GHI"]), 

"erbs"                : lambda **r: erbs(r["Kt"], r["GHI"]), 

"hawlader"            : lambda **r: hawlader(r["Kt"], r["GHI"]), 

"jacovides"           : lambda **r: jacovides(r["Kt"], r["GHI"]), 

"karatasou"           : lambda **r: karatasou(r["Kt"], r["GHI"]), 

"lam_and_li"          : lambda **r: lam_and_li(r["Kt"], r["GHI"]), 

"orgill_and_hollands" : lambda **r: orgill_and_hollands(r["Kt"], r["GHI"]), 

"Hollands"            : lambda **r: Hollands(r["Kt"], r["GHI"]), 

"Bourges"             : lambda **r: Bourges(r["Kt"], r["GHI"]), 

"boland1"             : lambda **r: boland1(r["Kt"], r["GHI"]), 

"boland2"             : lambda **r: boland2(r["Kt"], r["GHI"]), 

"boland3"             : lambda **r: boland3(r["Kt"], r["GHI"]), 

"boland4"             : lambda **r: boland4(r["Kt"], r["GHI"]), 

"boland5"             : lambda **r: boland5(r["Kt"], r["GHI"]), 

"boland6"             : lambda **r: boland6(r["Kt"], r["GHI"]), 

"boland7"             : lambda **r: boland7(r["Kt"], r["GHI"]), 

"reindl"              : lambda **r: reindl(r["Kt"], r["GHI"]), 

"De_Miguel"           : lambda **r: De_Miguel(r["Kt"], r["GHI"]), 

"Li_And_Lam"          : lambda **r: Li_And_Lam(r["Kt"], r["GHI"]), 

"Spencer"             : lambda **r: Spencer(r["Kt"], r["GHI"]), 

"Ineichen1"           : lambda **r: Ineichen1(r["Kt"], r["GHI"]), 

"Ineichen2"           : lambda **r: Ineichen2(r["Kt"], r["GHI"]), 
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"Ineichen3"           : lambda **r: Ineichen3(r["Kt"], r["GHI"]), 

"oliveira"            : lambda **r: oliveira(r["Kt"], r["GHI"]), 

"Ulgen_Hepbasli1"     : lambda **r: Ulgen_And_Hepbasli1(r["Kt"], r["GHI"]), 

"Ulgen_Hepbasli2"     : lambda **r: Ulgen_And_Hepbasli2(r["Kt"], r["GHI"]), 

"soares"              : lambda **r: soares(r["Kt"], r["GHI"]), 

"chendo_maduekwe1"    : lambda **r: chendo_and_maduekwe1(r["Kt"], r["GHI"]), 

"chendo_maduekwe2"    : lambda **r: chendo_and_maduekwe2(r["Kt"], r["GHI"]), 

"Furlan_Oliveira"     : lambda **r: Furlan_and_Oliveira(r["Kt"], r["GHI"]), 

"Moreno"              : lambda **r: Moreno(r["Kt"], r["GHI"]), 

"Pagola1"             : lambda **r: Pagola1(r["Kt"], r["GHI"]), 

"Pagola2"             : lambda **r: Pagola2(r["Kt"], r["GHI"]), 

"Posadillo_Lopez1"    : lambda **r: Posadillo_Lopez1(r["Kt"], r["GHI"]), 

"Posadillo_Lopez2"    : lambda **r: Posadillo_Lopez2(r["Kt"], r["GHI"]), 

"Ruiz_Arias1"           : lambda **r: Ruiz_Arias1(r["Kt"], r["GHI"]), 

"Ruiz_Arias2"         : lambda **r: Ruiz_Arias2(r["Kt"], r["GHI"]), 

"Ruiz_Arias3"         : lambda **r: Ruiz_Arias3(r["Kt"], r["GHI"]), 

"Ruiz_Arias4"         : lambda **r: Ruiz_Arias4(r["Kt"], r["GHI"]), 

"Ruiz_Arias5"         : lambda **r: Ruiz_Arias5(r["Kt"], r["GHI"]), 

"Ruiz_Arias6"         : lambda **r: Ruiz_Arias6(r["Kt"], r["GHI"]), 

"Torres1"             : lambda **r: Torres1(r["Kt"], r["GHI"]), 

"Torres2"             : lambda **r: Torres2(r["Kt"], r["GHI"]), 

"Torres3"             : lambda **r: Torres3(r["Kt"], r["GHI"]), 

"Torres4"             : lambda **r: Torres4(r["Kt"], r["GHI"]), 

"Sanchez"             : lambda **r: Sanchez(r["Kt"], r["GHI"]), 

"Tapakis1"            : lambda **r: Tapakis1(r["Kt"], r["GHI"]), 

"Yao1"                : lambda **r: Yao1(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Yao2"                : lambda **r: Yao2(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Yao3"                : lambda **r: Yao3(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Yao4"                : lambda **r: Yao4(r["Kt"], r["GHI"], r["zenith_angle"]), 

"muneer3"             : lambda **r: muneer3(r["Kt"], r["GHI"], r["zenith_angle"], r["declination"]), 

"Mondol2"             : lambda **r: Mondol2(r["Kt"], r["GHI"], r["zenith_angle"]), 

"PerezBurgos"         : lambda **r: PerezBurgos(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Rerhrhaye"           : lambda **r: Rerhrhaye(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Tuomiranta1"         : lambda **r: Tuomiranta1(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Tuomiranta2"         : lambda **r: Tuomiranta2(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Tuomiranta3"         : lambda **r: Tuomiranta3(r["Kt"], r["GHI"], r["zenith_angle"]), 

"louche"              : lambda **r: louche(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Suehrcke_McCormick"  : lambda **r: Suehrcke_McCormick(r["Kt"], r["GHI"], r["zenith_angle"]), 

"Gonzalez4"           : lambda **r: Gonzalez4(r["GHI"], r["Kt"], r["zenith_angle"]), 

"DeJong"              : lambda **r: DeJong(r["Kt"], r["GHI"], r["altitude"]), 

"reindl2"             : lambda **r: reindl2(r["Kt"], r["GHI"], r["altitude"]), 

"Tapakis2"            : lambda **r: Tapakis2(r["Kt"], r["altitude"], r["GHI"]), 
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"Tapakis3"            : lambda **r: Tapakis3(r["Kt"], r["altitude"], r["GHI"]), 

"Skartveit1"          : lambda **r: Skartveit1(r["Kt"], r["altitude"], r["GHI"]), 

"Gonzalez2"           : lambda **r: Gonzalez2(r["Kt"], r["GHI"], r["altitude"]), 

"Gonzalez6"           : lambda **r: Gonzalez6(r["Kt"], r["altitude"], r["GHI"], r["zenith_angle"]), 

"Gonzalez7"           : lambda **r: Gonzalez7(r["Kt"], r["altitude"], r["GHI"], r["zenith_angle"]), 

} 

 

files=list(sorted(DATA_PATH.glob("*.xlsx"))) 

for f in tqdm(files,desc="Workbooks",unit="file"): 

    try: df=pd.read_excel(f,engine="openpyxl") 

    except Exception as e: print("read",f.name,e);continue 

    df['mean_Kt']=df['Kt'].mean();df['Phi']=phi_series(df['Kt']) 

    for name,func in MODELS.items(): 

        if name in df.columns:continue 

        try: df[name]=df.apply(lambda r: func(**r.to_dict()),axis=1) 

        except Exception as e: print(name,f.name,e) 

    df.to_excel(f,engine="openpyxl",index=False) 

print("done",len(files),"files,",len(MODELS),"models") 
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Appendix C  

The figure below presents the distribution of the sky clearness index (Kt) for three locations in the 

UK, comparing two temporal resolutions: hourly and one-minute intervals. The histogram reveal 

that one minute data retains short term fluctuations more effectively, leading to more distinct and 

sharper peaks.  

 

Figure C.1: The sky clearness index distributions for three UK locations : Lerwick (a, b), 
Chilbolton (c, d), and Camborne (e, f). They are illustrated across two temporal resolutions: 

hourly data is shown in panels a, c, and e, while one-minute data appears in panels b, d, and f. 
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Appendix D  

The table below represents the 67 sites used for the clear-sky irradiance study. 

Table D.1: Information on radiometric sites, and the source of their data. The corresponding 
AERONET site name is indicated in the last column. The 3-letter BSRN code name is used 

wherever available. 

Code 
Radiometric 

site 

Lat. Long. Site Elev. 
MERRA2 Elev. 

(m) 
Elev. 
Corr. Source AERONET Site 

(°) (°) (m) 

ARG Kishinev 47.001 28.816 205 150.2 0.964 H Moldova 

BAR Barrow 71.323 -156.607 8 0.5 0.995 A Barrow 

BIL Billings 36.605 -97.516 317 325.3 1.006 A ARM_SGP 

BIS Bismarck 46.772 -100.76 503 571.7 1.047 K NEON_NOGP 

BMT Black 
Mountain 

-35.275 149.114 595 792.8 1.141 D Canberra 

BON Bondville 40.067 -88.367 213 208.8 0.997 A Bondville 

BOU Boulder 40.05 -105.007 1577 1801.8 1.162 A BSRN_BAO_Boulder 

BRB Brasilia -15.601 -47.713 1023 948 0.951 A Brasilia_SONDA 

CAB Cabauw 51.971 4.927 0 3.5 1.002 A Cabauw 

CAH Cape Hedo 26.867 128.248 65 14.9 0.967 P Okinawa_Hedo 

CAM Camborne 50.217 -5.317 88 22.5 0.957 A Camborne_MO 

CAR Carpentras 44.083 5.059 100 266.2 1.117 A Carpentras 

CBT Chilbolton 51.144 -1.437 81 62.1 0.987 T Chilbolton 

CHI Chiba 35.625 140.104 21 38.7 1.012 P Chiba_University 

CLH 
Chesapeake 

Light 36.905 -75.713 37 0.2 0.976 A COVE_SEAPRISM 

CNR CENER 42.816 -1.601 471 516.7 1.031 A CENER 

DAR Darwin -12.425 130.891 30 9.5 0.986 A ARM_Darwin 

DAV Davos 46.813 9.844 1589 1896.3 1.227 M Davos 

ENA 
Eastern North 

Atlantic 39.091 -28.029 15 20.1 1.003 A ARM_Graciosa 

EUR Eureka 79.989 -85.94 85 160.4 1.052 A OPAL 

EVO Evora 38.568 -7.911 293 173.2 0.923 Q Evora 

FUA Fukuoka 33.582 130.376 3 185.4 1.129 A Fukuoka 

GOB Gobabeb -23.561 15.042 407 443 1.024 A Gobabeb 
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GOL Golden 39.742 -105.18 1829 2095.7 1.195 L NREL-Golden 

GUR Gurgaon 28.425 77.156 259 230.4 0.981 A Amity_Univ_Gurgaon 

INO 
Magurele 

MARS 44.348 26.031 90 76.7 0.991 A Magurele_Inoe 

IZA Izana 28.309 -16.499 2373 178.8 0.232 A Izana 

JRC Ispra 45.812 8.627 220 800 1.472 I Ispra 

KAL Kalgoorlie -30.785 121.453 365 307.8 0.962 C Lake_Lefroy 

KZH Durban -29.871 30.977 150 15.2 0.914 O Durban_UKZN 

LEA Learmonth -22.241 114.097 5 17.3 1.008 C Learmonth 

LER Lerwick 60.139 -1.185 80 3.7 0.95 A Lerwick_MO 

LIL Lille 50.611 3.14 63 41.9 0.986 R Lille 

LIN Lindenberg 52.21 14.122 125 71.3 0.965 A MetObs_Lindenberg 

LPU Lampedusa 35.517 12.632 45 0.2 0.971 F Lampedusa 

LRC 
Langley 

Research 
Center 

37.104 -76.387 3 6.6 1.002 A NASA_LaRC 

MAN Momote -2.058 147.425 6 4.7 0.999 A Manus 

MBO M'Bour 14.394 -16.958 21 16.7 0.997 R Dakar 

MLO Mauna_Loa 19.539 -155.578 3397 1145 0.223 K Mauna_Loa 

NAU Nauru -0.521 166.917 7 0.1 0.995 A Nauru 

NIA Niamey 13.477 2.176 223 241.7 1.013 B Niamey 

NYA Ny-Ålesund 78.925 11.93 11 294 1.208 A Ny_Alesund_AWI 

OHY 
Observatory of 

Huancayo -12.05 -75.32 3314 4167.5 1.766 A Huancayo-IGP 

PAL Palaiseau 48.713 2.208 156 103.9 0.966 A Palaiseau 

PAY Payerne 46.815 6.944 491 782.3 1.214 A Payerne 

PRE Pretoria -25.753 28.229 1410 1538.7 1.09 O Pretoria_CSIR-DPSS 

PSA PSA-DLR 37.091 -2.358 500 666.1 1.117 E Tabernas_PSA-DLR 

PSD PSDA -24.09 -69.929 965 1261.4 1.218 N PSDA_Chile 

PTR Petrolina -9.068 -40.319 387 428.8 1.028 A Petrolina_SONDA 

REG Regina 50.205 -104.713 578 638.8 1.041 A Bratts_Lake 

ROC 
Rome-

Casaccia 42.042 12.307 150 198.5 1.033 F Rome_La_Sapienza 
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RTV Rome Tor 
Vergata 

48.84 12.647 331 451.7 1.084 S Rome_Tor_Vergata 

RUN 
Reunion 
Island, 

University 
-20.901 55.484 116 533.1 1.321 C Reunion_St_Denis 

SAP Sapporo 43.06 141.329 17 279.2 1.191 A Hokkaido_University  

SDK Sodankyla 67.367 26.628 195 227.9 1.022 G Sodankyla 

SEO Seoul 37.46 126.95 300 73.3 0.86 P Seoul_SNU 

SHA Shagaya 29.209 47.061 242 264.1 1.015 J Shagaya_Park 

SMS 
Sao Martinho 

da Serra -29.443 -53.823 489 286.7 0.874 A Sao_Martinho_SONDA 

SPO South Pole -89.983 -24.799 2800 3078 1.204 A South_Pole_Obs_NOAA 

SXF Sioux_Falls 43.73 -96.62 473 442.9 0.98 A Sioux_Falls 

TAM Tamanrasset 22.79 5.529 1385 1681.9 1.219 A Tamanrasset_INM 

THD Trinidad Head 41.054 -124.151 107 66.9 0.974 K Trinidad_Head 

TIK Tiksi 71.586 128.919 48 116.5 1.047 A Tiksi 

TOR Toravere 58.254 26.462 70 63.7 0.996 A Toravere 

TUC Tucson 32.23 -110.955 786 962.3 1.125 L Tucson 

WHW Vienna 48.249 16.356 198 372.9 1.124 U Vienna_BOKU 

XIA XiangHe 39.754 116.962 32 59 1.018 A XiangHe 

 

(A) BSRN: Baseline Surface Radiation Network 

(B) ARM: Atmospheric Radiation Measurement, U.S. Department of Energy   

(C) BoM: Bureau of Meteorology 

(D) CSIRO: Commonwealth Scientific and Industrial Research Organisation 

(E) DLR: Deutsches Zentrum für Luft- und Raumfahrt 

(F) ENEA: Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenible 

(G) FMI: Finnish Meteorological Institute 

(H) IAP: Institute of Applied Physics, Moldova 

(I) JRC: The European Commission's Joint Research Centre 

(J) KISR: Kuwait Institute for Scientific Research 

(K) NOAA: National Oceanic and Atmospheric Administration, Global Monitoring Laboratory 
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(L) NREL: National Renewable Energy Laboratory, Measurement and Instrumentation Data Center 

(M) PMOD: Physikalisch-Meteorologisches Observatorium Davos / World Radiation Data Center 

(N) PSDA: Plataforma Solar del Desierto de Atacama 

(O) SAURAN: Southern African Universities Radiometric Network 

(P) SKYNET: International Skynet Data Center 

(Q) UoE: University of Evora 

(R) UoL: University of Lille 

(S) UoR: University of Rome Tor Vergata 

(T) CEDA: Centre for Environmental Data Analysis  

(U) ZAMG-ARAD: Zentralanstalt für Meteorologie und Geodynamik 
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