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Abstract
The extrapolation performance of Convolutional Neural Network (CNN)-based models for 
Large-Eddy Simulations (LES) has been investigated in the context of turbulent premixed 
combustion. The study utilises a series of Direct Numerical Simulation (DNS) datasets of 
turbulent premixed methane/air and hydrogen/air jet flames to train the CNN models. The 
methane/air flames, which are characterised by increasing Reynolds numbers, are used 
to model the subgrid-scale flame wrinkling. The hydrogen/air flame, exhibiting complex 
thermodiffusive instability, is employed to test the ability of the CNN-based combustion 
models to predict the filtered progress variable source term. This study focuses on the 
influence of varying training Reynolds numbers, filter sizes, and filter kernels to evaluate 
the performance of the CNN models to out-of-sample conditions, i.e., not seen during 
training. The objectives of this study are threefold: (i) analyse the performance of CNN 
models at different Reynolds numbers compared to the one trained with; (ii) analyse the 
performance of CNN models at different filter sizes compared to the one trained with; (iii) 
assess the influence of using different filter kernels (i.e., Gaussian and box filter kernels) 
between training and testing, to emulate a posteriori applications. The results demonstrate 
that the CNN models show good extrapolation performance when the training Reynolds 
number is sufficiently high. Vice versa, when CNN models are trained on low-Reynolds-
number flame data, their performance degrades as they are applied to flames with 
progressively higher Reynolds numbers. When these CNN models are tested on datasets 
with filter sizes not included in the training process, they exhibit sufficient interpolation 
capabilities, the extrapolation performance is less precise but still satisfactory overall. This 
indicates that CNN models can be effectively trained using data filtered with a limited 
range of filter sizes and then successfully applied across a broader spectrum of filter sizes. 
Furthermore, when CNNs trained on box-filtered data are applied to Gaussian-filtered data, 
or vice versa, the models perform well for smaller filter sizes. However, as the filter size 
increases, the accuracy of the predictions diminishes. Interestingly, increasing the quantity 
of training data does not significantly enhance model performance. Yet, when training 
data are distributed with greater weighting towards larger filter sizes, the model’s overall 
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performance improves. This suggests that the strategic selection and weighting of training 
data can lead to more robust generalization across different filter conditions.

Keywords  Deep learning · Convolutional neural networks · Turbulent combustion · Direct 
numerical simulations · Large-Eddy simulation closure

1  Introduction

Recent developments in the field of Machine Learning (ML) have achieved significant 
breakthroughs in various challenging tasks (Duraisamy et al. 2019), leading to a growing 
interest in applying ML techniques to turbulence and combustion modelling (Pitsch 2024). 
Given the increased computational performance of current computing clusters, Large 
Eddy Simulations (LES) are becoming increasingly common frameworks used to simulate 
combustion in complex systems of practical relevance, such as gas turbines and aircraft 
engines. In LES, resolved scales are directly captured by the simulation, while subfilter-
scale (SFS) components, which are smaller than the grid resolution, are not directly 
resolved. Accurate closure models are crucial to account for the interaction of resolved 
and unresolved scales. Modelling the small-scale interactions between turbulence and 
chemistry is a challenging task, and the limited predictability of the models has often 
hindered the use of LES in an industrial context. Given the availability of comprehensive 
high-fidelity datasets and open-access ML frameworks combined with the availability of 
computing power through GPUs, data-driven ML modelling has emerged as a promising 
method to improve the accuracy and efficiency of LES. This opens up new opportunities 
to improve the predictability and reliability of turbulent combustion simulations, which are 
crucial for the development and optimisation of the next-generation low-emissions high-
efficiency combustion systems. As a result, the use of ML in turbulence and combustion 
modelling has received significant attention from the combustion community (Brunton 
et al. 2020; Ihme et al. 2022)

In previous studies (Vollant et al. 2017; Ling et al. 2016; Duraisamy et al. 2015; Maulik 
and San 2017) Artificial Neural Networks (ANN) were used to model Subgrid-Scale 
(SGS) terms in turbulent flows for LES and Reynolds Averaged Navier-Stokes Simulations 
(RANS). However, advances in deep artificial neural networks, such as Convolutional 
Neural Networks (CNN), are proving to be increasingly useful in modelling turbulent 
reactive flows (Nista et al. 2023; Ihme et al. 2022), as CNNs are inherently good at learning 
spatial correlations in the flow field due to the convolution operations performed in each 
convolutional layer. CNNs are designed to analyse visual representations by extracting 
features from a dataset (Li et al. 2021). This is well suited for modelling turbulent reacting 
flows as the SGS wrinkling in a point depends on the spatial structure of the turbulent 
field in the neighborhood. A study by Nikolaou et  al. (2019) showed that CNNs can be 
successfully used to obtain the unfiltered progress variable field and its variance, an 
important parameter for an LES with tabulated chemistry. In LES of turbulent premixed 
flames, the filtered nonlinear reaction rate of the progress variable must be modelled in 
terms of the resolved fields. Since the turbulent reaction rate is strongly linked to the flame 
surface area, the task often requires an estimate of the subgrid wrinkling of the flame 
surface occurring below the resolution of the LES grid. According to previous a priori 
studies, CNNs have been shown to perform remarkably well in approximating the filtered 
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reaction rate (Seltz et al. 2019; Malé et al. 2024) and the subgrid flame wrinkling (Lapeyre 
et al. 2019).

Despite the remarkable performance of CNNs, a posteriori analysis by Lapeyre et al. 
(2018) highlighted that one of the greatest challenges in using ML models in LES is the 
ability of the ML model to generalise to new configurations and flow conditions. It has also 
been observed in many other applications, from speech recognition to medical diagnosis, 
that ML-based approaches can perform poorly when applied to data that is different from 
that used for training. Therefore, the models struggle to generalise. Without generalisation 
capabilities, the supervised data-driven models are limited to physical conditions for 
which training data is available (Grenga et al. 2023). This issue is particularly relevant for 
turbulence modelling, as the training data is usually obtained using high-fidelity Direct 
Numerical Simulations (DNS). However, due to the high computational cost of performing 
DNSs, producing high-quality data under conditions relevant to real-world applications 
such as gas turbines and engines is computationally prohibitive. Therefore, training data 
for ML models can only be obtained at relatively low Reynolds numbers compared to 
real applications. In the context of turbulent combustion modelling, the disparity in the 
Reynolds number, flow configuration, and geometrical complexity are arguably the most 
notable differences between industrial scale devices and configurations amenable for DNS 
or experiments, that are suitable for the production of training data. Without generalisation 
capabilities, supervised data-driven models are limited to physical conditions for which 
DNS or experimental data are available. For these reasons, it is crucial to investigate how 
well CNN-based, and more general, ML-based models, perform when applied to conditions 
that are different from those of the training data.

Another aspect that deserves further analysis is that the filter kernel definition and width 
in an actual LES are not explicitly known. This is due to a number of reasons, including 
the implicit filtering effect of the LES grid and the artificial dissipation introduced by 
the numerical scheme. However, a specific filter kernel definition and width is usually 
employed when preprocessing the DNS data used to train the models (Nista et al. 2024). 
Therefore, it is important to understand how CNN-based models perform when the filter 
kernel and size used to train and test the models are different.

In the present work, an a priori study based on a CNN (Lapeyre et  al. 2019) is first 
applied to model the subgrid flame wrinkling in a series of four DNSs of turbulent 
premixed methane/air jet flames with increasing Reynolds number (Luca et  al. 2019; 
Attili et  al. 2021). In addition, a DNS of a turbulent premixed hydrogen/air jet flame 
(Berger et al. 2022) is employed to model the filtered progress variable source term. The 
purpose of using the hydrogen/air dataset is to test the CNN models in predicting a field 
with a different underlying physics, such as the filtered progress variable source term in 
the thermodiffusively unstable hydrogen/air flame. In this flame, the reaction rate (i.e., 
the progress variable source term) is strongly inhomogeneous along the flame front. The 
heavily wrinkled flame front contains regions with high reaction rates followed by local 
extinction. Therefore, it is of interest to study how the CNN models learn these geometric 
patterns and, more importantly, how well these models can be generalised when applied to 
data that has not been used to train the models.

The goal of using an a priori analysis in this study is to train and test a broad range of different 
models over a large set of test cases. This broad exploration helps to identify key features of the 
CNN models that can be crucial for accurate combustion modelling. In addition, this approach 
enables a systematic analysis of the performance of the CNN models to identify any challenges 
and limitations in using CNNs for combustion modelling. Addressing these challenges a priori 
lays the foundation for more robust a-posteriori validation in future studies. However, a posteriori 
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analysis of CNN models is challenging due to the difficulty of integrating Python-based ML 
models with Computational Fluid Dynamics (CFD) codes typically written in C++ or Fortran. 
Bridging these languages requires resolving differences in design and runtime environments. 
Additionally, deep learning models trained on structured data often need interpolation and 
preprocessing to handle irregular grids used in unstructured solvers. This leads to additional 
computational effort and possible interpolation errors (Heaney et al. 2024). A study by Nista 
et al. (2025) has also highlighted some of the challenges that arise when coupling ML models 
with a massively parallelised CFD solver. In a parallel runtime environment, the transfer of data 
between the ML model and the CFD solver can be computationally expensive. Therefore, their 
study used a heterogeneous cluster architecture, where the CFD solver is executed on the central 
processing units (CPU), while the ML inference is performed on the corresponding graphical 
processing unit (GPU) available to the same CPU node. This type of hybrid architecture has 
been  shown to reduce the data transfer bottlenecks while having a negligible impact on the 
parallel scalability of the solver. Even though a different ML architecture was used in their study, 
the challenges encountered are common to all deep learning models. Carefully addressing these 
challenges is still a subject of ongoing research that requires a lot of time and effort, which is 
crucial for creating a robust and efficient coupling between the CNN and the CFD code.

For the aforementioned reasons, the objectives of this study are threefold: 

	 i.	 Train four CNN models using the data from each of the four methane/air flames and 
test each of them on all four flames to evaluate the performance of ML-based models 
when applied to data different from those used for training. Filter kernel and size are 
kept constant for training and testing data to isolate the generalisation of the models 
to different Reynolds numbers. Particular effort is given to the assessment of the 
performance of models trained with low-Reynolds number cases and applied to high-
Reynolds number flames to investigate the ability to extrapolate toward conditions of 
industrially relevant devices.

	 ii.	 Assess the generalisation of the CNN models to filter size. Filter the methane/air and 
hydrogen/air DNS datasets with a range of filter sizes with either a Gaussian or a box 
filter kernel; then train CNN models with a combination of filter sizes and test them 
using data with filter sizes that were not used to train the models. The aim is to study 
the performance of the CNN model when applied to different filter sizes that were not 
used to train the models.

	 iii.	 Assess the generalisation of the CNN models to filter kernel. Filter the DNS data with 
either a Gaussian or a box filter kernel while keeping the filter size constant; then train 
CNN models with data filtered with either filter type and apply the models to data 
filtered with a kernel type that was not used to train the model. The aim is to study the 
extrapolation performance of the CNN model when applied to different filter types 
that were not used to train the models.

The last two objectives emulate the application of using trained models on data for which the 
implicit filter operation is unknown.
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2 � DNS Datasets Description

2.1 � Methane/Air Premixed Flames

A series of turbulent premixed jet flames with increasing Reynolds number (Re), and 
approximately constant Karlovitz number (Ka), has been employed (Luca et  al. 2019; 
Attili et al. 2021) for training and a priori testing. A slot turbulent premixed jet flame 
with an equivalence ratio Φ = 0.7, a temperature of 800 K, and a pressure of 4 atm, 
surrounded by a coflow of burnt gases, is considered. A summary of all relevant flow 
parameters can be found in Table 1. Based on one-dimensional simulations of a freely 
propagating flame, the laminar flame speed is SL = 1ms−1 and the thermal thickness is 
�L = 110�m for all four configurations.

Since the four DNS cases have different Reynolds numbers, the case name ranges 
from R1 to R4 which stands for a low to high Reynolds number. In addition, all four 
case names contain K1, which indicates a constant Karlovitz number. The size of the 
computational domain is 24 H in the streamwise (x), 16 H in the crosswise (y), and 4.3H 
in the spanwise (z) direction (8.5H for R1-K1). A fully structured mesh is employed 
with a grid size of dx = 20�m resulting in an 88 million cell mesh for R1-K1, 350 
million for R2-K1, 2.8 billion for R3-K1, and 22 billion for R4-K1. The resolution is 
such that �L∕dx ≈ 6 and dx∕𝜂 < 2 at all locations.

The domain is periodic in z, open boundary conditions are prescribed at the outlet 
in x and slip conditions are imposed at the boundaries in y. The inlet conditions for the 
velocity field are obtained from four auxiliary fully developed turbulent channel flow 
DNS. The instantaneous realisations of the channel flow are sampled in time to cre-
ate the inlet velocity profile. The reactive, unsteady Navier Stokes equations are solved 
in the low Mach number limit (Tomboulides et  al. 1997). All transport properties are 
computed with a mixture-average approach (Attili et  al. 2016) and a skeletal methane 
mechanism with 16 species and 72 reactions (Luca et al. 2018) is employed. Figure 1 
shows the fuel mass fraction ( YCH4

 ) and the temperature of the R4-K1 configuration.

Table 1   Simulation parameters 
for the methane/air turbulent 
flames, evaluated in the fully 
turbulent region. H is the slot 
width, Ujet is the bulk velocity 
of the jet, u′ is the turbulence 
intensity, l is the integral length 
scale, � is the Kolmogorov 
length scale, Reλ is the Reynolds 
number based on the Taylor 
microscale evaluated in the 
unburnt jet, and Nx , Ny , Nz are 
the number of grid points in the 
three spatial directions

Case R1-K1 R2-K1 R3-K1 R4-K1

H (mm) 0.6 1.2 2.4 4.8
Ujet (m/s) 100 100 100 100
Re 2800 5600 11200 22400
u′ (m/s) 14.3 10.1 9.9 11.7
l (mm) 0.54 0.54 0.67 1.1
� ( μm) 18 23 25 25
u�∕SL 14.2 10.0 9.8 11.6
l∕�L 4.8 4.8 5.9 9.5
Ka 39 23 21 21
Reλ 49 39 40 50
Nx 720 1440 2880 5760
Ny 480 960 1920 3840
Nz 256 256 512 1024
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2.2 � Hydrogen/Air Premixed Flame

A large-scale DNS of a three-dimensional turbulent premixed lean hydrogen/air flame is 
also employed in this study (Berger et al. 2022) for training and a priori testing. It is a slot 
burner configuration with an equivalence ratio of Φ = 0.4, a temperature of 298K, and 
a pressure of 1 bar, surrounded by a coflow of burned gasses. This DNS features strong 
thermodiffusive instabilities due to the low Lewis number of hydrogen. A summary of all 
relevant flow parameters of the flame are reported in Table 2.

Fig. 1   Instantaneous snapshots of the fuel mass fraction (left) and the temperature (right) contour of the 
turbulent methane/air flame for the configuration R4-K1 (Table 1). The grey lines indicate the slot walls

Table 2   Simulation parameters 
for the hydrogen/air turbulent 
flame, evaluated in the fully 
turbulent region

Case H2∕Air flame

H (mm) 8
Ujet (m/s) 24
Ucof low (m/s) 3.6
SL (m/s) 0.17
δL(μm) 714
� ( μm) 180
Re 11000
Ka 20
Nx 1792
Ny 1024
Nz 512
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The size of the computational domain is 15 H in the streamwise (x), 12.5H in the cross-
wise (y), and 4.6H in the spanwise (z) direction. A fully structured mesh is employed with 
a grid size of dx = 70�m resulting in a ≈ 940 million cell mesh. The resolution is cho-
sen so that �L∕dx ≈ 10 and dx∕𝜂 < 2 at all locations. The domain is periodic in z, open 
boundary conditions are prescribed at the outlet in x and slip conditions are imposed at the 
boundaries in y. The inlet conditions for the velocity field are obtained from a fully devel-
oped turbulent channel flow DNS. The instantaneous realisations of the channel flow are 
sampled in time to create the inlet velocity profile. The chemical reactions are modelled by 
the mechanism of Burke et al. (2011), which contains 9 species and 46 reactions. Figure 2 
shows the fuel mass fraction ( YH2

 ) and the temperature of the turbulent premixed hydro-
gen/air flame.

3 � Mathematical Formulation

3.1 � Modelling Flame Surface Density

In the context of turbulent premixed combustion modelling, the combustion progress 
is described by a scalar field, called progress variable, that is strained and stretched by 
the combined effects of the turbulent velocity field, diffusion and chemical reactions. 
The progress variable describes the combustion progress from unburnt, when C = 0, to 
fully burnt, when C = 1. In the context of the methane/air premixed flames described in 
Sect. 2.1, the progress variable is defined in terms of the mass fraction of CH4:

Fig. 2   Instantaneous snapshots of the fuel mass fraction (left) and the temperature (right) contour of the 
turbulent hydrogen/air flame. The grey lines indicate the slot walls
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The progress variable is normalised between the minimum and maximum values of the 
CH4 mass fraction from the DNS such that for a fully burnt condition C = 1 and for a fully 
unburnt condition C = 0.

In the context of LES, a modelled density-weighted (Favre) filtered progress variable 
equation in terms of C̃ is defined as:

where 𝜌̄ is the filtered density, ũ is the Favre filtered velocity, the first term on the right-hand 
side is the filtered diffusive fluxes, where D̃ is the molecular diffusivity. The unresolved 
diffusive fluxes are usually neglected, therefore, they are not included in the equation, 𝜔̇ 
is the filtered reaction source term. This equation contains unclosed terms that cannot be 
expressed as a function of the known variables and require modelling. On the right-hand 
side of Eq. 2, the filtered diffusion and the source term can be incorporated into a single 
term as Knikker et al. (2004):

where Sd is the displacement speed of the C-isosurface, often assumed to be equal to the 
laminar flame speed SL . The right-hand side of Eq.  3 can be modelled as Boger et  al. 
(1998):

where �u is the unburnt gas density. Σ = |∇C| is the flame surface density, which, in 
general, cannot be obtained from the resolved field. To overcome this, the model is often 
formulated in terms of the wrinkling factor:

which describes the ratio between the resolved (filtered) flame surface and its unfiltered 
value. It is worth noting that, although the problem is formulated here in a specific form, 
the task of modelling the subfilter wrinkling and the flame area is also relevant to other 
modelling strategies based on different approaches.

In summary, the modelling task requires to compute the flame surface density 
Σ = |∇C| from the filtered quantity C . This will be computed using a CNN model. 
The model will be trained to learn the relation between an input field, in this case, the 
filtered progress variable C and the desired output Σ . The data for training the CNN 
models is obtained from the methane/air DNS dataset. In addition, there are several 
approaches in the literature for modelling Σ or similar tasks that are either algebraic 
or based on the solution of differential equations (Charlette et al. 2002a, b; Wang et al. 
2011; Pitsch 2006. Among these modelling approaches, a well-known and largely 
applied algebraic model proposed by Charlette et al. (2002a) will be employed to model 
Σ . The results of the CNN models will then be compared to the algebraic model to 

(1)C = 1 −
YCH4

− YCH4 ,min

YCH4 ,max − YCH4,min
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evaluate the performance of the CNN models. The algebraic model that will be referred 
to as the Charlette model, is formulated as follows:

where Δ is the filter width, u�
Δ
 is the subgrid turbulent velocity up to Δ , ReΔ = u�

Δ
Δ∕� is 

the SGS Reynolds number, and � is a model constant. In this study, a parameter value of 
� = 0.5 is employed, as the same value was employed in previous studies (Lapeyre et al. 
2019; Charlette et al. 2002a) as well. The performance of the Charlette model with different 
� values was evaluated and a value of 0.5 provides the best results over a wide range of 
filter sizes as shown in the supplementary material. ΓΔ is a function that accounts for the 
straining effects on the flame structure due to turbulent scales smaller than Δ Meneveau 
and Poinsot (1991). Details regarding the formulation of ΓΔ can be found in Charlette et al. 
(2002a).

3.2 � Modelling the Progress Variable Source Term in Premixed Hydrogen/Air Flames

In lean hydrogen flames, there is a significant disparity between the molecular and thermal 
diffusion, which is characterised by the low Lewis number of hydrogen. This leads to 
strong differential diffusion effects within the flame front. The large disparity between 
the thermal and hydrogen mass flux leads to an amplification of the small perturbations 
in the flame front resulting in thermodiffusive instabilities, that strongly affects the flame 
structure and dynamics, as shown by Berger et  al. (2022a, 2022b). In addition, Aspden 
et al. (2011, 2019) and Berger et al. (2022) have demonstrated that turbulence enhances the 
thermodiffusive effects, except in the case of very large Karlovitz numbers (Aspden et al. 
2011, 2019). It was found that turbulence and instability interact synergistically, resulting 
in the thermodiffusive effects being even stronger in turbulent flames than in a laminar 
counterpart.

Similar to the mathematical formulation of the methane flames in Sect. 3.1, the progress 
variable is used to describe the progress of premixed hydrogen combustion. For the 
hydrogen investigations, the progress variable is defined in terms of the mass fraction of 
H2O:

The density-weighted filtered progress variable transport equation is identical to Eq. 2 in 
Sect. 3.1.

Since the progress variable in this context is defined in terms of H2O , the unclosed 
filtered reaction source term in Eq. 2 will be referred to as 𝜔̇H2O

 , which in general cannot 
be obtained from the resolved field. Therefore, in an LES context, 𝜔̇H2O

  must be modelled.
Due to the aforementioned characteristics of lean premixed hydrogen/air flames, 

conventional combustion models generally perform poorly and often fail to capture the 
effects of thermodiffusive instabilities (Berger et al. 2022). Unlike methane, the reaction 
rate of hydrogen flames cannot be parameterised by the progress variable only (Berger et al. 
2022). A second variable, such as an additional progress variable (Remiddi et  al. 2024; 
Bastiaans et al. 2007), a mixture fraction (Regele et al. 2013; Schlup and Blanquart 2019; 
Berger et  al. 2022), or the flame curvature (Böttler et  al. 2023), is therefore required to 

(6)Σ =

(
1 +min

[
Δ

𝛿L
− 1,ΓΔ

(
Δ

𝛿L
,
u�
Δ

SL
,ReΔ

)
u�
Δ

SL

])𝛽
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(7)C =
YH20

− YH2O,min
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parameterise the local reaction rate. In this work, a CNN is trained to learn the relationship 
between a single input field, in this case, the filtered progress variable C and to predict the 
desired output 𝜔̇H2O

 . The data for training the CNN models is obtained from the hydrogen/
air DNS dataset. In addition, 𝜔̇H2O

  is also obtained from a flamelet table containing a 
collection of one-dimensional unstretched laminar flames with different equivalence ratios 
to account for the local variations of mixture fraction due to thermodiffusive instabilities. 
This is a model that works well in laminar premixed flames (Schlup and Blanquart 2019). 
For turbulent premixed flames this model has been extended by assuming a subfilter 
Probability Density Function (PDF), so additionally the variance of progress variable 
is also needed (Berger et  al. 2024). Therefore, the  table is parameterised using progress 
variable, progress variable variance and mixture fraction (Berger et al. 2024, 2022). The 
predictions of the CNN models are then compared with the results from the flamelet table 
to evaluate the performance of the CNN models.

4 � CNN Architecture and Training

4.1 � Neural Network Architecture

In this study, the objective is to use the CNN model to map the 3D input field C at every 
mesh point to a corresponding Σ or 𝜔̇H2O

  value, resulting in an output field with the same 
dimensions as the input field. A CNN-based architecture is better suited for this task as 
it can learn to map the entire field resulting in a direct field-to-field map rather than a 
collection of individual node values. Conceptually, this task is very similar to an ML task 
known as image segmentation, where an input image is analysed and each pixel is classified 
to identify different patterns in the image. However, a typical CNN classifies an image 
with a single label, i.e., it does not classify local information. For image segmentation, 
every pixel in the image must be classified. To improve the localisation performance, 
Ronneberger et  al. (2015) modified and extended a fully convolutional neural network 
(Long et  al. 2015) and developed the so-called U-Net architecture which can be trained 
with few training images and yields more precise segmentation.

The U-Net developed in Ronneberger et al. (2015) takes a 2D image as the input and 
produces a 2D output and is optimised for 2D biomedical image segmentation. Lapeyre 
et al. (2019) adapted the U-Net to handle 3D input/output data and model the subgrid-scale 
flame wrinkling in premixed methane/air flames. Their study showed remarkable success 
in predicting the subgrid-scale flame wrinkling. In this study, the U-Net used in Lapeyre 
et al. (2019) is employed to study the extrapolation performance of the model when applied 
to data that was not used to train the model.

Figure 3 shows the U-Net architecture used in this study. It is a fully convolutional neu-
ral network consisting of 13 layers with standard downsampling and upsampling operators. 
Each downsampling step consists of a padded 3D convolution with a 3 × 3 × 3 kernel, fol-
lowed by a Batch Normalisation (BN) and a Rectified Linear Unit (ReLu) activation. The 
downsampling steps include 2 × 2 × 2 max pooling operations and the number of feature 
channels is doubled. The upsampling steps have a very similar structure to the downsam-
pling steps. They include 3D transposed convolutions instead of 3D convolutions followed 
by 2 × 2 × 2 upsampling operations to recover the original dimension of the input field. In 
addition, the final layer contains a 1 × 1 × 1 convolution followed by a ReLu activation to 
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prevent the U-Net from predicting negative values. The network contains a total of 1.5 mil-
lion trainable parameters. From now on, the U-Net is simply referred to as the CNN.

4.2 � Training the CNN

The training data for the CNN are obtained from the two DNS datasets described in 
Sects.  2.1 and  2.2. To train and test the CNN models, the data is classified into three 
categories: 

	 i.	 The training data Contains input fields and corresponding ground-truth fields. 
Therefore, supervised learning is performed to train the CNN.

	 ii.	 The validation data A different set of data samples from the same dataset as the 
training data. This is used to evaluate the performance of the CNN model after 
every epoch during the training. The validation data is used in the validation step 
during training which acts as an intermediary step between the training and testing 
stages. Even though the training data is used to adjust the model parameters, which 
aims to minimise errors and improve the prediction accuracy, evaluating the model 
performance solely based on the training data can lead to overfitting. Therefore, 
validation data helps to mitigate this by providing an independent set of data samples, 
that allow an assessment of the model’s generalisation capability and fine-tuning of 
the model parameters to improve the robustness of the model.

	 iii.	 The testing data Can be data from the same dataset used for training or from a 
completely different dataset with different flow conditions, different filter sizes and 
filter kernels. In either case, it is data that is never seen by the models during training. 
The testing data is used after the training process of the models is completed to assess 
the performance of the trained CNN models.

In this study, the training data is obtained by filtering the DNS data with either a box or a 
Gaussian filter kernel to emulate LES-like fields. The mathematical representation of the 
3D box filter kernel is as follows:

Fig. 3   3D U-Net architecture. The CNN is constructed using a total of 13 layers and the numbers above 
each layer represent the number of filters used for each convolutional layer
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where � is the filtered DNS field and Δ is the filter width. The box filter kernel adopted 
averages all cell values in the DNS within the given filter width. In addition, a Gaussian 
filter kernel is also used. The mathematical representation of the 3D Gaussian filter kernel 
is as follows:

where � = (Δ − 1)∕2 is the standard deviation. The Gaussian kernel averages the DNS 
field over the specified filter width, giving greater weight to values closer to the centre of 
the transfer function.

Before the DNS is filtered, the fully developed turbulent sub-region of the DNS is first 
extracted. Figure 4 shows the three different regions, such as the flame base, the fully tur-
bulent region, and the flame tip of the methane/air (R4-K1) and the hydrogen/air flames. In 
addition, either side of the flame is a coflow of fully burned gas which contains no informa-
tion about the flame structure, therefore, it will not be used to train the models. The data 
extracted from the three sub-regions of the methane/air flames are used to train four models 
using each of the four DNS flames (R1-K1 to R4-K1) and are tested in all four flames. 
These models were trained and tested with DNS data filtered with only a filter-size ratio of 
8. This is to study the extrapolation performance of the models when applied to different 
Reynolds numbers without the effects of different filter sizes or filter kernels.

To study the effects of filter size and kernel, both methane/air (R4-K1) and hydrogen/
air datasets are employed. The models are only trained with data from the fully turbulent 
region. The DNS is filtered with filter sizes in the range of n ∗ dx using both box and 
Gaussian filters, where dx is the grid size of the DNS and n is the filtering factor in the 
range {n ∈ ℤ ∶ 2 ≤ n ≤ 16} . From hereon, the filter size will simply be referred to by its 
filtering factor. Due to the wide range of filtered data used to train the CNN models, a 
specific naming convention is used when referring to a particular model. For example, a 
model named Box(2,4,8,16) refers to a model that was trained with box-filtered data with 
specific filter sizes, while a model that was trained with box-filtered data with all filter 
sizes within the range of n will be Box(2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) →  Box(2 to 
16) for brevity. The following models were trained and tested: 

	 i.	 Four models trained with box filtered data: Box(2 to 16) , Box(2,4,6,8,10,12,14,16), 
Box(2,4,8,16) and Box(2,4,8) and tested against all the filter sizes in the range of 2 to 
16.

	 ii.	 Four models trained with Gaussian filtered data: Gaussian(2 to 16) , Gauss-
ian(2,4,6,8,10,12,14,16), Gaussian(2,4,8,16) and Gaussian(2,4,8) and tested against 
all the filter sizes in the range of 2 to 16.

	 iii.	 Four models trained with box filtered data with an increasing amount of training data, 
to study the convergence of the results with the increase in training data.

	 iv.	 Three models trained with both filter kernels: Box∕Gaussian(2 to 16) , Box/
Gaussian(2,4,6,8,10,12,14,16) and Box/Gaussian(2,4,8,16).
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Fig. 4   2D contour of the progress 
variable field showing the three 
different sub-regions: flame 
base, fully turbulent region, and 
the flame tip of the methane/air 
(R4-K1) flame (top row) and the 
hydrogen/air flame (bottom row)
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	 v.	 A box-filter model trained with a weighted training data distribution. The amount of 
training data is increased with the increase in filter size.

After the DNS data has been filtered with a given filter size and kernel, the data has to be 
normalised before training the CNN. Normalising the data is crucial in ML as it ensures 
that the features used to train the models are on a similar scale which prevents certain 
features from dominating the learning process due to their larger size. This improves the 
training time and performance of the CNN models. In this study, the data is scaled to range 
between 0 and 1. The input field C is already in this range and therefore, does not need 
to be normalised. However, the output field Σ or 𝜔̇H2O

  does not range between 0 and 1 
and therefore, must be normalised. This is achieved by dividing the output field by the 
maximum value of the output field in the DNS dataset, which ensures that any value in the 
output field is within the range of 0–1.

To train the CNN models, the patch-to-patch training strategy is adopted (Nista 
et al. 2024), i.e., 3D blocks of size 16 × 16 × 16 cells are first extracted from the filtered 
dataset. The data blocks are extracted randomly and augmented by applying random 90◦ 
rotations and/or flipping the data around a random axis. The data augmentation creates 
new variations of the original samples, which increases the diversity of the dataset and has 
been shown to improve the generalisability and overfitting of the CNN models (Lapeyre 
et al. 2019). A batch size of 50 blocks is used, with 40 blocks (80%) for training and 10 
blocks (20%) for validation. The ADAM (Kinga et al. 2015) optimiser is used with a Mean 
Squared Error (MSE) loss function based on single cell values to optimise the weights. 
A total of 100 training steps is employed followed by 50 validation steps. In this study, a 
maximum of 200 epochs is prescribed to ensure sufficient convergence of the training. The 
total training time for 200 epochs is approximately 20 min on a single NVIDIA Volta 100 
GPU.

5 � In‑Sample Model Validation

To validate the performance of the CNN model, in-sample testing is employed where 
both the training and testing data have the same flow conditions (e.g., same Re) and filter 
operator (i.e., same filter size and kernel). Figure 5 (top row) shows the 2D contours of Σ 
predicted by the CNN model compared against the DNS results filtered with a box filter 
of size 8. In addition, Fig. 5 (top row) also shows Σ obtained from the Charlette model, 
together with the flame surface density calculated without any SGS contributions, which 
in this context is simply the magnitude of the gradient of the filtered progress variable (i.e. 
|∇C| ) and is labelled as“No model”. A more detailed quantitative comparison between the 
model predictions and the DNS are also shown by the Joint Probability Density Functions 
(JPDF) in Fig. 6 (top row).

Without using an SGS model, the flame surface density is noticeably underpredicted. 
This underprediction worsens as the filter size is increased and the SGS contributions 
become more important. The validation results for a larger filter size of 16 can be found 
in the supplementary material. The Charlette model shows an improvement in the results 
where the model is able to capture some of the SGS contributions. The CNN model shows 
comparable performance to this specific implementation of the Charlette model and even 
performs slightly better in certain locations. The CNN model is able to reproduce the Σ 
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field, which agrees well with the DNS results in terms of both the magnitude and the spa-
tial distribution. This is confirmed by the JPDF which shows predictions align closely with 
the DNS results with a relatively low scatter along the regression line, as shown by the 
low Normalised Mean Squared Error (NMSE) and a high coefficient of determination ( R2 ) 
values.

Figure  5 (bottom row) shows the 2D contours of 𝜔̇H2O
  obtained from the CNN 

model and two additional flamelet-based models compared with 𝜔̇H2O
 obtained from the 

Fig. 5   Top row: 2D contours of the filtered flame surface density Σ̄ of the methane/air flame (R4-K1) from 
three different models compared against the DNS. Bottom row: 2D contours of the filtered progress variable 
source term �̇H2O

 of the hydrogen/air flame from three different models compared against the DNS. Both 
flames are filtered with a box filter of size 8
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hydrogen/air DNS filtered with a box filter of size 8. A more detailed quantitative compari-
son between the model predictions and the DNS are also shown by the JPDF’s in Fig. 6 
(bottom row).“Single flamelet” refers to 𝜔̇H2O

 obtained from a single 1D unstretched lam-
inar flamelet. Whereas,“Table”refers to 𝜔̇H2O

  obtained from a flamelet table constructed 
using a collection of 1D unstretched laminar flamelets as described in Sect. 3.2. The single 
flamelet model shows poor performance where 𝜔̇H2O

  is significantly underpredicted. The 
corresponding JPDF shows the model significantly underpredicts 𝜔̇H2O

  which leads to a 
relatively high NMSE. There is also a large scatter in the predictions, resulting in a low 
R2 value. The single flamelet model, which is often used for modelling turbulent premixed 
flames, is unable to capture the enhanced reaction rates encountered in the thermodiffu-
sivly unstable hydrogen/air flame (Berger et  al. 2022; Regele et  al. 2013). Furthermore, 
the single flamelet predicts 𝜔̇H2O

  to be constant along the flame front and therefore, does 
not capture the local variations of 𝜔̇H2O

 along the flame front. In comparison, the flamelet 
table, which takes into account the variations of the mixture fraction in the flame, is able to 
significantly improve the accuracy of the predictions. The 𝜔̇H2O

 obtained from the flamelet 
table agrees well with the DNS results and shows a significant improvement over the single 
flamelet model. The corresponding JPDF shows that the predictions are in close agreement 
with the DNS results, with minimal scatter along the regression line. A similar level of 
performance is observed with the CNN model. The JPDF of the CNN model is very simi-
lar to that of the flamelet table. The predictions of the CNN model align very closely with 
the DNS results with minimal scatter along the regression line. However, the CNN model 
provides slightly more accurate predictions with a lower NMSE than the flamelet model. 
With only the progress variable field as the input to the CNN model, the model is able to 
accurately map the intricate structures of the 𝜔̇H2O

 field, which closely matches the DNS. 
Overall, this qualitative comparison shows that the CNN model is adequately trained and 
performs extremely well under in-sample test conditions.

Fig. 6   Top row: JPDFs of the filtered flame surface density Σ̄ of the methane/air flame (R4-K1) from three 
different models compared against the DNS. Bottom row: JPDFs of the filtered progress variable source 
term 𝜔̇H2O

 of the hydrogen/air flame from three different models compared against the DNS. Both flames 
are filtered with a box filter of size 8
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6 � Effect of Reynolds Number

To assess the performance of the CNN models to generalise at different Reynolds numbers, 
each of the four methane/air flames shown in Table 1 has been used to train a CNN model. 
Then each of these models was applied to each of the flames to predict the flame surface 
density. To eliminate any effects of filter size and kernel, data filtered with only a box filter 
size ratio of 8 was used to train these models. More importantly, since the Kolmogorov 
scale is approximately constant in all the flames, the ratio Δ∕� is conserved in all training 

Fig. 7   JPDFs of the flame surface density Σ for CNN models trained and applied to flames at different 
Reynolds numbers. From top to bottom, the Reynolds number of the training data increases; from left to 
right, the Reynolds number of the data used for testing increases
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and testing data. A previous study by Nista et  al. (2023) reported that conserving the 
Δ∕� ratio is fundamental to achieving generalisation capabilities for different flow 
configurations.

The JPDFs of Σ from the DNS and the values predicted by the CNN are shown in Fig. 7. 
The performance is generally good, with an overwhelming probability of errors below 20% 
for large values of Σ in the DNS. For very small values, the probability of discrepancies is 
slightly higher. While the overall behaviour shown in this assessment does not show large 
qualitative differences for the CNN trained at a certain Reynolds number and applied to 
a different one, it can be observed that the model trained with low Reynolds number data 
(R1-K1), when applied to the high Reynolds number case (R4-K1) is characterised by an 
overall overprediction with respect to Σ in the DNS, as shown in the top right panel. A sim-
ilar, albeit less evident, behaviour is observed for the same model when applied to R3-K1 
and for the model trained with R2-K1 data when applied to the high-Re cases R3-K1 and 
R4-K1. On the other hand, the model trained on R3-K1 performs better when applied to 
R4-K1.

To further quantify the extrapolation performance of the models, Fig. 8 shows the mean 
and the 25th and 75th percentiles of the percentage error between the DNS and the CNN 
prediction for all the cases shown in Fig. 7. Each of the lines in the figure shows how a 
model trained on a particular flame performs when tested with data from other flames. 
While the models trained with data from the two lowest Reynolds number cases (R1-K1 
and R2-K1) perform well when applied to the low Reynolds number cases and progres-
sively worse when applied to higher Reynolds number flames, the model trained with high 
Reynolds number data appears to have achieved asymptotic behaviour and the overall error 
is independent of the case to which the model is applied. In particular, it is evident that 
the models trained on R3-K1 and R4-K1 have the same error when applied to data from 
R4-K1, while the models trained on R1-K1 and R2-K1 are further away from the DNS 
values when applied to R4-K1. This suggests that generalisation to higher Reynolds num-
bers is possible provided the training data is collected at a Reynolds number high enough 
to approach the asymptotic state of high-Reynolds number turbulence. This observation 
is also consistent with previous analyses of the same flame series (Luca et al. 2019; Attili 

Fig. 8   Mean percentage error for CNN models trained and applied to flames at different Reynolds numbers. 
The error bars show the 25th and 75th percentiles of the percentage error
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et al. 2021) that showed that the low-Re cases tend to deviate from the asymptotic behav-
iour of the high-Re flames.

7 � Effect of Filter Size

A typical LES mesh contains cells with a range of filter sizes and the exact filter size is 
usually unknown a priori, due to the combined effects of numerical errors and implicit grid 
filtering. Therefore, it is important that a CNN model that has been trained with a certain 
set of filter sizes is able to be applied across a wide range of filter sizes that have not been 
used to train the model. In this section, several CNN models are trained with data filtered 
with a range of specific filter sizes, and the models are tested on data filtered with all filter 
sizes from 2 to 16. It is worth noting that the filter kernel used to filter the training data is 
the same as that used for the testing data, e.g., a box-filtered model is always tested with 
box-filtered test data. This is done to avoid any effects of the filter kernel, which are studied 
separately in Sect.  8. All models are trained with 100 blocks of data for each filter size 
used.

Figure  9 shows the performance of different CNN models trained with either box or 
Gaussian filter kernels with different filter sizes. The models show excellent interpolation 
performance when applied to filter sizes that were not used to train the model. The models 

Fig. 9   Top row: NMSE for CNN models applied to a range of filter sizes predicting the progress variable 
source term 𝜔̇H2O

 trained using the hydrogen/air flame. Bottom row: NMSE for CNN models applied to a 
range of filter sizes predicting the flame surface density Σ trained using the methane/air flame (R4-K1)
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are able to interpolate between filter sizes with good accuracy for both box and Gaussian 
filtered models. Even models trained with few filter sizes, such as the Box(2,4,8,16) model, 
perform very similarly to the model containing all filter sizes Box(2 to 16) . This shows that 
training data with only a few filter sizes is sufficient to train a CNN model with good per-
formance. This significantly reduces the amount of training data required to train the mod-
els. In addition, the interpolation performance of the CNN models is very similar for the 
hydrogen/air flame and the methane/air flame. This further indicates that the CNN models 
are capable of learning complex features embedded in the unstable hydrogen/air flame with 
similar accuracy to predictions in the methane/air flame.

Even though the models show excellent interpolation performance, the extrapola-
tion performance is slightly less accurate. When the Box(2,4,8) or Gaussian(2,4,8) model 
is tested with filter sizes larger than 8, the performance gets progressively worse as the 
filter size increases, as shown in Fig.  9. This increase in error is slightly worse for the 
hydrogen/air flame. Unlike the interpolation, when it comes to the extrapolation perfor-
mance, it appears that the complexity of the predicted features makes extrapolation more 
difficult at larger filter sizes. Although the NMSE gets progressively worse as the filter 
size increases, the overall extrapolation performance is at an acceptable level. As shown in 
Fig. 10, the JPDFs of the Box(2,4,8) and Gaussian(2,4,8) models tested with a filter size of 
16 show that the predicted results still agree relatively well with the DNS results for both 
𝜔̇H2O

 and Σ predictions. For comparison, the Box(2,4,8,16) and Gaussian(2,4,8,16) models 
tested with filter size 12, where the predictions have to be interpolated, are also shown in 
Fig. 10. The JPDFs of these two models are similar to the JPDFs of the Box(2,4,8) and 
Gaussian(2,4,8) models tested with a filter size of 16. A slightly larger scatter of the data 
and slight deviations from the equality line lead to a higher NMSE for the Box(2,4,8) and 
Gaussian(2,4,8) models. Overall, the extrapolation performance is comparable to the inter-
polation performance. Therefore, these a priori tests indicate that a CNN model trained 
with a selected number of filter sizes can be applied across a wide range of filter sizes with 
good overall performance.

8 � Effect of Filter Kernel

Apart from having a range of filter sizes, a typical LES mesh contains cells with unknown 
shapes that implicitly filter the solution differently. Each of these LES cells acts as a filter 
kernel with a certain size and information about the kernel type is usually unknown. 
Therefore, it is important that a CNN model trained with data filtered with a certain filter 
kernel can also be applied to data filtered with a different filter kernel. In this section, data 
from the H2∕air flame is used to predict the progress variable source term and the CH4∕air 
flame with the R4-K1 configuration to predict the flame surface density. The same datasets 
are used to both train and test the CNN models. For example, a model trained with R4-K1 
data is tested with R4-K1 data. Therefore, the training and testing data are statistically 
similar, but the testing data was never seen by the CNN model during training. The CNN 
models are trained using data filtered with a range of filter sizes and a certain filter kernel. 
The models are then tested on data filtered with a different filter kernel. For example, a 
model trained with only box-filtered data is tested on Gaussian-filtered data and vice versa 
to study the extrapolation performance of the model to different filter kernels.
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Fig. 10   JPDFs between the DNS and the predicted values for CNN models trained with a specific number 
of filter sizes and tested on filter sizes that were not used for training. a JPDFs of the progress variable 
source term 𝜔̇H2O

 between the DNS and CNN predictions. Training data is taken from the hydrogen/air 
flame. b JPDFs of the flame surface density Σ between the DNS and CNN predictions. Training data is 
taken from the methane/air flame (R4-K1).
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Figure 11 (top row) shows the performance of the CNN models trained with data fil-
tered with a certain filter kernel and tested with data filtered with a different filter kernel to 
predict the progress variable source term in the hydrogen/air flame. When the CNN models 
trained with box-filtered data only (hereafter referred to as a box model) are applied to 
Gaussian-filtered data and vice versa, the accuracy of the predictions is very good at small 
filter sizes. However, the predictions of all tested models get progressively worse as the 
filter size is increased. The accuracy of the predictions is consistent at smaller filter sizes 
up to a filter size of about 5 when the box models are tested with Gaussian-filtered data. 
Thereafter an increase in inaccuracy can be observed. However, this increase is delayed 
when models that were trained with Gaussian-filtered data (hereafter referred to as Gauss-
ian models) are tested with box-filtered data (Fig. 11, top right). The deterioration of the 
predictions starts around a filter size of 9 and the overall increase in the NMSE is lower 
than for the box models tested against Gaussian data. This difference is even more evident 
in the results for the flame surface density predictions in the R4-K1 methane/air flame, 
which are shown in Fig. 11 (bottom row). In the methane/air flame, there is a significant 
improvement in the results when the Gaussian models are tested with box-filtered data. 
Unlike the 𝜔̇H2O

 predictions, the NMSE does not increase with the increase in filter size. 
The accuracy of the predictions is consistent for all tested filter sizes. However, the Σ pre-
dictions of the box models tested with Gaussian-filtered data show similar performance 
to the 𝜔̇H2O

 predictions from the same type of models. This shows that the CNN models 

Fig. 11   Top row: NMSE for CNN models applied to data filtered with a different filter kernel than the one 
used to train the model. The models predict the progress variable source term 𝜔̇H2O

 trained with data from 
the hydrogen/air flame. Bottom row: NMSE for CNN models tested on data filtered with a different filter 
kernel than the one used to train the model. The models predict the flame surface density Σ trained with 
data from the methane/air flame (R4-K1)
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trained with box-filtered data perform very similarly in both flames (R4-K1 and hydro-
gen/air flame). Conversely, the Gaussian models perform better across both flames. More 
importantly, a significant improvement is observed when the models are applied to the 
methane/air flame (R4-K1).

For a given filter size, the Gaussian kernel filters more compared to a box filter kernel. 
The JPDFs that show this difference in filtering can be found in the supplementary material. 
However, when the filter size is small, the box and Gaussian filters behave very similarly. 
The amount of information filtered by both models becomes very similar. Therefore, the 
CNN models trained with either box or Gaussian-filtered data show similar performance at 
small filter sizes. As the filter size increases, the difference between the two filter kernels 
increases and a difference in the NMSE of the predictions is observed.

Figure  12 shows the JPDFs of the Box(2,4,8,16) model tested with data filtered with 
a Gaussian filter of size 16 and a box filter of size 16 for both methane/air (R4-K1) and 
hydrogen/air flames. The performance of the box model is very similar for both flames, 
with a very similar deviation of the regression line from the equality line (CNN output = 
DNS output). In addition, the box model mostly overpredicts the DNS value in both flames 

Fig. 12   Top row: JPDFs between the DNS and predicted values for CNN models trained on data filtered 
with a certain filter kernel and applied to data filtered with a different filter kernel. The models predict the 
progress variable source term 𝜔̇H2O

 trained using the hydrogen/air flame. Bottom row: JPDFs between the 
DNS and the predicted values for CNN models trained with data filtered from a certain filter kernel and 
applied to data filtered with a different filter kernel. The models are predicting the flame surface density Σ 
trained with the methane/air flame (R4-K1)
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indicated by the slope of the regression line, which is above one. Whereas, the Gaussian 
model behaves slightly differently between the two flames. The Gaussian model applied to 
the methane/air flame underpredicts the DNS while it overpredicts the DNS in the hydro-
gen/air flame. Moreover, the regression line for the Gaussian model is slightly closer to the 
equality line in the hydrogen/air flame than in the methane/air flame. However, the NMSE 
in the hydrogen/air flame is slightly larger than in the methane/air flame. The same trend 
is also observed for the box models, as indicated by the lower R2 value of the data scat-
ter along the regression line in the hydrogen/air flame, resulting in higher NMSE values. 
Overall, the Gaussian models have better extrapolation performance into different filter 
kernels compared to the box models and are therefore, more suitable for ML applications.

As the filter size increases, the amount of information being filtered increases. There-
fore, each filtered block of training data contains less information about the flame structure 
or, conversely, there is more to learn for the field filtered with large filter sizes. Since the 
amount of training data per filter size is the same during training, the amount of train-
ing information for each filter size gets progressively smaller as the filter size increases, 
while the information to learn gets larger. An attempt to reduce this issue is to increase the 
amount of training data for the models. The aim is to add enough information for larger 
filter sizes and reduce the errors in the predictions. The amount of training data is gradually 
increased to study the convergence of the NMSE of the model predictions. Figure 13 shows 
the performance of a series of Box(2,4,6,8,10,12,14,16) models trained with an increasing 
amount of training data. The models predict 𝜔̇H2O

 in the hydrogen/air flame. Five models 
are trained starting with a volume of 200 data blocks per filter size and the amount of train-
ing data is increased in 200 blocks up to a maximum of 1000 blocks. It is worth noting that 
the number of data blocks is evenly distributed among the filter sizes so that each filter size 
has the same number of data blocks. The results show that the NMSE does not change for 
small filter sizes as the training data increases. This indicates that the training is converged 
for small filter sizes. However, as the filter size increases, a difference in the NMSE values 
is observed with the increase in training data, which does not show a monotonic trend. 
The NMSE values for larger filter sizes tend to fluctuate as the amount of training data 

Fig. 13   NMSE for the Box(2,4,6,8,10,12,14,16) model trained with increasing amount of training data. The 
model is predicting 𝜔̇H2O
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increases. Therefore, they do not seem to be converging on a specific value. However, the 
qualitative trends are unchanged as the prediction errors get progressively worse as the fil-
ter size increases, regardless of the amount of training data.

Instead of training the CNN models with data filtered with a single type of filter kernel, 
both box and Gaussian filtered data can be used to train the models. Figure 14 shows the 
performance of the CNN models when trained with both box and Gaussian filtered data. 
All models show excellent performance when tested with both box and Gaussian filtered 
data across all the tested filter sizes. Moreover, a study by Nista et al. (2024) investigated 
the influence of training filter kernels on the reconstruction capability of super-resolution 
generative adversarial network (SR-GAN), based on CNNs, for turbulence closure. Three 

Fig. 14   NMSE for CNN models trained with both box and Gaussian filtered data predicting 𝜔̇H2O

Fig. 15   NMSE for a CNN model trained with a weighted data distribution across the filter sizes. A model 
with evenly distributed blocks of data (200 blocks of data per each filter size) is also shown for comparison. 
Both models are predicting 𝜔̇H2O
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different filter kernels were used in their study: box, Gaussian and spectral filters. It was 
found that a model trained with both box and spectral filtered data performed slightly better 
when applied to Gaussian filtered data compared to a model trained only with either box 
or spectral filtered data. Therefore, mixing filter kernels during the training could improve 
the robustness of the CNN models and their ability to extrapolate to different filter kernels.

Since the larger filter sizes contain less information about the flame structure, there is 
an imbalance of information across the filter sizes. Therefore, an additional CNN model is 
trained with a weighted data distribution. The larger filter sizes are weighted more heav-
ily and vice versa for smaller filter sizes. The amount of training data for each filter size 
is gradually increased as the filter size increases. The aim is to approximately balance the 
level of information contained within each filter size. The amount of training data is dou-
bled for each filter size used, starting with only 8 blocks of data for filter size 2 and ending 
with 1024 blocks for filter size 16. Figure 15 shows the performance of the weighted model 
compared to a model with uniformly distributed blocks of data, which is simply referred 
to as the unweighted model. The weighted model shows an improvement in predictions for 
larger filter sizes while maintaining good accuracy for smaller filter sizes. Even with only 
8 blocks of training data for filter size 2, the accuracy of the predictions did not change 
significantly compared to the unweighted model. This indicates that the smaller filter sizes 
contain enough information so that the CNN model can be trained with relatively small 
amounts of training data to provide accurate predictions. Even though the weighted model 
performs better than the unweighted model at larger filter sizes, the NMSE of the predic-
tions is still higher than that at low filter sizes. Even with 1024 blocks of filter size 16 data, 
the NMSE is still not comparable to the values found at lower filter sizes. However, the 
weighted model is a more robust CNN model that is much less dependent on the type of 
filter kernel compared to the unweighted model and therefore more suitable for LES.

9 � Conclusions

A CNN based on U-Net architecture is used to develop data-driven models for subgrid-
scale flame wrinkling in methane/air premixed flames and the filtered progress variable 
source term in hydrogen/air premixed flames. These models are trained using filtered DNS 
data and tested to evaluate their extrapolation performance under various conditions. The 
performance was studied in terms of Reynolds numbers, filter sizes, and filter types that 
were not included in the training. The key conclusions are: 

1.	 Models trained with data from the two lowest Reynolds number cases (R1-K1 
and R2-K1) perform well when applied to the low Reynolds number cases and get 
progressively worse when applied to larger Reynolds number flames. The model trained 
with high Reynolds number data appears to have achieved asymptotic behaviour and 
the overall error is independent of the case to which the model is applied. This suggests 
that generalisation to higher Reynolds numbers is possible, provided that the training 
data is collected at a Reynolds number high enough to approach the asymptotic state of 
high-Reynolds number turbulence.

2.	 When the CNN models are tested with the same type of filter used for training, they show 
excellent performance. Furthermore, the model is able to interpolate accurately between 
different filter sizes. Even models trained with few filter sizes are able to interpolate with 
relatively small errors. The extrapolation performance of the models is not as good as 
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the interpolation, but is at an acceptable level. This indicates that models trained with 
only a few filter sizes can be successfully applied across a wide range of filter sizes.

3.	 When the CNN models trained with box filter type data are applied to Gaussian-
filtered data and vice versa, the model performs well with smaller filter sizes. However, 
the performance gets progressively worse as the filter size increases. Increasing the 
amount of data does not improve the results. However, mixing box and Gaussian filtered 
data during training significantly improved the results. In addition, using a weighted 
distribution of the training data (i.e. gradually increasing the amount of training data 
with increasing filter size) without mixing the filter types during training shows an 
improvement in results compared to a model with uniformly distributed training data. 
This leads to a more robust CNN model that is less dependent on the filter type and 
better suited for an LES.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10494-​025-​00643-w.

Author contributions  Geveen Arumapperuma: Investigation, Formal analysis, Writing-original draft. 
Nicola Sorace: Investigation, Formal analysis, Visualization. Matthew Jansen: Investigation, Formal 
analysis, Visualization. Oliver Bladek: Investigation, Formal analysis, Visualization. Ludovico Nista: 
Software, Validation, Writing-review & editing. Shreyans Sakhare: Software, Writing-review & editing. 
Lukas Berger: Data curation, Writing-review & editing. Heinz Pitsch: Project administration, Supervision, 
Resources, Writing-review & editing. Temistocle Grenga: Conceptualization, Methodology, Writing-review 
& editing. Antonio Attili: Conceptualization, Methodology, Supervision, Funding acquisition, Writing-
review & editing.

Funding  This research leading to these results has received funding from the German Federal Ministry 
of Education and Research (BMBF) and the state of North Rhine-Westphalia for supporting this work as 
part of the NHR funding and the European Union under the European Research Council Advanced Grant 
HYDROGENATE, Grant Agreement No.  101054894  The authors gratefully acknowledge the computing 
resources provided by ARCHER2 UK National Supercomputing Service, projecte822and the UK Turbulence 
Consortium (EP/D44073/1) as well as the computing resources granted by the NHR4CES Resource Alloca-
tion Board on the high-performance computer CLAIX at the NHR Center RWTH Aachen University.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aspden, A., Day, M., Bell, J.: Turbulence-flame interactions in lean premixed hydrogen: transition to the 
distributed burning regime. J. Fluid Mech. 680, 287–320 (2011)

Aspden, A., Day, M., Bell, J.: Towards the distributed burning regime in turbulent premixed flames. J. Fluid 
Mech. 871, 1–21 (2019)

https://doi.org/10.1007/s10494-025-00643-w
https://doi.org/10.1007/s10494-025-00643-w
http://creativecommons.org/licenses/by/4.0/


	 Flow, Turbulence and Combustion

Attili, A., Bisetti, F., Mueller, M.E., Pitsch, H.: Effects of non-unity Lewis number of gas-phase species in 
turbulent nonpremixed sooting flames. Combust. Flame 166, 192–202 (2016)

Attili, A., Luca, S., Denker, D., Bisetti, F., Pitsch, H.: Turbulent flame speed and reaction layer thickening in 
premixed jet flames at constant karlovitz and increasing reynolds numbers. Proc. Combust. Inst. 38(2), 
2939–2947 (2021)

Bastiaans, R., Vreman, A., Pitsch, H.: DNS of lean hydrogen combustion with flamelet-generated manifolds. 
CTR Annual Research Briefs, 195–206 (2007)

Berger, L., Attili, A., Pitsch, H.: Synergistic interactions of thermodiffusive instabilities and turbulence in 
lean hydrogen flames. Combust. Flame 244, 112254 (2022)

Berger, L., Attili, A., Pitsch, H.: Intrinsic instabilities in premixed hydrogen flames: parametric variation of 
pressure, equivalence ratio, and temperature part 1-dispersion relations in the linear regime. Combust. 
Flame 240, 111935 (2022)

Berger, L., Attili, A., Pitsch, H.: Intrinsic instabilities in premixed hydrogen flames: parametric variation of 
pressure, equivalence ratio, and temperature. part 2-non-linear regime and flame speed enhancement. 
Combust. Flame 240, 111936 (2022)

Berger, L., Attili, A., Wang, J., Maeda, K., Pitsch, H.: Development of large-eddy simulation combustion 
models for thermodiffusive instabilities in turbulent hydrogen flames. In: Proceeding of the Summer 
Program, Center for Turbulence Research, Stanford University, 247 (2022)

Berger, L., Attili, A., Gauding, M., H.Pitsch: LES combustion model for premixed turbulent hydrogen 
flames with thermodiffusive instabilities. Submitted. (2024)

Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface 
density concept for large eddy simulation of turbulent premixed combustion. In: Symposium (Interna-
tional) on Combustion, vol. 27, pp. 917–925 (1998). Elsevier

Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid 
Mech. 52(1), 477–508 (2020)

Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., Klippenstein, S.J.: Comprehensive h2/o2 kinetic model for high-
pressure combustion. Int. J. Chem. Kinet. 44(7), 444–474 (2011)

Böttler, H., Lulic, H., Steinhausen, M., Wen, X., Hasse, C., Scholtissek, A.: Flamelet modeling of thermo-
diffusively unstable hydrogen-air flames. Proc. Combust. Inst. 39(2), 1567–1576 (2023)

Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for les of premixed turbu-
lent combustion part I: non-dynamic formulation and initial tests. Combust. Flame 131(1–2), 159–180 
(2002)

Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for les of premixed turbulent 
combustion part II: dynamic formulation. Combust. Flame 131(1–2), 181–197 (2002)

Duraisamy, K., Iaccarino, G., Xiao, H.: Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 
51(1), 357–377 (2019)

Duraisamy, K., Zhang, Z.J., Singh, A.P.: New approaches in turbulence and transition modeling using data-
driven techniques. In: 53rd AIAA Aerospace Sciences Meeting (2015)

Grenga, T., Nista, L., Schumann, C.K.D., Karimi, A., Scialabba, G., Attili, A., Pitsch, H.: Predictive data-
driven model based on generative adversarial network for premixed turbulence-combustion regimes. 
Combust. Sci. Technol. 195(15), 3923–3946 (2023). https://​doi.​org/​10.​1080/​00102​202.​2022.​20416​24

Heaney, C.E., Li, Y., Matar, O.K., Pain, C.C.: Applying convolutional neural networks to data on unstruc-
tured meshes with space-filling curves. Neural Netw. 175, 106198 (2024)

Ihme, M., Chung, W.T., Mishra, A.A.: Combustion machine learning: principles, progress and prospects. 
Prog. Energy Combust. Sci. 91, 101010 (2022)

Kinga, D., Adam, J.B., et al.: A method for stochastic optimization. In: International Conference on Learn-
ing Representations (ICLR), vol. 5, p. 6 (2015). San Diego, California;

Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation 
of turbulent premixed combustion. Phys. Fluids 16(11), 91–94 (2004)

Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D., Poinsot, T.: Training convolutional neural networks 
to estimate turbulent sub-grid scale reaction rates. Combust. Flame 203, 255–264 (2019)

Lapeyre, C., Misdariis, A., Cazard, N., Poinsot, T.: A-posteriori evaluation of a deep convolutional neural 
network approach to subgrid-scale flame surface estimation. In: Proceedings of the Summer Program, 
Center for Turbulence Research, pp. 349–358 (2018)

Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applica-
tions, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 6999–7019 (2021)

Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks 
with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)

Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

https://doi.org/10.1080/00102202.2022.2041624


Flow, Turbulence and Combustion	

Luca, S., Al-Khateeb, A.N., Attili, A., Bisetti, F.: Comprehensive validation of skeletal mechanism for tur-
bulent premixed methane-air flame simulations. J. Propul. Power 34(1), 153–160 (2018)

Luca, S., Attili, A., Schiavo, E.L., Creta, F., Bisetti, F.: On the statistics of flame stretch in turbulent pre-
mixed jet flames in the thin reaction zone regime at varying reynolds number. Proc. Combust. Inst. 
37(2), 2451–2459 (2019)

Malé, Q., Lapeyre, C.J., Noiray, N.: Hydrogen reaction rate modeling based on convolutional neural net-
work for large eddy simulation. arXiv preprint arXiv:​2408.​16709 (2024)

Maulik, R., San, O.: A neural network approach for the blind deconvolution of turbulent flows. J. Fluid 
Mech. 831, 151–181 (2017)

Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Com-
bust. Flame 86(4), 311–332 (1991)

Nikolaou, Z.M., Chrysostomou, C., Vervisch, L., Cant, S.: Progress variable variance and filtered rate mod-
elling using convolutional neural networks and flamelet methods. Flow Turbul. Combust. 103(2), 485–
501 (2019)

Nista, L., Pitsch, H., Schumann, C.D.K., Bode, M., Grenga, T., MacArt, J.F., Attili, A.: Influence of adver-
sarial training on super-resolution turbulence reconstruction. Phys. Rev. Fluids 9, 064601 (2024). 
https://​doi.​org/​10.​1103/​PhysR​evFlu​ids.9.​064601

Nista, L., Schumann, C.D.K., Grenga, T., Attili, A., Pitsch, H.: Investigation of the generalization capabil-
ity of a generative adversarial network for large eddy simulation of turbulent premixed reacting flows. 
Proc. Combust. Inst. 39(4), 5279–5288 (2023). https://​doi.​org/​10.​1016/j.​proci.​2022.​07.​244

Nista, L., Schumann, C.D., Petkov, P., Pavlov, V., Grenga, T., MacArt, J.F., Attili, A., Markov, S., Pitsch, 
H.: Parallel implementation and performance of super-resolution generative adversarial network turbu-
lence models for large-eddy simulation. Comput. Fluids 288, 106498 (2025). https://doi.org/10.1016/j.
compfluid.2024.106498

Nista, L., Schumann, C.D.K., Petkov, P., Pavlov, V., Grenga, T., MacArt, J.F., Attili, A., Markov, S., Pitsch, 
H.: Parallel implementation and performance of super-resolution generative adversarial network turbu-
lence models for large-eddy simulation. Submitted. (2024)

Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)
Pitsch, H.: The transition to sustainable combustion: hydrogen- and carbon-based future fuels and methods 

for dealing with their challenges. Proc. Combust. Inst. 40(1), 105638 (2024). https://​doi.​org/​10.​1016/j.​
proci.​2024.​105638

Regele, J.D., Knudsen, E., Pitsch, H., Blanquart, G.: A two-equation model for non-unity Lewis number dif-
ferential diffusion in lean premixed laminar flames. Combust. Flame 160(2), 240–250 (2013)

Remiddi, A., Lapenna, P.E., Cavalieri, D., Schintu, D., Indelicato, G., Attili, A., Berger, L., Pitsch, H., Creta, 
F.: Data-driven modeling of resolved and filtered thermo-diffusively unstable hydrogen-air flames. 
Proc. Combust. Inst. 40(1–4), 105713 (2024)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. 
In: Medical Image Computing and Computer-assisted intervention–MICCAI 2015: 18th International 
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241 (2015). 
Springer

Schlup, J., Blanquart, G.: Reproducing curvature effects due to differential diffusion in tabulated chemistry 
for premixed flames. Proc. Combust. Inst. 37(2), 2511–2518 (2019)

Seltz, A., Domingo, P., Vervisch, L., Nikolaou, Z.M.: Direct mapping from les resolved scales to filtered-
flame generated manifolds using convolutional neural networks. Combust. Flame 210, 71–82 (2019)

Tomboulides, A., Lee, J., Orszag, S.: Numerical simulation of low mach number reactive flows. J. Sci. Com-
put. 12, 139–167 (1997)

Vollant, A., Balarac, G., Corre, C.: Subgrid-scale scalar flux modelling based on optimal estimation theory 
and machine-learning procedures. J. Turbul. 18(9), 854–878 (2017)

Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy 
simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/2408.16709
https://doi.org/10.1103/PhysRevFluids.9.064601
https://doi.org/10.1016/j.proci.2022.07.244
https://doi.org/10.1016/j.compfluid.2024.106498
https://doi.org/10.1016/j.compfluid.2024.106498
https://doi.org/10.1016/j.proci.2024.105638
https://doi.org/10.1016/j.proci.2024.105638


	 Flow, Turbulence and Combustion

Authors and Affiliations

Geveen Arumapperuma1 · Nicola Sorace1 · Matthew Jansen1 · Oliver Bladek1 · 
Ludovico Nista2 · Shreyans Sakhare2 · Lukas Berger2 · Heinz Pitsch2 · 
Temistocle Grenga3 · Antonio Attili1

 *	 Geveen Arumapperuma 
	 geveen.arumapperuma@ed.ac.uk

	 Nicola Sorace 
	 s1645762@sms.ed.ac.uk

	 Matthew Jansen 
	 m.g.d.jansen@sms.ed.ac.uk

	 Oliver Bladek 
	 o.bladek@sms.ed.ac.uk

	 Ludovico Nista 
	 l.nista@itv.rwth-aachen.de

	 Shreyans Sakhare 
	 s.sakhare@itv.rwth-aachen.de

	 Lukas Berger 
	 l.berger@itv.rwth-aachen.de

	 Heinz Pitsch 
	 h.pitsch@itv.rwth-aachen.de

	 Temistocle Grenga 
	 t.grenga@soton.ac.uk

	 Antonio Attili 
	 antonio.attili@ed.ac.uk

1	 School of Engineering, The University of Edinburgh, Edinburgh EH8 3JL, Scotland, UK
2	 Institute for Combustion Technology, RWTH Aachen University, 52056 Aachen, Germany
3	 Faculty of Engineering and Physical Sciences, University of Southampton, 

Southampton SO17 1BJ, UK


	Extrapolation Performance of Convolutional Neural Network-Based Combustion Models for Large-Eddy Simulation: Influence of Reynolds Number, Filter Kernel and Filter Size
	Abstract
	1 Introduction
	2 DNS Datasets Description
	2.1 MethaneAir Premixed Flames
	2.2 HydrogenAir Premixed Flame

	3 Mathematical Formulation
	3.1 Modelling Flame Surface Density
	3.2 Modelling the Progress Variable Source Term in Premixed HydrogenAir Flames

	4 CNN Architecture and Training
	4.1 Neural Network Architecture
	4.2 Training the CNN

	5 In-Sample Model Validation
	6 Effect of Reynolds Number
	7 Effect of Filter Size
	8 Effect of Filter Kernel
	9 Conclusions
	References


