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As the global energy landscape shifts toward renewable sources, particularly photovoltaic (PV)
technology, PV installations are expanding rapidly, covering larger areas and integrating
advanced innovations. This growth poses new challenges for feasibility software used to evaluate
solar projects, especially as diverse regions adopt emerging PV technologies. Accurate solar
irradiance prediction plays a crucial role in ensuring the reliability of feasibility assessments and
financial forecasting, as these predictions form the backbone of feasibility software's
performance. This research delves into advanced PV technologies, including bifacial panels,
tracking systems, and AgriPhotovoltaics (AgriPV), focusing on their behavior under the dynamic
sky conditions typical of temperate climates, with high-resolution, minute-by-minute irradiance
measurements. A major focus of this work is the evaluation of feasibility software limitations,
specifically in its ability to estimate Diffuse Horizontal Irradiance (DHI) and Direct Normal
Irradiance (DNI) from Global Horizontal Irradiance (GHI) using decomposition models, as well as
its transposition models for calculating Plane of Array (POA) irradiance.

The contributions of this research are fourfold: firstly, this thesis develops a robust
benchmarking framework to evaluate decomposition models using tests for temporal resolution,
spatial homogeneity, and the influence of dataset periods. Since many locations lack dedicated
weather stations for DHI and DNI measurements, such as the case study in the UK, this
framework becomes essential. Initially, 5 decomposition models were identified as robust. To
broaden the range, this research introduces the effect of clear-sky GHI (GHlcear) by altering 10
variations, expanding the pool of viable models from 5 to 15. Secondly, through the separation of
sky conditions into clear, intermediate, and overcast days, the study evaluates the performance
of transposition models within feasibility software. The DISC decomposition model, when paired
with the Skartveit-Olseth (SO) transposition model, demonstrated consistent performance for
both a fixed-tilt (FT) system at 55 degrees and a tracking system. Additional testing, using six
distinct cloud intervals and feeding in measured GHI, DHI, and DHI, further confirmed the
robustness of the SO model. Thirdly, work in this thesis assesses the reliability of six clear-sky
irradiance model iterations using data from 67 global stations and different data sources,
including measured values from AErosol RObotic NETwork (AERONET), Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA2), and Copernicus
Atmosphere Monitoring Service (CAMS). The analysis focuses on key atmospheric parameters
such as precipitable water (PW), the Angstrom exponent (AE), and Aerosol Optical Depth at 550
nm (AOD550). MERRA-2 data outperformed CAMS in all 3 parameter estimations and was second
onlyto AERONET’s measured data when coupled with the REST2 proprietary model. Among open-
access model services, McClear proved superior to ERA5, making it the most reliable option.
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Lastly, with the growing adoption of AgriPV systems, there is an increasing demand for accurate
estimation of Photosynthetically Active Radiation (PAR) irradiance, a critical aspect currently
underrepresented in existing feasibility software for AgriPV applications. A new model, the
Musleh-Rahman (MR) model, is introduced to accurately predict PAR in temperate climates using
easily accessible input parameters. This model is designed to enhance the accuracy of PAR
estimations and was benchmarked against 10 other PAR models, outperforming them all. The
combined findings of this research provide a foundation for enhancing sub-hourly irradiance
prediction accuracy. These insights are expected to support the PV industry’s expansion into new
regions and facilitate the seamless integration of advanced PV technologies into feasibility
software, ultimately driving the growth of renewable energy deployment.
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Figure 54: Comparative performance of the best-performing models with the normalised
density distributions (a and b) and the associated data density percentages
within specific PAR intervals (¢ and d) for the Garcia-Rodriguez model (in green)
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Figure 55: Comparative scatter plots of measured PAR against the best-performing models with
Garcia-Rodriguez (Left), and MR (Right), at 6 unseen European Temperate
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Chapter 1

Chapter1 Introduction

1.1 Motivation

An expanding global population and geopolitical disputes are causing a pressing energy crisis.
Alternative sources of energy are needed to meet this growing demand. A viable alternative is
necessary due to the limited nature of finite sources and the emission of excessive amounts of
carbon. It has become increasingly important to find abundant yet sustainable alternative
sources of energy to satisfy such extensive demand. In order to adhere to the 1.5°C cap goal set
forth by the Paris Agreement [1], carbon dioxide emissions must decrease by 45% prior to 2030.
Furthermore, the Intergovernmental Panel on Climate Change (IPCC) [2] highlights the necessity
for renewable energy to comprise a minimum of 70% of the energy supply by 2050. A shift from
fossil fuels will be facilitated by the growth and widespread adoption of renewable energy

solutions within industrial, commercial, and residential domains.

Despite perceptions that the volatile energy market has a high degree of competitiveness,
renewable sources of energy are gaining a foothold [3]. Solar energy, hailing from the sun's
virtually limitless reserves, is instrumental in mitigating the escalation of average global
temperatures. Solar panels work on the principle of photovoltaics (PV), in which sunlight is
converted into electricity by using semiconductors, typically silicon (Si), that absorb photons
through transitions of electrons across an energy gap. The International Energy Agency (IEA)
stated that certain solar power projects deliver historic cost-effective electricity [4], making PV

one of the most affordable and environmentally friendly energy sources available.

In examining the global landscape of PV technology, a historical overview reveals noteworthy
growth in solar energy adoption. According to data from the International Renewable Energy
Agency (IRENA), solar capacity experienced a significant increase from 175,039 MW in 2014 to
1,411,139 MW by the end of 2023, surpassing the 1 TW mark [5]. This expansion means that solar
energy now represents over a quarter of the global installed renewable energy capacity,
comprising more than 36% of all renewable energy installations [5]. There are several factors that
have contributed to such expansions, ranging from government policies to incentives, aiding in

the broader adoption of solar energy.

Temperate climates, known for their fluctuating sunlight and predominantly diffuse irradiance,
pose distinctive challenges for the adoption of PV systems. Nonetheless, these regions also offer

substantial opportunities for integrating solar energy into the national energy framework. Within
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the framework of its new British Energy Security Strategy, the UK aims to build a cumulative solar
PV capacity of 70 GW by 2035 [6]. Yet, despite a consistent increase, the growth rate observed
over the past decade suggests that by 2035, the actual capacity may only slightly exceed 27 GW.
This would leave the UK more than 42 GW below its ambitious target. Therefore, it is crucial to
promote the adoption of advanced PV technologies to accelerate the expansion of solar capacity,

a step that must be taken promptly.

The advent of bifacial solar technology, which utilizes advanced cell technologies to capture
irradiance simultaneously from the front and the rear, coupled with tracking solutions, may
provide solutions to these climatic challenges [7]. Moreover, these advancements may prove
instrumental in supporting the UK’s ambitious target of 70GW. By harnessing the potential of
breakthrough solar technologies, the UK can solidify the position of solar power in its renewable

energy landscape and achieve its goals.

Recent advancements in PV technology have positioned bifacial solar panels as potential
disruptors in the market, poised to challenge the dominance of traditional single-sided modules.
According to the 15th edition of the International Technology Roadmap for Photovoltaics (ITRPV),
bifacial modules currently command approximately 63% market share. This figure is expected to
increase by an additional 10%, reaching 73% over the next decade. The same edition of ITRPV
predicted that tracking solutions would also be used in more than 55% of PV systems by 2030 [8].
Tracker systems that adjust module orientation with respect to the sun’s motion are proving to be
effective at improving module performance. Furthermore, such solutions may decrease the
number of modules required per kWh of output [9]. This development is especially critical due to
the high costs and limited availability of land - a challenge that Agricultural Photovoltaics (AgriPV),
which combines agriculture with photovoltaics, regularly encounters [10]. Projections from the

ITRPV 2024 indicate that AgriPV is poised to secure a growing portion of the market [8].

Despite advances in PV technologies, there remains a significant gap in research concerning the
validity of optical models for irradiance estimation in temperate climates. This gap is primarily
due to the complex dynamics of light harvesting, which complicates the optimization of bifacial
PV and AgriPV technologies. Without robust validation of these models, particularly in temperate

regions, the broader adoption of diverse PV technologies could be impeded.

Currently, a variety of prediction models, ranging from empirical to physical, are employed within
different simulation software to estimate irradiance on PV modules [9][11], including the rear side
for bifacial modules, and the irradiance utilized by plants for photosynthesis. Accurate irradiance

estimations are crucial as they serve as a foundational metric that attracts investor interest [11].
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Most models have been developed (and thus validated) using daily or hourly irradiance
measurements. However, there is a pressing need to predictirradiance on a minute-minute scale
as it provides more precise information on the variability and quality of solar irradiance, enabling
more reliable PV power output estimations [12][13][14] and performance metrics [15]. Such data
offer a more accurate reflection of weather conditions and events that may impact PV systems
and provide enhanced information for the optimal control and management of PV systems [16].
If the temporal resolution of solar resource data is too coarse, such as hourly or daily, it will fail
to capture short-term fluctuations or peaks in solar irradiance, which can significantly affect a
project’s energy production and financial returns. Consequently, 1-minute solar resource data
are vital for financiers to secure realistic and dependable estimates of energy production and the
profitability of solar projects, as they capture the variability and frequency distribution of solar

irradiance, influencing the revenue of PV projects [12][17].

There is an urgent need to refine the precision of solar irradiance models within temperate
climates through diligent development and comprehensive validation of new empirical methods.
Accurate solar irradiance estimations are crucial inputs for feasibility software, which drives the
bankability and viability of PV farms. Feasibility software serves as a critical tool for engineers,
enabling them to design, simulate and analyse the performance of various PV systems.
Feasability software assist in evaluating both the technical and financial potential of a project by
modelling expected energy production. They also help users optimise system configurations,
estimate energy yields, and carry out in-depth performance assessments, ultimately supporting
informed decision-making prior to project deployment. A variety of feasibility tools are available,
each offering different levels of complexity and tailored to meet diverse project requirements.
These estimations not only inform technological choices and project design but also pinpoint
primary sources of uncertainty in energy production forecasts, impacting financing conditions
and investment returns. Thus, validating and integrating diverse irradiance estimation models
with commercially available software on a minute-by-minute basis is essential. Failure to
address these needs could hinder the widespread implementation of these technologies in such

climates.

1.2 Aims and Objectives

The primary goal of this research is to boost the integration of solar energy within the energy
market. This goal is pursued by enhancing the accuracy of solar irradiance estimates, which are
essentialfor evaluating the performance of PV systems. These refined estimates are incorporated

into widely used feasibility software employed to inform investment. The research focuses on
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improving the precision of solar irradiance models in temperate climates through rigorous
development and comprehensive validation of new empirical methods. By providing a robust and
validated approach to estimating solar irradiance, applicable across a range of technologies -
from traditional fixed-tilt to innovative bifacial and AgriPV systems - this study aims to strengthen

investor confidence in these emerging technologies, particularly in regions like the UK.

To achieve this, this research will involve on validating optical models to enhance the selection
of appropriate solar irradiance models for use in temperate climates. The methodology will
explore the limitations of current optical models integrated into feasibility software and aim to
improve these models through the identification and rectification of prevalent errors. All
assessments will be conducted on a minute-by-minute scale to ensure precision. The outcomes
of this study are expected to serve as crucial tools for model validation in temperate climates and
will provide a necessary framework that can be adapted for use in other climatic conditions.
Additionally, this work will establish a benchmark that can guide technological advancements in
the field. As a result, the experimental methodology will be employed to achieve the following
objectives:
1. Develop a comprehensive framework for a series of tests designed to evaluate and select
optimal methods for solar irradiance components.
2. Validate and quantify current solar irradiance models, including decomposition and
transposition methods, to identify and thoroughly document their limitations.
3. Strengthen the precision and reliability of clear-sky irradiance models by employing
varied satellite data sources.
4. Construct a predictive model for photosynthetically active radiation irradiance,

incorporating innovative and readily available input parameters.
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1.3 Overview of Research Contributions

The following are portions of this work that have been presented to the wider scientific community
in various forms:

Journal Paper Publications:

e Y. J. K. Musleh and T. Rahman, “Predictive models for photosynthetic active radiation
irradiance in temperate climates,” Renewable and Sustainable Energy Reviews, vol. 200.
Elsevier BV, p. 114599, Aug. 2024. doi: 10.1016/j.rser.2024.114599.

e Y. J. K. Musleh, W. Herring, C. D. Rodriguez-Gallegos, S. A. Boden and T. Rahman,
"Subhourly Error Analysis of Decomposition-Transposition Model Pairs for Temperate
Climates," in IEEE Journal of Photovoltaics, vol. 15, no. 1, pp. 164-172, Jan. 2025, doi:
10.1109/JPHOTOV.2024.3483262

e Y. J. K. Musleh, C.A. Gueymard and T. Rahman, “Worldwide impacts of satellite-based
atmospheric conditions on solar irradiance modelling.” Under Preparation.
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e Y. J. K. Musleh, S.A. Boden and T. Rahman, “A Comprehensive Examination of
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e Y. J. K. Musleh, S.A. Boden and T. Rahman, “Irradiance Estimation for Vertical Bifacial
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2024, Glasgow, Scotland, 2024.

e Y. J. K. Musleh, S.A. Boden and T. Rahman, “Analyzing Bifacial AgriPV Systems in
Temperate Climates with Advanced Mathematical Modelling for Irradiance Estimation.”
BifiPV 24 Conference, Chambéry, France, 2024.

Poster Presentations:

e Y.J. K. Musleh, S.A. Boden and T. Rahman, “Developing Outdoor Testing Equipment for
Insolation Measurement of Bifacial Solar Tracking Systems”, 16" Photovoltaic Science,
Application and Technology Conference (PVSAT-16), Salford, England, 2022.

e Y.J. K. Musleh, S.A. Boden and T. Rahman, “Developing Outdoor Testing Equipment for
Insolation Measurement of Bifacial Solar Tracking Systems”, Institute of Physics:
Advances in Photovoltaics, London, England, 2022.

e Y.J.K.Musleh, S.A. Boden and T. Rahman, “An Empirical Study of the Plane-Of-Array and
Back-Of-Array Solar Irradiance of a Dual-Axis Tracker in Oxford, UK”, BifiPV 22
Conference, Ankara, Turkiye, 2022.

e Y.J.K.Musleh, S.A. Boden and T. Rahman, “An Empirical Study of the Plane-Of-Array and
Back-Of-Array Solar Irradiance of a Dual-Axis Tracker in Oxford, UK”, Institute of Physics:
Advances in Photovoltaics, London, England, 2022.

46



Chapter 1

1.4 Structure of Report

Chapter 2 presents a comprehensive review of the existing literature and provides a theoretical
background on solarirradiance resource assessment. It discusses the fundamental principles of
solar irradiance and emphasizes the significance of accurate estimation methods. This chapter
also outlines prior studies on the mathematical modelling of irradiance, including
decomposition, transposition, and clear-sky models, and explores their application in bifacial,
tracking, and AgriPV systems. The methodology for assessing solar resources is introduced,
establishing a clear benchmarking framework for selecting solar irradiance estimates in Chapter
3. This framework aims to enhance the accuracy and reliability of solar resource assessments.
Chapter 4 delves into the limitations of current models in the context of decomposition and
transposition. It examines the application of model pairs in feasibility software and discusses the
dynamics of transposition techniques for predicting PV performance based on measured
irradiance inputs. Chapters 5 and 6 focus on refining models and introducing new methodologies.
Chapter 5 evaluates predictions of clear-sky irradiance, considering both measured and
modelled atmospheric data by assessing the sources of satellite data. Chapter 6 introduces an
empirical model for estimating Photosynthetically Active Radiation (PAR) irradiance and develops
a new mathematical model tailored for temperate climates using readily available data, moving
away from reliance on extensive measurements. Finally, Chapter 7 summarizes the findings,
draws conclusions, and identifies areas for future research, aiming to further advance the field of

solar irradiance assessment.
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Chapter 2 Theoretical Background and Review of

Related Literature

2.1 Foundations of Solar Irradiance

211 Comprehending the Solar Resource

Climate conditions vary globally due to differences in temperature, weather patterns, and
geographical positioning. These all affect solar irradiance levels based on the sun's path and
other variables [18]. The Koppen-Geiger climate classification system categorizes global land
climates into five primary groups using thresholds related to air temperature and precipitation
levels. This classification provides a structured approach to simplifying complex climate datainto

actionable insights.

Main climates Precipitation Temperature
A: equatorial W: desert h: hat arid F: polar frost
ke e

Al Am  As  Aw BWK BWh BSk BSh Cfa Ch Cfe Csa Cib Cs¢ Cwa

Cwb Cwe Dfa Db Dic Did Dsa Dsb Dsc Dsd Dwa Dwb Dwe Dwd EF ET

Figure 1: The Koppen-Geiger climate map is provided with a spatial resolution of 0.5°, adapted from [18].

The Koppen-Geiger system employs a three-letter code, as per Figure 1, to define climatic zones
based on temperature, precipitation, and their seasonal occurrences. Each letter refines the
classification further: the first letter indicates the main climate type, with "C" representing
temperate climates where the warmest month has an average temperature that exceeds 10°C
and the coldest month’s average temperature ranges between -3°C to 18°C. The subsequent

letters describe precipitation and temperature patterns. For example, much of the UK is
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classified under "Cfb," indicating a temperate climate with no dry season and mild summers

where the warmest month’s average temperature remains below 22 °C.

Itis crucialto comprehend the sun's movement in relation to a site location, as this knowledge is
vital for maximizing a PV system installation's performance. This movementis described by a two-

dimensional coordinate system consisting of azimuth, 1 and altitude angles, a [19].

cosy = cos@ -sind — cosw ' cosd - sing (1)

a=90+¢—5 (2)

Here, Y, signifies the angle between the sun and the north axis in a clockwise direction. This angle
can be calculated using Equation 1, which incorporates trigonometric functions that involve the
location's latitude ¢, the declination angle &, and the hour angle w. a, represents the angle

between the horizon and the center of the solar disc, as shown in Equation 2 [19].

An alternative method for pinpointing the sun's position involves the zenith angle, SZA, which is
the angle between the sun's disc and a vertical line (see Figure 2). This angle is a 90-degree phase
shift from a due to its basis on the orthogonal axis, as outlined in equation 3. Determining SZA is
crucial for estimating the solar radiation that reaches the Earth's atmosphere across a range of

solar configurations [20].

cosSZA = sina (3)

North

Figure 2: A two-dimensional coordinate system represents the assortment of solar angles. Adapted from

[20].

Here, ¢ and time of year significantly impact i, a, and subsequently SZA, due to the sun's path
[21]. The sun's trajectory changes more drastically at higher ¢, as depicted in Figure 3. In such
locations, during the summer solstice, the Y range expands, and the a range ascends higher in

the sky, which results in extended daylight exposure. In contrast, during the winter solstice, the
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sun's path becomes compressed as a result of i) and @ becoming more limited, leading to reduce
sunlight hours. At the equator, while the solar declination angle oscillates between +23.459°, the
sun’s apparent movement remains relatively symmetrical across both the northern and southern
hemispheres. As aresult, seasonal fluctuations in sunlight duration and intensity are significantly
less pronounced than at higher latitudes. A precise comprehension of the sun’s path is crucial
for assessing PV systems performance [7], as it directly influences the design and optimisation

of tracking systems.
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Figure 3: Trajectory of the sun throughout the winter, summer, and spring solstices observed in London
and at the equator.

The location of a site influences the optical air mass (AM), which denotes the path length of the
direct beam traversing the atmosphere compared to the overhead sun [20]. AMO pertains to the
irradiance at the atmosphere's apex, and AM1.5 (conforming to the ASTM G173 standard [22]) is
a crucial component of standard testing conditions (STC) employed to rate PV modules [23]. This
particular value is utilized as a standard due to its representation of the annual average for mid-
@ regions, as determined through an analysis of solar irradiance data in the US. Referring to Figure
4, the ASTM G173 AM1.5 spectrum can be observed, showcasing dips at specific wavelength
values. These dips occur due to Fraunhofer lines, a collection of spectral absorption lines
resulting from gas absorption in the photosphere and absorption in the atmosphere [24]. These
lines are crucialin understanding the composition of the sun and the way solar radiation interacts
with the Earth's atmosphere. The presence of these lines can influence the performance of PV

modules, which is essential to consider during system design.
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Figure 4: Solar extraterrestrial spectrum (in red) and the direct solar irradiance at the ground,
ASTM G173 AM1.5 (in blue) using SMARTS software [25].

Possessing an understanding of the irradiance is critical. Such information is procured either
through terrestrial observations from local meteorological stations or via satellite-derived data
[26][27]. Focusing on temperate regions, satellite data exhibits diminished accuracy due to

persistent cloud formations, rendering it less suitable [28]. It may also be outdated.

Solar irradiance can be segregated into three components. Direct Normal Irradiance (DNI) refers
to the component of solar radiation that strikes a surface positioned perpendicularly (normal) to
the sun’srays. It represents sunlight that reaches the surface directly from the solar disk, without
undergoing scattering. DNI transpires when sun rays are traveling directly from the position of the
sun. Diffuse Horizontal Irradiance (DHI) represents the quantity of irradiance dispersed by
atmospheric elements such as clouds, or aerosols, rather than emanating directly from the sun.
Global Horizontal Irradiance (GHI) is received by a surface oriented parallel to the ground,
encompassing both DHI and DNI as constituents, as mathematically illustrated in the closure

equation (equation 4) [29]:

GHI = DHI + DNI cos(SZA) (4)

Solar irradiance overall spans a wide range of wavelengths, covering the ultraviolet, visible and
infrared regions of the spectrum. This spectral distribution plays a critical role in the performance
of PV systems, as different materials absorb and convert solar energy with varying efficiencies
across different parts of the spectrum. Irradiance varies with the time of day due to sunlight
reflection angles and the influence of Earth's atmosphere on light transmission. Solar noon, when

the sun reaches its highest a, exhibits a peak in irradiance as sunlight traverses the minimal

51



Chapter 2

atmospheric distance and experiences the least reflection. Conversely, during early mornings
and late afternoons, SZA is near its maximum, the sun resides at its lowest a, and an increased

quantity of light is reflected.

Moreover, there are additional components of solar irradiance that are important in the solar
resource, which use different combinations of GHI, DHI and DNI. Irradiance reaching the surface
of a module is known as Plane-Of-Array (POA) irradiance, a critical metric for evaluating system
performance of PV [7][9][30]. Conversely, Back-Of-Array (BOA) irradiance refers to the irradiance
that impacts the rear surface of a PV module. As the AgriPV sector expands its market presence,
it becomes essential to measure the irradiance suitable for plant growth, termed
Photosynthetically Active Radiation (PAR) [31]. Similar to GHI, PAR comprises both diffuse and
direct components with diffuse irradiance prevalent in shaded environments and direct

irradiance emanating straight from the sun [32][33].

Sky conditions, which influence solar resources, can fluctuate rapidly, demanding adaptable
design, development, and management strategies to accommodate such variability. The
constant and often swift changes in sky conditions complicate the accurate characterization of
prevailing conditions and subsequently challenge the evaluation of model performance,
especially at high frequencies [12][34]. On a daily timescale, the classification of the average sky
conditions is feasible using a definition of sky clarity [19]. The clearness of the sky is often
determined using GHI in conjunction with the extraterrestrial horizontal irradiance (E.), as
delineated in equation 5to calculate the clearness index (K;). Thisindex is pivotalin solar resource
applications and is widely acknowledged for its significance [20].

GHI
K, = (®)
E,

Daily aggregated sky conditions are categorized based on K; values as per previous research
conducted [35][36]. A K; value below 0.30 indicates overcast conditions, above 0.68 signifies
clear skies, and values between 0.30 and 0.68 are classified as intermediate. This acknowledges
the findings of Page et al. who noted a typical decline in K; values at higher ¢ [37]. It is important
to highlight that at low solar altitudes (during early mornings and late afternoons), the values of E,
diminishes due to its dependence on the sine of the solar altitude (refer to Equation 3). As a result,
the dominator of Kcbecomes smaller, which may artificially elevate K values even under relatively
poor atmospheric conditions. Additionally, during these times, sun rays must pass through a
longer atmospheric path, increasing the influence of scattering by atmospheric molecules (i.e.,
aerosols). This extended optical path leads to notable attenuation of GHI relative to the

extraterrestrial component. However, because of the sine of the solar altitude is very small at low
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angles, its impact on the denominator can outweigh the GHI reduction, occasionally producing

anomalously high Kt values during these periods.

The condition of the sky significantly influences solar irradiance, primarily dictated by cloud
coverage, which affects both the quantity and variability of the irradiance reaching the ground
[38][39]. Understanding the cloud dynamics is essential to evaluate how these variations impact
PV systems. Developed by Ruiz Arias-Gueymard, the Classification Algorithm for the Evaluation
of cLoUdiness Situations (CAELUS) effectively categorizes sky conditions into six distinct
classes: cloud enhancements, cloudless, overcast, thin clouds, thick clouds, and scattered
clouds [40]. This algorithm is informed by data from 54 radiometric stations across diverse
climates, utilizing GHI measurements and SZA. It integrates four bespoke solar irradiance indices
that gauge the magnitude and variability of GHI. Classifications are determined based on specific
threshold values for these indices, refined through empirical testing for distinguishing between
different types of cloud coverage. At the core of CAELUS are the clear-sky index (which compares
observed GHI against modelled clear-sky GHI) and two indices derived from GHI variability, which
are instrumental in classifying cloud impacts more accurately than the clear-sky index alone.
These indices include the magnitude index, which compares a 30-minute moving average of GHI
to the theoretical clear-sky GHI in a pristine atmosphere, and the variability index, which
quantifies the cumulative minute-to-minute GHI fluctuations over a 30-minute span, aiming to
capture short-term variations. A more finely tuned version of this index calculates variations over
a 10-minute window to detect even more subtle fluctuations. Through this sophisticated,
threshold-based approach, CAELUS advances the understanding of sky conditions by minimizing

errors and stabilizing classifications, offering a more realistic portrayal of atmospheric dynamics.

Clear sky irradiance is a crucial parameter in assessing solar resources, referring to the solar
radiation, whether GHI or DNI, that reaches a specific location on Earth's surface under cloudless
conditions [41]. This parameter serves as a foundational element in evaluating the viability of PV
systems, as these systems derive significant energy from such unobstructed conditions [42]. A
key challenge in solar energy studies is accurately determining whether the sky is clear. The de
facto method for Clear-Sky Detection (CSD) established in this field is the BrightSun algorithm,
developed by Bright et al [43]. This CSD model has been developed by analysing irradiance data
collected at minute intervals from 5 radiometric stations of varying climatology. The methodology
encompasses two principal stages, culminating in detection analysis coupled with additional
duration filtering. Initially, it employs a clear-sky model to establish baseline irradiance under
clear conditions, which is then compared against measured irradiance. Subsequently, the

algorithm enhances the clear-sky irradiance by fitting it to a curve and performing
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multidimensional nonlinear optimization to fine-tune a linear correction factor. This approach
directly aligns clear-sky curves with measured irradiance data, minimizing reliance on local
atmospheric conditions and accommodating uncertainties such as aerosol presence. Rather
than using absolute thresholds, it compares the differences between measured and clear-sky
irradiance in normalized units or ratios, enhancing robustness across different irradiance levels
and SZA. However, for BrightSun's criteria to classify a period as clear, it necessitates consensus
among GHI, DNI, and DHI, alongside SZA, indicating the requirement for these four inputs.
CAELUS can also be deemed as a CSD model, where its definition of a cloudless moment is

synonymous with clear conditions.

2.1.2 Methods for Accurate Irradiance Assessment

Pyranometers, which function based on the Seebeck effect, can measure various types of solar
irradiance, contingent upon orientation and mount [44]. When mounted horizontally, GHI is
measured. By obstructing the sun's direct path using a shadow ball and a sun tracker, DHI can be
obtained. DNI measurements can solely be acquired if utilizing the same tracker, without the
shadow ball, using a pyrheliometer as evident in Figure 5a. An evaluation of PV performance
considers factors like irradiance incident on a defined tilt-angle (£) and system-azimuth (i)
Placing instruments in-plane or inverted captures POA or BOA measurements, respectively.
However, in such an assessment context, opinions emerge in deciding whether to utilize
pyranometers or reference cells. The latter is designed to quantify the irradiance available to a PV

module for transforming into electrical data. Table 1 offers a synopsis of both options [45][46][47].
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Table 1: Comparison of the use of solar reference cells and radiometers for two different types of

measurements.

Measurement of PV system performance

Solar Radiometric measurements

Characteristics at reference conditions (POA or BOA) (GHI or DHI)

Reference cell Pyranometer Reference Cell Pyranometer
Spectral Similar to PV Broadband Narrow wavelength Broadband
response response response response
Angle of — Response falls off at Wide angle acceptance, up to
Incidence Similar to PV Response to all angles SZA > 70° S7A = 85°

Temperature Linear, Similar to Minimal sensitivity to Temperature Minimal sensitivity to

Response PV temperature correction required temperature

Time Response

< milliseconds,
Similar to PV

< 30 seconds

< milliseconds,

Similar to PV <30 seconds

IEC 9847, 1S0 9845, ISO

IEC 60904 0846

Standards IEC 60904

Problems At low
Other Issues - . . L - -
irradiance conditions

Accurate measurements of GHI using spectrally flat class A pyranometers are exceedingly
uncommon [12][39], and it is even rarer to find installations that measure DHI or DNI with a
tracking and a pyrheliometer [43][44]. These methodologies are limited due to the significant
challenges in maintenance, including the continuous need for calibration and recalibration
[60][79]. As aresult, there is a growing need to develop reliable estimations for these parameters.
Consequently, researchers are exploring alternative methods, with mathematical modelling
emerging as a pivotal approach [234]. While GHI is more accessible and can be measured using
pyranometers, in cases where such equipment is unavailable, it can be estimated through
satellite imagery combined with clear-sky GHI (GHlcear) €stimates. Once GHI is determined, other
parameters from DHI, DNI to complex configurations of POA and BOA irradiance can be
estimated using various mathematical techniques [7][9][79][80]. This complex, interlinked model
structure underscores the critical importance of comprehensive solar irradiance estimations.
Additionally, within the specific spectral range of photosynthetically active radiation (400-700
nm), photodetectors, though even rarer than GHI measurements, are employed to meet the

critical demand for precise Photosynthetically Active Radiation (PAR) estimates [31][265].
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Figure 5: Various types of irradiance measurements are conducted using different instruments, including
pyranometers for measuring GHI, DHI, POA, and BOA, pyrheliometers for DNI
measurements, and photodetectors for capturing PAR measurements.

A crucial metric for evaluating PV performance is the Performance Ratio (PR), which is essential
for gauging the overall quality of PV systems [49]. This assessment alighs with the IEC 61724
standard [50]. This location-independent metric describes the relationship between the actual
and theoretical energy outputs of PV plants. A key application of the PR is to demonstrate the
energy proportion that can be utilized operationally or exported to the grid at a premium rate.
Higher PR is synonymous with higher quality in terms of overall performance, but a value of 100%
is never possible due to unavoidable losses or eventual degradation. Several PV systems with PR
between 60-90% were described in the literature as high-performance systems [49][51]. PR is
computed as seen in Equations 6a and 6b, which is a ratio of POA and the irradiance under
standard testing conditions, Ggrc [50]. Psysreym is the DC power of the modules (in Watts), and

Pipga; is the DC power from the datasheet at STC (in Watts).

P
PR = SYSTEM (6a)

PIDEAL

POA (6b)

Psystem = Pipgar X G
STC

Monofacial PV with a defined § are configured to meet this requirement. However, it is essential
to explore the implications of incorporating bifacial modules. Issues arise when utilizing the
previously mentioned formula, as a definitive standard for assessing bifacial modules has not

been established, as the current method only evaluates the front-side power. However, as per
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Figure 6, IEC 61724-1 emphasizes that a station should have at least three BOA measurement
instruments, positioned in representative locations to capture the effects of non-uniformities at
the rear side while avoiding shading or reflections that could impact readings. Alternatively, it
suggests placing two BOA sensors 20% from the module width's edge, as this provides a
measurement comparable to average values in irradiance models [48]. Thus, it is evident that
quantifying BOA irradiance presents significant challenges, and this is where the role of
mathematical modelling becomes critical. This process initiates a cascade effect, starting from
the foundational GHI measurements and progressively building towards accurately estimating

BOA and PAR irradiance.

20% *

Figure 6: Suggestions for rear-side irradiance sensor placement as per [48].

2.1.3 Data Filtration Implementation

In the process of estimating solar irradiance, several data manipulation and handling steps are
required. Especially since, when conducting solar irradiance measurements, the accuracy and
reliability of these measurements are influenced by several crucial factors [52]. These factors
must be thoroughly eradicated before the data is used for model development or validation [12].
Understanding these variables is essential for accurately assessing modelled irradiance data
[44]. Therefore, it is imperative to implement the quality control procedure for solar irradiance
measurements to ensure their precision and validity. Firstly, the establishment of a precise
method for utilizing and predicting solar geometry has consistently relied on the most effective
approaches found in the literature. This is done through the use of NREL’s Solar Position

Algorithm (SPA), which calculates solar angles such as SZA; critical to the closure equation (see
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equation 4). The SPA is noted for its exceptional precision, with a minimal uncertainty of only

0.0003e°, applicable from the year 2000 to 6000 [53].

Although the Baseline Surface Radiation Network (BSRN) has initiated some quality control
protocols, a comprehensive quality control framework remains under development [54][55].
Drawing inspiration from existing studies, a robust data quality procedure is required. The initial
step involves identifying and quantifying missing timestamps and values (e.g., empty values)
across data parameters such as GHI, DHI, or DNI. This assessment helps determine each
station's data completeness, and any identified gaps or anomalies are excluded from further
analysis to maintain data integrity [56]. Before implementing any quality control measures, it is
critical to address potential thermal offsets in the pyranometers used. Hence, itis a fundamental
prerequisite for quality control processes to ensure that any thermal offsets are either absent or
have been correctly adjusted. The method for correcting thermal offsets involves using nighttime
irradiance readings [57]. Specifically, negative irradiance values recorded after midnight until SZA
reaches 1000, and similarly post-sunset until midnight, are used. By averaging these values, an
absolute adjustment is applied to the daytime observations of GHI and DHI to correct for any
discrepancies caused by thermal offsets. This step is crucial to ensure that the data reflects

accurate solar irradiance measurements, free from instrumental biases [52].

Once thermal offset issues are addressed, the next steps in this quality control process focus on
measurements with SZA less than 85¢. This restriction helps eliminate instances of low irradiance
from the dataset. It is also critical to evaluate the performance of the solar tracker used for DHI
and DNI measurements. Tracker malfunctions, which can stem from electromechanical issues,
misalignment, or timestamp inaccuracies, directly impact measurement reliability. Detecting
these faults, especially subtle misalighments, requires careful analysis. This involves comparing
recorded data against estimated values of irradiance to identify discrepancies. To further validate
tracker accuracy, "tracker-off" tests are performed, adhering to established protocols. Moreover,
the constant value of 1361.1 W/m? for extraterrestrial horizontal irradiance is utilized as a
reference point throughout this research, as specified in [58] and the ASTM E490-22 standard
[59]. Additionally, K-tests help not only in identifying potential issues with the tracker but also in
correcting any physical misalignments that might skew the data. Addressing past constraints,
which sometimes led to incorrect data exclusions during cloud enhancement scenarios, is
another key aspect of this approach. Implementing "Extremely rare limits tests" as recommended
by the BSRN is essential for projects requiring high-accuracy data. Finally, ensuring that the

absolute value from the closure equation remains below 5% is vital, as it highlights the benefits
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of using both DNI and DHI measurements over relying solely on GHI. This approach not only aligns

with but also enhances the methodological rigor of these data quality protocols.

2.1.4 The Use of Satellite Data

Assessing solar irradiance at ground level is essential for analysing atmospheric components
[60][61]. The atmosphere’s constituents scatter and absorb solar radiation, leading to the
attenuation of both direct beam and diffuse sky radiation. The decrease in solar irradiance
through the atmosphere follows the principles outlined in the radiative transfer equation [62], as
specified in equation 7a. In this equation, E(1) represents the irradiance at a particular
wavelength (1), k denotes the extinction coefficient, and x refers to the distance traveled through

the atmospheric volume.

dE(A) = —k(1)-E(1) - d(x) (7a)

EQ) = Ey(d) - e x (7b)

Assuming E, (1) represents the initialirradiance entering an atmospheric volume, it aligns directly
with the Beer-Lambert-Bouguer law [63], thus evident in equation 7b. Furthermore, if k(A)is
dependent on the distance, x; this introduces the definition of optical depth, AOD(1), and it is

defined as the integral of extinction over a specified path, as outlined in equation 7c.

5ZA2 (7¢c)
AOD(A) = f K4, x) - d(x)
SZA1
It should be noted that the formula presented in equation 7c applies to every wavelength due to
Kk (which encompasses both scattering and absorption) being highly dependent on the
wavelength. The dynamics between solar irradiance and aerosols are critical to understand
because aerosols significantly influence the attenuation and scattering of incoming solar
radiation [64]. According to equation 7c, the wavelength-specific scattering by air molecules (via
Rayleigh scattering) and aerosol particles (via Mie scattering), as well as the absorption by
atmospheric gases marked by Fraunhofer lines, occurs in sharply varying absorption bands (refer
to Figure 4). Additionally, data on aerosols and precipitable water (PW) can enhance cloud
condensation formation, thereby impacting incoming radiation through changes in optical
properties and cloud coverage [65]. Accurate prediction of surface solar irradiance necessitates
the incorporation of aerosol data alongside other solar irradiance measurements. Ideally, aerosol
levels should be monitored using a sunphotometer, though this equipment is typically only
available within the AErosol RObotic NETwork (AERONET), which offers a global, yet limited,

database of aerosol and radiative properties [66].
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Historically, the primary sources of large-scale aerosol data have been derived from remote
sensing observations conducted by spaceborne instruments [67]. These multispectral sensors
monitor the reflected radiance from the surface-atmosphere system and employ algorithms to
retrieve Aerosol Optical Depth (AOD) at various wavelengths. Estimations of AOD enable the
calculation of the Angstrom exponent (AE), an empirical measure crucial for inferring AOD at
wavelengths not directly measured, or for identifying aerosol types by their size distribution
through an inverse relationship [68]. AE effectively indicates the dominant particle size, with
lower values (approaching 0) associated with larger coarse particles like dust, and higher values
(up to 2.5) typical of finer aerosols such as those found in urban pollution. @ can be derived from
a linear fit following the linearization of the Angstrom law [68][69], utilizing predetermined
wavelengths, with AERONET typically measuring at 440, 500, 675, and 870 nm. AOD at 550 nm
has become the standard reference for assessing turbidity and can also be calculated using this

approach as outlined in equation 8, where A is the reference wavelength.

A (8)
In(A0D;) = In(A0D;,) — AE - In (%)

However, the use of AOD and AE data from spaceborne remote sensing in surface irradiance
modelling is hindered by their intermittent availability. AOD measurements are unreliable under
cloudy conditions, over brightly reflective surfaces like sand or snow, or when clouds are
mistakenly identified as clear skies. Additionally, the temporal discontinuity of aerosol data, due
to the nature of polar-orbiting satellites, poses a significant challenge. This limitation has sparked
considerable interest across various scientific communities in AOD modelling, leading to the
development of satellite datasets that provide AOD and AE estimates for use in mathematical
models, such as those estimating GHI and DHI under clear sky conditions [68]. With DNI being
particularly sensitive to AOD, and GHI is also affected by AOD, the impact is less severe

compared to DNI, and itis influenced by PW as well [70].

To mitigate these challenges, forecasters utilize satellite data from resources like MERRA-2
(Modern-Era Retrospective Analysis for Research and Applications, Version 2) [71][72][73] and
CAMS (Copernicus Atmosphere Monitoring Service) [74][75][76][77]. Satellite datasets integrate
historical data from satellites and weather stations with climate model outputs, offering a
comprehensive and consistent record of atmospheric conditions over extended periods and
across various ¢ [58][78]. This data is essential for understanding weather patterns, climate
trends, and atmospheric disturbances, providing a global perspective that enhances the financial
viability of solar energy projects. Different satellite data result in different approximations of AOD

and AE hence, there is a need to see the difference and the effect that they have.
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2.1.5 Metrics Deployed in Feasibility Software

The swift advancement and deployment of various PV technologies necessitate significant
investments, financial risk assessments, and strategic policy decisions regarding the
prioritization of technology deployment [11][12][52]. The energy output of a system is closely
linked to POA (and to some extent BOA in bifacial systems and PAR in AgriPV systems),
underscoring the impact of these factors on the system's energy production and design
parameters. This inherent uncertainty in energy output directly correlates with uncertainties in
POA (BOA, and PAR), making financial risk evaluation and the assessment of project bankability
and feasibility crucial for future PV projects [9]. Numerous feasibility software applications exist

that utilize various irradiance estimations to project values for POA, BOA, and PAR.

An accurate appraisal of PV performance is central to the economic viability of systems [6][7].
The wide range of optical model combinations, where decomposition and transposition models
are paired together, can lead to errors and elevate the risk during the deployment of photovoltaic
(PV) systems. Feasibility software offers a multitude of model combinations, but there is no
established standard for their use [79]. Previous research indicate that applying the same
meteorological information and system definitions can lead to differing POA irradiance
predictions [80]. POA is crucial for making knowledgeable choices, spanning various domains
from analyzing shade effects to assessing economic feasibility [81]. ITRPV estimates show that
by 2030, 40% of PV systems will incorporate tracking technologies [82]. Reinforcing this, the
International Energy Agency (IEA) highlights the growing use of single-axis trackers in the USA,
surpassing Fixed-Tilt (FT) systems within PV farms [83]. Moreover, it demonstrates the growing
global market for PV trackers. The pursuit of tracking technologies in the PV landscape holds the
potential for enhanced energy output and therefore reduction in the number of modules required
per kWh [84][85]. However, tracking solutions in PV systems often necessitate increased physical
space, which could be a hurdle in space-limited areas [82]. Therefore, precise modelling is
essential to ensure that the benefits provided by these solutions surpass their spatial needs.

Furthermore, the use of trackers introduces concerns about return on investment.

It is documented that the accumulation of modelled results over longer periods tends to reduce
their random errors (referenced in sources [86][87]). Thus, assessing model performance over an
appropriate averaging period is critical. Traditionally, hourly and monthly radiation data have
been standard in the simulation and design of PV systems. However, recent developments have
introduced new requirements and opportunities. Many radiometric stations now offer data at
much finer resolutions (i.e., 1 minute), facilitating model validation at higher frequencies. This

high-frequency data is crucial for simulating PV systems that operate under rapidly changing
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conditions, such as those found in the temperate climate of the UK. Additionally, solar resource
characterization over specific areas is often reported in terms of mean annual irradiation, a vital
factor in estimating the long-term energy production of PV systems and an essential component

for the financial analyses required to determine a project’s bankability using feasibility software.

Utilising high temporal resolution data, such as solar irradiance data at one minute intervals,
allows for more precise characterisation of irradiance variability driven by transient atmospheric
conditions. This includes the movement of clouds, aerosol events, and brief changes in solar
position. This granular level of detail is particularly beneficial for assessing the dynamic response
of PV systems under real-world sky conditions, as it captures rapid fluctuations in irradiance that
are often obscured in coarser, hourly datasets. This is particularly true for tracking systems,
where an hourly dataset my underpin the overall gains relative to its fixed-tilt counterpart.
Moreover, employing minute-resolution data enhances the accuracy of time-series simulations
by supporting the detection of systematic biases and enabling more precise calibration of both
decomposition and transposition models. From a system operation perspective, high-frequency
data facilitates more advanced forecasting methods and informs grid-integration analyses. This
is especially true for scenarios with high levels of PV deployment. Integrating such data
strengthens system design, refines operational planning and increases confidence in energyyield

projections, all of which contribute to minimising investment risks in PV projects.

Given the scarcity of solar irradiance measurements in areas critical for large-scale
developments, both general and specific project analyses often must rely on modelled datasets.
This reliance raises several important considerations about the accuracy of these datasets
compared to actual, locally measured high-quality data, and the level of confidence investors
might place in such information. Additionally, comparisons between different models, are
necessary to establish their relative accuracy and reliability. This discourse sets the stage for the
extensive use of various metrics designed to quantify the errors inherent in irradiance modelling
used by feasibility software. The literature on solar irradiance modelling is rich, and there is a wide
range of methods for assessing the performance of these models through validation studies.
These studies typically explore different components of irradiance, with most components being
validated and some developed. Consequently, this thesis will establish a benchmark for
comparing modelled data against measured data, for different solar irradiance estimations,

aiming to set a standard for this evaluation.

The review of existing literature highlights a broad spectrum of evaluation methods, emphasizing
the necessity for selecting suitable performance metrics. This thesis, like most previous research

on this topic, employs Mean Absolute Deviation (MAD) as the key figure of merit as per equation
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9a [88]. The term “deviation” is used here rather than “error” to emphasize that the performance
of any radiation model is evaluated against irradiance measurements that are affected by low,
but non-negligible, experimental uncertainties [52]. MAD is instrumental in quantifying
discrepancies between observed data and predictions by irradiance models, offering a gauge for
the model’s fidelity in reflecting real-world conditions. It proves especially useful in pinpointing
how much the model’s estimates deviate from actual observations in general. MAD calculations
provide insights into the absolute deviations a model exhibits compared to its measured values
and are endorsed as Class A indicators [11]. The evaluation of deviation in the estimated
irradiance is a key component of solar resource assessment, as it directly impacts the
uncertainty in the predicted output of PV systems and their bankability. One key advantage of
MAD is its robust measurement of average error, which remains unaffected by extreme outliers
(unlike Root Mean Square Deviation) and prevents error cancellation, acommon issue with Mean
Bias Deviation. MAD evaluates the absolute size of deviations, providing a more comprehensive
perspective on overall variation with measured data. This thesis underscores the uniform
contribution of each site. For example, the MAD across a diverse station database is calculated
as the arithmetic mean of all individual MADs as specified in [12]. The statistical results are
expressed in percent rather than in W/m? to adhere to the recommendations in [40]. A good

combination of irradiance models should have a low MAD, close to 0%.

=

100 < o2
MAD = ———— » |IMuodettea — ["Tmeasureal

!
Irr Measured =

=

ITTy0delied YEPresents the irradiance value from the specific model for the ith data point and
ITTyeasurea CONVeys the measured irradiance value from the instrument deployed for the ith data
point. The number of data points is depicted as N. The IT"' yeasurea F€Presents the mean of the
measured irradiance value and IT7"y 401104 FEPrESeENts its modelled mean counterpart. Another
useful metric is the coefficient of determination (R?), as outlined in equation 9b. R? is a measure
of the variability of an irradiance model relative to actual measurements. Hence, it indicates how
well a model capture the overall trend in the data. R2values closer to 1 indicating a higher level of

accuracy in the model’s predictions.

1 2
i=N ’ ’ 9b
R2 = < i=1 (IrrModelled — Irr Modelled)(ITTMeasured = Irr Measured) > (9b)

i=N I 2 1 2
i=1 ([TTModelled — Irr Modelled) (IrTMeasured — Irr Measured)

Bifacial Gain, or BG, is a metric frequently found in literature to characterize the performance of
bifacial systems, but its usage is not uniform. At times, it is referred to as the ratio of irradiance

collected on the front and rear of the panel [89][90]. Nonetheless, the energy yield version of BG
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is employed in the industry [91][92], which quantifies the increase in energy yield for a bifacial
module in comparison to a monofacial module under identical circumstances. To avoid
confusion, the terms BGix and BGenergy Will be used distinctly. These concepts are outlined in
equations 10a and 10b, where Ep;f; represents the total energy produced by a bifacial system (in

Watt-Hours), and E,,,,,, corresponds to the energy output from a monofacial system (in Watt-

Hours).
BOA (10a)
BGirr = poa
BG _ (EBifi — Emono) (10b)
Energy = Ermono

Bifacial modules are classified using the bifaciality factor, ¢p;r;, which conforms to the IEC
60904-1-2 standard [93]. A spectral mismatch correction factor is added as per IEC 60904-7 [94].
The rear-to-front side power ratio is measured at STC conditions: 25 °C, 1000 W/m?, and AM1.5
and is defined by equation 11. The module rear side is covered with a non-reflective sheet through
a solar simulator, ensuring less than 3 W/m? at any point on the non-illuminated side of the PV,
and the front power (Ppqx—rront)is measured. Similarly, the front side is covered with the same

material to measure the rear side power (Pqx—rear)-

_ Brax—rear (11)
bpifi = T

max—front
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Scenariol Scenario ll Scenario lll

Areagphaded

Figure 7: Three distinct scenarios illustrate the methods for calculating the land equivalent ratio:
Scenario | involves dedicating the entire area to crop cultivation, Scenario Il
allocates the land exclusively for PV energy generation, and Scenario lll combines
both agriculture and PV energy generation to explore their synergistic potential.

LER = Xscenario i1 . Yscenario 111 (12a)
Scenariol  Yscenario Il
Xscenario 111 = APAR - Areaspggeq + PAR * Areaynshadea (12b)
Xscenario1 = PAR - Areayy (12c)
N=Rows (12d)

Yscenariomn = CW - N - Z POAgcenario 11
N

N=Rows (12€)
Yscenarionn = CW - N - Z POAgcenario 11
N

Land costs are increasingly high and projected to rise further, prompting some to argue that
arable land should primarily serve to feed the growing population amidst escalating hunger.

AgriPV presents a solution by enabling the dual use of farmland for both crop growth and energy
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generation, addressing the food-energy-water nexus. A critical metric in this approach is the Land
Equivalent Ratio (LER) [95], which measures the combined yield of crops and energy as opposed
to their separate cultivation across three scenarios as per Figure 7: Scenario | utilizes the land
solely for agriculture, Scenario Il dedicates it entirely to energy generation, and Scenario Il
integrates both uses. Equation 12a defines the LER, calculating the normalized value of
combining land productivity for agriculture and PV energy in terms of production. Equation 12b
focuses on Scenario lll, quantifying the crop production by assessing the irradiance available for
PAR, alongside the irradiance for PV deployment on the same agricultural land, as detailed in
equation 12d Conversely, equation 12c corresponds to Scenario I, which reserves the land
exclusively for agriculture, while equation 12e applies to Scenario I, where the land is used only
for PV energy generation. In the equations below, dPAR connotes the diffuse component of PAR,
Areagpqqeq represents the shaded area caused by the PV panels, Aredy,shadea 1S the area that is
unshaded and Areay,; is the total area of the land. CW is the collector width of the panelsin a row

in meters.

2.2 Exploring Bifacial, Tracking and AgriVoltaic Systems

2.2.1 Bifacial Technology

With the growing popularity of solar energy, choosing the right solar panel is crucial for
maximising energy production and return on investment. Traditionally, monofacial panels have
been the standard choice, designed to capture sunlight exclusively from the front side of the
panel. In contrast, bifacial panels, as the name implies, are capable of absorbing sunlight from
both the front and rear sides [96]. As shown in Figure 8, bifacial modules achieve this by replacing
the opaque backsheet found in monofacial panels with a glass layer. This modification allows
sunlight, reflected off the ground or nearby surfaces, to penetrate and be absorbed by the rear

side.
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Figure 8: Monofacial and bifacial modules consist of multiple layers, with a key distinction being the
replacement of the opaque backsheet in monofacial modules with a glass layer in bifacial
modules [91].

The addition of this rear-side irradiance collection sets bifacial modules apart from their
monofacial counterparts. The glass layer or in some cases, a transparent backsheet, takes the
place of the conventional backsheet [85], reducing infrared light absorption. This reduction
lowers operating temperatures, ultimately extending the panels’ lifespan, as highlighted by
Hubner et al. [100]. Although bifacial modules offer advantages such as increased durability and
enhanced performance under diffuse light conditions, their overall efficiency depends on several
environmental and system-specific factors. Consequently, a transition to a bifacial modules
architecture can improve energy yield by up to 30% [98]. Calculations by Deline et al. have shown
that such architecture options can be achieved at a reasonable increase in production costs

while guaranteeing an increase in power production [99].

The visual distinction between monofacial and bifacial modules is just one aspect of a broader
set of functional differences. Bifacial modules absorb irradiance from the rear side as well as the
front side due to the use of bifacial-compatible solar cell architecture. This is due to the fact that
various cell architectures are evolving away from completely covering the back end of a cell.
Instead, metallization is applied only partly on the back side - thereby improving photon

absorption [99]. This allows for bifacial technology to be integrated due to their metallization.

Aside from the different optical designs between monofacial and bifacial modules, they also
exhibit distinct lifetime behaviour. Bifacial modules are constructed with glass on both sides,
which enhances the mechanical strength and operational lifetime when compared to the more
conventional glass-back sheet configuration of monofacial modules. An essential aspect
affecting bifacial system performance is the elevation height, h of the module [101]. To optimize
sunlight collection at the rear, h should be adequate. This is defined as the height of the distance
between the lowest part of the module and the surface. There is a positive correlation between h
and performance, indicating that the higher the bifacial module is positioned, the more likely the

rear side will be exposed to reflected sunlight [102]. In addition, for energy yield considerations,
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a uniform distribution of reflected irradiance is preferred on the rear side of a bifacial module [48].
Shadows cast by the module's own rear side cause irradiance variations resulting in mismatch

loss, which impacts the system's energy yield.

Figure 9: The distribution of rear side irradiance in a single module changes as per different h
(@) 0.08m (b) 0.58m (c) 1.08m. This figure is adapted from [103].

Kreinin et al. conducted an experiment to investigate the irradiance distribution of a single south-
facing bifacial module set at § = 30° at ¢ = 32°, exploring various h [103], as depicted in Figure 9.
Berrian et al. [104] used a simulation to study the effects of different h, employing the same 3, but
situating the system at ¢ =42°, ultimately reaching a similar conclusion. Although there is general
agreement in the literature that a saturation point regarding rear uniformity will eventually be
achieved, there remains a noticeable research gap concerning the extent of rear side
nonuniformity in diffuse regions, and whether differing saturation points would be reached in said

conditions.

In the context of bifacial solar panels, a crucial factor that quantifies the amount of light reflected
is albedo (p) [105]. Regarded as a dimensionless metric, p symbolizes the portion of light
reflected off a surface. This value can range between 0 and 1, where 0 signifies a completely
black, absorptive substance, and 1 indicates an ideal reflector. Through the use of a pair of
pyranometers placed back-to-back, equation 13 is utilized to calculate p from measured GHI and
Reflected Horizontal Irradiance (RHI). Various parameters influence the overall value of p, such
as surface type, moisture levels, roughness, and solar angular light distributions [105][106]. As
stated by Gostein et al., most PV software computes p as a single figure, but some applications
calculate monthly p values that may fluctuate due to ground dampness and other environmental

factors [47].

RHI (13)

P=GHI

As notably seenin Figure 10, p of materials depends on the wavelength of incoming sunlight, often
referred to as spectral albedo in literature [107]. Previous research has investigated the spectral
properties of plants due to PAR, which denotes the light spectrum portion used by plants for

photosynthesis [108] ranging from 400 nm to 700 nm. In temperate regions, a significant amount

68



Chapter 2

of land is designated for agriculture, and such vegetation areas can accommodate bifacial panels
to tackle the food-energy-water nexus [109]. However, calculating p under one-sun calibrated
pyranometers, which yield a single aggregated value related to shortwave radiation (typically
0.20), does not provide a comprehensive understanding, and introduces uncertainty. As most
bifacial solar panels employ crystalline silicon, operating between 400 and 1100 nm [110], BOA

estimation are said not to be accurate if they are measured using pyranometers.

Green Grass
White Sand
""""" —— Red Brick -
— Roofing Shingle

—— Dry Grass

—— Construction Concrete
—— Snow

Albedo

500 1000 1500 2000 2500 3000 3500 4000
Wavelength (nm)

Figure 10: A study of the spectral albedo of a few commonly used surfaces [111]. The dashed horizontal
lines refer to the broadband albedo value using a back-to-back pyranometer.

Moreover, simulation software that uses specific wavelength ranges might produce inaccurate
results, especially if there are assumptions made about the ground's Lambertian isotropic
scattering. Investigations show that neglecting spectral and angular details can lead to significant
deviations in PV performance [112]. Consequently, research has concluded that spectral albedo
effects can significantly impact BOA estimations, and these effects must be considered in

simulations [46][113].

2.2.2 Tracking System Varieties and Algorithmic Approaches

While more cost-effective, the limitations of Fixed-Tilt (FT) systems (Figure 11a) become apparent
in light of the cosine effect. This effect means that the sun will not always be at aright angle to the
panel, resulting in power losses as the PV module aligns with the SZA-axis for only a brief period.
To mitigate such issues to an extent, tracking can be employed, with Horizontal Single Axis
Tracking (HSAT, see Figure 11b) being the primary tracking method. As the name depicts, this
technology permits one degree of motion, contingent upon one parameter. If it is configured to

face south, 1, is tracked (known as HSAT-EW). Conversely, if i5y,; = 90°, a is tracked (termed
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HSAT-NS). HSATs are believed to be on the rise, as IHS Markit anticipates increased tracker

shipments due to the expected adoption of bifacial technology in the coming years [114].

Regarding bifacial HSAT, research has shown that irradiance gains ranges between 6.5-7.9% due
to uneven soil moisture and grass texture [115][116] at ¢ = 36°. The 1.7 MW La Silla power plant
at ¢ = 29° compared monofacial and bifacial HSATs over a nine-month period, determining that
BGgpergy varies between 10.4% and 12.4% at an unspecified p (which likely ranges from 0.2 to
0.3 due to desert conditions) [117]. Patel's simulations [118] found that bifacial HSAT orientation
matters depending on ¢. HSAT-NS gain an additional BGgyer gy Of at least 5% compared to HSAT-
EW at ¢ > 50°, whereas at ¢ <50°, HSAT-EW outperforms HSAT-NS by a minimum of 10%. This is
attributed to the more pronounced inclined sun path at higher ¢ and the greater variation in «
throughout the year. Moreover, it was concluded that HSAT-NS is more effective in winter, while
HSAT-EW is superior in summer [118]. However, it is important to note that these findings were
based on simulated weather data; they may not accurately represent real-world conditions in
temperate climates due to insufficient validation, which underlines the significance of validating

models for more reliable conclusions.

In comparison to FT systems and HSATs, the use of Dual Axis Trackers (DATs) effectively
eradicates the cosine effect, as the panels continuously align with the sun. DATs can move in
response to both Y, and f as seen in Figure 11c. Although they offer an increase in energy
production, DATs are generally viewed as expensive options due to their upfront capital costs,
with Rodriguez et al. estimating a 31% additional energy output, which is only 5% more than an
HSAT at a price that investors find difficult to justify [7]. This is especially true when factoring in
the economic aspects of DATs, such as maintenance expenses throughout their lifespans.
However, bifacial modules might be the catalyst that changes these hesitant opinions, as bifacial
DATs could boost energy production by 40% in comparison to monofacial FT systems and
potentially more if BOA-specified algorithms are employed. Kelly et al. also suggested that with
increasing p levels and sun path angles, bifacial DATs may become a more desirable alternative

to FT systems [119].

Burnham [120] analyzed the performance of bifacial DATs in a high p environment at ¢ = 44°, over
atwo-yeartimeframe. In comparison to its monofacial FT counterparts, there was an uplift of 41%
energy increase. This heightened energy yield could be due to the study location receiving an
average of 200 cm of snow yearly, dispersed over six months, as the high p of snow would
generate additional energy on the panels' back side. Furthermore, the consistently lower ambient

temperatures year-round would improve operating efficiency. However, Gueymard [121] argue
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that up to 90% of the sun's potential energy comes from DNI , with the remaining 10% originating
from DHI scattered by atmospheric aerosols. In overcast conditions, much of the radiation is

derived from DHI; therefore, tracking the sun in temperate regions is less beneficial.

Figure 11: There types of tracking solutions: a) FT, b) HSAT-EW, and ¢) DAT. This figure was
adapted from [102]

Tracking control schemes are of considerable importance in terms of the potential energy they
can provide, depending on both the tracker's overall movement strategy and its response to
shading on its modules. All tracking algorithms can be classified into two primary categories:
closed-loop and open-loop. The open-loop control, synonymous with tracking-the-sun (TS) [122],
employs a mathematical algorithm that automatically adjusts the tracker's position to follow the
sun based on the site's geolocation, maximizing DNI collection. Although the module's position
can be determined regardless of location, it does not account for weather conditions. In contrast,
closed-loop algorithms consider atmospheric conditions using irradiance sensors that
determine the module's optimum orientation, often referred to as "tracking-the-best-orientation"
(TBO). Modules are oriented toward the area receiving the most solar insolation, considering
reflective and diffuse components. Mousazadeh [123] suggested that in overcast conditions,
little DNl insolation reaches the modules, in line with Gueymard statements [121]. Thus, modules
should have been positioned horizontally on trackers to collect more energy compared to those
using celestial tracking. However, the optimal tracking movements under stated conditions are
yetto be developed. As aresult, itis essential to further explore the impact of diffuse components
on tracking and develop equations that maximize irradiance capture. Researchers are advised to
integrate short-term irradiance control schemes, thereby highlighting the crucial requirement for
precise solar irradiance estimations. This need encompasses the utilization of DHI, DNI, or GHI

estimates, as well as more complex calculations such as POA and BOA estimations.
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Trackers are deemed more effective when they integrate backtracking algorithms into their
control schemes [90]. This is especially relevant when the « is low, potentially causing one panel
to shade the one behind it, resulting in hot spot generation. This is particularly important in
temperate climates due to the inclined solar path. Backtracking enables trackers to adjust their
position to eliminate inter-row shading, considering the sun's position relative to the site
topography and panel dimensions, albeit at the expense of cosine losses. Lorenzo detailed the
backtracking geometry and how it varies for monofacial tracking technology [124]. Since current
algorithms do not include p and, consequently, BOA, backtracking algorithms may require
modifications in the context of bifacial technologies. This is especially at high ¢, where the inter-
row spacing will be extensive due to the angled sun path and the requirement to raise the system

higher to optimize BOA uniformity.

Table 2 presents a comprehensive synopsis of the literature review on bifacial tracking,
emphasizing the impact of various factors on irradiance or energy performance. There is a
growing interest in studying bifacial tracking systems [102], [117], [125-131], with energy gains up
to 41% in climates with lower latitudinal angles than the UK [120]. This highlights the need for

research on potential gains in temperate environments.
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Table 2: An examination of the literature pertaining to bifacial gains demonstrated by various tracking systems, including their critical parameters and methods of data collection.
Unless otherwise indicated, the gains reported are of the monofacial counterpart. Bifacial Gain outcomes from simulations are denoted by ‘s,” while ‘m’ indicates

outcomes from real-world system measurements.

Tracking System Data Collection P bwn 3:;;:3?; ¢  BGpueygy BGyy Comments and References
. . Solar

Type Algorithm Backtracking Irradiance Temperature Power

FT~ B =40°, gy, = 180° v DC |0.05] 0.83 12 |58.00] 0.05 [281]

FTm B=30°, Yops= 180° v v DC 0.75 1 32.00 0.10 0.16 [125]

FTm B =30°, y,,,= 180° 0.41 Monofacial Fixed-Tilt vs Bifacial DAT
DATm Your o O DC 020 21 44.00 0.14 Monofacial DAT vs Bifacial DAT [120]
DAT= Yeun - & DC g;g 2 50.00 Bifacial DAT under 2 surfaces [232]
FTam B =30° y,,,=180°, h =3m v v DC 0.30 | 0.90 6 48 86 [283]

FT: B=12°, Yoy = 180 DC 030 0.84 6 32.09 [283]

HSAT:m a@ v v v DC 0.32 5] 37.77 [283]
Test bed with reference cells, no
A = e = o = ¥ = 3

FTam B=10°, Y™ 1807, h=0.82m 0.70 E] 39.76 0.20 modules [90]

FTo" B = 20°. o= 180°. h= 1.20m v 0.50] 0.01 5 7.00 0.21 [92]

FTam B=10°, Yoy = 1637, h=0.52m v 0.55 - 35.00 [208]

FTam B=45°, Yoy = 1637, h=0.58m v 0.30 - 49.00 [208]

FT:m B =25 y,,.= 180° P P - . 0.06

HSAT:m o DC 021 0.67 12 35.60 0.08 [127
FT™ B =860°, = 180° v v ]1?:’ 070 | 0.94 13 64.00 0.21 [128]
FT™ B =15°, yi,,,= 180° 0.35 12 35.08 0.33 [129]

HSAT™ a v v DC 0.20 1 35.23 0.11

DAT™ Yo . & 0.55 <1 |4420| 020
0.10 - 0.02
_ 0.30 0.11 0.15
= e = o = v 55 05
FT™ B=45°, Y= 1807, h=1m DC 0.50 12 55.95 0.12 019 [283]
0.70 0.20 0.26
HSATr @ v v DC |026]| 0.73 R 39.73| 026 [102]
DC -
s s v :
HSAT™ « AC 0.30( 0.85 12 29.00 0.13 [117]
HSAT™ @ v v v DC 016 | 0.75 5] 38.54 0.05 [130]
0.06 1 0.05
FT™ B=30° y,,.=180°, h=1m 012 | 0.82 2 35.82 0.11 [131]
DC 0.21 1 0.14
0.30 0.08 [284]
FTr  B=35% y,,=180° h=15m DC |o0.s85| 096 7 33.84| 023
0.60 0.23
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2.2.3 Integration of Agriculture and Photovoltaics through AgriVoltaics

Economic growth coupled with increasing population sizes significantly contributes to the
escalating demand for energy, leading to an energy crisis in numerous nations [10]. This situation
has sparked important discussions regarding energy use and agricultural practices worldwide
[132]. The concept of the food-energy-water nexus underscores the interconnectedness of water,
energy, and food security, emphasizing the urgent need for beneficial strategies that align
agricultural and energy policies [133]. Contrary to the widespread belief that energy and
agricultural production are incompatible, meaning one cannot be pursued without sacrificing the
other, the integration of energy transition into societal norms is becoming a pivotal aspect of
developing energy generation systems, such as PV farms [134]. Efforts are being directed towards
addressing several of the United Nations Sustainable Development Goals (UN SDGs), particularly
focusing on UN SDG 2, which aims to achieve zero hunger through agricultural improvements,
and UN SDG 7, which promotes affordable and clean energy, notably through advancements in
photovoltaic technology. AgriPV presents a notable solution that bridges the perceived divide
between energy production and farming [135]. Itintegrates PV energy generation with agricultural
activities, allowing for both crop cultivation and energy production to occur on the same piece of
land simultaneously. This innovative approach enables the expansion of PV energy without
encroaching on valuable agricultural space, and it also offers the added benefit of protecting
crops with the installation of PV modules [136][137]. This coexistence potentially enhances crop
yields through the shared use of sunlight, depending on climatic conditions and crop varieties [5].
In certain instances, this arrangement proves mutually advantageous, as the evaporation from

crops can lower the operating temperatures of PV modules [138][139].

The agricultural sector faces several challenges beyond land scarcity and high costs. These
include water shortages, constrained resources, and increasing demands for quality food.
Additionally, climate change is exacerbating these issues with rising temperatures, altered
precipitation patterns, and more frequent extreme weather events like droughts and floods, all of
which adversely affect farm productivity. To cope, farmers are adopting strategies such as crop
diversification, improved soil management, enhanced water efficiency, and selecting crop and
livestock varieties better suited to harsh conditions. Limited access to arable land, water, and
cost-effective energy is driving the agricultural sector toward innovative technologies such as
AgriPV. These systems offer a viable solution by generating new avenues for solar energy
development across diverse climates and simultaneously resolving the conflict between

agricultural and photovoltaic demands on valuable land.
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The role of PV systems situated on agricultural lands in advancing renewable energy objectives is
becoming increasingly recognized in various regions. For example, France can deploy up to 5 GW
of solar power by utilizing just 0.1% of its agricultural lands, which constitute a significant portion
of the country's area. Similarly, the possibility of harnessing 1% of the European Union's
agricultural land could lead to the generation of 410 GW through PV, although only 29.3 GW had
been achieved in 2021. European nations have established guidelines for integrating agriculture
and PV, with Italy allocating substantial funds for the development of 2 GW in AgriPV projects [84].
Furthermore, calls for AgriPV project proposals have been made in various countries, with France
targeting approximately 300 MW, Germany 150 MW, and the Netherlands 45 MW. Additionally,
progress has been made in tracking systems, which are increasingly prevalent in the market [82]
and are being tailored for AgriPV initiatives to maximize the performance of PV energy for farming
needs. Through leveraging the superposition of energy and food production for mutual benefit,
studies have demonstrated the successful cultivation of various crops under AgriPV
configurations. This helps mitigate risks of food scarcity and market volatility, particularly for rain-
fed agriculture. Research by Edouard et al. on integrating tracking systems to optimize crop
production within AgriPV setups has shown LER at 1.51 in temperate climates at ¢ = 48.3°,
highlighting AgriPV’s efficacy [140]. Furthermore, in temperate climates, optimal placement of PV
panels requires significant inter-row spacing to minimize shading. This strategic positioning of
crops within these spaces exploits the extensive areas surrounding and underneath the panels,
further enhancing crop yield. This was supported by Campana et al., who reported an LER of 1.39

in similar conditions at ¢ = 59.559, reinforcing the viability of AgriPV systems [141].

While AgriPV has garnered increasing interest, challenges persist due to the lack of
comprehensive parameters and models. Despite its potential, the AgriPV sector remains niche,
constrained by scarce data and installations that could broaden its impact. Moreover, the
growing interest in PV systems has led to land competition, prompting investigations into land
dual-use as a solution, especially in regions where land is at a premium [84]. Precise calculation
of available irradiance for crops is essential to determine the viability of AgriPV, utilizing metrics
such as LER [142]. Consequently, this necessitates modelling, which hinges on accurate
assessments or predictions of irradiance components relevant to photovoltaics and agriculture
[143]. Moreover, there is a lack of feasibility software for AgriPV mainly due to the challenges of

estimating PAR irradiance.

Addressing the challenge of accurately modelling AgriPV systems involves understanding the
critical role of PAR in plant growth. PAR represents a fraction of the spectral range (400 — 700 nm)

[144] captured by common radiometer measurements of GHI. The integration of PV panels into
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agricultural lands necessitates ensuring that crop yields do not fall below acceptable thresholds,
thus underlining accurate PAR estimations [145]. Photosynthesis rates hinge on the energy
accessible to plants and are expressed either in terms of flux density (i.e., uml photons/m?/s) as
it is a quantum process or in terms of flux density (i.e., irradiance W/m?) [12]. While plants
predominantly absorb radiation within the 360 and 760nm wavelength, their efficiency varies
across this spectrum [146]. The way that PAR is measured is deploying photodetectors that
assumes that the critical absorption range for stimulating photosynthesis lies between 400 to 700
nm, treating all wavelengths within this range as equally effective. Compared to its counterpart
GHI, information on PAR irradiance is sparse [147]. There exists a critical demand for PAR data,
essential for both agricultural applications and propelling AgriPV technologies forward, as it
serves as a vital parameter in various modelling tools. This is particularly so in temperate regions
like the UK, where integrating AgriPV offers a solution to deploying PV without sacrificing arable
land, would aid in achieving the ambitious 70GW target by 2035. Moreover, quantifying PAR data
is essential for estimating its diffuse component (dPAR), paralleling the roles of GHI and DHlI,
thereby highlighting the need for precise PAR irradiance predictions through mathematical
modelling [33].

2.3 Mathematical Solar Irradiance Modelling

2.3.1 Comprehensive Analysis of Decomposition Models

GHI is the most frequently recorded solar radiation variable, obtained through ground-based
meteorological stations or satellite imagery. In contrast, DHI is less commonly measured and not
as easily accessible. Acquiring accurate DHI data is crucial for its use in advanced mathematical
models within feasibility software, informing decisions about optimal  and tracking algorithms
for PV deployment. Decomposition models, which calculate DHI from GHI using various
parameters in conjunction with the K, offer an alternative to direct DHI measurements,
addressing a critical need [148]. The closure equation (equation 4) in conjunction with SZA can

then be deployed to estimate DNI [166].

The scientific community has responded to the demand for DHI without high start-up costs,
ongoing calibration, or maintenance [148-152] by developing mathematical equations. Liu and
Jordan [153] laid the groundwork by connecting K; with the diffuse fraction, Kq (which is the ratio
of DHI to GHI). Subsequent researchers expanded upon their work, incorporating geo-specific
parameters and time resolution from daily to hourly [154]. Orgill and Hollands' model [155] used

irradiance data from a single meteorological site (¢ = 43°), generating DHI predictions from K,
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resulting in three-order polynomials. The Erbs model [156], built upon earlier work, utilised four
years of measured data across 31° < ¢ < 42° to establish its constants and parametric functions.
Reindl et al. proposed distinct piecewise index intervals based on the assessment of measured
climatic variables for 28°< ¢ < 59°, varying in input data and complexity [157]. Additionally, Ridley
et al. [158] developed a five-parameter predictive model, as opposed to piecewise functions, for
7 ¢ values in the range of 12° to 51°. Decomposition models are developed based on data
collected from specific locations, thus, they must be evaluated thoroughly before they can be

applied elsewhere.

Previous studies have centered on determining the most suitable decomposition model by
comparing data from diverse weather stations across the globe using several statistical
measures [159]. An investigation by Yao et al. [160] scrutinized 108 decomposition models,
based on hourly and daily data. It was discovered that intricate polynomial models, dependent
on sunlight hours, could accurately depict locations with climates and geographical positions
similar to Shanghai. One might speculate that models of greater complexity, encompassing more
parameters, would deliver superior accuracy. However, Behar et al. discovered a contrary
conclusion in a desert climate at ¢ = 28° [161]. After reviewing 17 models, it was found that
simpler models outperformed the more complex ones. Further confirmation of this came from
work by Zhou et al. who modelled hourly diffuse fraction based on apparent solar time and sky
conditions clustering [162]. This conclusion alighs with the general agreement reached by
Gueymard [12] and Stein [163], with the latter assessing 30 sites in North America, with 34°< ¢ <
48°. Arecent study by Yin et al. focused on developing models for DHI estimations by categorizing
sky conditions at five locations in China [164]. The discrepancy in findings and the lack of
consensus between Yao, Behar, and Gueymard can be attributed to the K4 of the sky at each
location. In a dry climate, Ky is low, implying that the diffuse componentis minimal. Hence, most
of the horizontal irradiance sum would originate from DNI. This observation helps to rationalize
Behar's argument that simpler models excel in such environments. On the other hand, Shanghai
is recognized for the high presence of diffuse irradiance, necessitating the use of more complex

models.

Abreu et al. [34] examined 121 distinct models across 48 radiometric stations worldwide, with 25
stations classified as temperate climates. The conclusion drawn was that 13 out of the 121
models were suitable. Gueymard and Ruiz [21] reviewed 140 decomposition models across 54
stations, on a minute-by-minute basis, dividing them based on the count of predictors. Half of
these stations were situated in locations with a temperate climate. It was found that complex
models with additional inputs outperformed simpler ones. It was highlighted that the Engerer2a

model [159], with its extensive set of predictors, is particularly suitable for both global and
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temperate climates. Subsequently, the Engerer2a model, originally validated using minute-by-
minute irradiance data from Australia, inspired Bright et al. to develop seven newer models [165].
These models, named Engerer2b to Engerer2h in this thesis, were each tailored for specific
temporal resolutions (ranging from 1 minute to daily irradiance) using a global dataset, with
adjustments made to their coefficients. Notably, these new models incorporated the TJ model

[234] for clear-sky global horizontalirradiance (GHIcear) estimates.

Following this, several models emerged. The Starke1 and Starke2 models [167] were introduced,
adjusting coefficients for Australian and Brazilian data respectively, employing the Simplified
Solis GHlcear model in their piecewise equations [168]. Concurrently, Paulescu presented a
model combining regression with indicator functions [169]. Starke et al. proposed the Starke3
model, examining one-minute data from global stations [170]. Simultaneously, Every et al.
introduced the Every1l model, a quasi-global model adjusting the Boland-Ridley-Lauret (BRL)
model [171], alongside Every2, which modified BRL coefficients for different Koppen-Geiger

climate zones [172].

Yang [173] introduced the Yang4 model, which was developed using minute-by-minute data
collected from various stations and integrated with the McClear GHlciear model [174]. The primary
aim of Yang4 was to reduce reliance on satellite-derived data for input, acommon practice across
differing satellite-derived irradiance databases as outlined in [175]. This model included
enhancements such as the incorporation of albedo effects, cloud coverage data, and an
advanced physical representation of radiative transfer processes. Notably, when compared
against ten different machine learning (ML) models, the Yang4 model demonstrated superior
accuracy [176]. Building on this, the Yang5 model was launched [177], which incorporated new
coefficients that consider cloud cover frequency, aerosol optical depth, and surface albedo
climatology derived from satellite imagery. Like its predecessor, Yang5 utilized the same GHlciear
model and exhibited improved performance in DHI estimation across more than 70% of the 126

stations tested.

Palmer et al. [178] assessed three decomposition models at three UK locations, using two
stations previously utilized by [12], as well as one in Loughborough (¢ = 52.76°). Their motivation
stemmed from the lack of consensus regarding model complexity found in the literature. Through
their evaluation of the Erbs [156], BRL[171], and De Miguel[179] models against hourly irradiance
data, there is a tendency to underestimate DHI, indicating potential for model improvement.
Additionally, Munoz et al. [180] analyzed historical GHI and DHI data from 1982 to 1999 under

stringent data quality control to evaluate six different models across three UK locations,
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employing error histograms. It was found that the Reindl[157] model performed bestin an hourly-

based context, although the other five models were in close competition.

Table 3: Various Optical Model pairs deployed in different feasibility software [181][182].

Decomposition

Model Transposition Model Abbreviation Software
INSEL [193]
Perez[185] Erbs-Perez
PVSyst [192]
PVToolbox [195]
Liu-Jordan [186] Erbs-LJ INSEL [193]
RETScreen [194]
Erbs [156] Skartveit-Olseth [187] Erbs-SO
Temps-Coulson [188] Erbs-TC
INSEL [193]
Willmot [189] Erbs-Willmot
Bugler [190] Erbs-Bugler
PVSyst [192]
Hay [191] Erbs-Hay
INSEL [193]
PVSOL [201]
Perez [185] Reindl-Perez
TRNSYS [196]
Reindl[157]
Skartveit-Olseth [187] Reindl-SO PVSOL [201]
Hay [191] Reindl-Hay TRNSYS [196]
SolarAnyWhere [197]
DIRINT [183] Perez [185] DIRINT-Perez
SolarGIS [198]
Hay [191] DISC-Hay
DISC [184] Perez [185] DISC-Perez Meteonorm [199]
Skartveit-Olseth [187] DISC-SO
BRL[171] Liu-Jordan [186] BRL-LJ Summa [200]

Itis essential to develop a comprehensive and transparent benchmarking framework to evaluate
the wide variety of decomposition models available. This need arises from the scarcity of solar
irradiance data in temperate climates, especially in regions such as the UK, where further
detailed research is urgently needed. Currently, only three modern weather stations in the UK
provide open access to both GHI and DHI data. Identifying the most effective decomposition
model for these specific conditions and determining if particular decomposition models are
ideally suited for certain datasets represent significant opportunities for future research. The
diversity of models underscores the importance of establishing a standardized framework to
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support accurate DHI estimation. It is critical to adopt a framework that can be implemented in
other regions. Such a shift is consistent with prevailing solar energy guidelines, underscoring the
significance of considering global implications in any model developed for widespread
application [40][202]. Furthermore, a thorough evaluation of decomposition models is crucial
because various feasibility software applications, as detailed in Table 3, utilize different
decomposition methods to estimate DHI (or DNI) prior to transposing these estimates to
calculate POA.

2.3.2 The Importance of Transposition Modelling

The economic viability of PV systems, be they categorized as FT or tracking, largely relies on
accurate POA estimations. This evaluation is typically executed using a View-Factor (VF) method,
implemented through feasibility software. Due to the unpredictability of PV systems’
performance, precise modelling is crucial, irrespective of geographical location. The primary
approaches to modelling irradiance involve Ray-Tracing (RT) and VF methods [203]. RT is a
rendering technique that traces light rays from their origin, calculating the impact of light to render
objects. RT applies radiative transfer theory in reverse, emitting rays at the sampling point and
directing them from the module to the sky. This approach entails creating a ray at the sampling
point, which passesthrough the view plane to the object (e.g., the hemisphere or otherintroduced
geometries). By accounting for complex geometries, such as racking or obstructions, and
analyzing shading, these modelling techniques can evaluate edge effects in bifacial modules.
Due to its increased complexity and longer run times, reverse RT demands the use of High-

Performance Computing (HPC) [204].

VF models are grounded in the thermal radiation heat transfer theorem and employ an etendue
geometric quantity to gauge the flux-gathering ability of an optical system [205]. This quantity is
essentially a mathematical product of the solid angle projected from the source as seen from the
collector, the source, and the collector’s area. The use of VF models has gained traction across
a wide range of software applications due to their unique benefits. These advantages include
faster computation times, lower computational resource requirements, seamless integration
with other industry software and tools, and adherence to the standard used for PR calculations

[192].

Prior research has compared between RT and VF methods. For example, Pelaez et al. [89]
compared three models (two VF and one RT) with actual measurements under various inter-row
spacing, 3, and p, finding that all models demonstrated good agreement with BGgpergy With a 2%
error. In a similar study, Sanchez et al. [101] compared three models across two locations (¢ =

51.77° with a south-facing § = 35° and ¢ = 9.85° with § = 15°), both with a system setup
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featuring h = 1m. The comparison with measured data revealed that the VF method produced
results closest to the actual measurements when considering § and ,,s. Further research [206]
compared a single VF model and an RT model under various conditions, including 8, p, and h, at
@ = 41.64°. The study concluded that the VF model outperformed the RT model in all cases,

except for inter-row spacing, where the difference was equal to 1.77%.

A key aspect of VF models is their reliance on transposition models, which are often used
interchangeably with sky diffuse models. These models separate POA and BOA estimations.
However, it is important to note that BOA estimation necessitates POA verification for the site of
interest [7]. Equation 14a calculates POA using components of Beam Tilted Irradiance (B;),

Reflective Tilted Irradiance (R;), and Diffuse Tilt Irradiance (D,) [207]:

POA = B, + R, + D, (14a)

B,, through equation 14b, employs DNI and the angle of incidence (AOI) as seen Figure 12:

By = DNI - cos AO! (14b)

The approach to calculate R, in equation 14c assumes isotropic conditions, meaning that
regardless of AOI, all rays exhibit the same intensity. The simplified ground re-emission of rays is
treated as a Lambertian surface, where the amount of ground re-emission relies on p [208]. In this
context, an infinite array is assumed, with the ground visible to the array from the intersecting
slope extending to an infinite horizon.

(1 - cosp) (14c)

Re= GHI-p-—

D, = DHI- R, (14d)

Equation 14d shows that D, consists of DHI and R;, which is the transposition factor. R; heavily
relies on the type of transposition model employed, be it isotropic or anisotropic. For a tilted
inclined surface, the intensity of the D; depends on the fraction of the sky dome it observes, as
isotropic models assume uniform diffuse sky radiation across the sky dome. In contrast, an
anisotropic sky model makes different assumptions. It considers diffuse sky radiation to be
anisotropic near the circumsolar region (i.e., the area surrounding the solar disk) and introduces
various horizon brightening factors, while maintaining isotropic conditions for the rest of the sky

dome.

Numerous transposition models have been developed and presented for POA applications [185-

1910, [209-217]. As indicated in the literature, these models can predict solar irradiation with
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adequate accuracy [218-220]. However, it remains challenging to pinpoint a reliable
transposition model that can serve as a standard reference, especially on a minute-by-minute
basis. Generally, transposition models are site-dependent, given that they are based on various
assumptions about sky distribution and have empirical origins. The selection of the best-
performing model typically involves comparing it to measured POA data at a specified FT setups,

with minimal focus on tracking systems [79].

Normal to the surface Normal to the centre

Figure 12: For AOI determination, the sun coordinates are correlated with the FT orientation. This figure

was adapted from [20].

Limited research has been conducted on transposition validation for differing installations.
Nonetheless, a noticeable inconsistency exists in the literature. Raptis et al. [221] analyzed four
distinct transposition models for a south-facing § = 38°,and ¢ = 43.67°, concluding that the
Perez model [185] was optimal. Mubarak et al. [222] compared five models at § =10°to 70°in 10°
increments and at ¢ = 52.38°. They discovered that the Liu-Jordan model [186] best matched
measured data up to 30°, after which the Hay [191] model performed best. Yang [223] evaluated
26 models against measured data that consisted of south-facing setup with f =45° at ¢ =

53.14° and determined that the Reindl [221] model was the top performer.

Furthermore, Wlodarczyk-Nowak [224] conducted a study on 14 models at two
B, (35° and 50°), and at a similar ¢, finding that the Temp-Coulson [188] model worked best for
the former and Bugler [190] for the latter. It is evident that no consensus has been reached for FT
installations. When tracking is incorporated, whether through HSAT or DAT, various s,,; and 8
combinations are introduced, necessitating further research to identify the ideal transposition

model or a combination of models that most accurately approximate measured data.

The computation of BOA, it shares similarities with its front-side counterpart (POA), as

demonstrated in equation 15. Both the reflected beam and diffuse components, B, and D,
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follow the same methodology outlined in equations 14b and 14d, but consider a 180-degree
adjustment for [ [92][225]; as illustrated in Figure 13. Nonetheless, the ground-reflected
component, R, can no longer rely on the same initial assumptions due to influential factors
such as shading, h, g, p, and notably, the spectral effect and non-uniformity [208][225]. There
are multiple methods for calculating this component, varying in complexity, but their applicability

is contingent on specific case circumstances [208][226][227].

BOA = By + Ry + Dy (15)
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Figure 13: Differences between POA and BOA irradiances due to tilted components.

Obtaining POA (and consequently BOA) estimates relies on measured GHI, DHI, and DNI data,
but it is uncommon for all three components to be measured. Consequently, decomposition
must occur to obtain DHI, which can then be input into transposition models. No single
combination of decomposition and transposition is universally recognized as a standard for
converting GHI to POA; a variety of combinations are utilized. Therefore, during the incorporation
of both decomposition and transposition models, as carried out in feasibility software, errors
tend to escalate. This is attributable to a cascading effect where an underestimated DHI
stemming from decomposition models, could result in an overestimated DNI, and subsequently,
POA when these irradiance components are transposed. Conversely, an overestimated DHI
would yield the opposite behaviour. This inconsistency results in differing POA (and thus BOA)

predictions, even when the same GHI input is provided.

There are limited studies evaluating decomposition-transposition model pairs. For example, Lave
et al. examined two model pairs across 9 locations in the US for FT systems (predominantly with
a south-facing 8 = 259), concluding that regardless of the decomposition model used, the choice
of transposition model resulted in differing outcomes. The Hay model showed less error
compared to its Perez counterpart [79]. In their research, Sun et al. implemented the Orgill and
Hollands decomposition model [115], coupled with the Perez transposition model. Their

validation exercises focused solely on FT systems set at § = 15° and 30° at ¢ = 35°, revealing a
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variationin modelled irradiance BG of 6.40% compared to measurements [227]. Furthermore, the
DIRINT-Perez model pairing was leveraged in an additional investigation [7], wherein Levelised
Cost of Electricity (LCOE) calculations served as a validation criterion. An identical model pairing

was used across six locations for an irradiance BG study [226].

The collection of 6 sites involved an HSAT and south-facing FT at ¢ = 35°, resulting in a 6% error
from modelled BG. The setup at location 2 compromised an FT system of § = 34°, supplemented
by two SATS at ¢ = 37.5°, resulting in a 5% error from the model. Location 3 was near the equator
and featured a 10° 5. Location 4 maintained §=24°, identical to its ¢, whereas location 5 (¢ =51°
) featured an FT setup with § = 35°. The BG from locations 3, 4, and 5 showed considerable

consistency with the model, displaying errors of only 1%, 3.16%, and 1.65% respectively.

Yang et al. assessed ten transposition and five decomposition models under tropical conditions
at ¢ = 1.3° [228]. It was discovered that combining both types of models leads to increased
prediction errors when converting irradiance from horizontal to tilted surfaces, with the error
magnifying as f increases. This highlights the need to explore the percentage error in the
modelling results at higher tilts, which is important for bifacial systems or monofacial systems
requiring greater [ for optimal incident angle. Maani et al. noted that limiting studies to a single
model combination might result in less accurate model chain indicators [229]. Roberts et al.
conducted a year-long study at ¢ = 52.7°, analyzing 16 pairs of optical models using hourly data.
Their research highlighted that the DISC decomposition model paired with the Liu-Jordan
isotropic model delivered superior accuracy compared to other combinations; validated on a FT
system (f = 45° with Y, Of 12° relative to the South). It was recommended that future
research delve into the empirical derating factors employed in PV modelling today, considering

diverse system configurations with various f8 {5y stem combinations [230].

Despite these findings, it is notable that the majority of the optical model pair validation studies
use hourly data and FT systems. This leaves a knowledge gap concerning their utility for a range
of angles, a prerequisite for tracking systems, along with a higher temporal resolution and under
temperate climates. Additionally, Gueymard showed that most of the error in predicting POA
irradiance at a sunny location stems from the empirical separation of direct and diffuse
components when these are not measured locally [231]. Hofmann et al. noted that
decomposition models tend to produce a broader range of outcomes, whereas transposition
models significantly influence these results. Nevertheless, additional validation is necessary for
areas with diffuse climates, and a range of § needs to be considered [232]. These findings raise a
critical question about whether similar conclusions can be drawn for locations with high levels of

diffuse light, and which has a greater impact on POA irradiance: the decomposition or the

84



Chapter 2

transposition aspect. It is essential to explore not only the optical model pair but also the
transposition process, particularly in environments with variable conditions such as the
temperate climate of the UK. Even when rare measured values of DHI, DNI, and GHI are available,
it remains crucial to determine which transposition model exhibits the smallest deviation.
Investigating both the input of decomposed data to obtain DHI and DNI, and then their
transposition (a process already implemented by various feasibility software as indicated in Table
3), as well as using measured DHI and DNI, could help elucidate why certain transposition

models underperform in a temperate climate.

2.3.3 Evaluation of Clear-Sky Modelling Accuracy

Clear sky models are designed to predict the solar irradiance that reaches the Earth's surface in
cloudless conditions [233]. These models are pivotal for estimating the potential maximum
energy output of PV systems. Moreover, the general estimation of all-sky irradiance is derived
from these clear sky calculations, adjusted by an attenuation factor that accounts for the solar
position. By integrating time series data from satellite-derived irradiance with clear-sky model
outputs, and a transmittance function reflecting the cumulative effects of clouds and surface
interactions, a comprehensive irradiance profile is constructed. This transmittance is routinely
assessed through the observation of atmospheric reflectance via satellite sensors. As a result,
all-sky irradiance retains a proportional relationship to its clear-sky counterpart, forming the
basis for all subsequent irradiance modelling. Additionally, GHlcear and Clear sky DNI (DNlciear)
serve as essential inputs in various irradiance models, including decomposition types like

Engerer2a [159] and Yang5 [177], underscoring their significance in solar irradiance forecasting.

Clear skyirradiance models, similar to decomposition models, utilize empirical relationships that
circumvent the complexities inherent in detailed radiative transfer modelling. For instance, the
Threlkeld-Jordan model utilizes three coefficients, based on the SZA, to estimate GHlcear [234]. EL
Mghouchi et al., utilizing three years of data collected every ten minutes in a dry, northern
Moroccan climate (¢ = 35.6°), refined this model to also factor in SZA and E, [235]. Furthermore,
with the same input parameters as El-Mghouchi’s model, Kumar’s model expanded upon this by
incorporating atmospheric pressure to detail the attenuation effects on solar irradiance, tested
with half-hourly data at a ¢ of 36.5° [236]. The Ineichen-Perez model introduced an innovative
approach by integrating the Linke turbidity factor, aiming to reduce the model's reliance solely on
solar geometry. This model was validated using hourly data from seven stations across ¢: 35.1°
to 45.89, considering the impact of aerosols and water vapor [237]. Similarly, the Simplified Solis

model employs the Bouguer-Lambert-Beer law, with variables like AOD at 700 nm, PW, and
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atmospheric pressure [168]. Bashahu further developed this model using annual data from a ¢ of
14.7 ©, adding AOD550 as a novel parameter, showing considerable accuracy at a nearby ¢ of
14.7° [238]. Moreover, the MAC2 model enhances transmittance calculations, simplifying
Rayleigh scattering calculations relative to air mass and incorporating AOD data. It considers
direct transmittances for Rayleigh scattering, ozone, aerosols, and a term for water vapor
absorptance [239]. The Igbal C model is another advanced example, incorporating eight
parameters, including ozone concentration and nitrogen dioxide levels in the atmosphere,
alongside the Angstrom exponent and AOD550 [20]. The REST2 model, developed by Gueymard
in 2008, separates its analysis into two spectral bands (0.3 - 0.7 pm and 0.7 - 4.0 pym), using
parameterizations from the SMARTS spectral radiation model to account for various atmospheric
transmittances including Rayleigh scattering, mixed gas absorption, ozone, nitrogen dioxide,
water vapor, and aerosol extinction [240]. Lastly, the McClear model stands out as a
comprehensive, model-based approach utilizing a vast library of radiative transfer outputs to
simulate detailed calculations [174]. As a part of the freely accessible CAMS, McClear operates
as a "black box", providing users with results directly tied to extensive atmospheric data, without

the option for alternative data inputs.

Generally, simplified models can yield acceptable results in regions where atmospheric and
environmental conditions align with the model's foundational assumptions, which typically
presume low to moderate levels of water vapor and aerosols [233]. A significant challenge with
more advanced Clear Sky models is their dependency on detailed atmospheric data inputs.
Often, the availability and quality of such data are constrained, limiting the models' accuracy.
Consequently, deploying more complex models does not guarantee enhanced accuracy and
might, under circumstances of inadequate or erroneous data inputs, lead to decreased model
performance [241]. Validation studies for these models vary in their temporal resolution and
geographical scope. For example, Badescu et al. examined 54 models at two sites (¢ = 44° and
46°) using hourly data, identifying six clear-sky models capable of approximating GHlgiar and
developed an empirical model named after the author [242]. In contrast, Cros et al. assessed four
models across three sites on a minute-by-minute basis, finding McClear to be the most accurate
[243]. Similarly, Segupta et al.’s research across seven sites compared models for both DNI and
GHI on aminute scale, highlighting REST2 as the superior model [244]. These findings underscore
the necessity for more comprehensive validation studies, particularly focusing on spatial
variability and minute-by-minute temporal resolution, to address existing gaps in model

validation.
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Ruiz-Arias and Gueymard reviewed 36 validation studies, creating a consensus around 15 robust
clear sky models [245]. These models were assessed across different temporal resolutions and
climates, pinpointing major discrepancies caused by high aerosol loads, elevated site locations,
and low solar altitudes. This review underscores the need for more refined validation studies that
integrate measured irradiance and sunphotometer data at the same locations to advance the
development of a universally effective model, particularly in temperate climates. Moreover, Sun
et al. systematically reviewed variables used in 75 clear sky models across diverse global sites,
with the REST2 model emerging as one of the top performers [246]. Although REST2 is deemed as
a proprietary, its efficacy underscores the critical role of high-quality input data in determining

model accuracy.

Research has explored how satellite variables such as AOD, AE and PW impact the precision of
solar irradiance predictions [247],[248]. For example, Gueymard found that PW data from
MERRA2 introduces some uncertainty into clear-sky GHI estimates, although the effect is not
marked numerically [249]. A significant finding by Ruiz-Arias et al. is that the error in DNlciear
predictions could increase sixfold when substituting AERONET AOD measurements with those
from MERRA-2 [250]. Additionally, a study by Salamalikis et al. on the uncertainties in DNI
induced by CAMS AOD, using AERONET AOD as a baseline, highlighted regional differences,
ranging for Mean Bias Deviation (MBD) -4.1% to 5.3%, with the latter in high AOD locations and
the former in desert climate locations [251]. These findings underscore the variability in error
propagation from satellite data to solar irradiance estimates across different geographical and
climatic contexts. However, there has been limited research on the selection of satellite data
products for optimizing clear-sky irradiance modelling. Sun et al. evaluated 95 clear sky models
for clear-DNI at 100 radiometric sites and reiterated that REST2 provided the most accurate
estimates [252]. However, it was noted the necessity for further research to assess the sensitivity

of top models to variations in input data sources, highlighting ongoing challenges in the field.

The literature on clear sky models is extensive and diverse, reflecting a range of complexities
designed to manage solar transmittance. These models vary from simplistic ones that use basic
inputs like SZA in the Threlkeld-Jordan model, to more intricate physical models like McClear or
REST2, which incorporate multiple atmospheric variables, including complex factors such as the
AE and AODS550. Accurate satellite data are crucial for these models since atmospheric
conditions directly impact the attenuation of solar irradiance. Gueymard highlights that
prediction errors in these models mainly arise from two sources: errors in aerosol input data and
the model's inherent limitations in accounting for aerosol effects, especially under high aerosol

c