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Abstract
Distances have a ubiquitous role in persistent homology, from the direct comparison
of homological representations of data to the definition and optimization of invariants.
In this article we introduce a family of parametrized pseudometrics between persis-
tence modules based on the algebraic Wasserstein distance defined by Skraba and
Turner, and phrase them in the formalism of noise systems. This is achieved by com-
paring p-norms of cokernels (resp. kernels) of monomorphisms (resp. epimorphisms)
between persistence modules and corresponding bar-to-bar morphisms, a novel notion
that allows us to bridge between algebraic and combinatorial aspects of persistence
modules. We use algebraic Wasserstein distances to define invariants, called Wasser-
stein stable ranks, which are 1-Lipschitz stable with respect to such pseudometrics.
We prove a low-rank approximation result for persistence modules which allows us to
efficiently compute Wasserstein stable ranks, and we propose an efficient algorithm
to compute the interleaving distance between them. Importantly, Wasserstein stable
ranks depend on interpretable parameters which can be learnt in a machine learning
context. Experimental results illustrate the use of Wasserstein stable ranks on real and
artificial data and highlight how such pseudometrics could be useful in data analysis
tasks.
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1 Introduction

While Topological Data Analysis (TDA) has historically focused on studying the
global shape of data, persistent homology has since grown to provide popular tech-
niques for incorporating both global topological features and local geometry into data
analysis pipelines (Adams and Moy 2021). Through the lens of persistent homology,
global topological features can be encoded by long bars in a barcode decomposition
of the persistence module, while local geometric features are characterized by short
bars in the barcode. Indeed, both the information of long bars and short bars in the
barcode (Bendich et al. 2016; Hiraoka et al. 2016), as well as their location along
the filtration scale (Stolz et al. 2017; Chachólski and Riihimäki 2020; Agerberg et al.
2021), turn out to be relevant in data analysis tasks. Introduced to persistent homol-
ogy in Cohen-Steiner et al. (2010), Wasserstein distances offer a way to determine a
trade-off between global and local features in persistence. Such distances have been
widely used in applications and have been studied both from a combinatorial perspec-
tive and more recently with an algebraic approach (Bubenik et al. 2023; Skraba and
Turner 2020). Wasserstein distances are parametrized by two parameters in [1,∞],
commonly fixed to the values of 1, 2, and∞. One of the aims of this article is to define
a richer family of parametrized Wasserstein distances where, in addition to standard
parameters determining sensitivity to short bars globally in the parameter space, a
contour is introduced to locally weight different parts of the parameter space. We
propose that the optimal parameter values for a particular task should be learned in a
machine learning context. Our contribution is part of more general efforts of identi-
fying parametrized families of metrics and invariants for persistence (Bubenik et al.
2015; Scolamiero et al. 2017; Hofer et al. 2017; Zhao and Wang 2019; Carrière et al.
2020).

Algebraic Wasserstein distances.
The study of algebraic distances between persistence modules is an active research
direction in TDA, as demonstrated by the recent works on amplitudes (Giunti et al.
2024) and exact weights (Bubenik et al. 2023). In this article we provide a new proof
that the p-norm of a persistence module, introduced in Skraba and Turner (2020),
defines a pseudometric for all p ∈ [1,∞]. While (Skraba and Turner 2020) con-
structs a correspondence between the pseudometric induced by the p-norm and the
Wasserstein distance between persistence diagrams, our proof shows that the p-norm
determines a noise system (Scolamiero et al. 2017) and therefore an induced pseudo-
metric. Our approach easily generalizes to define new pseudometrics on persistence
modules, as for example the pseudometrics dqS p,C that combine p-normswith contours,
effectively used as a reparametrization of the parameter space [0,∞). From a techni-
cal perspective, our framework requires to prove the axioms of noise systems without
assuming that the p-norm induces a pseudometric (including the triangular inequality
property) but rather studying how the p-norm interacts with monomorphisms, epi-
morphism, and short exact sequences. Among the axioms of noise systems, the one
on short exact sequences (Lemma 4.15) is difficult to prove with our assumptions and
to this purpose we introduce bar-to-bar morphisms, explained below.
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It is interesting to see that Wasserstein distances fit in the noise system framework,
as they are fundamentally different from noise systems that have been studied from
a computational perspective so far. In fact, algorithms for the computation of stable
ranks (that can be seen as vectorizations of persistence modules depending on the
noise system) were only developed for so called simple noise systems (Chachólski
and Riihimäki 2020; Gäfvert and Chachólski 2017). These noise systems have the
extra property of being closed under direct sums, and can intuitively be thought of as
being sensitive only to the longest bars, which leads to L∞-type distances. The noise
systems associated with algebraic Wasserstein distances for p < ∞ are of a different
nature, and in particular they are not closed under direct sums.

From a practical and computational perspective, combinatorial distances between
persistence diagrams are more straightforward to compute than algebraic distances
between persistence modules. The combinatorial (p,C)-Wasserstein distances asso-
ciated to d p

S p,C in Sect. 4.4 offer a convenient way to compute contour distances and
the combination of contour and Wasserstein distances between persistence modules,
relying on the already developed computational machinery for Bottleneck (p = ∞)

and Wasserstein distances between persistence diagrams. In this article, however, our
focus is not on the computation of the Wasserstein distance between two given persis-
tencemodules, but on invariants calledWasserstein stable ranks defined and computed
using the distances.

Bar-to-bar morphisms.
The approach carried out in this article for proving that p-norms of persistencemodules
satisfy the axioms of noise systems relies on comparing monomorphisms (resp. epi-
morphisms) between persistence modules and so-called bar-to-bar monomorphisms
(resp. epimorphisms) between the samepersistencemodules. Intuitively, in a bar-to-bar
morphism (see Definition 3.1) every bar in the barcode decomposition of the domain
maps non-trivially to at most one bar in the barcode decomposition of the codomain.
Bar-to-bar morphisms are thus much simpler than general morphisms of persistence
modules, and we show that they can be used to effectively reduce algebraic problems
to easier problems of combinatorial nature. In particular, an important problem related
to the definition and construction of algebraic distances is the minimization of kernels
and cokernels of morphisms (see e.g. Definition 4.3) with respect to a chosen notion
of “size”, which in this article is the p-norm of persistence modules (Sect. 2.6) or a
more general notion of norm combining p-norms and contours (Definition 4.7). Our
main theoretical results Theorem 3.14 and Theorem 3.16 state that for any monomor-
phism (resp. epimorphism) between two persistence modules there exists a bar-to-bar
monomorphism (resp. epimorphism) between the same persistence modules whose
cokernel (resp. kernel) has smaller or equal norm.

Various types of bar-to-bar morphisms can be constructed. For example, as we
observe in Sect. 3.4, there are bar-to-bar monomorphisms and epimorphisms associ-
ated with the induced matchings of Bauer and Lesnick (2015). Bar-to-bar morphisms
are however more general then the induced matchings, and are also fundamentally
different from other notions of matchings, such as the sub-barcode matchings of Chu-
bet et al. (2022). However, our bar-to-bar morphisms can be used as a tool to prove
that the monomorphism (resp. epimorphism) associated to the induced matching has
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the cokernel (resp. kernel) with minimal p-norm among all monomorphisms (resp.
epimorphisms) with the same domain and codomain. (Corollaries 3.20 and 3.22).

Several other key results of this article are proven leveraging Theorems 3.14 and
3.16. For example, we use these theorems to show that p-norms of persistencemodules
satisfy the axiom of noise systems on short exact sequences (Lemma 4.15). We also
use our main results of Sect. 3 to prove a low-rank approximation result for persistence
modules, analogous for example to the Eckart-Young-Mirsky theorem in the context
ofmatrices (compare e.g. withGolub et al. 1987, Sect. 1 and references therein), where
the notion of rank we use for persistence modules is the number of bars in the barcode
decomposition. Given a persistence module X of rank k, for every r ≤ k we identify
a persistence module of rank r that is closest to X in algebraic Wasserstein distance,
and we express its distance from X (Propositions 4.30 and 4.32). These results and
their generalization (Proposition 4.32) allow us to compute Wasserstein stable ranks
(see Proposition 5.1), the invariants that we introduce in this article.

Wasserstein stable ranks, a class of learnable vectorizations.
The computation of Wasserstein distances between persistence modules remains
expensive despite recent progress (Kerber et al. 2017), and the space of persistent mod-
ules is not directly amenable to statistical methods and machine learning. For these
reasons, feature maps from persistence modules or diagrams have become an impor-
tant component of the TDA machine learning pipeline. These techniques introduce a
map between the space of persistence modules and a vector space where statistical
and machine learning methods are well-developed. We propose a new class of feature
maps, directly related to the Wasserstein distances dqS p,C between persistence mod-
ules, and with interpretable, learnable parameters. Having fixed a pseudometric in the
family of Wasserstein distances dqS p,C , the Wasserstein stable rank of a persistence
module with respect to the chosen pseudometric can be explicitly computed with a
formula (Proposition 5.1) derived from our results on monomorphisms and epimor-
phisms. The computational complexity of determining the Wasserstein stable rank is
O(n log n) in the number n of bars of a persistence module.

A parametrized family of stable ranks can be obtained by varying the Wasserstein
distances, opening up for the possibility to tune parameters for a particular task, result-
ing in feature maps that focus on the discriminative aspects of the persistence modules
in a dataset. Previous learnable feature maps (Hofer et al. 2017; Carrière et al. 2020;
Reinauer et al. 2021) make the choice of expressiveness (being able to learn any arbi-
trary function on the space of persistence modules) over stability (learning a function
under the constraint that it is robust to perturbations of the input). Moreover, since the
methods are often parametrized by complex neural networks, it is difficult to com-
pare and interpret parametrizations learned for different tasks. Our Wasserstein stable
ranks are stable by construction. More precisely, the interleaving distance between
Wasserstein stable ranks is 1-Lipschitz with respect to the corresponding Wasserstein
distance used in its construction. Similarly to Wasserstein stable ranks, we also pro-
vide a simple formula for computing the interleaving distance between them at the
cost of O(n log n) in the maximum number of bars in the two persistence modules we
are comparing.
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We use a metric learning framework to learn an optimal parametrization for a
problem at hand, observe that a better model can be obtained by jointly optimizing the
parameters p and the ones related to the contour C and illustrate that the output can be
readily interpreted in terms of the learned parametrization focusing on e.g. global/local
features or various parts of the filtration scale. The methods are demonstrated on a
synthetic and a real-world datasets.

Outline of the paper.
Section 2 contains background material. In Sect. 3 we prove results on the p-norm
of the cokernel of a monomorphism and, dually, of the kernel of an epimorphism of
persistence modules. Section4 is a study of Wasserstein distances and their general-
izations involving contours in the framework of noise systems. In Sect. 5 we compute
Wasserstein stable ranks and interleaving distances between them, which we use to
formulate a metric learning problem. In Sect. 6 we illustrate the use of Wasserstein
stable ranks on synthetic and real-world data, learning optimal parameters of algebraic
Wasserstein distances.

2 Preliminaries

2.1 Persistencemodules and persistent homology

Let [0,∞) denote the totally ordered set of nonnegative real numbers, regarded as the
category induced by the order structure. We consider an arbitrary fixed field K and
denote by vectK the category of finite dimensional vector spaces over K . A persistence
module over K is a functor X : [0,∞) → vectK . Explicitly, X consists of a collection
of finite dimensional vector spaces Xt for all t in [0,∞), together with a collection of
linear functions Xs≤t : Xs → Xt , called transition functions, for all s ≤ t in [0,∞),
such that Xs≤t Xr≤s = Xr≤t for all r ≤ s ≤ t , and Xt≤t is the identity function on Xt

for all t in [0,∞). A morphism or natural transformation f : X → Y between two
persistence modules X and Y is a collection of linear functions ft : Xt → Yt , for all
t in [0,∞), such that ft Xs≤t = Ys≤t fs for all s ≤ t in [0,∞).

A persistence module X is tame if there exist real numbers 0 = t0 < t1 < · · · < tk
such that the transition function Xs≤t is a non-isomorphism only if s < ti ≤ t for
some i ∈ {1, . . . , k}. We denote by Tame the category of tame persistence modules
and morphisms between them. The class of objects of this category will be denoted
by Tame as well.

Convention 2.1 In this article we always work in the category of tame persistence
modules over a fixed field K . For brevity the term persistence module will be used to
refer to tame persistence modules over K .

A morphism f : X → Y in Tame is a monomorphism (respectively, an epimor-
phism or isomorphism) if the linear functions ft : Xt → Yt are monomorphisms
(respectively, epimorphisms or isomorphisms) of vector spaces, for all t in [0,∞).
Kernels, cokernels and direct sums in Tame are defined componentwise. For example,
for any persistence modules X and Y , the direct sum X ⊕ Y is the persistence module
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defined by (X⊕Y )t = Xt ⊕Yt and (X⊕Y )s≤t = Xs≤t ⊕Ys≤t , for all s ≤ t in [0,∞).
The zero persistence module or zero module, i.e., the functor identically equal to the
zero vector space on objects, will be denoted by 0.

Let a < b in [0,∞]. We denote by K (a, b) the persistence module defined as
follows: for any t in [0,∞),

K (a, b)t :=
{
K if a ≤ t < b

0 otherwise,

and for any s ≤ t in [0,∞),

K (a, b)s≤t :=
{
idK if K (a, b)s = K = K (a, b)t
0 otherwise.

We call K (a, b) the bar (or interval module) with start-point a and end-point b. We
say that the bar K (a, b) is infinite if b = ∞ and finite otherwise. We say that the
left-closed, right-open interval [a, b) in [0,∞) is the support of the bar K (a, b). As
an easy consequence of naturality, a morphism f : K (a1, b1) → K (a2, b2) between
bars can be nonzero (i.e. have some component fa different from the zero map) only
if a2 ≤ a1 < b2 ≤ b1. In this case, ker f is isomorphic to K (b2, b1) if b2 < b1,
and is zero otherwise, and coker f is isomorphic to K (a2, a1) if a2 < a1, and is zero
otherwise.

A persistence module is indecomposable if, whenever it is isomorphic to a direct
sum Y ⊕ Z with Y and Z in Tame, either Y = 0 or Z = 0. Bars are indecomposable
and, as the following fundamental result implies, any indecomposable in Tame is
isomorphic to a bar. We refer the reader to Chazal et al. (2016) for more details on the
algebraic structure of persistence modules.

Theorem 2.2 (Structure of persistence modules) Any (tame) persistence module X is
isomorphic to a finite direct sum of bars of the form

⊕k
i=1 K (ai , bi ), with ai < bi in

[0,∞] for every i ∈ {1, . . . , k}. This decomposition is unique up to permutation: if
X ∼= ⊕k

i=1 K (ai , bi ) ∼= ⊕�
j=1 K (c j , d j ), then k = � and there exists a permutation

σ on {1, . . . , k} such that ai = cσ(i) and bi = dσ(i), for every i ∈ {1, . . . , k}.
Adecomposition of a persistencemodule X as a direct sumof bars as inTheorem2.2

is called a barcode decomposition of X . In this article, we will occasionally denote
a barcode decomposition of X by

⊕k
i=1 Xi when we do not need an explicit notation

for the bars’ start- and end-points. The number k of bars in any barcode decomposition
of X is called the rank of X , denoted by rank(X).

Given a persistence module X , consider an element x ∈ Xa for some a in [0,∞),
and let b := sup{t ∈ [a,∞) | Xa≤t (x) �= 0} in [a,∞]. The element x is called a
generator of X if the morphism g : K (a, b) → X defined by ga(1) = x is such that
the composition rg with some morphism r : X → K (a, b) is the identity on K (a, b).
We call K (a, b) the bar generated by x , and we observe that it is a direct summand
of X . We call a collection of elements {xi ∈ Xai }ki=1 a set of generators of X if each
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xi generates a bar K (ai , bi ) and the morphisms gi : K (ai , bi ) → X defined by xi
induce an isomorphism

⊕k
i=1 K (ai , bi ) → X .

As we will use basic homological algebra methods in Tame, we remark that infinite
bars K (a,∞), for all a in [0,∞), are free in Tame, and that the notions of free and
projective coincide in Tame (see Bubenik and Milićević 2021 for details). Any bar
K (a, b) with b < ∞ admits a minimal free resolution of the form 0 → K (b,∞) →
K (a,∞) → K (a, b) → 0.

Remark 2.3 We note that rank(X) can be viewed as a classical homological invari-
ant corresponding to the number of generators in a minimal free resolution of X ,
which yields an alternative definition of the rank that is applicable to multiparameter
persistence modules (Scolamiero et al. 2017).

Lastly, let us briefly comment on a set theoretical detail regarding the category
Tame. In Tame, the class of isomorphism classes of objects is a set, as a consequence
of Theorem 2.2. In this article, we consider some class functions defined on Tame, and
we occasionally refer to them simply as functions for brevity. Since all class functions
on Tame we consider are constant on isomorphism classes of objects, they can be
regarded as proper functions defined on the set of isomorphism classes of persistence
modules.

2.2 Contours

Contours can be thought of as describing coherent ways to “flow” across the param-
eter space [0,∞) of persistence modules. In this article, we call contour a function
C : [0,∞) × [0,∞) → [0,∞) such that, for all a, b, ε, τ in [0,∞), the following
inequalities hold:

1. if a ≤ b and ε ≤ τ , then C(a, ε) ≤ C(b, τ );
2. a ≤ C(a, 0);
3. C(C(a, ε), τ ) ≤ C(a, ε + τ).

In Gäfvert and Chachólski (2017) contours are defined in the case of n-parameter
persistence modules. Contours are further studied for 1-parameter persistence in
Chachólski and Riihimäki (2020), where several concrete examples are given. In
Chachólski and Riihimäki (2020), the definition of contour is slightly more general
than ours; for example, C(a, ε) can take the value ∞. Similar notions to contours
appear in the literature by the name of superlinear families of tranlations (Bubenik
et al. 2015) and flows on posets (de Silva et al. 2018).

A contour C is called an action if the inequalities of (2.) and (3.) are equalities,
that is, if a = C(a, 0) and C(C(a, ε), τ ) = C(a, ε + τ), for all a, ε, τ . A contour C
is regular (Chachólski and Riihimäki 2020) if the following conditions hold:

• C(−, ε) : [0,∞) → [0,∞) is a monomorphism for all ε ∈ [0,∞);
• C(a,−) : [0,∞) → [0,∞) is a monomorphism whose image is [a,∞), for all
a ∈ [0,∞).

The second condition of regular contours ensures that C(a, 0) = a, for any a in
[0,∞), and that C is strictly increasing in the second variable: C(a, ε) < C(a, τ )
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whenever ε < τ , for any a in [0,∞). For brevity, we call a contour C a regular
action if it is both regular and an action.

Let C be a regular contour. For all a ∈ [0,∞), we define the function �(a,−)

to be the inverse of the function C(a,−) : [0,∞) → [a,∞), that is, �(a, b) =
C(a,−)−1(b) for any b ∈ [a,∞), and we set �(a,∞) = ∞. We call � the life-
time function associated withC . We observe that, since regular contours are injective
functions in the second variable, �(a, b) is well-defined for every pair a ≤ b. Through-
out the article, the lifetime of a bar K (a, b) with respect to a contour C is the value
�(a, b) of the lifetime function associated with C .

As a first example of contour we consider the standard contour, i.e. the function D
defined by D(a, ε) = a+ ε, for every a, ε ∈ [0,∞). Informally, the standard contour
describes the most uniform way to flow in the parameter space [0,∞) of a persistence
module, linearly with unitary speed. We now introduce a large family of contours,
called integral contours of distance type (Chachólski and Riihimäki 2020; Agerberg
et al. 2021), parametrized by certain real-valued functions. Let f : [0,∞) → (0,∞)

be a Lebesgue measurable function, called here a density. For every a, ε ∈ [0,∞),
let D f (a, ε) be the real number in [a,∞) such that

ε =
∫ D f (a,ε)

a
f (x) dx,

which is uniquely defined since f takes strictly positive values. The function
D f : [0,∞) × [0,∞) → [0,∞) is a contour; moreover, it is regular and an action.
We observe that, if the density f is the constant function with value 1, the distance
type contour D1 coincides with the standard contour.

2.3 Noise systems

Noise systems provide away to quantify the size of persistencemodules and to produce
pseudometrics on Tame by comparing their sizes (Scolamiero et al. 2017). A noise
system on Tame is a sequence S = {Sε}ε∈[0,∞) of subclasses of Tame such that:

• 0 ∈ Sε, for all ε,
• Sτ ⊆ Sε whenever τ ≤ ε,
• if 0 → X0 → X1 → X2 → 0 is a short exact sequence in Tame, then:

– if X1 ∈ Sε, then X0, X2 ∈ Sε,
– if X0 ∈ Sε and X2 ∈ Sτ , then X1 ∈ Sε+τ .

Given a noise system S = {Sε}ε∈[0,∞) it is natural to associate to each persistence
module X the smallest ε such that X ∈ Sε. This defines a class function αS : Tame →
[0,∞] called in Giunti et al. (2024) the amplitude associated to S.

A noise system S = {Sε}ε∈[0,∞) is closed under direct sums if X ⊕ Y ∈ Sε

whenever X ,Y ∈ Sε, for every ε ∈ [0,∞). Contours (Sect. 2.2) provide examples of
noise systems satisfying this property. Given a contour C and any ε ∈ [0,∞), let

Sε := {X ∈ Tame | Xa≤C(a,ε) = 0 for all a ∈ [0,∞)}.
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It is proved in (Gäfvert and Chachólski 2017, Prop. 9.4) that the sequence {Sε}ε∈[0,∞)

defined in this way is a noise system closed under direct sums. In particular, the noise
system induced by the standard contour has components

Sε := {X ∈ Tame | Xa≤a+ε = 0 for all a ∈ [0,∞)},

and coincides with the standard noise system introduced in Scolamiero et al. (2017).

2.4 Pseudometrics between persistencemodules

In this article, we call (extended) pseudometric on Tame a class function d assigning
to any pair of persistence modules X ,Y in Tame an element d(X ,Y ) ∈ [0,∞] such
that the following conditions hold for any X ,Y , Z :

• d(X ,Y ) = d(Y , X),
• d(X ,Y ) = 0 whenever X is isomorphic to Y ,
• d(X , Z) ≤ d(X ,Y ) + d(Y , Z).

The third condition, known as the triangle inequality, combined with the second
one yields d(X ,Y ) = d(X ′,Y ′) whenever X ∼= X ′ and Y ∼= Y ′. This definition of
pseudometric coincides with Definition 3.3 in Bubenik et al. (2023) when considering
the category Tame.

We now briefly explain how noise systems yield pseudometrics on Tame. Let S be
a noise system on Tame. For any ε ∈ [0,∞), we say that two persistence modules
X and Y are ε-close if there exists a persistence module Z and a pair of morphisms

X
f←− Z

g−→ Y such that

ker f ∈ Sε1 , coker f ∈ Sε2 , ker g ∈ Sε3 , coker g ∈ Sε4 ,

for some ε1, ε2, ε3, ε4 ∈ [0,∞) such that ε1 + ε2 + ε3 + ε4 ≤ ε. Define

dS(X ,Y ) := inf {ε ∈ [0,∞) | X and Y are ε-close} ,

adopting the convention inf ∅ = ∞. As shown in (Scolamiero et al. 2017, Prop. 8.7),
dS is a pseudometric on Tame.

We remark that the pseudometric dS associated with the standard noise system
is equivalent to the interleaving distance (Lesnick 2015), as proved by (Gäfvert and
Chachólski (2017), Prop. 12.2).

2.5 Hierarchical stabilization and stable rank

In the context of TDA, hierarchical stabilization is a method to convert a discrete
invariant of persistence modules into a stable invariant suitable for data analysis. This
technique has been studied in Scolamiero et al. (2017), Gäfvert and Chachólski (2017)
in the case of multiparameter persistence modules, and has been further investigated
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in Chachólski and Riihimäki (2020) in the case of one-parameter persistence. Hierar-
chical stabilization has a very general formulation, which allows for several choices
of discrete invariants, and in principle is not restricted to categories of persistence
modules. For the hierarchical stabilization of the rank, also called stable rank, some
computationalmethods have been developed (Chachólski andRiihimäki 2020;Gäfvert
and Chachólski 2017). In this article we will restrict our attention to the stable rank
and further develop its computation.

Besides choosing a discrete invariant, hierarchical stabilization requires the choice
of a pseudometric between persistence modules, which plays an active role in calcu-
lating the corresponding stable invariant. Consider the rank of a persistence module
(Sect. 2.1) as a class function rank : Tame → N mapping any persistence module X
to the natural number rank(X).

Definition 2.4 Given a pseudometric d on Tame (Sect. 2.4), the stable rank of
a persistence module X with respect to the pseudometric d is the function
r̂ankd(X) : [0,∞) → [0,∞) defined, for all t ∈ [0,∞), by

r̂ankd(X)(t) := min{rank(Y ) | Y ∈ Tame and d(X ,Y ) ≤ t}.

We observe that the function r̂ankd(X) is non-increasing and takes values in N, so
it belongs to the setM of Lebesgue measurable functions [0,∞) → [0,∞).

To illustrate the stability of the invariant r̂ankd , we consider a pseudometric d�
 on
M, called the interleaving distance, defined for all f , g ∈ M by

d�
( f , g) := inf{ε ∈ [0,∞) | f (t) ≥ g(t+ε) and g(t) ≥ f (t+ε), for all t ∈ [0,∞)},

setting by convention inf ∅ = ∞. The stable rank then satisfies the followingLipschitz
condition.

Proposition 2.5 (Scolamiero et al. 2017) Let d be a pseudometric on Tame, and let
X ,Y be persistence modules. Then d(X ,Y ) ≥ d�
(r̂ankd(X), r̂ankd(Y )).

2.6 p-norms

In this subsection, we briefly review properties of p-norms that are useful for our
work. For p ∈ [1,∞], the p-norm (also called L p-norm) on R

n is the function
‖·‖p : R

n → [0,∞) defined, for each x = (x1, x2, . . . , xn) ∈ R
n , by

‖x‖p :=
{(∑n

i=1|xi |p
) 1
p for p ∈ [1,∞)

max{|xi |}i∈{1,...,n} for p = ∞.

We note that ‖x‖∞ = lim
p→∞ ‖x‖p , for all x ∈ R

n . The triangle inequality (or subad-

ditivity condition) ‖x + y‖p ≤ ‖x‖p + ‖y‖p, for all x, y ∈ R
n , is also referred to as

Minkowski inequality.

123



Algebraic Wasserstein distances and stable homological... Page 11 of 58 4

A fundamental property of p-norms on R
n is the following: for x ∈ R

n and for
1 ≤ p ≤ q ≤ ∞, the inequalities

‖x‖q ≤ ‖x‖p ≤ n

(
1
p − 1

q

)
‖x‖q (1)

hold and are sharp, where by convention we set 1
∞ = 0. We refer to the first inequality

as the monotonicity property of p-norms.
The following elementary property of p-norms is useful in this work: for

p ∈ [1,∞], if x = (x1, . . . , xn) ∈ R
n , y = (y1, . . . , ym) ∈ R

m and z =
(x1, . . . , xn, y1, . . . , ym) ∈ R

n+m , then

∥∥(‖x‖p , ‖y‖p
)∥∥

p
= ‖z‖p . (2)

Finally, let us also observe that p-norms are permutation invariant, and that they
preserve the order on [0,∞)n , meaning that if x ≤ y in [0,∞)n according to the
coordinate-wise order, then ‖x‖p ≤ ‖y‖p .

In this article, we generally consider p-norms as functions from [0,∞]n to [0,∞],
extending the usual definition by setting ‖x‖p = ∞ whenever x has some coordinate
xi = ∞. All properties stated above still hold with this definition.

Following (Skraba and Turner 2020), we will consider p-norms of persistence
modules, whose definition relies on the barcode decomposition (Sect. 2.1). Such norms
are already introduced in (Chen and Edelsbrunner 2011) for persistence diagrams. For
p ∈ [1,∞], the p-norm of a persistence module X having barcode decomposition
X ∼= ⊕k

i=1 K (ai , bi ) is defined by

‖X‖p :=
⎧⎨
⎩

(∑k
i=1|bi − ai |p

) 1
p

for p ∈ [1,∞)

max{|bi − ai |}i∈{1,...,k} for p = ∞.

For p ∈ [1,∞] and ε ∈ [0,∞), the class of tame persistence modules with p-norm
smaller or equal to ε is denoted by:

S p
ε := {X ∈ Tame | ‖X‖p ≤ ε},

and we set S p := {S p
ε }ε∈[0,∞).

3 Monomorphisms, epimorphisms, and their p-norms

In this section we introduce bar-to-bar morphisms between persistence modules (Def-
inition 3.1), which can informally be described as morphisms such that every bar in
the barcode decomposition of the domain maps non-trivially to at most one bar in the
barcode decomposition of the codomain. Our aim is proving results (Theorems 3.14
and 3.16) which compare monomorphisms and epimorphisms between two persis-
tence modules to bar-to-bar monomorphisms and epimorphisms between the same
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persistence modules. These results allow us to reduce algebraic problems to much
simpler combinatorial problems, as shown for example in Corollaries 3.20 and 3.22.

3.1 Free presentations of monomorphisms

Given a monomorphism f : Z ↪→ X between persistence modules, we want to deter-
mine the barcode decomposition of coker f . We briefly describe a method that uses
free resolutions of the persistence modules Z and X .

Consider the diagram

0 RZ GZ Z 0

0 RX GX X 0

coker f

ffGfR

iZ pZ

iX pX

q

where the rows are (minimal) free resolutions of the persistence modules Z and X
respectively, andq denotes the canonical epimorphism.The givenmorphism f induces
a morphism fG : GZ → GX between the modules of generators and a morphism
fR : RZ → RX between the modules of relations that make the diagram commutative
(see e.g. Rotman 2009, Thm. 6.16). We have coker f ∼= coker([ fG iX ] : GZ ⊕ RX −→
GX ), where the morphism [ fG iX ] sends (z, r) ∈ GZ ⊕ RX to fG(z) + iX (r). The
isomorphism of cokernels is easy to prove, for example observing that the image of the
composition qpX is coker f given that both q and pX are surjective and verifying via
diagram chasing that its kernel coincideswith the image of [ fG iX ] : GZ ⊕RX −→ GX .

In other words, we have a free presentation of coker f

GZ ⊕ RX
[ fG iX ]−−−−→ GX � coker f ,

and we can use it to determine the barcode decomposition of coker f . More precisely,
observing that coker f is isomorphic to the homology at the middle term of the free
chain complex

GZ ⊕ RX
[ fG iX ]−−−−→ GX −→ 0,

we can compute the barcode decomposition of coker f by using the persistent homol-
ogy algorithm on a matrix M f representing the morphism [ fG iX ], as we detail in
Sect. 3.2. The persistent homology algorithm determines “pairings” of the basis ele-
ments of GZ ⊕ RX with the basis elements of GX , which corresponds to the start- and
end-point pairs of the bars of coker f .

In this section, we are interested in particular morphisms between persistence mod-
ules, which we call bar-to-bar morphisms.
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Definition 3.1 A morphism f : Z → X of persistence modules is bar-to-bar if there
are barcode decompositions Z = ⊕m

i=1 Zi and X = ⊕n
j=1 X j and there exist a subset

I ⊆ {1, . . . ,m} and an injective function α : I → {1, . . . , n} such that

f =
⊕
i∈I

fi ⊕
⊕

i∈{1,...,m}\I
gi ⊕

⊕
j∈{1,...,n}\α(I )

h j , (3)

where each fi := f |Zi is a nonzero morphism Zi → Xα(i), and where gi denotes the
zero morphism Zi → 0 and h j denotes the zero morphism 0 → X j .

Remark 3.2 If f is a bar-to-bar morphism as in (3), then ker f and coker f are easily
determined recalling the case of a morphism between two bars (see Sect. 2.1), namely:

ker f =
⊕
i∈I

ker fi ⊕
⊕

i∈{1,...,m}\I
Zi , coker f =

⊕
i∈I

coker fi ⊕
⊕

j∈{1,...,n}\α(I )

X j .

Furthermore, if f is a monomorphism, the fact that ker f vanishes implies that I =
{1, . . . ,m}, and the existence of the injective function α implies m ≤ n. Dually,
α(I ) = {1, . . . , n} and n ≤ m if f is an epimorphism.

Themain result of this section is the following (Theorem3.14): given anymonomor-
phism f : Z ↪→ X , there is a bar-to-bar monomorphism fb : Z ↪→ X such that
‖ coker fb‖p ≤ ‖ coker f ‖p for any p ∈ [1,∞]. A dual statement (Theorem 3.16)
holds for kernels of epimorphisms.

3.2 Findingmonomorphisms with smaller cokernels

To prove our inequalities between p-norms of cokernels, we modify a strategy used
in (Skraba and Turner 2020, Sect. 7.1) to obtain new inequalities between p-norms
of persistence modules, based on the rearrangement inequality (Theorem 3.12) and
on the comparison of pairings in certain barcode decompositions using the persistent
homology algorithm. For simplicity, we fix the field with two elements F2 as the base
field in this subsection, but our results work for any base field.

Let Z and X be persistence modules and f : Z ↪→ X a monomorphism of persis-
tence modules. Fix {zi }mi=1 and {x j }nj=1 sets of generators of Z and X , respectively,
and denote by Z = ⊕m

i=1 K (azi , b
z
i ) and X = ⊕n

j=1 K (axj , b
x
j ) the respective bar-

code decompositions. That is, for every zi , a
z
i is the degree of zi ∈ Zazi

and bzi is
the end-point of the bar generated by zi , and similarly for the x j . In this section, we
assume for the ease of exposition that X has no infinite bars in its decomposition. All
the results we present can be adapted to the general case by setting bxj = ∞ whenever
x j generates an infinite bar. Throughout this section, we will consider an example
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monomorphism f , which we represent as follows:

az1 bz1 = bx3
az2 bz2 = bx3

az3 bz3 = bx6

ax1 bx1
ax2 bx2

ax3 bx3
ax4 bx4

ax5 bx5
ax6 bx6

Z

X

f
(4)

The persistence modules Z and X are represented in terms of their barcode decom-
positions.Anarrowbetweenbars indicates that the bar in the domainmapsnon-trivially
to the bar in the codomain.

Themain results of this subsection are based onmatrix reduction arguments applied
to a matrix M f associated with the morphism [ fG iX ] : GZ ⊕ RX → GX (Sect. 3.1),
which we construct as follows.

Definition 3.3 Define the sets of labels GX := {x j }nj=1, GZ := {zi }mi=1, and RX :=
{r j }nj=1, where {zi }mi=1 and {x j }nj=1 are generators of Z and X respectively and r j
corresponds to the generator of RX that is sent by iX to the bar generated by x j in GX .
The degree of r j is bxj .

The presentation matrix of f is an n × (m + n) matrix M f with rows labeled
by GX and columns labeled by GZ � RX , constructed as follows. For each zi in GZ ,
we set the corresponding column of M f to be the column vector fazi (zi ) ∈ Xazi

in the
basis given by the nonzero elements of {Xaxj ≤azi

(x j )}nj=1. Note that if Xaxj ≤azi
(x j ) is

0, then M f (x j , zi ) is also 0. For each r j in RX , we set the corresponding column of
M f to be the zero vector except with a 1 on the row x j . Finally, we reorder the rows
and columns so that the degrees of the labels are nondecreasing.

We denote by M f (x, c) the entry of M f in row x ∈ GX and column c ∈ GZ �RX .

As an example, one presentation matrix of the example monomorphism f from (4)
is

M f =

z1 r1 z2 z3 r2 r3 r4 r5 r6⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

x5 0 0 1 1
x6 0 0 1 1
x2 0 1 0 1
x3 1 1 0 1
x1 1 1 0 0
x4 0 0 1 1

, (5)

where the columns GZ = {z1, z2, z3} are outlined, while the columns RX =
{r1, . . . , r6} are represented sparsely: blank spaces are zero coefficients. Note that
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the restriction of the matrix M f to the columns RX represents the morphism
iX : RX → GX .

Remark 3.4 As we mentioned in Sect. 3.1, we want to determine the barcode decom-
position of coker f by using the persistent homology algorithm on the matrix M f

representing the morphism [ fG iX ]. More precisely, we are interested in methods to
compute barcode decompositions based on matrix reduction via left-to-right column
operation, like the so-called standard algorithm for persistent homology (Edelsbrunner
et al. 2000; Zomorodian and Carlsson 2005) (see Algorithm 1 in Otter et al. 2017 for
a description). Even though these methods are usually presented for filtered simplicial
complexes in the literature, they extend to graded free chain complexes as in our case.
The barcode decomposition (of coker f in our case) can be read out from a reduced
matrix, and does not depend on the way of reducing the matrix via left-to-right column
operations (see Lemma 3.5).

Let M̄ f be a complete reduction of M f by left-to-right column transformations,
where amatrix is said to be reduced if no two columns have their lowest nonzero entry
on the same row. Letσ f be the function that to the kth nonzero column of M̄ f associates
the row of its lowest nonzero entry, for every k ∈ {1, . . . , n}. We know that σ f is a
permutation on {1, . . . , n} since the n columns of M f inRX are linearly independent.
In this section, we use square brackets for a permutation σ = [σ(1) · · · σ(n)] on
{1, . . . , n} expressed in one-line notation, to distinguish it from the notation for cycles,
denoted by (c1 c2 · · · c�). For the running example (5), we get

M̄ f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 0 1 1 0
0 1 0 0
1 1 0 0 0
1 0 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where we have outlined the lowest nonzero coefficient of each column, and so σ f =
[543621]. We do not need to specify the order of transformations in this reduction
thanks to the following lemma, which is a consequence of the pairing uniqueness
lemma of (Cohen-Steiner et al. 2006, Sect. 3).

Lemma 3.5 The permutation σ f is well-defined. In particular, it does not depend on
the choice of a sequence of left-to-right column operations to obtain a reduced matrix
from M f .

By design of the persistent homology algorithm, a barcode decomposition of
coker f is completely determined by σ f together with the degrees of the generators
of Z and X . In Corollary 3.11 we will provide a precise statement.

From the matrix M f we define the bar-to-bar matrix Mb by Algorithm 1. The
bar-to-bar matrix Mb is the presentation matrix of a bar-to-bar monomorphism
fb : Z ↪→ X having the same domain and codomain as f .
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Algorithm 1 also partially reduces M f and constructs an injective function
rmax : GZ → RX . Given a column z in GZ , we call rmax(z) its rightmost matched
column inRX . Informally, Algorithm 1 computes the bar-to-bar matrix Mb by setting
to zero each entry in the columns z of M f in GZ except for the nonzero entry on the
unique row x such that M f (x, rmax(z)) = 1. For example, starting with the matrix
M f from (5), we get ⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 0 1 1
0 1 1
1 1
1 1 0 0
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the arrows represent the function rmax. The corresponding matrix Mb is⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 1
0 1 0 1
1 0 0 1
0 1 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Algorithm 1 Bar-to-bar algorithm
Input: a presentation matrix M f of a monomorphism f
Output: a partially reduced matrix M∗

f , the associated bar-to-bar matrix Mb , and a function rmax : GZ →
RX
1: Let Mb := M f
2: Let M∗

f := M f
3: Set the columns GZ of Mb to 0
4: for r ∈ RX in decreasing order do
5: Let x be the row associated to r (that is, M∗

f (x, r) = 1)

6: if ∃z ∈ GZ such that M∗
f (x, z) = 1 and rmax(z) is undefined then

7: Let z be minimal such that M∗
f (x, z) = 1 and rmax(z) is undefined

8: Set Mb(x, z) = 1
9: Define rmax(z) := r
10: for z′ > z such that M∗

f (x, z
′) = 1 do

11: Reduce column z′ in M∗
f by column z to set to zero the entry in row x

12: for r ′ ∈ RX and x ′ the row associated to r ′, such that r ′ < z′ and M∗
f (x

′, z′) = 1 do

13: Reduce column z′ in M∗
f by column r ′

14: end for
15: end for
16: end if
17: end for

The following two propositions prove useful facts regarding Algorithm 1.
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Proposition 3.6 In a presentation matrix M f of a monomorphism f : Z ↪→ X, all
columns in GZ are nonzero. Moreover, for every column z ∈ GZ , all columns in the set

�(z) := {r ∈ RX | r and z have a nonzero entry on the same row}

have degree strictly larger than the degree of z, and |�(z)| equals the number of
nonzero entries of z.

Proof Since f is a monomorphism, it cannot send a generator of a bar of Z to zero,
hence the columns in GZ are nonzero. A nonzero entry in a column z ∈ GZ indicates
that the corresponding generator of a bar of Z maps non-trivially to the vector space
generated by Xax≤az (x) for some x generating a bar in X , where ax is the degree of x
and az is the degree of z. This implies that the end-point of the bar of X generated by
x has degree strictly larger than the degree of z. Lastly, the cardinality of �(z) equals
the number of nonzero entries of z because the columns in RX form a permutation
matrix of rank n. ��
Proposition 3.7 Let f : Z ↪→ X be a monomorphism and let M f be a presentation
matrix of f . The execution of Algorithm 1 on M f returns a well-defined function
rmax : GZ → RX that is injective. Furthermore, for every column z ∈ GZ , the column
rmax(z) is to the right of z.

Proof We prove that, for every column z ∈ GZ , rmax(z) is well-defined and to the right
of z. We proceed by induction on a natural number m ≥ 0, proving the result for all
monomorphisms f : Z ↪→ X with presentations such that |GZ | = m.

If m = 1 and GZ = {z}, then the algorithm sets rmax(z) to be the rightmost column
in RX having a nonzero entry on the same row as a nonzero entry of z, which exists
and is to the right of z by Proposition 3.6.

Now suppose that the statement holds for everymonomorphism presentationmatrix
with m columns in GZ . Let M f be a presentation matrix such that |GZ | = m + 1.
Algorithm 1 performs a ‘for’ loop (line 4) until the ‘if’ statement (line 6) is true,
which by Proposition 3.6 must happen before the algorithm terminates. Let r0 be
the rightmost column in RX such that there is a (minimal, i.e. leftmost) z ∈ GZ with
M f (x, z) = 1,where x is the row associated to r0. Again by Proposition 3.6, column r0
is to the right of column z. The reductions in lines 11–14 of the algorithm transformM f

into a matrix M∗
f presenting a different monomorphism f ′ : Z ↪→ X . The morphism

f ′ coincides with f on all generators of Z except for generator z′, which is mapped to
the nonzero element faz′ (z

′)+ faz′ (Zaz≤az′ (z)), where a
z and az

′
respectively denote

the degrees of z and z′. We see that f ′ is a monomorphism via the following pointwise
argument. For every degree a, the linear function fa : Za → Xa has ker fa = 0,
hence it maps nonzero elements in {Zazi ≤a(zi )}mi=1 to linearly independent elements
{y j } in span(Xaxj ≤a(x j ))

n
j=1. We see that f ′

a : Za → Xa satisfies the same linear

independence property (which implies ker f ′
a = 0) because the set of image elements

coincides, except for possibly an element y′ replaced by y′ + y, where y is a different
element of the set.

InM∗
f , the only column inGZ with nonzero entry in row x is z. By removing column

z and row x , we obtain a matrix with m columns in GZ which is again a presentation
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matrix of a monomorphism. By induction hypothesis we know that the algorithm
determines a function r ′

max : GZ\{z} → RX whose image does not contain r0 and
the columns to its right. The function r ′

max extends to a function rmax : GZ → RX

by defining rmax(z) := r0. Finally, we observe that the function rmax is injective by
construction. ��

Let us now go back to the reduction of presentation matrices. As with M f , we can
reduce Mb by left-to-right column transformations to get a reduced matrix M̄b. We
denote by σb the permutation on {1, . . . , n} associated with the nonzero columns of
M̄b, which is well-defined because the matrix Mb only has columns with at most one
nonzero coefficient and has the same set of columns in RX as M f . In our running
example, computing M̄b gives us σb = [453261].

After reduction via left-to-right column operations, the matrices M̄ f and M̄b have
non-zero columns with the same set of labels, as we will prove in Proposition 3.9.

Definition 3.8 Letn ≥ 1be an integer andσ a permutationon {1, . . . , n}.An inversion
of σ is a pair (i, j) of elements of {1, . . . , n} such that i < j and σ(i) > σ( j).

Given a permutation σ , we also give the name inversion to a transposition (i j) such
that i < j and σ(i) < σ( j): composing σ by (i j) on the right creates an inversion.

Using inversions we can define a poset structure on permutations: we write σ ≤ σ ′
if there exist k ≥ 0 and a composition of transpositions τ = τ1 · · · τk such that
στ = σ ′ and, for all i ≤ k, τi is an inversion of the permutation στ1 · · · τi−1. In what
follows, we often call τ simply a composition of inversions of σ when it satisfies this
property. Notice that ≤ is a partial order on Sn , the symmetric group on {1, . . . , n}.
With respect to this order, the identity permutation is the smallest element and the
reverse permutation [n n − 1 . . . 2 1] is the largest element.

Proposition 3.9 Let f : Z ↪→ X be a monomorphism, M f be a presentation matrix
of f and Mb be the bar-to-bar matrix computed via Algorithm 1. Let M̄ f and M̄b be
reduced matrices obtained from M f and Mb respectively, and let σ f and σb be the
associated permutations. Then, the following facts hold:

• The nonzero columns of the reducedmatrices M̄ f and M̄b are in the same positions,
• σ f ≥ σb, that is, σ f = σbτ with τ a composition of inversions of σb.

Proof Sincewe can replaceM f with the outputM∗
f ofAlgorithm1,which has the same

associated permutation σ f (as it is obtained by partially reducing M f ), and following
the proof of Proposition 3.7,we can assume thatM f satisfies the following property: let
z0 be the unique column of M f in GZ such that the column r0 := rmax(z0) is maximal
in the total order on columns; then the only row x0 such that M f (x0, rmax(z0)) = 1
has exactly one other nonzero entry, which is M f (x0, z0) = 1. We prove the claims
by induction on the number of columns in GZ .

If GZ = ∅, then there is nothing to prove: M f = Mb and they are reduced, so
σ f = σb.

Otherwise, we execute Algorithm 1 to get the bar-to-bar matrixMb and the function
rmax. Let z0 be the unique column of M f in GZ such that r0 := rmax(z0) is maximal in
the total order on columns. By removing column z0, we obtain a presentation matrix
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M ′
f of a monomorphism f ′ with a set of columns G′

Z strictly contained in GZ , to which

we can apply our induction hypothesis: M̄ ′
f and M̄ ′

b have the same nonzero columns,
and σ ′

f = σ ′
bτ for some composition of inversions τ of σ ′

b. The matrix M ′
b, computed

by using Algorithm 1 on M ′
f , can be equivalently obtained by removing column z0

from Mb, since M f satisfies the property stated at the beginning of the proof. See
Example 3.10 for matrices M ′

f , M
′
b, M̄

′
f and M̄ ′

b in the running example.
Let x0 be the only row such that M f (x0, r0) = 1. By the execution of Algorithm 1,

no other column of M ′
f has a nonzero coefficient on row x0, and so we deduce that

the reductions of the matrices M ′
f and M ′

b do not affect column r0. Since by inductive

hypothesis M̄ ′
f and M̄ ′

b have the same nonzero columns, this implies that column r0
does not appear in the inversions of τ , meaning that τ = (s1 t1)(s2 t2) · · · (sk tk) with
si �= c′

r0 and ti �= c′
r0 for all i ∈ {1, . . . , k}, where c′

r0 denotes the relative position in
{1, . . . , n} of column r0 in the (totally ordered) set of nonzero columns of the reduced
matrix M̄ ′

b.
Now, let Mg be the matrix M f where we modify the column z0 by setting to zero

all its entries except the one on row x0. We reduce the matrix M f first as for M ′
f , and

then we reduce the column z0 by columns to its left, which does not affect the nonzero
coefficient on row x0: we denote the resulting matrix by M ′′

f . M̄ f is then obtained by
completing the reduction using column z0. We reduce Mg and Mb in similar fashion,
following M ′

f and M ′
b, respectively. We observe the following facts.

• The nonzero columns of M̄ f , M̄g , and M̄b are the nonzero columns of M̄ ′
f and M̄ ′

b,

except we replace r0 with z0. This is clear by construction for the matrices M̄g and
M̄b, as the column z0 coincides with r0. For the matrix M̄ f , observe that for every
nonzero entry M f (x, z0) on column z0, there is a nonzero entry M f (x, r) in a
column r to the left of r0, which implies that r0 gets zeroed out after the reduction
as it is linearly dependent with a number of columns to its left.

• σ f = σgτ
′ where τ ′ := (cz0 c1)(c1 c2) · · · (ck−1 ck) and c1, . . . , ck, cr0 are the rel-

ative positions in {1, . . . , n} of the nonzero columns of M ′′
f whose lowest nonzero

entry is modified (is moved to a different row) when reducing to M̄ f , with cz0 and
cr0 respectively denoting the relative positions of column z0 and r0 in the set of
nonzero columns of M ′′

f .

• σg = σ ′
f γ

−1 and σb = σ ′
bγ

−1 where γ := (cz0 cz0 +1 · · · cr0) represents a cyclic
permutation of the nonzero columns between z0 and r0.

See Example 3.10 for concrete examples of these relationships. We deduce that

σ f = σgτ
′

= σ ′
f γ

−1τ ′

= σ ′
bτγ −1τ ′

= σbγ τγ −1τ ′.

By the definition of τ ′, it is a composition of inversions of σg . We conclude the
induction step by showing that γ τγ −1 is a composition of inversions of σb.
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More precisely, we know that τ = (s1 t1) · · · (sk tk) is a composition of inversions
of σ ′

b, meaning that (si ti ) is an inversion of the permutation σ ′
b(s1 t1) · · · (si−1 ti−1), for

every i ∈ {1, . . . , k}, andwewant to prove thatγ τγ −1 = (γ (s1) γ (t1)) · · · (γ (sk) γ (tk))
is a composition of inversions of σb, meaning that (γ (si ) γ (ti )) is an inversion of the
permutation σb(γ (s1) γ (t1)) · · · (γ (si−1) γ (ti−1)), for every i ∈ {1, . . . , k}. First, we
observe that si < ti implies γ (si ) < γ (ti ), since as observed earlier the relative posi-
tion c′

r0 of column r0 in the set of nonzero columns of M̄ ′
b does not appear in τ . Let

us now denote

σ ′
i−1 := σ ′

b(s1 t1) · · · (si−1 ti−1),

σi−1 := σb(γ (s1) γ (t1)) · · · (γ (si−1) γ (ti−1)).

We have to prove that σ ′
i−1(si ) < σ ′

i−1(ti ) implies σi−1(γ (si )) < σi−1(γ (ti )). This is
a consequence of the equalities

σi−1(γ (si )) = σbγ (s1 t1)γ
−1γ · · · γ −1γ (si−1 ti−1)γ

−1γ (si ) = σ ′
i−1(si )

and of similar equalities for ti . ��
Example 3.10 From the example matrix M f in (5), the induction hypothesis of Propo-
sition 3.9 with G′

Z = GZ\{z3} gives the matrices

M ′
f =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 0 1
0 1 1
1 0 1
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, M ′

b =
⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 0 1
0 1 1
1 0 1
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the column z3 is omitted, and the reduced matrices

M̄ ′
f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 0 1
0 1 0
1 1 0 0
1 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, M̄ ′

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 0 1
0 1 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

We find that σ ′
f = [543612] and σ ′

b = [453612], and so σ ′
f = σ ′

b(1 2), where (1, 2)
is indeed an inversion.

The induction step of Proposition 3.9 reduces the matrices

M f =
⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, Mg =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 1
0 1 0 1
1 0 0 1
1 1 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, Mb =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 1
0 1 0 1
1 0 0 1
0 1 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

to

M̄ f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 0 1 1 0
0 1 0 0
1 1 0 0 0
1 0 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, M̄g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 1 0 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, M̄b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Wefind that σ f = [543621], σg = [543261], and σb = [453261]. Thus σ f = σg(4 5),
σg = σ ′

f (4 5 6), and σb = σ ′
b(6 5 4).

Corollary 3.11 Let f : Z ↪→ X be a monomorphism, and let fb : Z ↪→ X be the
associated bar-to-bar monomorphism. Let a1 ≤ a2 ≤ . . . ≤ an be the start-points of
the bars of X, and let b1 ≤ b2 ≤ . . . ≤ bn be the degrees of the non-zero columns of
M̄ f . Then

coker f =
n⊕
j=1

K (a j , bσ f ( j)) and coker fb =
n⊕
j=1

K (a j , bσb( j)).

Proof By Proposition 3.9, the real numbers b1 ≤ b2 ≤ . . . ≤ bn are also the degrees
of the non-zero columns of M̄b. By design of the persistent homology algorithm, the
barcode decomposition of coker f and coker fb is then determined by pairing start-
points {a j } with end-points {b j } following the permutations σ f and σb respectively,
and the claim follows. ��

We state below the rearrangement inequality following (Vince 1990). Since the
statement we need is slightly different from those we found in the literature, we
include a short proof, which is a slight modification of the argument in (Vince 1990)
and can be found also in (Steele 2004, p. 82).

Theorem 3.12 (Rearrangement inequality) Let g1, g2, . . . , gn be real valued functions
defined on an interval I ⊆ R such that gk+1 − gk is a non-decreasing function, for
all k ∈ {1, . . . , n − 1}, and let b1 ≤ b2 ≤ . . . ≤ bn be a sequence of elements of I . If
ρ ≤ σ in Sn, then

n∑
k=1

gk(bρ(k)) ≥
n∑

k=1

gk(bσ(k)).

Proof Since the argumentwe present can be iterated, it is enough to prove the statement
for σ = ρτ where τ = (i j) is an inversion: i < j and ρ(i) < ρ( j). We have

n∑
k=1

gk(bρ(k)) −
n∑

k=1

gk(bσ(k)) = gi (bρ(i)) + g j (bρ( j)) − gi (bσ(i)) − g j (bσ( j))

= gi (bρ(i)) + g j (bρ( j)) − gi (bρ( j)) − g j (bρ(i))

= (
g j (bρ( j))−gi (bρ( j))

)−(
g j (bρ(i))−gi (bρ(i))

)≥0,

where the last inequality follows from bρ(i) ≤ bρ( j) and from the fact that g j − gi is
non-decreasing. ��
Corollary 3.13 Let a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn be sequences of real
numbers, and let p ∈ [1,∞). If ρ ≤ σ in Sn, then

n∑
k=1

|ak − bρ(k)|p ≤
n∑

k=1

|ak − bσ(k)|p.
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Proof Let hk(x) = |ak − x |p. It is easy to check that the function hk+1 − hk is non-
increasing for all k ∈ {1, . . . , n − 1}, so we can apply Theorem 3.12 to the sequence
of functions gk := −hk . ��
Theorem 3.14 For any monomorphism f : Z ↪→ X it is possible to determine (via
Algorithm 1) a bar-to-bar monomorphism fb : Z ↪→ X such that ‖ coker fb‖p ≤
‖ coker f ‖p, for all p ∈ [1,∞].
Proof First, assume p ∈ [1,∞). The persistence modules coker f and coker fb have
barcode decompositions as in Corollary 3.11. Then, the claim follows from Corol-
lary 3.13 applied to the permutations σb ≤ σ f (Proposition 3.9). The claim for
p = ∞ follows from taking the limit for p → ∞ of both sides of the inequality
‖coker b‖p ≤ ‖coker f ‖p, recalling that lim

p→∞ ‖u‖p = ‖u‖∞ for any vector u ∈ R
n

(Sect. 2.6). ��

3.3 Bar-to-bar epimorphisms

A similar result to Theorem 3.14 exists for epimorphisms and their kernels. To show
this, we use a duality argument. The dualization of persistence modules has been
studied extensively, see e.g. (Bauer andLesnick 2015;Miller 2020;Bauer andSchmahl
2023). Here we dualize tame persistence modules indexed by [0,∞), which requires
some special handling since in the setting of this article bars are only supported on left-
closed right-open intervals. In this subsection, we abuse the terminology introduced in
Sect. 2.1 by calling bars more general persistence modules with interval support and
pointwise dimension at most 1, including persistence modules supported on intervals
of the form (a, b] instead of [a, b). To simplify the exposition, we explicitly work with
finite direct sums of bars instead of general tame persistence modules, which are only
equal to direct sums of bars up to isomorphism.

Definition 3.15 Let Bar[0,∞) be the full subcategory of tame persistence modules
whose objects are finite direct sums of bars. Similarly, let Bar(−∞,0] be the category
of finite direct sums of bars indexed by the poset (−∞, 0] with the usual order. These
categories are abelian and we can represent morphisms as matrices of morphisms
between summands.

We consider the contravariant functor (−)∨ : Bar[0,∞) → Bar(−∞,0] send-
ing an object X in Bar[0,∞) to the functor X∨ : (−∞, 0] → vectK defined by
X∨
t := hom(X−t , K ), for all t in (−∞, 0], with transition functions X∨

s≤t :=
hom(X−t≤−s, K ) given by precomposition by X−t≤−s , for all s ≤ t in (−∞, 0].
Similarly, a contravariant functor Bar(−∞,0] → Bar[0,∞) is defined, which we also
denote by (−)∨ with an abuse of notation. Both functors (−)∨ are exact.

If X = K (a, b), we observe that X∨ is also a bar, but its support (i.e., the set of
poset elements for which the functor X∨ takes a nonzero value) is the left-open, right-
closed interval (−b,−a]. In this article, we are considering bars whose support is a
left-closed, right-open interval in R. To fix this, we can consider the pointwise direct
limit functor lim−→[0,−)

(−) : Bar[0,∞) → Bar[0,∞) sending X to the persistence module
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whose value at a is lim−→t<a
Xt and whose transition functions are naturally defined. If

X = K (a, b), applying the pointwise direct limit functor yields the bar supported on
(a, b] ∩ [0,∞), whose dual K (a, b)∨ is the bar K (−b,−a) in Bar(−∞,0], which is
supported on [−b,−a) ∩ (−∞, 0]. Similarly, one defines the pointwise direct limit
functor lim−→(−∞,−)

(−) : Bar(−∞,0] → Bar(−∞,0]. The pointwise direct limit functors

are exact. Applying the functor (−)∨ after the pointwise direct limit functor is therefore
an exact functor, which we denote by (−)†.

To summarize, we have contravariant exact functors

(−)† : Bar[0,∞) → Bar(−∞,0] and (−)† : Bar(−∞,0] → Bar[0,∞)

sending the bar K (a, b) supported on [a, b) to the bar K (−b,−a) supported
on [−b,−a) ∩ (−∞, 0], and extended to the rest of the objects by additivity.
These functors send morphisms to their transpose (when viewed as matrices). More
precisely, given a morphism f : ⊕

i K (ai , bi ) → ⊕
j K (c j , d j ) written as the

matrix [ fi, j ]i, j with fi, j : K (ai , bi ) → K (c j , d j ) for all i and j , the morphism
f † : ⊕

j K (−d j ,−c j ) → ⊕
i K (−bi ,−ai ) can be written as the matrix [ f †j,i ]i, j .

As a consequence of the exactness of (−)†, for any morphism f : X → Y in
Bar[0,∞) (resp. in Bar(−∞,0]) we have

(ker f )† ∼= coker f † and (coker f )† ∼= ker f †.

Since the functors (−)† send morphisms to their transpose, they send bar-to-bar mor-
phisms to bar-to-bar morphisms. In particular, they send bar-to-bar monomorphisms
to bar-to-bar epimorphisms, and vice-versa. It is also clear that the functors (−)†

preserve p-norms: ‖X†‖p = ‖X‖p.
Moreover, we can apply the theory of Sect. 3.2 to the category Bar(−∞,0], and in

particular apply Theorem 3.14. We conclude with the following result:

Theorem 3.16 For any epimorphism f : Z � X of persistence modules, it is possible
to determine a bar-to-bar epimorphism fb : Z � X such that ‖ker fb‖p ≤ ‖ker f ‖p,
for all p ∈ [1,∞].
Proof As for the case of monomorphisms, we assume that X and Z are finite direct
sums of finite bars. We apply Theorem 3.14 to f † : X† ↪→ Z† to get a bar-to-bar
monomorphism g. We set fb := g† : Z � X a bar-to-bar epimorphism, and we
observe that

‖ ker fb‖p = ‖ coker g‖p ≤ ‖ coker f †‖p = ‖ ker f ‖p.

��
In the case p = ∞, a result similar to Theorems 3.14 and 3.16 based on induced

matchings (see Sect. 3.4) instead of bar-to-bar monomorphisms and epimorphisms is
proved in (Bauer and Lesnick 2020, Theorem 2).
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3.4 Comparing bar-to-bar morphisms with inducedmatchings

In Bauer and Lesnick (2015) the authors introduce a construction similar to bar-to-bar
morphisms, namely induced matchings. In particular, given persistence modules X
and Z such that there exists a monomorphism Z ↪→ X , the authors define a canonical
injection from the multiset of bars of Z to the multiset of bars of X , where for all real
numbers b ∈ [0,∞] the i th longest bar of Z with end-point b is sent to the i th longest
bar of X with the same end-point. This injection induces a bar-to-bar monomorphism,
which we define here:

Definition 3.17 Let Z and X be persistencemodules such that there exists amonomor-
phism Z ↪→ X , and fix barcode decompositions Z = ⊕m

i=1 K (azi , b
z
i ) and X =⊕n

j=1 K (axj , b
x
j ). The induced matching of Bauer and Lesnick (2015) then corre-

sponds to a canonical injection ϕ : {1, . . . ,m} ↪→ {1, . . . , n} such that azi ≥ axϕ(i) and
bzi = bxϕ(i), for all i ∈ {1, . . . ,m}.

We define the monomorphism induced by the canonical injection ϕ as the
monomorphism fϕ : Z ↪→ X given by

fϕ =
m⊕
i=1

(K (azi , b
z
i ) ↪→ K (axϕ(i), b

x
ϕ(i))) ⊕

⊕
j∈{1,...,n}\im ϕ

(0 ↪→ K (axj , b
x
j )).

Note that this is a bar-to-bar monomorphism.

Remark 3.18 Let f : Z ↪→ X be a monomorphism. If the bars of X all have distinct
end-points, then the monomorphism induced by the canonical injection (Defini-
tion 3.17) coincides, up to isomorphism, with the bar-to-bar monomorphism fb as
determined in Sect. 3.2. This is because, in this case, there is only one bar-to-bar
monomorphism from Z to X (up to isomorphism).

Remark 3.19 In general, this is not necessarily the case. For example, starting from
the monomorphism f : K (2, 3) ↪→ K (1, 3) ⊕ K (2, 3) defined by

f = (K (2, 3) ↪→ K (2, 3)) ⊕ (0 ↪→ K (1, 3)),

then we have fϕ = (K (2, 3) ↪→ K (1, 3)) ⊕ (0 ↪→ K (2, 3)), while fb = f .
More generally, monomorphisms induced by canonical injections do not com-

mute with direct sums of monomorphisms (Bauer and Lesnick 2015, Example 5.8),
while the bar-to-bar monomorphisms we introduced in Sect. 3.2 do, as an imme-
diate consequence of their definition via Algorithm 1. That is, given f : Z ↪→ X
and f ′ : Z ′ ↪→ X ′, it is not true in general that ( f ⊕ f ′)ϕ = fϕ ⊕ f ′

ϕ , while
( f ⊕ f ′)b = fb ⊕ f ′

b holds.

Maintaining a close relation between a given monomorphism f : Z ↪→ X and
the bar-to-bar monomorphism fb is instrumental to proving Proposition 3.9, the key
technical result of Sect. 3.2, and in turnTheorem3.14 and the dual Theorem3.16. Since
the canonical injection (Bauer and Lesnick 2015) does not depend on the specific given
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monomorphism between Z and X , but just on the existence of such amonomorphisms,
it is not possible to prove Proposition 3.9 using the same strategy with the canonical
injection instead of the bar-to-bar monomorphism we introduced.

We conclude this section with two corollaries to Theorems 3.14 and 3.16. Using
Theorem 3.14, the problem of minimizing the p-norm of cokernels of all possible
monomorphisms between two given persistence modules can be solved by restricting
to bar-to-bar monomorphisms. This simplification allows for an easy combinatorial
proof of the fact that, among all monomorphisms, the one induced by the canonical
injection minimizes the p-norm of the cokernel. A dual result holds for epimorphisms.

Corollary 3.20 Let Z and X be two persistence modules such that there exists a
monomorphism Z ↪→ X. Then min f : Z ↪→X ‖ coker f ‖p = ‖ coker fϕ‖p for all
p ∈ [1,∞], where fϕ is the bar-to-bar monomorphism induced by the canonical
injection (Definition 3.17).

Proof ByTheorem 3.14, it suffices to show the inequality ‖ coker fϕ‖p ≤ ‖ coker f ‖p

for bar-to-bar monomorphisms f : Z ↪→ X . Let {bk}�k=1 be the set of distinct end-
points of X . Then, by hypothesis that there exists a monomorphism Z ↪→ X , we can
decompose Z = ⊕�

k=1 Z
(k) and X = ⊕�

k=1 X
(k) where Z (k) (resp. X (k)) is the direct

sum of the bars in Z (resp. X ) with end-point bk . Given a bar-to-bar monomorphism
f : Z ↪→ X , this induces monomorphisms f (k) : Z (k) ↪→ X (k). We then observe that
f = ⊕�

k=1 f (k), and so

‖ coker f ‖p =
∥∥∥∥(

‖ coker f (k)‖p

)
k=1,...,�

∥∥∥∥
p
.

Since p-norms are nondecreasing with respect to the coordinate-wise order on [0,∞)�

(Sect. 2.6), proving that ‖ coker f (k)
ϕ ‖p ≤ ‖ coker f (k)‖p for each k ∈ {1, . . . , �}

implies that ‖ coker fϕ‖p ≤ ‖ coker f ‖p.
Thus it suffices to prove the result in the case where the bars of Z and X all have the

same end-point, which is what we assume for the rest of the proof. Denote by b0 this
common end-point and write Z = ⊕m

i=1 K (azi , b0) and X = ⊕n
j=1 K (axj , b0), where

the azi and axj are in nondecreasing order. Define azi = b0 for i ∈ {m + 1, . . . , n}.
Then every bar-to-bar monomorphism f : Z ↪→ X has the form

f =
n⊕

i=1

(K (azi , b0) ↪→ K (axα(i), b0)),

where α : {1, . . . , n} → {1, . . . , n} is a permutation and K (b0, b0) denotes the zero
module. By Remark 3.2,

coker f =
n⊕

i=1

K
(
axα(i), a

z
i

)
.

In particular, the bar-to-bar monomorphism induced by the canonical injection corre-
sponds to the permutationα = id. For all p ∈ [1,∞), we then apply the rearrangement
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inequality of Corollary 3.13 to deduce that ‖ coker fϕ‖p ≤ ‖ coker f ‖p. The case
p = ∞ follows by taking the limit (as in the proof of Theorem 3.14). ��

We now dualize the definitions and results for the case of epimorphisms. An epi-
morphism f : Z � X induces a canonical injection (Bauer and Lesnick 2015) from
the multiset of bars of X to the multiset of bars of Z , where for all a ∈ [0,∞], the
i th longest bar of X with start-point a is sent to the i th longest bar of Z with the same
start-point.

Definition 3.21 Let Z and X be persistence modules such that there exists an epi-
morphism Z � X , and fix barcode decompositions Z = ⊕m

i=1 K (azi , b
z
i ) and

X = ⊕n
j=1 K (axj , b

x
j ). The induced matching of Bauer and Lesnick (2015) then cor-

responds to a canonical injection ψ : {1, . . . , n} ↪→ {1, . . . ,m} such that axj = azψ( j)
and bxj ≤ bzψ( j), for all j ∈ {1, . . . , n}.

We define the epimorphism induced by the canonical injection ψ as the epimor-
phism fψ : Z � X given by

fψ =
n⊕
j=1

(
K

(
azψ( j), b

z
ψ( j)

)
� K

(
axj , b

x
j

))
⊕

⊕
i∈{1,...,m}\imψ

(
K

(
axi , bxi

)
� 0

)
.

As in the case ofmonomorphisms, given an epimorphism f : Z � X , the associated
bar-to-bar epimorphisms fψ and fb (see Sect. 3.3) are not necessarily the same.

Corollary 3.22 Let Z and X be two persistence modules such that there exists an epi-
morphism Z � X. Then min f : Z�X ‖ ker f ‖p = ‖ ker fψ‖p for all p ∈ [1,∞],
where fψ is a bar-to-bar epimorphism induced by the canonical injection (Defini-
tion 3.21).

Weomit the proof of Corollary 3.22, which is based onTheorem3.16 and analogous
to the proof of Corollary 3.20.

4 Noise systems andWasserstein pseudometrics

In this section we study algebraic Wasserstein pseudometrics between persistence
modules. After introducing in Sect. 4.1 a generalization of the pseudometrics associ-
ated with a noise system, we study in Sect. 4.2 noise systems determined by p-norms
of persistence modules and regular contours. Section4.3 is devoted to the associated
algebraic Wasserstein pseudometrics. For some choices of parameters, these pseudo-
metrics have a combinatorial interpretation, aswe show inSect. 4.4. Finally, in Sect. 4.5
we present formulas to compute the algebraic Wasserstein pseudometric between per-
sistence modules in some specific cases.

4.1 Pseudometrics associated to noise systems

Given a noise systemS and p ∈ [1,∞], in this sectionwewill introduce pseudometrics
d p
S between persistence modules. These pseudometrics are a simple generalization to
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p > 1 of the pseudometric associated to a noise system in Scolamiero et al. (2017) (see
Sect. 2.4), where p = 1. Although the statements in this section hold true for tame
functors indexed by [0,∞)r for every positive natural number r , as in Scolamiero
et al. (2017), we will limit the presentation to r = 1, since this is the setting of the
following sections.

Definition 4.1 Let X and Y be persistence modules. A span of X ,Y is a triplet
(Z , f , g) with Z a persistence module and f : Z → X and g : Z → Y morphisms
between persistence modules. A span of X ,Y is therefore a diagram in Tame of the
form

X
f←− Z

g−→ Y .

Definition 4.2 Let X and Y be persistence modules, and let S be a noise system. A

span X
f←− Z

g−→ Y is called a (ε1, ε2, ε3, ε4)-span if

ker f ∈ Sε1 , coker f ∈ Sε2 , ker g ∈ Sε3 and coker g ∈ Sε4.

Definition 4.3 Let X and Y be persistence modules, and let S be a noise system. For
p ∈ [1,∞] and ε ∈ [0,∞), we say that X and Y are ε-close in p-norm ‖·‖p if there

exists a (ε1, ε2, ε3, ε4)-span X
f←− Z

g−→ Y for some ε1, ε2, ε3, ε4 ∈ [0,∞) such that
‖(ε1, ε2, ε3, ε4)‖p ≤ ε. We define

d p
S(X ,Y ) := inf {ε ∈ [0,∞) | X and Y are ε-close in p-norm} ,

adopting the convention inf ∅ = ∞.

Our next aim is to prove that d p
S is a pseudometric on Tame.We start by generalizing

Proposition 8.5 in Scolamiero et al. (2017) to our current framework. Even if the
generalization is not difficult, we include the proof to highlight how the properties of
p-norms on R

4 are used. We note that a similar result can be obtained for a larger
family of subadditive functions on R

4 which include p-norms (see Giunti et al. 2024,
Sect. 2.1).

Proposition 4.4 Let F,G, H bepersistencemodules. Assume that F andG are ε-close
in p-norm, and that G and H are τ -close in p-norm. Then F and H are (ε + τ)-close
in p-norm.

Proof By assumption there exists a (ε1, ε2, ε3, ε4)-span F
f ′

←− X
f ′′

−→ G with
ε1, ε2, ε3, ε4 ∈ [0,∞) such that ‖(ε1, ε2, ε3, ε4)‖p ≤ ε and a (τ1, τ2, τ3, τ4)-span

G
g′

←− Y
g′′
−→ H with τ1, τ2, τ3, τ4 ∈ [0,∞) such that ‖(τ1, τ2, τ3, τ4)‖p ≤ τ . Con-
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sider the following diagram, where the square is a pullback:

Z

X Y

F G H

f g

f ′ f ′′ g′ g′′

By Scolamiero et al. (2017, Proposition 8.1), ker f ∈ Sτ1 and coker f ∈ Sτ2 , hence by
Scolamiero et al. (2017, Proposition 8.2) ker f ′ f ∈ Sε1+τ1 and coker f ′ f ∈ Sε2+τ2 .
By a similar argument, ker g′′g ∈ Sε3+τ3 and coker g

′′g ∈ Sε4+τ4 . This proves that F
and H are η-close in p-norm, where η := ‖(ε1 + τ1, ε2 + τ2, ε3 + τ3, ε4 + τ4)‖p.
Our claim follows from the inequality

‖(ε1 + τ1, ε2 + τ2, ε3 + τ3, ε4 + τ4)‖p ≤ ‖(ε1, ε2, ε3, ε4)‖p + ‖(τ1, τ2, τ3, τ4)‖p

≤ ε + τ,

which expresses the subadditivity of ‖·‖p and the hypotheses. ��

We are now ready to prove that d p
S is a pseudometric on Tame.

Proposition 4.5 Given p ∈ [1,∞] and a noise system S, the function d p
S in Defini-

tion 4.3 is a pseudometric on Tame (see Sect.2.4).

Proof If g : X → Y is an isomorphism of persistencemodules, the span X
id←− X

g−→ Y
shows that d p

S(X ,Y ) = 0. For all persistence modules X and Y , the bijection between

spans X
f←− Z

g−→ Y between X and Y and spans Y
g←− Z

f−→ X between Y and X
implies that d p

S(X ,Y ) = d p
S(Y , X). Proposition 4.4 shows that the triangle inequality

holds true. ��
Remark 4.6 Given a noise system S, the pseudometrics d p

S for all p ∈ [1,∞] are
strongly equivalent. Assuming p ≤ q, for any pair of persistence modules X ,Y we
have

dqS(X ,Y ) ≤ d p
S(X ,Y ) ≤ 4

(
1
p − 1

q

)
dqS(X ,Y ),

as can be easily concluded from the properties on p-norms on R
4 stated in Sect. 2.6.

4.2 p-norms of persistencemodules and contours

The aim of this section is to introduce and study a generalization of the notion of
p-norm of a persistence module (see Sect. 2.6) first introduced in Skraba and Turner
(2020), that coincides with the original definition if C is the standard contour (see
Sect. 2.2).
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Definition 4.7 Let C be a regular contour. For p ∈ [1,∞], define the (p,C)-norm of
a persistence module X ∼= ⊕k

i=1 K (ai , bi ) by

‖X‖p,C :=
⎧⎨
⎩

(∑k
i=1 �(ai , bi )p

) 1
p

for p ∈ [1,∞),

max{�(ai , bi )}ki=1 for p = ∞,

where �(ai , bi ) denotes the lifetime of the bar K (ai , bi ) with respect to C (see
Sect. 2.2).

We see that ‖X‖p,C does not depend on the choice of barcode decomposition for
X . For p ∈ [1,∞] and ε ∈ [0,∞), consider the class of tame persistence modules

S p,C
ε := {X ∈ Tame | ‖X‖p,C ≤ ε},

and denote S p,C := {S p,C
ε }ε∈[0,∞). If D is the standard contour (see Sect. 2.2), then

�(ai , bi ) = bi − ai and we have ‖X‖p,D = ‖X‖p and S p,D = S p. The main result
in this subsection is showing that S p,C is a noise system (see Sect. 2.3) whenever C
is an action, for any p ∈ [1,∞]. For the standard contour, this result together with
Proposition 4.5 provide an alternative proof to the one in Skraba and Turner (2020)
that the algebraic p-Wasserstein distance is a pseudometric, as will be later highlighted
in Remark 4.20.

Given a contour C , the function C(0,−) : [0,∞) → [0,∞) is nondecreasing
(and it is an increasing bijection if the contour is regular). Hence it can be viewed
as a functor from the poset category [0,∞) to itself, that can be effectively used
to re-parameterize [0,∞). For any persistence module X , the composition of func-
tors TC (X) := XC(0,−) : [0,∞) → vectK is a persistence module. As we will
show, TC (X) is in Tame whenever X is in Tame and C is a regular contour (Corol-
lary 4.9). The assignment X �→ TC (X) can be extended to a functor TC : Tame →
Tame sending a morphism f : X → Y of persistence modules to the morphism
TC ( f ) : TC (X) → TC (Y ) defined as the natural transformation between TC (X) and
TC (Y ) whose component at a ∈ [0,∞) is TC ( f )a = fC(0,a) : XC(0,a) → YC(0,a).

We now explain the relationship between the barcode decompositions of X and
TC (X) when C is a regular contour.

Proposition 4.8 Let C be a regular contour, and let � be the associated lifetime func-
tion. Consider a bar K (a, b). Then

TC (K (a, b)) ∼= K (�(0, a), �(0, b)).

Proof The functor TC (K (a, b)) : [0,∞) → vectK sends c ≤ d in [0,∞) to the linear
function

K (a, b)C(0,c)≤C(0,d) : K (a, b)C(0,c) → K (a, b)C(0,d),
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which is the identity on K if a ≤ C(0, c) ≤ C(0, d) < b and the zero function
otherwise. Since C is regular, �(0,−) is a strictly increasing function, hence the
condition a ≤ C(0, c) ≤ C(0, d) < b is equivalent to �(0, a) ≤ c ≤ d < �(0, b). ��
Corollary 4.9 Let X be a tame persistence module with barcode decomposition⊕k

i=1 K (ai , bi ), and let C be a regular contour. Then TC (X) ∼= ⊕k
i=1 K (�(0, ai ),

�(0, bi )). In particular TC (X) is also in Tame.

Proof Since direct sums in Tame are defined pointwise (Sect. 2.1), if {Xi }i∈I is a finite
collection of persistence modules and C is a regular contour, then TC (

⊕
i∈I Xi ) ∼=⊕

i∈I TC (Xi ), this together with Proposition 4.8, gives the following.

TC (X) ∼= TC

(
k⊕

i=1

K (ai , bi )

)
(by Proposition 4.8)

∼=
k⊕

i=1

TC (K (ai , bi ))

∼=
k⊕

i=1

K (�(0, ai ), �(0, bi )) .

Given that bars K (�(0, ai ), �(0, bi )) are in Tame and tameness is preserved by
finite direct sums, TC (X) is also in Tame. ��

We now show that the functor TC is exact.

Proposition 4.10 Let 0 → X → Y → Z → 0 be an exact sequence in Tame, and let
C be a regular contour. Then the sequence 0 → TC (X) → TC (Y ) → TC (Z) → 0 is
also exact in Tame.

Proof Exactness in Tame is defined pointwise: 0 → X → Y → Z → 0 is exact if
and only if 0 → Xa → Ya → Za → 0 is exact in vectK , for every a ∈ [0,∞). As
a consequence, 0 → XC(0,b) → YC(0,b) → ZC(0,b) → 0 is exact in vectK , for every
b ∈ [0,∞), hence by definition the sequence 0 → TC (X) → TC (Y ) → TC (Z) → 0
is exact. The fact that the exact sequence 0 → TC (X) → TC (Y ) → TC (Z) → 0 is in
Tame follows from Corollary 4.9 and how TC is defined on morphisms. ��
Remark 4.11 As is clear from its proof, Proposition 4.10 in fact holds for the precom-
position of persistence modules by any increasing bijection of [0,∞).

In the rest of the article, we will focus on contours that are regular and actions (see
Sect. 2.2), called regular actions for brevity. We prove here a simple but important
property of regular actions, and the associated lifetime function �, which is used to
prove the subsequent results.

Lemma 4.12 IfC is a regular action, then �(a, c) = �(a, b)+�(b, c) for anya ≤ b ≤ c
in [0,∞).
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Proof Let a ≤ b ≤ c. Using the definitions and the assumption that C is an action,
we have C(C(a, �(a, b)), �(b, c)) = C(a, �(a, b) + �(b, c)). Again by definition, we
observe that the left-hand side equals c, and that c = C(a, �(a, b) + �(b, c)) implies
�(a, c) = �(a, b) + �(b, c). ��
Proposition 4.13 Let X be a persistencemodule, let p ∈ [1,∞], and let C be a regular
action. Then ‖X‖p,C = ‖TC (X)‖p.

Proof Let X ∼= ⊕k
i=1 K (ai , bi ). For any fixed p ∈ [1,∞), we have

‖TC (X)‖p =
(

k∑
i=1

(�(0, bi ) − �(0, ai ))
p

) 1
p

=
(

k∑
i=1

�(ai , bi )
p

) 1
p

= ‖X‖p,C ,

where the first equality is by Corollary 4.9, the second one is by Lemma 4.12, and the
third one is by definition of ‖·‖p,C . The case p = ∞ is similar. ��

We are now ready to prove that S p,C , with C a regular action, satisfies the axioms
in the definition of noise system (see Sect. 2.3).

Lemma 4.14 Let 0 → X → Y → Z → 0 be an exact sequence in Tame, and let C
be a regular contour. Then ‖X‖p,C ≤ ‖Y‖p,C and ‖Z‖p,C ≤ ‖Y‖p,C .

For the standard contour, our statement coincides with Lemma 7.8 in Skraba and
Turner (2020), which is easily proven using the inducedmatchings (Bauer and Lesnick
2015) for monomorphisms and epimorphisms of persistence modules. For the sake of
completeness, we include the proof for ‖ · ‖p,C , which does not present any additional
difficulty.

Proof The existence of a monomorphism from X to Y implies the existence of the
bar-to-bar monomorphism fϕ : X ↪→ Y of Definition 3.17, induced by the canonical
injection (Bauer and Lesnick 2015). The monomorphism fϕ decomposes as a finite
direct sum of monomorphisms of the form K (a′, b) ↪→ K (a, b), with a ≤ a′, and
of the form 0 ↪→ K (a, b). By monotonicity of contours, a ≤ a′ implies �(a′, b) ≤
�(a, b). The inequality ‖X‖p,C ≤ ‖Y‖p,C then follows from the definition of ‖·‖p,C ,
since every term in the expression for ‖X‖p,C is upper bounded by a term in the
expression for ‖Y‖p,C .

The proof of the inequality ‖Z‖p,C ≤ ‖Y‖p,C is obtained similarly, using the
epimorphism induced by the canonical injection (see Definition 3.21). ��
Lemma 4.15 Let 0 → X → Y → Z → 0 be an exact sequence in Tame, and let C
be a regular action. Then ‖Y‖p,C ≤ ‖X‖p,C + ‖Z‖p,C .
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Proof First, we prove the statement assuming that C is the standard contour. Let

0 → X
f−→ Y

g−→ Z → 0 be a short exact sequence of persistence modules, and let us
show that ‖Y‖p ≤ ‖X‖p+‖Z‖p. We consider the monomorphism f and observe that
Z ∼= coker f implies that Z and coker f have the same barcode decomposition, hence
‖Z‖p = ‖coker f ‖p. Theorem 3.14 tells us that, among all monomorphisms between
two fixed persistence modules, the norm ‖·‖p of the cokernel is minimized by a bar-to-
barmonomorphism.We therefore just need to prove that ‖Y‖p ≤ ‖X‖p+‖coker f ‖p,
for any bar-to-bar monomorphism f between X and Y .

By Remark 3.2, if f : X → Y is a bar-to-bar monomorphism, then there exist
barcode decompositions

⊕m
i=1 Xi and

⊕n
j=1 Y j of X and Y , respectively, such that

m ≤ n and, up to permutation of the Y j , there are monomorphisms fi : Xi → Yi
between bars such that coker f = ⊕m

i=1 coker fi ⊕ ⊕n
j=m+1 Y j . We observe that,

for each bar Yi = K (ai , bi ) of Y with i ∈ {1, . . . ,m}, there is a bar Xi = K (a′
i , bi )

of X and a corresponding summand coker fi of coker f , which is a bar K (ai , a′
i ) if

ai < a′
i , and it is the zero module if ai = a′

i . Similarly, we observe that each bar
Y j = K (a j , b j ) of Y with j ∈ {m + 1, . . . , n} is also a bar of coker f . By definition,
‖Y‖p is the p-norm of the following element of R

n :

(b j − a j ) j∈{1,...,n} = (((bi − a′
i ) + (a′

i − ai ))i∈{1,...,m}, (b j − a j ) j∈{m+1,...,n}).

Then, by the triangular inequality of p-norms in R
n , we have ‖Y‖p ≤ ‖X‖p +

‖coker f ‖p, which completes the proof when C is the standard contour.
Let nowC be any regular action. By Proposition 4.10, exactness of 0 → X → Y →

Z → 0 implies exactness of 0 → TC (X) → TC (Y ) → TC (Z) → 0. Applying the
previous part of the proof to the latter exact sequence yields ‖TC (Y )‖p ≤ ‖TC (X)‖p+
‖TC (Z)‖p, which by Proposition 4.13 coincides with our claim. ��

For the standard contour, the statement of Lemma 4.15 is given in Remark 7.32 of
Skraba and Turner (2020). However, to our knowledge, we provide the first proof of
this inequality that does not assume the fact that the p-norm of persistence modules
induces a pseudometric. Indeed in Skraba and Turner (2020) the fact that the algebraic
Wasserstein distance satisfies the triangular inequality is used as an hypothesis.

We can now prove the main result of this subsection.

Theorem 4.16 For any p ∈ [1,∞] and any regular action C, S p,C is a noise system.

Proof We show that S p,C satisfies all axioms of the definition of noise system (see
Sect. 2.3). Since the norm ‖·‖p,C of the zero module 0 is zero, we have 0 ∈ S p,C

ε , for

all ε ∈ [0,∞). By definition of S p,C , it is clear that S p,C
τ ⊆ S p,C

ε whenever τ ≤ ε.
Lemmas 4.14 and 4.15 complete the proof, showing thatS p,C satisfies both conditions
on short exact sequences of persistence modules. ��
Remark 4.17 For p < ∞, the noise system S p,C in not closed under direct sums
(Sect. 2.3), since ‖X ⊕ Y‖p,C = ∥∥(‖X‖p,C , ‖Y‖p,C

)∥∥
p by Eq. (2).

Remark 4.18 Let us briefly highlight the role of our hypotheses on contours, which
are required to be regular actions in Theorem 4.16. The regularity assumption ensures
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for instance that the associated lifetime function � is well-defined, and that the functor
TC is an endofunctor on Tame. The assumption that C(0,−) : [0,∞) → [0,∞)

is an increasing bijection is sufficient to prove many results of this subsection (see
Remark 4.11), but we choose to assume the stronger condition of regularity on C to
facilitate a comparison with the results of Chachólski and Riihimäki (2020), observing
in addition that many examples of regular contours can be found, for example the
contours of distance type (Sect. 2.2) that are used in our experiments (see Sect. 5).
The hypothesis that the considered contours are actions is motivated by the use of
Proposition 4.13 in the proof of Lemma 4.15. If C is not an action, the equalities of
Lemma 4.12 and Proposition 4.13 are replaced by the inequalities �(a, c) ≤ �(a, b)+
�(b, c), for any a ≤ b ≤ c, and ‖TC (X)‖p ≤ ‖X‖p,C . A proof of Lemma 4.15
removing the action hypothesis on C eludes us.

4.3 Contours and algebraicWasserstein distances

We now turn to considering the pseudometrics dqS p,C associated (as in Sect. 4.1) with

the noise systems S p,C introduced in Sect. 4.2, for fixed p, q ∈ [1,∞] and a regular
action C . We also refer to these pseudometrics as algebraic Wasserstein distances.
First, we show that the functor TC introduced in Sect. 4.2 allows us to switch between
a pseudometric dqS p,C and the pseudometric dqS p associated with the standard contour.
More precisely, we show that TC can be viewed as an isometry

TC :
(
Tame, dqS p,C

)
→ (

Tame, dqS p

)
.

Let us recall that, ifC is a regular contour, the functionC(0,−) : [0,∞) → [0,∞)

is an increasing bijection. Its inverse �(0,−) := C(0,−)−1 is therefore an increasing
bijection as well. Mimicking the definition of TC given in Sect. 4.2, we can define
a functor T� : Tame → Tame given by precomposition by the increasing function
�(0,−). By Proposition 4.10, the functor TC : Tame → Tame preserves kernels and
cokernels, and T� has the same property by Remark 4.11. Furthermore, since C(0,−)

and �(0,−) are inverse to each other, the compositions TCT� and T�TC are the identity
functor 1Tame on Tame.

To prove the following result, it is convenient to define the (p, q,C)-cost of a span

X
f←− Z

g−→ Y of persistence modules as the element c ∈ [0,∞] defined by

c := ∥∥(‖ker f ‖p,C , ‖coker f ‖p,C , ‖ker g‖p,C , ‖coker g‖p,C
)∥∥

q
.

Proposition 4.19 Let C be a regular action, and let X ,Y be persistencemodules. Then

dqS p,C (X ,Y ) = dqS p (TC (X), TC (Y )).

Proof Let D denote the standard contour, and let us recall that the (p, D)-norm of a
persistence module coincides with its p-norm (Sect. 4.2). We describe a correspon-
dence between spans having the same cost, calculated with respect to (p, q,C) and
(p, q, D) respectively.
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Let X
f←− Z

g−→ Y be a span and let c be its (p, q,C)-cost. Applying the functor

TC , we obtain the span TC (X)
TC ( f )←−−− TC (Z)

TC (g)−−−→ TC (Y ), whose (p, q, D)-cost is

c′ = ∥∥(‖ker TC ( f )‖p , ‖coker TC ( f )‖p , ‖ker TC (g)‖p , ‖coker TC (g)‖p
)∥∥

q

= ∥∥(‖TC (ker f )‖p , ‖TC (coker f )‖p , ‖TC (ker g)‖p , ‖TC (coker g)‖p
)∥∥

q

= c,

where the second equality holds because the functor TC preserves kernels and coker-
nels, and the last equality holds by Proposition 4.13.

To prove the other direction of the correspondence, we start from a span TC (X)
ϕ←−

TC (Z)
ψ−→ TC (Y ) whose (p, q, D)-cost is

k := ∥∥(‖ker ϕ‖p , ‖coker ϕ‖p , ‖kerψ‖p , ‖cokerψ‖p
)∥∥

q
,

and we exhibit a span between X and Y whose (p, q,C)-cost equals k. Applying the

functor T�, we obtain the span X
T�(ϕ)←−−− Z

T�(ψ)−−−→ Y . To determine the (p, q,C)-cost
of this span we observe that

‖ker T�(ϕ)‖p,C = ‖T�(ker ϕ)‖p,C = ‖TCT�(ker ϕ)‖p = ‖ker ϕ‖p ,

where the first equality holds because T� preserves kernels, the second equality is by
Proposition 4.13, and the third equality holds because TCT� = 1Tame. Since similar
equalities hold for coker T�(ϕ), ker T�(ψ), and coker T�(ψ), the (p, q,C)-cost of the

span X
T�(ϕ)←−−− Z

T�(ψ)−−−→ Y equals k. ��
Remark 4.20 Some of the pseudometrics between persistence modules that have been
studied by other authors fall within the frameworkwe have presented in this subsection
and in Sect. 4.1. IfC is a regular contour, the pseudometric denoted by dC in (Chachól-
ski and Riihimäki 2020, Sect. 6) coincide with our pseudometrics of the type d1S∞,C . In

particular, for the standard contour (Sect. 2.2) the pseudometric d1S∞ coincideswith the
standard pseudometric already introduced in Scolamiero et al. (2017). As we already
mentioned, the algebraic pseudometrics introduced in Skraba and Turner (2020, Sect.
7) are of the form d p

S p , thus coinciding with our pseudometrics with the choice p = q
and for the standard contour. In Giunti et al. (2024), the authors propose a frame-
work to study distances on abelian categories which is equivalent to noise systems
on abelian categories. The authors of Bubenik et al. (2023) also study distances on
abelian categories, introducing the notion of exact weight, which is more general than
noise systems as the first axiom on short exact sequences is relaxed. The so-called path
metric associated with an exact weight is defined for zigzags of morphisms of arbitrary
finite length, but for the particular case of path metrics on noise systems considering
spans is sufficient. In this case, the path metric coincides with a pseudometric of the
form d1S . In particular, the path metric dμ◦dim between persistence modules studied
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in (Bubenik et al. 2023, Sect. 4) coincides with d1S1 in our notations, while the p-
Wasserstein distances introduced by the authors are different from our pseudometrics
dqS p,C .

4.4 Algebraic and combinatorial (p, C)-Wasserstein distances

In this subsection we consider Wasserstein distances between persistence diagrams.
Here, we call these pseudometrics combinatorialWasserstein distances, to distinguish
them from the algebraic pseudometrics dqS p,C defined on the class of persistence mod-
ules. We introduce a new family of combinatorial Wasserstein distances, parametrized
by p, q ∈ [1,∞] and a regular action C , which generalize the Wasserstein distances
commonly used in persistence theory. Finally, we prove isometry results involving the
combinatorial Wasserstein distances and the algebraic Wasserstein distances dqS p,C

introduced in Sect. 4.2.
LetU := {(a, b) ∈ [0,∞)×[0,∞] | a ≤ b} be a subset of the extended plane. A

persistence diagram is a finite multiset D = {xi }i∈S of elements of U . Since D is a
multiset, it may happen that xi = xk for some i �= k. The diagonal � of [0,∞) is the
set � := {(a, a) | a ∈ [0,∞)} ⊂ U . For all p ∈ [1,∞], we denote by dp the metric
on U induced by the p-norm, defined by dp(x, y) := ‖x − y‖p for all x, y ∈ U ,
and we denote dp(x,�) := inf z∈� dp(x, z). As is easy to show, if x = (a, b), then
dp(x,�) = dp(x, z) with z := ( a+b

2 , a+b
2 ).

Let D = {xi }i∈{1,...,m} and D′ = {x ′
j } j∈{1,...,n} be persistence diagrams. For any

p, q ∈ [1,∞], the (p, q)-Wasserstein distance between D and D′ is defined by

Wq
p (D, D′) := inf

α

∥∥∥∥
(∥∥∥(dp(xi , x

′
α(i)))i∈I

∥∥∥
q
,
∥∥(dp(xi ,�))i∈{1,...,m}\I

∥∥
q ,

∥∥∥(dp(�, x ′
j )) j∈{1,...,n}\α(I )

∥∥∥
q

)∥∥∥∥
q
,

where the infimum is over all injective functions α : I → {1, . . . , n}, with I ⊆
{1, . . . ,m}.
Remark 4.21 We note that in the literature, the letters p and q are sometimes inter-
changed with respect to our notation of the parameters of Wasserstein distances
between persistence diagrams. This is the case for instance in (Skraba and Turner
2020, Def. 2.7). Our choice of notation is motivated by symmetry with the definition
of algebraic Wasserstein distances, where a norm ‖ · ‖q is used to “aggregate” costs
expressed with respect to a norm ‖ · ‖p.

Let D denote the set of all persistence diagrams. We define the class function
Dgm : Tame → D sending any persistence module X to the persistence diagram
Dgm(X) such that X ∼= ⊕

(a,b)∈Dgm(X) K (a, b), where we note that in the right-
hand term each bar K (a, b) appears the same number of times as the multiplicity
of (a, b) in the multiset Dgm(X). By virtue of the barcode decomposition theorem
(Theorem 2.2), the function Dgm : Tame → D induces a bijection between the set
Tame /∼ of isomorphism classes of persistence modules and D.
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As proven in Skraba and Turner (2020), if p = q then the algebraic distance dqS p

between persistence modules coincides with the combinatorial distance Wq
p between

the associated persistence diagrams.

Theorem 4.22 (Skraba and Turner 2020) For any p ∈ [1,∞] and for any persistence
modules X and Y we have

d p
S p (X ,Y ) = W p

p (Dgm(X),Dgm(Y )).

It is worth observing that the equality of Theorem 4.22 does not hold when p �= q.
For example, we can consider the persistence modules

X = K (a1, a1 + �1) ⊕ K (a2, a2 + �2) ⊕ K (a3, a3 + �3)

with �1, �2, �3 positive real numbers, and 0, the zero module. Then, assuming q < ∞,

dqS p (X , 0) =
(∥∥∥∥

(
�1

2
,
�2

2
,
�3

2

)∥∥∥∥
q

p
+

∥∥∥∥
(

�1

2
,
�2

2
,
�3

2

)∥∥∥∥
q

p

) 1
q

(as we will prove in Lemma 4.23), while

Wq
p (Dgm(X),Dgm(0)) =

(∥∥∥∥
(

�1

2
,
�1

2

)∥∥∥∥
q

p
+

∥∥∥∥
(

�2

2
,
�2

2

)∥∥∥∥
q

p
+

∥∥∥∥
(

�3

2
,
�3

2

)∥∥∥∥
q

p

) 1
q

.

Given a regular contour C , we now define a function τC : U → U as follows: for
x = (a, b) ∈ U , we set τC (x) = (�(0, a), �(0, b)), where �(0,−) is the lifetime
function associated with C (Sect. 2.2). If D is a persistence diagram, then by applying
τC to each element of D we obtain a persistence diagram that we denote by τC (D).
Hence, we have a functionD → Dwhichwe denote again by τC , with a slight abuse of
notation. If C is the standard contour, then τC is the identity function and in particular
τC (D) = D. Figure1 illustrates a persistence diagram transformed by applying τC
for a contour C of distance type.

Given a regular contour C , we define the combinatorial (p,C)-Wasserstein dis-
tance W p

p,C pulling back the pseudometric W p
p via τC : D → D. Explicitly, for all

persistence diagrams D and D′, we define W p
p,C (D, D′) := W p

p (τC (D), τC (D′)). If
C is a regular action, then as a consequence of Corollary 4.9 we have Dgm(TC (X)) =
τC (Dgm(X)), for every persistence module X . This implies, by virtue of Proposi-
tion 4.19 and Theorem 4.22, that

d p
S p,C (X ,Y ) = W p

p,C (Dgm(X),Dgm(Y )),

for all persistence modules X and Y .
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Fig. 1 Left: A persistence diagram D = {(0.2, 0.4), (0.4, 0.6), (0.6, 0.8)}. A contour C of distance
type parametrized by a Gaussian density (μ = 0.5, σ = 0.15) is chosen and the correspond-
ing function f (x) = �(0, x) (i.e. the Gaussian cumulative distribution function) is shown above
and to the right of the persistence diagram. Right: The transformed persistence diagram τC (D) =
{(�(0, 0.2), �(0, 0.4)), (�(0, 0.4), �(0, 0.6)), (�(0, 0.6), �(0, 0.8))}. The regular grid from the left diagram
has also been transformed to illustrate how τC stretches the plane

To summarize, for any p ∈ [1,∞] and any regular actionC , we have a commutative
diagram of isometries

(Tame, d p
S p,C ) (D,W p

p,C )

(Tame, d p
S p ) (D,W p

p )

TC τC

Dgm

Dgm

4.5 Algebraic parametrizedWasserstein distances

The equivalence between algebraic and combinatorial Wasserstein distances for the
case p = q, described in Sect. 4.4 or in Skraba and Turner (2020) for the stan-
dard contour, implies that in general Wasserstein distances cannot be expressed by
an explicit (i.e., not involving an optimization problem) formula depending on the
barcode decompositions of the persistence modules we are comparing. However for
some special classes of persistencemodules this is the case. The focus of this section is
to present such formulas for the exact computation of algebraicWasserstein distances.
To avoid distinguishing the cases q < ∞ and q = ∞ in stating the results of this

subsection, for q = ∞ we set by convention 1
q = 0 and 2

1−q
q = 2−1.

Lemma 4.23 For all persistence modules X and all p, q ∈ [1,∞] we have

dqS p (X , 0) = 2
1−q
q ‖X‖p .
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Proof Let X = ⊕k
i=1 K (ai , bi ) be a barcode decomposition of X , consider a per-

sistence module of the form Z = ⊕k
i=1 K (

ai+bi
2 , bi ) and a bar-to-bar morphism

f = ⊕k
i=1 fi : Z → X , with each fi : K (

ai+bi
2 , bi ) → K (ai , bi ) a monomorphism

between bars. Denote by g = ⊕k
i=1 gi : Z → 0 the zero map. The existence of the

span X
f←−↩ Z

g−→ 0 implies that X and 0 are 2
1−q
q ‖X‖p close in q-norm (Defini-

tion 4.3), proving that dqS p (X , 0) ≤ 2
1−q
q ‖X‖p. Indeed ker f = coker g = 0 and

‖coker f ‖p = ‖ker g‖p =
∥∥∥(

bi−ai
2 )i∈{1,...,k}

∥∥∥
p
. The bound is obtained by computing∥∥∥∥

(∥∥∥(
bi−ai
2 )i∈{1,...,k}

∥∥∥
p
,

∥∥∥(
bi−ai
2 )i∈{1,...,k}

∥∥∥
p

)∥∥∥∥
q

= 2
1−q
q ‖X‖p.

To prove the converse inequality, let us show that if dqS p (X , 0) < ε then

2
1−q
q ‖X‖p < ε. If dqS p (X , 0) < ε, then there exists a (ε1, ε2, ε3, 0)-span X

ϕ←− Z � 0
for some ε1, ε2, ε3 in [0,∞) such that ‖(ε1, ε2, ε3)‖q < ε. Note that X ←↩ im ϕ � 0
is then a (0, ε2, ε3, 0)-span. Consider the short exact sequence im ϕ ↪→ X � coker ϕ.
Since coker ϕ ∈ S p

ε2 and im ϕ ∈ S p
ε3 , by the third axiom of noise systems we get X ∈

S p
ε2+ε3

, and so we get ‖X‖p ≤ ε2 + ε3 by definition of S p. Furthermore, by inequali-

ties (1) between p-norms on R
2, ε2 +ε3 = ‖(ε2, ε3)‖1 ≤ 21−

1
q ‖(ε2, ε3)‖q < 21−

1
q ε.

Therefore we have ‖X‖p < 21−
1
q ε or equivalently 2

1−q
q ‖X‖p < ε. We conclude that

dqS p (X , 0) ≥ 2
1−q
q ‖X‖p, and therefore dqS p (X , 0) = 2

1−q
q ‖X‖p. ��

Remark 4.24 The formula dqS p (X , 0) = 2
1−q
q ‖X‖p ofLemma4.23was already shown

for the case p = q in Skraba and Turner (2020) by using the correspondence between
combinatorial and algebraic Wasserstein distances.

The proof of Lemma 4.23 can be easily extended to the case of a regular action C .
In this case, we have

dqS p,C (X , 0) = dqS p (TC (X), 0) = 2
1−q
q ‖TC (X)‖p = 2

1−q
q ‖X‖p,C , (6)

where the first equality holds by Proposition 4.19, the second by Lemma 4.23 and
the third by Proposition 4.13. Similar arguments can be applied to all the results of
this subsection. For exposition purposes we consider the case of the standard contour
throughout the section and collect generalizations of the main results at the end of the
subsection in Proposition 4.32.

Proposition 4.25 Let X ,Y , V be persistence modules. Then, for every p, q ∈ [1,∞],

dqS p (X ⊕ V ,Y ⊕ V ) ≤ dqS p (X ,Y ).

Proof It suffices to observe that for any span X
f←− Z

g−→ Y , the span X ⊕ V
f⊕1←−−

Z ⊕ V
g⊕1−−→ Y ⊕ V has the same cost. ��
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Remark 4.26 Note that by considering Y = 0, Proposition 4.25 gives

dqS p (X ⊕ V , V ) ≤ dqS p (X , 0) = 2
1−q
q ‖X‖p

The converse inequality dqS p (X ⊕ V , V ) ≥ dqS p (X , 0) = 2
1−q
q ‖X‖p does not hold in

general, as illustrated in the following example. Consider p = q = 2, X = K (0, 6)
and V = K (1, 5)⊕K (2, 4). By Lemma 4.23we have that dqS p (X , 0) = 1√

2
·6 = √

18.

However, X ⊕ V and Y ⊕ V are
√
6-close via the following (0,

√
3,

√
3, 0)-span

K (0, 6) ⊕ K (1, 5) ⊕ K (2, 4)
f1⊕ f2⊕ f3←−−−−−− K (1, 6) ⊕ K (2, 5)

⊕ K (3, 4)
g1⊕g2⊕g3−−−−−−→ K (1, 5) ⊕ K (2, 4) ⊕ 0

implying that dqS p (X ⊕ V ,Y ⊕ V ) ≤ √
6 <

√
18 = dqS p (X ,Y ). This example is

based on the fact that given a span X
f←− Z

g−→ Y realizing the distance between X

and Y , the span X ⊕ V
f⊕1←−− Z ⊕ V

g⊕1−−→ Y ⊕ V not always is the one achieving the
distance between X ⊕ V and Y ⊕ V .

Let {K (ai , bi )}i∈{1,...,k} be a sequence of bars ordered non-decreasingly by length,
that is, b1 − a1 ≤ b2 − a2 ≤ · · · ≤ bk − ak . For j ∈ {1, . . . , k}, consider Z :=⊕ j

i=1 K (ai , bi ) andY := ⊕k
i= j+1 K (ai , bi ). The remainder of this section is devoted

to proving that, in this case, dqS p (Y ⊕ Z ,Y ) = dqS p (Z , 0) = 2
1−q
q ‖Z‖p . In Sect. 5,

this result will be used for the computation of the stable rank of a persistence module
with respect to dqS p .

Proposition 4.27 Let S be a noise system. For any (ε1, ε2, ε3, ε4)-span X ←− Z −→ Y
of persistence modules there is a mono-epi (0, ε2, ε3, 0)-span X ←−↩ im f � P such
that rank(P) ≤ rank(Y ).

Proof By Theorem 3.14 and Remark 3.2, if U ↪→ V is a monomorphism between
persistence modules, then rank(U ) ≤ rank(V ), and similarly if V � U is an epi-

morphism, then rank(U ) ≤ rank(V ). Let X
f←− Z

g−→ Y be a (ε1, ε2, ε3, ε4)-span of
persistence modules, and consider the following diagram in Tame, where the square
is a push-out:

Z

im f im g

X P Y

f g

j g′

f ′
i

Since f ′ is an epimorphism and i is a monomorphism, rank(P) ≤ rank(im g) ≤
rank(Y ).Weconsider the span X

j←−↩ im f
g′
� P . Clearly, the kernel of the corestriction

g : Z � im g still belongs to Sε3 , and its cokernel is zero. Then, by Proposition 8.1
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in Scolamiero et al. (2017), ker g′ ∈ Sε3 and coker g
′ = 0. The kernel of j is 0, while

its cokernel belongs to Sε2 , as it coincides with the cokernel of f : Z → X . ��
Lemma 4.28 Let p, q ∈ [1,∞], and let [ai , bi ] be nonempty intervals in [0,∞), for
i ∈ {1, . . . , j}. The function γ : ∏ j

i=1[ai , bi ] → [0,∞) defined by

γ (x1, . . . , x j ) :=
∥∥∥(∥∥(x1 − a1, . . . , x j − a j )

∥∥
p ,

∥∥(b1 − x1, . . . , b j − x j )
∥∥
p

)∥∥∥
q

has a global minimum at ( a1+b1
2 , . . . ,

a j+b j
2 ).

Proof The function γ is continuous with a compact domain, so it admits a global
minimum by the extreme value theorem. Moreover, it is convex because norms are
convex functions.

Write a = (a1, . . . , a j ), b = (b1, . . . , b j ) and x = (x1, . . . , x j ) in R
j . Since

γ (x) = γ (a + b − x) for every x , the function γ is invariant under point reflection
through a+b

2 . By convexity, we conclude that a+b
2 is a global minimum of γ . ��

Proposition 4.29 Let X = ⊕k
i=1 K (ai , bi ), with the bars ordered non-decreasingly

by length. Let j ∈ {1, . . . , k}, and let p, q ∈ [1,∞]. Then, any persistence module Y
with rank(Y ) ≤ rank(X) − j is such that

dqS p (X ,Y ) ≥ 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p
.

Proof We prove the claim by contradiction. Suppose that there exists a persistence
module Y such that rank(Y ) ≤ rank(X) − j and

dqS p (X ,Y ) < 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p
.

By definition, there exists a span X
f←− Z

g−→ Y such that

∥∥(‖ker f ‖p , ‖coker f ‖p , ‖ker g‖p , ‖coker g‖p
)∥∥

q
< 2

1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p
.

(7)
By Proposition 4.27 we can assume (possibly after replacing Y with a persistence
module of smaller or equal rank) that the span above is mono-epi, that is, of the form

X
f←−↩ Z

g
� Y . By Theorems 3.14 and 3.16, we can moreover assume that f and g

are bar-to-bar morphisms.
Thus, we can consider a barcode decomposition Z = ⊕k

i=1 Zi , with some of the
Zi possibly zero, and a barcode decomposition Y = ⊕k

i=1 Yi , with at least j of the

Yi equal to zero by assumption, together with morphisms between bars K (ai , bi )
fi←−↩

Zi
gi� Yi such that f = ⊕k

i=1 fi and g = ⊕k
i=1 gi . Let I ⊆ {1, . . . , k}, with

|I | ≥ j , be the subset of the indices i such that Yi = 0. For every i ∈ I , we have
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K (ai , bi )
fi←−↩ Zi

gi� 0, with Zi = K (xi , bi ) for some ai ≤ xi ≤ bi , where K (bi , bi )
denotes the zero module. Since ker f = ⊕k

i=1 ker fi and coker f = ⊕k
i=1 coker fi ,

by Remark 3.2 we observe that
⊕

i∈I K (ai , xi ) is a direct summand of coker f , and
similarly that

⊕
i∈I K (xi , bi ) is a direct summand of ker g, which gives

‖coker f ‖p ≥ ‖⊕i∈I K (ai , xi )‖p = ‖(xi − ai )i∈I ‖p ,

‖ker g‖p ≥ ‖⊕i∈I K (xi , bi )‖p = ‖(bi − xi )i∈I ‖p .

If bi < ∞ for all i ∈ I , it is easy to show using Lemma 4.28 that the cost of the span
is

∥∥(‖coker f ‖p , ‖ker g‖p
)∥∥

q
≥ 2

1−q
q ‖(bi − ai )i∈I ‖p = 2

1−q
q

∥∥⊕
i∈I K (ai , bi )

∥∥
p,

and the same inequality clearly holds if bi = ∞ for some i ∈ I . However, since
|I | ≥ j , the right-hand side of the inequality cannot be smaller than

2
1−q
q

∥∥(bi − ai )i∈{1,..., j}
∥∥
p = 2

1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p
,

and this contradicts (7). ��
Proposition 4.30 Let X = ⊕k

i=1 K (ai , bi ), with the bars ordered non-decreasingly
by length. Let j ∈ {1, . . . , k}, and let Y = ⊕k

i= j+1 K (ai , bi ) (with Y = 0 when
j = k). Then, for all p, q ∈ [1,∞],

dqS p (X ,Y ) = 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p
. (8)

Proof Since rank(Y ) = rank(X) − j , Proposition 4.29 gives us the inequality

dqS p (X ,Y ) ≥ 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p
.

The other inequality, as already noticed in Remark 4.26, follows from Proposition 4.25

and Lemma 4.23 showing that dqS p (Z ⊕ Y ,Y ) ≤ dqS p (Z , 0) = 2
1−q
q ‖Z‖p with

Z = ⊕ j
i=1 K (ai , bi ). ��

In the final part of this subsection we generalize some results from the case of the
standard contour to the case of any regular action C .

Definition 4.31 Let C be a regular contour, and let X = ⊕k
i=1 K (ai , bi ). We say that

(the barcode decomposition of) X has bars ordered non-decreasingly by lifetime
if �(a1, b1) ≤ �(a2, b2) ≤ · · · ≤ �(ak, bk), where � denotes the lifetime function
associated with C (see Sect. 2.2).
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Proposition 4.32 Let C be a regular action, and let p, q ∈ [1,∞]. Let X =⊕k
i=1 K (ai , bi ), with bars ordered non-decreasingly by lifetime, and let j ∈

{1, . . . , k}. Then, for all persistence modules Y ,
1. if rank(Y ) ≤ rank(X) − j , then

dqS p,C (X ,Y ) ≥ 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p,C

;

2. if Y = ⊕k
i= j+1 K (ai , bi ) (with the convention Y = 0 when j = k), then

dqS p,C (X ,Y ) = 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p,C

.

Proof The first statement follows from

dqS p,C (X ,Y ) = dqS p (TC (X), TC (Y ))

≥ 2
1−q
q

∥∥∥⊕ j
i=1 TC (K (ai , bi ))

∥∥∥
p

= 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p,C

where we are using in sequence Proposition 4.19, Proposition 4.29 (observing that
the length of a bar TC (K (a, b)) coincides with the lifetime �(a, b) of K (a, b), see
Proposition 4.8), and Proposition 4.13. The second statement is proven similarly,
using Proposition 4.30. ��

5 Wasserstein stable ranks: computations and stability

InSect. 4 itwas shown that theWasserstein distancesdqS p,C are pseudometrics onTame.
They can therefore be used in the framework of hierarchical stabilization (see Sect. 2.5)
to produce stable invariants of persistence modules. The focus of this section is on
one type of such invariants, theWasserstein stable ranks, which are the hierarchical
stabilization of the rank functionwith respect toWasserstein distances dqS p,C .Denoting

dqS p,C by d, the stability result for stable ranks (Proposition 2.5) states that for every
pair of persistence modules X and Y

d(X ,Y ) ≥ d�

(
r̂ankd(X), r̂ankd(Y )

)
.

In the case where p = q and C is the standard contour, combining the above
inequality with the stability results of Skraba and Turner (2020) gives several stability
results of Wasserstein stable ranks with respect to perturbation of the original data.
In particular, (Skraba and Turner 2020, Theorem 4.8) expresses stability with respect
to sublevel set filtrations of monotone functions on cellular complexes, (Skraba and
Turner 2020, Theorem 5.1) expresses stability with respect to the construction of
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cubical complexes from grey scale images, and (Skraba and Turner 2020, Theorem
5.9), expresses stability with respect to Wasserstein distance between point clouds
when using the Vietoris-Rips construction.

In order to use the Wasserstein stable ranks in applications, it is important to be
able to efficiently compute them as well as distances between them. In this section
we use computations of Wasserstein distances from Sect. 4 to derive a formula for
the Wasserstein stable rank and propose a convenient formulation of the interleaving
distance between stable ranks.

Having defined a rich family of Wasserstein distances dqS p,C , it is natural to ask
whether we can in a supervised learning context search for an optimal distance for
a problem at hand. Choosing a suitable parametrization of a contour and leveraging
the simple expression of the interleaving distance between Wasserstein stable ranks,
in Sect. 5.3 we set up a simple metric learning problem with the aim of observing
the interaction between the parameter p and the parameters related to the contour C
within the learning. Preliminary results on the optimization of only a contour in a
metric learning framework are presented in Gäfvert (2018).

5.1 Computation of the stable rank withWasserstein distances

The results of this subsection provide explicit formulas to compute the stable rank
with respect to the Wasserstein distances dqS p,C introduced in Sect. 4. We begin by
considering the case p < ∞. As in the previous section, if q = ∞we set by convention
1
q = 0 and 2

1−q
q = 2−1.

Proposition 5.1 Let p ∈ [1,∞) and q ∈ [1,∞], let C be a regular action, and let
d denote the pseudometric dqS p,C . Let X = ⊕k

i=1 K (ai , bi ), with bars ordered non-
decreasingly by lifetime (Definition 4.31), and let n := |{i ∈ {1, . . . , k} | bi < ∞}|
denote the number of finite bars of X. Then, there exist real numbers 0 = t0 < t1 <

t2 < · · · < tn such that the stable rank function r̂ankd(X) : [0,∞) → [0,∞) is
constant on the intervals [t0, t1), [t1, t2),…, [tn−1, tn), [tn,∞), and

r̂ankd(X)(t j ) = rank(X) − j,

for every j ∈ {0, 1, . . . , n}. Furthermore,

t j = 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p,C

= 2
1−q
q

∥∥(�(a1, b1), . . . , �(a j , b j ))
∥∥
p

for every j ∈ {1, . . . , n}, where � is the lifetime function associated with C.

Proof For every j ∈ {1, . . . , k}, by Proposition 4.32 Y j := ⊕k
i= j+1 K (ai , bi ) is the

closest persistence module to X (in the pseudometric dqS p,C ) such that rank(Y j ) =
rank(X) − j . We have

dqS p,C (X ,Y j ) = 2
1−q
q

∥∥∥⊕ j
i=1 K (ai , bi )

∥∥∥
p,C

=: t j ,
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with t j < ∞ if, and only if, j ∈ {1, . . . , n}. Lastly, we observe that 0 = t0 < t1 <

t2 < · · · < tn as a consequence of the assumption p < ∞. ��

In particular, when p < ∞, the value of the piecewise constant function r̂ankd(X)

can only decrease by 1 at every discontinuity point t j . For p = ∞, the stable rank has
a slightly different behavior. Even though we can define the sequence of real numbers
(t j ) j as in Proposition 5.1, we only have 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn instead
of strict inequalities. Letting sm denote the mth smallest value in {t j } j we obtain a
sequence 0 = s0 < s1 < s2 < · · · < sn′ such that the stable rank with respect to the
pseudometric d := dqS∞,C is constant on the intervals [s0, s1),…, [sn′,∞), taking the
values

r̂ankd(X)(sm) = rank(X) − max{ j | t j = sm}.

An explicit formula for the stable rank in the case p = ∞ and q = 1 was first given
in Chachólski and Riihimäki (2020).

Remark 5.2 We observe that for a persistence module X of rank k, once the k bars
in the barcode decomposition of X have been ordered non-decreasingly by lifetime,
the complexity of computing the discontinuity points of the the Wasserstein stable
rank using Proposition 5.1 is linear in k. Therefore the computational complexity of
the Wasserstein stable rank is O(k log k), determined by the complexity of the sorting
algorithm to order the bars non-decreasingly by lifetime.

5.2 Interleaving distance between stable ranks

The aim of this subsection is to propose a convenient expression for the interleav-
ing distance (Sect. 2.5) between two non-increasing piecewise constant functions. We
assume functions to take only finitely many values, that is the case of stable ranks
which will be the object of our study. Let f , g : [0,∞) → [0,∞) be non-increasing
piecewise constant functions. If limt→∞ f (t) �= limt→∞ g(t), then d�
( f , g) = ∞.
For the computation of the interleaving distancewe can therefore assume that the func-
tions f and g have the same limit value and denote it by L . Given a non-increasing
piecewise constant function f : [0,∞) → [0,∞) with limit value L , we define
the non-increasing piecewise constant function f −1 : [L,∞) → [0,∞) with val-
ues f −1(y) := inf{t | f (t) ≤ y}. If in addition the function f is right-continuous,
then f −1(y) = min{t | f (t) ≤ y}. We observe that for every right-continuous non-
increasing piecewise constant function f we have f −1( f (t)) ≤ t for all t , and equality
holds if t is a discontinuity point of f . Moreover, f ( f −1(y)) ≤ y for all y ≥ L , and
equality holds if y ∈ im f . Our focus in this subsection will be on the discontinuity
points {ti } of f and on the values in im f , rather than on the full domain and codomain
of f , thus justifying our use of the notation f −1.

Proposition 5.3 Consider two right-continuous non-increasing piecewise constant
functions f , g : [0,∞) → [0,∞) having the same limit value L. Using the nota-
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tion introduced above, we have:

d�
( f , g) = ‖ f −1 − g−1‖∞.

Proof Let us define the following subset of [0,∞),

A( f , g) := {ε ∈ [0,∞) | f (t) ≥ g(t + ε) and g(t) ≥ f (t + ε), for all t ∈ [0,∞)}.

Remember that, by definition, d�
( f , g) = inf A( f , g).
We first prove that d�
( f , g) ≥ ‖ f −1 − g−1‖∞. Let ε ∈ A( f , g). Then, for all

y ≥ L , we have y ≥ f ( f −1(y)) ≥ g( f −1(y)+ ε). Composing by the non-increasing
function g−1 and recalling that g−1(g(t)) ≤ t for all t ,we obtain f −1(y)+ε ≥ g−1(y).
We have thus shown that g−1(y)− f −1(y) ≤ ε, for all y ≥ L and ε ∈ A( f , g), which
implies g−1(y) − f −1(y) ≤ d�
( f , g), for all y ≥ L . By symmetry in the roles of f
and g, we conclude that |g−1(y) − f −1(y)| ≤ d�
( f , g), for all y ≥ L .

We now prove that d�
( f , g) ≤ ‖ f −1 − g−1‖∞ by showing that ε := ‖ f −1 −
g−1‖∞ is in A( f , g). By the definition of ε, g−1(y) ≤ f −1(y) + ε for every y ∈
[L,∞). Moreover if y = f (t) for t ∈ [0,∞), as discussed above, we have f −1(y) =
f −1( f (t)) ≤ t , which together with the fact that g is a non-increasing function proves
the following inequalities:

f (t) = y ≥ g(g−1(y)) ≥ g( f −1(y) + ε) ≥ g(t + ε).

By symmetry, we also get g(t) ≥ f (t + ε), and we conclude that ε ∈ A( f , g). ��

Let X = ⊕k
i=1 K (axi , bxi ) be a persistence module with bars ordered non-

decreasingly by lifetime, and with n finite bars. Let f := r̂ankd(X) denote the
corresponding Wasserstein stable rank with respect to the distance d = dqS p,C , for
some p, q ∈ [1,∞] and a regular actionC . The sequence 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn
such that f is constant on the intervals [t0, t1), [t1, t2),…, [tn−1, tn), [tn,∞) defined
in Sect. 5.1 is enough to encode f −1 as a finite vector f̂ −1 := ( f̂ −1

i )i∈{0,...,n}, where

f̂ −1
i := tn−i = 2

1−q
q

∥∥(
�
(
ax1 , bx1

)
, . . . , �

(
axn−i , b

x
n−i

))∥∥
p

for i ∈ {0, . . . , n − 1} and f̂ −1
n = 0. Indeed, the limit value of f is the number

L = k − n of infinite bars of X ; for all i ∈ {0, . . . , n} we have f −1(L + i) = f̂ −1
i ,

and for any y ∈ [L,∞) the value f −1(y) equals f −1(L + i), where i ∈ {0, . . . , n} is
the largest integer such that L + i ≤ y.

Let Y = ⊕l
i=1 K (ayi , byi ) be another persistence module with bars ordered non-

decreasingly by lifetime, and with m finite bars. Suppose that X and Y have the
same number of infinite bars, L = k − n = l − m. Let g := r̂ankd(Y ) denote the
Wasserstein stable rank of Y with respect to the distance d = dqS p,C . The interleaving

distance between f and g can then be written as the L∞ norm of the vector ( f̂ −1
i −
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ĝ−1
i )i∈{0,...,min(n,m)} with components

f̂ −1
i − ĝ−1

i = 2
1−q
q

(∥∥(
� − (ax1 , bx1

)
, . . . , �

(
axn−i , b

x
n−i

))∥∥
p

− ∥∥(
�(ay1 , by1

)
, . . . , �

(
aym−i , b

y
m−i

))∥∥
p

)
(9)

for i ∈ {0, . . . ,min(n,m) − 1}, and last component

f̂ −1
min{n,m} − ĝ−1

min{n,m} =

⎧⎪⎨
⎪⎩

−‖(�(ay1 , by1 ), . . . , �(aym−n , bym−n))‖p if min(n,m) = n < m

‖(�(ax1 , bx1 ), . . . , �(axn−m , bxn−m ))‖p if min(n,m) = m < n

0 if n = m.

We observe that the considered vector encodes the function ( f −1 − g−1) on the
intervals [L, L +1), . . . , [min(k, l),min(k, l)+1) of length one where both f −1 and
g−1 are constant. Since f −1 and g−1 are nonincreasing and for x ≥ min(k, l) either
f −1(x) = 0 or g−1(x) = 0, it is enough to consider those intervals.

Remark 5.4 For two persistence modules X and Y both of rank k, the complexity of
computing the interleaving distance is dominated by the sorting of the bars in the
respective barcode decompositions of X and Y , since forming the vector as in (9) and
computing its L∞ norm can be done linearly in k. The computational complexity of
the interleaving distance between Wasserstein stable ranks is thus O(k log k).

Example 5.5 Consider a persistence module Y = ⊕3
i=1 K (ai , bi ) with bars ordered

non-decreasingly by lifetime and X = K (a0, b0) ⊕ Y such that ε := �(a0, b0) ≤
�(a1, b1). By using the formula (9) and observing that

‖(�(a0, b0), . . . , �(ai , bi ))‖p − ‖(�(a1, b1), . . . , �(ai , bi ))‖p ≤ �(a0, b0)

for i ∈ {1, 2, 3} by properties (1) and (2) of p-norms, we see that the interleaving

distance between r̂ankd(X) and r̂ankd(Y ) with d = dqS p,C is given by 2
1−q
q ε. Note

that by Proposition 4.32 we know dqS p,C (X ,Y ) = 2
1−q
q ‖K (a0, b0)‖p,C = 2

1−q
q ε.

Therefore in this case the interleaving distance between stable ranks with respect to
Wasserstein distance coincides with the Wasserstein distance between X and Y . Note
however that this is not always the case. TheWasserstein stable ranks of X and Y with
respect to dqS p,C , with parameters q = 1, p = 2 andC the standard contour, are shown
in Fig. 2, together with their “inverse” functions which are used for the computation
of the interleaving distance.

Let us keep denoting dqS p,C by d. It follows from triangle inequality andLemma4.23
that:

d(X ,Y ) ≥ 2
1−q
q |‖X‖p − ‖Y‖p|.

This inequality can be refined by

d(X ,Y ) ≥ d�

(
r̂ankd(X), r̂ankd(Y )

)
≥ 2

1−q
q |‖X‖p − ‖Y‖p|,
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Fig. 2 Schematic representation of the computation of the interleaving distance in Example 5.5. Left: Bar-
code decomposition of Y in orange and bar K (a0, b0) in blue.Middle: Stable ranks computedwith standard
contour, q = 1 and p = 2. The functions r̂ankd (X) and r̂ankd (Y ) are represented in blue and orange,

respectively. Right: Inverse stable ranks for the computation of interleaving distance, with r̂ank
−1
d (X)

in blue and r̂ank
−1
d (Y ) in orange. The interleaving distance between stable ranks can be computed as

‖r̂ank−1
d (X) − r̂ank

−1
d (Y )‖∞ = 2

1−q
q ε, illustrated with the pink arrow (colour figure online)

where the first inequality is given by the stability theorem of hierarchical stabilization
(Proposition 2.5) and the second inequality is provided by the characterization of
interleaving distances between stable ranks in Proposition 5.3 and Eq. (9) stating that
the interleaving distance between the Wasserstein stable ranks of persistence modules

X and Y is the L∞ norm of a vector with 0th component 2
1−q
q |‖X‖p − ‖Y‖p|.

An example where the second inequality is strict is provided by Example 5.5 for
p > 1, while an example where this is an equality is provided in the case Y = 0
by Lemma 4.23. A simple example in which the first inequality is strict is provided
instead by X = K (0, 1), Y = K (0, 2) and q = 2.

Remark 5.6 Since stable ranks are measurable functions [0,∞) → [0,∞), there
are many pseudometrics to compare them other than the interleaving distance d�
.
In particular, one can consider the standard L p-pseudometrics, here denoted by

dp( f , g) := (∫ ∞
0 | f (t) − g(t)|p dt) 1

p . As shown in Chachólski and Riihimaki (2020,
Prop. 2.1), the stability theorem of hierarchical stabilization implies the following
bounds for dp:

c d(X ,Y )
1
p ≥ dp

(
r̂ankd(X), r̂ankd(Y )

)
,

for any persistence modules X and Y , where c := max{rank(X), rank(Y )} and d
denotes any pseudometric between persistencemodules. In this article we have chosen
to work with the interleaving distance between Wasserstein stable ranks because of
the strong stability result, expressed as a 1-Lipschitz condition. Lipschitz stability for
Wasserstein distances other than W1 can not be obtained for example by considering
linear representations of persistence diagrams (Hofer et al. 2017; Adams et al. 2017;
Chen et al. 2015; Kusano et al. 2017; Reininghaus et al. 2015) as proved in Theorem
6.3 in Skraba and Turner (2020). The trade-off between stability and the possibility
of exploiting a Banach or Hilbert space structure is still to be explored.
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5.3 Metric learning

We have defined distances dqS p,C between persistence modules, parametrized by q,
p and by a contour C , and computable stable rank invariants with corresponding
interleaving distances. These distances can be pulled back to compare persistence
modules in Tame via the function r̂ankd , with d = dqS p,C . Recalling that the stable

ranks depend on the pseudometric dqS p,C , we now turn to the question of how to choose
p and C . The optimization of the parameter q is not relevant, since it determines a
constant multiplicative factor to the distance of each pair of persistence modules. We
thus fix q = 1 for a direct comparison with the original framework of noise systems.

For brevity, we write d := d1S p,C and d�
,p,C (X ,Y ) := d�
(r̂ankd(X), r̂ankd(Y )).
The field of metric learning provides a variety of loss functions suited for different
machine learning problems. For example, if we consider a simple binary classification
problem we have a dataset of persistence modules {Xi }i∈I and the index set I is
partitioned into two sets A and B, to represent the labeling. For this problem, a loss
function (from Zhao and Wang 2019), designed to yield small intra-class distances
and large inter-class distances can be formulated as:

L =
∑

i, j∈A(d�
,p,C (Xi , X j ))
2∑

i∈A, j∈I (d�
,p,C (Xi , X j ))2
+

∑
i, j∈B(d�
,p,C (Xi , X j ))

2∑
i∈B, j∈I (d�
,p,C (Xi , X j ))2

. (10)

In order to proceedwe need to choose a family of contours that is practically search-
able whenminimizing the loss function above.Weworkwith contours of distance type
which are parametrized by densities (see Sect. 2.2). In turn, in order to use gradient
optimization methods, we want the densities to be parametrized by a finite real-valued
parameter vector. To this aim we choose as densities unnormalized Gaussian mixtures
f (x) = ∑k

i=1 λiN (x | μi , σi ) for some chosen k, where N is Gaussian with mean
μi and standard deviation σi , and λ1 = 1.

In summary, the metric learning problem amounts to minimizing the loss function
with respect to a parameter vector θ ∈ R

3k , i.e. θ = (μ1, . . . , μk, σ1, . . . , σk, λ2, . . . ,

λk, p), designed to learn conjointly the parameter p and the parameters of the con-
tour of the algebraic Wasserstein distance. The loss function is a simple function of
the pairwise interleaving distances between Wasserstein stable ranks of persistence
modules in the dataset. As can be seen in Proposition 5.3 and the expression (9), the
interleaving distance between stable ranks is the L∞ norm of differentiable functions
with respect to θ and is therefore differentiable almost everywhere with respect to θ ,
implying the same behavior for the loss function. Hence the metric learning problem
is amenable to gradient-based optimization methods such as gradient descent.

6 Examples of analyses withWasserstein stable ranks

In a first experiment, we show how varying the parameter p affects the distance space
of the Wasserstein stable ranks and can serve as a way to weight the importance
of long bars versus short bars, for a set of synthetic persistence modules. In a second
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experiment, we illustrate on a real-world dataset how learning the parameter p together
with the parameters of a contour can lead to more discriminative Wasserstein stable
ranks in a classification problem.

6.1 Synthetic data

A straightforward way to apply persistent homology in the context of computer vision
is to construct a complex (e.g. cubical complex) from the grid of pixels constituting
an image. The complex is then filtered based on the grayscale intensity of the pixels
(or based on the color channels for color images).

It is easy to see that, in this context, what should be considered as signal versus
noise in a barcode representation of the data is highly dependent on the application. For
example, for classification of handwritten digits from the MNIST dataset (Garin and
Tauzin 2019; Turkeš et al. 2021) the dominant topological features are often the most
discriminative (for instance the existence of a 1-dimensional cycle may be enough
to distinguish between digits 0 and 1). On the other hand, in biomedical imaging
(Chung et al. 2018; Qaiser et al. 2019) pathological states can translate into images
with irregularities or lack of homogeneity, associated with high numbers of short-lived
components as observed in Garside et al. (2019).

Inspired by these applications, we construct two much simpler synthetic datasets of
images and associated persistence modules, with the goal of illustrating the effect of
choosing the parameter p when usingWasserstein stable ranks. The parameter q is set
to 1 and the contour is fixed to be the standard contour. In other words, we study the
effect of the parameter p on how the function r̂ankd , with d = d1S p , maps persistence
modules onto the space of stable ranks, endowed with the interleaving distance. Each
dataset is composed of 100 images together with their class label, A or B. Each image
is composed of one block of high-intensity pixels and a number of blocks of low-
intensity pixels (while the size of the pixel blocks does not have a direct impact on
the following persistent homology analysis, the high-intensity block is made larger
for visual clarity, see Figs. 3, 4). The images are represented as cubical complexes on
which super-level set filtration is performed and we analyze the H0 barcodes obtained
from this process. Since we use pixel intensity [0, 255] and super-level sets are used,
the resulting filtration scale is [255,−∞). This is capped to the minimum pixel value,
0, and transformed as 255− x to obtain a filtration scale [0, 255] as can be seen in the
barcodes in Figs. 3, 4.

• In Dataset 1 the pixels in the high-intensity block have slightly higher intensity
in images from class A (uniformly distributed between 245 and 255) compared
to images of class B (between 200 and 210). The low-intensity blocks however
follow the same distribution for images of both classes (the number of blocks is
uniformly distributed between 50 and 100 and the intensity is between 1 and 10).
Sample images and barcodes are shown in Fig. 3.

• In Dataset 2 on the other hand, the intensity of the high-intensity blocks follows the
same distribution for both classes (uniformly distributed between 100 and 255).
The number of low-intensity blocks however follows a different distribution for
Class A (between 20 and 30) and Class B (between 120 and 130). Their intensity
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Fig. 3 Dataset 1. Left: Sample images from classes A and B. Right: H0 barcodes corresponding to the
sample images

is the same for both classes (between 1 and 10). Sample images and barcodes are
shown in Fig. 4.

This construction induces distributions of barcodes where barcode features (i.e.
length of longest bar or number of bars in a given length range) are expected to be
statistically distinct or indistinguishable. In terms of the barcodes, for Dataset 1 the
signal is by construction the single dominant topological feature (the long bar, whose
length follows statistically different distributions between classes) while the noise is
composed of the numerous short bars (corresponding to low intensity blocks, forwhich
the number and intensity follows the same distribution in both classes).

In accordance with the intuition, for Dataset 1, choosing a value of p = ∞ when
generating the stable ranks effectively “denoises” the barcodes and organizes the space
of Wasserstein stable ranks in a way where stable ranks of the same class are close
to each other in interleaving distance but far from elements of the other class. Stable
ranks corresponding to p = 1 however fail to organize the corresponding distance
space in this clear-cut way, being too sensitive to the noisy short bars in the barcodes.
To illustrate this effect, in Fig. 5 we show the hierarchical clustering (with average
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Fig. 4 Dataset 2. Left: Sample images from classes A and B. Right: H0 barcodes corresponding to the
sample images

linkage, similar results were observed for complete and single linkage) corresponding
to the distance spaces of Wasserstein stable ranks for p = 1 and p = ∞.

On the contrary, for Dataset 2 the signal is by construction the number of short
bars (numbers which follow statistically different distributions) while the noise is the
single long bar (generated by blocks following the same distribution for both classes).
In this case a choice of p = 1 organizes the space of stable ranks such that elements
of the same class cluster together, while p = ∞, being too sensitive to the (for this
dataset) noisy long bar, fails to do so. This is illustrated in Fig. 6.

While the effect of changing p on the structure of the distance space is clear for the
parameters used to generate our artificial datasets, some class-based structure remains
on a small scale, also when choosing p = ∞. By increasing the amount of noise it
is however possible to induce e.g. a nearest neighbor classifier to perform arbitrary
poorly for the p = ∞ while still distinguishing the classes for p = 1 (and vice versa
for Dataset 1).

The choice of the parameter value p, which we have demonstrated can have a large
impact, is essentially related to the underlying distance between persistence modules.
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Fig. 5 Dataset 1. Hierarchical clustering on theWasserstein stable ranks for p = 1 (left) and p = ∞ (right)
with respect to the interleaving distance. The leaves (stable ranks in the dataset) are labeled and colored
according to their class

Fig. 6 Dataset 2. Hierarchical clustering on theWasserstein stable ranks for p = 1 (left) and p = ∞ (right)
with respect to the interleaving distance. The leaves (stable ranks in the dataset) are labeled and colored
according to their class

UsingWasserstein-stable invariants however has computational advantages, facilitates
learning the right parameters for a particular problem and allows for a richer use of
machine learning methods as we illustrate in the next subsection on a real-world
dataset.

6.2 Brain artery data

In Bullitt et al. (2010) a dataset of brain artery trees corresponding to 97 subjects
aged 18 to 72 is introduced. Each data point is modeled as a tree embedded in R

3. In
Bendich et al. (2016) the dataset is further analyzed with persistent homology. To be
able to apply a sublevel set filtration on the tree, a real-valued function is defined on the
vertices as the height of the vertex in the 3D-embedding. This is extended to a function
on the edges by taking the maximum value of the weights of the vertices connected
by the edge. After applying persistent homology, each tree is represented by a vector
containing the sorted lengths of the 100 longest bars in a barcode decomposition of the
corresponding persistence module. This feature is further used to demonstrate, among
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Table 1 Converged values for the parameters of the metric learning problem (mean and standard deviation
over the LOOCV folds)

p μ1 μ2 σ1 σ2 λ

1.10 ± 0.04 16.45 ± 0.75 81.88 ± 0.27 15.51 ± 0.45 4.55 ± 0.24 1.15 ± 0.05

other things, an age effect of brain artery structure, by showing that the projection of
the vectors on the first principal component of the dataset is correlated with age.

The authors note that using vectors of sorted length was computationally more
feasible than computing Wasserstein distances between the persistence diagrams and
they are more amenable to statistical analysis. In addition, the authors observed that it
was not necessary to use the whole vector of lengths to establish the correlation and
in fact the topological features of medium length, rather than the longest ones, were
the most discriminatory.

Analyzing the dataset with stable ranks offers computational and statistical advan-
tages.Moreover, for this problemwhere the discriminative information is not contained
in themost persistent feature, considering other distances than the bottleneck (p = ∞)
and more generally tuning the parameter p might be beneficial. Finally, combining
the tuning of the parameter p with a contour might increase the power of the method.
Indeed the parameter p and the contour, intuitively are related to different features of
a persistence barcode: while the parameter p globally weights the importance of long
versus short bars as illustrated in Sect. 6.1, the contour allows to focus on the most
informative filtration scales.

While we also study age effects of brain artery structure, we choose to binarize the
problem by creating two classes of similar size: young (age < 45, 50 subjects) and
old (age ≥ 45, 47 subjects) and treat the problem as a classification.

We start by studying the effect of varying p alone. We compute the distances
between Wasserstein stable ranks with standard contour. We classify the samples in
the distance space thus obtained by using the k-nearest neighbors algorithm (Pedregosa
et al. 2011) (the parameter k is chosen in a cross-validation procedure). Repeating this
for various values of p we observe a difference in the resulting accuracy, plotted in
Fig. 7, with the highest values obtained for p in the medium range (2–3). This is in
line with the conclusion in Bendich et al. (2016) that the highest persistent features
alone have a small distinguishing power, while medium sized bars reflect variations
in brain artery trees within subject of different ages. In Bendich et al. (2016) only the
length of bars in a barcode is used to compare barcodes of different classes. With our
features parametrized by p and a contour C , we can take into consideration both the
length of bars and their position in the parameter space.

We therefore next turn to the problem of learning the contour of the stable ranks as
well. We use the metric learning method described in Sect. 5.3. Using leave-one-out
cross-validation (LOOCV), for each training fold we learn the metric that optimally
separates training samples from the two classes byminimizing the loss defined in (10).
We then classify using KNN in the obtained distance space.

For metric learning, the contours are parametrized by densities which are unnor-
malized Gaussian mixtures with two components. The loss function is implemented
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Fig. 7 Accuracy on the brain artery problem using distances between stable ranks and KNN, for standard
contour and different values of p

Fig. 8 Results for one example run of the metric learning optimization for Wasserstein stable ranks (see
Sect. 5.3) over 25000 iterations. Top Left: Progression of the loss and the KNN training fold accuracy over
the iterations. Top Middle, Top Right, Bottom Left, Bottom Middle: Progression of the parameters in
θ = (μ1, μ2, σ1, σ2, λ2, p) parametrizingWasserstein stable ranks: p, meanμi , standard deviation σi and
λ2 respectively over the iterations. Bottom Right: Density at different iterations

in PyTorch (Paszke et al. 2019). After a random initialization of the parameters, pro-
jected gradient descent (to respect the constraints p ≥ 1, λi , σi > 0) with momentum
is used to achieve a lower loss. An example of an optimization on a training fold
over 25000 iterations is shown in Fig. 8. The average and standard deviation of the
optimized parameters, over the LOOCV folds can instead be found in Table 1.

The metric learning is effective in finding distances that improve the classification
performance: running the optimization problem not only decreases the loss but also
increases the corresponding classification accuracy (as is seen in Fig. 8 in the top left
plot), reaching 76.3% with the parameter values summarized in Table 1.
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Fig. 9 Hierarchical clustering on the standard stable ranks (left) and the optimized stable ranks resulting
from the metric learning problem (right) with respect to the interleaving distance. The leaves (stable ranks
in the dataset) are labeled and colored according to their class (A is age ≥ 45, B is age < 45)

Fig. 10 Sample barcodes from the two classes with superposed learned density. Bars are colored according
to the density

This is an improvement compared to the accuracies obtained at random initialization
(between 44.3 and 71.1% for 10 random initializations of the parameters in Table 1),
showing the benefit of learning, but also compared to the results obtained when only
varying p and considering the standard contour in Fig. 7. It is thus when we learn
both p and the contour that the best loss and corresponding classification accuracy is
achieved.

In Fig. 9 we illustrate the effect of the metric learning by plotting the hierarchical
clustering (with average linkage) corresponding to the standard stable ranks (i.e., with
p = ∞ and standard contour) and to the optimized stable ranks. We see that the
optimized stable ranks (with the exception of two outliers) group into two clusters:
one with a majority of class A and the other with a majority of class B, while the
pattern for standard stable ranks is less clear.

The optimal parameters found with the metric learning method are of interest
because they allow to construct a distance space in which machine learning meth-
ods can be carried out, but they are also interpretable: they contain information about
which features of the dataset are important to distinguish the two classes.

This is illustrated in Fig. 10 where two sample barcodes - one from each class - are
displayed with the optimal density superposed and the bars colored according to the
density. From the insight that some parts of the filtration scale are more important in
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distinguishing younger from older subjects, one may pursue the analysis by looking
for characteristics of bars in that region of the barcode. One can also take the analysis
a step further by looking at the object from which the filtered simplicial complex was
created. In our case, since the filtration scale corresponds to the height (z-coordinate)
in the 3D-embedding of the brain artery tree, one may for example investigate whether
differences in brain artery between subjects of different ages in this particular region
carries a biological meaning.
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