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Abstract

The cold start problem is a chief concern in the context of surrogate-based optimisation, as it can slow down or prevent
convergence towards a global minimum. Transfer optimisation (TO) has recently emerged as a promising solution, positing
the reuse of historical data to improve the quality of the surrogate predictor. However, the requirement for constant design
parameters across the source and target tasks severely limits the range of applicability of TO. Several strategies have been
proposed to overcome this constraint. However, they typically require either linked samples or linked design variables, and
thus only offer a slight extension of the aforementioned scope. This paper proposes a new transfer optimisation method
that enables varying design parameters. It removes the link constraint by using simulation physics, rather than a mapping
function, to represent the distribution of source and target samples. Then, it employs a t-SNE inspired optimisation routine
to recreate this distribution in the target task’s design variable space. Multiple-output Gaussian processes are used to model
the resulting distribution of target and source samples. Results indicate significant improvements of 30-60% in optimisation

performance over traditional Kriging-based approaches.

Keywords T-SNE - Transfer optimisation - Kriging - Surrogate modelling

1 Introduction

The fundamental task of engineering design optimisation
involves identifying a set of design variables which define
a parametric geometry such that an optimal value of some
objective, f, is found. Global methods, such as genetic algo-
rithms (GAs) or local optimisers, gradient descent, are
examples of tools commonly used for the task.

However, in most practical cases, the cost of obtaining
the value of the objective function makes direct evaluation
infeasible. To address such scenarios, it is common to lever-
age machine learning models that build an approximation,
., of the underlying function. The key is that the model is
cheap to evaluate and thus can be used to search for optimal
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designs rapidly. This solution is called surrogate-based opti-
misation (SBO), originally introduced by Jones et al (1998),
and draws its name from the idea that the model, f , acts as
a surrogate representation of the physical process used to
determine f.

The primary limitation of SBO stems from the prohibitive
cost of evaluating the objective function, which implies that
surrogate models often start with a limited number of train-
ing samples X. This gives rise to the curse of dimensionality,
described in detail by Bellman and Kalaba (1959), which is
particularly potent in engineering problems, where, under
the underlying nonlinear physics, the behaviour of the objec-
tive function is, more often than not, multi-modal.

The curse of dimensionality is most commonly addressed
through adaptive sampling, also known as sequential model-
based sampling. This involves first tuning the surrogate
model f using the sparse initial sample. Infill points are then
added to the training dataset, based on a sub-optimisation
problem, where an auxiliary criterion S (f ;x) is either max-
imised or minimised. Infill strategies commonly involve
balancing exploration (improving model accuracy) and
exploitation (finding the optimal design). Still, it is impor-
tant to note that how best to choose update points is often
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problem-dependent. A taxonomy of existing surrogate
modelling techniques and infill criteria are discussed and
compared in works by Rojas-Gonzalez and Van Nieuwen-
huyse (2020), Bartz-Beielstein et al (2020) or Zhan and Xing
(2020).

While extremely useful in various applications, surrogate-
based strategies are imperfect and present several limita-
tions. The focus of this paper is the cold start problem, high-
lighted by Min et al (2017), which is briefly described. Since
infill criteria are mathematically derived from the error
of the surrogate model, the search for infill points, which
involves a sub-optimisation problem, is also exposed to the
curse of dimensionality. As Forrester et al (2008) pointed
out, an unlucky initial sample compounded by a deceptively
positioned minimum can trick the SBO framework, lead-
ing to a failure in converging to the true optimum. More
commonly, however, users are faced with a slow start and
exhaustion of the computational budget before the optimum
can be discovered. More comprehensive infill sampling at
each step can solve this problem, but this involves an unde-
sirable use of the computational budget.

A key assertion of this work is that the slow start problem
can best be mitigated through transfer optimisation (TO)
Gupta et al (2018). TO consists of leveraging correlations
between similar design tasks to transfer knowledge from a
source (or historical) design task to a target (or new) one.
This approach draws appeal from emulating how engi-
neers think when designing innovative solutions. Previous
research has highlighted the great extent to which engineers
draw upon prior experience and knowledge of established
systems Wills and Kolodner (1994).

The concept of knowledge transfer has been successfully
applied in a range of scientific domains on problems with
constant and varying parameterisation. These are reviewed
in section 2. The surrogate models used in the optimisation
framework are discussed in section 3. The current method
is described in section 4. Section 5 showcases the applica-
tion of the method on an illustrative example and discusses
several practical problems and how they are addressed. Sec-
tions 6 and 7 showcase the performance of the approach on
more realistic design optimisation problems. Then, section 8
offers details on the hyper-parameters of the algorithm and
gives guidelines for their selection.

2 Review of knowledge transfer methods
and applications

In the following section, transfer optimisation, a conceptual
framework for knowledge transfer, is introduced. In addition,
several difficulties associated with its efficient implementa-
tion are discussed.
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Formulated by Gupta et al (2018), transfer optimisation
considers a series of JC optimisation tasks 7, 7, ..., 7y, con-
sisting of domains D,, D,, ..., Dy.. A domain D, consists of
the search space X, and the auxiliary space ), defined as
the set of all operating conditions.

A surrogate-based optimisation problem which uses
knowledge transfer may be framed as

min fk(xl,xz, s Xy V1o Vas e Vi
X

ey

)
S.t. gk(xl,X2,...,xk,Z1722,...,Zk)

<
and hk(.xl,.xZ,...,xk,WI,W2,...,Wk) :O

Here, f, is the predictor of the objective function, g, is the
predictor of some inequality constraint, and /, is the predic-
tor of some equality constraint. The vector x; represents the
descriptor variables for task i, while the scalars y;, z;, and w,
represent the true objective and constraint functions.

The goal is to accelerate the optimisation of task 7, by
building a predictor which not only makes use of the pair
x; and y, but also uses those of previously completed tasks
71,,7,, ..., T,_,. This realisation of the transfer optimisation
paradigm is known as sequential transfer and is the focus of
this paper. Sequential knowledge transfer problems can be
further split into two types, which are described in the fol-
lowing two sections.

2.1 Knowledge transfer with constant
parameterisation

The first type of sequential transfer involves problems, where
X, =&, = -« = X, that is, the design variables describing
the objective f are constant. Such problems are sometimes
referred to as homogeneous knowledge transfer problems.

In such instances, it is important to note that a change in
the scale or behaviour of the objective function may occur.
For example, a change in the material of a truss from steel
to aluminium will produce a step change in the values of
an objective such as mass or deflection. In addition, sub-
tle changes in the topology of the design space may occur
due to nonlinear behaviour. Although the shapes of the two
objective functions may remain qualitatively similar, such
changes render traditional Gaussian processes unsuitable,
calling for a more elaborate approach.

A possible solution involves normalising the objective
function values through latent-ranker-based GPs, described
at length by Chu and Ghahramani (2005). The algorithm
assumes that there exists a set of unknown latent function
values {f(x,),f (xj)} which, given some preference relation-
ship x; > x;, preserve the ranking of the training samples.
The resulting ranking function is independent of the scale
of the responses that are used to build it and thus can be
used as a constant across design tasks. Bardenet et al (2013)
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proposed a collaborative tuning strategy using the ranker-
based GP, which successfully tuned hyper-parameters for
two algorithms across a series of datasets. Here, the tasks
consisted of multiple datasets for the same algorithm (e.g. 20
classification problems for an adaptive boosting algorithm).

Another way of addressing changes in the objective func-
tion values is through treed Gaussian processes (TGPs),
proposed by Gramacy and Lee (2009). Although originally
designed for modelling non-stationary functions, TGPs were
later enhanced to handle datasets with a mixture of qualita-
tive and quantitative variables Gramacy and Taddy (2010).
However, since no explicit use of the correlations between
tasks is made, the algorithm is not suited for knowledge
transfer tasks. Indeed, a study by Swiler et al (2014) proved
that TGPs can perform worse than building separate GPs
for each task.

A more popular approach in the area of engineering
design involves the fusion of source and target samples into
a single model, usually by adopting a block covariance struc-
ture. Some of the more prominent approaches in the litera-
ture are the multiple-output Gaussian Processes (MOGPs)
of Bonilla et al (2007) and the Co-Kriging algorithm, intro-
duced by Kennedy and O’Hagan (2000). MOGPs have found
widespread utility in problems featuring mixed continuous
and discrete variables, with successful applications includ-
ing meta-material design Tran et al (2019), solid rocket
engine design Pelamatti et al (2019), and centrifugal pump
design Renhui and Zhao (2020). On the other hand, the
hierarchical nature of Co-Kriging is especially well suited
for problems, where the tasks consist of varying levels of
fidelity for the same geometry. Illustrative examples encom-
pass multi-disciplinary gas turbine design Toal et al (2014),
robust aerodynamic design Tao and Sun (2019), and civil
building shape design Ding and Kareem (2018). Recently,
Toal (2023) and Lin et al (2021) showed that a blend con-
sisting of multi-fidelity, multiple-output Gaussian processes
could also be effective for a wide range of problems, such as
aerofoil design, structural design, or combustor optimisation.

In this paper, Kriging is used as a baseline, and MOGPs
are used for knowledge transfer. Aside from their promi-
nence in related literature, these approaches also provide a
useful error metric, which can be used to derive powerful
infill strategies. The mathematical formulation of the algo-
rithms is presented in section 3.

2.2 Knowledge transfer with varying
parameterisation

Problems involving varying parameterisations are more
representative of realistic design scenarios since engineers
commonly add, remove, or change variables as their under-
standing of a design evolves over time. Models such as
MOGPs assume a homogeneous definition of the variables

in each categorical level, so an additional step is required
to model such cases. Most commonly, this step consists
of transforming the variables or projecting them onto a
common latent space.

A widely adopted algorithm that addresses this problem
is space mapping (SM) Bandler et al (1994). Robinson
et al (2008) employed a customised SM variant, inte-
grating the method with trust region model management
(TRMM) and a 2™-order correction. Their implementation
showcased significant optimisation speed enhancements,
yielding a 40% improvement for a bat flight design prob-
lem and a 70% acceleration for a wing design problem.

An alternative to Space Mapping is the Input Mapping
Calibration (IMC) of Tao et al (2019). In contrast to the opti-
misation method used by SM, IMC optimises the linear map
globally and incorporates a nominal mapping to regularise
the cost function. In the context of a wing design problem,
the IMC method achieved a notable result: it automatically
adjusted the wing twist angles to compensate for the low-
fidelity representation of the geometry.

Hebbal et al (2021) employed a two-layered deep
Gaussian process to model multi-fidelity problems, where
the fidelities are of varying parameterisations. In their first
layer, a multiple-output Gaussian process mapped higher
fidelity inputs into lower fidelities such that all samples
were eventually mapped onto the lowest fidelity mani-
fold. Then, the second layer constructed the multi-fidelity
Gaussian process. The authors observed improvements in
predictive accuracy across various analytical and engineer-
ing test problems, especially when the number of samples
for the target task was limited.

A notable limitation of the approaches presented above is
the requirement for linked samples. A set of samples x,,,,,..
and x,,,,,, are linked if there exists a function that maps one
onto the other: f @ X,,,,cc ™ Xjgpee- In Other words, a new
assumption is added, namely that the two sets of data rep-
resent the same sample, albeit with different parameters.
For practical applications, this entails running a num-
ber of expensive simulations to generate the linked data

arget® yil rger AN undesirable use of a computational budget.

An alternative is the transfer Bayesian optimisation
(TBO) framework proposed by Min et al (2021), which
is based upon the manifold Gaussian process regression
(mGP) of Calandra et al (2016). The mGP considers a
multiple-output Gaussian process consisting of a compos-
ite function: F = GoM, where G is the Gaussian process,
M is a mapping function, and the operator o is used to
represent a composite function, here G(M(x)). In the case
of the TBO framework, the mapping function is a single-
layer neural network with a ReL.U activation and applies
the transformation to the source data. The covariance of

the GP takes the form k(x? x¥ )= k(Mx® ), x? .

source’ “"target source’’ “"target
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Since the weights of the neural network are given as priors
to the Gaussian process, they are included in the likelihood
optimisation process, thus removing the requirement for
linked samples. However, the method has only been dem-
onstrated on problems, where the target parameterisation
is a subset of the source parameterisation, which ensures
the presence of latent correlations between the two tasks.
The method presented in this paper allows for an extension
to the more general case, where no overlap between the
two sets of design variables exists.

3 Surrogate models

In this section, the Kriging and categorical-Kriging algo-
rithms are briefly described. For the remainder of the
paper, the two are used as regression models for the base-
line and proposed sequential optimisation frameworks.

3.1 Kriging

The Kriging model is a member of the Gaussian Process
(GP) family introduced into engineering design by Sacks
et al (1989). Intuitively, it uses each sample in the training
set as the centre of a Gaussian distribution. Mathemati-
cally, this entails representing the predictor as the addi-
tion of a mean vector and a row vector from a covariance
matrix

Fo) = m+ %, 2

The choice of kernel function for the covariance matrix
depends on the nature of the problem, but in the context of
regression, the p-exponential formulation is common and
is defined as

D
K(x,x; 1 0,p) = ) exp {=10%|x; — x;[|P4}. 3)
d=1

Here, D is the number of variables or features. The covari-

ance matrix is then defined by considering all combinations
of n input vectors

A... 0
+{0 - 4)
0.4

Kx,x)) ... K(x;,x,)
Y= : :
Kx,,x;) ... K(x,,x,
The scalar 4 is added to the diagonal of the covariance
matrix as a regularisation term. The loss function is defined
as the natural logarithm of the probability density function,
also known as the log-likelihood, and can be written as
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LOlx,0,p, 4) = — gan— gln(az)—

; 5
R e Vbl el 1) ®)
2 202

The ¢ term is the standard deviation of the vector of
responses y. It, along with the mean of the distribution u,
can be directly estimated by calculating the stationary points
of the loss function with respect to each hyper-parameter.
This leads to the maximum likelihood estimators,

. 1TEly
A ©
and
TSy —
n

The quantities obtained in Eqs. 5 and 6 allow the simplifica-
tion of the loss function,

LO|x,0,p, A) = —% In(c%) — %m det X 8)

Predictions on a new sample x; are defined as

) = 1 =W =0y = 1p). )

Here, y is a new covariance matrix consisting of the distance
between a set of new points x,,,, and the training sample
X. The model and optimisation algorithm are implemented
using the OPTIMAT CMO2 toolbox ( Toal et al (2008), Toal
et al (2009), Toal et al (2011)). This uses a particle swarm
optimiser (PSO) enhanced by a local terminal search. A key
advantage of Kriging is that it offers an error metric for any
new prediction, which can be used as an infill criterion or
as a basis for other infill criteria, such as the probability of
improvement or the expected improvement and is defined as

1— 179y
17y-11 ’

P, ) =021 -y Py + (10)

new

3.2 Categorical Kriging

The categorical-Kriging model is a mixed kernel method,
combining traditional continuous kernels, such as the
p-exponential of Eq. 4, with discrete kernels, whose purpose
is to describe the correlation between categorical levels or
data sources.

There is extensive literature on which combinations of dis-
crete and continuous kernels should be used for various appli-
cations. Categorical Kriging is known in the mathematical



A t-SNE-based embedding for transfer optimisation with non-overlapping design variables

Page50f23 57

literature as the intrinsic model of coregionalisation (IMC) or
unrestricted covariance model (UC) Bonilla et al (2007). In
simple terms, it uses a matrix of correlations between discrete
levels defined as

k(w(l)v W(])) = TC;stK(xi’ x]) (1 1)

Here, .

s Tepe; is a term describing the correlation between the
categorical levels of the vectors x; and x;.

To effectively apply the correlations 7, ;, the hyper-sphere
method of Zhou et al (2011) is used. The first step involves
constructing a discrete kernel T using a lower diagonal matrix
L to ensure positive, semi-definiteness. This would have the

form in Eq. 11 in a case with three discrete levels.

1 T12 113
T=LL"=|7, 1 73] (12)
Ti3 T3 |

Here, the matrix L would have the following form:

1 0 0
L=]cost,, sin 0, 0 (13)
cos By, sinf cosB;, sind;;sinf;,

And the terms of the matrix L (and therefore T') can be gen-
eralised using the formulation

-

L =1
lz,l = cos(02’l)
l,, =sin(0, ;)
L©®) = J 22 2,1 14
®) by = cos(0,) (14)

lis = sin(@y 1) ... sin(0; ;_;) cos(0; )
lk,k = Sln(@k’l) e Sin(ek’k_z) COS(GI{,I{—I)

L

with k > 2 and s = 2,...,k — 1. To expand the definition to
multiple quantitative variables, a separate T}, is built for each
category, then,

R
T=[]7 (15)

k=1

Here, R is the number of categorical features or tasks. To
build the remainder of the algorithm, the same methodology
as in section 3.1 can be used, where the model covariance
has the following form:

K=TQ®K. (16)

The hyper-parameters here are optimised using the method
described in Toal (2023).

4 A t-SNE-based embedding

This section describes the method proposed for aligning
the heterogeneous parameterisations of a target and source
task. Rather than providing an explicit link between design
variables as a prior, the relationship is learned from the
problem’s physics. Specifically, physical measurements
are collected for each sample of the target and source
tasks. After some manipulation, the distribution of these
samples is assessed in a latent physics-based space and
then reproduced in the original variable space.

A key assumption is that the underlying physics of
the source and target tasks does not change, and thus can
function as a dependable bridge between two or more
parameterisations.

The three-step methodology is outlined as follows:

1. Constructing the physics matrices; Z%" and Zgjj;;
are used to represent a consistent field of physical meas-
urements drawn from the simulation that was used to
calculate the quantity of interest. Here, d is the number
of measured physical quantities, m is the number of sam-
ples in the target, and n is the number of samples in the
source data.

2. Building a graph representation of the physics space:
this step uses a representation similar to that of the
t-SNE algorithm of van der Maaten and Hinton (2008)
with a few modifications that are detailed in section 4.2

3. Aligning the source data with the target data in the
design variable space: once the relationship between
target and source tasks is represented using a latent
physics space, the source data are embedded onto a
hypercube bounded by [0,1], which corresponds to the
target data manifold. The algorithm must find an embed-
ding that positions the source data around the target data
design of experiments such that the probability distribu-
tion matches that found in step 2. The mathematics of
this process are described in section 4.3.

4.1 Constructing the physics matrices

Employing physics matrices draws inspiration from Perron
et al (2021), where physics measurements from low-fidel-
ity models are used to generate more accurate high-fidelity
field predictions. The inconsistency of the finite volume
meshes between the two levels of fidelity is addressed by
separately collecting physics measurements from each
set of cells and applying proper orthogonal decomposi-
tion (POD). The resulting latent spaces are aligned using
an affine transformation, whose weights and biases are

@ Springer
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determined by solving the orthogonal Procrustes prob-
lem Gower and Dijksterhuis (2004). The transformation,
however, requires a set of linked observations for train-
ing, described in Sect. 2.2 as a key limitation of existing
knowledge transfer methods since it involves an undesir-
able use of the computational budget.

The current method enforces a constant-grid constraint
between tasks to address this. While this merely shifts the
hindrance to the meshing process, it is argued that any sig-
nificant difficulties associated with generating constant-grid
measurements do not offset the cost—benefit of dropping the
requirement for linked observations. This is justified by
the availability of adequate interpolation methods in most
modern CFD and FEA codes, where values can be easily
obtained for a pre-defined constant grid. The accuracy of
these interpolation methods is of secondary importance,
provided their integral is well correlated to the quantity of
interest. In contrast, the study of Perron et al (2021) required
highly accurate measurements since their objective was pre-
dicting intricate aerodynamic flow fields.

Once a constant grid of physics measurements is
achieved, the matrices Zs‘if;’;ce and Z;ifg; are constructed and
independently normalised to have mean zero and a standard
deviation of 1.

4.2 Building a graph representation of the physics
space

The t-distributed stochastic neighbour embedding algorithm
builds a latent, low-dimensional representation of a high-
dimensional manifold. The initial step entails formulating
the following model for pairwise similarities in the high-
dimensional space:

exp (=1lz; — zl1°/267)
Y exp (—llz; — zl17/207)

In this formulation, outliers will generate very small prob-
ability values p;;, which will have a negligible impact on
the cost function. An additional step transforms p into a
joint probability, thereby ensuring that all contributions are
brought to a comparable scale,

Pij = (17

_ Pij Py

7 (18)

Djj

Here, n is the number of samples in z. The objective function
of the t-SNE algorithm minimises the difference between
the distribution in Eq. 16 and an embedding represented by

(IR
Yo (1 1lye = yl12)™

q; (19)
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The goal of the current method is to emulate this process in
a manner where the physics space is represented by p; and
a design variable hypercube bounded by [0,1] is represented
by g;.

The formulation in Eq. 16 is used as a starting point.
Let n and m represent the number of samples in the source
and target tasks, and let Z and X represent the physics and
design variable matrices, respectively. The probability in
the physics space can be expressed as

pl.)]?yﬂcs _ €Xp (_Hzi_Zsz/ZUl.z) .
v Dki €XP (=Ilz - %l12/267)

. hysics . .
The matrix pfl/y *¢ will have a block covariance form, where

(20)

the terms can be conveniently expressed as

pﬁ?ysics — <pT|T pT|S> . (21)

Psit Ps|s

Here, the indices T and S correspond to target and source
samples, respectively. To find the variances o;, the binary
search of Hinton and Roweis (2002) can be used on the
whole dataset Z. The matrices pypg and pgr are then

. hysics
extracted from the cross covariance terms of pfb.y e,

The operation in Eq. 17, which had the two-fold pur-
pose of creating a normalised and symmetric matrix of
probabilities p;, is no longer viable since the matrices
Pris and pgp are not square. To address this, a two-step
solution is proposed. Firstly, it must be acknowledged
that the two conditional probabilities are incompatible
or, in other words, that a given probability pg; is not
necessarily equal to prs. This situation is similar to the
simplicial sets in the UMAP graph representation of McI-
nnes et al (2020). Here, the same solution is proposed,
namely, the construction of a fuzzy union based on the
t-conorm

DPst =DPsit + (pTlS)T —PS|T°(PT|S)T~ (22)

Here, o is the pointwise product. The final step involves nor-
malising the values in pg; such that it becomes a PDF, which
can be achieved by applying the softmax function as follows:

D (23)

The final probability matrix p; represents the distribution
between source and target tasks in the physics space. Algo-
rithms 1 and 2 are the practical implementations used to
obtain the physics space distribution.
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Algorithm 1 Building physics space probability distribution.
Subscripts N and H represent new and historical samples,
respectively

1: function SETUP(X N, ZN, Zn, perplexity)
2. Initialise y using N (0,1) x 10~*

3: XN — XNO__M

4: ZN — ZNC:M

5: ZH < ZHU_M
VA

6: Z |: H
Zy

7: DMat < SquaredEuclideanDistance(Z,Z)
8: P + SearchVar(DMat, perplexity)

9: Ny < nrows(Zp)

10: pa|N < P[1: Ny, Ny +1: end]
11: leHFP[NH—Flend,lNH]

12: pNE — softmax(pgn + p%‘H — PH|N ©
T
pN|H)
13: pun < softmax (P[l: Ng,1: Ng))
14:  Dict < {yo, XN, PNH, PHH, Xy, OXy }
15: return Dict

16: end function

Algorithm 2 Computing standard deviations ¢. In this paper,
the binary search of Hinton and Roweis (2002) is used.

1: function SEARCHVAR(p, perplexity)

2: Search search for o; for each row i of p
such that perplexity = 27 where H(i) =
- Zj DPjli logy (pj|i)

3: end function

4.3 Aligning the source and target data
in the design variable space

This section describes the vectorised gradient formulation
used when reconstructing the distribution of the physics-
latent space in the variable space. The optimisation algo-
rithm is left to the reader’s discretion. The results of this
paper are obtained using the same gradient-descent-with-
momentum routine that MATLAB employs in the exact
implementation of its tsne function.

The PDF in the variable space is identical to t-SNE,
save for a slight modification which ensures its terms are
equivalent to the cross covariance values of Eq. 22,

(14 1ly; = x12)~
e (1 1y = x12) ™

The terms x, associated with the target task, are fixed. The
optimisation algorithm must find a way to embed the source
data, y, around the target task samples.

The gradient of the Kullback-Leibler divergence with
respect to the embedding is given by

variable __

£l

(24)

aC
d_y-1 =4 (py—ay) 0 =)0+ [y =517 25)
i 7

The physics and variable superscripts were dropped for nota-
tion convenience. The gradient calculation may be vector-
ised by observing that, for instance, the gradient with respect
to the first point in the embedding can be written as

19C, P11 — 491

- == (VX)) + ...
4 dy, 1"‘||Y1_)‘1||2(l 1)
Pim —9m (y —x ) —
L+ [ly, —x, |2V "
(26)
y( P11 — 41 Lo Pim —9im )_
L+, —x 12 L+ [y, = x,1?
_ Pu—49u Pim — dim
" lyy —x 112 "L+ Iy =, 12

This enables the gradient with respect to the first sample to
be re-written as

10C,

Za—yl=h°;K1m—K1mx~ 27

Here, K|, is a vector containing the first row of a matrix K
defined as

Pui—4qn Pim—91m
Ty =112 777 1y =x, 12
L+ ly,=x 112777 1y, =,

The matrix of gradients for cross-covariance terms can thus
be written in a vectorised form as

2% =4<Y02K—KX>. (29)

ay

There is a further complication that must be addressed
in the gradient calculation. In cases where the target data
are sparse, the influence of far-away target points on the
source data embedding may be very small. This may lead
to unwanted behaviour, such as clustering of significantly
different source data samples. This problem is demonstrated
in section 5.2. This implementation addresses the issue by
conducting a secondary gradient calculation, which aims to

@ Springer
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enable the source data to maintain its physics space structure
in the design variable space.

Mathematically, this entails calculating the origi-
nal t—SNE gradient using only source data samples. This
requires first collecting the lower-right block of the matrix
in Eq. 20

hysics'
Py =DPsis: (30)
The PDF in the variable space becomes

(L4 1ly; = y1P) ™
S (L 1y =wil?) ™

The gradient has the same form as Eq. 24 and can be writ-
ten as

variable' __

9

€29

0C, _

-5 =4 D (p’, - qu)(yi —A+1y =y @32
! J

Following the MATLAB exact implementation of t-SNE,

Eq. 32 can be re-written, for the first term of y, as

! ! / !
lacz_y 0+ P4 + Pim = Dim
S 2oy, -
4 0y L+ ly; = »l1? L+ lyp = yall?
) ) : (33)
y p]Z qll y 1m Im
yy—2 12y Tm Tm
L+ [ly; =12 "1+ ly = yall?

Letting the matrix K be defined like Eq. 28, but with the new
terms, the vectorised gradient may be written as

£=4(D—I~<)Y. (34)
dy
Here, D is a diagonal matrix defined as
2 K
= - 5 £ .

The final gradient used in the embedding optimisation has
the form

19C
1% =a<Yo;K—KX>+...

+(1-a)(D-K)Y.

D (35)

(36)

Here, the weighting parameter a« depends on the number of
target sample points. Generally, the more dense the sampling
of the target data, the larger a should be since the informa-
tion of the source data structure in the physics space is not
required to ensure adequate embedding.

A practical implementation of the vectorised gradient
computation is proposed in Algorithm 3.
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Algorithm 3 Vectorised Computation of Embedding Gra-
dients. The operator o denotes element-wise multiplications,
while x denotes matrix multiplication.

1: function GRAD(p,-j,pjj,XN,X,frac)
Py < SquaredEuclidean(X, X)
Py < (14py)

diag (Py) < 0

PY,NORM < softma:c (Py)

f( =Pyo (pjj - PY,NORM)

7: Grady e4*<diag<z f()—f()xX

@ o oh @

rows

8: Pxy + SquaredEuclidean(X, Xn)

% Pxy < (14py,

10: PXY,NORM < softma:c (ny)
11: K < Pxy o (pij — Pxy,NoRrM)
12: 0 < Zcolumns(K)

13: termy Xoo

14: termeo — K x XN

15: Grads < 4 x (termy — terms)

16: Grad = fracxGrads + (1 — frac) * Grad;
17: return Grad
18: end function

5 Anillustrative example
5.1 Problem description

A simple engineering case is introduced for demonstra-
tion purposes. The design parameterisation employs the
Free-Form Deformation (FFD—Sederberg and Parry
(1986)) scheme on one of two super-critical aerofoils: the
SC(2)—0610 and SC(2)—0710, where the former is the target
task and the latter is the source. The manipulation of the
airfoil surface is achieved through a vertical displacement
of the nodes highlighted in Fig. 1a, up to 5% of the aerofoil
chord. The resulting range of changes is shown in Fig. 1b.
The same parameterisation is considered across target and
source tasks for simplicity.

The quantity of interest is the total drag coefficient.
The physics matrix is built using pressure coefficient (Cp)
measurements. The spatial arrangement of pressure probes
is illustrated in Fig. 1c, with an approximate uniformity
maintained across all geometries. The CFD analysis uses
the Viscous Garabedian and Korn (VGK) code Garabedian
and Korn (1971).
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(a) FFD grid example - Highlighted points can move
vertically. Both vertical displacement and aerofoil coor-
dinate change is exaggerated for easier visualisation

0.06

x/c

(b) Range of geometries for setup in Figure la; drawn
from a random sample of 40 points

N

(c) Pressure probe locations. Measurements of probes are
used to build a physics matrix. X-location is kept approx-
imately constant across all geometries

Fig. 1 Illustrative problem setup

The flight conditions are characterised by a Mach number
of 0.72, a Reynolds number of 6 X 10°, and a lift coefficient
constraint of 0.4. The latter is enforced through adjustments
in the angle of attack. A spline regression model between
the lift coefficient (C;) and the angle of attack is built using
angles 0 and 1. Subsequently, extrapolation techniques are
employed to identify the angle of attack necessary to achieve
the desired lift coefficient. In cases where the initially esti-
mated angle does not yield the target C;, the regression

Actual DOE CcD

g | m " @
208 o _ 1
e . -
06 u - N .
7 0.4 . ,
\; 0.2 i@ m B -
~ 0 - : Q 1

0 0.2 0.4 0.6 0.8 1

1% design variable

(a) Design of experiment for the illustrative problem.
Large, circular points belong to target data (SC(2)-
0610). Small, square points belong to the source data
(SC(2)-0710). The colouring corresponds to the drag
coefficient (Cp).To visualise correlation, C'p values
are normalised to have a mean of 0 and a standard
deviation of 1

04 POD of physics space CcD
£ 02 =) 1
= n L=
g "o, g
2 0 .i u \ o 0
3 - a
g [ |
Z-02 .i o
~ [ -1

-0.4

-0.4 -0.2 0 0.2 0.4

1*" modal coefficient

(b) Latent space of aerofoil Cp measurements, visu-
alised using the first two modal coefficients of the
proper orthogonal decomposition

Fig.2 DOE and POD of illustrative problem for a random latin-
hypercube design

model is updated, and the process iterates until the correct
value is obtained.

5.2 Embedding result

Two Latin-hypercube samples of five and 40 samples for
the target and source tasks are drawn using the MATLAB
lhsdesign function. Their distribution is shown in Fig. 2a,
where the points are coloured by the drag coefficient (Cp)
values obtained from VGK, which are normalised to have
mean zero and a standard deviation of one.

The results of the embedding process are depicted in
Fig. 3a, b. One of the points in the source data is deliber-
ately highlighted (bold square) as it conveniently show-
cases the need for the secondary t-SNE error term men-
tioned in section 4.3. Without the source data, the location
of this sample in the latent space of Fig. 2 is such that the
values p; of its closest three neighbours have approxi-
mately equal values. The p; value of its fourth and fifth
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neighbours are near zero. Since the first three neighbours
are approximately collinear, the embedded point can be
positioned either above or below the line they form with
the same effect on the loss function. In this case, the result
converges to the unlucky location. By including the t-SNE
loss term, the issue is resolved since information about the
remaining neighbours is included via the source data. An
added degree of dispersion can also be observed, as fewer
local clusters form in the embedding of Fig. 3b.

Calculated embedding (without t-SNE loss) CD

= 1 i i 1

g A s o

Z m \ -

505 [ ] | @ 0

g ®

T o0 " @

N o B -1
0 0.5 1

1% design variable

(a) Embedding calculated when loss depends only on
cross co-variance terms. Of particular interest is the
highlighted point (bold square), which is incorrectly
positioned due to the sparsity of the data: the fourth
and fifth closest neighbours in the target data are
too far away to influence the gradient calculation of
Equation[29]

Calculated embedding (with t-SNE loss) CD

E LI
g [ ]
- u I
5 0.5 Ep o K 0
7 ]
< = . 6 " [m]
a0 B g 4
0 0.5 1
1%" design variable

(b) The calculated embedding when the additional
gradient term is included. The source data structure
is included in the gradient formulation (o = 0.8);
the highlighted point (bold square) now has sufficient
information to reach the correct location. Less local
clustering is also observed

Fig.3 Embeddings computed by proposed method

@ Springer

5.3 Model build result

The benefit of the embedding may be assessed by building
a Kriging model using the five target samples and then
comparing its predictive accuracy with that of a categori-
cal Kriging, which fuses the target data and the embedded
points.

Figure 4a, b shows the two source functions and Fig. 4c
shows the true target function from which the DOEs were
sampled. Figure 5a shows the prediction generated by a
Kriging model using the five available samples from the
target data, which are also plotted. The model is inaccurate
and misleading and may cause the cold start problem as it
cannot correctly indicate the location of minimum drag. On
the other hand, the categorical-Kriging prediction, which
uses the embedded points of the source data (Fig. 5b, ¢),
generates a faithful representation of the topography of
the design space, correctly indicating the location of mini-
mum drag. The former data source (SC(2)—0410) is of
particular interest because the algorithm manages to fuse
the data from the two samples despite the apparent lack of
correlation between the original functions; this is achieved
thanks to categorical-Kriging’s ability to model negative
correlations between responses.

6 Aerofoil optimisation example

To more comprehensibly demonstrate the ability of the
proposed method to alleviate the cold start problem, an
aerofoil optimisation test case is proposed. The objective
is to improve the performance of the SC(2)—0610 aerofoil
at the flight conditions described in Sect. 5.1, namely a
Mach number of 0.72 and a Reynolds number of 6 x 10°.
For this problem, however, a lift coefficient of 0.7 is used.
Two versions of this problem are investigated, one
where the parameterisation is constant and one where
it varies from source to target data. In both cases, the
source data may stem from one of three aerofoils: the
SC(2)—-0410, SC(2)—0610, and SC(2)—0710. The two sets
of descriptors are introduced in the following sections.

6.1 FFD parameterisation (10D)

The first parameterisation is an extension of the FFD scheme
described in Sect. 5.1. The number of nodes that are vertically
displaced is increased to ten in this scenario, as depicted in
Fig. 6.
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(a) True response surface of first source drag coefficient
function (SC(2)-0710)
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(b) True response surface of second source drag coef-
ficient function (SC(2)-0410)

Target function (true)
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(¢) True response surface of target drag coefficient
function (SC(2)-0610)

Fig.4 True output functions corresponding to target and source tasks

6.2 Hicks—-Henne bump function parameterisation
(8D)

The second parameterisation uses Hicks—Henne bump
functions and is explored in depth by Masters et al (2017).
A short description is provided here for convenience.

The final co-ordinates of an aerofoil deformed using the
scheme are given by

n
ymttzal + Z a; sin' (ﬂ'x
=0

The design variables define the coefficients a;. The terms A;
determine the locations of the bump function maxima and
are given by

n0.5/Ink; ) _ 37)

yﬁnal —

] Target function (Kriging prediction) CcD
[
= 1
.—5 0.8
5 0.5
£06 O
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(a) Contour of Kriging prediction. Samples used to
generate the model are also plotted. The model is an
example of a surrogate that may lead to the cold start
problem, as it cannot correctly place the minimum of
the function. An R? value of 0.7849 is observed

Target Function - Cat-Kriging, Second Source

o

2" Design Variable
o
(9]

o

0.6 0.8 1
Design Variable

0.2 0.4
1Sl

o

(b) Contour of categorical Kriging prediction for first
source function. Target and embedded samples used
to generate the model are plotted. The prediction is
greatly improved by adding the historical data. An R?
value of 0.9778 is observed

Target function (Cat-Kriging prediction) CD
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(¢) Contour of categorical Kriging prediction for sec-
ond source function. Target and embedded samples
used to generate the model are plotted. An R? value
of 0.9774 is observed

Fig.5 Predictions using Kriging and categorical Kriging

1
=—-|1= (
[ cos

The thickness parameters ¢; are defined as

”1>]for i=1,...n (38)

_. 3
z,.=2<” i) for i=1,...,n. (39)

n—

The suction and pressure sides are deformed separately,
using six design variables g; for each. However, since the
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Fig.6 Example of deformation achieved using a 10-dimensional FFD
scheme with a regular grid of points. Vertical displacement and aero-
foil deformation are exaggerated for visualisation purposes. The dot-
ted line is the deformed aerofoil, and the solid is the baseline geom-
etry

two surfaces are joined together after the deformation, the
weights a, and a, must be kept at zero to ensure geometric
consistency. Thus, from an optimisation perspective, four
variables can be modified on each surface to reduce drag, for
a total of eight. The DOE is defined inside a Latin hypercube
and bounded by [0,1]. For a given sample x inside this space,
the weights a; are obtained using

a = 0.003(x —0.5). (40)

The scaling factor 0.003 controls the range of possible
geometries and is arbitrarily chosen. Higher values result in
a larger range of possible aerofoils.

6.3 Optimisation problem description

min C,
st. C,(x)>C,, “41)
CL=Cp

The objective of this exercise (Eq. 41) is to minimise drag
at M=0.7, Re = 6 x 10°, and for a lift coefficient C,, = 0.7.
A one-sided moment coefficient constraint is enforced
with a tolerance of 107*. The target task geometry is the
SC(2)—-0610 aerofoil and its moment is C,,, = —0.1107.
The baseline method consists of a traditional sequen-
tial model-based strategy. A Kriging model, described in
Sect. 3.1, acts as the surrogate. Two auxiliary criteria are
optimised using the MATLAB ga routine, followed by a
terminal local search using MATLAB’s fmincon. At each
update, the chosen infill points are given by the results of

1. minf(x) - the exploitation step, which finds the minimum
X

of the predictor
2. max §%(x) - the exploration step, which finds the location

of the maximum error (Eq. 9) of the predictor
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The Kriging-SMBO, i.e. the baseline approach, denoted
KRIG, starts with a sparse sample of 10 points. Then, 15
update cycles are conducted, leading to a final set of 40 sam-
ples if all runs converge. The process is carried out 30 times
with different initial DOEs to generate a suitable sample for
statistical analysis.

The new method, employing historical data, is denoted
TSNE-CATKRIG and is set up like the baseline. To gather
the source data, a separate KRIG optimisation is carried out
for the source aerofoils. The optimisation results, i.e. the
original 10-point DOE plus the 30 infill points, make up the
source task sample and are modelled as a second qualita-
tive level using the categorical Kriging. The physics vector
consists of the same pressure measurements described in
section 5.2.

6.4 Case 1-Using FFD as source data

In the first example, the SC(2)—0610 aerofoil is opti-
mised using only the variables of the FFD scheme. The
source data come from one of two aerofoils, as indicated
in Fig. 7, where the title of the figures has the following
form: source task aerofoil (source parameterisation) —
target task aerofoil (target parameterisation).

The performance of the methods is indicated using box-
plots. For this graphical representation, the line’s location
(where circles/diamonds are also plotted) indicates the
median value. The edges of the boxes correspond to the
25" and 75" percentiles. The whiskers extend to values of
+1.5 X IQR (inter-quartile range), and points located beyond
are classed as outliers; no outliers were observed in this
example.

Across all three source tasks, a significant improve-
ment (indicated in the captions) is observed when applying
the proposed method. The median values are significantly
lower across all updates, and the IQRs and outlier bounds
are shrunk to a substantial degree.

6.5 Case 2 - Using HHB as source data

In the second example, the HHB parameterisation is
employed as the source task. The same title convention and
visualisation tool is used in Fig. 8.

Similar conclusions can be drawn from the HHB — FFD
case, namely that the median is lower, with a tighter distri-
bution of discovered minimum values. However, there is
a slight reduction in the benefit of reusing historical data.
This is to be expected, of course, since the latent correla-
tions between tasks will not be as strong when the param-
eterisation changes. Still, the optimisation performance
enhancement given by the proposed method is consider-
able. The embedding strategy shows promise as a solution
to the cold start problem.
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(a) TSNE-CATKRIG achieves the same performance
as KRIG at approximately the gth update (if variance
is considered). A 47% reduction in cost
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(b) TSNE-CATKRIG achieves the same performance
as KRIG at approximately the 10" update (if variance
is considered). A 33% reduction in cost

Fig.7 Optimisation performance when target and source tasks have
the same descriptors, namely those defined by the FFD scheme.
KRIG achieves a 16.692% drag reduction at the final update

6.6 Assessment of predictive accuracy

Plots of the average validation error at various stages in the
optimisation process are shown in Fig. 9. These errors are
obtained by predicting the values of a test set consisting of
2000 samples built using MATLAB’s 1hsdesign. The 16"
update corresponds to a model built after the final update.
The legend indicates the parameterisation and aerofoil of the
source data. The marker style is used to indicate the source
parameterisation, while the choice of line style corresponds
to the choice of aerofoil.

A great degree of fluctuation is observed due to the sto-
chasticity of the optimisation process. However, the methods
that utilise historical data have a clear advantage in predic-
tive accuracy in the early stages and tend to decay relative
to the baseline, the KRIG approach, as more infill points are
added. In the case of the objective function, C,, this advan-
tage is maintained up to the 9" update. For the constraint,
the advantage is lost after the 5" update. This, the authors
believe, is the source of the performance advantage of the
t-SNE-based method. The initial improvement is sufficient to
guide the initial search correctly, indicating that the method
is a valid solution to the cold start problem.
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(a) TSNE-CATKRIG achieves the same performance
as KRIG at approximately the 10t" update. A 33%
reduction in cost
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(b) TSNE-CATKRIG achieves the same performance
at the 11%" update. A 27% reduction in cost

SC(2)-0710 (HHB) — SC(2)-0610 (FFD)
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(¢) TSNE-CATKRIG achieves the same performance
at the 10*" update (variance is considered as well). A
33% reduction in cost

Fig.8 Optimisation performance when the target task consists of the
FFD predictors and the source task consists of the HHB predictors.
KRIG achieves 16.692% drag reduction at the final update

7 Combustor optimisation example

This section examines the performance of the proposed
method on a combustor representative of those present on
modern commercial airliners. The geometry of the model is
shown in Fig. 10. The fluid volume is built using a paramet-
ric geometry modelled in Siemens NX.

7.1 Design variable description

The source data parameterisation consists of the arrange-
ment described by Toal et al (2021), where the ports on the
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Fig.9 Average validation error of models during optimisation - aero-
foil case

annuli are grouped into four rows. Eight design variables are
used, four of which describe the axial location of each row,
while the other four define their radius.

In the target data, twelve design variables are used. These
consist of the x-y displacements of six control points, which
define the centres of radial basis functions that are used to
morph the mesh of the inner and outer annuli walls. Rather
than morphing the walls and re-meshing the geometry each
time, the mesh itself is morphed, an equivalent operation.
Three basis functions are used for each wall.

7.2 CFD

The mesh consists of an unstructured tetrahedral design with
hexahedral core conversion. The baseline geometry contains
16.7M elements and was constructed using the Ansys ICEM
CFD package.

The CFD solver runs in the proprietary Rolls-Royce pack-
age PRECISE-UNS Anand et al (2013). Its setup is identical
to the high-fidelity case in Toal et al (2021). Turbulence is
simulated using the realisable K — e turbulence model. Fuel
and ignition are introduced after the 500tk and 600" itera-
tions, respectively, and the code stops after 5000 iterations.
Combustion is modelled using the flamelet-generated mani-
fold technique. Boundary conditions in the form of velocity
profiles are placed at the inlets of both annuli and the exits of
each swirler passage. These remain unchanged irrespective
of the design geometry. The modelled condition is represent-
ative of a large commercial airliner running at full throttle.
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NO, emissions are obtained directly from PRECISE-UNS,
while wall pressure losses are calculated using Paraview.

7.3 Optimisation problem description

The goal of the exercise is to reduce the NO, emissions index
(EINO,). The physics matrix for this quantity is constructed
using NO, measurements from a uniform grid of 250 x 100
points at the exit wall of the combustor. This grid does not
consist of cells of the fluid volume mesh. As a result, the
NO, quantities it contains are interpolated.

Constraints are placed upon the wall pressure loss, which
is the drop in total pressure observed between the inner and
outer annuli entrances and the exit of the combustor. These
values are constrained to be within 10% of the baseline.
Unlike NO,, the physics matrix, built using total pressure
values, uses the measurements in the volume cells at the
combustor exit, as these could more conveniently be calcu-
lated without the interpolation step. This does not pose any
problems for the target data, where the mesh is morphed,
and thus, the grid on the combustor exit is constant across
designs. However, in the case of the source data, i.e. the port
parameterisation, the combustor was re-meshed each time.
Thus, the vector of measurements differed in size for the
different geometries. To ensure consistency with the con-
stant mesh of the target data, a truncation operation was per-
formed: only the first 16,259 values were kept. This caused
some inconsistencies, as not all measurements represented
the same cells. However, because the cells corresponding
to the measurements were still relatively close in the fluid
volume, it was found that the inconsistencies were not suf-
ficiently major to affect the correlation between the integral
of the vector and the pressure drop scalar.

Designs that did not converge after 5000 iterations are
treated as infeasible. The structure of MATLAB’s optimis-
ers requires that constraint functions return values below or
equal to zero if a function is feasible and values above zero
if the opposite is true. To ensure that failed runs are avoided,
a value of one is ascribed to the failed runs.

Fig. 10 Combustor fluid volume - reproduced from Toal et al (2021)
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Due to the restrictive cost of the CFD code, historical
data do not originate from a previous optimisation. Rather,
the source data are selected from a database of 424 CFD
runs. For each repetition of the experiment, 100 points are
sampled using a routine detailed by Forrester et al (2008)
that utilises the Morris criterion to choose points such that
an approximation of a Latin hypercube is selected. Because
the routine uses a greedy algorithm, a different initialisation
will result in different sub-samples. Thus, by varying the
random seed, different source datasets can be picked each
time the experiment is repeated.

The target data consist of a 60-sample Latin-hypercube
design generated using the MATLAB lhsdesign function.
The same seed as per the source data is provided for this
DOE.

The search for the auxiliary criteria is conducted using
the built-in MATLAB ga routine. At each update, four infill
points are added, two consisting of exploring and two of
exploiting the design space:

1. minf(x) - the first exploitation step, which finds the

minimum of the predictor
2. maxEl [f(x)] - the second exploitation step, which finds

the highest value of the expected improvement of the
predictor
3. max$%(x) - the first exploration step, which finds the

location of the maximum error
4. max (||x = X45|1*) - the second exploration step, which
X

finds a space-filling point, defined as furthest away from
all other points in the target dataset

As in the previous example, the baseline is a Kriging-
SMBO, denoted KRIG, which is compared to the proposed
method, consisting of the embedding and Categorical Krig-
ing, denoted TSNE-CATKRIG. The initial sample of 60
points is updated ten times, with four infill points per update,
such that a 100-point sample is eventually reached, provided
all runs converge. The process is repeated ten times rather
than the 30 aerofoil cases, again due to the restrictive cost
of the CFD simulation.

7.4 Results and discussion

The results of the optimisation process are shown in
Fig. 11a. The 0" update corresponds to the minimum feasi-
ble design in the original 60-point DOE. On this occasion,
a reduction in predictive error cannot be used to explain the
improvement in optimisation performance. The comparison
between the two methods is shown in Fig. 11b, where it is
visually obvious that the proposed method does not perform

as well as the baseline. Granted, the scale of the validation
errors is small relative to the output range, but this would
only mean that the two methods should at least perform
equally in the optimisation process of Fig. 11a; however,
this is clearly not the case. The question arises as to what the
TSNE-CATKRIG learns from the historical data.

The answer can be found by analysing the physics-based
latent space of the NO, measurements. The latent space is
visualised by reducing the physics matrix, which has dimen-
sions n X 25000, where n is the number of samples, to two
dimensions. The tool of choice is the proper orthogonal
decomposition on the full physics matrix, which is defined
as a matrix, where Z,,., and Z,,,,,, are vertically stacked.
The result of this operation, in the form of two sets of sam-
ples, is showcased in Fig. 12. The samples are drawn from a
randomly selected run of the ten repeats, and the DOEs cor-
respond to the 0" update, i.e. the initial sample. The plots are
similar to those in Sect. 5.2. The colour is once again given
by the objective, NO,, which is normalised with mean zero
and standard deviation one.

The most evident difference between the target and source
data is the multi-modality of the former. Since the integral of
the physics vector is tightly correlated to the output function,
EINO,, it may be assumed that this multi-modality will be
reflected in the design variable space. On the other hand,
the source data appear to have a relatively simple objec-
tive function distribution, almost linear in nature. As previ-
ously shown, categorical Kriging yields a model akin to a
weighted average, where the number of available samples
decides the weights. The source data will thus be preferred.
Naturally, the predictive accuracy of the model on the target
data will suffer. However, the search for a global minimum
will be greatly simplified since, in the case of the source
data, the location of the minimum can easily be identified
(top right in the source physics-latent space).

In Fig. 13, the subspace is rebuilt after three updates.
The distribution of the target and source data has remained
almost unchanged, except that additional points are now
present in the top right. This is, in essence, what the model
learns from the historical sample; that is, the global mini-
mum is located at the indicated edge of the design space.

Further confirmation is offered in Fig. 14. The best update
selected for each experiment repeat, up to the third update
(to match Fig. 13), is plotted as a parallel axis chart. The
first twelve axes represent the design variables, while the last
axis is the NO, objective normalised to have a value in the
interval [0,1]. The plot in Fig. 14b consists of the proposed
method, which, although noisy to a degree, shows a clear
pattern in choosing a specific edge of the design space. On
the other hand, the baseline Kriging only shows a pattern for
a few of the variables, most likely as a consequence of the
multi-modality of the design space.
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(a) Combustor optimisation results - KRIG reaches a
5.48% NO; reduction. TSNE-CATKRIG reaches the
same performance after four iterations, a 60% decrease
in required cost
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(b) Combustor validation error - unlike the aerofoil
case, the prediction of the proposed method is less
accurate than the baseline Kriging

Fig. 11 Optimisation result in combustor case and validation error on
the prediction of the objective function, EINO,

8 Hyper-parameter Optimisation

Several hyper-parameters control the shape and accuracy
of the embedding. This section investigates the sensitivity
of the embedding to these parameters and proposes guide-
lines for identifying an optimal set. Of particular concern are
the three most important parameters inherited from t-SNE:
perplexity, exaggeration, and learning rate. The weighting
factor, @, introduced by the current method, is also studied.

Assessing embedding correctness is difficult. Using the
distance between the embedding and actual locations, known
a priori, is not feasible for two reasons. Firstly, the ground
truth, i.e. where the points should be, will usually not be
known or available to practitioners at inference time (there
would be no need for an embedding otherwise). Secondly,
there may be significant differences between the physics and
design space distribution. This will also entail that two DOE
locations may generate identical physics, meaning multiple
embedding solutions may exist for the same point. It has
also been noticed that even if the actual location is known
a priori, the embedding will often generate a significantly
different set of points. This is not unexpected and is partly
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(a) The target data in the physics-latent-space
obtained using POD. The design landscape is highly
multi-modal, which is likely reflected in the design
variable space, posing a significant challenge to a
Kriging-based SMBO

POD of physics space - Source NO,
0.2
0.1

0

-0.1

27 modal coefficient

-0.2
=
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
L\/

modal coefficient

(b) The source data in the physics-latent-space
obtained using POD. The landscape of the source
data is, by comparison, simple and almost linear in
nature. Thus, finding the minimum of this function is
a straightforward exercise, as it can be visually tracked
to the top right corner

Fig. 12 Latent, physics-based sub-spaces of NO,

a function of the difference between the design space and
physics distributions and partly caused by the stochasticity
of the method.

An essential contention is that this is not problematic
because the critical information passed from historical data
is the relationship between the design variables and the
response. Given the importance of accurately representing
the response, the validation metric of choice is the R? cor-
relation between the response values of the embedded points
and the response values of the actual DOE locations. Unfor-
tunately, assessing responses for the embedded points was
computationally infeasible, so Kriging models for the two
responses were used. The final issue is that the R? metric is
also unavailable at inference time. Gove et al (2022) provide
a feasible solution involving a consistency check between the
distribution in the physics space and the distribution in the
design variable space. The mean accuracy metric (MAM)
proposed by Gove et al (2022) consists of the average of four
related metrics:
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(a) The target data in the physics-latent space after
three update iterations. Informed by the source data,
multiple updates have been added to the top right
corner
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(b) The source data in the physics-latent. The
landscape of the source data has remained mostly
unchanged

Fig. 13 Latent, physics-based sub-spaces of NO,

e The Spearman correlation: correlation between the terms
of p; and g;

e The 1-Knn accuracy: For each point p;, this metric is one
of the nearest neighbour in the latent physics space and
the variable space match, and O otherwise

e The 10-Knn accuracy: For each point p;,, this metric is the
fraction of the k nearest neighbours that are neighbours
of p; in both the latent physics space and the variable
space

e The rank accuracy metric: to balance the Knn accuracy
metrics, this metric penalises large changes in rank more
than small changes in rank and is detailed in Gove et al
(2022).

The MAM metric can be used to tune the hyper-parame-
ters, and its correspondence with the R? validation metric
is showcased in the following section. In the case studies
of Sects. 6 and 7, a grid search was used to maximise the
MAM metric.

8.1 Experimental Setup

The experiment will involve conducting grid searches for
optimal hyper-parameters and demonstrating that general

Parallel axis plot - KRIG

Axis value

VI V2 V3 V4 V5 V6 V7 V8
Variable Name

V9 V10 V11 V12 NOX

(a) Parallel axis plot of Kriging updates. There is no
clear pattern to the selected by the infill strategy,
likely due to the multi-modality of the function. The
objective function values are in the range [0.1,0.8]

Parallel axis plot - TSNE-CATKRIG

Axis value

V9 VIO VI1 V12 NOX

VI V2 V3 V4 V5 V6 V7 V8
Variable Name

(b) Parallel axis plot of embedding-based cat-Krig
updates. In this instance, informed by the historical
data, a clear pattern can be seen regarding which edge
of the design space is most often selected by the infill
strategy. Objective function values are in the range
[0.1,0.4]

Fig. 14 Parallel axis plots of updates for each of the strategies. Only
the best design from each update is plotted

rules of thumb can be derived without requiring advanced
optimisation. As the problems of previous sections are
reused, information on the physics and parameterisations
can be found in Sects. 6 and 7.

To obtain a ground truth for validation, the same param-
eterisations are used (FFD in the aerofoil case with the
SC(2)—0610 baseline and the wall morph parameters for the
combustor). In both cases, datasets of varying total sample
numbers are collected and split as 30:70 into new and his-
torical samples. The procedure thus involves the following:

e Randomly splitting a sample into 30% new and 70% his-
torical points,

¢ Embedding the historical sample around the new points
using the proposed method,

e Predicting the response at the embedded locations, and

e Assessing the correlation between the prediction at
embedded locations and response values at ground truth
locations.
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Table 1 Leave-one-out cross-validation metrics for Kriging predic-
tors used to assess correlation

Metric Aerofoil Combustor
R? 0.9098 0.99
Mean absolute error 0.36% 1.3%
Root mean squared error 6% 5.5%

Percentages represent the error value divided by the mean response in
the training set

The predictions are provided by Kriging models built using
large DOEs; 2000 samples of the FFD parameterisation are
used to build the aerofoil model and 1455 samples are used
for the combustor. Leave-one-out cross-validation metrics
for the two models are shown in Table 1.

8.2 Sensitivity to Hyper-Parameters

The first task involves understanding which parameters most
influence the validation metric. A Latin-hypercube sample
of 100 points is generated for the four hyper-parameters of
interest. The bounds are set up as follows:

Perplexity - [< spanclass =' convertEndash’ > 1 — 1000
< [span >],

Exaggeration - [< spanclass =' convertEndash’ > 1 —5
< /[span >],

Learning Rate - [10™% — 2],

Weighting Factor - [< spanclass =' convertEndash’ > 0
-1 < /span >].

The sensitivity of the metric to the hyper-parameters is
assessed through the correlation plots of Fig. 15. The associ-
ated values in the Latin-hypercube sample are plotted against
the correlation metric for each hyper-parameter. Only two

Fig. 15 Correlations between 1 1
embedding accuracy metric (R?
correlation between responses) = e 3 R
(@] o % WU T
and hyper-parameter values for S ML YR
the test cases. The weighting o f e . * L.t :’ X
factor, a, is the most important < ‘ Lpte ..'
parameter; perplexity is a dis- LW e
tant second. Exaggeration and 0 N 0
learn rate appear unimportant 1 1000
(provided sensible values are
used) and will not be investi-
gated further 1 1
|
L
[7)] o v,
3 . et
E :.' o v, o.o l'. "
Q SO
(@) W
SRR B A
0t 0
1 1000
Perplexity
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of the parameters, perplexity and weighting factor, generate
a significant effect and, as such, will be investigated further.
The remaining hyper-parameters appear less significant,
provided reasonable values (e.g. values of one for both) are
used.

Having narrowed down the list of relevant parameters,
a grid of 11 weight factors X 8 perplexities is generated for
the remaining two. Figure 16 shows contour plots of the two
variables, coloured by the correlation metric. The analysis
consists of trying the 88 combinations of hyper-parameters
on two datasets of varying sizes. The small DOE consists
of 100 and the large DOE consists of 500 samples, again
split 30:70. Figures are shown for both the combustor and
aerofoil problems to demonstrate that the conclusions are
problem-independent.

The weight factor has, as expected, a decisive influence
on the correctness of the embedding. Too low values can
break the process because the embedding will ignore new
data and, as such, collapse into a standard t-SNE of the
historical data physics space; values above 0.8—0.85 are
recommended. Perplexity also has an impact, especially
in the edge cases. However, Fig. 16 shows that, apart from
edge cases, changes in R? are relatively small for a constant
weight factor of 0.9. This entails that perplexity is not criti-
cal to a good embedding if conservative values are used. As
such, perplexity values between 40-50% of the total sample
size are recommended. Figure 17 shows an analogue experi-
ment, but this time, colouring the contours by the MAM. A
similar pattern is noticed, and although the MAM is more
generous regarding feasible hyper-parameter combinations,
the recommendation of a weight factor around 0.85 and per-
plexities in the range of 40-50% of the total sample size
still yield the best results. It is also important to note that
the feasible region appears to be convex in both problems.
Practitioners may thus use the current recommendation as

1 1
* * ’ . ** ..Q
R ST g .
oo o %y : ¢ * e °n .o.- * . -
.'. .:.. S ..."- .'.... ...0.." % s ;9...*.
> +* -. ‘ .o & '. ,:'.
I — R O . 0 .
5 0 2 0 1
1 1
L N e
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Fig. 16 Contours of response R? for the two key hyper-parameters

a starting point, followed by a greedy binary search, if the
computational budget allows.

Further practical considerations are explored in the
appendix.

9 Conclusions and future work

A new method was proposed to address the cold start prob-
lem associated with sequential model-based optimisation
(SMBO). The approach uses categorical Kriging as the sur-
rogate model, and its key advantage is its ability to combine
data sources with varying parameterisation. Unlike existing
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Fig. 17 Contours of response MAM for the two key hyper-parameters

methods, no overlap is required between the two sets of
parameters.

The method utilised simulation measurements from the
code used to calculate the quantity of interest. For each
sample, measurements were drawn from a constant grid
and flattened into a vector. A crucial requirement was that
the integral of the resulting vectors was correlated with
the objective function. The vectors were then stacked in a
physics matrix and treated as a latent, physics-based mani-
fold. The distribution of samples in the manifold was used
to build a t-SNE-based embedding, where the source data
were embedded onto the manifold defined by the target data
DOE in variable space.
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The method shows promise in alleviating the cold start
problem. For an aerofoil design optimisation problem, it
achieved a reduction of 27-47% in the budget required to
reach the same design as a standard Kriging. This improve-
ment was attributed to an increase in the predictive accuracy
of the underlying surrogate. For a more realistic combustor
design scenario, the method achieved a reduction of more
than 60% of samples needed to reach the same design as
a Kriging-based SMBO. In the latter case, the predictive
accuracy of the model was reduced due to the relatively
simple design space of the source task. However, because
of the linear nature of the historical objective function, the
infill strategy could more efficiently identify the edge of the
design space that housed the optimal set of parameters.

An element of the knowledge transfer problem that has
remained unaddressed is how best to decide whether two
physics matrices will lead to an embedding that ensures
positive knowledge transfer. In the examples provided above,
this was a given. Qualitatively, the extent of the similarity of
the tasks can be ascertained from the latent spaces of the two
tasks. For instance, in the combustor case (Fig. 12), it was
easy to see that the objective functions were well correlated.
Since the latent space is reproduced in the variable space
using the embedding, this correlation likely carried over,
ensuring positive transfer. However, the correlation may not
always exist, and negative transfer, i.e. the transfer of false
information from source to target tasks, may occur. In the
context of the large databases of historical data available for
most engineering companies, some quantitative measures,
likely based on the aforementioned correlation, should be
derived.

Appendix A practical considerations
A.1 Sensitivity to noise

See Figs. 18, 19.

Noise is a common feature in engineering applications
and, as such, studying the sensitivity of the embedding to
random fluctuations is critical. It must be noted that the pro-
vided case studies will naturally contain some level of noise
due to varying degrees of residual convergence. This section
also adds random Gaussian noise of varying degree, to test
how the method performs in more extreme cases.

The experiment in Sect. 8 is repeated, but this time the
hyper-parameters are kept constant, at values, perplexity:
40% of sample size, weight factor: 0.85, exaggeration: 1,
learn rate: 1. The small DOE consists of 100 samples, while
the Large DOE is built using 1000 samples. A random sam-
ple of the standard normal distribution is collected using
MATLAB’s randn function and multiplied by increasingly
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Fig. 18 Difference between noisy and standard embedding. A Gauss-
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Fig.19 Decay of embedding correctness as target sample size
decreases. The x-axis indicates the number of points available in the
target sample

larger scalars to simulate random normal distributions with
increasing standard deviation.
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The KL divergence metric is used to show the difference
between the embedding generated when no noise is applied
and the embedding obtained when the random Gaussian
noise is added. Figure 18 shows that for both cases and
regardless of DOE size noise only becomes a significant
issue when the standard deviation of the noise Gaussian
approaches a value of one. This is an encouraging sign as
such values are relatively large and, the authors contend,
could only be the result of a problematic finite volume code.
Therefore, while the method would fail in such cases, they
are unlikely to represent realistic scenarios.

Scaling and time complexity

As evidenced by van der Maaten (2013) the exact t-SNE
implementation scales as O(n?). This makes the method
difficult to scale and intractable for massive datasets. For
problems encountered in engineering design, however, this
may not be an issue. The method was developed for cases
where finite volume simulations require significant resources
(e.g. large CFD codes taking upwards of hours or days to
compute). The contention is that for such problems, the cost
of the finite volume code is so high that practitioners will
always be forced to work with a sparse sample. Further-
more, for engineering problems such as the combustor case
described in section 7, studies such as Alizadeh et al (2020)
recommend the use of Kriging, which has even worse scal-
ing properties, with a time complexity of O(n?).

Still, future publications will aim to alleviate the compu-
tational cost using proven solutions, such as the Barnes—Hut
implementation of van der Maaten (2013), which reduces the
complexity to O(nlogn).

Sensitivity to target data sparsity

The embedding was designed with sparse target sampling in
mind. Still, it is important to quantify whether the method
can produce useful embeddings under increased target data
sparsity. The experiment of Section A.1 is repeated with
slight modifications. Three of the hyper-parameters are con-
stant: weight factor: 0.85, exaggeration: 1, learn rate: 1. The
perplexity is varied so that it is always at 40% of the total
sample size which, as previously discussed, usually gener-
ates a solution close to optimal. In Fig. 19, the correlation
between predictions generated by an embedding and predic-
tions generated by the known locations is used. This time,
however, the embedding has to rely on smaller and smaller
source datasets, as indicated by the x-axis. When a large
historical dataset (500 samples) is available, the embedding
appears to suffer a drastic drop-off at around the 15-25 sam-
ple mark. When a smaller historical sample is available (50
samples), there is no sudden drop-off, but rather a constant
decay with embeddings becoming unusable around the 5-15

sample mark. This suggests that the method is prolific at
working with sparse samples, as previously demonstrated by
the test problems. However, practitioners should be aware
that an all-encompassing verdict of how small is too small
is impossible. It will depend on the problem, the number of
variables, and the number of total samples. Therefore, the
embeddings produced by the method should still be checked
for consistency.
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