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Abstract
The cold start problem is a chief concern in the context of surrogate-based optimisation, as it can slow down or prevent 
convergence towards a global minimum. Transfer optimisation (TO) has recently emerged as a promising solution, positing 
the reuse of historical data to improve the quality of the surrogate predictor. However, the requirement for constant design 
parameters across the source and target tasks severely limits the range of applicability of TO. Several strategies have been 
proposed to overcome this constraint. However, they typically require either linked samples or linked design variables, and 
thus only offer a slight extension of the aforementioned scope. This paper proposes a new transfer optimisation method 
that enables varying design parameters. It removes the link constraint by using simulation physics, rather than a mapping 
function, to represent the distribution of source and target samples. Then, it employs a t-SNE inspired optimisation routine 
to recreate this distribution in the target task’s design variable space. Multiple-output Gaussian processes are used to model 
the resulting distribution of target and source samples. Results indicate significant improvements of 30-60% in optimisation 
performance over traditional Kriging-based approaches.
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1  Introduction

The fundamental task of engineering design optimisation 
involves identifying a set of design variables which define 
a parametric geometry such that an optimal value of some 
objective, f, is found. Global methods, such as genetic algo-
rithms (GAs) or local optimisers, gradient descent, are 
examples of tools commonly used for the task.

However, in most practical cases, the cost of obtaining 
the value of the objective function makes direct evaluation 
infeasible. To address such scenarios, it is common to lever-
age machine learning models that build an approximation, 
f̂  , of the underlying function. The key is that the model is 
cheap to evaluate and thus can be used to search for optimal 

designs rapidly. This solution is called surrogate-based opti-
misation (SBO), originally introduced by Jones et al (1998), 
and draws its name from the idea that the model, f̂  , acts as 
a surrogate representation of the physical process used to 
determine f.

The primary limitation of SBO stems from the prohibitive 
cost of evaluating the objective function, which implies that 
surrogate models often start with a limited number of train-
ing samples X . This gives rise to the curse of dimensionality, 
described in detail by Bellman and Kalaba (1959), which is 
particularly potent in engineering problems, where, under 
the underlying nonlinear physics, the behaviour of the objec-
tive function is, more often than not, multi-modal.

The curse of dimensionality is most commonly addressed 
through adaptive sampling, also known as sequential model-
based sampling. This involves first tuning the surrogate 
model f̂  using the sparse initial sample. Infill points are then 
added to the training dataset, based on a sub-optimisation 
problem, where an auxiliary criterion S(f̂ ;x) is either max-
imised or minimised. Infill strategies commonly involve 
balancing exploration (improving model accuracy) and 
exploitation (finding the optimal design). Still, it is impor-
tant to note that how best to choose update points is often 
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problem-dependent. A taxonomy of existing surrogate 
modelling techniques and infill criteria are discussed and 
compared in works by Rojas-Gonzalez and Van Nieuwen-
huyse (2020), Bartz-Beielstein et al (2020) or Zhan and Xing 
(2020).

While extremely useful in various applications, surrogate-
based strategies are imperfect and present several limita-
tions. The focus of this paper is the cold start problem, high-
lighted by Min et al (2017), which is briefly described. Since 
infill criteria are mathematically derived from the error 
of the surrogate model, the search for infill points, which 
involves a sub-optimisation problem, is also exposed to the 
curse of dimensionality. As Forrester et al (2008) pointed 
out, an unlucky initial sample compounded by a deceptively 
positioned minimum can trick the SBO framework, lead-
ing to a failure in converging to the true optimum. More 
commonly, however, users are faced with a slow start and 
exhaustion of the computational budget before the optimum 
can be discovered. More comprehensive infill sampling at 
each step can solve this problem, but this involves an unde-
sirable use of the computational budget.

A key assertion of this work is that the slow start problem 
can best be mitigated through transfer optimisation (TO) 
Gupta et al (2018). TO consists of leveraging correlations 
between similar design tasks to transfer knowledge from a 
source (or historical) design task to a target (or new) one. 
This approach draws appeal from emulating how engi-
neers think when designing innovative solutions. Previous 
research has highlighted the great extent to which engineers 
draw upon prior experience and knowledge of established 
systems Wills and Kolodner (1994).

The concept of knowledge transfer has been successfully 
applied in a range of scientific domains on problems with 
constant and varying parameterisation. These are reviewed 
in section 2. The surrogate models used in the optimisation 
framework are discussed in section 3. The current method 
is described in section 4. Section 5 showcases the applica-
tion of the method on an illustrative example and discusses 
several practical problems and how they are addressed. Sec-
tions 6 and 7 showcase the performance of the approach on 
more realistic design optimisation problems. Then, section 8 
offers details on the hyper-parameters of the algorithm and 
gives guidelines for their selection.

2 � Review of knowledge transfer methods 
and applications

In the following section, transfer optimisation, a conceptual 
framework for knowledge transfer, is introduced. In addition, 
several difficulties associated with its efficient implementa-
tion are discussed.

Formulated by Gupta et al (2018), transfer optimisation 
considers a series of K optimisation tasks T1, T2,… , TK , con-
sisting of domains D1,D2,… ,DK . A domain Dk consists of 
the search space Xk and the auxiliary space Yk , defined as 
the set of all operating conditions.

A surrogate-based optimisation problem which uses 
knowledge transfer may be framed as

Here, fk is the predictor of the objective function, gk is the 
predictor of some inequality constraint, and hk is the predic-
tor of some equality constraint. The vector xi represents the 
descriptor variables for task i, while the scalars yi , zi , and wi 
represent the true objective and constraint functions.

The goal is to accelerate the optimisation of task Tk by 
building a predictor which not only makes use of the pair 
xk and yk but also uses those of previously completed tasks 
T1, T2,… , Tk−1 . This realisation of the transfer optimisation 
paradigm is known as sequential transfer and is the focus of 
this paper. Sequential knowledge transfer problems can be 
further split into two types, which are described in the fol-
lowing two sections.

2.1 � Knowledge transfer with constant 
parameterisation

The first type of sequential transfer involves problems, where 
X1 = X2 = ⋯ = XK , that is, the design variables describing 
the objective fk are constant. Such problems are sometimes 
referred to as homogeneous knowledge transfer problems.

In such instances, it is important to note that a change in 
the scale or behaviour of the objective function may occur. 
For example, a change in the material of a truss from steel 
to aluminium will produce a step change in the values of 
an objective such as mass or deflection. In addition, sub-
tle changes in the topology of the design space may occur 
due to nonlinear behaviour. Although the shapes of the two 
objective functions may remain qualitatively similar, such 
changes render traditional Gaussian processes unsuitable, 
calling for a more elaborate approach.

A possible solution involves normalising the objective 
function values through latent-ranker-based GPs, described 
at length by Chu and Ghahramani (2005). The algorithm 
assumes that there exists a set of unknown latent function 
values {f (xi), f (xj)} which, given some preference relation-
ship xi ≻ xj , preserve the ranking of the training samples. 
The resulting ranking function is independent of the scale 
of the responses that are used to build it and thus can be 
used as a constant across design tasks. Bardenet et al (2013) 

(1)

min
xk

fk
(
x1, x2,… , xk, y1, y2,… , yk

)

s.t. gk
(
x1, x2,… , xk, z1, z2,… , zk

)
≤ 0

and hk
(
x1, x2,… , xk,w1,w2,… ,wk

)
= 0

.
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proposed a collaborative tuning strategy using the ranker-
based GP, which successfully tuned hyper-parameters for 
two algorithms across a series of datasets. Here, the tasks 
consisted of multiple datasets for the same algorithm (e.g. 20 
classification problems for an adaptive boosting algorithm).

Another way of addressing changes in the objective func-
tion values is through treed Gaussian processes (TGPs), 
proposed by Gramacy and Lee (2009). Although originally 
designed for modelling non-stationary functions, TGPs were 
later enhanced to handle datasets with a mixture of qualita-
tive and quantitative variables Gramacy and Taddy (2010). 
However, since no explicit use of the correlations between 
tasks is made, the algorithm is not suited for knowledge 
transfer tasks. Indeed, a study by Swiler et al (2014) proved 
that TGPs can perform worse than building separate GPs 
for each task.

A more popular approach in the area of engineering 
design involves the fusion of source and target samples into 
a single model, usually by adopting a block covariance struc-
ture. Some of the more prominent approaches in the litera-
ture are the multiple-output Gaussian Processes (MOGPs) 
of Bonilla et al (2007) and the Co-Kriging algorithm, intro-
duced by Kennedy and O’Hagan (2000). MOGPs have found 
widespread utility in problems featuring mixed continuous 
and discrete variables, with successful applications includ-
ing meta-material design Tran et al (2019), solid rocket 
engine design Pelamatti et al (2019), and centrifugal pump 
design Renhui and Zhao (2020). On the other hand, the 
hierarchical nature of Co-Kriging is especially well suited 
for problems, where the tasks consist of varying levels of 
fidelity for the same geometry. Illustrative examples encom-
pass multi-disciplinary gas turbine design Toal et al (2014), 
robust aerodynamic design Tao and Sun (2019), and civil 
building shape design Ding and Kareem (2018). Recently, 
Toal (2023) and Lin et al (2021) showed that a blend con-
sisting of multi-fidelity, multiple-output Gaussian processes 
could also be effective for a wide range of problems, such as 
aerofoil design, structural design, or combustor optimisation.

In this paper, Kriging is used as a baseline, and MOGPs 
are used for knowledge transfer. Aside from their promi-
nence in related literature, these approaches also provide a 
useful error metric, which can be used to derive powerful 
infill strategies. The mathematical formulation of the algo-
rithms is presented in section 3.

2.2 � Knowledge transfer with varying 
parameterisation

Problems involving varying parameterisations are more 
representative of realistic design scenarios since engineers 
commonly add, remove, or change variables as their under-
standing of a design evolves over time. Models such as 
MOGPs assume a homogeneous definition of the variables 

in each categorical level, so an additional step is required 
to model such cases. Most commonly, this step consists 
of transforming the variables or projecting them onto a 
common latent space.

A widely adopted algorithm that addresses this problem 
is space mapping (SM) Bandler et al (1994). Robinson 
et  al (2008) employed a customised SM variant, inte-
grating the method with trust region model management 
(TRMM) and a 2nd-order correction. Their implementation 
showcased significant optimisation speed enhancements, 
yielding a 40% improvement for a bat flight design prob-
lem and a 70% acceleration for a wing design problem.

An alternative to Space Mapping is the Input Mapping 
Calibration (IMC) of Tao et al (2019). In contrast to the opti-
misation method used by SM, IMC optimises the linear map 
globally and incorporates a nominal mapping to regularise 
the cost function. In the context of a wing design problem, 
the IMC method achieved a notable result: it automatically 
adjusted the wing twist angles to compensate for the low-
fidelity representation of the geometry.

Hebbal et  al (2021) employed a two-layered deep 
Gaussian process to model multi-fidelity problems, where 
the fidelities are of varying parameterisations. In their first 
layer, a multiple-output Gaussian process mapped higher 
fidelity inputs into lower fidelities such that all samples 
were eventually mapped onto the lowest fidelity mani-
fold. Then, the second layer constructed the multi-fidelity 
Gaussian process. The authors observed improvements in 
predictive accuracy across various analytical and engineer-
ing test problems, especially when the number of samples 
for the target task was limited.

A notable limitation of the approaches presented above is 
the requirement for linked samples. A set of samples xsource 
and xtarget are linked if there exists a function that maps one 
onto the other: f ∶ xsource ↦ xtarget . In other words, a new 
assumption is added, namely that the two sets of data rep-
resent the same sample, albeit with different parameters. 
For practical applications, this entails running a num-
ber of expensive simulations to generate the linked data 
xL
target

, yL
target

 , an undesirable use of a computational budget.
An alternative is the transfer Bayesian optimisation 

(TBO) framework proposed by Min et al (2021), which 
is based upon the manifold Gaussian process regression 
(mGP) of Calandra et al (2016). The mGP considers a 
multiple-output Gaussian process consisting of a compos-
ite function: F = G◦M , where G is the Gaussian process, 
M is a mapping function, and the operator ◦ is used to 
represent a composite function, here G(M(x)). In the case 
of the TBO framework, the mapping function is a single-
layer neural network with a ReLU activation and applies 
the transformation to the source data. The covariance of 
the GP takes the form k̃(x(i)

source
, x

(j)
target) = k(M(x(i)

source
), x

(j)
target) . 
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Since the weights of the neural network are given as priors 
to the Gaussian process, they are included in the likelihood 
optimisation process, thus removing the requirement for 
linked samples. However, the method has only been dem-
onstrated on problems, where the target parameterisation 
is a subset of the source parameterisation, which ensures 
the presence of latent correlations between the two tasks. 
The method presented in this paper allows for an extension 
to the more general case, where no overlap between the 
two sets of design variables exists.

3 � Surrogate models

In this section, the Kriging and categorical-Kriging algo-
rithms are briefly described. For the remainder of the 
paper, the two are used as regression models for the base-
line and proposed sequential optimisation frameworks.

3.1 � Kriging

The Kriging model is a member of the Gaussian Process 
(GP) family introduced into engineering design by Sacks 
et al (1989). Intuitively, it uses each sample in the training 
set as the centre of a Gaussian distribution. Mathemati-
cally, this entails representing the predictor as the addi-
tion of a mean vector and a row vector from a covariance 
matrix

The choice of kernel function for the covariance matrix 
depends on the nature of the problem, but in the context of 
regression, the p-exponential formulation is common and 
is defined as

Here, D is the number of variables or features. The covari-
ance matrix is then defined by considering all combinations 
of n input vectors

The scalar � is added to the diagonal of the covariance 
matrix as a regularisation term. The loss function is defined 
as the natural logarithm of the probability density function, 
also known as the log-likelihood, and can be written as

(2)f̂ (xi) = 𝜇i + Σi.

(3)K(xi, xj � �, p) =
D�
d=1

exp {−10�d‖xi − xj‖pd}.

(4)Σ =

⎛⎜⎜⎝

K(x1, x1) … K(x1, xn)

⋮ ⋱ ⋮

K(xn, x1) … K(xn, xn)

⎞⎟⎟⎠
+

⎛⎜⎜⎝

� … 0

0 ⋱ ⋮

0 … �

⎞⎟⎟⎠

The � term is the standard deviation of the vector of 
responses y . It, along with the mean of the distribution � , 
can be directly estimated by calculating the stationary points 
of the loss function with respect to each hyper-parameter. 
This leads to the maximum likelihood estimators,

and

The quantities obtained in Eqs. 5 and 6 allow the simplifica-
tion of the loss function,

Predictions on a new sample xi are defined as

Here, � is a new covariance matrix consisting of the distance 
between a set of new points xnew and the training sample 
X . The model and optimisation algorithm are implemented 
using the OPTIMAT CM02 toolbox ( Toal et al (2008), Toal 
et al (2009), Toal et al (2011)). This uses a particle swarm 
optimiser (PSO) enhanced by a local terminal search. A key 
advantage of Kriging is that it offers an error metric for any 
new prediction, which can be used as an infill criterion or 
as a basis for other infill criteria, such as the probability of 
improvement or the expected improvement and is defined as

3.2 � Categorical Kriging

The categorical-Kriging model is a mixed kernel method, 
combining traditional continuous kernels, such as the 
p-exponential of Eq. 4, with discrete kernels, whose purpose 
is to describe the correlation between categorical levels or 
data sources.

There is extensive literature on which combinations of dis-
crete and continuous kernels should be used for various appli-
cations. Categorical Kriging is known in the mathematical 

(5)
L(y|x, �, p, �) = − n

2
ln 2 − n

2
ln(�2) −…

− 1
2
ln detΣ −

(y − 1�)TΣ−1(y − 1�)
2�2 .

(6)𝜇̂ =
1TΣ−1y

1TΣ−11
,

(7)𝜎̂2 =
(y − 1𝜇)TΣ(y − 1𝜇)

n
.

(8)L(y|x, �, p, �) = −
n

2�
ln (�2) −

1

2
ln detΣ.

(9)f̂ (xnew) = 𝜇 − 𝜓TΣ(y − 1𝜇).

(10)ŝ2(xnew) = 𝜎2

[
1 − 𝜓TΨ−1𝜓 +

1 − 1TΨ−1𝜓

1TΨ−11

]
.
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literature as the intrinsic model of coregionalisation (IMC) or 
unrestricted covariance model (UC) Bonilla et al (2007). In 
simple terms, it uses a matrix of correlations between discrete 
levels defined as

Here, �ci,cj is a term describing the correlation between the 
categorical levels of the vectors xi and xj.

To effectively apply the correlations �i,j , the hyper-sphere 
method of Zhou et al (2011) is used. The first step involves 
constructing a discrete kernel T using a lower diagonal matrix 
L to ensure positive, semi-definiteness. This would have the 
form in Eq. 11 in a case with three discrete levels.

Here, the matrix L would have the following form:

And the terms of the matrix L (and therefore T  ) can be gen-
eralised using the formulation

with k > 2 and s = 2,… , k − 1 . To expand the definition to 
multiple quantitative variables, a separate Tk is built for each 
category, then,

Here, R is the number of categorical features or tasks. To 
build the remainder of the algorithm, the same methodology 
as in section 3.1 can be used, where the model covariance 
has the following form:

The hyper-parameters here are optimised using the method 
described in Toal (2023).

(11)K̃(w(i),w(j)) = 𝜏ci,cjK(xi, xj).

(12)T = LLT =

⎛
⎜⎜⎝

1 �1,2 �1,3
�1,2 1 �2,3
�1,3 �2,3 1

⎞
⎟⎟⎠
.

(13)L =

⎛⎜⎜⎝

1 0 0

cos �2,1 sin �2,1 0

cos �3,1 sin �3,1 cos �3,2 sin �3,1 sin �3,2

⎞⎟⎟⎠

(14)L(Θ) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

l1,1 = 1

l2,1 = cos(�2,1)

l2,2 = sin(�2,1)

lk,1 = cos(�2,1)

lk,s = sin(�k,1)… sin(�k,s−1) cos(�k,s)

lk,k = sin(�k,1)… sin(�k,k−2) cos(�k,k−1)

(15)T =

R∏
k=1

Tk.

(16)K̃ = T ⊗ K.

4 � A t‑SNE‑based embedding

This section describes the method proposed for aligning 
the heterogeneous parameterisations of a target and source 
task. Rather than providing an explicit link between design 
variables as a prior, the relationship is learned from the 
problem’s physics. Specifically, physical measurements 
are collected for each sample of the target and source 
tasks. After some manipulation, the distribution of these 
samples is assessed in a latent physics-based space and 
then reproduced in the original variable space.

A key assumption is that the underlying physics of 
the source and target tasks does not change, and thus can 
function as a dependable bridge between two or more 
parameterisations.

The three-step methodology is outlined as follows: 

1.	 Constructing the physics matrices; Zd×n
source

 and Zd×m
target

 
are used to represent a consistent field of physical meas-
urements drawn from the simulation that was used to 
calculate the quantity of interest. Here, d is the number 
of measured physical quantities, m is the number of sam-
ples in the target, and n is the number of samples in the 
source data.

2.	 Building a graph representation of the physics space: 
this step uses a representation similar to that of the 
t-SNE algorithm of van der Maaten and Hinton (2008) 
with a few modifications that are detailed in section 4.2

3.	 Aligning the source data with the target data in the 
design variable space: once the relationship between 
target and source tasks is represented using a latent 
physics space, the source data are embedded onto a 
hypercube bounded by [0,1], which corresponds to the 
target data manifold. The algorithm must find an embed-
ding that positions the source data around the target data 
design of experiments such that the probability distribu-
tion matches that found in step 2. The mathematics of 
this process are described in section 4.3.

4.1 � Constructing the physics matrices

Employing physics matrices draws inspiration from Perron 
et al (2021), where physics measurements from low-fidel-
ity models are used to generate more accurate high-fidelity 
field predictions. The inconsistency of the finite volume 
meshes between the two levels of fidelity is addressed by 
separately collecting physics measurements from each 
set of cells and applying proper orthogonal decomposi-
tion (POD). The resulting latent spaces are aligned using 
an affine transformation, whose weights and biases are 
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determined by solving the orthogonal Procrustes prob-
lem Gower and Dijksterhuis (2004). The transformation, 
however, requires a set of linked observations for train-
ing, described in Sect. 2.2 as a key limitation of existing 
knowledge transfer methods since it involves an undesir-
able use of the computational budget.

The current method enforces a constant-grid constraint 
between tasks to address this. While this merely shifts the 
hindrance to the meshing process, it is argued that any sig-
nificant difficulties associated with generating constant-grid 
measurements do not offset the cost–benefit of dropping the 
requirement for linked observations. This is justified by 
the availability of adequate interpolation methods in most 
modern CFD and FEA codes, where values can be easily 
obtained for a pre-defined constant grid. The accuracy of 
these interpolation methods is of secondary importance, 
provided their integral is well correlated to the quantity of 
interest. In contrast, the study of Perron et al (2021) required 
highly accurate measurements since their objective was pre-
dicting intricate aerodynamic flow fields.

Once a constant grid of physics measurements is 
achieved, the matrices Zd×n

source
 and Zd×m

target
 are constructed and 

independently normalised to have mean zero and a standard 
deviation of 1.

4.2 � Building a graph representation of the physics 
space

The t-distributed stochastic neighbour embedding algorithm 
builds a latent, low-dimensional representation of a high-
dimensional manifold. The initial step entails formulating 
the following model for pairwise similarities in the high-
dimensional space:

In this formulation, outliers will generate very small prob-
ability values pi|j , which will have a negligible impact on 
the cost function. An additional step transforms p into a 
joint probability, thereby ensuring that all contributions are 
brought to a comparable scale,

Here, n is the number of samples in z . The objective function 
of the t-SNE algorithm minimises the difference between 
the distribution in Eq. 16 and an embedding represented by

(17)pi�j =
exp

�
−��zi − zj��2∕2�2

i

�
∑

k≠i exp
�
−��zi − zk��2∕2�2

i

� .

(18)pij =
pi|j + pj|i

2n
.

(19)qij =

�
1 + ��yi − yj��2

�−1
∑

k≠l

�
1 + ��yk − yl��2

�−1 .

The goal of the current method is to emulate this process in 
a manner where the physics space is represented by pij and 
a design variable hypercube bounded by [0,1] is represented 
by qij.

The formulation in Eq. 16 is used as a starting point. 
Let n and m represent the number of samples in the source 
and target tasks, and let Z and X represent the physics and 
design variable matrices, respectively. The probability in 
the physics space can be expressed as

The matrix pphysics
i|j  will have a block covariance form, where 

the terms can be conveniently expressed as

Here, the indices T and S correspond to target and source 
samples, respectively. To find the variances �i , the binary 
search of Hinton and Roweis (2002) can be used on the 
whole dataset Z  . The matrices pT|S and pS|T  are then 
extracted from the cross covariance terms of pphysics

i|j .
The operation in Eq. 17, which had the two-fold pur-

pose of creating a normalised and symmetric matrix of 
probabilities pij , is no longer viable since the matrices 
pT|S and pS|T  are not square. To address this, a two-step 
solution is proposed. Firstly, it must be acknowledged  
that the two conditional probabilities are incompatible  
or, in other words, that a given probability pS|T  is not  
necessarily equal to pT|S . This situation is similar to the 
simplicial sets in the UMAP graph representation of McI-
nnes et al (2020). Here, the same solution is proposed, 
namely, the construction of a fuzzy union based on the 
t-conorm

Here, ◦ is the pointwise product. The final step involves nor-
malising the values in pST such that it becomes a PDF, which 
can be achieved by applying the softmax function as follows:

The final probability matrix pij represents the distribution 
between source and target tasks in the physics space. Algo-
rithms 1 and 2 are the practical implementations used to 
obtain the physics space distribution.

(20)p
physics

i�j =
exp

�
−��zi − zj��2∕2�2

i

�
∑

k≠i exp
�
−��zi − zk��2∕2�2

i

� .

(21)p
physics

i|j =

(
pT|T pT|S
pS|T pS|S

)
.

(22)pST = pS|T +
(
pT|S

)T
− pS|T◦

(
pT|S

)T
.

(23)pij =
pST∑

i

∑
j pST

.
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Algorithm 1   Building physics space probability distribution. 
Subscripts N and H represent new and historical samples, 
respectively

Algorithm 2   Computing standard deviations � . In this paper, 
the binary search of Hinton and Roweis (2002) is used.

4.3 � Aligning the source and target data 
in the design variable space

This section describes the vectorised gradient formulation 
used when reconstructing the distribution of the physics-
latent space in the variable space. The optimisation algo-
rithm is left to the reader’s discretion. The results of this 
paper are obtained using the same gradient-descent-with-
momentum routine that MATLAB employs in the exact 
implementation of its ���� function.

The PDF in the variable space is identical to t-SNE, 
save for a slight modification which ensures its terms are 
equivalent to the cross covariance values of Eq. 22,

The terms x , associated with the target task, are fixed. The 
optimisation algorithm must find a way to embed the source 
data, y , around the target task samples.

The gradient of the Kullback–Leibler divergence with 
respect to the embedding is given by

The physics and variable superscripts were dropped for nota-
tion convenience. The gradient calculation may be vector-
ised by observing that, for instance, the gradient with respect 
to the first point in the embedding can be written as

This enables the gradient with respect to the first sample to 
be re-written as

Here, K1m is a vector containing the first row of a matrix K 
defined as

The matrix of gradients for cross-covariance terms can thus 
be written in a vectorised form as

There is a further complication that must be addressed 
in the gradient calculation. In cases where the target data 
are sparse, the influence of far-away target points on the 
source data embedding may be very small. This may lead 
to unwanted behaviour, such as clustering of significantly 
different source data samples. This problem is demonstrated 
in section 5.2. This implementation addresses the issue by 
conducting a secondary gradient calculation, which aims to 

(24)qvariable
ij

=

�
1 + ��yi − xj��2

�−1
∑

k≠l

�
1 + ��yk − xl��2

�−1 .

(25)
�C1

�yi
= 4

∑
j

(
pij − qij

)
(yi − xj)(1 + ||yi − xj||2)−1.

(26)

1
4
�C1
�y1

=
p11 − q11

1 + ||y1 − x1||2
(

y1 − x1
)

+…

+
p1m − q1m

1 + ||y1 − xm||2
(

y1 − xm
)

=

y1

(

p11 − q11
1 + ||y1 − x1||2

+⋯ +
p1m − q1m

1 + ||y1 − xm||2

)

−…

− x1
p11 − q11

1 + ||y1 − x1||2
−⋯ − xm

p1m − q1m
1 + ||y1 − xm||2

.

(27)
1

4

�C1

�y1
= y1◦

∑
m

K1m − K1mX.

(28)K =

⎛⎜⎜⎜⎝

p11−q11

1+��y1−x1��2 …
p1m−q1m

1+��y1−xm��2
⋮ … ⋮

pn1−qn1

1+��yn−x1��2 …
pnm−qnm

1+��yn−xm��2

⎞⎟⎟⎟⎠
.

(29)
�C1

�y
= 4

(
Y◦

∑
m

K − KX

)
.
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enable the source data to maintain its physics space structure 
in the design variable space.

Mathematically, this entails calculating the origi-
nal t–SNE gradient using only source data samples. This 
requires first collecting the lower-right block of the matrix 
in Eq. 20

The PDF in the variable space becomes

The gradient has the same form as Eq. 24 and can be writ-
ten as

Following the MATLAB exact implementation of t-SNE, 
Eq. 32 can be re-written, for the first term of y , as

Letting the matrix K̃ be defined like Eq. 28, but with the new 
terms, the vectorised gradient may be written as

Here, D is a diagonal matrix defined as

The final gradient used in the embedding optimisation has 
the form

Here, the weighting parameter � depends on the number of 
target sample points. Generally, the more dense the sampling 
of the target data, the larger � should be since the informa-
tion of the source data structure in the physics space is not 
required to ensure adequate embedding.

A practical implementation of the vectorised gradient 
computation is proposed in Algorithm 3. 

(30)p
physics�

i|j = pS|S.

(31)qvariable
�

ij
=

�
1 + ��yi − yj��2

�−1
∑

k≠l

�
1 + ��yk − yl��2

�−1 .

(32)
�C2

�yi
= 4

∑
j

(
p�
ij
− q�

ij

)
(yi − yj)(1 + ||yi − yj||2)−1.

(33)

1
4
�C2
�y1

= y1

(

0 +
p′12 − q′12

1 + ||y1 − y2||2
+⋯ +

p′1m − q′1m
1 + ||y1 − ym||2

)

−…

−y2
p′12 − q′12

1 + ||y1 − y2||2
−⋯ − ym

p′1m − q′1m
1 + ||y1 − ym||2

.

(34)
𝜕C2

𝜕y
= 4

(
D − K̃

)
Y .

(35)D =

⎛⎜⎜⎝

∑
m K̃1m

⋱ ∑
m K̃mm

⎞⎟⎟⎠
.

(36)
1

4

𝜕C

𝜕y
= 𝛼

(
Y◦

∑
m

K − KX

)
+…

+(1 − 𝛼)
(
D − K̃

)
Y .

Algorithm 3   Vectorised Computation of Embedding Gra-
dients. The operator ◦ denotes element-wise multiplications, 
while × denotes matrix multiplication.

5 � An illustrative example

5.1 � Problem description

A simple engineering case is introduced for demonstra-
tion purposes. The design parameterisation employs the 
Free-Form Deformation (FFD—Sederberg and Parry 
(1986)) scheme on one of two super-critical aerofoils: the 
SC(2)−0610 and SC(2)−0710, where the former is the target 
task and the latter is the source. The manipulation of the 
airfoil surface is achieved through a vertical displacement 
of the nodes highlighted in Fig. 1a, up to 5% of the aerofoil 
chord. The resulting range of changes is shown in Fig. 1b. 
The same parameterisation is considered across target and 
source tasks for simplicity.

The quantity of interest is the total drag coefficient. 
The physics matrix is built using pressure coefficient (Cp) 
measurements. The spatial arrangement of pressure probes 
is illustrated in Fig. 1c, with an approximate uniformity 
maintained across all geometries. The CFD analysis uses 
the Viscous Garabedian and Korn (VGK) code Garabedian 
and Korn (1971).
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The flight conditions are characterised by a Mach number 
of 0.72, a Reynolds number of 6 × 106 , and a lift coefficient 
constraint of 0.4. The latter is enforced through adjustments 
in the angle of attack. A spline regression model between 
the lift coefficient ( Cl ) and the angle of attack is built using 
angles 0 and 1. Subsequently, extrapolation techniques are 
employed to identify the angle of attack necessary to achieve 
the desired lift coefficient. In cases where the initially esti-
mated angle does not yield the target Cl , the regression 

model is updated, and the process iterates until the correct 
value is obtained.

5.2 � Embedding result

Two Latin-hypercube samples of five and 40 samples for 
the target and source tasks are drawn using the MATLAB 
��������� function. Their distribution is shown in Fig. 2a, 
where the points are coloured by the drag coefficient ( CD ) 
values obtained from VGK, which are normalised to have 
mean zero and a standard deviation of one.

The results of the embedding process are depicted in 
Fig. 3a, b. One of the points in the source data is deliber-
ately highlighted (bold square) as it conveniently show-
cases the need for the secondary t-SNE error term men-
tioned in section 4.3. Without the source data, the location 
of this sample in the latent space of Fig. 2 is such that the 
values pij of its closest three neighbours have approxi-
mately equal values. The pij value of its fourth and fifth 

Fig. 1   Illustrative problem setup

Fig. 2   DOE and POD of illustrative problem for a random latin-
hypercube design



	 P.-C. Cimpoesu et al.57  Page 10 of 23

neighbours are near zero. Since the first three neighbours 
are approximately collinear, the embedded point can be 
positioned either above or below the line they form with 
the same effect on the loss function. In this case, the result 
converges to the unlucky location. By including the t-SNE 
loss term, the issue is resolved since information about the 
remaining neighbours is included via the source data. An 
added degree of dispersion can also be observed, as fewer 
local clusters form in the embedding of Fig. 3b.

5.3 � Model build result

The benefit of the embedding may be assessed by building 
a Kriging model using the five target samples and then 
comparing its predictive accuracy with that of a categori-
cal Kriging, which fuses the target data and the embedded 
points.

Figure 4a, b shows the two source functions and Fig. 4c 
shows the true target function from which the DOEs were 
sampled. Figure 5a shows the prediction generated by a 
Kriging model using the five available samples from the 
target data, which are also plotted. The model is inaccurate 
and misleading and may cause the cold start problem as it 
cannot correctly indicate the location of minimum drag. On 
the other hand, the categorical-Kriging prediction, which 
uses the embedded points of the source data (Fig. 5b, c), 
generates a faithful representation of the topography of 
the design space, correctly indicating the location of mini-
mum drag. The former data source (SC(2)−0410) is of 
particular interest because the algorithm manages to fuse 
the data from the two samples despite the apparent lack of 
correlation between the original functions; this is achieved 
thanks to categorical-Kriging’s ability to model negative 
correlations between responses.

6 � Aerofoil optimisation example

To more comprehensibly demonstrate the ability of the 
proposed method to alleviate the cold start problem, an 
aerofoil optimisation test case is proposed. The objective 
is to improve the performance of the SC(2)−0610 aerofoil 
at the flight conditions described in Sect. 5.1, namely a 
Mach number of 0.72 and a Reynolds number of 6 × 106 . 
For this problem, however, a lift coefficient of 0.7 is used.

Two versions of this problem are investigated, one 
where the parameterisation is constant and one where 
it varies from source to target data. In both cases, the 
source data may stem from one of three aerofoils: the 
SC(2)−0410, SC(2)−0610, and SC(2)−0710. The two sets 
of descriptors are introduced in the following sections.

6.1 � FFD parameterisation (10D)

The first parameterisation is an extension of the FFD scheme 
described in Sect. 5.1. The number of nodes that are vertically 
displaced is increased to ten in this scenario, as depicted in 
Fig. 6.

Fig. 3   Embeddings computed by proposed method



A t‑SNE‑based embedding for transfer optimisation with non‑overlapping design variables﻿	 Page 11 of 23  57

6.2 � Hicks–Henne bump function parameterisation 
(8D)

The second parameterisation uses Hicks–Henne bump 
functions and is explored in depth by Masters et al (2017). 
A short description is provided here for convenience.

The final co-ordinates of an aerofoil deformed using the 
scheme are given by

The design variables define the coefficients ai . The terms hi 
determine the locations of the bump function maxima and 
are given by

(37)yfinal = yinitial +

n∑
i=0

ai sin
ti
(
�xln 0.5∕ ln hi

)
.

The thickness parameters ti are defined as

The suction and pressure sides are deformed separately, 
using six design variables ai for each. However, since the 

(38)hi =
1

2

[
1 − cos

(
i�

n + 1

)]
for i = 1,… , n.

(39)ti = 2
(
n − i

n − 1

)3

for i = 1,… , n.

Fig. 4   True output functions corresponding to target and source tasks

Fig. 5   Predictions using Kriging and categorical Kriging
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two surfaces are joined together after the deformation, the 
weights a0 and a6 must be kept at zero to ensure geometric 
consistency. Thus, from an optimisation perspective, four 
variables can be modified on each surface to reduce drag, for 
a total of eight. The DOE is defined inside a Latin hypercube 
and bounded by [0,1]. For a given sample x inside this space, 
the weights ai are obtained using

The scaling factor 0.003 controls the range of possible 
geometries and is arbitrarily chosen. Higher values result in 
a larger range of possible aerofoils.

6.3 � Optimisation problem description

The objective of this exercise (Eq. 41) is to minimise drag 
at M=0.7, Re = 6 × 106 , and for a lift coefficient CL0 = 0.7 . 
A one-sided moment coefficient constraint is enforced 
with a tolerance of 10−4 . The target task geometry is the 
SC(2)−0610 aerofoil and its moment is Cm0 = −0.1107.

The baseline method consists of a traditional sequen-
tial model-based strategy. A Kriging model, described in 
Sect. 3.1, acts as the surrogate. Two auxiliary criteria are 
optimised using the MATLAB �� routine, followed by a 
terminal local search using MATLAB’s ������� . At each 
update, the chosen infill points are given by the results of 

1.	 min
x

f̂ (x) - the exploitation step, which finds the minimum 
of the predictor

2.	 max
x

ŝ2(x) - the exploration step, which finds the location 
of the maximum error (Eq. 9) of the predictor

(40)a = 0.003(x − 0.5).

(41)
min
x

Cd

s.t. Cm(x) > Cm0

CL = CL0

The Kriging-SMBO, i.e. the baseline approach, denoted 
KRIG, starts with a sparse sample of 10 points. Then, 15 
update cycles are conducted, leading to a final set of 40 sam-
ples if all runs converge. The process is carried out 30 times 
with different initial DOEs to generate a suitable sample for 
statistical analysis.

The new method, employing historical data, is denoted 
TSNE-CATKRIG and is set up like the baseline. To gather 
the source data, a separate KRIG optimisation is carried out 
for the source aerofoils. The optimisation results, i.e. the 
original 10-point DOE plus the 30 infill points, make up the 
source task sample and are modelled as a second qualita-
tive level using the categorical Kriging. The physics vector 
consists of the same pressure measurements described in 
section 5.2.

6.4 � Case 1 ‑ Using FFD as source data

In the first example, the SC(2)−0610 aerofoil is opti-
mised using only the variables of the FFD scheme. The 
source data come from one of two aerofoils, as indicated 
in Fig. 7, where the title of the figures has the following 
f o r m :  source task aerofoil (source parameterisation) →
target task aerofoil (target parameterisation).

The performance of the methods is indicated using box-
plots. For this graphical representation, the line’s location 
(where circles/diamonds are also plotted) indicates the 
median value. The edges of the boxes correspond to the 
25th and 75th percentiles. The whiskers extend to values of 
±1.5 × IQR (inter-quartile range), and points located beyond 
are classed as outliers; no outliers were observed in this 
example.

Across all three source tasks, a significant improve-
ment (indicated in the captions) is observed when applying 
the proposed method. The median values are significantly 
lower across all updates, and the IQRs and outlier bounds 
are shrunk to a substantial degree.

6.5 � Case 2 ‑ Using HHB as source data

In the second example, the HHB parameterisation is 
employed as the source task. The same title convention and 
visualisation tool is used in Fig. 8.

Similar conclusions can be drawn from the HHB → FFD 
case, namely that the median is lower, with a tighter distri-
bution of discovered minimum values. However, there is 
a slight reduction in the benefit of reusing historical data. 
This is to be expected, of course, since the latent correla-
tions between tasks will not be as strong when the param-
eterisation changes. Still, the optimisation performance 
enhancement given by the proposed method is consider-
able. The embedding strategy shows promise as a solution 
to the cold start problem.

Fig. 6   Example of deformation achieved using a 10-dimensional FFD 
scheme with a regular grid of points. Vertical displacement and aero-
foil deformation are exaggerated for visualisation purposes. The dot-
ted line is the deformed aerofoil, and the solid is the baseline geom-
etry
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6.6 � Assessment of predictive accuracy

Plots of the average validation error at various stages in the 
optimisation process are shown in Fig. 9. These errors are 
obtained by predicting the values of a test set consisting of 
2000 samples built using MATLAB’s ��������� . The 16th 
update corresponds to a model built after the final update. 
The legend indicates the parameterisation and aerofoil of the 
source data. The marker style is used to indicate the source 
parameterisation, while the choice of line style corresponds 
to the choice of aerofoil.

A great degree of fluctuation is observed due to the sto-
chasticity of the optimisation process. However, the methods 
that utilise historical data have a clear advantage in predic-
tive accuracy in the early stages and tend to decay relative 
to the baseline, the KRIG approach, as more infill points are 
added. In the case of the objective function, Cd , this advan-
tage is maintained up to the 9th update. For the constraint, 
the advantage is lost after the 5th update. This, the authors 
believe, is the source of the performance advantage of the 
t-SNE-based method. The initial improvement is sufficient to 
guide the initial search correctly, indicating that the method 
is a valid solution to the cold start problem.

7 � Combustor optimisation example

This section examines the performance of the proposed 
method on a combustor representative of those present on 
modern commercial airliners. The geometry of the model is 
shown in Fig. 10. The fluid volume is built using a paramet-
ric geometry modelled in Siemens NX.

7.1 � Design variable description

The source data parameterisation consists of the arrange-
ment described by Toal et al (2021), where the ports on the 

Fig. 7   Optimisation performance when target and source tasks have 
the same descriptors, namely those defined by the FFD scheme. 
KRIG achieves a 16.692% drag reduction at the final update

Fig. 8   Optimisation performance when the target task consists of the 
FFD predictors and the source task consists of the HHB predictors. 
KRIG achieves 16.692% drag reduction at the final update
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annuli are grouped into four rows. Eight design variables are 
used, four of which describe the axial location of each row, 
while the other four define their radius.

In the target data, twelve design variables are used. These 
consist of the x-y displacements of six control points, which 
define the centres of radial basis functions that are used to 
morph the mesh of the inner and outer annuli walls. Rather 
than morphing the walls and re-meshing the geometry each 
time, the mesh itself is morphed, an equivalent operation. 
Three basis functions are used for each wall.

7.2 � CFD

The mesh consists of an unstructured tetrahedral design with 
hexahedral core conversion. The baseline geometry contains 
16.7M elements and was constructed using the Ansys ICEM 
CFD package.

The CFD solver runs in the proprietary Rolls-Royce pack-
age PRECISE-UNS Anand et al (2013). Its setup is identical 
to the high-fidelity case in Toal et al (2021). Turbulence is 
simulated using the realisable K − � turbulence model. Fuel 
and ignition are introduced after the 500th and 600th itera-
tions, respectively, and the code stops after 5000 iterations. 
Combustion is modelled using the flamelet-generated mani-
fold technique. Boundary conditions in the form of velocity 
profiles are placed at the inlets of both annuli and the exits of 
each swirler passage. These remain unchanged irrespective 
of the design geometry. The modelled condition is represent-
ative of a large commercial airliner running at full throttle. 

NOx emissions are obtained directly from PRECISE-UNS, 
while wall pressure losses are calculated using Paraview.

7.3 � Optimisation problem description

The goal of the exercise is to reduce the NOx emissions index 
( EINOx ). The physics matrix for this quantity is constructed 
using NOx measurements from a uniform grid of 250 × 100 
points at the exit wall of the combustor. This grid does not 
consist of cells of the fluid volume mesh. As a result, the 
NOx quantities it contains are interpolated.

Constraints are placed upon the wall pressure loss, which 
is the drop in total pressure observed between the inner and 
outer annuli entrances and the exit of the combustor. These 
values are constrained to be within 10% of the baseline. 
Unlike NOx , the physics matrix, built using total pressure 
values, uses the measurements in the volume cells at the 
combustor exit, as these could more conveniently be calcu-
lated without the interpolation step. This does not pose any 
problems for the target data, where the mesh is morphed, 
and thus, the grid on the combustor exit is constant across 
designs. However, in the case of the source data, i.e. the port 
parameterisation, the combustor was re-meshed each time. 
Thus, the vector of measurements differed in size for the 
different geometries. To ensure consistency with the con-
stant mesh of the target data, a truncation operation was per-
formed: only the first 16,259 values were kept. This caused 
some inconsistencies, as not all measurements represented 
the same cells. However, because the cells corresponding 
to the measurements were still relatively close in the fluid 
volume, it was found that the inconsistencies were not suf-
ficiently major to affect the correlation between the integral 
of the vector and the pressure drop scalar.

Designs that did not converge after 5000 iterations are 
treated as infeasible. The structure of MATLAB’s optimis-
ers requires that constraint functions return values below or 
equal to zero if a function is feasible and values above zero 
if the opposite is true. To ensure that failed runs are avoided, 
a value of one is ascribed to the failed runs.

Fig. 9   Average validation error of models during optimisation - aero-
foil case

Fig. 10   Combustor fluid volume - reproduced from Toal et al (2021)
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Due to the restrictive cost of the CFD code, historical 
data do not originate from a previous optimisation. Rather, 
the source data are selected from a database of 424 CFD 
runs. For each repetition of the experiment, 100 points are 
sampled using a routine detailed by Forrester et al (2008) 
that utilises the Morris criterion to choose points such that 
an approximation of a Latin hypercube is selected. Because 
the routine uses a greedy algorithm, a different initialisation 
will result in different sub-samples. Thus, by varying the 
random seed, different source datasets can be picked each 
time the experiment is repeated.

The target data consist of a 60-sample Latin-hypercube 
design generated using the MATLAB ��������� function. 
The same seed as per the source data is provided for this 
DOE.

The search for the auxiliary criteria is conducted using 
the built-in MATLAB �� routine. At each update, four infill 
points are added, two consisting of exploring and two of 
exploiting the design space: 

1.	 min
x

f̂ (x) - the first exploitation step, which finds the 
minimum of the predictor

2.	 max
x

EI[f̂ (x)] - the second exploitation step, which finds 
the highest value of the expected improvement of the 
predictor

3.	 max
x

ŝ2(x) - the first exploration step, which finds the 
location of the maximum error

4.	 max
x

(||x − Xtarget||2
)
 - the second exploration step, which 

finds a space-filling point, defined as furthest away from 
all other points in the target dataset

As in the previous example, the baseline is a Kriging-
SMBO, denoted KRIG , which is compared to the proposed 
method, consisting of the embedding and Categorical Krig-
ing, denoted TSNE-CATKRIG . The initial sample of 60 
points is updated ten times, with four infill points per update, 
such that a 100-point sample is eventually reached, provided 
all runs converge. The process is repeated ten times rather 
than the 30 aerofoil cases, again due to the restrictive cost 
of the CFD simulation.

7.4 � Results and discussion

The results of the optimisation process are shown in 
Fig. 11a. The 0th update corresponds to the minimum feasi-
ble design in the original 60-point DOE. On this occasion, 
a reduction in predictive error cannot be used to explain the 
improvement in optimisation performance. The comparison 
between the two methods is shown in Fig. 11b, where it is 
visually obvious that the proposed method does not perform 

as well as the baseline. Granted, the scale of the validation 
errors is small relative to the output range, but this would 
only mean that the two methods should at least perform 
equally in the optimisation process of Fig. 11a; however, 
this is clearly not the case. The question arises as to what the 
TSNE-CATKRIG learns from the historical data.

The answer can be found by analysing the physics-based 
latent space of the NOx measurements. The latent space is 
visualised by reducing the physics matrix, which has dimen-
sions n × 25000 , where n is the number of samples, to two 
dimensions. The tool of choice is the proper orthogonal 
decomposition on the full physics matrix, which is defined 
as a matrix, where Zsource and Ztarget are vertically stacked. 
The result of this operation, in the form of two sets of sam-
ples, is showcased in Fig. 12. The samples are drawn from a 
randomly selected run of the ten repeats, and the DOEs cor-
respond to the 0th update, i.e. the initial sample. The plots are 
similar to those in Sect. 5.2. The colour is once again given 
by the objective, NOx , which is normalised with mean zero 
and standard deviation one.

The most evident difference between the target and source 
data is the multi-modality of the former. Since the integral of 
the physics vector is tightly correlated to the output function, 
EINOx , it may be assumed that this multi-modality will be 
reflected in the design variable space. On the other hand, 
the source data appear to have a relatively simple objec-
tive function distribution, almost linear in nature. As previ-
ously shown, categorical Kriging yields a model akin to a 
weighted average, where the number of available samples 
decides the weights. The source data will thus be preferred. 
Naturally, the predictive accuracy of the model on the target 
data will suffer. However, the search for a global minimum 
will be greatly simplified since, in the case of the source 
data, the location of the minimum can easily be identified 
(top right in the source physics-latent space).

In Fig. 13, the subspace is rebuilt after three updates. 
The distribution of the target and source data has remained 
almost unchanged, except that additional points are now 
present in the top right. This is, in essence, what the model 
learns from the historical sample; that is, the global mini-
mum is located at the indicated edge of the design space.

Further confirmation is offered in Fig. 14. The best update 
selected for each experiment repeat, up to the third update 
(to match Fig. 13), is plotted as a parallel axis chart. The 
first twelve axes represent the design variables, while the last 
axis is the NOx objective normalised to have a value in the 
interval [0,1]. The plot in Fig. 14b consists of the proposed 
method, which, although noisy to a degree, shows a clear 
pattern in choosing a specific edge of the design space. On 
the other hand, the baseline Kriging only shows a pattern for 
a few of the variables, most likely as a consequence of the 
multi-modality of the design space.
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8 � Hyper‑parameter Optimisation

Several hyper-parameters control the shape and accuracy 
of the embedding. This section investigates the sensitivity 
of the embedding to these parameters and proposes guide-
lines for identifying an optimal set. Of particular concern are 
the three most important parameters inherited from t-SNE: 
perplexity, exaggeration, and learning rate. The weighting 
factor, � , introduced by the current method, is also studied.

Assessing embedding correctness is difficult. Using the 
distance between the embedding and actual locations, known 
a priori, is not feasible for two reasons. Firstly, the ground 
truth, i.e. where the points should be, will usually not be 
known or available to practitioners at inference time (there 
would be no need for an embedding otherwise). Secondly, 
there may be significant differences between the physics and 
design space distribution. This will also entail that two DOE 
locations may generate identical physics, meaning multiple 
embedding solutions may exist for the same point. It has 
also been noticed that even if the actual location is known 
a priori, the embedding will often generate a significantly 
different set of points. This is not unexpected and is partly 

a function of the difference between the design space and 
physics distributions and partly caused by the stochasticity 
of the method.

An essential contention is that this is not problematic 
because the critical information passed from historical data 
is the relationship between the design variables and the 
response. Given the importance of accurately representing 
the response, the validation metric of choice is the R2 cor-
relation between the response values of the embedded points 
and the response values of the actual DOE locations. Unfor-
tunately, assessing responses for the embedded points was 
computationally infeasible, so Kriging models for the two 
responses were used. The final issue is that the R2 metric is 
also unavailable at inference time. Gove et al (2022) provide 
a feasible solution involving a consistency check between the 
distribution in the physics space and the distribution in the 
design variable space. The mean accuracy metric (MAM) 
proposed by Gove et al (2022) consists of the average of four 
related metrics:

Fig. 11   Optimisation result in combustor case and validation error on 
the prediction of the objective function, EINO

x

Fig. 12   Latent, physics-based sub-spaces of NO
x
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•	 The Spearman correlation: correlation between the terms 
of pij and qij

•	 The 1-Knn accuracy: For each point pi , this metric is one 
of the nearest neighbour in the latent physics space and 
the variable space match, and 0 otherwise

•	 The 10-Knn accuracy: For each point pi , this metric is the 
fraction of the k nearest neighbours that are neighbours 
of pi in both the latent physics space and the variable 
space

•	 The rank accuracy metric: to balance the Knn accuracy 
metrics, this metric penalises large changes in rank more 
than small changes in rank and is detailed in Gove et al 
(2022).

The MAM metric can be used to tune the hyper-parame-
ters, and its correspondence with the R2 validation metric 
is showcased in the following section. In the case studies 
of Sects. 6 and 7, a grid search was used to maximise the 
MAM metric.

8.1 � Experimental Setup

The experiment will involve conducting grid searches for 
optimal hyper-parameters and demonstrating that general 

rules of thumb can be derived without requiring advanced 
optimisation. As the problems of previous sections are 
reused, information on the physics and parameterisations 
can be found in Sects. 6 and 7.

To obtain a ground truth for validation, the same param-
eterisations are used (FFD in the aerofoil case with the 
SC(2)−0610 baseline and the wall morph parameters for the 
combustor). In both cases, datasets of varying total sample 
numbers are collected and split as 30:70 into new and his-
torical samples. The procedure thus involves the following:

•	 Randomly splitting a sample into 30% new and 70% his-
torical points,

•	 Embedding the historical sample around the new points 
using the proposed method,

•	 Predicting the response at the embedded locations, and
•	 Assessing the correlation between the prediction at 

embedded locations and response values at ground truth 
locations.

Fig. 13   Latent, physics-based sub-spaces of NO
x

Fig. 14   Parallel axis plots of updates for each of the strategies. Only 
the best design from each update is plotted
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The predictions are provided by Kriging models built using 
large DOEs; 2000 samples of the FFD parameterisation are 
used to build the aerofoil model and 1455 samples are used 
for the combustor. Leave-one-out cross-validation metrics 
for the two models are shown in Table 1.

8.2 � Sensitivity to Hyper‑Parameters

The first task involves understanding which parameters most 
influence the validation metric. A Latin-hypercube sample 
of 100 points is generated for the four hyper-parameters of 
interest. The bounds are set up as follows:

•	 Perplexity - [ < spanclass =� convertEndash� > 1 − 1000

< ∕span >],
•	 Exaggeration - [ < spanclass =� convertEndash� > 1 − 5

< ∕span >],
•	 Learning Rate - [ 10−4 − 2],
•	 Weighting Factor - [ < spanclass =� convertEndash� > 0

−1 < ∕span >].

The sensitivity of the metric to the hyper-parameters is 
assessed through the correlation plots of Fig. 15. The associ-
ated values in the Latin-hypercube sample are plotted against 
the correlation metric for each hyper-parameter. Only two 

of the parameters, perplexity and weighting factor, generate 
a significant effect and, as such, will be investigated further. 
The remaining hyper-parameters appear less significant, 
provided reasonable values (e.g. values of one for both) are 
used.

Having narrowed down the list of relevant parameters, 
a grid of 11 weight factors × 8 perplexities is generated for 
the remaining two. Figure 16 shows contour plots of the two 
variables, coloured by the correlation metric. The analysis 
consists of trying the 88 combinations of hyper-parameters 
on two datasets of varying sizes. The small DOE consists 
of 100 and the large DOE consists of 500 samples, again 
split 30:70. Figures are shown for both the combustor and 
aerofoil problems to demonstrate that the conclusions are 
problem-independent.

The weight factor has, as expected, a decisive influence 
on the correctness of the embedding. Too low values can 
break the process because the embedding will ignore new 
data and, as such, collapse into a standard t-SNE of the 
historical data physics space; values above 0.8−0.85 are 
recommended. Perplexity also has an impact, especially 
in the edge cases. However, Fig. 16 shows that, apart from 
edge cases, changes in R2 are relatively small for a constant 
weight factor of 0.9. This entails that perplexity is not criti-
cal to a good embedding if conservative values are used. As 
such, perplexity values between 40–50% of the total sample 
size are recommended. Figure 17 shows an analogue experi-
ment, but this time, colouring the contours by the MAM. A 
similar pattern is noticed, and although the MAM is more 
generous regarding feasible hyper-parameter combinations, 
the recommendation of a weight factor around 0.85 and per-
plexities in the range of 40–50% of the total sample size 
still yield the best results. It is also important to note that 
the feasible region appears to be convex in both problems. 
Practitioners may thus use the current recommendation as 

Table 1   Leave-one-out cross-validation metrics for Kriging predic-
tors used to assess correlation

Percentages represent the error value divided by the mean response in 
the training set

Metric Aerofoil Combustor

R
2 0.9098 0.99

Mean absolute error 0.36% 1.3%
Root mean squared error 6% 5.5%

Fig. 15   Correlations between 
embedding accuracy metric ( R2 
correlation between responses) 
and hyper-parameter values for 
the test cases. The weighting 
factor, � , is the most important 
parameter; perplexity is a dis-
tant second. Exaggeration and 
learn rate appear unimportant 
(provided sensible values are 
used) and will not be investi-
gated further
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a starting point, followed by a greedy binary search, if the 
computational budget allows.

Further practical considerations are explored in the 
appendix.

9 � Conclusions and future work

A new method was proposed to address the cold start prob-
lem associated with sequential model-based optimisation 
(SMBO). The approach uses categorical Kriging as the sur-
rogate model, and its key advantage is its ability to combine 
data sources with varying parameterisation. Unlike existing 

methods, no overlap is required between the two sets of 
parameters.

The method utilised simulation measurements from the 
code used to calculate the quantity of interest. For each 
sample, measurements were drawn from a constant grid 
and flattened into a vector. A crucial requirement was that 
the integral of the resulting vectors was correlated with 
the objective function. The vectors were then stacked in a 
physics matrix and treated as a latent, physics-based mani-
fold. The distribution of samples in the manifold was used 
to build a t-SNE-based embedding, where the source data 
were embedded onto the manifold defined by the target data 
DOE in variable space.

Fig. 16   Contours of response R2 for the two key hyper-parameters Fig. 17   Contours of response MAM for the two key hyper-parameters
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The method shows promise in alleviating the cold start 
problem. For an aerofoil design optimisation problem, it 
achieved a reduction of 27–47% in the budget required to 
reach the same design as a standard Kriging. This improve-
ment was attributed to an increase in the predictive accuracy 
of the underlying surrogate. For a more realistic combustor 
design scenario, the method achieved a reduction of more 
than 60% of samples needed to reach the same design as 
a Kriging-based SMBO. In the latter case, the predictive 
accuracy of the model was reduced due to the relatively 
simple design space of the source task. However, because 
of the linear nature of the historical objective function, the 
infill strategy could more efficiently identify the edge of the 
design space that housed the optimal set of parameters.

An element of the knowledge transfer problem that has 
remained unaddressed is how best to decide whether two 
physics matrices will lead to an embedding that ensures 
positive knowledge transfer. In the examples provided above, 
this was a given. Qualitatively, the extent of the similarity of 
the tasks can be ascertained from the latent spaces of the two 
tasks. For instance, in the combustor case (Fig. 12), it was 
easy to see that the objective functions were well correlated. 
Since the latent space is reproduced in the variable space 
using the embedding, this correlation likely carried over, 
ensuring positive transfer. However, the correlation may not 
always exist, and negative transfer, i.e. the transfer of false 
information from source to target tasks, may occur. In the 
context of the large databases of historical data available for 
most engineering companies, some quantitative measures, 
likely based on the aforementioned correlation, should be 
derived.

Appendix A practical considerations

A.1 Sensitivity to noise

See Figs. 18, 19.
Noise is a common feature in engineering applications 

and, as such, studying the sensitivity of the embedding to 
random fluctuations is critical. It must be noted that the pro-
vided case studies will naturally contain some level of noise 
due to varying degrees of residual convergence. This section 
also adds random Gaussian noise of varying degree, to test 
how the method performs in more extreme cases.

The experiment in Sect. 8 is repeated, but this time the 
hyper-parameters are kept constant, at values, perplexity: 
40% of sample size, weight factor: 0.85, exaggeration: 1, 
learn rate: 1. The small DOE consists of 100 samples, while 
the Large DOE is built using 1000 samples. A random sam-
ple of the standard normal distribution is collected using 
MATLAB’s randn function and multiplied by increasingly 

larger scalars to simulate random normal distributions with 
increasing standard deviation.

Fig. 18   Difference between noisy and standard embedding. A Gauss-
ian distribution with varying standard deviation is added to physics 
matrix. Noise only becomes an issue for standard deviations equal to 
or above 1

Fig. 19   Decay of embedding correctness as target sample size 
decreases. The x-axis indicates the number of points available in the 
target sample
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The KL divergence metric is used to show the difference 
between the embedding generated when no noise is applied 
and the embedding obtained when the random Gaussian 
noise is added. Figure 18 shows that for both cases and 
regardless of DOE size noise only becomes a significant 
issue when the standard deviation of the noise Gaussian 
approaches a value of one. This is an encouraging sign as 
such values are relatively large and, the authors contend, 
could only be the result of a problematic finite volume code. 
Therefore, while the method would fail in such cases, they 
are unlikely to represent realistic scenarios.

Scaling and time complexity

As evidenced by van der Maaten (2013) the exact t-SNE 
implementation scales as O

(
n2
)
 . This makes the method 

difficult to scale and intractable for massive datasets. For 
problems encountered in engineering design, however, this 
may not be an issue. The method was developed for cases 
where finite volume simulations require significant resources 
(e.g. large CFD codes taking upwards of hours or days to 
compute). The contention is that for such problems, the cost 
of the finite volume code is so high that practitioners will 
always be forced to work with a sparse sample. Further-
more, for engineering problems such as the combustor case 
described in section 7, studies such as Alizadeh et al (2020) 
recommend the use of Kriging, which has even worse scal-
ing properties, with a time complexity of O

(
n3
)
.

Still, future publications will aim to alleviate the compu-
tational cost using proven solutions, such as the Barnes–Hut 
implementation of van der Maaten (2013), which reduces the 
complexity to O(n log n).

Sensitivity to target data sparsity

The embedding was designed with sparse target sampling in 
mind. Still, it is important to quantify whether the method 
can produce useful embeddings under increased target data 
sparsity. The experiment of Section A.1 is repeated with 
slight modifications. Three of the hyper-parameters are con-
stant: weight factor: 0.85, exaggeration: 1, learn rate: 1. The 
perplexity is varied so that it is always at 40% of the total 
sample size which, as previously discussed, usually gener-
ates a solution close to optimal. In Fig. 19, the correlation 
between predictions generated by an embedding and predic-
tions generated by the known locations is used. This time, 
however, the embedding has to rely on smaller and smaller 
source datasets, as indicated by the x-axis. When a large 
historical dataset (500 samples) is available, the embedding 
appears to suffer a drastic drop-off at around the 15-25 sam-
ple mark. When a smaller historical sample is available (50 
samples), there is no sudden drop-off, but rather a constant 
decay with embeddings becoming unusable around the 5-15 

sample mark. This suggests that the method is prolific at 
working with sparse samples, as previously demonstrated by 
the test problems. However, practitioners should be aware 
that an all-encompassing verdict of how small is too small 
is impossible. It will depend on the problem, the number of 
variables, and the number of total samples. Therefore, the 
embeddings produced by the method should still be checked 
for consistency.
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